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ARTICLE

Sustained activation of the Aryl hydrocarbon
Receptor transcription factor promotes resistance
to BRAF-inhibitors in melanoma
Sébastien Corre1, Nina Tardif1, Nicolas Mouchet1, Héloïse M. Leclair1, Lise Boussemart1,2, Arthur Gautron1,

Laura Bachelot1, Anthony Perrot1, Anatoly Soshilov3, Aljosja Rogiers4,5, Florian Rambow4,5, Erwan Dumontet6,

Karin Tarte 6, Alban Bessede7, Gilles J. Guillemin 8, Jean-Christophe Marine4,5, Michael S. Denison3,

David Gilot 1 & Marie-Dominique Galibert 1,9

BRAF inhibitors target the BRAF-V600E/K mutated kinase, the driver mutation found in 50%

of cutaneous melanoma. They give unprecedented anti-tumor responses but acquisition of

resistance ultimately limits their clinical benefit. The master regulators driving the expression

of resistance-genes remain poorly understood. Here, we demonstrate that the Aryl hydro-

carbon Receptor (AhR) transcription factor is constitutively activated in a subset of mela-

noma cells, promoting the dedifferentiation of melanoma cells and the expression of BRAFi-

resistance genes. Typically, under BRAFi pressure, death of BRAFi-sensitive cells leads to an

enrichment of a small subpopulation of AhR-activated and BRAFi-persister cells, responsible

for relapse. Also, differentiated and BRAFi-sensitive cells can be redirected towards an AhR-

dependent resistant program using AhR agonists. We thus identify Resveratrol, a clinically

compatible AhR-antagonist that abrogates deleterious AhR sustained-activation. Combined

with BRAFi, Resveratrol reduces the number of BRAFi-resistant cells and delays tumor

growth. We thus propose AhR-impairment as a strategy to overcome melanoma resistance.

DOI: 10.1038/s41467-018-06951-2 OPEN
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BRAF inhibitors (BRAFi) target selectively the BRAF V600E/
K genetic alteration found in several cancers. Cutaneous
melanoma, the most aggressive form of skin cancer, harbor

the highest incidence of this mutation (50%)1,2. Development of
BRAFi in melanoma has thus served as a model for their
implementation, revolutionizing personalized medicine. They
give an impressive but transient response since resistance ulti-
mately limits their clinical benefit3–6. The efficacy of BRAFi is
indeed limited by intrinsic/primary mechanisms and/or acquired/
secondary resistances7. Besides these well describe genomic
alterations that mainly promote the reactivation of the MAPK
and/or the PI3K-signaling, activation of BRAFi-resistant gene
(AXL, EGFR…) constitutes an additional hallmark of
resistance8,9. Importantly, it has recently been shown that
acquisition of these BRAFi resistance programs arise in a subset
of melanoma cells and is associated with a dedifferentiated status
of the melanoma cells10,11. Together, this increases the com-
plexity and fosters the identification of the master regulators
driving the expression of these resistance-genes that remain still
unknown12–17. Here, we mainly focus on the potential role of
AhR transcription factor in resistance mechanisms occurring
during melanoma treatment by BRAFi.

The Aryl hydrocarbon Receptor (AhR) is a ligand-dependent
transcription factor of the basic-helix-loop-helix (bHLH) Per-
Arnt-Sim (PAS) family. Exogenous and endogenous binding-
ligands, such as TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and
FICZ (5,11-dihydroindolo[3,2-b]carbazole-6-carboxaldehyde),
respectively18, promote AhR translocation into the nucleus. In the
nucleus, AhR dimerizes with the AhR nuclear translocator
(ARNT), forming a DNA binding complex that binds and acti-
vates the transcription of target genes that harbor xenobiotic
responsive elements (XREs). AhR agonists thereby induce the
expression of, among others, the drug-metabolizing cytochrome
P-450 (CYP) enzymes CYP1A1, CYP1B1, and TIPARP19. CYP1A1
is commonly considered a prototypical AhR target20. Increasing
evidence indicates that besides its roles in detoxification, AhR is
involved in many physiological processes21,22, diseases, and
cancers23.

In this study, we established an important role of AhR tran-
scription factor in controlling sensitivity or resistance to BRAFi in
melanoma. In tumor cells, BRAFi constitute new AhR ligands
promoting melanoma sensitivity while a small subpopulation of
cells has a high canonical AhR activity that is responsible for
resistance acquiring and relapse. We also demonstrated that AhR
constitutes a therapeutic target to delay relapse during the
treatment of melanoma by BRAFi and thus merits to be tested in
human. Together, this study contributes to the understanding of
the molecular mechanisms driving BRAFi resistance and relapse,
and proposes a therapeutic combination to overcome these
deleterious effects.

Results
BRAFi as new AhR ligands controlling its transcriptional
activity. We observed that the BRAFi Vemurafenib (Vem)
binds directly to AhR and stimulates its nuclear translocation
(Fig. 1a, b). However, surprisingly, in contrast to TCDD
(Fig. 1d), Vem failed to stimulate the canonical AhR/ARNT-
XRE pathway after dimerization with ARNT (Fig. 1c). Conse-
quently, Vem failed to induce endogenous CYP1A1 expression
(Fig. 1e) and CYP1A enzymatic activity (EROD) as observed
with TCDD (Fig. 1f). These results indicated that Vem binds to
AhR differently than canonical AhR ligands. Consistently,
docking experiments have demonstrated that Vem and the
canonical AhR ligand/agonist TCDD interact with AhR at
different positions (Fig. 1g). The Vem and canonical AhR

ligand binding positions will be hereafter referred as the β- and
α-pockets, respectively.

