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ABSTRACT 

Pharmacogenetics of Antidepressant Response 

Eric J. Peters 

 

Major depressive disorder is one of the most common and debilitating psychiatric 

disorders.  While psychopharmacological treatments exist, they are not universally 

effective and can produce significant side effects in some patients.  The most common 

psychopharmacological agents used to treat major depression are the selective serotonin 

reuptake inhibitors, or SSRIs.  Often, these drugs take several weeks to relieve depressive 

symptoms.  If the initial therapy fails, other antidepressants are often prescribed.  This 

“trial and error” process creates a delay in remission which can be frustrate the patient 

and lead to further decreased well-being.  Individualized therapy would have great 

clinical utility by identifying patients that are likely to respond positively to SSRI 

therapy.  The goal of this thesis is to investigate the use of genetic markers for guiding 

treatment with SSRIs. 

 We utilized several complementary pharmacogenetic approaches and two 

depressed populations treated with SSRIs.  The first was a small (N=96) population given 

fluoxetine, and the second was a large (N=1,953) population taking citalopram.  We used 

the fluoxetine population and a linkage disequilibrium mapping approach to investigate 

variants in seven pharmacodynamic candidate genes for association to response and 

specificity of response.  Several variants in HTR2A and TPH1 were associated with 

fluoxetine outcome.  We then resequenced the coding region and 5’ conserved non-

coding regions of these genes in the fluoxetine population in order to uncover novel 
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variation and additional tagging SNPs.  These tagging SNPs were genotyped in our 

citalopram population, and none of the SNPs were associated with clinical outcome.  We 

then genotyped known, functional polymorphisms in relevant pharmacokinetic genes for 

association to citalopram response and tolerance.  Using a two-stage study design, none 

of the variants were significantly associated with outcome following citalopram 

treatment.  We also utilized a whole genome association study using over 590,000 SNPs 

from across the genome.  Using a two-stage study design, none of the most highly 

associated markers in the discovery sample were also associated in the validation sample.  

Similar non-significant results were obtained using multi-SNP decision trees.  However, 

further genotyping is necessary in the validation sample, as the most highly associated 

SNPs may not be the most consistently associated.   
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CHAPTER 1 

INTRODUCTION TO ANTIDEPRESSANT PHARMACOGENETICS 

 

1.1  Major depressive disorder 

1.1.1  Scope of disease.  Major depression is one of the most common and disabling 

psychiatric disorders (1).  Depression is strongly associated with suicide, which is the 

eleventh leading cause of death in the US overall, and the fourth leading cause of death 

among 25-44 year olds (2;3).  On average, treatment of depression costs patients over 

$2000 per year and overall exacts an annual cost of more than $40 billion in the United 

States (4;5).   Depression is a leading cause of disability worldwide (2;6).  The average 

age of onset for major depression is 25 years, and depression is often chronic and 

characterized by recurrences throughout the lifespan, with some estimates of recurrence 

as high as 85% (7).  Major depressive disorder, as defined in the DSM-IV, is 

characterized by at least two weeks of pervasively depressed mood and/or diminished 

interest accompanied by vegetative and cognitive symptoms, including sleep and appetite 

disturbances, psychomotor and energy disturbances, cognitive changes and suicidal 

thoughts (8).  Depression has high comorbidity with other psychiatric disorders and 

substance abuse, and recent studies suggest that depression may be an independent risk 

factor for some somatic disorders such as heart disease and diabetes (9).  Major 

depression affects 16% of the population in the United States and the societal burden due 

to depression is tremendous (1;10). 

As with most psychiatric disorders, several different underlying etiologies are 

likely to be responsible for the disease we label major depressive disorder.  Fortunately it 
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appears that most patients with major depression respond to a variety of treatments, 

including psychotherapies, psychotropic medications, and other somatic treatments such 

as electroconvulsive therapy (11).  Psychopharmacological treatment is currently the 

most common and is expanding given the development of numerous classes of 

antidepressants over the past two decades (12).  In particular, selective serotonin reuptake 

inhibitors (SSRIs) have become the most frequently prescribed antidepressant, due in part 

to their favorable safety profiles compared to older tricyclic antidepressants (13).  

1.1.2  Response to antidepressants.  While effective treatments for depression are 

available, it is clear that there is great clinical heterogeneity in response to 

antidepressants.  The response rate to most antidepressants in clinical trials is on the order 

of 50-60%, with an even lower remission rate of 35-45% (14;15).  Thus far, no clinical or 

demographic characteristic has been consistently associated with poor response to 

antidepressants (16).  Nor have any reliable biological predictors been found to be 

associated with antidepressant response (17).  Thus, patients who do not respond to first 

line antidepressant treatment often have to undergo additional trials with other 

antidepressants in order to achieve remission.  This trial and error process is even more 

debilitating given the length of treatment required to gauge clinical effectiveness of 

antidepressants (typically 4 weeks or longer).  Adverse effects of antidepressants also 

represent a substantial clinical problem, yet there is also currently no way to predict their 

occurrence.  With the use of selective serotonin reuptake inhibitors (SSRIs) such as 

fluoxetine and citalopram, side effects such as nausea, sexual dysfunction, headache, 

sleep disturbance, tremor, and weight disturbances are commonly reported.  One example 

of the magnitude of the problem is sexual side effects, which can occur in ~50% of those 
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taking SSRIs.  These adverse effects often result in non-compliance and discontinuation 

of treatment with no relief in depression severity.  A potentially devastating side effect 

involves increases in suicidal thinking among depressed patients, particularly 

adolescents, prescribed SSRIs (18).  Other studies have shown no increased risk in self 

harm due to SSRI use and the controversial issue remains unresolved in the field (19). 

 

1.2  Antidepressant pharmacogenetics 

1.2.1  Pharmacogenetics overview.  Pharmacogenetics, defined as the study of genetic 

variability between individuals in response to exogenous substances, as a field dates back 

to the late 1950s.  The earliest modern pharmacogenetic discoveries of hereditary 

variation in drug response involved drugs such as succinylcholine, primaquine, and 

isoniazid.  These classic studies set the stage for subsequent pharmacogenetic 

investigation, which currently focus on the genes that contribute to the pharmacokinetics 

(the actions of the body on drugs over a period of time) and pharmacodynamics (the 

biochemical and physiological effects of drugs and their mechanisms of action) of a 

particular drug (20).  A great deal is known about the common inter-individual variation 

in Phase I (oxidation, reduction, or hydrolysis) and Phase II (conjugation) drug 

metabolizing enzymes, at both the enzymatic and DNA sequence levels (21).  For 

example, an extensive catalog of functional variants and haplotype configurations in the 

genes encoding cytochrome P450 enzymes has been amassed (22).  A major example of 

the success of pharmacogenetics involves the drug metabolizing enzyme, thiopurine 

methyltransferase (TPMT).  Children who inherit two defective copies of this gene can 

experience fatal hematological side effects when administered 6-mercaptopurine, a 
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chemotherapeutic agent used in pediatric leukemia, while patients with two normal 

copies of the gene for this enzyme require higher doses of the medication (23).  

Numerous examples exist for members of the cytochrome P450 family of metabolic 

enzymes.  Efforts at identifying genes involved in pharmacodynamics for particular 

medications have also been successful.  Individual variations and haplotypes in the gene 

encoding for the type 2 β-adrenergic receptor have been found to correlate with response 

to β-agonists in the treatment of asthma (24).  In addition, the dosing of warfarin, an 

anticoagulant with a narrow therapeutic index, was recently shown to be significantly 

influenced by the subject’s genotype at a pharmacodynamic target of the drug (VKORC1) 

(25).   

1.2.2  Pharmacogenetics of response to older antidepressants.  Studies performed in 

the 1960s and 1970s revealed that upon repeated administration of one or another class of 

antidepressants, both response and non-response to antidepressant class were 

significantly concordant between family members (26;27).  This finding has been 

replicated more recently in relatively small samples (28;29).  The important role of 

cytochrome P450s in tricyclic antidepressant (TCA) metabolism is well-documented, and 

is reflected in the extensive work showing correlation between blood levels and response 

and toxicity, as well as the potential benefits of therapeutic drug monitoring for patient 

safety and reduced costs (30).  Pharmacogenetic analysis guided by these observations 

revealed in one study that patients missing CYP2D6 could not be effectively treated with 

TCAs (31).  In particular, persons experiencing adverse effects were more likely to be 

deficient for CYP2D6.  This locus, which is highly polymorphic in the human population, 

has been suggested to account for 34% of the variation in plasma nortriptyline levels 
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(32).  Some authors recommend that pharmacogenetic considerations be taken into 

account with the use of TCAs, suggesting substantial dose reductions in persons with the 

“poor metabolizer” phenotype of CYP2D6 or CYP2C19 (33).  Although commercial 

molecular diagnostics for CYP2D6 and CYP2C19 exist (e.g., AmpliChip CYP450 by 

Roche), there is currently little evidence justifying their use in psychiatry.  Some 

investigators have advocated the use of CYP genotyping for antidepressant therapy 

including SSRI treatment despite the lack of adequately powered studies showing 

benefits to clinical decision making (34;35).  

1.2.3  Pharmacogenetics of SSRI response – pharmacodynamic genes.  The current 

widespread use of SSRIs in depression along with recent advances in molecular genetics 

have resulted in a sizeable body of literature on SSRI pharmacogenetics (36).  The 

majority of these studies focus on putative pharmacodynamic genes related to 

monoamine function, including the serotonin transporter (the molecular target for SSRIs), 

tryptophan hydroxylase 1, monoamine oxidase A, and the 1A and 2A serotonin receptors.  

These case-control studies as a whole examine a small number of polymorphic loci in 

these genes, and utilize fairly small sample sizes, ranging from 60-260 subjects.  

In a sample of 222 Chinese patients with major depression, variants in the 

serotonin 1A receptor (HTR1A) were not associated with response to fluoxetine (37).  

Two SNP variants in the serotonin receptor 2A (HTR2A) gene (-1420A>G and 102T>C) 

were not associated with response to fluvoxamine or paroxetine in a sample of 443 

patients (38).  A variable number tandem repeat (VNTR) promoter polymorphism that 

influences the in vitro activity of the monoamine oxidase A (MAOA) gene also did not 

significantly influence SSRI response outcome in this study, or in a similar study 
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conducted in Japan (38;39).  There have been two studies investigating the role of an 

A218C polymorphism (rs1800532) in intron 7 of the tryptophan hydroxylase 1 gene 

(TPH1), both yielding significant associations to SSRI treatment response.  In one study, 

the TPH*A/A genotype was associated with a slower response to fluvoxamine treatment 

only in patients not taking pindolol concomitantly (40).  In another study by the same 

group, the TPH*A/A and TPH*A/C genotypes were associated with a poorer response to 

paroxetine treatment, with this association also not seen in the pindolol augmentation 

patients (41). 

 An Italian group has shown in a series of studies some evidence of an association 

between the long allele of a functional promoter polymorphism in the serotonin 

transporter and loosely defined depression, including cases of bipolar disorder in the 

depressed phase of the illness (40;42-44).  Other groups have reported similar findings 

(45-47).  These reports are of interest as this polymorphism is usually defined by the long 

and short alleles, with the long allele leading to increased in vitro transcription of the 

SLC6A4 gene and serotonin uptake in cell lines (48).  Additional notable findings in the 

pharmacogenetics of SSRI response have included associations to tryptophan 

hydroxylase (40), G protein β3 (49;50), angiotensin converting enzyme (51), and the 

glucocorticoid receptor FKBP5 (52).  There has been little exploration of association 

between genetic variants in any of these genes and adverse events related to SSRI 

treatment.  A small study showed that the short allele of the serotonin transporter 

promoter polymorphism was associated with the development of insomnia and agitation 

in a population of 36 outpatients (53).  A study by Murphy et al. of 124 subjects with 

geriatric depression treated with the SSRI paroxetine showed that the genotype for a 
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variant in the 2A serotonin receptor (HTR2A) predicted both greater rates of 

discontinuation and severity of adverse events (54).   

