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ABSTRACT -

Spatial rate constitutive equations for elastoplastic and elasto-viscoplastic
materials are considered within a thermodynamic framework in which irreversi-
ble processes are characterized through the use of internal state variables and in
which no restrictions on the magnitude of the deformation are imposed. The
development employs an invariance principle which leads to a unique definition
of the objective rate appearing in the rate constitutive equations. The elastic-
plastic split of the deformation is introduced through a thermodynamic argu-
ment which leads to the additive decomposition of the spatial rate of deforma-
tion tensor. Following the development of the rate constitutive equations, a
numerical algorithm is presented for their numerical integration. By employing
product formula techniques, the proposed algorithm exploits the "operator split”
of the spatial rate constitutive equations resulting from the additive decomposi-
tion of the rate of deformation tensor. The resulting algorithm is demonstrated
to be unconditionally stable and incrementally objective. Finally, an efficient
and very accurate implicit global algorithm for the numerical solution of the ini-
tial boundary value problem of linear momentum balance in conjunction with
the product algorithm for the the constitutive equations is proposed. Numerical
examples illustrate the effectiveness of the procedure.

F

1. Introduction
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’ Constitutive equations appropriate for the finite deformation analysis of elastoplastic and
elasto-viscoplastic materials are most frequently expressed in a spatial rate form. A thermo-
dynamic framework for the development of such equations can be provided by characterizing
irreversible processes through the use of internal variables [1,2,3,4]. In this case, spatial rate
constitutive equations, expressed in terms of objective rates, will be required for the stress ten-
sor and a set of internal variables. In any numerical scheme employed for the analysis of elas-
toplastic or elasto-viscoplastic problems it will be necessary to integrate these rate constitutive

equations for the stress and internal variables. It is the object of this paper to derive adequate
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spatial rate constitutive equations for a limited class of elastoplastic and elasto-viscoplastic
materials undergoing finite deformation and to propose a numerical algorithm for their integra-

tion.

The correct choice of objective rate appearing in spatial rate constitutive equations has
been the subject of considerable conjecture [5,6,7.8] since the principle of objectivity alone
does not uniquely determine this choice. It is noted, however, that the principles of mechanics
must be invariant with respect to the choice of reference configuration [9]. When this principle
is invoked together with the assumed existence of a free energy density, it is shown that the
indeterminacy in the choice of objective rates for the spatial stress tensor and the spatial inter-

nal variables is removed.

A number of theories of plasticity have been based on different kinematic assumptions
regarding the elastic-plastic split of the deformation [10,11,12]. A requirement for the success
of the numerical integration algorithm proposed in this paper is that the spatial rate of deforma-
tion tensor admit an additive decomposition into an "elastic” and a "plastic” part. A thermo-
dynamic argument for such a decomposition is provided within the framework of the internal

variable theory.

The discussion of constitutive equations is concluded by the presentation of specific exam-
ples which are general enough to accomodate perfect and hardening viscoplasticity as well as
perfect and hardening plasticity. In this paper, inviscid or rate-independent plasticity is treated
as the limiting case of viscoplasticity as the viscosity of the material tends to zero or, alterna-
tively, as an infinite length of time is allowed for the stress and internal variables to relax to

their asymptotic values.

Following the development of the rate constitutive equations, a numerical algorithm is
presented for their integration. As a consequence of the additive decomposition of the spatial
rate of deformation tensor, the complete set of spatial rate constitutive equations also exhibits
an additive decomposition into elastic and plastic parts. This "operator split” into component
parts suggests the application of the product formula techniques for the construction of an
efficient algorithm. Operator split methods have recently been successfully applied to the finite
element analysis of problems in a number of areas. For example, the heat conduction problem
[13], the structural dynamics problem [14] and in plasticity [15,16]. However, as will be made
clear below, the application of the operator split method for plasticity reported in [15,16] is
quite different to the approach being pursued in the present paper. After providing a brief gen-
eral overview of product formula techniques, their application to the integration of rate consti-
tutive equations is considered in detail. It is shown that the product algorithm consists of first
integrating the elastic rate constitutive equations, ignoring the plasticity of the material. The

stresses resulting from this operation are then allowed to relax towards the elastic domain,
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which itself is evolving according to the internal variable rate equations.

From a numerical point of view, an algorithm for the integration of rate constitutive equa-

tions should satisfy three requirements:

(i) Consistency with the constitutive equations.
(i) Numerical stability.

(iii) Incremental objectivity.

Conditions (i) and (ii) are required for the convergence of the integration scheme [17]. Condi-
tion (iii) results from the physical requirement that the algorithm be invariant with respect to
superimposed rigid body motion [18,19]. It is shown that the proposed product algorithm pro-
vides a basis for demonstrating the consistency and numerical stability of the resulting algo-

rithm. The requirements of incremental objectivity are also considered in detail.

Although the development of global algorithms for the solution of the boundary value
problem of linear momentum balance is outside the scope of the present paper, such algorithms
provide the motivation for developing numerical schemes for the integration of the rate consti-
tutive equations. Indeed, the two are strongly interdependent and cannot be entirely separated
in any reasonably complete discussion of either algorithm. Accordingly, a brief description of
global algorithms is presented. It is noted that "implicit” global algorithms which employ an
elastoplastic (or elasto-viscoplastic) tangent modulus tensor suffer from certain computational
disadvantages. These disadvantages lead to the development of alternative algorithms based on
the operator split of the momentum balance equation [16]. Unfortunately, the error introduced
into the product algorithm through the operator split tends to dominate at "practical” time step
sizes. Refining the time step size for the global algorithm is very costly. In response, an impli-
cit global algorithm is proposed in conjunction with the product formula algorithm for the con-
stitutive equations which eliminates the disadvantages of ‘the global implicit method resulting in
an efficient and very accurate solution scheme.

In order to further improve the accuracy of the proposed algorithm, a method for refining
the time step size in the product algorithm for the constitutive equations is presented. The
time step size for the global algorithm is unaffected. This has the desirable effect of improving
the accuracy (by reducing the error introduced by the operator split) of the overall scheme
without incurring considerable cost, since the constitutive equations are integrated locally.

An interpretation of these algorithms for finite element analysis is considered throughout
the development.

Finally, numerical examples are presented to demonstrate the effectiveness of the pro-

posed algorithms.
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2. Fleld Equations for Finite Deformation Elastoplasticity.