Importantly, non-canonical binding to AhR was observed with
other BRAFi, including Dabrafenib (Dab) (Supplementary
Figure 1), indicating that this is not a specific property of Vem
only but rather of this chemically related family of molecules24.
To investigate the molecular consequences of BRAFi-recruitment
on AhR, we established the transcriptomes of BRAF-V600E
melanoma cells (501Mel) exposed to Vem and to TCDD.
Interestingly, specific and mutually exclusive signatures were
identified (Fig. 1h). Consistent with the ability of Vem to increase
pigmentation in cultured melanoma cells (Fig. 1i) and, in some
patients’ nevi (Supplementary Figure 2a), the Vem-induced
signature was enriched in MITF-targets and in pigmentation
genes (Fig. 1h)25,26. This signature, which significantly overlaps
with the classical melanoma proliferative signature14,15, was only
observed with β-pocket ligands (Vem, Dab) and not with α-
pocket ligands such as TCDD and Benzo(a)pyrene.

The pigmentation gene Oculocutaneous Albinism Type II
(OCA2)27 was particularly induced in Vem-exposed cells, and
its level of expression was selected as a readout for AhR β-
activation (Supplementary Figure 2a)28. Critically, genetic and
chemical inhibition of AhR abrogated Vem-induced OCA2
expression and subsequent induction of pigmentation (Supple-
mentary Figure 2c-e). As anticipated from data reported in Fig. 1,
ARNT was not required for Vem-induced OCA2 expression,
while ARNT depletion impaired TCDD-induced CYP1A1
expression (Supplementary Figure 2h). Since off-target effects of
Vem have been so far attributed to the paradoxical activation of
the MAP Kinase pathway24, we investigated the role of the MAPK
pathway in the Vem-induced β-signature. We showed that the
Vem-induced β-signature is independent of the phosphorylated
status of ERK (Supplementary Figure 3) and is maintained in the
presence of MEKi (Supplementary Figure 4a-c). Thus, the Vem-
induced β-signature cannot be ascribed to BRAFi-induced
paradoxical MAPK activation.

Due to the relative proximity between the α- and β-pockets, we
hypothesized that ligands targeting the α-pocket could prevent
the effect of molecules binding the β-pockets such as Vem. To
illustrate this point, cells were exposed to an AhR-agonist or
-antagonist (TCDD and CH-223191, respectively) that targeted
the α-pocket, prior to Vem treatment. As envisaged, the
occupancy of the α-pocket by either an AhR agonist or antagonist
prevented Vem-associated effects (Supplementary Figure 4d-g).
Reciprocally, Vem prevented the binding of TCDD in the α-
pocket, demonstrating that Vem acts as an AhR antagonist
(Supplementary Figure 4f). We further illustrated this latter
capability by quantifying the AhR–ARNT/XRE complex forma-
tion that was reduced in the presence of Vem (Supplementary
Figure 4g).

AhR directs dedifferentiation and resistance to BRAFi. The
sensitivity of melanoma cells to BRAFi is associated with cellular
differentiation state (i.e., MITFhigh or pigmentation signature)
11,25,26. Considering AhR-activation modulates the pigmentation
program in melanoma cells, we investigated whether the AhR
gene expression program is connected to BRAFi resistance3–6. We
measured the transcriptional activity of both AhR canonical and
non-canonical in melanoma cell lines from the “Cancer Cell Line
Encyclopedia” (CCLE)29, using representative 14 and 19 genes of
the β- and α-signatures, respectively, and 16 genes from the
BRAFi-resistance signature13–16,25,30. Whereas the β-signature
was highly represented in the proliferative and BRAFi-sensitive
cell lines, the α-signature was most prominent in BRAFi-resistant
lines (Fig. 2a) and co-occurred with the resistance signature
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(Fig. 2b)15,29. In accordance with the recent classification of
melanoma cells based on their differentiation states (melanocytic,
M; transitory, T; neural crest-like, N; and undifferentiated cells,
U), we confirmed that BRAFi-resistant cells are mostly dediffer-
entiated10. Moreover, the resistance-signature significantly

overlapped with the invasive gene expression signature15 and
dedifferentiated cell state (Fig. 2c)10,15,16,30,31.

To challenge these observations, we first re-analyzed the
recently published Graeber’s melanoma data sets10 using their
online webtool characterizing melanoma subtypes (M, T, N, or U)
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(Fig. 2d) and showed that the β-signature decorates differentiated
melanoma (M or T) cells (Fig. 2e) while the α- (Fig. 2f) and
resistance signatures (Fig. 2g) are associated with dedifferentiated
cell states (N and U). Second, using an additional set of
melanoma cells lines that include three pairs of BRAFi
sensitive/resistant cells (S and R), we demonstrated that
acquisition of BRAFi resistance correlates with an increase in
the α- and resistance signatures as well as a concomitant decrease
in the β-signature (Fig. 2h). Together these results, suggest that
AhR endorses this β- to α-signature shift. Interestingly, BRAFi/
MEKi double blockade led to similar β- to α-reprogramming
(Supplementary Figure 5)32.