1.2.4  Pharmacogenetics of SSRI response – pharmacokinetic genes.  Previous studies 

investigating the relationship between SSRI medications and pharmacokinetic genes have 

been limited.  The pharmacokinetics of many SSRIs, including citalopram, are affected 

by CYP2D6 and CYP2C19 genotype status, although there is no evidence regarding how 

plasma levels of citalopram influence clinical efficacy or tolerance (55).  In a study of 53 

Chinese patients with major depression taking citalopram, CYP2C19 genotype status was 

significantly associated with clearance of citalopram and the metabolic ratio of 

desmethylcitalopram to citalopram, but not associated with the primary clinical outcome 

of patient side effect burden (56).  In the study by Murphy et al. cited above, they 

reported no significant influence of CYP2D6 genotype status on paroxetine tolerance.  

Another study reported, in a sample of 100 depressed Japanese subjects, a gene by gene 

interaction between patient genotype at a variant in the HTR2A receptor and CYP2D6 

genotype status that significantly influenced risk of developing gastrointestinal side 

effects (57).  

 

1.3  Genomics and association mapping 

1.3.1  Overview.  The effort to sequence the human genome has dramatically altered the 

potential impact of pharmacogenetics on human health.  The vast majority of human 

genes have now been localized and annotated, although the biological function of many 

of these genes is unknown (58;59).  One offshoot of this endeavor has been the discovery 

of the incredible level of sequence diversity between humans, largely in the form of 
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single nucleotide polymorphisms (SNPs).  SNPs are the most abundant type of DNA 

variation with over 12 million individual variants having already been identified and 

referenced at dbSNP, the SNP database hosted by the National Center for Biotechnology 

Information in collaboration with the NHGRI (http://www.ncbi.nlm.nih.gov).  Single 

nucleotide polymorphisms have come under intense scrutiny as effective markers for 

genetic studies, partly out of their abundance, but also due to the development of efficient 

and inexpensive methodologies for assaying SNPs (60).  Pharmacogenetics can now be 

broadened to “pharmacogenomics” in the context of the Human Genome Project, with 

our new annotated knowledge of genes, proteins, and SNPs allowing a more general 

analysis of the many different genes that determine drug behavior or even of the majority 

of the genes in the genome.  The availability of other vertebrate genomes will aid in the 

identification of conserved non-coding elements that could have important developmental 

and regulatory consequences if they contain variation (61).  Along similar lines, 

additional primate genomes (e.g., chimpanzee, gorilla, rhesus) will allow the 

identification of more subtle primate lineage-specific genetic elements that may be 

missed with more distant evolutionary comparisons (62).  

1.3.2  Genetic association studies.  Pharmacogenetic phenotypes are complex traits with 

contributions from pharmacodynamic genetic variants (transporters, receptors), 

pharmacokinetic genetic variants (absorption, metabolism, elimination), and 

environmental exposures.  Given the genetic complexity of antidepressant response, the 

most powerful strategy for determining these genetic factors would be through use of an 

association study, also termed linkage disequilibrium (LD) mapping (63).  In LD 

mapping, unobserved historical recombinations in an outbred population are used to 
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identify disease genes by exploiting the physical proximity between a susceptibility gene 

and a marker locus (64).  LD mapping thus assumes that some proportion of the cases 

have a common ancestor who had the disease-associated variation.  The individuals who 

share this variation are also likely to share alleles at sites neighboring the actual disease 

locus due to linkage disequilibrium (65).  The main advantage of this approach rests on 

the statistical power derived from the ability to collect substantial numbers of unrelated 

cases and controls (66).  A number of interacting factors influence the likelihood of 

success in LD mapping designs, including the effect size of the trait variant, frequencies 

of marker and trait alleles, as well as LD relationships (67).  Family based studies, while 

an attractive approach in disease mapping studies, are difficult to efficiently design and 

conduct in pharmacogenetic studies, given the low likelihood that an extended pedigree 

would have sufficient numbers of members treated with the same medication.     

A disadvantage of LD mapping is the reliance on the assumption that common 

disorders are caused by high population frequency variants, which is known as the 

common disease-common variant hypothesis (CDCV) (68;69).  This assumption is useful 

for LD mapping, since rare alleles (which are “newer”) generally do not have significant 

LD (based on the r2 measure) with neighboring alleles.  Unless the actual causative rare 

allele is genotyped, it will generally not be captured by LD mapping.  One potential way 

to circumvent this limitation of LD mapping is to use haplotypic (chromosomal 

configuration of several closely linked alleles) testing in order to “tag” rare alleles that 

were not genotyped.  While haplotype testing can help capture rare SNPs and has other 

potential advantages, the utility and interpretation of haplotypic mapping remains 

controversial (70).  The CDCV hypothesis states that common alleles, each contribute by 
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themselves very small increases in risk (i.e., odds ratios from 1.5 - 2.5 for single alleles), 

but when combined and interacting with each other can determine the overall genetic risk 

for an individual (71).  This underpinning for complex genetic phenotypes is not 

universally accepted, and an alternative framework known as the common disease rare 

variant (CDRV) hypothesis has been proposed.  This hypothesis states that for any given 

complex phenotype several (on the order of 100s – 1,000s) of rare variants exist in 

different genes and pathways that each are individually sufficient to cause the trait 

(72;73).  This model is similar to the molecular basis of most known Mendelian 

disorders, modified for more common, complex phenotypes.  Unfortunately, using 

outbred populations it is difficult to collect enough samples to have adequate power to 

detect extremely rare variants (<0.01 minor allele frequency) and family based studies are 

often not practical in pharmacogenetics.  Furthermore, since the population attributable 

risk of rare variants will be low, they may have limited utility as diagnostic tests.  In any 

case, a complicated matrix of rare and common variants are likely to play roles in 

pharmacogenetic phenotypes, even within the same gene (74). 

1.3.3  Whole genome association studies.  The vast majority of genetic association 

studies thus far have been candidate gene studies.  Typically, candidate genes are chosen 

based on a biological hypothesis that connects the pathogenesis of the disease being 

studied with the function of the candidate gene.  Often, theses studies are performed as 

“direct” association studies, meaning that a single DNA variant that is known to change 

the function of a gene product is genotyped in cases and controls.  The major limitation 

of this direct approach is the necessity for some level of understanding of the biology of 

the gene and disease being studied.  Often, for complex genetic disorders, we do not 
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know a priori what genes will be involved.  Candidate gene studies can also be 

performed as “indirect” association studies (LD mapping) by genotyping several markers 

within a gene and testing for association, relying on LD between the markers genotyped 

and the actual, unknown causal allele in order to uncover an association.  An extension of 

LD mapping involves interrogating several thousands of markers across the entire 

genome and has been termed “whole genome association” (68).  A major advantage of 

whole genome studies is that no understanding of the biological mechanism of the 

phenotype is required a priori, allowing susceptibility genes to be identified that were not 

considered candidate genes for the phenotype.  To date only a few whole genome 

association studies have been published, and while there have been a few exceptional 

findings, results have been mixed and debate remains regarding the utility of these 

endeavors (75-78). 

 

1.4  Challenges to association mapping 

1.4.1  Phenotypic heterogeneity.  There are several challenges to genetic association 

studies in either a candidate gene or whole genome context.  As with all genetic studies, 

phenotypic heterogeneity is a concern.  We can safely assume that the majority of clinical 

diagnoses, as has been shown with several types of cancer, are composed of different 

subtypes with distinct molecular mechanisms.  Diagnostic techniques are limited in all 

fields of medicine and rarely identify the molecular causes underlying a disease or 

phenotype.  This concern is even greater for psychiatric phenotypes, since these usually 

require the use of structured interviews or questionnaires for diagnosis.  In our study, we 

attempted to limit phenotypic heterogeneity though the use of response pattern analysis 
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(79;80).  SSRI and other antidepressant medications have high placebo response rates, 

reaching 50% in some clinical trials.  It has been shown that patients who have a delayed 

response (>2 week) to active medication and continue to maintain their response every 

week until week 12 (“specific responders”) are more likely to relapse if blindly switched 

to placebo than patients displaying an early and inconsistent response (“non-specific 

responders”) (80).  Although the delayed response may not be a critical factor in 

determining true drug response, a sustained response seems to strongly predict specific 

response status (81).  Thus, a subset of patients that appear to be responding to the 

medication are in fact having a placebo, or non-specific response.  We performed 

association tests with these phenotypic subtypes in order to limit heterogeneity by 

accounting for non-specific response to SSRI medication.   

1.4.2  Marker selection.  Another obvious issue is which SNPs to genotype: with over 

12 million known SNPs in the human genome and candidate genes often extending 

beyond 100 kb, current genotyping technologies prohibit complete ascertainment of all 

the SNPs within most candidate genes or all the SNPs in the human genome in 

reasonably sized clinical samples.  Therefore, several groups have developed methods 

that exploit the LD between markers in order to reduce genotyping redundancy while 

maintaining the genetic diversity within a region.  One of the computationally simplest 

methods attempts to select proxies, or “tagSNPs”, in order to capture allelic information 

at other loci based solely on the pairwise r2 measure of LD (82).  Other methods select 

SNPs (haplotype tagging, or htSNPs) that capture the underlying haplotype structure 

(83;84).  Still other methods select SNPs that, in combination, capture alleles at other, un-

genotyped loci (85).  There is no consensus in the field on which method has the most 
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efficiency or power in association studies.  For the candidate gene investigations 

performed in this study, we compared the efficiency and accuracy of several methods for 

selecting tagSNPs.  For whole genome association studies the SNP marker panels are on 

fixed arrays in order to reduce production costs, therefore the investigator cannot change 

the SNPs to be genotyped.  Current marker panels for whole genome studies have 

focused on gene-centric SNPs (ParAllele Biosciences), evenly spaced SNPs 

(Affymetrix), or used public resources like HapMap to select SNPs based on patterns of 

LD (Illumina).  In our whole genome association study, we used a combination of 

approximately 40,000 gene-centric markers, 500,000 evenly spaced SNPs, and 50,000 

SNPs chosen based on patterns of LD. 