2.1, Prelimineries

A motion of a deformable body in the ambient space R™, relative to a reference
configuration B, is given by a time dependent mapping é,(X):B—RN 1>0. Here, X

denotes a set of material coordinates defined on the reference configuration.
The material velocity of the motion ¢, is defined as a vector field V over the reference
configuration, such that V = %¢, The spatial velocity field v is defined by v = Vo¢;!. Note

that the spatial velocity field v(x,¢) is dependent on a set of spatial coordinates denoted x

a
The deformation gradient is defined by F = %% with components, F9, = g; + The

polar decomposition of the deformation gradient is given by F= R-U= V-R, where R is an
orthogonal rotation tensor and U and V are respectively positive definite and symmetric right
and left stretch tensors. From F one can obtain the Jacobian of the motion J = det F and the
right Cauchy-Green deformation tensor C which is reiated to the deformation gradient by
C=F" F

The spatial velocity gradient tensor ] is given by 1= Vv, where V denotes the gradient
with respect to the spatial coordinates x. The symmetric partof L d = Vv is the spatial rate
of deformation tensor, and the skewsymmetric part @ = V #v is the spin rate or vorticity ten-

SOr.

If y is a tensor field defined on the deformed configuration ¢,(B), the pull back of y

-
through the motion ¢, defines a tensor field I' on B denoted by T = ¢, (y) [9]. For example,

in the case of a second order contravariant tensor the pull back operation takes the form
T8 m (FDA,(FN3,(y%0¢)).

This definition may be readily generalized to spatial tensor fields of any order.

Likewise, if T' is a material tensor field defined on B, the push forward of T’ through the

motion ¢, defines a spatial tensor field ¥ on ¢,(B) denoted by y = ¢, , (I'). In this case, for

the example used above, the push forward operation takes the form
,yab - FaA FbB (r‘BO¢,—1).
A related concept associated with the push forward of material rates of material tensors is

that of the Lie derivative of a spatial tensor with respect to the spatial velocity field. The Lie

derivative entails pulling back the spatial tensor to the reference configuration, taking the
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material time derivative of the resulting material tensor and pushing forward the result into the

current configuration. Formally, for a spatial tensor 7,

1

— d B *
Liy) = ¢, E¢l (y)

This notation allows for a compact expression of many relations in continuum mechanics.
For example, the Cauchy stress tensor o defined on the current configuration and the second

Piola-Kirchhoff stress tensor S associated with the reference configuration are related by
L
S=J¢,(a) or o=¢,,J7'S)

These relations, involving J, are called Piola transformations.

o
The forward Piola transformation of the material time derivative of S, denoted o, is
o .
o =¢,.J71S), )

the so-called Truesdell rate of Cauchy stress. For contravariant components (2) has the form

3-&—|~rr—rr-|r+trtr(d) 3)

where o denotes the material time derivative of o given by o = %‘TT + Vo -v. Alternatively,

in terms of the Lie derivative, (2) can be written

o] d ]
c=J"¢,. Ecﬁ,(lc) - J 'L (7) (4)

where 1 = (Jo¢ [!) o is the Kirchhoff stress tensor.

The principle of objectivity requires that intrinsic physical properties of a body be
independent of the body’s location or orientation in space. This principle is embodied in con-
stitutive theory by requiring that constitutive equations contain only objective tensor fields.
Consequently, since the Truesdell rate is objective [9,20] it may be considered as a candidate

for use in spatial rate constitutive equations.

Many other objective rates have been proposed within the context of constitutive theory.
One that frequently arises is the Jaumann, or co-rotational rate of Kirchhoff stress,
v

T=T—-w'T+7Tw (5)

The co-rotational rate can be related to the Lie derivative. To explicate this relationship, pull

back and push forward operations associated with the rotational part of the deformation
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gradient, or co-rotational pull back and push forward operations, are introduced as follows.

[ ]
Given any spatial tensor y, the co-rotational pull back of y, ¢ ® (y), is defined by formally
replacing the deformation gradient appearing in the pull back operation by its rotational com-
ponent tensor R. The co-rotational push forward operation is similarly defined. With this nota-

tion, the Jaumann or co-rotational rate of Kirchhoff stress is given by
v »
f-.,,n,l%w (f)] (6)

Comparing this expression with (1) it is noted that the Jaumann rate coincides with the Lie

derivative under the assumption that the rate of deformation tensor vanishes, that is
v
T = L'(T)‘d_o (7)

Noting that F = o -Fwhen d = 0, where w is the spin rate tensor, it follows that
v

L) geo=7—@'7—7 @l =1

for contravariant components of r.

Finally, the local form of linear momentum balance together with traction and kinematic

boundary conditions can be expressed as

pv=V-o+pb x€¢,B)
ogn=t x€3,p,B) (8)
¢=¢ x€3,0,(B

where p is the mass density in ¢,(B), b is a spatial body force field, and 't and ; are the
prescribed tractions and motion over the traction and kinematic boundaries 8,¢,(B) and
9,9 ,(B), respectively.

Suitable constitutive equations need to be introduced in order to complete the
specification of an initial boundary value problem. The form of these equations for a limited

class of elastoplastic and elasto-viscoplastic materials is the subject of the next section.

2.2. Rate Constitutive Equations for Finite Deformation Elastoplasticity and Elasto-
Viscoplasticity

Constitutive equations appropriate for the finite deformation analysis of elastoplastic and
elasto-viscoplastic materials are most frequently expressed in a spatial rate form. A thermo-
dynamic framework for the development of such equations can be provided by characterizing

irreversible processes through the use of internal variables (1,2,3,4]. In this case, spatial rate
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constitutive equations will be required for the stress tensor and a set of internal variables.

Rate constitutive equations can be alternatively formulated in a material or a spatial set-
ting. The former case involves rates of material tensors which are always objective. In a spatial
formulation, however, material rates of objective tensors are not objective and objective stress
rates, such as the Truesdell or Jaumann rates, must be introduced. The approach taken here is
based on a thermodynamic formulation in a material setting, the spatial representation of which
is then consistently derived. As noted in Section 1, the correct choice of objective rate appear-
ing in spatial rate constitutive equations has been the subject of considerable conjecture
[5,6,7,8] since the principle of objectivity alone does not uniquely determine this choice. It is
demonstrated below, however, that when the invariance of constitutive equations to the choice
of reference configuration is invoked together with the assumed existence of a free energy den-
sity, the indeterminacy in the choice of objective rates for the spatial stress tensor and the spa-

tial internal variables is removed.

A number of theories of plasticity have been based on different kinematic assumptions
regarding the elastic-plastic split of the deformation [10,11,12]. A requirement for the success
of the numerical integration algorithm proposed in this paper is that the spatial rate of deforma-
tion tensor admit an additive decomposition into an "elastic” and a "plastic” part. A thermo-
dynamic argument for such a decomposition is provided within the framework of the internal
variable theory.

The existence of a complementary free energy potential per unit mass of B, denoted
x(8,Q1,Qz. . ..,Q,.) is assumed. Here, S is the second Piola-Kirchhoff stress tensor and
{Q., a=1,...,niv, is a set of internal variables, the members of which may be scalars or ten-
sors of any order, defined on the reference configuration B. The justification for such an
assumption is argued in [21].