AhR signatures classify patients’ tumors. Having established
that AhR-signatures discriminate cell differentiation states and
sensitivity/resistance to BRAFi, we explored these AhR sig-
natures in melanoma samples. We first examined melanoma
samples from the TCGA cohort29. Interestingly, we found that
melanoma samples, naive of BRAFi treatment, segregated
according to the α- and β- signatures (Fig. 3a). Almost 9% of
these clinical biopsies showed a marked expression of the β-
signature and 8% the α- and resistance-signatures in bulk
analyses, thereby supporting the notion that the nature of the
patient’s response to BRAFi and time before relapse may be in
part predefined (Fig. 3b). Again, we found that in these mela-
noma samples, the β-signature decorated differentiated mela-
noma samples (M and T) and the α- and resistance-signature
undifferentiated ones (N and U) (Fig. 3d–f).

Second, we investigated the β- to α-signature shift in patients
exposed to single or double drug-blockade (BRAFi or BRAFi+
MEKi) by classifying their melanoma biopsies during the
medication course (before, during, and at relapse) according to
differentiated states (U, N, T, M) (Fig. 3g) and AhR-associated
signatures (β-, α-, and resistance) (Fig. 3h). As anticipated from
former TCGA results and recent studies, melanoma samples
naive of any treatment (CTR) are characterized by an elevated
intra- and inter-tumoral heterogeneity in terms of differentiation
states and AhR signatures (Fig. 3g, h). For example, tumor no. 17
illustrates a melanocytic subtype (about 26% in the TCGA
cohort) whereas tumor no. 9 a transitory subtype (about 63% in
the TCGA cohort). Now, when exposed to drugs (BRAFi alone or
BRAFi/MEKi) and according to the initial differentiation state, we
observe either a strong β-signature (P1: Pt−17−19−2) followed
by a switch to the α-signature (P2) or an immediate α-switch (P1:
Pt−15−9 122−8). This immediate α-switch occurs for marked
β-signature tumors (Fig. 3h). Again, the appearance of the α-
signature co-occurred with the resistance signature and dediffer-
entiation process (Fig. 3i), as observed in melanoma cell lines

(Fig. 2e–h), supporting these AhR-dependent activation
programs.

AhR controls BRAFi resistance in melanoma persister cells. It
is noteworthy that the T, N, and U emerging subtypes arise within
tumors in the presence of BRAFi (dotted line in Fig. 3i), sug-
gesting that either the protective capacity of BRAFi in main-
taining cells in a melanocytic state is overcome or that small and
almost undetectable, but initially present, T, N, and U sub-
populations emerge while melanocytic and BRAFi-sensitive
populations diminish10,11. To characterize these sub-
populations further, we investigated publicly available single-cell
analyses that were more informative than bulk analyses33

(Fig. 4a). As anticipated, only a small subpopulation of melanoma
cells expressed a combination of BRAFi-resistance markers
(EGFR, ZEB1…) and an α-signature. These cells (10%) are
representative of N or U states (Fig. 4b, c). Now examining, cell-
sorted EGFR-positive cells that are able to form colonies in the
presence of a BRAFi16 (Fig. 4d), we found that this minor sub-
population corresponds to dedifferentiated states of melanoma (N
or U) expressing α- and resistant signatures (Fig. 4c–e). In con-
trast, the EGFR-negative cells exhibited a β-signature (M or T).

Together, these data suggest that BRAFi-resistant cells
represent an innate/intrinsic small subpopulation of α-cells,
generally undetectable through bulk analyses. These resistant cells
become predominant in drug-resistant lesions/cultures upon
drug-exposure probably due to cell death of sensitive β-cells
(Fig. 5a)16.

Our results also indicate that AhR signaling is maintained
in a constitutively activated α-state in resistant cells. Since we
did not find any recurrent mutation that may support
constitutive activation of AhR in the TCGA melanoma
cohort (cBioPortal: http://www.cbioportal.org/index.do), we
hypothesized that endogenous α-ligands produced in drug-
resistant cells may result in sustained activation of the AhR/
ARNT pathway (Fig. 5b) and thereby promote the α-
signature. Consistent with this possibility, we observed that
the fate of β-cells could be redirected into α-cells upon
exposure to α-ligands (TCDD), increasing the BRAFi-
resistance gene signature (Fig. 5c), and that AhR drives the
expression of BRAFi-resistance genes (AXL and NRP1 among
others) via the binding of promoter containing XRE motifs
(Supplementary Figure 6). Finally, loss-of-function experi-
ments confirmed that α- and resistance signatures were both
AhR- and ARNT-dependent (Fig. 5e, f).

