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Abstract
One of the major ways that people engage in adaptive problem
solving is by copying the solutions of others. Most of the work
on this field has focused on three questions: when to copy, who
to copy from, and what to copy. However, how much to copy
has been relatively less explored. In the current research, we
are interested in the consequences for a group when its mem-
bers engage in social learning strategies with different tenden-
cies to copy entire or partial solutions and different complex-
ities of search problems. We also consider different network
topologies that affect the solutions visible to each member.
Using a computational model of collective problem solving,
we demonstrate that strategies where social learning involves
partial copying outperform strategies where individuals copy
entire solutions. We analyze the exploration/exploitation dy-
namics of these social learning strategies under the different
conditions.
Keywords: social learning; individual learning; copying; ex-
plore/exploit; imitation; network topology

Introduction
There are two major ways that people engage in adap-
tive problem solving: trial-and-error individual learning and
copying the solutions of others. There is much empirical
work studying social learning (Derex & Boyd, 2016; Ma-
son & Watts, 2012; Mason, Jones, & Goldstone, 2008; Wis-
dom, Song, & Goldstone, 2013; Wisdom & Goldstone, 2011)
and a number of computer simulations (Lazer & Friedman,
2007; Fang, Lee, & Schilling, 2010; Barkoczi & Galesic,
2016; Rendell et al., 2010), focusing mainly on what individ-
uals should copy, who they should copy from, and when they
should copy. The most common “what to copy” strategies are
copy either the best or the most popular solution (Barkoczi
& Galesic, 2016). “Who to copy” refers most commonly to
what type of communication network individuals should be
situated in. Asking when one should copy clearly positions
social learning as an explore-exploit problem. Exploiting oth-
ers’ solutions prematurely can cause the group to converge on
a sub-optimal solution, but once an optimal solution is found,
copying is essential. It is evident that when searching for
good social learning strategies, there is a lot to take into ac-
count, and here we suggest one more: how much to copy?

Several computer simulations have addressed how differ-
ent social learning strategies perform in problem spaces of

varying difficulty. Most have focused on the effect of the
communication network on group performance, finding that
locally-connected groups excel in complex problem spaces
while globally-connected groups excel in simple ones (Derex
& Boyd, 2016; Lazer & Friedman, 2007; Fang et al., 2010;
Wisdom et al., 2013) (going forward we will refer to these
network types as simply local or global). When the best solu-
tion is easy to find, global groups excel as information about
the optimal solution spreads quickly. When the best solu-
tion is hard to find, local groups excel because information
spreads slowly, maintaining solution diversity longer, and the
group can explore more before converging on the best solu-
tion. Although there is an impressive range of strategies that
have been studied, most every strategy that performs well in
complex problem spaces does so by maintaining diversity. In
searching for other ways of maintaining diversity we were in-
spired by empirical work that has found that people do not
copy entire solutions (Caldwell, Cornish, & Kandler, 2016;
Derex, Feron, Godelle, & Raymond, 2015), though most
computer simulations have modeled copying as perfect im-
itation. In the paper, we are interested in the consequences
for the group when its members engage in social learning
strategies with different tendencies to copy entire or partial
solutions.

Model
Following previous work (Barkoczi & Galesic, 2016; Fang et
al., 2010; Lazer & Friedman, 2007), we modeled social learn-
ing using a group of individuals exploring a problem space
through social and individual learning. In this section, we de-
scribe the problem space, the learning strategy, and the net-
work of collaborations.

Problem space. The individuals in the group are solv-
ing problems generated through the tunably rugged NK-
landscape first developed by Kauffman and Weinberger
(1989). In the model, an NK landscape represents the prob-
lem space and is determined by the number of dimensions (N)
in the space and the number of epistatic interactions between
the dimensions (K). Each dimension corresponds to a locus in
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the solution and the value at that locus determines a contribu-
tion to the overall score for that solution. The contribution of
a specific dimension, however, also depends on the values at
K other dimensions. In this way, the parameter K determines
the “smoothness” of the problem space. The simplest prob-
lem space, K = 0, contains a single global optimum, but as
K increases, the problem space becomes more rugged. When
K is at its highest possible (K = N −1), the problem space is
effectively random. For the simulations presented below, we
fixed the dimensionality (N = 15) and varied systemically the
ruggedness of the problem space (K between 0 and 14). For
each problem space, scores were normalized to run between
0 and 1, with 0 corresponding to the worst possible solution
and 1 corresponding to the best solution as determined by
an exhaustive search of the landscape. Following previous
work (Lazer & Friedman, 2007; Barkoczi & Galesic, 2016),
we elevated the scores to the power of 8. In NK landscapes,
there may be many solutions with scores near 1, making it
hard to distinguish between global and local optima. Elevat-
ing the scores to the power of 8 widens the distribution of the
upper range of payoffs.