1.4.3  Multiple testing burden.  Another challenge to association studies is the issue of 

multiple comparisons.  Put another way, the likelihood of type I statistical error increases 

when one subjects a number of independent observations to the same significance 

criterion that would be used when considering a single event.  In LD mapping, often 

several SNPs per gene are genotyped (or several thousand in whole genome studies), and 

some markers will reach statistical significance due to chance alone.  One way to account 

for these multiple comparisons is to use a Bonferroni correction.  For instance, if we set a 

p<0.05 Type I (α) error rate as our study-wide criteria for significance and interrogate 

500 markers, the Bonferroni corrected criteria for significance would be p<0.0001 (α/N) 

for each individual SNP comparison.  Bonferroni correction assumes the individual tests 

are independent of each other and clearly this is not the case for closely linked SNPs due 

to linkage disequilibrium, therefore this correction is generally considered overly 

conservative by geneticists (86).  Permutation based empirical significance testing can 
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allow for more accurate assessment of association in the presence of linkage 

disequilibrium, however computational constraints limit the application of some of these 

methods (87).  An alternative method for controlling false positive rates is through use of 

a false discovery rate (FDR), or q-value (88).  Instead of a simple p-value which can be 

interpreted as the probability that a test statistic as large or greater would occur by chance 

alone, a q-value is the proportion of tests above a threshold p-value that are likely false 

positives.  A FDR threshold, which is not dependent on the actual number of tests 

performed, is determined from the observed p-value distribution and hence is adjustable 

to the amount of signal in the data and the number of false positives the investigator can 

tolerate in follow up studies.  An additional method for controlling multiple comparisons 

is to use a split sample study design (89).  With this method a study sample would be 

split into two roughly equal halves: a discovery set, in which all markers will be 

genotyped, and a replication set, in which only the markers that reached the stated 

significance threshold in the discovery set are genotyped.  Besides the cost-savings in 

terms of genotyping load this method also sidesteps some of the multiple testing issues 

since in the validation set only a subset of the total markers are tested, which requires less 

adjustment.  However, by splitting the sample, we also greatly sacrifice power.  We 

utilized a split sample design for our whole genome association study.  There is still 

debate on which design is most powerful for whole genome association studies and it is 

likely that the underlying genetic mechanism, which is typically unknown, will determine 

the optimal study design (90).  

1.4.4  Confounding due to population stratification.  One of the main concerns for 

genetic association studies is population stratification.  Indeed, fear of population 
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stratification has caused family-based association tests to become quite popular in human 

genetics (91).  Unfortunately, as stated above, pharmacogenetic studies generally cannot 

efficiently collect family based samples.  Population stratification occurs when cases and 

controls have different allele frequencies attributable to diversity in background 

population that is unrelated to outcome status.  In the work described in this thesis, the 

majority of markers investigated showed some level of differentiation in allele frequency 

based on self-reported race.  For population stratification to have a detrimental effect on 

genetic association studies (i.e., to create confounding), there also must be a difference in 

baseline response (or disease) rates between the ancestry subgroups (92).  In the 

STAR*D sample set, described in Chapters 4, 5, and 6, using self-reported race as a 

proxy for ancestry, several differences in response and tolerance existed across racial 

groups, indicating the need to adjust for population stratification in this sample.  

Uncorrected population stratification can cause false positive associations and can also 

mask true associations that occur within subpopulations (92).  Several methods have been 

proposed to adjust and correct for population stratification.  The simplest involves 

subdividing the clinical population based on self-reported race and testing for association 

within each substratum.  It has been shown that self-reported race correlates well with 

genetic ancestry based on microsatellite and large-scale SNP genotyping (93;94).  We 

used this method in our candidate gene studies in the STAR*D sample.  Another method, 

known as genomic control (GC), uses unlinked markers across the genome to produce a 

scaling factor that is proportional to the degree of stratification (95).  This scaling factor 

is then used to adjust the χ2 value of individual SNP tests for differences in population 

background.  The disadvantage of this method is that it applies the same scaling factor to 
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all SNPs tested, when clearly some SNPs are more differentiated across populations than 

others.  We used this GC procedure in our candidate gene studies in the fluoxetine 

sample, as described in Chapter 2.  An alternative to the GC procedure is structured 

association, which also uses unlinked markers to detect stratification but attempts to 

define underlying subgroups within the stratified sample (96).  After subpopulations are 

identified, association testing can then be performed within homogeneous subpopulations 

and additionally, a composite test statistic across all subpopulations can be calculated.  A 

popular Markov chain Monte Carlo (MCMC) method for modeling population 

substructure is implemented in the program structure, which estimates the proportion of 

ancestry (Q) from “K” populations for each individual (97).  Given that population 

subdivisions may be not occur as discrete clusters and the presumed levels of admixture 

in samples drawn from the United States, correctly choosing “K” is a difficult task.  One 

way to select “K” is to run the model for several values of “K”, and then use the 

estimates of the posterior probability of the model fit to select the most parsimonious 

value.  In our whole genome association study described in Chapter 6, we used a 

structured association method to correct for population stratification within the STAR*D 

sample.   

1.4.5  Detecting SNP interactions.  Another major challenge in association studies of 

complex genetic diseases is the issue of interacting loci.  An assumption of the CDCV 

hypothesis is that several loci, through interaction with each other and environmental 

factors, determine the individual’s risk of response or adverse events from 

pharmacotherapy (98).  A major limitation of detecting interaction loci is sample size.  

For average sized association studies (~100 cases and controls), even for two-way (SNP x 
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SNP) interactions the cell sizes (number of individuals with a particular genotype 

combination) often are too small to have sufficient power to detect moderate effects.  The 

problem of insufficient power becomes even greater when investigating uncommon SNPs 

or considering higher order (i.e., three-way) interactions.  Furthermore, the number of 

statistical tests that result from interaction testing increases the need for large sample 

populations.  For two-way (pairwise) testing, the number of pairwise tests (t) increases 

with the number of SNPs (n) in an exponential fashion (t = 0.5n2 – 0.5n).  In order to test 

all pairwise interactions in our whole genome study involving approximately 590,000 

makers, we would have to perform 1.74 x 1011 statistical tests.  Since most association 

studies to date have not been adequately powered to detect interactions, replicated 

interaction effects and validated methods for testing interactions are underdeveloped in 

the literature.  One straightforward method for testing pairwise interaction is to use 

logistic regression modeling with an interaction term, and likelihood ratio testing to asses 

the significance of this model compared to the reduced model without the interaction 

term.  We used logistic regression to test interactions in our candidate gene studies in the 

STAR*D sample.  Inadequate power precluded testing for interactions in the fluoxetine 

sample.  While this method accommodates testing of small numbers of interactions, due 

to computational limitations, it is not applicable to whole genome data.  For large scale 

datasets, tree-based methods such as recursive partitioning have been proposed (99).  The 

main limitation of this method is the need to balance power to detect interactions with the 

tendency for models to over-fit the data, given the vast amount of data available.  Cross-

validation and bootstrapping may help reduce error rates using these models (100).  We 
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used recursive partitioning to explore gene by gene interactions in our whole genome 

data.   

 

1.5  Summary of chapters 

 In this study, we interrogated naturally occurring genetic variants for association 

to antidepressant response.  The goal of this work is to identify genetic markers that can 

help guide drug choice or dosing of psychopharmacological therapy with an SSRI.  This 

work was performed using two clinical populations of depressed subjects administered 

SSRIs: a small (N=96) population taking fluoxetine (Chapters 2 and 3), and a larger 

(N=1,953) population taking citalopram (Chapters 4, 5, and 6).  A flow chart of the 

projects described in this thesis is shown in Figure 1.1. 

In Chapter 2 of this dissertation, we utilized an LD-based candidate gene 

approach to investigate likely SSRI pharmacodynamic target genes: serotonin transporter 

(SLC6A4), serotonin 1A, 2A, and 2C receptors (HTR1A, HTR2A, HTR2C), tryptophan 

hydroxylase 1 and 2 (TPH1 and TPH2), and monoamine oxidase A (MAOA), for 

association to fluoxetine response.  We genotyped 110 largely non-coding publicly 

available SNPs and 4 VNTRs across these seven candidate genes.  Several SNPs and 

haplotypes of SLC6A4, TPH1, TPH2, and HTR2A were nominally associated (p<0.05) 

with fluoxetine response or response specificity.   

Chapter 3 attempts to expand on these results by resequencing the coding 

regions, intron-exon boundaries and 5’ conserved non-coding sequence of these 

candidate genes in the fluoxetine population.  This was performed in order to uncover 

any potentially functional variants and to capture any additional tagSNPs that were not 
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Figure 1.1  Flow chart of work described in this thesis. 
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captured with our genotyping in Chapter 2.   

In Chapter 4, we utilized the dense marker data (N=188 SNPs) that we had for 

these pharmacodynamic candidate genes in the fluoxetine population in order to select 

tagSNPs (N=27) to be genotyped in our larger clinical population taking the SSRI 

citalopram.  No tagSNPs or haplotypes, including the variants that were associated with 

fluoxetine response in Chapter 1, were significantly associated with citalopram response 

or response specificity.    

  Chapter 5 explores the role of pharmacokinetic gene variants in SSRI response.  

We utilized a direct association approach with known functional variants to investigate 

the relevant pharmacokinetic genes for citalopram: cytochrome P450 enzymes CYP3A4, 

CYP3A5, CYP2D6 and CYP2C19, and P-glycoprotein (ABCB1), for association to 

citalopram response and intolerance.  In order to limit Type 1 error we used a two-stage 

study design.  None of the variants that were nominally associated with remission or 

intolerance in the discovery set were also associated in the validation set.  A trend was 

seen with the CYP2C19*2 variant and intolerance in the overall sample (p<0.01), 

however this is not significant given the large number of independent tests performed.      

In Chapter 6, we make use of a gene-agnostic approach by genotyping 

approximately 590,000 SNP markers spread across the genome in the discovery set of the 

citalopram population.  The most strongly associated SNPs were then genotyped in the 

remaining half of the citalopram population, in an effort to validate the initial association.   

We attempted to replicate four SNPs that were most highly associated with remission and 

five SNPs that were most highly associated with intolerance.  None of these SNPs 

replicated their initial association in the validation set, though one SNP in the intolerance 
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phenotype was close (p=0.06).  We also attempted to construct multi-SNP decision trees 

in the discovery set, but again, these models did not replicate in the validation set.  

However, the analysis presented here of the whole genome data was designed to 

investigate only the “low hanging fruit”, and additional, more comprehensive genotyping 

of the validation set may yield interesting results.  The whole genome work may also 

identify potential pathways for citalopram’s molecular mechanism of action, which is not 

fully understood.  

 Chapter 7 summarizes these results and discusses the current challenges facing 

pharmacogenetics and complex disease association mapping in general, and offers 

suggestions for future directions.   
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CHAPTER 2 

LINKAGE DISEQUILIBRIUM MAPPING OF VARIANTS IN 

PHARMACODYNAMIC CANDIDATE GENES FOR ASSOCIATION WITH 

RESPONSE TO FLUOXETINE* 

 

2.1  Introduction 

Major depression has one of the highest lifetime incidence rates among 

psychiatric disorders (1;2).  Thus, antidepressant medications are among the most 

commonly prescribed pharmacological agents.  However, despite recent advances in 

antidepressant pharmacotherapy, patient response rates can still be as low as 60% for the 

first drug administered (3).  Inter-individual variation in antidepressant efficacy is 

thought to be at least partly under genetic control (4-6).  Selective serotonin reuptake 

inhibitors (SSRIs), commonly prescribed medications, are believed to exert their 

antidepressant effect through inhibiting the serotonin transporter, which terminates 

serotonin (5-HT) transmission.  A number of studies have tested the association between 

DNA variations in the serotonin transporter and response to various SSRIs (4).  The 

majority of these studies rely on assaying a common insertion/deletion polymorphism in 

the SLC6A4 promoter that alters in vitro transcription of the gene (7).  This 43 base pair 

insertion/deletion primarily comes in long (“l”) and short (“s”) forms, with the long form 

being more transcriptionally active in vitro.  In Caucasian subjects taking SSRIs, the 

presence of the long allele has been associated with response in multiple studies (8),  

                                                           
*  This chapter has been published previously:  Peters E.J., Slager S.L., McGrath P.J., Knowles J.A., 
Hamilton S.P. “Investigation of serotonin-related genes in antidepressant response.”  Mol Psychiatry 2004; 
9(9): 879-889. Reprinted with permission 
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while in a Korean population, the short allele has been associated with a more favorable 

response (9).  In a second Korean population, the long allele was associated with a better 

response (10).  The reason for this discrepancy has not been addressed, but is likely to 

involve the unique population histories of the SLC6A4 locus between the European/U.S. 

subjects and the Asian subjects (for detailed summary see (11)).  Furthermore, even in 

positive studies, this polymorphism does not explain all of the variance seen in response 

suggesting the involvement of other variants within other genes or environmental factors.   