AhR as a therapeutic target to delay resistance to BRAFi. To
exploit the potential therapeutic implications of these findings, we

Fig. 1 BRAF-V600E inhibitor Vemurafenib binds to AhR and antagonizes the canonical AhR signaling pathway. a Competitive binding of FICZ or
Vemurafenib (Vem) to AhR. Hepatic cytosol containing AhR was incubated with [3H]TCDD in the presence of DMSO (1%) or increasing concentrations of
FICZ (10−10–10−7 mol/L−1) and Vem (PLX4032, 10−7–10−5 mol/L−1). b AhR nuclear translocation in response to Vem (1 µM) or TCDD (10 nM) in MCF-7
cells. AhR in green (IHC) and nucleus staining in blue. c AhR does not dimerize with ARNT in response to Vem (1 µM), in contrast to TCDD (10 nM), in
MCF-7 cells. AhR–ARNT interaction was quantified by Proximity Ligation Assay. Hoechst-stained nucleus in blue (n= 4). d–f Vem does not activate the
canonical transcriptional AhR response, in contrast to TCDD. d Evaluation of AhR transcriptional activity related to AhR/ARNT binding sites (XRE) using
p3XRE-luciferase constructs. MCF-7 cells were exposed to 10 nM TCDD or 1 μM Vem or vehicle (DMSO) for 6 h. e Vem does not induce CYP1A1 mRNA, in
contrast to TCDD. MCF-7 cells were incubated in the absence or presence of 10 nM TCDD or 1 μM Vem for 15 h. f Vem does not induce EROD activity in
contrast to TCDD. MCF-7 cells were either untreated or treated with 10 nM TCDD or 1 μM Vem for 6 h. g Proposed binding mode of TCDD, FICZ, and
Vemurafenib (Vem) into the AhR PAS-B ligand binding domain homology model. Free binding energy is reported in Supplementary Table 1. The two
predictive ligand binding pockets are indicated by (α) or (β). h Gene expression profile of the 501Mel cells exposed to vehicle, Vem (1 μM) or TCDD (10
nM) (n= 2) for 48 h. Heatmap focused on differentially expressed genes in function of treatment (fold change). i Vem induces pigmentation in vitro.
Picture of 501Mel cell pellets treated with Vem (1 μM) or canonical AhR agonists TCDD (10 nM) or FICZ (1 μM) for 48 h. Data correspond to the mean ± s.
d. of three independent experiments. Statistical analysis was performed using an unpaired t-test (PRISM6.0®) *p < 0.05; **p < 0.01; ***p < 0.001
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screened for molecules that impair deleterious α-activation of
AhR (Fig. 6a). To this end, we performed in silico modeling
combined with in vitro biochemical assays using a wide range of
well-characterized AhR ligands, including exogenous and endo-
genous agonists (i.e., TCDD & B(a)P and FICZ & L-kynurenine,

respectively) and antagonists (i.e., CH-223191 or Resveratrol,
RSV) (Fig. 6 and Supplementary Figure 7a). These analyses
identified the well-tolerated molecule RSV, which selectively
binds the α-pocket of AhR34 (Fig. 6b). Critically, RSV-TCDD co-
treatment failed to induce CYP1A1 (Fig. 6c) and several other
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genes (Fig. 6d, Supplementary Figure 7b) of the α-signature,
illustrating the effectiveness of RSV to counteract α-ligands35.
RSV also inhibited BRAFi-induced pigmentation and induction
of the β-signature, confirming the ability of α-ligands to compete
with β-ligands for AhR binding (Fig. 6 and Supplementary Fig-
ures 3 and 8). Importantly, the sensitivity to BRAFi was fully
maintained in RSV-exposed cells, indicating that this molecule
does not alter BRAFi efficacy (Fig. 6e–h and Supplementary
Figure 8). Together, these data indicate that an RSV-Vem com-
bination treatment may result in a significant benefit over Vem
alone. To test this possibility, we exposed pairs of BRAFi-sensitive
(S) and resistant (R) melanoma cells (501Mel and SKMel28) to
both Vem and RSV. RSV increased the sensitivity of sensitive and
resistant cells to Vem (IC50, Fig. 6i, j) and decreased the number
of BRAFi-persister cells (Fig. 6i–k). We evaluated the potential of
this BRAFi/RSV combination in a patient-derived xenograft
(PDX) model of melanoma11,36. Mice were exposed to BRAFi
alone or in combination with RSV once tumors reached 200
mm3. In this model, BRAFi alone stabilized the tumor growth for
about 10 days before relapse (Supplementary Figure 8d). BRAFi/
RSV treatment reduced, moderately but significantly, tumor
growth compared to BRAFi alone (14 days) (Fig. 6l). In agree-
ment with these results, tumors exposed to BRAFi/RSV combi-
nation reached endpoints significantly later than BRAFi alone (24
and 16 days, respectively) (Fig. 6m). Together, these results
support the use of AhR inhibitors to increase BRAFi efficacy
over-time.

Discussion
In conclusion, we uncovered a central role for AhR in BRAFi
resistance and relapse. Unexpectedly, we revealed that in drug-
sensitive melanoma cells, BRAFi, in addition to inactivated
oncogenic BRAF activity, functions as a non-canonical ligand of
AhR. Consequently, BRAFi promotes an AhR-transcriptional
pathway that maintains cells into a “proliferative” and drug-
sensitive state. In contrast, AhR activated by α-ligands (canonical
ligands) promote a dedifferentiation state and a BRAFi resistance
program. These latter cells are probably involved in the relapse.
Our results are consistent with recent studies indicating that
constitutive and chronic activation of AhR promotes aggressive
tumor behavior37,38 and tumorigenesis in vivo39,40. Indeed, AhR
is now reported to have pro- or anti-tumor activity according to
cell state41–45. Activation of AhR has also been associated with

the alteration of many cell differentiation processes46 and mel-
anoma cell dormancy47,48. Since the chronic exposure to α-
ligands can switch BRAFi sensitive cells into persister/resistant
cells, it is important to keep in mind that chronic activation of
AhR occurs in response to many environmental factors, such as
UV exposure49 and pollutants50, all known to promote cancer.
Our data also highlight the potential of AhR antagonists as
sensitizers of melanoma-targeted therapy. Together, these data
underscore the importance of further studying the role of AhR-
signaling in the context of cancer biology as a putative ther-
apeutic target41,51,52.