Social and individual learning. We modeled a group of
100 individuals exploring the problem space through social
and individual learning. For each problem, the group started
with initially random solutions and associated scores. At each
time step of the simulation, individuals observed the solution
and score of one randomly chosen neighbor from their net-
work of collaborators. If the neighbor had a better scoring
solution than the individual, the individual copied the neigh-
bor’s solution entirely. If the alternative solution was not bet-
ter scoring, the individual attempted to learn on its own by
“flipping” one random bit in its own solution. It kept the
change only if it improved the score of its solution, abandon-
ing it otherwise. The primary difference between our model
and previous modeling work was our social learning strat-
egy. In most previous studies, when an individual was copy-
ing from a better-performing neighbor, they adopted 100% of
that neighbor’s solution. In contrast, we also considered cases
where the individual adopted the better individual’s solution
only partially. In the partial copying conditions, the individ-
ual copied each bit from the better individual’s solution with
a 50% probability. In one experiment, we also systematically
explored the amount of copying across the full range, from 0
to 15 bits. In a follow-up experiment, we examined a condi-
tion where we again varied the number of bits copied from 0
to 15, but the rest of the bits that were not copied were set to
a random bit value.

Collaboration network. Individuals in a group were con-
nected to each other through a network of collaborators. In
other words, each individual had specifically assigned neigh-
bors with which they could collaborate. In addition to ma-
nipulating the problem complexity and the amount of copy-
ing, we followed others in manipulating the structure of this
collaboration network (Derex & Boyd, 2016; Fang et al.,

2010; Lazer & Friedman, 2007; Mason et al., 2008; Mason
& Watts, 2012). Manipulating the network of collaborations
effectively alters the efficiency of information spread in that
group. In this paper, we report on two network architectures:
global groups, in which every member is connected to ev-
ery other member in the group (i.e., high information spread),
and local groups, in which individuals are geographically dis-
tributed on a 1D ring and each individual only has access to
solutions from their immediate neighbors (i.e., low informa-
tion spread). Networks of collaboration in the real world are
likely to fall somewhere in between these two extremes. Al-
though we systematically varied the size of the neighborhood
for each, from purely local to fully global, we report only on
the architectures at the two extremes of the spectrum for sim-
plicity.

Measuring performance. In order to measure the perfor-
mance of the group on any one condition (i.e., problem diffi-
culty, degree of copying, and collaboration network), we fol-
low previous work in examining the average score across the
individuals in a group at the end of the learning trials. In pre-
liminary work, we also analyzed the performance of the best
individual in the group. However, the goal of the present pa-
per will be to examine the advantages of different degrees of
copying for the group as a whole. Finally, due to the vari-
ability of different instantiations of each problem space, each
condition that we report on in this paper was tested using the
same set of 1,000 problem spaces.

Results
To examine the efficacy of partial copying, we first analyzed
the four combinations of copying strategy and network topol-
ogy across task difficulty. Finding partial copying to be the
most successful, we considered the dynamics of the learning
process over time to explain this result. We then varied the
amount of bits copied to see if a specific amount of copying
was optimal. We compared the results of this and a similar ex-
periment to verify that the advantage of partial copying was
from mixing two solutions, and not just from adding random
noise to a good solution.

Should individuals copy entire solutions?
Copying entire solutions saves an individual time and miti-
gates potential risks from mixing partial solutions, but this
may not be the best strategy for the group. In the first set of
experiments, we analyzed group performance when individu-
als copied entire solutions compared to only part of solutions
(i.e., a random 50% of the solution). Because recent theoreti-
cal work has highlighted the effect of the network communi-
cation structure on group performance, we considered condi-
tions where individuals were connected globally and locally.

