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Complex systems can convert energy imparted by nonequilibrium
forces to regulate how quickly they transition between long-lived
states. While such behavior is ubiquitous in natural and synthetic
systems, currently there is no general framework to relate the
enhancement of a transition rate to the energy dissipated or to
bound the enhancement achievable for a given energy expendi-
ture. We employ recent advances in stochastic thermodynamics
to build such a framework, which can be used to gain mechanistic
insight into transitions far from equilibrium. We show that under
general conditions, there is a basic speed limit relating the typ-
ical excess heat dissipated throughout a transition and the rate
amplification achievable. We illustrate this tradeoff in canonical
examples of diffusive barrier crossings in systems driven with
autonomous and deterministic external forcing protocols. In both
cases, we find that our speed limit tightly constrains the rate
enhancement.

stochastic thermodynamics | fluctuation theorem |
response theory | first passage

The natural world is full of systems in which the rate of a
rare dynamical event is enhanced through coupling to a dis-

sipative process (1, 2). In vivo, molecular chaperones accelerate
protein folding and assembly so that otherwise slow transitions
occur on biologically relevant timescales, at the energetic cost
of maintaining chemical potential gradients (3). Shear forces
drive colloidal assemblies and polymer films to order rapidly
enough for viable synthesis, at the expense of applying external
forces (4). Such behavior is leveraged across physical and bio-
logical systems, but there are few known principles available to
act as guides or constrain possibilities. Here, we use nonequilib-
rium stochastic thermodynamics to demonstrate that dissipation
bounds the enhancement of the rate of a transition away from
equilibrium. The bound is sharp near equilibrium and for large
barriers, holds arbitrarily far from equilibrium, and can be tight-
ened with additional knowledge of kinetic factors. Our work thus
elucidates a fundamental tradeoff between speed and energy
consumption.

In equilibrium, the rate of a transition between two long-lived
states is determined by the likelihood that a thermal fluctu-
ation provides sufficient energy to the system to overcome a
free-energy barrier. Away from equilibrium, external forces and
nonthermal fluctuations can mitigate this constraint, modulating
the rate relative to its equilibrium value. Departures from ther-
mal equilibrium make it difficult to predict the extent to which
a dissipative process can influence a transition, as traditional
rate theories are grounded in equilibrium statistical mechan-
ics. For instance, both classical transition-state theory (5) and
Kramer’s theory (6) require information on the probability to
reach a rare dividing surface, or transition state. In equilib-
rium the Boltzmann distribution supplies that probability, but
within a nonequilibrium steady-state that information is gen-
erally unavailable. Freidlin–Wentzell theory (7) and transition-
path theory (8) supply formal means of estimating rates away
from equilibrium through the consideration of path ensembles.

However, rate calculations within these formalisms require com-
plex optimizations or partition function evaluations and do not
encode simple relationships between rates and other measurable
quantities.

Using principles from stochastic thermodynamics, we develop
a general theory of nonequilibrium rate enhancement, deriving
exact relations and fundamental bounds (9). Stochastic ther-
modynamics has supplied a number of relationships that con-
strain fluctuations away from equilibrium in terms of measurable
energetic observables (10). The fluctuation theorems illustrate
fundamental time-reversal symmetries (11) and thermodynamic
uncertainty relations bound response (12). In this work, we show
that the rate enhancement achievable away from equilibrium is
bounded by the heat dissipated over the course of the transition,

kneq

keq
≤ eβQ̄/2, [1]

where kneq/keq is the ratio of the nonequilibrium to equilib-
rium transition rates, and deviation from equilibrium due to
broken detailed balance is codified by Q̄, the average excess
heat released over the transition due to the nonequilibrium pro-
cess, in units of kBT , where kB is Boltzmann’s constant and
T the temperature of the bath. Our theory demonstrates that
the rate enhancement achievable by coupling a system to a
dissipative process, an essential dynamical quantity, is limited
by general thermodynamic constraints. To test the theory, we
study paradigmatic two-state continuous force systems, driving
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them from equilibrium with both deterministic and autonomous
forces.

Stochastic Thermodynamics of Rate Enhancement
To derive Eq. 1, we consider systems driven by a time-dependent
force, λ(t), either externally controlled or coupled to an addi-
tional nonthermal noise source that evolves independently of the
system state, precluding feedback. Extensions to systems evolv-
ing in boundary-driven nonequilibrium steady states, although
likely possible, are not explored in this work.