As serotonin appears to play an important role in depression, we first chose to 

pursue an analysis of a group of genes in the serotonin pathway.  These genes are 

involved with the synthesis, signal transduction, transport, and catabolism of serotonin.  

Tryptophan hydroxylase (TPH1) catalyzes the rate-limiting step in the biosynthesis of 5-

HT.  Recently, Walther et al. described a second isoform of tryptophan hydroxylase 

(TPH2), which was shown to be the major form expressed in the brain, with TPH1 being 

expressed mainly in the periphery (12), although central TPH1 function in early 

development appears critical (13).  Serotonin receptors 1A (HTR1A), 2A (HTR2A), and 

2C (HTR2C) are involved in the neurotransmission of 5-HT.  The serotonin transporter 

(SLC6A4), is involved with clearing the synapse of 5-HT.  Finally, monoamine oxidase A 

(MAOA) is one of the main enzymes involved in the degradation of 5-HT.  Monoamine 

oxidase inhibitors have been used for decades to treat Major Depressive Disorder.  SSRIs 

have antagonistic properties at serotonin receptors, while the functional effect of SSRIs, 

increased synaptic 5-HT, has an indirect effect on HTR1A, HTR2A, and HTR2C 

function (14-16).  SSRIs can modulate the expression of tryptophan hydroxylase mRNA, 

and inhibition of tryptophan hydroxylase activity has dramatic effects on brain serotonin 
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levels (17-19).  A number of studies have individually investigated the role of several of 

these genes in antidepressant response (20-23). 

Given the small number of reports at the time the work described in this chapter 

was performed, as well as biological data implicating their role in serotonergic function, 

we investigated the association between treatment response to fluoxetine and a large 

number of publicly available SNPs (N=110) in TPH1, TPH2, HTR1A, HTR2A, HTR2C, 

SLC6A4, and MAOA.  We used a well-phenotyped population of persons with unipolar 

major depression and carried out an analysis of association between these variants and 

response to fluoxetine.  We attempted to limit phenotypic heterogeneity through use of 

response pattern analysis that classifies patients as non-responders, specific responders, 

or placebo responders to fluoxetine (24).  We also utilized both single SNPs as well as 

haplotypes for detecting an association to SSRI response and a genomic control technique 

to correct for possible population stratification.    

 

2.2  Methods 

2.2.1  Fluoxetine study population.  The study population consisted of 96 research 

subjects enrolled in an ongoing NIMH-funded protocol (Patrick J. McGrath, Columbia 

University, principal investigator) to assess relapse following fluoxetine discontinuation 

in depressed subjects who had responded to fluoxetine.  Inclusion in that clinical trial 

required subjects to be in a current episode of Major Depression, to be aged 18-65 years, 

and to give informed consent to be randomized to either fluoxetine continuation or to 

placebo substitution should they respond to acute treatment (24;25).  There was no 

depression severity threshold for inclusion.  The Structured Clinical Interview for DSM-
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IV Axis I Disorders - Patient Edition (SCID-I/P) was used to establish all psychiatric 

diagnoses (26).  Subjects with any history of psychosis, mania, organic mental syndrome, 

a history of substance abuse or dependence active within the previous six months, with 

the exception of nicotine dependence, current bulimia nervosa, or unstable physical 

illnesses were excluded.  Other Axis I co-morbid disorders were not exclusionary.  

Medications known to cause or exacerbate depression, such as beta-blockers or 

corticosteroids, or to have significant anitidepressant or anxiolytic properties, were 

exclusionary.  Study subjects were included if they took occasional hypnotic medication 

of a non-benzodiazepine type, oral contraceptives which were not temporally associated 

with onset or exacerbation of depression, or thyroid hormone replacement which was at a 

constant and effective dose for three months prior to study.  Concomitant medications 

such as diuretics and antihypertensives were permitted.  Only data from the initial 12 

week trial were used in these analyses as the number of subjects was considered to be 

inadequate to use follow-up data where subjects were randomized to fluoxetine or 

placebo and either maintained their response or relapsed (25). 

Patients were categorized as non-responders, specific pattern responders, or 

placebo-pattern responders by pattern analysis after 12 weeks of open-label fluoxetine 

treatment (24).  Fluoxetine daily dosage was 10 mg for one week, 20 mg daily for three 

weeks, 40 mg for four weeks, and 60 mg for the remaining four weeks.  Dosage 

increments were made only in those tolerating the medication well and insufficiently 

responsive to 40 mg.  Response in any week was judged by the use of the Clinical Global 

Impression Improvement score where a score of “much improved” or “very much 

improved” was required for response.  This criterion was applied with the definition that 
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“much improved” characterized someone that the clinician believed was sufficiently 

improved that no change in treatment was warranted.  This usually corresponded to a 

decrement of between 50 and 75% in baseline depression ratings on the Hamilton 

Depression Scale, the traditional measure of antidepressant efficacy.  Subjects responding 

at week 12 whose response began after the second week and were sustained until week 

12 were considered “specific-pattern” responders; subjects whose response began in 

weeks one or two but whose response was not sustained for all subsequent weeks until 

week 12 were considered “placebo-pattern” or “non-specific” responders.  In short, 

pattern analysis draws on the observation that a specific response to medication is 

associated with a delayed response to active medication that is persistent once achieved, 

while a non-specific response has an earlier onset of response and/or lack of persistence 

in improvement after onset.  This is based on the observation, replicated in several 

independent samples, that “placebo” or “non-specific” patterns are found equally among 

patients on active drug and on placebo, while only specific patterns are significantly more 

common on active medication (25;27).  While pattern analysis clearly does not perfectly 

characterize placebo and active medication response (28), it is an attempt to deal with the 

problem that approximately half of all subjects (one quarter in this study) who respond to 

medication treatment are having a placebo response (29).  Informed consent was obtained 

from each research participant, as was IRB approval from the New York State Psychiatric 

Institute and the University of California at San Francisco.  In this group, the average age 

was 37.1±11.6 years, and the male/female ratio was 47 to 49.  There were 77 (80%) 

responders and 19 (20%) non-responders to a 12-week trial of fluoxetine.  The subjects 

were 78% Caucasian, 6% African-American, 7% Hispanic, 5% Asian, and 3% other.  
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There were no significant differences in ethnicity (by exact test, p=0.07) or age (by t-test, 

p=0.19) between responders and non-responders.  Using a clinical pattern analysis 

paradigm, 20 of the 77 responders (26%) were determined to be “non-specific” 

responders to fluoxetine (Figure 2.1). 

Four chimpanzee (Pan troglodytes) and one bonobo (Pan paniscus) genomic 

DNA samples were obtained from the Coriell Institute for use in determining the 

ancestral allele at candidate SNPs (Coriell Institute for Medical Research, Camden, NJ) 

(30). 

2.2.2  SSRI pharmacodynamic gene SNP genotyping.  Patient genomic DNA was 

extracted from whole blood using a Puregene genomic DNA purification kit (Gentra 

Systems, Minneapolis, MN).  DNA was quantified using a ND-1000 spectrophotometer 

(NanoDrop Technologies, Rockland, DE). 

 A total of 165 SNPs were identified from publicly available databases or the 

literature and were chosen with an unbiased approach in an effort to distribute them 

evenly across the seven candidate genes (Figure 2.2).  These SNPs, very few of which 

were previously validated, represented the best available at the time these experiments 

were carried out.  SNPs in the 5’ and 3’ region flanking the gene were also included in 

this study.  One hundred ten of the 165 were used for genotyping, as 32 were 

monomorphic in our population and an adequate SNP genotyping assay could not be 

developed for the final 23.  Of the 110 SNPs used in this study, 66 were intronic, 10 were 

exonic (4 non-synonymous and 6 synonymous changes), and 34 were located in the 5’ 

and 3’ flanking regions.  Fluorescence polarization detection of template-directed dye-

terminator incorporation (FP-TDI) was used to genotype SNPs, as described elsewhere  
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Figure 2.1.  Phenotype classifications in the fluoxetine sample set.  A.)  Breakdown of 

sample by primary phenotype comparison of categorical responders versus non-

responders.  B.)  Additional sub-classification of sample set based on specific and non-

specific response.       
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       Figure 2.2.  Pharmacodynamic candidate gene schematics. 
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Figure 2.2 (continued).  Pharmacodynamic candidate gene schematics.  Schematic diagrams of the seven serotonergic 

genes studied.  Genes are showing in the 5’ to 3’ direction with solid boxes representing exons.  SNPs assayed are shown 

as vertical lines with nomenclature used in this paper given above the gene and any alternative nomenclature given below 

the gene. 
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(31;32).  Briefly, the first step involves polymerase chain reactions (PCR) of 5 microliters 

(µl) containing 200 nM of the forward and reverse primers (Table 2.1), 20 ng genomic 

DNA template, 50 µM dNTPs (Roche, Indianapolis, IN), 1M anhydrous betaine (Acros 

Organics, Geel, Belgium), 50 mM KCl, 20 mM Tris-HCl (pH 8.4), 2.5 mM MgCl2, and 

0.25 units Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA).  All primers and 

TDI probes were designed using Primer3 software and were manufactured by Invitrogen 

(Carlsbad, CA)(33).  Samples were cycled using a touchdown protocol at 94°C for 3 min, 

followed by 7 cycles of 94°C for 30 sec, 65° to 59°C for 30 sec (decreased by 1°C 

intervals per cycle), and 72°C for 30 sec, followed by 38 cycles of 90°C for 30 sec, 58°C 

for 30 sec, and 72°C for 30 sec, with a final 10 min at 72°C.  The reactions were 

performed on an Applied Biosystems GeneAmp PCR System 9700 (Foster City, CA, 

USA) using 384-well plates (MJ Research, Waltham, MA).  SLC6A4 SNPs were cycled 

on a DNA Engine Tetrad PTC-225 thermal cycler in 384-well plates (MJ Research, 

Waltham, MA).  PCR conditions for SLC6A4 SNPs 9 and 11 were 1.5 mM magnesium 

with the following protocol: 94°C for 3 min, followed by 45 cycles of  90°C for 30 sec, 

55°C for 30 sec, and 72°C for 30 sec, with a final 10 min at 72°C.  The excess primers 

and deoxynucleotides in the PCR reaction were then degraded by adding 0.2µl of 10X 

PCR Clean-Up Reagent (containing a mixture of shrimp alkaline phosphatase and 

exonuclease I) and 1.8 µl of PCR Clean-Up Dilution Buffer to each 5 µl PCR reaction 