Methods
Reagents. The AhR ligands were obtained from: 2,3,7,8-TCDD (TCDD) (Sigma
Aldrich, 48599), FICZ (Sigma Aldrich, SML1489), Vemurafenib (Vem, PLX4032)
(Selleckchem, RG7204), Dabrafenib (Dab) (Santa Cruz Biotechnology, SC364477),
PLX7904 (MedChem Express, HY-18997), PLX8394 (MedChem Express, HY-
18972), CH-223191 (Selleckchem, S7711), L-Kynurenine (Sigma Aldrich, K8625),
Resveratrol (RSV) (Selleckchem, S1396), StemRegenin 1 (SR1) (Selleckchem,
S2858), and Benzo(a)pyrene (B(a)P) (Sigma Aldrich, B1760).

Plasmids. The pGL3-XRE3-FL construct containing three XRE sequences from
CYP1A1 gene has been described previously53. Luciferase reporter plasmids
(pOCA2-pGL4 luciferase) containing proximal promoter region −500b (IDT,
Leuven, Belgium) was cloned into the pGL4.10 (Promega, USA) using Gibson
Assembly® Master Mix following manufacturer’s recommendations
(NEB, UK). Plasmid encoding the MEK1 constitutive kinase form was described by
ref. 54.

Cell lines and culture conditions. The mammary MCF7 epithelial cells were
cultured in humidified air (37 °C, 5% CO2) in Dulbecco’s modified Eagle’s medium
with 4500 mg/l D-glucose, 110 mg/l sodium pyruvate, supplemented with 10% fetal
bovine serum (PAA cell culture company) and 1% penicillin–streptomycin anti-
biotics (Gibco, Invitrogen). The melanoma cell lines (501Mel, MM001, SKmel28,
MM074, Mel624) were grown in humidified air (37 °C, 5% CO2) in RPMI-1640
medium (Gibco BRL, Invitrogen, Paisley, UK) supplemented with 10% fetal bovine
serum (PAA cell culture company) and 1% penicillin–streptomycin antibiotics
(Gibco, Invitrogen). Mel624 cells were obtained from G. Lizee’s lab at the Uni-
versity of Texas MD Anderson Cancer Center, Houston, TX. MM001 and MM074
(S+R) cells were obtained from G. Ghanem’s lab at the Institut Jules Bordet,
Université Libre de Bruxelles, Brussels, Belgium. SKMel28 (S+R) cell was obtained
from J.C. Marine’s lab at VIB Center for Cancer Biology, VIB, Leuven, Belgium.
501Mel cells (S) were obtained from ATCC and 501Mel BRAFi resistant cells (R)
have been obtained after 3 months treatment with Vem (1 μM every 2 days). All
cell lines have been routinely tested for mycoplasma contamination.

Molecular modeling. Docking experiments were performed with AutoDock4.2;
free open tool, http://autodock.scripps.edu55. A multiple alignment between the
sequences of PAS-B mAhR (residues 278–384) and PAS-B HIF-2α was generated

Fig. 2 AhR signature correlates with dedifferentiation states of melanoma cell lines and resistance to BRAFi. a Expression heatmap for β- and α-signature
genes in different Vem-sensitive or -resistant melanoma cell lines from the Cancer Cell Line Encyclopedia RNAseq dataset (GEO, GSE3613429). IC50
values for PLX4720 were obtained from Supplementary Table 7 of ref. 29. Genes and clusters with similar expression profiles across the cohort are placed
close to each other in the grid. b Expression heatmap for BRAFi resistance genes in different Vem-sensitive or -resistant melanoma cell lines from Cancer
Cell Line Encyclopedia RNAseq dataset (GEO, GSE3613429) (top) and average signatures for the α- (established by the median of expression of AhR target
genes: INHBA, THBS1, RUNX2, REEP2, PMAIP1, OSMR, LRRC49, and CYP1B1), for the β- (established by the median of expression of pigmentation genes:
GPR143, TYR, SLC45A2, RAB38, SNCA, MLPH, MLANA, and MITF), and for the resistance genes (AXL, GCNT1, NRP1, ZEB1, ITGA1, and LPAR1) (mid).
Differentiation status for melanoma cell lines consistent with the four-stage differentiation model (melanocytic: M, transitory: T, neural crest-like: N, and
undifferentiated: U)10 has been established for the different melanoma cell lines considering average signature from subtype genes described in
supplemented files from Tsoi et al.10 (bottom). c Expression heatmap for β-, α-, and resistance genes signatures in the melanoma cultures dataset from the
GEO dataset (GSE6066415) depending on their proliferative or invasive states. Average signatures and differentiation status for melanoma cell lines have
been indicated at the bottom. d PCA of melanoma cell line datasets obtained by the cluster prediction assignment (from melanoma dedifferentiation
signature resource from Graeber’s lab: http://systems.crump.ucla.edu/dediff/)10. e–g MLANA, PMAIP1, and AXL expression PCA color maps illustrating,
respectively, β- (e), α- (f), and resistance signatures (g) from different subtypes of melanoma cell lines dataset from Graeber’s lab (top). Boxplots of
selected β-genes (as described above) in different subtypes of melanoma cell lines (U, undifferentiated; N, neural crest-like; T, transitory; M, melanocytic)
(bottom). Number in each group: U= 10, N= 14, T= 12, M= 17. Whiskers reflect median of expression with range. One-way ANOVA and Tukey’s test:
***p < 0.001, ****p < 0.0001. h Fold expression level (log2) for average β-, α-, and resistance genes signatures in different melanoma cell lines from the lab
compared to the 501Mel cell line (top). Vem sensitivity has been established by cell density measurement and calculation of the IC50 (bottom) using
GraphPad (PRISM6.0®) 4 days after every 2 days of treatment with an increasing concentration of Vem. Asterisk: NRAS mutant
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according to the sequence alignment suggested by Pandini et al.56. The homology
model of PAS-B mAhR was constructed using the crystal structures of the het-
erodimer complex of PAS-B HIF-2α (pdb code: 3f1p, 3f1o, 3f1n) and Prime v.2.1.
Docking experiments were carried out between AhR PAS-B model and different
AhR ligands and BRAFi chemical structures recovered in ZINC database (zinc.
docking.org).