Assuming only mild restrictions on the structure of the internal variable rate constitutive
equations [21], it can be shown from the Clausius-Duhem inequality [21,23] that the comple-
mentary free energy density is a potential for the right Cauchy-Green deformation tensor C,

ie.,
C=12p 8x )]
°8S

where p, denotes the reference mass density. A rate form of (9) is obtained by taking the

material time derivative, resulting in

C=M:S+ E:Na-()a (10)

a=1
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where M is the elastic compliance tensor defined by

82
M=2p Z2X
Pogs!? an

and N, is an inelastic compliance tensor defined by

82
N, =2p, —X_ 12
a pO aQaaS ( )
In (10), the contraction N,-Qa is to be interpreted according to the order of Q, Since
material time derivatives of material tensors are objective, constitutive equation (10) is also

objective.

A spatial form of constitutive eq. (10) can be obtained as follows. Noting that

. [ ] -
C=2¢, (d, (13)
recalling (2) and introducing spatial internal variables q, = ¢,,(J~'Q,), the Truesdell rate of

(o] »
which is given by q, = &, (/"' Q,), equation (10) has the alternative form

» » O niv * O
2¢, (d=JM:¢,(a) + 3 JN, ¢, (q,). (14)

a=1

The push forward of (14) reads

o} niv (o]
d=mioc+ ) n,q a15)

a=]

where m = ;—J¢,.(M) is the spatial elastic compliance tensor and n, = ;—J¢, «(N,) is a spa-

tial inelastic compliance tensor. The material and spatial forms, (10) and (15) respectively,
must be equivalent and simply represent alternative expressions of the same constitutive
hypothesis. This equivalence is required by the principle that the laws of continuum mechanics
must be invariant with respect to the choice of reference configuration. It is interesting to note
that this invariance principle uniquely determines the form of the spatial rate constitutive equa-
tions. In particular, the Truesdell rate of Cauchy stress appears as a natural choice of objective

spatial stress rate consistent with the material formulation.
Furthermore, equation (15) has the interpretation that the rate of deformation tensor d

[o]
has an additive decomposition into an "elastic" part d° = m: o and an "inelastic” or "plastic” part

niv (o]
d’= 3 n,'q, thatis

a=1
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d=d° + d°. (16)

This decomposition has been obtained independently of any kinematic considerations. Other
theories of plasticity based on specific kinematic assumptions [10,11,12] can be brought into
correspondence with (16) by appropriate definitions of the kinematic variables. Combining
(15) and (16), it follows that

(o]
oc=a:(d-d”

niv o] (17)
d’ = 3 n,°q,
a=]

where a = m~! is the spatial elastic modulus tensor.

It is noted that (17) is expressible in terms of other stress rates if the difference between
these rates and the Truesdell rate of Cauchy stress is absorbed in the definition of the elastic
modulus tensor. In this case, the modified elastic modulus tensor will, in general, be a function

of the deformation and the spatial stress tensor [19,20].
In order to have a complete set of constitutive equations one has to supplement (17) with

[o]
constitutive relations for q, as well as supplying the functional form of the spatial compliances

m and n, The "rate-dependent” or "rate-independent” characterization of plasticity will reside

o]
in the structure of the constitutive equations for q, [21]. If these rate constitutive equations
are homogeneous (of degree one) in some measure of time then rate-independent (inviscid

plastic) behavior is obtained, otherwise rate-dependent (viscoplastic) behavior results. The

o]
constitutive equations for g, can not be specified arbitrarily but must satisfy

niv a .O S
Ellat,.(—LaQa).qa =0

which is a representation of the Clausius-Planck dissipation inequality [21,23].
For the present purpose it will suffice to assume that d” can be expressed as a function of
the spatial stress and the spatial internal variables

4’ =T(o,qp, - - ..qQu), (18)

where the internal variables q, may for example represent some invariant of the yield stress for
an isotropic hardening model or the translation of the elastic domain for a kinematic hardening

model.

We introduce here two particularly simple examples of the constitutive mapping T appear-

ing in (18).
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2.2.1. Perfect Viscoplasticity

For a perfectly viscoplastic material we first introduce a closed convex elastic domain C in
stress space § = RS which contains the origin and has a smooth boundary 8C. Then, for

every point o € S, we assume constitutive equation (18) has the form

An, ife € S—Int(C)

T@ =10  ife € In(C) (19)

where n, is the outward normal to dC at the (unique) point on 8C which is closest to o,
A 20 and /nt(C) = C—9C. Note that no internal variables are required for this model.
Equation (19) may be viewed as a generalization of the usual normality assumption of
infinitesimal plasticity.

A specific example of such a constitutive equation can be constructed as follows. Given
any point o € S, then from the assumed convexity of C, there is always a unique point P-o
in C which is closest to o. The mapping P is called the closest point mapping (relative to C).
Clearly, if o € C then Pco = . If, on the other hand, o € S—C then ¢ — Pco=un,
with > 0. This suggests taking the viscoplastic constitutive mapping (19) in the form

o—Pco

T(o) = (20)

The parameter n is the viscosity of the material. If o belongs to C then Pro = o and
d” = T(o) = 0. If, on the other hand, o does not belong to C then @7 is directed along the

vector that joins o and its closest point in C and it points outside the elastic region. The mag-
nitude of d” is proportional to the distance from o to C, the proportionality constant being l—.
n

Fig. 1. It clear that (20) is also well behaved (single valued) when 8 C is not smooth but exhi-
bits corners, Fig. 1. Examples employing the von Mises yield criterion in the definition of the

elastic domain C are given in Section 3.

In this paper, inviscid or rate-independent plasticity is treated as the limiting case of visco-
plasticity as the viscosity n of the material tends to zero. Alternatively, one may think of this
limiting process as the result of allowing an infinite period of time to elapse for the relaxation

of the stresses towards the elastic region. Examples of this process are considered in Section 3.

2.2.2, Hardening Viscoplasticity

In the case of hardening viscoplasticity, a set of spatial internal variables
q={q,), a=1,..,nivis introduced such that the elastic domain C(q) now depends on the
current values of the internal variables. The plastic constitutive mapping (20) can be general-

ized for this case by taking
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g — Pc(q)a

T(o,@ = (21)

where P (g denotes the closest point mapping relative to C(q).

It is assumed in this hardening case that the evolution of the internal variables is

governed by evolutionary equations of the form

)
e=f(c.q,....q9,), a=1,. ni (22)

Note that the use of the Truesdell rate in the left hand side of (22) makes these equations
objective and consistent with a set of material kinetic equations given by
Q. = Ho(S,Q;, . . ., Q) where f,=¢, (J7'H,).