(PerkinElmer, Boston, MA, USA).  The mixture was then incubated at 37°C for 60 min, 

followed by inactivation for 15 min at 80°C.  The final step was the addition of a 13 µl 

solution containing a final concentration of 0.38 µM TDI probe (Table 2.1), 2 µl of 10X 
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SNP ID dbSNP rs# Position Alleles Allele freq. Size Forward / Reverse / FP Probe
HTR1A-1 rs968555 5' G/T 0.03 248 catgtgttgtttgacacaattctta

gatttgtgaaggtatctatttccactt
aaagctgaattatctaaaattaaactttgaaa

HTR1A-2 rs6295 5' C/G 0.52 94 gcgagaacggaggtagcttt
ggtgaacagtcctgggtcag

ggaagaagaccgagtgtgtcttc
HTR1A-3 rs6294 Exon (S) A/G 0.02 173 gacctcatggtgtcggtgtt

gtgatggcccagtacctgtc
atggccgcgctgtatcaggt

HTR1A-4 rs1800044 Exon (S) G/T 0.99 238 tcgctcacttggcttattgg
cggtcttctccacctttttg

gttctctatgggcgcatattcc
HTR1A-5 rs878567 3' C/T 0.50 217 aagcgacattggctcagact

ttcccaaacctcaagtccaa
cctgtatcatcagttttgatcccag

HTR1A-6 rs749098 3' C/G 0.73 236 attgcaaaaattgccagtga
ttcactgcagacccttctca

agagctgtcctttcactttcttaattataaa
HTR1A-7 rs749099 3' A/G 0.50 250 caaaccccaaatttgctcat

aaagcatcaggcactcttttg
ccatttatttgtgtcttttacagaattgt

HTR1A-8 rs1423691 3' A/G 0.50 152 taacccgaaagggtcttgg
ccaccctgttgcaactcttt

tcagaatgaggagagaatcattaacc
HTR1A-9 rs970453 3' A/G 0.49 197 gcaggacttggtgtctggat

ctgccatctggatttggaat
cttttgcagcttcatcggtaaac

HTR1A-10 rs1364043 3' G/T 0.27 167 tttgaagagggcacaattcc
aagcgaactcaaacagcaaaa

ccattcttaatacactacttaacatggtatttt
HTR2A-1 rs6311 5' C/T 0.55 208 atggccttttgtgcagattc

ctagccaccctgagcctatg
cctcggagtgctgtgagtgtc

HTR2A-2 rs6312 5' C/T 0.08 236 ggccaagcatgatttcaaac
gctcttgcatgcagtttttg

tgagaacttacatttgtcttcagggt
HTR2A-3 rs6313 Exon (S) A/G 0.45 295 acccttcacaggaaaggttg

cagcatgtacaccagcctca
tgcatcagaagtgttagcttctcc

HTR2A-4 rs6304 Exon (NS) C/T 0.02 218 ttcagaaagcacgaactgtca
ggatttacctggacgtgctc

cctactgatatggtccaaacagcaa
HTR2A-5 rs6305 Exon (S) A/G 0.02 218 ttcagaaagcacgaactgtca

ggatttacctggacgtgctc
ttctggatggcgacgtagcg

HTR2A-6 rs2025296 Intron C/T 0.91 233 tcataaaccaaccaactttgtca
ttttgtttgctttgtgtgtgg

agtctagctggaattttaaaatatgatctaac
HTR2A-7 rs927544 Intron A/G 0.74 161 ctgggaatgtcctccagtgt

agcatgctcatttaggtccaa
tcaagcattttttttccagaagatac

HTR2A-8 rs1928039 Intron C/T 0.04 153 cagcagatgggatctggttt
aatgccccttaattcccatc
cctgcatttcatgcagtttcct

HTR2A-9 rs666693 Intron A/G 0.12 249 cgtgcaaaaaggacacatga
atattctcagggcccattcc

tgagaagcactgcctacactatca
HTR2A-10 rs2770296 Intron C/T 0.26 230 aggcttaccgagaaagctga

tcaaagccaggtcttgtgact
ctgtgcaatcaactcaggcct

HTR2A-11 rs659734 Intron A/G 0.93 222 gcaggaatggaaagctgact
cacgtcagcccaagtttaca

ataatagctggtaggaaattgaactgaa
HTR2A-12 rs2246127 Intron C/T 0.40 233 aagcaaaacaatccctcgtaga

cttcaaaaccctgctgcatt
cccacttgctttgttcagaaaaa                  

Table 2.1.  Pharmacodynamic candidate gene SNP assay descriptions. 
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SNP ID dbSNP rs# Position Alleles Allele freq. Size Forward / Reverse / FP Probe
HTR2A-13 rs619549 Intron A/G 0.01 189 gtcccagtcatcggtagcat

tctcctgaaagcccatcact
ttttgctttggaatattatcaaatagc

HTR2A-14 rs1923884 Intron A/G 0.14 202 tctcatcttggccttgctct
gcccaggggcactaatctat

tggtacaaatagtgtcagctgatcag
HTR2A-15 rs1923882 Intron C/T 0.70 195 cagcctgggagaaaaagtca

gatggcaagagtgaggcagt
catattatcagcacactcagaattgtagaa

HTR2A-16 rs6314 Exon (NS) A/G 0.10 250 ccacggcaactagcctatca
ttcagtgtcagtacaaggaaaacaa
gctattgtctttagaagcctcttcagaat

HTR2A-17 rs3125 3' UTR C/G 0.18 165 ccaagcacacattttgtagca
caactgtggaaggcacactg

agtctagtggaaccaacgatcatatct
HTR2C-1 rs540285 5' C/T 0.59 202 gtgttccatcattgcctcag

aagggtatcccaggcaaaa
aatgagagtctcagcacacagca

HTR2C-2 rs527236 5' A/G 0.23 249 aggcagatttgctgctgatt
tcacttcaaaactgccagga

aaaatttcagtaatgcaaatatttaaaaagtaat
HTR2C-3 rs493533 5' C/T 0.61 174 gagatggctttcaggactgc

tcattgctctattagccaacca
tctatcatatttaccctttggaattgtg

HTR2C-4 Yuan C-759T 5' C/T 0.85 172 gtgcatctgaggaaggaagc
gcactaagagaccggtccaa

ttggctcctcccctcatcc
HTR2C-5 rs518147 5' UTR C/G 0.39 172 gtgcatctgaggaaggaagc

gcactaagagaccggtccaa
taggcgctctggtgcttgc

HTR2C-6 rs543229 Intron C/T 0.25 152 aagcaccccaaatcctacct
cctggggagggaagaaaata
tgcaatcaacaagccttatcca

HTR2C-7 rs538680 Intron C/T 0.98 222 ttagctggagagggatgacg
tttcccctcaatttttcaagg

aggcttgactcaattataatgttgga
HTR2C-8 rs556677 Intron C/T 0.76 226 atatggtggctgttgcactg

aaggccttctggtccctaaa
agctattagaaagcctttagaactgcat

HTR2C-9 rs498177 Intron A/G 0.55 249 ccacagtactggacttctccaa
tgatctgagcccaggtagaaa

gttatttcagggtagaaagaccatacttg
HTR2C-10 rs1023574 Intron C/G 0.62 201 gccaatacggcttacatttca

aaataagaaagcttagccaggaaa
ggtattcatttagtaacaccatatttcaattat

HTR2C-11 rs2192371 Intron A/G 0.61 160 tgggatcagaccaagttacca
ctccaatatgggctgaaaaca

gtctggtaaaccacctgtctaatctatta
HTR2C-12 rs2192372 Intron A/G 0.39 172 tccataacccgattgctctt

tctgaaggcaattcaagcaa
ccagcaaatatttagacatgtgacatttt

HTR2C-13 rs2248440 Intron C/T 0.77 249 gcaagccatttatgcagattt
tctctccccagaaaggatga

gcaagctaccaagcaaagttatctttt
HTR2C-14 rs2428727 Intron C/T 0.23 229 ccctttacggcagtcctaca

ggcccatcttgagtgtcatt
ggctatatactaagttggcacaggc

HTR2C-15 rs6318 Exon (NS) C/G 0.77 186 aatttgaagcgtccaccatc
gttgttttgcatgagcaacg

gctactgggctcacagaaatatca
HTR2C-16 rs2497527 Intron G/T 0.19 243 tttctggaggacccttcctt

tggaaattggcagtcattca
tgtagtttaatcctgcaaagctacatagat

HTR2C-17 rs2497522 Intron C/T 0.77 154 tttttgggtgaatgcctgag
cccttcacaaagtccctctg

tcaagatcagccctgtggaata  

Table 2.1 (con’t).  Pharmacodynamic candidate gene SNP assay descriptions. 
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SNP ID dbSNP rs# Position Alleles Allele freq. Size Forward / Reverse / FP Probe
HTR2C-18 rs2428698 Intron C/T 0.81 172 cacctcggaaaataccattga

cataacagaaaatgtttggcaga
tgacagatgaactgacatggcac

HTR2C-19 rs1414334 Intron C/G 0.24 214 cagggataaaattggcctca
tcacacacaggccatgagat

gcttatctacagtgactttgctaccct
HTR2C-20 rs1360851 Intron A/C 0.79 199 tgctcaaaattccacacagaa

gatggctgggctgagtctaa
gtaaaatgtagagttgggagatatgcagt

HTR2C-21 rs1360852 Intron C/T 0.78 199 tgctcaaaattccacacagaa
gatggctgggctgagtctaa

gaaaagattctctttttagcaagggtttt
HTR2C-22 rs1414324 3' C/T 0.77 154 tattatttgccagccgcttc

gatgctggattgagaacacattt
ccattcacctctgtgtgatttga

HTR2C-23 rs1414327 3' A/G 0.22 250 caatacagcagttccttgcaca
tgctgccctatgaaaaaggt

tcaacatggtttctttataacatcgatac
HTR2C-24 rs2310797 3' C/T 0.23 219 tggggctttaatccctatctg

caccctcgataactggcatt
aactcacttgcctagggtcacag

HTR2C-25 rs1335617 3' C/T 0.25 189 tggagctttgtctcctcagc
cagggacaaacagatcagca
ttttaagttttgtcatcccaacctta

MAOA-1 rs2310820 5' G/T 0.73 190 cttggctggcagagactttc
ggagaaacggttcagaggaa

aaactttatctctctttctgaaaggaaac
MAOA-2 rs1181275 5' A/G 0.09 267 atccctaatgggagttgcac

aagagtgaaacgccatctcaa
ttttcaaaaatatataggaaggataaatc

MAOA-3 rs1465107 Intron C/T 0.71 298 tttgccattcaaatcagcag
tgaagggttaaggtttaagttatttagg

ggagctcagaaatcttttgtaatgtaataac
MAOA-4 rs1465108 Intron A/G 0.31 298 tttgccattcaaatcagcag

tgaagggttaaggtttaagttatttagg
gtaaacatgcaaactgaaacattagc

MAOA-5 rs2179098 Intron C/T 0.99 230 ctcccaaactgctgggatta
tggcatctgtgaaagaggaa

ttaagatagaaacaataatgagttcttctgg
MAOA-6 rs6323 Exon A/C 0.69 250 tgaggaaattgacagaccaaga

ccagagcttccagcagagag
aatgacagctcccattggaag

MAOA-7 rs979606 Intron C/T 0.30 373 aagaaatggggattttgacaac
caaaaggccattgcttggta

ctttttgttaaagcaacgatattattgact
MAOA-8 rs979605 Intron A/G 0.31 373 aagaaatggggattttgacaac

caaaaggccattgcttggta
caaatttaaaaggaaaagcagagttca

TPH1-1 Rotondo T-7180G 5' A/C 0.66 248 attcactaatgttgcaggatacaaa
aggattcttccgatccatga

caaaggagtgaaagatctctacaatga
TPH1-2 Rotondo T-7065C 5' C/T 0.65 248 attcactaatgttgcaggatacaaa

aggattcttccgatccatga
tgttcaccattggcatacagaaa

TPH1-3 Rotondo T-5806G 5' G/T 0.66 248 gccgtccttaaccacacaag
gttgctctgcctcaaggaat

tattaaatagcccagaagcacagaga
TPH1-4 rs652458 5' C/T 0.43 217 tgccctaggaattaggcattt

ggggtctttgtctatttgtttgc
ttatatcataaagcaacttttccacatg

TPH1-5 rs623580 5' A/T 0.30 226 tcagggatggcctcagataa
cttgcctagatggatttgcag
agtatgggcgacgttgtccta