Cell density evaluation. Cell density was assessed using a methylene blue col-
orimetric assay57. Briefly, cells were fixed for at least 30 min in 95% ethanol.
Following ethanol removal, the fixed cells were dried and stained for 30 min with
1% methylene blue dye in borate buffer. After four washes with tap water, 100 μl of
0.1 N HCl were added to each well. Plates were next analyzed with a spectro-
photometer at 620 nm.
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Picture from patients. Picture of Vem treated melanoma patient was obtained
from Dr. Lise Boussemart at the Medical Department of Dermatology, CHU
Rennes, France after informed consent.

AhR ligand binding assay. Ligand binding was measured as the presence/absence
of ligand-dependent displacement of [3H]TCDD from the hepatic cytosolic guinea
pig AhR by the hydroxyapatite assay. The experiments were performed essentially
as previously described58.

Gel retardation assay. Experiments have been done as previously described59.

AhR immunolocalization. Experiments have been done as previously described53.

Ethoxyresorufin O-deethylase activity assay. Ethoxyresorufin O-deethylase
(EROD) activity, corresponding to the O-deethylation of ethoxyresorufin, and
mainly supported by the CYP1A1 enzyme in living MCF7 cells, was measured as
described previously53.

RNA interference. Plasmids encoding shRNA targeting human AhR (TL320259,
29mer shRNA constructs in lentiviral GFP vector) were purchased from Origene,
Rockville, MD. Lentiviral productions have been performed as recommended
(http://tronolab.epfl.ch), using 293T cells, psPAX2, pVSVG, and shRNA. Infections
were performed overnight in the presence of 8 µg of polybrene per ml. After
infection, cells were maintained under selection in the presence of puromycin
(Invivogen, San Diego, CA) and seeded in 96-well plates at 0.5 cells/well for single
cell clonal expansion. Clones of interest were validated by Western blot analysis
and RT-qPCR.

siRNA were purchased from Sigma-Genosys (St. Louis, MO, USA): siCTR,
siOCA2#1 and #2, siARNT. Sequences for all shRNA or siRNA are available in
Supplementary Table 2.

CRISPR/Cas9 experiment. AhR knock out has been performed using CRISPR/
Cas9 methodology. Guide sequence targeting AhR (available in Supplementary
Table 3) (Sigma-Genosys, St. Louis, MO, USA) has been cloned into the GeneArt
CRISPR Nuclease vector according to the manufacturer’s instructions (Life Tech-
nologies, Saint-Aubin, France). Next, vectors were transfected in 501Mel cells, and
2 days later cells were seeded in 96-well plates at 0.5 cells/well for single cell clonal
expansion. Clones of interest were validated by DNA-sequencing, Western blot
analysis, and RT-qPCR.

Luciferase activity. 2·105 MCF7 or 501Mel cells were cultured in 12-well plates
and transfected with respectively the pGL3-XRE3-FL53 and the pGL4-pOCA2-Luc
constructs carrying the firefly luciferase. Transient transfection of cells was per-
formed by the JetPRIME® transfection reagent according to the manufacturer’s
instructions (Polyplus transfection™, NY, USA). In brief, 50 μl of JetPRIME® Buffer
containing 100 ng of firefly luciferase reporter plasmid was added per well, and 1 μl
of JetPRIME® transfection reagent. After a 24-h period, cells were exposed to
TCDD, Vemurafenib for a 6-h period. Luciferase assays were then performed with
a Promega kit according to the manufacturer’s instructions. Data were expressed in
arbitrary units, relative to the value of luciferase activity levels found in DMSO-
exposed cells, arbitrarily set at 1 arbitrary unit (a.u.). Firefly luciferase activity was
normalized to protein content using Bicinchoninic Acid Kit from Sigma-Aldrich®
and measured with using a luminometer (Centro XS3 LB960, Berthold
Technologies).

RNA extraction and RT-qPCR expression. Experiments have been done as
previously described60. Primers used for RT-qPCR experiments are available in
Supplementary Table 3.