As for the case of perfect (inviscid) plasticity, hardening plasticity will be treated as the
limiting case of hardening viscoplasticity as the viscosity n of the material tends to zero -or,
alternatively, as an infinite period of time is allowed for the stress and internal variables to relax

to their asymptotic values. Examples of this process are considered in the following section.

3. Numerical Integration of Rate Constitutive Equations for Elastoplasticity and Elasto-
Viscoplasticity

3.1. Introduction

As noted in the Introduction, any numerical scheme for the solution of the boundary
value problem of linear momentum balance for elastoplastic or elasto-viscoplastic materials will
require an algorithm for the integration of the rate constitutive equations. This section
addresses the numerical integration of rate constitutive equations for the stress and internal

variables introduced in Section 2 and summarized from (17), (18) and (22) as

o
oc=a:(d—Tlo,q, ....quw)
(23)

o
@=f(o,q.....qw), a=1,.,niv

As a consequence of the additive decomposition of the spatial rate of deformation tensor

(16), constitutive equations (23) also exhibit an additive decomposition into an elastic part

[0}
o=ad (
9q,/8t=0, a=1,. niv 24)
and a plastic part
do/dt=—a:T(o,q;, ....qQ.u)
o (25)

@=1(cq,....,qn), a=1,., v
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From a numerical point of view, an algorithm for the integration of (23) should satisfy

three requirements:

(i) Consistency with the constitutive equations.
(ii) Numerical stability.

(iii) Incremental objectivity.

Conditions (i) and (ii) are required for the convergence of the numerical integration scheme
[17]. Condition (ii) results from the physical requirement that the algorithm must be invariant
with respect to superimposed rigid body motions. This idea is considered in detail in subse-

quent sections. Few algorithms reported in the literature seem to satisfy all these requirements.

Equations (24) and (25) suggest the possibility of using product formula techniques for
constructing efficient solution algorithms for (23) which will also provide a basis for demon-
strating the consistency and numerical stability of the resulting algorithms. Before presenting

the details of such an algorithm a brief discussion of general product algorithms will be useful.

3.2. Operator Splits and Product Algorithms

The operator split method has recently been applied to the finite element analysis of the
heat conduction problem [13], to the structural dynamics problem [14] and also, as discussed
above, to the finite deformation elastoplastic dynamic problem [16]. A collection of results
regarding operator split methods and product formula algorithms for general nonlinear equa-
tions of evolution is presented in [13,14]. These results illustrate the point that product formu-
las can be advantageously applied to any set of equations of evolution where the evolutionary
operator has an additive decomposition (operator split) into component operators. The basic
idea underlying product formulas is that 'of treating each one of the component operators
independently. In a typical integration process, one applies an algorithm to the solution vector
that is consistent with the first component operator, the result of which is then operated upon

with an algorithm which is consistent with the second component operator, and so on.

Consider the following general evolution equation
Ax+BX@=f,; x(0)=x, (26)

where x is an s-dimensional vector, A is a positive definite symmetric matrix and B is a non-
linear function from R° into R We endow R’ with the “energy" inner product
<x,y> = xTAy for every x,y€ R*, with its associated norm |/x||?= <x,x> . In this context,
an unconditionally stable algorithm for equation (26) is a one-parameter family of (nonlinear)

functions F(4) : R*— R*, A > 0, satisfying
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1) Consistency:

lim A Fhx-x _ B(x) + f forevery x€ R? (27)

r—0* h
2) Unconditional stability:

[[F(h) x— F(R) yl| < lIx—yll forevery x,y€ R*, h>0. (28)

If F(h) is a consistent and stable algorithm for (26) in the sense of (27) and (28) then

convergence is guaranteed under mild conditions on B [17].

Suppose the evolutionary operator B and the forcing term f admit an additive decomposi-
tion
N N ‘ -
B- ZB, N f-Zf,—. (29)
i=1

pes |
and let F;(#), i= 1,2, - - -, N denote stable algorithms consistent with
Ai + B,(X) = f,'.

Then the corresponding global product algorithm takes the form

v
F(h) = Fy(h) Fp_y(h) - - - Fi(h) = TTF.(h) (30)

jl
In other words, the algorithm F(4) amounts to applying the individual algorithms F,(4) con-
secutively to the solution vector, taking the result from each one of these applications as the
initial conditions for the next algorithm. The global algorithm is complete for a given time step

when all the individual algorithms have been applied.

It can be shown that if all the individual algorithms F,(4) are consistent with A, B, and f,
in the sense of (27), then the global product algorithm F(4) given by (30) is consistent with A,
B and f [14]. It can also be shown that if all the individual algorithms F,(4) are uncondition-
ally stable in the sense of (28), then the global product algorithm F(4) is also unconditionally
stable (14]. In other words the norm stability of the individual algorithms, in the sense of (28),
is preserved by the product formula (30). A general discussion of these and other related

issues can be found in [13,14].
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3.3. A Product Algorithm for Rate Constitutive Equations

A product algorithm for the integration of the rate constitutive equations (23) relative to
the additive decomposition given by (24) and (25) can be constructed as follows. Consider two
unconditionally stable algorithms F¢(h) and F?/(#) which are consistent, in the sense of (27),
with (24) and (25) respectively. Then an unconditionally stable algorithm F(4) which is con-

sistent with the complete set of constitutive equations (23) is given, in analogy with (30), by

F(h) = FP(h) F¢(h) (31)

such that

) o AR a o(h) '
F(h % = FAChN\F(h %@ - qa(h) , a-l,...,mv.

The product formula (31) states that a solution algorithm is obtained by first integrating the
elastic constitutive equations and then applying to the solution vector so obtained a plastic algo-
rithm operating on the stress and internal variables reflecting the effect of the plastic part of the
constitutive equations. The remainder of this section is concerned with the development of the

F¢'(h) and F?(h) algorithms.

3.3.1. Elastic Algorithm

The desired algorithm F"(h) must be unconditionally stable and consistent with (24) in
the sense of (27). It is observed that the evolution equations (24) affect only the stresses with

the internal variables q, remaining constant, thus the algorithm can be expressed as

gl o1 = 7P 1,...ni (32)
o=l al a=1,. ni.