In the presence of the time-dependent force, the rate, kλ, of
transition between two long-lived states is the probability that a
transition occurs per unit of time. For a system described by a
configuration, x(t), at time t , we will consider initial and final
states, A and B , that are collections of configurations defined by
the indicator functions,

hi(t) =

{
1 if x(t)∈ i
0 else

, [2]

where i ∈{A,B}, and we assume A and B are not intersecting.
For times longer than the characteristic local relaxation time and
much shorter than the inverse rate, kλ derives from a ratio of
path partition functions,

kλ(A→B) =
d

dt

ZAB (λ)

ZA(λ)
. [3]

Here,

ZAB (λ) =

∫
D [X(t)]hA(0)hB(t)Pλ[X(t)] [4]

is the number of transition paths, X(t) = {x(0), . . . , x(t)}, start-
ing in A and ending in B at time t , weighted with probability
Pλ[X(t)], and

ZA(λ) =

∫
D [X(t)]hA(0)Pλ[X(t)] [5]

is the corresponding number of paths starting in A (8).
The ratio in Eq. 3 is simply the conditional probability of

the system being in state B given it started in A. Provided
the transition is rare, consistent with A and B representing
metastable states, there is a range of time over which ZAB (λ)
increases linearly and kλ is constant. Specifically, the rate con-
stant is defined for observation times τA . t� k−1

λ , where the
transition-path time is typically on the order of τA, the char-
acteristic relaxation time within state A, and shorter than the
timescale required for global relaxation. The probability of a
path is the product of a distribution of initial conditions, ρλ[x(0)],
and the conditional transition probability Pλ[X(t)|x(0)], such
that Pλ[X(t)] =Pλ[X(t)|x(0)]ρλ[x(0)]. While in general away
from thermal equilibrium, ρλ[x(0)] is unknown, Pλ[X(t)|x(0)]
can be inferred, provided an equation of motion. For the spe-
cific model calculations discussed below, Pλ[X(t)|x(0)] will take
an Onsager–Machlup form (13).

Stochastic thermodynamics gives structure to path ensem-
bles and relations to thermodynamic quantities. In an equilib-
rium system, the principle of microscopic reversibility implies
that the probability of a trajectory is equal to its time-reverse.
Specifically, let P̃λ[X̃(t)] denote the probability of observing
a time-reversed trajectory X̃(t) = {x̃(t), . . . , x̃(0)}, where x̃(t)
is a time-reversed configuration of the system at t , labeled
in the forward time direction. In the absence of the dis-
sipative protocol, λ= 0, the system is in equilibrium and
P0[X(t)] = P̃0[X̃(t)]. The Crooks fluctuation theorem extends

this notion to systems driven away from equilibrium by an arbi-
trary time-dependent force λ(t) (11). For a nonequilibrium sys-
tem, microscopic reversibility is manifested by Pλ[X(t)|x(0)] =

P̃λ[X̃(t)|x(t)] exp [β (Q [X(t)|x(0)] +Qrev([x(t), x(0)]) ]. The first
term in the exponential, βQ , is what we refer to as dissipation, as
it is the excess heat transferred from the system to the bath along
a trajectory driven from equilibrium over the corresponding heat
transferred for a reversible process. For an equilibrium system,
the reversible contribution to the heat is equal to the Shannon
entropy, βQrev = ln ρ0[x(t)]/ρ0[x(0)]. It is generally derivable as
the change in energy due to the conservative forces and thus
depends on only the trajectory’s boundaries.

Coupling the system to a dissipative process will generally
change its dynamics. Using trajectory reweighting, we relate the
transition rate in the presence and absence of the nonequilib-
rium force λ(t). We consider two path probability distributions
with support on the same X(t), so that the relative action

β∆Uλ[X(t)|x(0)] = ln
Pλ[X(t)|x(0)]

P0[X(t)|x(0)]
, [6]

relating one to the other, is well-defined. Performing a change
of measure, for a constant distribution of initial conditions, we
express ratios of path partition functions in either ensemble as

ZAB (λ)

ZAB (0)
=
〈
eβ∆Uλ

〉
0

=
〈
e−β∆Uλ

〉−1

λ
, [7]

where the brackets denote a conditional average in a transition-
path ensemble connecting states A and B in time t , with path
probability P0[X(t)] in the first equality or Pλ[X(t)] in the second
equality.