Final group performance. The first step in our analysis
was to examine group performance for four conditions across
the two dimensions of interest: amount of copying (full
or partial) and connectivity of the group (global or local).
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Figure 1: Final group performance across problem difficulty.
Each point represents performance of the group of 100 indi-
viduals after 2,500 learning steps, averaged over 1,000 repeti-
tions. Shaded area represents standard error around the mean.

Specifically, we examined the average score of all the final so-
lutions in the group after 2,500 learning trials across all pos-
sible problem difficulties (Fig. 1). For the simplest possible
problem space (K=0), all conditions consistently found the
global optimum. As problem difficulty increased, group per-
formance decreased across conditions, decreasing more dras-
tically for full copying strategies than partial copying strate-
gies. For most problem spaces, partial copying outperformed
full copying conditions. When individuals copied fully, the
local groups consistently outperformed global groups across
problem difficulty. Finally, the difference in performance af-
forded by the local network structure was smaller for partial
copying than for full copying groups. Although within par-
tial copying, the effect of network structure was smaller, lo-
cal groups had a small advantage for intermediate problem
spaces (K between 4 and 7) and global groups had an advan-
tage on the hardest and most random problem spaces (K>10).

Group performance dynamics. The second step in our
analysis was to consider the dynamics of group performance
over time (Fig. 2). In order to examine the asymptotic behav-
ior of these strategies, we ran each simulation until we ob-
served no more learning. However, we focused our analysis
on the initial transient since that is when most of the learn-
ing occurs. For simplicity, we analyzed only the dynamics in
one intermediate problem difficulty (K=6), where the differ-
ence in performance between full and partial copying is large,
but the problem space is not too random. When individu-
als copied entire solutions, global groups learned fast and got
stuck quickly; local groups moved slower but arrived at a bet-
ter solution. This is consistent with what has been reported in
previous work (Lazer & Friedman, 2007; Barkoczi & Galesic,
2016). When copying was partial, performance for both local
and global groups improved more slowly initially, but with
time they outperformed the full copying strategies by a sig-
nificant margin. So although full copying increased group
performance over the short term, partial copying led to bet-

Figure 2: Group performance over time. Time shown on
a log scale because most of the learning occurs in the ini-
tial period. For simplicity, we only visualize an intermediate
problem difficulty (K=6). Each trace represents group per-
formance over time, averaged over 1,000 repetitions, for full
and partial, global and local conditions. Shaded area repre-
sents standard error around the mean.

ter asymptotic performance overall for both of the network
topologies we studied. Finally, in the partial copying con-
ditions, the global groups reached the optimum earlier than
the local ones; but the local groups eventually matched their
performance.

Learning choice dynamics. To answer the question of why
partial copying outperformed full-copying, we examined how
the learning choices in the group changed over time (Fig. 3).
In the full-copying conditions, individual learning and copy-
ing disappeared quickly; individuals were rapidly losing op-
portunities to improve solutions. One problem was that copy-
ing too early, especially when copying is full, leads to a quick
loss of diversity of solutions in the population. As more of an
individual’s neighbors shared their same solution, opportuni-
ties for copying diminished. As these groups converged pre-
maturely on local optima, local improvements became scarce
so individual learning too slowed to a stop. In the partial
copying conditions, both forms of learning were maintained
for longer and in larger proportions of the group. For one,
partial copying does not lead to the pronounced diversity loss
of full-copying, so the local partial copying group still did
well despite copying early on. The global partial copiers did
even better by delaying copying and instead exploring more
of the problem space before exploiting the best solutions they
had found so far.

Within the partial copying condition, it is interesting that
there was more copying and individual learning for global
groups than local ones. For local groups, the solutions in a
region in the social network all began to look similar as in-
dividuals could only copy from their immediate neighbors or
search locally. As a result, it became less likely that their
neighbors would have better solutions for them to copy. The
individuals in the global condition did not have this disadvan-
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A

B

Figure 3: Learning choice dynamics (K=6). [A] Proportion
of individuals in the population that learned by copying a
neighbor. [B] Proportion of individuals in the population that
learned individually. Note that these two measures do not
sum to 1 because when neither copying nor individual learn-
ing led to an improvement, the individual did not learn during
that trial. As the population converged, both types of learning
diminished. Each trace represents group performance over
time, averaged over 1,000 repetitions, for full and partial,
global and local conditions.