Objective rates appearing in spatial constitutive equations have the effect of introducing
some complications in the development of numerical integration algorithms and have motivated
research on this problem [18,24,25]. However, few algorithms presented in the computational
literature appear to be consistent with the constitutive equations which they are purporting to
integrate. A family of algorithms, appropriate for the integration of (24), which does satisfy
the requirements of consistency, numerical stability and incremental objectivity, has recently
been proposed in [19]. The essential ideas are as follows. We start by noting that from a
mathematical point of view, the usual linear space operations such as addition and scalar multi-
plication can only be rigorously applied to relate tensor fields associated with a common
configuration [19]. It is thus natural to use the idea of pulling back spatial quantities to a com-

mon reference configuration in order to define difference operators to be used in numerical
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algorithms. This suggests defining algorithms for the integration of (24.a) based upon
difference operators employing the second Piola-Kirchhoff stress tensor. A generalized mid-

point rule algorithm can be introduced as follows:
S,e1—S,=hS,eq 0<a<] (33)

where subscripts refer to the time step, the time step size A = t,.; — 1, and 5,,+a is to be

evaluated on an intermediate configuration defined by the mapping ¢ ,+,(X): B— R” with

bra=adp, 1+ (1 —-a)¢, 0<ag 1 (34)

L
Using the inverse of (2) and noting again that S = J ¢, (o), (33) has the alternative represen-

tation

L] L] L] o)
b,11Ucd)—9¢,0Uc) =h¢,.(Jo) (35)

To simplify (35) the reference configuration B is selected to coincide instantaneously with the

configuration at time 1,4, such that ¢ ,.; = I, in which case (35) reduces to

L] L] o
T — b, (Jo) = heppea(Jo) (36)

Defining the deformation gradients

-1
00 r+a
A,,+a-‘¢+] 0<ax<l (37)
axn+l
and Jacobians
‘IIH'G- det (A "+a) 0 s a < 1 (38)

then, for contravariant components of stress, (36) has the form
I (o]
T pt] — Ju_ A,,‘O',,'A,‘T- h‘lrl-‘*'laAu‘ﬁ-a'o'n*-a'AnT*-a (39)
(o]
This equation is completed by introducing the rate constitutive equation for & ,+,. For example,
for constitutive equation (24.a), eq. (39) is expressed by
LV 2 Jn—l A, ) 'A:- h ‘]n_*!a An+a -(a: d)ln+a'AnT+n (40)

This form requires evaluation of the quantities A ,+4, 84+, and d,4+, Assuming A, to be a
known quantity (representing the incremental motion for which the corresponding stresses are

desired), it is shown in [19] that A ., is given by

Apa=l[U=a)I+aA,}7TA, (41)
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and that d,+, is consistently approximated by

-1 5
dpio™ %“(l—a)l + aA ,,] [A,, - I” (42)

As noted above, the algorithm (40) - (42) must to satisfy the three requirements of con-
sistency with the spatial rate constitutive equations, numerical stability and incrementa! objec-
tivity. It is demonstrated in [19] that the above algorithm is consistent with the rate constitu-
tive equation and that it is unconditionally stable for a2>0.5, moreover, it is second order accu-

rate for a = 0.5,

The condition of incremental objectivity is a physical requirement expressing the fact that
the algorithm has to be invariant with respect to superimposed rigid body motions occurring
over the time step and has the effect of restricting the admissible values of a. This idea was
first expressed in an algorithmic context in [18] and further considered in [18,19]. Formally,
let R be the group of all orthogonal second order tensors and M the group of all positive
definite symmetric second order tensors. The algorithm defined by (40) - (42) is incrementally

objective if and only if
(a) A,,GR <=2 d,,+a-0
() A€M <=> @pa=0

where @ .., is the spin rate tensor determined by replacing the symmetric part on the right
hand side of (42) by the skewsymmetric part. Condition (a) ensures that the integration algo-
rithm reduces t0 @ .41 = A, o, A ] in the event that A, € R. It is demonstrated in [19] that

the algorithm (40) - (42) is incrementally objective if and only if a = 0.5.

Equation (40) may easily be generalized to accommodate choices of objective stress rate
other than the Truesdell rate of Cauchy stress by embedding the difference between the stress
rate definitions in the elastic modulus tensor & In this case (40) will, in general, become
implicit in o ,+; and may be solved by means of an iterative solution procedure [19]. The algo-
rithm (40) - (42) fits naturally into a finite element implementation since it employs quantities

that are readily available from standard shape function routines [20].

It is noted finally that the incrementally objective algorithm introduced in [18] can be
related to the present algorithm (40) - (42),by replacing the pull back operations in (35) by
their co-rotational counterparts and using the fact that the Lie derivative and the Jaumann rate
coincide under the assumption that the rate of deformation tensor vanishes (see Section 2.1)
[20]. This relation can be used to draw conclusions about the applicability of the algorithm

presented in [18].
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3.3.2. Plastic / Viscoplastic Algorithm

The desired algorithm F#'(4), which can be expressed by

o o olh) _
F?'(h) o =l @~ 1,... niv (43)

must be unconditionally stable and consistent with the plastic part of the constitutive equations
(25).

The constitutive equations (25) may admit closed form solutions for particular forms of
T(o,q, - - ..q,) and f,(o,q;, ...,q,,) appearing in (25). This introduces the possibility of
using the closed form solutions to (25) as the algorithm F”(h) and is the approach used here.
It should be emphasized, however, that the plastic relaxation equations (25) will not admit
closed form solutions in general. That closed form solutions may be found in the present case
results from the simplicity of the assumed structure of the constitutive mappings. In general,
as in the case of F®(h4) given above, numerical solution schemes for (25) will have to be
resorted to with the usual considerations for consistency, numerical stability and incremental
objectivity.

Four examples of the constitutive mappings T(e,q,) and f,(o,q,) appearing in (25) are
given according to the discussion in Section 2.2. These examples include perfect viscoplasticity
and perfect plasticity (limiting case of viscoplasticity, see Section 2.2.1), hardening viscoplasti-
city and hardening plasticity (see Section 2.2.2). Closed form solutions for (25) corresponding
to these constitutive equations have been found in [15,16] for use in a different context and

will be utilized here. These solutions are summarized as follows.

3.3.2.1. Perfect Viscoplasticity
Noting again that no internal variables are needed for this model, the algorithm (43)

becomes

FP(h) (o) = a(h). (44)

Using (20), the relaxation equations (25) take the form

90/9t = —a:T(a) -—.:-"_nﬁ (45)

where it is recalled from Section 2.2.1 that C denotes the convex elastic domain in stress space,
P denotes the closest point mapping relative to C and the parameter 7 is the viscosity of the

material. Eq. (45) represents a system of ordinary differential equations whose solution is

o, fo,€C

exp(—at/n)o,+ [I —exp(—at/n):Pco, otherwise (46)

o) =
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For the case of isochoric plasticity in which C is a cylinder oriented along the hydrostatic axis

and for isotropic elasticity, eq. (46.b) simplifies to

o()=e"o,+(1~-e")Pco,

=p, I+ e s, + (1 - e ') Pcs, 47)

where p, = o ,:I is the initial hydrostatic pressure, s, is the deviatoric part of o, and r = /G

is the relaxation time of the process, given in terms of the shear modulus of the material G.