When transitions in both path ensembles are rare, kλt and
k0t� 1, the overwhelming majority of paths originating from
A will remain there on the timescales where the rate is time-
independent, so that ZA(λ) =ZA(0). In SI Appendix, S1. Gener-
alized Bound on Rate Enhancement, we consider generalizations
away from this limit, showing that the ratio ZA(0)/ZA(λ) cancels
contributions in Eq. 7 due to different distributions of initial con-
ditions. Thus, under mild assumptions, combining Eq. 3 with Eq.
7, we find

kλ
k0

=
〈
eβ∆Uλ

〉
0

=
〈
e−β∆Uλ

〉−1

λ
, [8]

which is an exact relation between transition rates in the presence
or absence of the dissipative process. Lower and upper bounds
can be read off by applying Jensen’s inequality to each of these
expressions,

β 〈∆Uλ〉0≤ ln
kλ
k0
≤β 〈∆Uλ〉λ , [9]

constituting a fundamental envelope for the rate enhancement.
This result is general, provided any two trajectory ensembles
have common support. In a suitably defined linear-response
regime, the ensembles are approximately equal, 〈∆Uλ〉λ≈
〈∆Uλ〉0, so the bounds are saturated. This corresponds to a
near-equilibrium regime where driving is small. While Eq. 9 is
derived for constant initial conditions for simplicity of notation,
the impact of different initial conditions on an upper bound is
to add a positive constant equal to a symmetrized Kullback–
Leibler divergence between initial distributions in the driven and
equilibrium ensembles (SI Appendix, S1. Generalized Bound on
Rate Enhancement). In the linear-response regime, and when
transition paths are long enough to lose memory, a common
occurrence for rare transitions that quickly relax in both A and
B , changes to initial conditions can be neglected.
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Generally, ∆Uλ contains thermodynamic and kinetic factors.
To separate them, we decompose ∆Uλ into time reversal-
symmetric and asymmetric trajectory observables,

∆Uλ =
Q + Γ

2
, [10]

where the excess heat Q = ∆Uλ[X(t)|x(0)]−∆Uλ[X̃(t)|x̃(0)] is
odd under time reversal, and the excess dynamical activity Γ =

∆Uλ[X(t)|x(0)] + ∆Uλ[X̃(t)|x̃(0)] is even. On the whole, both
the heat and the activity play important roles in response and
stability of nonequilibrium systems (14, 15). While the heat has
a simple mechanical definition and is largely independent of the
system’s dynamics, the activity depends on details of the equation
of motion, making it hard to generalize.

We find that for rare transitions across a host of physically
relevant conditions, the activity can be neglected. Near equilib-
rium, the average activity in the conditioned transition ensemble
vanishes due to time-reversal symmetry. In cases of instan-
tonic transitions, where the driving force varies slowly relative
to the characteristic transition-path time, the activity is small.
Even away from limiting cases where the barrier is much larger
than the scale of the noise, the activity can be neglected. Con-
sider, for instance, free diffusion, where rare transitions are
largely noise-assisted. In these sojourns over broad, diffusive
regions, the activity is strictly negative. By neglecting it, a bound
based on the heat alone is satisfied, although weakened. Each
case is considered explicitly in SI Appendix, S2. Conditions for
Neglecting the Dynamical Activity. Remarkably, this implies that
the dissipation accumulated over a transition bounds the rate
enhancement,

ln
kλ
k0
≤ β

2
〈Q〉λ , [11]

which is our main result. Identifying the system under finite λ
as a nonequilibrium system, and its absence as an equilibrium
one, we identify Eq. 11 as a more precise statement of Eq. 1. We
note, however, that the rate-enhancement relation is general for
any two transition-path ensembles.