Chromatin immunoprecipitation assay. ChIP assays, using 2 × 106 501Mel cells
or 501 KD AhR (as negative control), were performed as previously described61,
with specific adaptations. The cells were cross-linked (1% final concentration
formaldehyde for 10 min), washed twice and collected in 1 ml cold PBS. Cells were
lysed and the samples were then sonicated for DNA fragmentation (Sonifier Cell
Disruptor, Branson) in 1 ml lysis buffer (10 mM EDTA, 50 mM Tris–HCl (pH 8.0),
1% SDS, 0.5% Empigen BB) and diluted 2.5-fold in IP buffer (2 mM EDTA, 150
mM NaCl, 20 mM Tris–HCl (pH 8.1), 0.1% Triton X-100). This fraction was
subjected to immunoprecipitation overnight with 4 µg of the appropriate antibody
(AhR, H211, Santa Cruz). These samples were then incubated for O/N at 4 °C with
20 μl of Protein G Dynabeads™ (Invitrogen). Precipitates were washed several
times, cross-linking reversed and DNA purified using a Nucleospin Extract II kit
(Macherey Nagel).

qPCR analyses were carried out with primers spanning target genes proximal
promoters (sequences on Supplementary Table 3). For qPCR analysis, fold
enrichment was determined using the ΔΔCt method: fold enrichment=
2−(Δct1−ΔCt2), where ΔCt1 is the ChIP of interest and ΔCt2 the control ChIP.

Western blot. Harvested cells were solubilized as previously described57. Protein
samples were denatured at 95 °C, resolved by SDS-PAGE and transferred onto
Hybond™-C Extra nitrocellulose membranes (Amersham Biosciences, Bucks, UK).
Membranes were probed with appropriated antibodies and signals were detected
using the Fujifilm LAS-3000 Imager (Fuji Photo Film, Tokyo, Japan). Primary
antibodies were: anti-Phospho-ERK-1/2 (9101S), MEK-1/2 (D1A5) (Cell Signalling
Technology, Boston, USA), ERK-1/2 (K23), AhR (H211), Hsc70 (B6) (Santa Cruz
Biotechnology, Santa Cruz, CA). Horseradish-peroxidase-conjugated secondary
antibodies were purchased from (Jackson ImmunoResearch (Suffolk, UK))
(1:1000).

Proximity ligation assay. The proximity ligation assay was applied in order to
visualize AhR/ARNT complexes in MCF7 cells. The cells, grown on glass cover-
slips, were fixed with 4% PFA in 0.1 M phosphate buffer (15735-60S, Electron
Microscopy Sciences) for 15 min at RT and PLA was performed using the kit
((DUO92007) Duolink® in Situ Detection Reagent Orange, (DUO92001) Duolink®
in Situ PLA® Probe Anti-Mouse PLUS, (DUO92005) Duolink® in Situ PLA® Probe
Anti-Rabbit MINUS, SIGMA) according to the manufacturer’s protocol. After
blocking, the reaction with primary antibodies, mouse anti-AhR (C20, 1/100) and
rabbit anti-ARNT (1C12, 1/100). Following the ligation and amplification steps, the
coverslips were immobilized on the microscopic slides with the mounting medium
containing DAPI. In control experiment, the ligation step was omitted. Imaging
analysis was carried out using a delta vision system (Applied Precision). Number of
foci was quantified in at least 30 cells.

RNA-Seq. Total RNAs was extracted from 501Mel cells treated for 48 h respec-
tively with DMSO, Vemurafenib (1 µM), Resveratrol (5 µM), Resveratrol (5 µM)+
Vemurafenib (1 µM), TCDD (10 nM), Resveratrol (5 µM)+ TCDD (10 nM) using
the miRVana kit (Thermo Fisher Scientific). Libraries were generated from 500 ng
of total RNAs using Truseq Stranded mRNA kit (Illumina). Libraries were then
quantified with KAPA library quantification kit (Kapa Biosystems) and pooled. 0.5
nM of this pool were loaded on a high output flowcell and sequenced on a
NextSeq500 platform (Illumina) with 2 × 75 bp paired-end chemistry within two
runs. Reads were aligned to the human genome release hg19 using STAR v2.4.0a
with default parameters. Quantification of genes was then performed using fea-
tureCounts release subread-1.5.0-p3-Linux-x86_64 with “--primary -g gene_name
-p -s 1” options. Quality control of RNA-Seq count data was assessed using in-
house R scripts. Normalization and statistical analysis were performed using the
Bioconductor package DESeq2. p-Values were adjusted for multiple testing using
the Benjamini–Hochberg procedure, which controls the false discovery rate (FDR).
Differentially expressed genes were selected based on an adjusted p-value below
0.05. The RNA-Seq data presented in this article have been submitted to the Gene