tage, as they could potentially copy from anyone in the popu-
lation, increasing their odds of choosing to copy from a better
neighbor. This also explains why the difference in copying
frequency between the two partial conditions was absent un-
til about 10 learning trials had passed. All the solutions were
random at the beginning so the chances of choosing a better-
performing neighbor were the same for both groups until the
local neighborhoods started to conform. Global groups not
only copied more, but also learned more than local groups
when there was partial copying. Movement is limited in lo-
cal groups, causing many individuals to end up stuck on local
optima where learning stalled. Individuals in global groups,
who could potentially move anywhere in the problem space
by partially copying a distant solution, could discover new
regions with many more opportunities to individually learn.

A

B

Figure 4: Diversity of the individuals in the group (K=6).
[A] Average Hamming distance between every pair of indi-
viduals in the group. [B] Proportion of unique solutions in the
group. Each trace represents group performance over time,
averaged over 1,000 repetitions, for full and partial, global
and local conditions.

Diversity: different forms of exploitation and exploration.
To explain the difference in performance between these social
strategies, we considered the maintenance and generation of
diversity in the population and their explore-exploit dynam-
ics. Individual learning corresponds to local exploration as in-
dividuals take small steps from their current position. Copy-
ing entire solutions corresponds to exploitation. Partial copy-
ing, however, amounts to a unique blend of exploration and
exploitation. Mixing two solutions can be interpreted as ex-
ploitation of the solution elements being copied, but also ex-
ploration of a greater set of potential solutions than are reach-
able in a single step of individual learning. Because mixing
solutions can position an individual in a previously unoccu-
pied region of the problem space, it carries the potential of
broadening the pool of unique solutions in the population.

In order to characterize the diversity of solutions in these
groups in the different conditions, we examined two comple-
mentary measures: the overall spread of the solutions in space
using the average Hamming distance between every pair of
individuals in the group (Fig. 4A) and the proportion of solu-
tions that were unique in the group (Fig. 4B). In both the full
and partial copying conditions, the distance between individ-
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Figure 5: Final group performance as a function of the num-
ber of bits copied (K=6). We consider global and local con-
ditions. Each point represents final group performance after
2,500 learning steps, averaged over 1,000 repetitions. Shaded
area represents standard error around the mean.

uals in the global groups became smaller faster than in the
local groups. This effect is consistent with the explanation
above: global groups lose diversity more rapidly than local
ones. Although the Hamming distance is useful to capture
the size of dispersion of the solutions in the group, it can lead
to misleading comparisons if the groups have different lev-
els of clustering around groups of solutions. The proportion
of unique solutions in the group allowed us to further char-
acterize the diversity in these different conditions (Fig. 4B).
Although the average Hamming distance was different for the
global and the local conditions in the full-copying conditions,
their proportion of unique solutions was similar. In other
words, both groups were clustered around a similar number
of unique solutions, but the clusters in the local groups were
spread out over a wider range of the space. In the partial
copying conditions, the effect was different. Although the lo-
cal group was dispersed over a wider range of the space (as
shown by the Hamming distance), it was the global group that
had the highest proportion of unique solutions. The combina-
tion of global-connectedness and partial copying conferred
the highest amount of diversity to the population. Copy-
ing mixes solutions that are less related when the network is
global rather than local. In the local condition, copying mixes
similar solutions. It was also useful to compare the full/local
and the partial/global conditions. The average Hamming dis-
tance between them was similar, but the proportion of unique
solutions was different: much higher for the partial/global. So
although they were dispersed in similarly-sized clouds in the
problem space, the full/local was highly clustered around a
small group of unique solutions, while the partial/global was
more widely spread within the same space.