Autonomous and Deterministic Forcing
To illustrate the robustness of our dissipative bound, we first
consider the overdamped dynamics of a particle in a one-
dimensional asymmetric potential subject to both external time-
dependent and nonthermal forces. Specifically, the equation of
motion for the position of the particle, x , is taken as γẋ =
−∂xV (x ) +λ(t) +

√
2kBTγηx , where γ is the friction due to

the surrounding medium, imposing a diffusion constant Dx =
kBT/γ, and ηx is a Gaussian random variable with 〈ηx (t)〉= 0
and 〈ηx (t)ηx (t ′)〉= δ(t − t ′). The static external potential con-
sists of two quartic states, V (x ) =VA(x )Θ(−x ) +VB (x )Θ(x ).
Each basin Vi(x ) = (∆Vix

2/(2l2i ))(x2/(2l2i )− 1), i ∈{A,B},
is characterized by the distance of its minimum (|x |, |V |) =
(li , ∆Vi) to the origin, where the states are joined by Θ(x ),
the Heaviside function. V (x ) supports two metastable states
with a barrier between them if β∆Vi > 1 for both i =A and B .
Fig. 1A manifests this metastability, in which x (t) exhibits fluc-
tuations concentrated around two regions of the potential, with
few, fleeting transitions between them.

We drive the system out of equilibrium according to a time-
dependent protocol λ(t) = f [p cos(ωt) + (1− p) cos(θ(t))] with
maximum amplitude f partitioned, p ∈ [0, 1], into deterministic
and autonomous components. The deterministic portion of the
driving is periodic with frequency ω, whereas the autonomous
piece is determined by an additional nonthermal process,

Fig. 1. Nonequilibrium driving enhances transition rates. (A) Trajectories
of a two-state system in equilibrium (Left) and the same process driven
away from equilibrium (Right) by a time-dependent external force. (B) Rate
enhancement for different asymmetric two-state systems as a function of
dissipated heat, each driven by a randomly chosen combination of deter-
ministic and stochastic external forces. The bound in Eq. 11 is shown as a
black line, and points are colored according to the magnitude of the force,
low (blue) to high (red).

θ̇(t) =
√

2Dθηθ , with diffusion constant Dθ , and delta-correlated
white noise, 〈ηθ(t)〉= 0 and 〈ηθ(t)ηθ(t ′)〉= δ(t − t ′).

Considering transitions that take the particle from one side
of the potential to the other, we define hA = Θ(x + lA/

√
3) and

hB = Θ(x − lB/
√

3), which correspond to the locations of the
maximum force opposing the transition in the absence of λ(t).
The dissipated excess heat can be computed from

Q(t) =

∫ t

0

dt ′λ(t)ẋ (t ′), [12]

and its mean estimated within the nonequilibrium steady state
by integrating the dissipation rate over reactive trajectories of
length t , given by the typical transition-path time discussed in
SI Appendix, S3. Separation of Timescales in the Driven and
Equilibrium Ensembles. Given a suitable separation between
inverse rate and relaxation time, Q is often insensitive to the pre-
cise value of t . We reiterate that Q differs from the total heat
by the conservative boundary portion, which appears in both the
equilibrium and driven actions, and therefore does not play a role
in the rate enhancement.

Fig. 1B shows the results of 3,000 randomly constructed mod-
els, where ∆Vi , li , p, f , and Dθ were chosen uniformly over
a wide range of parameters (Materials and Methods) (16). For
each model, kλ, k0, and 〈Q〉λ have been independently eval-
uated, and Fig. 1B demonstrates that the bound holds across
the broad parameter space. Points are colored blue to red in
increasing magnitude of the driving force f , showing that the
protocol most efficiently amplifies the equilibrium rate when
β〈Q〉λ< 10. Pushing past this regime, the bound becomes pro-
gressively weaker, as dissipation increases, but rate enhancement
reaches a plateau. This corresponds to a limit where driving
is large enough to degrade the assumption that basin A is
metastable.
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In order to understand the physical processes that determine
whether or not the bound is saturated, we focus on two cases
of the model presented above. First, we set p = 0, which corre-
sponds to an active Brownian particle in an external potential.
Active Brownian particles provide a canonical realization of
how autonomous athermal noise can drive novel steady states
without simply imparting an effective temperature (17). These
self-propelled agents exhibit dynamical symmetry breaking and
collective motion (18, 19), and previous studies have shown
that the escape of active particles from a metastable potential
exhibits interesting behavior arising from an interplay between
the driving force, persistence time statistics, and the shape of
the potential (20, 21). For simplicity, we take a symmetric poten-
tial, with lA = lB = 1 and β∆VA =β∆VB = 10, setting γ= 1 and
kBT = 1/2.