TPH1-6 rs685249 Intron A/C 0.55 187 gggagggaggtggtatcagt
acataccatattctcagtcccactc
caacctcttttaactatttctggtcgtt  

Table 2.1 (con’t).  Pharmacodynamic candidate gene SNP assay descriptions. 
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SNP ID dbSNP rs# Position Alleles Allele freq. Size Forward / Reverse / FP Probe
TPH1-7 rs684302 Intron A/G 0.45 220 ggaatgaagagagatggagca

cccagtccttccaaatctga
aataaaatacctgtatgtcttcttccatca

TPH1-8 rs211107 Intron G/T 0.55 229 gatgggggtgctctgtgtat
ttcttcgcagcccttaccta

ggagattatctgctctaaccttctcatt
TPH1-9 rs172423 Intron C/T 0.21 208 gggacttggggaagtagctc

ttcactcgaggcaaaagaca
aatagcagtcctgattacacctcaaata

TPH1-10 rs211105 Intron A/C 0.79 214 tcaggttgatgtctaagttttgga
agatcaaggtggcaaagacaa
atttctaagatcttttccatcggc

TPH1-11 rs2056246 Intron A/C 0.45 262 gctcttttccaagggtgagg
accatgctcagccattttgt

acaagatatagtcaaatgattaaggaaaaaa
TPH1-12 rs1607395 Intron A/G 0.55 210 tgctttgttttctccactatggta

gaggcataaacaaagggtaagg
tttgttccttttagttctttatatttgtttg

TPH1-13 rs2237907 Intron C/G 0.55 170 tgcagatatccccttccaac
gatttggaggaaacgctttg

gctgatctcttagggtctggagc
TPH1-14 rs1800532 Intron G/T 0.55 221 tttcccccactggaatacaa

tttttggtgtgcgaggatta
tccctatgctcagaatagcagcta

TPH1-15 rs1799913 Intron G/T 0.55 164 accgttgccagtttttgaac
cactgcagcgtgacaaactt

agttcatggcaggtatctctgaaa
TPH1-16 rs211102 Intron A/G 0.17 151 actctgctccagcttcttgc

tcctgggagaaggacatctg
agcacatcactcattttccatca

TPH1-17 rs1134530 3' A/T 0.02 409 tttgcttacagtagatttccttgc
catcagcttcctttcccagt

ctaatcaactcttaagtatacatttgatggtaaa
TPH1-18 rs2108977 3' C/T 0.60 409 tttgcttacagtagatttccttgc

catcagcttcctttcccagt
ctataaatcagataatcaatatttcaaatgattc

TPH1-19 rs521318 3' C/T 0.03 291 agttgtggattataaggctgtgc
ttggttgcaaggaaatctactg

cgttatcaaagttgtatgaaaataacca
TPH2-1 rs2129575 Intron G/T 0.76 210 actggaaagcatttggcaag

cagcaaggtcagtggttcct
ggatcaatgcctggacactaaa

TPH2-2 rs1386488 Intron G/T 0.21 229 tcctgtgaggcgaatttttc
gtcgtggagaaaggacgaag
cttctcatctgtcttaagcaccatg

TPH2-3 rs1843809 Intron G/T 0.21 238 ttgggggctgttacaatgat
catgaggttcatgggctacc

aggccctgagctcctactttaattat
TPH2-4 rs2171363 Intron C/T 0.53 205 caaccgccaggtagaaatgt

gggtaagggaatgggtgaat
ccccacctttggtgtttctg

TPH2-5 rs1386492 Intron A/G 0.75 216 ttgctgggcattagacttca
ctgcgagaagtggagtaggg
cctgggaggatggtgtaccac

TPH2-6 rs1386491 Intron C/G 0.22 216 ttgctgggcattagacttca
ctgcgagaagtggagtaggg
ctgctgcccagtaagggtcc

TPH2-7 rs1843812 Intron C/T 0.81 240 gaatcctcacttggggtctg
cccctcacaagcctatttcc

gtgaaatgatgtcactgtatgattcat
TPH2-8 rs1487281 Intron G/T 0.19 214 tcctcaggcagaaggaccta

aggcacattatccctccaca
tgatctttggagagaaaaaagcttta

TPH2-9 rs1386497 Intron G/T 0.22 209 caagagccacataccatcca
ttgtttctgcaagtgggtca

ggctggttggaatctgtggg  

Table 2.1 (con’t).  Pharmacodynamic candidate gene SNP assay descriptions. 
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SNP ID dbSNP rs# Position Alleles Allele freq. Size Forward / Reverse / FP Probe
TPH2-10 rs1487284 Intron A/G 0.24 242 aaagggcgaaattcattgtg

ctctcagcatgagaaagtactggt
gcttttggtggtcatgaatcac

TPH2-11 rs1487278 Intron C/T 0.20 215 ggcccctggagagtttctta
tctccaaggagaagctcgac

cctctaactttcaacaactcacgtt
TPH2-12 rs1487276 Intron C/T 0.78 173 gcaaagggtcatttggaaaa

tgcaggtattttgcctttca
aatgagtgagactgctgaatataaaactag

TPH2-13 rs1386487 Intron G/T 0.34 247 gacagcgtgtttggatttca
cctcccaaattgaagggtatc
ggtctgagctatcatttctgttttg

TPH2-14 rs1872824 3' A/G 0.31 215 gaatgttggtggtgctgaca
gcaggtgaaccttttctgga
cctctcatctccccaaatgc

SLC6A4-1 rs25533 5' C/T 0.07 166 ctgcgagcgtgtgtgtgt
cgtcactttgaggcgaataaa
ccgtagcgcggcccctccc

SLC6A4-2 rs2020934 Intron C/T 0.53 125 tctgtgtgaagccactgagg
ttgctcaatttgcacaaacc

ggtggcagtgaccgttccaa
SLC6A4-3 rs2066713 Intron C/T 0.62 104 ctctctacccaggcccaga

actgctcactgctgctgcta
gatggaccgcatttcccttc

SLC6A4-4 rs2020936 Intron A/G 0.81 179 gctaggggctgtgtgtgtgt
aaggccaggcagtagcataa

gaaggatatgaattctgacaagagcg
SLC6A4-5 rs2020937 Intron A/T 0.62 179 gctaggggctgtgtgtgtgt

aaggccaggcagtagcataa
tgttgggccctccrccaccc

SLC6A4-6 rs2020938 Intron A/G 0.78 179 gctaggggctgtgtgtgtgt
aaggccaggcagtagcataa
accrcacttgttgggccctcc

SLC6A4-7 rs2020939 Intron C/T 0.60 179 gctaggggctgtgtgtgtgt
aaggccaggcagtagcataa
tggyggagggcccaacaagtg

SLC6A4-8 rs25528 Intron G/T 0.21 143 ccagagctgagctgacttcc
gggagaagagtgtgcaggtt
ctgatgctggggtggttggt

SLC6A4-9 rs6354 5' UTR G/T 0.19 148 caccccagcatcagtaacct
cactgctgctcaccatttgt

gctaagccccttgttattctgcaa
SLC6A4-10 rs6355 Exon (NS) C/G 0.99 151 agcagttccaagtcctggtg

gtccacagcatagccaatca
ggatagagtgccgtgtgtcatct

SLC6A4-11 rs2020942 Intron A/G 0.35 114 cctgaggtctgtgcaaatca
agcaaactctttggaggaagg
cacatggttttattctcgagcc

SLC6A4-12 rs140699 Intron A/G 0.01 127 taacaggccaacccctca
actcctggaacactggcaac

ctgaagaattttacacgtaagtgcac
SLC6A4-13 rs140700 Intron C/T 0.89 110 gaggtgggtgaatggatgtc

atccgatccctgtgtgactc
tgaagaccttgagaaaggaggg

SLC6A4-14 rs717742 Intron A/T 0.79 137 ggttagcctggaactcctga
catgcccttcggttttgt

ctcttattatttttatatacaggagcgc
SLC6A4-15 rs140701 Intron A/G 0.42 139 agtgtgaggacgcacttggt

agaggaggaggtggttgaca
cacacataaggtcttgtgatgagaatt

SLC6A4-16 rs6353 Exon (S) C/T 0.99 148 agaagcgatagccaacatgc
gctgagtcctcctcctttcc

atttccccttcccatttcctcac
SLC6A4-17 rs1042173 3' UTR A/C 0.56 130 aaactgcgtaggagagaacagg

cttcctttcctgatgccaca
aggttctagtagattccagcaataaaatt  

Table 2.1 (con’t).  Pharmacodynamic candidate gene SNP assay descriptions. 
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The following SNPs were not 
polymorphic in our sample:

FP-TDI assays could not be 
developed for the following assays:

rs3033664 rs918643
rs1800043 rs1328685
rs1800042 rs1805055
rs1048281 rs6308
rs968554 rs1048952
rs1800045 rs505971
rs1800041 rs2376488
rs1799920 rs2497541
rs1799921 rs2310883
rs2149433 rs3027393
rs2070038 rs1801291
rs1058576 rs593414
rs1058573 Rotondo (1999) G-6526A

Yuan (2000) G-995A rs2732333
rs2228669 rs2468922
rs3027394 rs2732330
rs2283726 rs2468912
rs1799835 rs2468913
rs1800465 rs25530
rs1803986 rs25531
rs3027408 rs25532
rs1133758 rs956304
rs211100 rs745706
rs211101
rs490895
rs503964
rs2887148
rs2887147
rs1007023
rs2468918

rs6352
rs140702  

 

Table 2.1 (con’t).  Pharmacodynamic gene SNP assay descriptions. Shown are all SNPs 

investigated in this current study.  Position column indicates region of gene where SNP is 

located, according to UCSC genome browser (http://genome.ucsc.edu).  Interrogated 

shows acycloterminators used for assay, and underlined is the ancestral allele, as inferred 

by genotyping primate DNA samples (not performed on SLC6A4 variants).  Allele 

frequency is given for the first allele listed.  Size of the PCR product is shown, as well as 

the forward, reverse and FP probe sequences in descending order.  For SNPs without an 

assigned dbSNP ID, references are given for the following manuscripts: Yuan (34) and 

Rotondo (35). 
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TDI Reaction Buffer, 0.5 µl of AcycloTerminator Mix (containing R110 and TAMRA 

labeled AcycloTerminators, corresponding to the polymorphic base), and 0.025 µl of 

AcycloPol DNA polymerase (PerkinElmer).  This mixture was cycled at 95°C for 2 min, 

followed by 25 cycles of 94°C for 15 sec and 55°C for 30 sec.  Following template-

directed incorporation, fluorescence polarization was read using a Victor2 1420 

Multilabel Counter (PerkinElmer).  For the SLC6A4 SNPs, the genotypes were read using 

a TECAN Ultra plate reader (TECAN-US, Research Triangle Park, NC).  Data output is 

expressed in dimensionless units, mP, as previously described (31;36). 

2.2.3  SSRI pharmacodynamic gene repeat polymorphism genotyping.  PCR 

amplification of the VNTR in the upstream regulatory region of MAOA was carried out 

using the primers listed in Table 2.2.  Amplifications were performed in a final volume of 

10 µl containing 20 ng of genomic DNA template, 50 µM dNTPs, 1M anhydrous betaine, 

50 mM KCl, 20 mM Tris-HCl (pH 8.4), 1.5 mM MgCl2, and 0.5 units Platinum Taq 

DNA polymerase.  Samples were denatured at 95ºC for 4 min, followed by 35 cycles of 

95ºC for 1 min, 62ºC for 1 min, and 72ºC for 1 min, with a final 10 min step at 72ºC (37).  