How much to copy from others?
In the previous section, we demonstrated that strategies where
individuals copy 50% of a neighbor’s solution outperform
strategies where the individual is forced to copy the neigh-

Figure 6: Final group performance as a function of the num-
ber of bits copied when the rest of the bits are randomized
(K=6). We consider global and local conditions. Each point
represents final group performance after 2,500 learning steps,
averaged over 1,000 repetitions. Shaded area represents stan-
dard error around the mean.

bor’s entire solution. However, how much copying is best for
the group? In order to better understand this, we examined
the performance of partial copying while we systematically
varied the amount of bits that were copied from the better
performing neighbor (Fig. 5). In the global groups, copying a
single bit from the better performing neighbor improved the
social learning strategy dramatically relative to no copying.
Each additional bit copied led to a slight decrease in perfor-
mance. Copying a single bit introduces a mixture of good
existing solutions, but as more bits are copied, there is a de-
struction of combinations of bits that previously worked well.
In the local groups, there was a similar effect, except that
copying a few more bits was useful. This is because nearby
solutions are more alike, so there is not as much disruption as
in the global condition. The qualitative shape of this curve
was the same for different problem difficulties (Ks); what
changed was the overall group performance (higher perfor-
mance for simpler problems and vice versa). In summary,
copying some of your neighbor’s solution is essential, but
copying too much of their solution can be detrimental. Also,
local groups can copy more of their neighbor’s solution be-
fore incurring a detriment.

Mixing solutions or copying with noise?
Although we hypothesized that the advantage observed in the
partial copying groups was due to mixing two solutions, it
is possible that it simply came from adding random noise to
an already good solution. To investigate this, we evaluated
a new condition where, when copying, agents created a new
solution by combining a better-performing neighbor’s solu-
tion with random bits (Fig. 6), as opposed to normal partial
copying where they combined their neighbor’s solution with
their own. When only a few bits were being copied (1-4 in the
global case; 1-7 in the local case), mixing the current solution
with a better one was the best strategy. However, when many
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bits were being copied from the better-performing neighbor,
discarding the current solution for random bits was the best
strategy. As expected, when nearly all bits were being copied,
there was little or no difference between mixing solutions or
copying with noise. Also, mixing solutions was better for lo-
cal than global networks because of the high similarity of so-
lutions in the local region of the social network. Local copy-
ing is more likely to produce viable solutions that preserve
important interactions between bits, while mixing solutions
in the global case carries the risk of breaking important inter-
actions because very different solutions could be blended.

Discussion
Social learning has been widely shown to be advantageous
over individual learning but can lead populations to converge
prematurely on sub-optimal solutions. Social learning is an
explore-exploit problem; agents must balance exploring new
solutions and exploiting good solutions. Recent studies have
searched for a way to balance this trade-off and reap the ben-
efits of social learning while avoiding the drawbacks. These
proposed methods are successful because they help the group
maintain the global diversity of solutions longer. Popula-
tions will eventually converge on a solution, but strategies
that maintain diversity keep populations exploring longer and
allow more of a chance for the population to converge on the
optimal solution. For this reason, studying the long-term per-
formance of social learning strategies is critical. In previous
work, simulations had been run for somewhere between 100
and 200 learning steps (Lazer & Friedman, 2007; Barkoczi
& Galesic, 2016), but this was not long enough to show the
asymptotic behavior of the social learning strategies. The
dynamic aspects of the strategies should be taken into con-
sideration as seriously as their asymptotic performance, as
this helps demonstrate the diversity-maintenance ability of a
given strategy.

Network topology. One of the most explored suggestions
for maintaining diversity is to mediate information flow by
embedding learners in inefficient networks (Derex & Boyd,
2016; Lazer & Friedman, 2007) or clustered networks, a spe-
cial type of inefficient network (Fang et al., 2010). Derex
and Boyd (2016) found that individuals in efficient networks
tend to copy successful individuals more often, and Wisdom,
Song, and Goldstone (2013) found that people are also more
influenced by higher-performing individuals, copying larger
parts of their solutions. Copying is beneficial, but as we have
shown, too much copying cannot maintain the diversity of
solutions in the population as well and can cause the group
to get stuck on a sub-optimal peak. Embedding the group in
an inefficient network (such as the local network we used)
can prevent this by slowing down information propagation,
but diversity maintenance via inefficient networks may not
always be the best solution.

The complexity and size of the search space affects the per-
formance of efficient and inefficient networks. Mason, Jones,
and Goldstone (2008) found that efficient networks perform

the best in a unimodal problem space – one with a single
global optimum and no local optima. In a multimodal prob-
lem space, inefficient networks performed best. This result
is confirmed by Mason and Watts (2012), who found that
efficient networks resulted in better group performance for
their comparatively limited problem space. For simple prob-
lem spaces, which have fewer local optima to get stuck in,
maintaining diversity is less important compared to quickly
propagating good solutions, which is a strength of efficient
networks. It follows, then, that when considering how to con-
nect a group, the difficulty of the problem should be consid-
ered (Goldstone, Wisdom, Roberts, & Frey, 2013).