For the von Mises yield criterion, the elastic domain C is the set {c € § such that
J,< k%, where k is the shear yield stress, J, = 1/2s:s and s is the deviatoric part of o. In
this case, eq. (47) reduces to

o'(t)-pol+e"'/’s,,+(1—e"’/’)risa (48)
)
L
where r, = (1/2s,:s,) 2.

As noted above, these closed form solutions can be used for the F?/(4) algorithm. While
this algorithm is obviously consistent with (25) specialized for the given constitutive equations,
the stability of the algorithm is not automatic. A general discussion of the requirements for
unconditional stability of F”(4) can be found in [15,16] where it is also demonstrated that the

solutions presented above satisfy such requirements.

Finally, the product algorithm (31) consists of first integrating the elastic constitutive
equations, with time step A, ignoring the plasticity of the material. The stresses resulting from
this operation are then allowed to relax according to (46) for a period of time h, Fig. 2.
Clearly, the stresses resulting from the application of the elastic algorithm that lie inside the
elastic region are unaffected by this relaxation process. The unconditional stability of the pro-
duct algorithm follows from the unconditional stability of the component algorithms F¢(4) and
F?(h).

3.3.2.2. Perfect Plasticity

As discussed in Section 2.2.1, perfect plasticity is considered as the limiting case of visco-
plasticity as the viscosity n tends to zero or as an infinite period of time is allowed to elapse
permitting the relaxation of the stress towards the elastic domain C. Taking this limit on the
viscoplastic algorithm (44), the detailed form of which is given by (46), an algorithm for the

case of perfect plasticity can be expressed as
F/'(h) (o) = g(x) = Pro (49)

where P.-o again denotes the closest point projection of o onto the elastic domain C. If
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o € C then P-o = o and the stresses are unaffected by the plastic algorithm. It is noted that
(49) is independent of the time step size A, reflecting the rate-independent character of this
algorithm.
Applying this limiting condition to (48), an algorithm for perfect plasticity with the von
Mises yield condition results and is given by
fr<k

o
FPI(h) (o) = o (o) = Pro = K (50)
pol + - So Otherwise
i

A more rigorous mathematical treatment of the viscoplastic approximation to inviscid plasticity
can be found in {26]. -

The closest point mapping algorithm (49) may be viewed as a "return mapping" algorithm,
other examples are discussed in [27,28,29,30]. Certainly, the closest point mapping does not
exhaust all the possible choices of return mapping that can be used to project stresses back to
the elastic domain. If consistent numerical schemes are introduced for the integration of the
plastic constitutive equations, rather than the closed form solution adopted above, then these
algorithms will result in various return mappings of the stress. A set of conditions on the
return mapping has been presented in [26] that guarantees the consistency and numerical stabil-
ity of the resulting plastic algorithm. In particular, it is demonstrated in [26] that the algorithm
(50) satisfies the conditions for unconditional stability.

Finally, for the case of perfect plasticity, the product algorithm (31) consists of integrating
the elastic constitutive equations with time step h, ignoring the plasticity of the material. The
stresses resulting from this operation are then projected onto the closest point of the elastic
domain C, Fig. 2. The unconditional stability of the product algorithm again follows from the

unconditional stability of the component algorithms F¢(4) and F?”'(h).

3.3.2.3. Hardening Viscoplasticity

Using (21) and (22), the relaxation equations (25) take the form

—P
80/3(=—2:T(o,q = —a: — 97

o (51)
g, = f,(o0,q), a=1,., niv

where q represents the set of spatial internal variables {q,}, a = 1,..., niv.

For the case of isotropic hardening we take niv = 1 and identify q, = k. Noting (3), it

follows that
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o)
k=0k/at+0k/dx v+ ku(d). (52)

Assuming a von Mises yield criterion with isotropic bilinear hardening and isotropic elasticity,

(51) reduces to

n V7
<JIh- k>
n

d0/0r=—-2Gd’ =

. (53)
ok/d = 2H(7d":d")% - H

where H denotes the shear plastic modulus. Note that the last two terms on the right hand
side of (52) have been neglected. The solution of (53) is found to be [15,16]

o()=0ca, , k(D=k, , ifr,<k,

; S (54)
o) =a,— —(r,— k) (1 — e /1) =
Ts T
r otherwise
k() = ko + — (rg— k,) (1 = ¢717)
Tq
where
S/ I / I L 2
=G Tem g T —— (55)

are relaxation times for the process.

It is seen from (54) that during a relaxation process corresponding to initial stresses out-
side the elastic domain, the stresses steadily approach the elastic domain, which at the same
time expands towards the stress point. As in the case of perfect viscoplasticity, the closed form
solution (54) can be utilized to define the plastic algorithm (43). Requirements for the uncon-
ditional stability of (54) are considered in [15] where a similar algorithm is presented for the

case of kinematic hardening.

3.3.2.4. Hardening Plasticity.

As in the case of perfect plasticity, plastic algorithms for the hardening case can be
obtained as the limiting case of (43) as the viscosity m tends to zero or as an infinite length of

time is allowed for the relaxation of the stress and internal variables and is expressed by

(o0) '
F? (k) [;:] - [:;(w)}, a=1,.. nv (56)

For the case of bilinear isotropic hardening and a von Mises yield criterion, the asymptotic

values in (56) can be obtained from (54) as
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o(x)=0g, , kix)=k, ifr, €k,

(57)
G S0
o(o) =g, — G+H(r° ko) .
H otherwise
k(o) = k, + m(ro - k)

Note that these limiting values are independent of n and the time step size A.

Eq. (57) yields a suitable "return mapping" for the isotropic hardening rule. It is seen
from (57) that the stress point and the yield surface meet at some intermediate point on the
segment joining their initial values, the distances from these being proportional to G and H,
respectively. A similar geometric interpretation can be derived for the return mapping
corresponding to the kinematic hardening rule [15]. Note that the perfectly plastic case is

recovered by setting H = 0.

Finally, the unconditional stability of the plastic algorithm induced by this return mappfng
follows from that of the corresponding viscoplastic case. Consequently, the unconditional sta-
bility of the product algorithm (31) follows from the unconditional stability of the component

algorithms F¢(#) and F?(h).

4. Global Algorithms for the Finite Deformation Dynamic Problem

4.1. Introduction

As noted in Section 1, the development of global algorithms for the solution of the boun-
dary value problem of linear momentum balahce is outside the scope of the present paper.
However, the global solution algorithm and the algorithm for the integration of the rate consti-
tutive equations will be interdependent and cannot be entirely separated in any reasonably com-
plete discussion of either algorithm. Accordingly, a brief description of global algorithms is
presented, including "implicit" algorithms which employ an elastoplastic (or elasto-viscoplastic)
tangent modulus tensor and a product algorithm based on an operator split of the momentum
balance equation. It is noted that both these global algorithms suffer from computational disad-
vantages that make their use very costly in general. An alternative global algorithm is therefore

proposed.