PCR products were separated on an ABI Prism 3700 DNA Analyzer and alleles were 

scored using Genotyper 3.5 NT software (Applied Biosystems). 

 PCR amplification of the tandem repeat polymorphisms in the upstream 

regulatory region (5-HTTLPR) and intron 4 (Intron 2 VNTR) of SLC6A4 was carried out 

with fluorescent dye-labeled primers listed in Table 2.2, as was amplification of a simple 

sequence repeat in intron 9 (Intron 7 [GAAA]n).  Of note, marker names are keyed to 

traditional names for continuity with the literature, despite the misnaming due to the 

discovery of additional non-coding exons.  For these polymorphisms, amplification was 
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Gene Polymorphism Forward Reverse Size
SLC6A4 5-HTTLPR atgccagcacctaacccctaatgt ggaccgcaaggtgggcggga 418
SLC6A4 Intron 2 VNTR tgttcctagtcttacgccagtg cagaatggagggggtcagta 311
SLC6A4 Intron 7 (GAAA)n accgcaccccgtctctctcttt acacctgtaagcacagccacttg 269
MAOA MAOA VNTR acagcctgaccgtggagaag gaacggacggctccattcgga 323  

 
Table 2.2.  Pharmacodynamic gene repeat polymorphism assay descriptions.  Shown are 

the primers for all repeat (VNTR) polymorphisms investigated in this current study.  Size 

represents size of amplicon in base pairs according to the sequence of the associated 

clone.  
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performed in a final volume of 5 µl containing 20 ng of genomic DNA template, 50 µM 

nucleotide mix (i.e., 50 µM each of dATP, dCTP, dTTP, and 25µM each of dGTP and 7- 

deaza-dGTP), 1M anhydrous betaine, 5% DMSO, 50 mM KCl, 20 mM Tris-HCl (pH 

8.4), 1.83 mM MgCl2, 200 nM primers, and 0.25 units Platinum Taq DNA polymerase.  

Samples were denatured at 95ºC for 5 min, followed by 40 cycles of 95ºC for 30 sec, 

61ºC for 30 sec, and 72ºC for 1 min, with a final 6 min step at 72ºC.  For the Intron 2 

VNTR, amplification was performed in a final volume of 5 µl containing 20 ng of 

genomic DNA template, 50 µM dNTPs, 1M anhydrous betaine, 5% DMSO, 50 mM KCl, 

20 mM Tris-HCl (pH 8.4), 1.5 mM MgCl2, 300 nM primers, and 0.25 units Platinum Taq 

DNA polymerase.  Samples were denatured at 95ºC for 5 min, followed by 35 cycles of 

95ºC for 30 sec, 56ºC for 30 sec, and 72ºC for 40 sec, with a final 6 min step at 72ºC 

(38).  Intron 7 (GAAA)n was amplified using the same conditions and cycling protocol 

described above for SNPs.  PCR products for all three SLC6A4 repeat polymorphisms 

were separated on an ABI Prism 3100 DNA Analyzer and alleles were scored using 

Genotyper 3.5 NT software (Applied Biosystems).  

2.2.4  Genomic control SNP genotyping.  In order to correct for any population 

stratification within the sample collection, the method of genomic control (GC) was used.  

A collection of 20 unlinked C/T SNPs were chosen randomly throughout the genome 

(Table 2.3).  They were chosen from a collection of 18,150 SNPs assayed using a pooled 

sequencing strategy by Dr. Pui-Yan Kwok for the Allele Frequency Project of the SNP 

Consortium (http://snp.cshl.org/allele_frequency_project/).  Candidate SNPs were then 

chosen by iterative elimination if the SNP a) failed in the 3 populations tested 

(Caucasian, African-American, Asian), b) was non-polymorphic in Caucasians, the  
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Location SNP ID Freq (Cau) Freq (AA) Freq (Asian) Size Forward / Reverse / FP Probe
1p31 rs997532 0.70 0.80 0.35 144 tcattcgtcacatcctgatttt

gcccaggcttctgttttaca
tcaattaaaatcatagcattcttaatttca

1q42 rs734551 0.50 0.35 0.50 99 ccccagagaaacggaacat
caatttggagtcgattcctgt

aacttggactttgcaacatctttt
2p11 rs735738 0.65 0.30 0.10 107 aggttcattctggacaagcaa

tatcgggggtcccttttaat
caactctgcataagttcctgaaca

2p23 rs734693 0.30 0.40 0.35 110 cttaggccaatggggaaact
gacactcagcatgccaggta
gggaaggtgacccaagtgga

3p24 rs952134 0.30 0.50 0.40 96 ctcatctgcaggtcccactg
ccttgcagggcattaggtat

tgatctattaaagaacagaaccaatatagagata
4p12 rs728292 0.45 0.50 1.00 98 cactgtgcctttccagacct

acccccaccttcacattctt
tcatatcctttcagaatgaaggga

5q13 rs28137 0.57 0.74 0.47 141 agcgtcagtttactccactcg
accctactcccacagctaagaa

tttcaaaatcactactctataatttcaagaaa
6q27 rs1123365 0.50 0.60 0.55 138 cacaggggtgtgaaattcct

ttccaacatttggcaaacaa
acccgttacgtccccaagc

7q31 rs1343903 0.70 0.70 0.60 300 caggcacataaagcccattt
tcttcatctggccatggaat

aatttttcatgttttataggaattatttctatct
8q23 rs722740 0.40 0.25 0.50 99 gcagcctgagatctagctttg

gcagtcctgtcctcagcatt
ttctggtttgtttatgataacttgcc

9p22 rs718623 0.37 0.51 0.11 121 tgatatgccaatcaaacacaatct
aaggaagtaaggcaaccagga

gctagtggtgttctggtattagtcaca
10q22 rs768498 0.50 0.68 0.90 131 tgagagggatttgggtgtgt

tcccagactttctggctttc
gcattttaacttcctcgttcctgt

11p11 rs730129 0.61 0.53 N 132 agccatgaagaaggtggaca
ccctctggatcatgagctgt

gggaaccgcaccctctcctc
12q13 rs998820 0.65 0.50 0.84 97 ggctcagcttgtctttccac

caaagggacccaggaataca
aaagggagagagcattgtttcc

13q14 rs730924 0.45 0.60 0.85 109 ctatctctgagaatgaatggagacc
gttgaggcgacagaagtcct

caagtacctacctgatacgaacaaaatt
14q32 rs1005788 0.33 0.57 0.55 105 gaaggtggaagaagctgtgg

ccgtggacctcactggataa
tcattgagatgctggctcaag

15q13 rs883473 0.50 0.25 0.25 117 gcccaaggtcactctgtgat
tgactttgttctgccgaagtt

ccaagtctaaaggaagcagcaga
16p12 rs24656 0.50 0.85 0.20 107 cctgagcatggatgggaata

tggagccggataattaccaa
gtggaaacaagtcaatcaggaaca

17q24 rs719615 0.60 0.80 0.50 166 ctagcaaatggccaatcctg
aaataatgttccacagaaaactaaagg
aatgttcaagaaaatatattctatttccca

20q13 rs47223 0.60 0.62 0.68 101 gcacaaagccaacagtcctt
cttgacaaggccgtcaattt

gaaaagtgatggaaacgccc  

Table 2.3.  Genomic control SNP assay descriptions.  Shown are the 20 SNPs used for 

the genomic control procedure. Listed are the chromosomal locations, as well as the 

dbSNP ID, and the allele frequency in Caucasian, African-American, and Asian samples.  

PCR amplicon size and primer and FP probe sequences are also shown. 
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predominant group in this study, c) was non-polymorphic in the 3 populations, d) had a 

minor allele frequency <0.3 in Caucasians, e) failed in African-American population, and 

f) was a non-C/T SNP.  This yielded 1,423 SNPs eligible for use.  Of these, SNPs were 

chosen at random and were analyzed bioinformatically to determine chromosomal 

location.  This process was stopped when at least two SNPs were localized to each of the 

22 autosomes.  Then the genome was essentially divided into 20 segments, and SNPs 

were chosen to fit into each of these segments.  Naturally, very large chromosomes would 

be over-represented due to the proportion of the genome found on those chromosomes.  

SNPs near genes are over-represented, with 11 occurring in non-gene regions and 9 

occurring in the introns of known genes.  There were no exonic SNPs in this group.  

SNPs were limited to C/T SNPs based on laboratory convenience and uniformity.  These 

SNPs were genotyped using FP-TDI, as described above.    

2.2.5  Statistical analysis.  Single point association tests were performed via logistic 

regression using the statistical package R 1.6.1 (39).  Alleles were coded as 0, 1, or 2 

corresponding to the presence of 0, 1, or 2 copies of the rare allele.  This coding scheme 

was chosen because of its robustness to departure from the true additive genetic model   

(40).  For each SNP, three phenotypic comparisons were made based on the results from 

the response pattern analysis described in the Sample description.  The comparisons 

made were: (1) all responders (specific and non-specific) versus non-responders, (2) 

specific responders versus both non-specific responders and non-responders, and (3) 

specific responders versus non-specific responders.  Empirical p-values were obtained 

based on 100,000 simulations using the CLUMP computer program (41).  This program 

holds the marginal allele frequencies constant and permutes the cell counts in a 
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contingency table.  For each SNP with nominally significant association, odds ratio 

estimates and 95% confidence intervals (CI) were computed, comparing carriers of the 

rare allele to non-carriers.  Haplotypes using all markers from each gene were constructed 

and frequencies estimated using an Expectation Maximization (EM) algorithm in the 

Arlequin 2.0 program (42).  For selection of “tag” SNPs (htSNPs), haplotype frequency 

estimations for each gene region were entered into the SNPtagger program (43).  A 

“coverage value” of 80% was set in order to capture the major haplotype diversity while 

excluding the extremely rare haplotypes.  Haplotype frequency differences were then 

tested for significance using the three response phenotype comparisons listed above with 

the CLUMP computer program (41) 

 Hardy-Weinberg Equilibrium (HWE) was determined for each SNP using the 

Arlequin 2.0 program (42).  Linkage disequilibrium across each candidate gene was 

assessed using the computer program GOLD (44).  For MAOA and HTR2C, the X-linked 

option was chosen.  We accounted for population stratification through the use of GC 

(45).  This was determined by adjusting the single point χ2 statistic by a correction factor 

λ.  Briefly, the χ2 statistic is generated for each GC SNP.  These numbers are then 

averaged, generating λ.  The χ2 for each candidate association test is computed and then 

divided by λ, approximating a χ2 with one degree of freedom.  The significance level was 

set at p < 0.05 after GC correction.  This significance threshold, while liberal given the 

number of SNPs that we tested, reflects our acknowledgment of the limited statistical 

power of this sample as well as the fact that this study is intended to be hypothesis 

generating as opposed to a strict replication or validation of previously suspected 

variants.   
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2.3  Results 

2.3.1  Single locus association results.  In our primary phenotypic comparison, response 

versus non-response to fluoxetine, three SNPs in the TPH1 gene were significantly 

associated (p<0.05) (Table 2.4).  Odds ratio estimates indicated a protective effect, i.e., 

carriers of the rare allele were less likely to respond to treatment.  However, both of the 

previously studied A218C and A779C TPH1 SNPs (22) did not reach significance in our 

study.  A single SLC6A4 SNP showed nominally significant association to treatment 

response (p=0.037).  None of the SNPs investigated in the TPH2, HTR1A, HTR2A, 

HTR2C, or MAOA gene region reached significance in this phenotypic comparison.  