Studies have demonstrated that one should also take into
account the individuals’ strategy when considering how to
connect a group (Barkoczi & Galesic, 2016; Barkoczi, An-
alytis, & Wu, 2016). They found that inefficient networks
are best when individuals copy the best solution of their
neighbors, but efficient networks are best when individuals
copy the most frequent solution. Both of these social learn-
ing strategies are common human biases (Derex et al., 2015;
Derex & Boyd, 2016; Heyes, 2016; Kendal et al., 2018; Wis-
dom et al., 2013), but we chose to consider only the best
member strategy in our model because in a large search space,
an individual’s neighbors are likely to all have unique solu-
tions, making the conformity strategy unfeasible.

Alternate diversity-maintenance strategies. Inefficient
networks are not the only way to maintain solution diver-
sity in complex problem spaces. Other strategies preserve
diversity by mitigating a problematic bias: humans tend to do
more copying initially, when they are unfamiliar with a prob-
lem and uncertain what a good solution may be (Wisdom et
al., 2013). Copying early can cause a population to get stuck
on a sub-optimal peak; it is much better to explore early and
exploit later (Yahosseini, Reijula, Molleman, & Moussaid,
2018). One suggestion is to limit social influence by having
intermittent breaks, during which participants must explore
solutions on their own (Bernstein, Shore, & Lazer, 2018). We
have demonstrated the benefits of copying only parts of solu-
tions. While partial imitation has been ubiquitous in empiri-
cal work, its advantages over perfect imitation have not been
fully explored.

Imitation. Although copying might seem to increase con-
formity and decrease solution diversity, it actually maintains
diversity longer than individual learning and facilitates inno-
vation (Wisdom & Goldstone, 2011; Derex & Boyd, 2016).
One reason is that humans are not perfect imitators. We copy
erroneously (Caldwell et al., 2016) and we do not copy com-
pletely, adapting information from others (Derex et al., 2015).
These mutations and adaptations can lead to the discovery of
new solutions, which explains why social learners end up ex-
ploring more of a search space than individual learners (Derex
et al., 2015). Some simulations of social learning have added
noise to copied solutions to model imitation error (Goldstone
et al., 2013; Rendell et al., 2010), but this is distinct from par-
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tial copying. Partial copying by our definition results in the
combination of two existing solutions in the population. Par-
tial copying and imitation error are similar, but their subtle
difference is important as we have shown that when copy-
ing a better solution, keeping a little of one’s own solution is
better under some conditions than adding the same amount of
random noise. However, our partial copying is not completely
absent from simulation work. Fang, Lee, and Schilling (2010)
and Lazer and Friedman (2007) included a version of partial
copying in their models, although they called it “the procliv-
ity or ability of individuals to learn from one another” and
“error in copying”, respectively. In both models, simulated
individuals copied a component from another individual’s so-
lution with a probability, resulting in a new solution that was a
combination of the two solutions. Lazer and Friedman found
that introducing this “error” increased long run performance
compared to perfect copying because it expanded the set of
potential solutions available to the copier. In this research,
we have replicated and expanded on this finding.

Conclusions
Work on social learning has primarily focused on three
questions: when to copy, who to copy from, and what to
copy (Kendal et al., 2018). In this paper, we focus on how
much to copy from others, considering the benefits for the
group when individuals copy better solutions only partially.
We highlight our key findings. First, partial copying benefits
the group, even though it comes at a risk to the individual;
copying an entire solution guarantees improvement for the
copier, but the mix that results from copying partially does
not. Second, the network of communication does not have as
large an effect on group performance for partial compared to
full copying strategies. Third, copying some bits is essential
for group performance; copying too many bits is detrimental
to the group, yet local groups can afford to copy more before
incurring in the detriments. Finally, partial copying strategies
allow for different forms of exploration and exploitation than
copying entire solutions or copying with noise. Our findings
suggest additional experimental work to systematically study
the effect of partial copying on group performance.

Data availability
Simulation code and relevant data files are available at:
https://github.iu.edu/EASy/CampbellCogSci2020.
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