4.2. Boundary Value Problem of Linear Momentum Balance

The boundary value problem of linear momentum balance for elastoplastic or elasto-

viscoplastic materials introduced in Section 2 is summarized as

$,=V0¢,
pvy=V -ac+pb

o
o=ga(d—-T(o,q,...,q.m)
o (58)

L =floq ...,qQu) a=1.. niv
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A variety of techniques has been proposed for the solution of (58) (although many of these
have been based on the equivalent rate of momentum balance problem derived from time
differentiation of (58.b) together with appropriate traction and kinematic rate boundary condi-
tions). Implicit methods which employ an elastoplastic "tangent” modulus, e.g. [22.24,25],
suffer from numerical difficulties associated with enforcing the consistency condition of plasti-
city which requires that the stress trajectory be confined to the elastic domain. Frequently, pro-
jection techniques have been introduced to restore consistency. Such methods also require ela-
borate schemes for making the transition from the elastic to the plastic regimes and frequently
require truncating or discarding of time steps. Although these methods are potentially quite

accurate, they can be very costly in practice.

The limitations of the tangent modulus methods motivated a search for alternative
methods of solution. One such alternative method, originally proposed by Mendelson [30] for
the case of infinitesimal plasticity, employs the concept of a "return mapping" algorithm which
automatically ensures satisfaction of the plastic consistency condition. The accuracy of this

method has also been considered for a limited class of material models [27,28,29].

In order to be convergent, a numerical solution scheme must satisfy the requirements of
consistency and numerical stability. A formal study of the consistency and numerical stability
properties of global solution schemes arising from the use of return mapping algorithms has
recently been considered within the framework of operator split methods [15,16,26]. It is
noted in [16] that the field equations (58) exhibit an additive decomposition into an "elastic”
part (which defines an elastodynamic boundary value problem in which only the motion and
stress tensor are involved) and a "plastic” part (which leaves the configuration unchanged and
defines a pointwise relaxation process for the stress tensor and internal variables). This sug-
gests using the product formula techniques discussed in Section 3.2 to construct a solution algo-
rithm for (58).

In the present context, a product algorithm relative to the elastoplastic additive decompo-
sition of the equations of motion takes the following meaning [16]. Consider two algorithms
G*(h) and G*”'(h) which are consistent in the sense of (27) with the "elastic” and "plastic” parts
of (58) respectively and which are unconditionally stable in the sense of (28). Then an uncon-
ditionally stable algorithm G(A) consistent with the full equations of motion (58) can be

obtained by means of the general product formula (30) such that
G(hn) = G*'(h) G*(h) (59)

The product formula (59) simply states that a solution algorithm for the elastoplastic problem
can be obtained by solving for each time step an elastic dynamic problem first, and then apply-

ing to the solution vector so obtained a plastic algorithm operating on the stresses and internal
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variables bringing in the effect of the plastic constitutive equations. It is interesting to note that
all the boundary value aspects of the elastoplastic dynamic problem are included in the "elastic"

part of (58) and are taken care of by the elastic algorithm G*(4) [16].

In practice, the above equations are solved by means of some spatial discretization tech-
nique such as the finite element method. In this case, the "plastic” part of the equations of
motion will correspond to a set of relaxation equations expressed at the integration points
within the elements and the plastic algorithm G () is accordingly applied integration point by
integration point. The construction of the global algorithm given by (59) is discussed in detail
in [16].

Although the unconditionally stable global product algorithm described above is consistent
with the field equations it is observed in [16] that the accuracy of the global product algorithm
deteriorates as the size of the time step is increased. The effectiveness of the operator split
method depends strongly on the error introduced by the splitting. Experience in a number of
areas of application indicate that the splitting error dominates beyond certain critical time step
sizes [14,15,16]. For some problems these critical time step sizes are small enough to eliminate

the possible benefits of the method.

The fully implicit methods employing the elastoplastic tangent modulus are potentially
more accurate than the global product algorithm described above but suffer from the difficulties
also noted above. In this paper an implicit global solution scheme based on the elastoplastic
tangent modulus is proposed in combination with a product algorithm applied to the integration
of the constitutive equations. It is demonstrated below that such a scheme eliminates the
difficulties associated with the implicit methods and results in an accurate and efficient solution

procedure.

4.3. Alternative Implicit Global Algorithm

The global algorithm is an iterative scheme based upon the consistent linearization of a
weak form of the boundary value problem of linear momentum balance (58). The construction
of the weak form as well as the mathematical ideas necessary for the consistent linearization of
the weak form will not be discussed in detail here. Similar notions have been considered in

[16,20]. The construction of this implicit global algorithm entails the following steps:

(i) Spatially Discretized Weak Form

A weak form of (58) is expressed by

f bG-b n+a:Vyldv= f t'nda (60)
¢(8) 3,9,(8
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for all weighting functions 5 which satisfy the homogeneous boundary conditions on 8 ,é,(B).
Spatial discretization of (60) can be accomplished using the finite element method in which a
set of global finite element interpolation functions is introduced for the nodal values of the
motion ¢, and the weighting functions 5. In the present "displacement” method the stress is
not independently interpolated but is thought of as being a function of the motion. In this case

the spatially discretized weak form (60) can be expressed as
M- v+ Pla,t) = F(p) (61)

where M is the mass matrix, v is the vector of nodal velocities, P(a,¢) is the "internal force"

vector and F(¢) is the global force vector.

(ii) Temporal Integration of the Weak Form ~

The spatially discretized weak form (61) can be numerically integrated in time by the

application of an algorithm such as the implicit Newmark algorithm defined by

M"-'n-H + P,,+](0’ n+l) - Fn+l (62)
¢n+l-¢n+ hV,,+ hzl(;__ﬁ)‘.'n'{'B‘-'nH] (63)
Vadbl = V, + h[(l—‘y)\-',, + ‘yi’,,.H] (64)

where subscripts n and n+1 denote variables evaluated at the nth and n+1th time steps,
h=t,,1— t, is the time step size and 8 and y are the Newmark parameters. Substituting (63)

and (64) into (62) results in

G(¢n+1) = B%M'¢n+l + Pn+1(°'n+1) - ﬁn-H =0 (65)

where f’,,+1 =F,.—-M[(1- %)h - #v,, - -ﬁlTeﬁ,,l. For this formulation 8 # 0.