Fig. 3 In patients’ tumors, AhR signatures correlate with cell-dedifferentiation states and resistance to BRAFi. a Expression heatmap depicting mRNA expression
of individual genes for pigmentation signature (blue, β signature) and AhR target genes (orange, α signature) in non-treated melanoma patient dataset from
TCGA (SKCM, n= 459)29. b Expression heatmap depicting mRNA expression of individual genes for BRAFi resistance genes in non-treated melanoma patients
dataset from TCGA (SKCM, n= 459) with high level (n= 40) or low level of expression (n= 34) for AhR. c PCA of TCGA datasets obtained by the cluster
prediction assignment (melanoma dedifferentiation signature resource from the Graber lab: http://systems.crump.ucla.edu/dediff/)10 and pie-chart
representation of the melanoma dedifferentiation subtypes. d–f MLANA, PMAIP1, and AXL expression PCA color maps illustrating, respectively, β- (d), α- (e),
and resistance signatures (f) from the TCGA dataset (top). Boxplots of selected β-, α-, and resistance genes (as described above) in different untreated
melanoma patients’ biopsies from TCGA (U, undifferentiated; N, neural crest-like; T, transitory; M, melanocytic) (bottom). Number in each group: U= 14, N=
35, T= 287, M= 118. Whiskers reflect median of expression with range. One-way ANOVA and Tukey’s test: ***p < 0.001, ****p < 0.0001. g Expression
heatmap for melanoma differentiated state signatures in BRAFi-treated melanoma. h Expression heatmap for average β-, α-, and resistance signatures in BRAFi-
treated single-drug (i.e., BRAFi) or double-drug (i.e., BRAFi+MEKi) melanoma patients during resistance acquiring (RNAseq dataset GEO, GSE6518513).
Clinical data are available from supplemental table S1 from Hugo et al.13. i Schematic representation of temporal transcriptional regulation of different signatures
in a melanoma patient treated with BRAFi
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Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE104869.

Patient-derived xenografts (PDXs). After approval by the University Hospital
KU Leuven Medical Ethical Committee (S54185) and written informed consent
from the patient, PDX model MEL006 was established from an in-transit

metastasis resected as part of standard-of-care melanoma treatment at the
University Hospital KU Leuven. The procedures involving mice were performed
in accordance with the guidelines of the IACUC and KU Leuven and carried out
within the context of approved project applications P147/2012, P038/2015, and
P098/2015. Fresh tumor tissue was collected in transport medium (RPMI1640
medium supplemented with penicillin/streptomycin and amphotericin B).
Tumor fragments were subsequently rinsed in phosphate-buffered saline
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supplemented with penicillin/streptomycin and amphotericin B and cut into
small pieces of approximately 3 × 3 × 3 mm3. Tumor pieces were implanted in
the interscapular fat pad of female SCID-beige mice (Taconic). After reaching
generation 4 (F4), tumor fragments were implanted in the interscapular fat pad
of female NMRI nude mice (Taconic). Ketamine, medetomidine, and bupre-
norphine were used for anesthesia.

Pharmacologic treatment of mice. Mice with tumors reaching 200–300 mm3

were treated via daily oral gavage. Dabrafenib (Biorbyt) and/or Resveratrol (Sell-
eckchem) were dissolved in DMSO at a concentration of 30 and 40 mg/ml
respectively, aliquoted and stored at −80 °C. Each day a new aliquot was diluted
1:10 with phosphate-buffered saline and mice were treated with a dose of 30 and
40 mg/kg for Dabrafenib and Resveratrol, respectively. Tumor volume was
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monitored with a caliper and calculated using the following formula: V= (π/6)
*length*width*height.

Data mining. Analysis of TCGA/SKCM data was performed using OncoLnc portal
[http://www.oncolnc.org]62. The raw data count matrix composed of 479 samples;
from SKCM melanoma cohort was downloaded from the OncoLnc for the pig-
mentation genes (n= 14)12, the AhR target genes (n= 19)63, or the BRAFi resis-
tant genes (n= 19)17. Expression heatmap of differentially expressed genes
between samples was obtained on log2 fold change using heatmap3 package in R/
Bioconductor. Cluster-specific genes rankings were obtained by contrasting the
samples with the rest of the samples. Cell density curves for the available melanoma
cell lines were established using GraphPad PRISM 6.0® in order to establish IC50
dependently to the different treatments.

The raw data count matrix from RNA seq data were obtained in GEO database
for previous experiments on melanoma cell lines Cancer Cell Line Encyclopedia29

GSE36134 (sensitive or resistant to PLX470) (IC50 values for PLX4720 were
obtained from the Supplementary Table 7 of ref. 29); on BRAFi or BRAFi+MEKi
resistant cell lines GSE7529932 and GSE8082910, on BRAFi treated melanoma
patients GSE6518513; on primary melanoma cell lines (proliferative or invasive)
GSE6066415, on single cell analysis of BRAFi resistant melanoma (4650 seq)
GSE7205633, and on Vem-resistant melanoma (EGFR pos)16. Expression heatmap
of differentially expressed genes (pigmentation, AhR, or resistant genes) between
samples was obtained on log2 fold change using heatmap3 package in R/
Bioconductor. PCA color maps illustrating expression of genes in melanoma cell
lines dataset have been obtained by the cluster prediction assignment (from
Melanoma dedifferentiation signature resource from Graeber’s lab: [http://systems.
crump.ucla.edu/dediff/]).

Statistics. Data are presented as mean ± s.d. unless otherwise specified, and dif-
ferences were considered significant at a p value of less than 0.05. Comparisons
between groups normalized to a control were carried out by a two-tailed t-test with
the Holm–Sidak’s multiple comparisons test when more than two groups are
compared to the same control condition. OS was estimated using the
Kaplan–Meier method. Univariate analysis using the Cox regression model was
done to estimate hazard ratios (HR) and 95% confidence intervals (CI). All sta-
tistical analyses were performed using Prism 6 software (GraphPad, La Jolla, CA,
USA).

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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