Fig. 2A shows the dependence of the rate enhancement on the
rotational diffusivity, Dθ , at fixed f = 1. The small Dθ limit is a
quasistationary regime corresponding to an equilibrium system
with an additional linear force added to the potential. Increasing
the rotational diffusivity decreases the persistence of the driving,
and as a consequence, 〈Q〉λ and kλ/k0 fall off in this limit. In
the large Dθ limit, the system is effectively in equilibrium at an
elevated temperature, as λ averages to 0. Lower rate enhance-
ment and little dissipation are observed across this range of Dθ ,
and our bound is uniformly close. These results are consistent

Fig. 2. Rate enhancement for an active Brownian particle. (A) Rate
enhancement as a function of rotational diffusivity constant Dθ l2A/Dx for
f = 1. (B) Rate enhancement as a function of the magnitude of active driving
relative to the maximum force opposing the transition in equilibrium f/Fm

for Dθ = 1/2. In both, the rate enhancement (black diamonds) is bounded
by the dissipated heat (red circles).

with a recent study in which an effective potential approach was
used to derive kλ/k0 for an active Ornstein–Uhlenbeck process
in a cubic well (22). As shown in Fig. 2B, our bound is closest
to the true rate enhancement when driving is small compared
to the maximum force needed to surmount the barrier in equi-
librium, f <Fm, where Fm = 8∆VA/3

√
3lA. In that regime, the

heat and rate enhancement both scale with f 2, as predicted by
linear-response theory. When the protocol and gradient forces
are comparable, the transition ceases being a rare event, and
further increasing f has little effect on the rate but increases
the heat.

As a second test case, we consider underdamped dynamics
with time-periodic driving, p = 1. This model, known as the Duff-
ing oscillator (23), is the simplest model of a stochastic pump
and one whose nonequilibrium behavior is marked by significant
nonlinearity. As an underdamped process, its barrier-crossing
behavior is determined by both spatial as well as energy diffusion,
in which both position and velocity correlations play a role. The
equation of motion is given by mẍ =−γẋ − ∂xV (x ) +λ(t) +√

2kBTηx , where the mass m reflects the change to under-
damped dynamics. Again, we take a symmetric potential, lA =
lB = 1, now with β∆VA =β∆VB = 7 and m =β= γ=Dx = 1.

Fig. 3A shows that for a moderate force, f /Fm≈ 0.13, there is
an optimal driving frequency, denoted here as ω∗, which greatly
enhances the transition rate. This phenomenon is known as
stochastic resonance (23). For slow driving, ω�ω∗, the parti-
cle typically makes a transition before the external force reaches
its maximum. For ω�ω∗, driving is inefficient and, on aver-
age, requires multiple forcing cycles before presenting a chance
to cross the barrier with the help of a positive force within the
time of a typical transition. The approximate shape of the rate-
enhancement profile is Lorentzian, a trait inherited from the
absorption lineshape of an underdamped harmonic oscillator. In
this case, the resonant frequency coincides with the curvature of
the equilibrium double-well potential driven with a quasistatic
force, ω∗≈

√
8(∆V − f )− γ2/4 (24). We find near saturation

of the bound throughout a wide range of frequencies and across
even such nonlinear behavior as stochastic resonance. In Fig. 3B,
we plot kneq/keq and β〈Q〉λ/2 against the driving amplitude
relative to Fm. As in the other examples, the bound on rate
enhancement is tight so long as the metastability of state A is
preserved.

Thus far, we have characterized rates with transition paths,
which lend themselves to a natural response theory for ln kλ and,
therefore, the ratio of rates. However, the survival probability
Pλ(t) = exp(−kλt) = 1−ZAB (λ)/ZA(λ) contains similar infor-
mation in the case of two metastable states, when hA + hB = 1.
Falasco and Esposito recently (25) worked with this quantity to
prove a speed limit on escape processes. Extending these results,
we derive analogous bounds on absolute reaction rates (SI
Appendix, S4. Bounds on Survival Probabilities). Assuming rare
rates, we bound the ratio of survival probabilities Pλ(t)/P0(t),
and thus the difference of rates kneq− keq, from above and
below using the relative action and Jensen’s inequality. The final
result reads