(iii) Linearization

Formally, it is found that a consistent linearization procedure may be based on Taylor’s
formula for C! functions [9,31]. Without entering into mathematical detail, the linearization of

(65) about the motion ¢ 4+ can be expressed as
L[G(¢,,+])] - G(¢,,+|) + DG(¢,,+]) ‘Wpe ™ 0 (66)

where

|
DG(¢,+1) upy = B_hTM'“nH + DP i upy. 67
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is the directional derivative of G(¢ ,+)) in the direction of the incremental motion w,.; [16].
Similarly, in (67) DP,., u,+ is the directional derivative of the internal force vector. This
last directional derivative involves finding the directional derivative of the spatial stress tensor.
This can be accomplished by using results from differential geometry. The consistent approxi-
mation of a certain derivative appearing in the development allows the introduction of the rate

constitutive equations for the stress given by (58.c). Details may be found in [16].

Combining the above concepts with the product algorithm (31) for the integration of the

rate constitutive equations, an iterative Newton-Raphson solution scheme can be expressed as

() DG 41) "upe) = Klv1-ujyy

(i) wiy ==K Glisy)

Gii) @3t = @je1 + upsg (68)
o)™ o

(iv) {qa],.+1 = F?(h) F”(h){qa]"

(v) i—i+1, goto(d).

where the superscript i is the iteration counter within the time step A = ¢, — t,. The quantity
with no superscript appearing on the right hand side of (iv) implies that the converged values at

the indicated time are to be used.

The solution procedure is illustrated by means of an example in Fig. 3. The problem con-
cerns an elastoplastic material with isotropic hardening subjected to a cycle of uniaxial tension
while in a state of plane strain. Fig. 3, which depicts axial stress versus axial stretch, illustrates
two solutions. One of these corresponds to the global product algorithm (59) reported in [16]
and discussed in Section 4.2 and the other corresponds to a solution obtained from the algo-
rithm given by (68). The solution obtained by use of (59) employed 400 time steps. In con-
trast, the solution obtained by use of (68) employed a total of 4 time steps. With reference to

the algorithm (68), the following comments apply:

(@) In the first iteration of each time step (i = 1) the "tangent modulus matrix" K! is assumed
to be only elastic and the product algorithm (iv) employs only the elastic algorithm
Fe(h).

(b) If the resulting stress lies inside the elastic domain the iterative procedure progresses by
ignoring the plasticity of the material (although in each subsequent iteration the stresses
are always checked to ensure that their trajectory lies inside the elastic domain). How-
ever, if the stress lies outside the elastic domain the tangent modulus matrix K' is
modified to include the plastic constitutive equations and the full product algorithm (iv) is

employed.
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In this way the transition from elastic to plastic loading is handled automatically. Fig. 3

shows the results of step (iv) in the last iteration of each of the four time steps. The points

o o
marked a and b correspond to F¢(h) [qa] and F?(h) F¥(h) [qa] respectively. It is evident that

the algorithm (68) employing 4 time steps is close to the solution given by (59) which
employed 400 time steps. The solution obtained from from (59) with 4 time steps is extremely

inaccurate, with streses in error by almost 50% (this solution is not shown in Fig. 3).

5. Improving Accuracy by Time Step Refinement
The operator split of (23) into (24) and (25) will introduce an error into the associated
product formula (31) which is step (iv) in (68). For viscoplasticity (plasticity) the spatial stress
tensor plays a dominant role in the definition of the tangent modulus matrix K and it is thus
important for the convergence rate of the Newton-Raphson scheme (68) that this tensor be
evaluated as accurately as possible from the integration of the rate constitutive equations. This
suggests that by improving the accuracy of (31) the overall scheme will enjoy an improved con-
vergence rate without changing the giobal time size. This may be accomplished by modifying
(31) to the following form
F(h) = [T FAAL) Fe(2) (69)
1 N N
The algorithm defined by (69) involves subdividing the time step into N parts and applying the

product algorithm N times. The algorithms Ff and F# have the form described in Sections
3.3.1 and 3.3.2 respectively.

This algorithm will satisfy the requirements of consistency in the sense of (27) and stabil-

ity in the sense of (28). However, the requirement of incremental objectivity places a restric-
tion on the interpretation of F¢ (%). Recalling equations (40) - (42), which are the detailed

form of F¢(#), it may be shown that incremental objectivity is satisfied in (69) only if 8,44

n+a

d
appearing in (42) is replaced by N Thus the deformation gradient over the interval A is

subdivided rather than the deformation itself. The resulting algorithm appears to display excel-

lent accuracy for N in the range of 2 to 5 for numerical examples which have been considered.

As an example, the cycle of uniaxial loading for the plane strain problem discussed above
is again considered. Fig. 4 shows two plots of stress versus axial stretch. The solution obtained
from the global product algorithm (59) in 400 time steps is again shown. The other curve in
Fig. 4 shows the results for the algorithm (68) modified by using (69) for step (iv). As before,

four time steps are taken globally but N in (69) is selected as 5. The curve again shows the
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stress plotted for the solution at the last iteration in each of the four time steps. The increase

in accuracy is evident by comparing Figs. 3 and 4.

A further example of the accuracy of the algorithm given by (68) - (69) compared to the
global product algorithm (59) is shown in Fig. 5 which depicts the stress distribution in an
infinitely long internally pressurized thick walled cylinder. The material is elastoplastic with iso-
tropic hardening and a von Mises yield criterion. The tube was discretized by means of plane
strain quadrilateral elements with 16 elements across the thickness. Fig. 5 depicts the stress
components in the tube for an internal pressure corresponding to a plastification of 75% of the
wall thickness. Five curves for each stress component are plotted. The curves 1 - 4 correspond
to the global product algorithm (59) and were obtained with 2,4,8 and 100 time steps respec-
tively. These curve illustrate the convergence of this algorithm. However, the curve denoted
a in Fig. § corresponds, for each stress component, to the solution from the algorithm (68) -
(69) with 2,4 and 8 global time steps. The value of N in (69) was taken as 2. These solutions
are coincident and appear to be correct by comparison with the global product algorithm solu-
tions. The accuracy of the present algorithm with 2 global time steps exceeds the accuracy of
the global product algorithm with 100 time steps. Solutions for this problem with N 2 2 did
not result in a marked improvement of the convergence rate of the global algorithm although

for problems with greater stress gradients this conclusion may not apply.
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Fig. 2. Schematic representation of product algorithm.
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Fig. 3. Cycle of axial stress versus stretch for plane strain extension of an elastoplastic material
with von Mises yield criterion and isotropic hardening. The dashed lines correspond to the glo-
bal product algorithm (59) with 400 time steps. The solid lines correspond to the algorithm
(68) with 4 time steps. Point a represents the "elastic” solution and point b the final solution

for each time step.
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Fig. 4. Cycle of axial extension for material described in Fig. 3. The dashed lines correspond to
the global product algorithm (59) with 400 time steps. The solid lines correspond to algorithm

STRETCH, A, x10*

(68) - (69) with 4 time steps and N = 5 in (69).
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