β
〈

∆U̇λ
〉
λ
≤ kλ− k0≤β

〈
∆U̇λ

〉
0

, [13]

where the rate of change of the relative action forms an envelope
around the change in the transition rate. If k0� kλ, then Eq. 13
acts as a speed limit on the forced process. On the other hand,
if kλ� k0, Eq. 13 reports on the minimum dissipation required
to slow down a fast equilibrium process. The envelope in Eq.
13 is similar to the bound derived by Falasco and Esposito in
that it relates differences of rates to conditioned path ensemble
averages. However, in Eq. 13, two forward rates under differ-
ent dynamics are considered, while in ref. 25, a forward rate is
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Fig. 3. Rate enhancement in the Duffing oscillator. (A) Rate enhancement
as a function of the driving frequency relative to the natural frequency of
the equilibrium system, ω/ω∗, for f = 1.4. (B) Rate enhancement as a func-
tion of the magnitude of the periodic driving relative to the maximum force
opposing the transition in equilibrium f/Fm for ω/ω∗ = 1 at f = 1.4. In both,
the rate enhancement (black diamonds) is bounded by the dissipated heat
(red circles).

compared to its backward counterpart in the same ensemble. By
considering a pair of rates explicitly related by time-reversal sym-
metry, the result of Falasco and Esposito follows directly from
the fluctuation theorem (11). By contrast, the results presented
in this work do not follow from the fluctuation theorem; rather,
they are a result of trajectory-ensemble reweighting.

The variational relationship in Eq. 11 between the transition
rate and a thermodynamic quantity is reminiscent of equilibrium
transition-state theory, where the rate is bounded by the ther-
mal flux times the probability that a thermal fluctuation brings
the system from an initial reactant state to a rare transition
state. From the Kawasaki distribution (11), the nonequilib-
rium configurational distribution is related to the equilibrium
one by a cumulant generating function of the excess dissi-
pation conditioned on ending at a specific configuration. As
explained in SI Appendix, S5. Connection to Transition-State The-
ory, neglecting changes to the flux generated by coupling to a
nonequilibrium process, the transition-state theory estimate of
the rate is bounded by the average heat conditioned on ending
at the transition state. Eq. 11 thus has the interpretation of a
nonequilibrium extension to standard transition-state theory and
is expected to be a good approximation to the rate enhance-
ment in cases where the system spends little time at the top of
the barrier.

While our examples have focused on simple one-dimensional
models, our formalism is general and can be straightforwardly
applied to many-body interacting systems. One immediate con-
sequence of higher dimensionality is that unlike in the examples
explored here, applied forces need not be aligned with the
direction of the most likely transition path. In such cases, we
expect the efficiency with which an arbitrarily applied force
enhances the rate to be suppressed relative to the largely satu-
rated bounds we have found here, as energy may be transduced
into modes not correlated with overcoming the barrier. In light
of our results, a natural optimal control problem arises in which
nonequilibrium protocols can be constructed that minimize the
dissipation for a given desired rate enhancement. Methods to
perform such optimizations employing molecular simulation
and importance sampling have been recently developed and
show promise in complex systems (26–28). Similarly, the pro-
tocols uncovered by such an optimization have the potential to
lend mechanistic insight into reactions far from equilibrium, as
basic concepts like free-energy barriers and gradient flows cease
being well-defined. The effect of dissipation on rate enhance-
ment under counterdiabatic (29) constraints, as well as in
discrete-state networks and reaction-diffusion settings, remains
to be seen.

Overall, our investigations build a general framework for the
systematic and computationally efficient characterization of rate
enhancement. Predicting how structure and external influence
conspire to alter reaction rates far from equilibrium is of imme-
diate importance in designing proteins, enzymes, small-molecule
drugs, and the complex environments in which they operate.
We foresee future studies in interacting colloidal and polymeric
systems, both in shear and confining geometries that change
dynamically in time (30). Applications to heterogeneous growth,
nucleation, and jamming will also be interesting avenues to
explore (31). Time-dependent chemical potential gradients in
gated-release and receptor-binding contexts, as well as designing
interaction protocols (32) for quick and robust self-assembly (33)
and pattern formation (34), are another set of pressing exam-
ples to which our theory can apply. Local heating in adenosine
trisphosphate hydrolysis and facilitated diffusion on DNA (35),
where electric fields play a pivotal role, are both more complex
problems that may prove fruitful to study in this manner.

Materials and Methods
In our first main text example, we consider a double-well potential V(x)
pieced together continuously at x = 0, and the parameters dictating its
shape and the form of the driving are drawn uniformly. This is done to cre-
ate a parameter database before any simulations are run. Each point in Fig. 1
corresponds to a unique set of system parameters chosen as follows. Fixing
β= Dx = 1, we uniformly draw β∆VA, β∆VB ∈ (3, 7), l2i ∈ 8∆Vi(ω

−2
max,ω−2

min),
p∈ [0, 1], log f ∈ [−1, log fmax], and Dθ ∈ [0.1, 10], where we constrain the
natural frequencies of the wells to lie between ωmin = 3.5 and ωmin = 7.5.

Simulations for the overdamped systems studied, including the mixed
driving system and the active barrier crossing, are propagated with a first-
order stochastic Euler integrator using a timestep of ∆t = 10−2 in units of
the A-state relaxation time τA = lA/

√
8∆VA. For the underdamped Duff-

ing oscillator calculations, we used a OVRVO (36) integrator, employing a
symplectic five-step Strang splitting of the time-evolution operator with the
same timestep. Before turning λ on at time 0, the dynamics are first evolved
in equilibrium, λ(t) = 0, for t = 1.5× 103∆t, to equilibrate. We calculate kλ

and k0 by counting the number of transitions from A to B and dividing by
simulation time, 1.25− 5× 107∆t. Transitions are counted when x(t) passes
from A to B and stays there at least on the order of 2.75∆t steps with-
out recrossing, which we find to yield consistent results with rates extracted
from the side–side correlation function. We perform 24 simulations, each
of which yields a noisy estimate of the rate, and we record the mean and
standard error bars.

We compute the time-dependent average 〈Q〉λ, independently of the
rates, as follows. Using the same criteria for a transition as defined
in the proceeding paragraph, we perform as many simulations as is
needed to get sufficient statistics, which, depending on the specific system
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parameters, corresponds to 103 to 104 transitions. At each point in time, we
record the instantaneous rate of heat dissipation as well as an indicator
function to coarse-grain x(t) into either state A, state B, or the transi-
tion state, which, in this example, we define as x∈A∪ B, the intersection
between states. Immediately after each simulation, we collect and save a
list of times when transitions started, t1, and ended, t2. Once all simula-
tions are complete, we histogram transition-path times, t2− t1. In order
to account for all transitions when integrating over the heat flux to get
Q(t = n∆t)≈

∑n−1
i=0 λi(xi+1− xi), we choose an initial observation time t

equal to that required for 99% of transition paths to proceed start to
finish. For each transition, we position a window of length t so that it
ends immediately after t2 and integrate over it. We slide this window
by a small O(∆t) coarse-graining time, and then, given the transition still
occurs, repeat the integration. This procedure is repeated until the tran-
sition no longer resides within the sliding window. The coarse-grained
time ≈∆t controls how highly correlated reactive trajectories are. If, at
any point, a window passes through a transition region without seeing
a transition, due to coarse-graining, the observation time is increased by
a small factor of t 7→ t(1 + 1/4) and the integration is restarted from the
beginning.

The rates are small quantities, prone to high statistical uncertainty, which
is amplified when the log of their ratio is taken. Because of this, we rerun
all points that have greater SE, in either enhancement or dissipation, than
the mean. The majority of these points correspond to lightly forced sys-
tems where the maximum protocol amplitude is usually much smaller than
the thermal energy scale, β|λ| ∼ 10−1. In this regime, ln kλ/k0� 1 is well
within linear response. Since we are focused on the case where the equi-
librium rate changes appreciably, and know that by time-reversal symmetry
arguments, the only contribution in this near-equilibrium case comes from
dissipation, throughout the article, we only show points with ln kλ/k0 larger
than a small number, which we choose to be 10−2.

Data Availability Analysis and simulation codes have been deposited in
GitHub (https://github.berkeley.edu/ben-kuznets-speck/Dissipation-bounds-
the-amplification-of-transition-rates-far-from-equilibrium).
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