 In an effort to utilize detailed clinical information in order to provide more precise 

phenotypic definitions, we attempted to further delineate treatment response phenotypes 

using clinical data.  We performed two such alternative phenotypic comparisons 

involving subgroups of the patients by specificity of response type as classified through 

use of pattern analysis.  The first comparison is based on the hypothesis that specific 

responders differ genetically from all other subjects.  The second comparison is a 

variation of this hypothesis: among responders, specific responders differ genetically 

from non-responders.  In the specific response vs. all others (non-specific response and 

non-response) comparison, one SNP in the HTR2A gene and three SNPs in the TPH2 

gene led to significant associations (Table 2.4).  None of the SNPs tested in the HTR1A, 

HTR2C, SLC6A4, TPH1, or MAOA gene regions yielded significant association with this 

phenotypic comparison.   

  



 

 

Gene SNP p-value Odds Ratio* (95% CI) p-value Odds Ratio* (95% CI) p-value Odds Ratio* (95% CI) R vs NR S vs NS and NR S vs NS
SLC6A4 1 0.037 0.33 (0.08 - 1.35) - - - - 5/16 - -
TPH1 1 0.022 0.41 (0.11 - 1.37) - - - - 30/50 - -
TPH1 2 0.035 0.43 (0.12 - 1.45) - - - - 31/50 - -
TPH1 3 0.022 0.41 (0.11 - 1.37) - - - - 30/50 - -

HTR2A 15 - - 0.016 0.34 (0.13 - 0.86) 0.0008 0.17 (0.04 - 0.66) - 23/40 23/53
HTR2A 16 - - - - 0.020 0.30 (0.08 - 1.15) - - 8/23
HTR2A 17 - - - - 0.026 0.27 (0.08 - 0.87) - - 13/30
TPH2 3 - - 0.020 2.60 (0.96 - 7.17) - - - 27/13 -
TPH2 5 - - 0.042 2.33 (0.92 - 6.02) - - - 31/17 -
TPH2 12 - - 0.035 3.00 (1.11 - 8.25) - - - 27/14 -
MAOA 4 - - - - 0.027 0.34 (0.10 - 1.09) - - 27/50
MAOA 6 - - - - 0.049 0.27 (0.08 - 0.90) - - 27/46

S vs NS Minor allele frequencies (%)R vs NR S vs NS and NR

 

Table 2.4.  Single locus association results.  SNPs with an unadjusted permutation p-value <0.05 are shown. Minor allele frequencies 

for each phenotype classification (e.g., R % / NR %) are displayed. R = response; NR = non-response; S = specific response; NS = 

nonspecific response. *Odds ratios compare carrier of rare allele relative to non-carrier.  95% confidence intervals (CIs) are also 

shown for the odds ratios.   
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In our third phenotypic comparison, specific response vs. non-specific response, 

both the HTR2A and the MAOA gene regions contained significantly associated SNPs.  In 

the HTR2A gene region, 3 SNPs located at the 3’ end of the coding region showed 

significant negative associations (Table 2.4).  While the MAOA-VNTR failed to show 

significance in this study, two SNPs in the MAOA gene did show nominal significance.  

None of the SNPs studied in the HTR1A, HTR2C, SLC6A4, TPH1, or TPH2 gene regions 

had significant association using this phenotypic comparison.  

2.3.2  Pharmacodynamic gene haplotype association results.  To examine interaction 

of alleles from different SNPs within a gene, haplotypes (i.e., those including information 

from all markers at the locus) were inferred and tested for association using the three 

phenotypic comparisons (Table 2.5).  Initially, all SNPs were considered and included in 

haplotype construction for each gene.  Haplotypes for three genes (TPH2, SLC6A4, and 

HTR2A) were significantly associated with the specific response versus all others 

phenotype, and haplotypes for MAOA, SLC6A4, and HTR2A were associated with the 

specific responder versus non-specific responder comparison.  For example, full length 

haplotypes constructed with all 17 HTR2A SNPs examined in this study and tested using 

the specific response versus all other subjects comparison showed significant association 

(p=0.011).  When the phenotypic comparison was narrowed to specific responder versus 

non-specific responder, HTR2A haplotypes were still associated with specific response 

(p=0.001).  In general, positive haplotype association results followed the positive single 

locus results, however, full length haplotype testing of TPH1 failed to reach significance 

in the response vs. non-response comparison. 

    



 

 

Gene 
Phenotypic 
comparison

Total number 
of SNPs p-value (all SNPs)

htSNPs 
required

htSNP number of 
haplotypes tagged p-value (htSNP)

TPH2 R vs. NR 14 0.42 4 9 0.0005
TPH1 R vs. NR 19 0.39 2 4 0.0006

HTR2A R vs. NR 17 0.67 9 22 0.004
TPH2 S vs. NS and NR 14 0.04 4 9 0.007

HTR2A S vs. NS and NR 17 0.01 9 22 0.0001
SLC6A4 S vs. NS and NR 21 0.02 6 12 0.17
MAOA S vs. NS 9 0.04 2 3 0.19
HTR2A S vs. NS 17 0.001 9 22 0.0001
SLC6A4 S vs. NS 21 0.004 6 12 0.08  

Table 2.5.  Full length and htSNP haplotype analysis results.  Total number of SNPs investigated in each gene are shown, along with 

the number of htSNPs needed to capture 80% of haplotype diversity in our sample population.  Number of inferred haplotypes 

captured by the htSNP set are also shown.  Only genes with significantly different (p<0.05) haplotype distributions between fluoxetine 

response phenotypes are shown, as determined using the CLUMP program.  
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Knowledge of extensive LD and the existence of haplotype blocks in the human genome 

suggest that a limited number of SNPs may capture a substantial amount of haplotypic 

diversity in a population (46).  We sought to determine if a subset of the SNPs we have 

genotyped in our sample could be used to test for association between multi-marker 

haplotypes and our clinical phenotypes.  One approach to accomplish this is to use 

haplotype tag SNPs (htSNPs), as identified using the SNPtagger program (43).  We chose 

a coverage value of 80%, as we wanted to capture the most common haplotypes and a 

number of the less common haplotypes, but exclude the substantial number of haplotypes 

estimated to occur one or fewer times in our sample.  

 After htSNPs yielding at least 80% coverage of the haplotypic diversity were 

identified in each gene region, haplotypes were constructed from genotypes of this 

smaller set of SNPs using Arlequin and tested for association to the phenotype using the 

CLUMP program.  In general, the use of htSNPs to construct haplotypes led to more 

significant associations than using all of the SNPs screened, with the exception of the 

SLC6A4 and MAOA genes (Table 2.5).  We found that this procedure indicated that the 

majority of haplotypes could be captured with a limited number of SNPs.  For example, 

we initially genotyped 19 SNPs in the TPH1 gene region, but after haplotype frequency 

estimations were calculated it was apparent that only two SNPs were needed to capture 

the four most common haplotypes, which accounted for 87% (167/192) of the haplotypes 

seen in our study population.  The use of htSNPs also implicated the TPH1, TPH2 and 

HTR2A gene regions in the primary comparison, response vs. non-response, which were 

not significant when all possible SNPs were used for haplotype construction.  For 

instance, the TPH1 gene region, which contained six associated SNPs in the categorical 
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response versus non-response comparison, was not significantly associated when all 19 

SNPs were used to construct haplotypes (p=0.387).  However, when only the two htSNPs 

were used to construct haplotypes, a positive association was seen (p=0.0006).  

2.3.3  Assessment of population stratification using genomic control.  There has been 

much debate about the role of population stratification in case-control studies with the 

attendant possibility of false positive associations, and less discussed, false negative 

findings (47).  A number of approaches have been proposed to estimate the role of 

stratification using the genome itself to determine population heterogeneity (48;49).  Here 

we use the genomic control (GC) approach of Devlin, in which anonymous markers from 

across the genome are genotyped in cases and controls, and the association test statistic is 

rescaled based upon the degree of observed stratification (45;48).  We chose 20 SNPs 

distributed across the genome, and genotyped our sample for those SNPs, as described in 

the Methods.  Allele frequency results for those SNPs are available on request.  When 

comparing the response group vs. non-response group, GC analysis produced λ of 1.21, 

indicating perhaps a need to adjust the p-values for slight population stratification.  

However, since the stratification for this phenotype comparison was slight at best and we 

have limited statistical power, we did not adjust the test statistics.  For the other two 

phenotypic comparisons made, specific response vs. all others and specific response vs. 

non-specific response, GC analysis yielded a λ of <1.0, indicating that the patient 

populations were not significantly stratified given the limits of the small sample size. 

2.3.4  Assessment of linkage disequilibrium (LD).  Levels of linkage disequilibrium 

were calculated for each gene region using genotypic data (Figure 2.3).  As can be seen 

from the pairwise⏐D’⏐values shown in the figure, levels of LD were generally 
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HTR2A (63Kb)

HTR2C (395Kb)

HTR1A (10Kb) TPH1 (29Kb)

MAOA (79Kb) TPH2 (90Kb)

HTR2A (63Kb)

HTR2C (395Kb)

HTR1A (10Kb) TPH1 (29Kb)

MAOA (79Kb) TPH2 (90Kb)

SLC6A4 (40Kb)SLC6A4 (40Kb)

  

Figure 2.3.  Linkage disequilibrium plots.  The above plots are the graphical outputs of 

linkage disequilibrium from the GOLD program.  They represent the pairwise marker D’ 

scores starting with the first marker in the lower left corner of each plot and continuing in 

the X and Y directions to the last marker.  Lighter areas have high levels on LD, whereas 

darker areas indicate lower levels of LD. 
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substantial, but variable between the gene regions screened.  Although there is a trend for 

increased LD across smaller gene regions, this was not an absolute rule as one of the 

smaller gene regions (HTR2A – 63Kb) showed significantly less LD than the largest gene 

region (HTR2C – 395Kb).  

2.3.5  Primate genotyping results.  SNPs examined in all genes this study except for 

SLC6A4 were also genotyped in five primate genomic DNA samples, four unrelated 

chimpanzees and one bonobo, using the same primers and conditions as used for the 

human genotyping.  Of the 93 SNPs investigated in total, six failed to produce readable 

genotype results.  Four SNPs had at least one heterozygotic chimpanzee sample, 

indicating present day variation within this species.  There were 83 SNPs where the 

primate samples were all homozygous for the same allele, implicating it as the ancestral 

allele for humans (Table 2.1).  The most frequent (major) SNP allele in our human 

population matched this presumed ancestral allele in 46 out of 83 cases (Figure 2.4).    

 

2.4  Discussion 

 There has been much recent interest in the use of genetic variants for the 

prediction of medication treatment response (50).  This interest is quite strong for the 

psychopharmacologic treatment of psychiatric disorders, which in general are still treated 

empirically, with an unacceptable rate of failure for first-line treatments.  The recent 

collection of large amounts of DNA variants in the form of SNPs and inexpensive 

genotyping technologies make more comprehensive analyses of genetic variation in 

genes of interest for treatment response feasible.  We have utilized these tools in order to 
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Figure 2.4.  Putative ancestral allele state of SNPs interrogated.  Correlations between 

human allele frequencies and putative ancestral allele state for the 83 SNPs which were 

monomorphic in our non-human primate samples.  SNPs were binned into one of ten 

major allele frequency groupings as shown on the y-axis.  The fraction of occurrences 

where the major human SNP allele corresponds to a newly derived human allele is shown 

on the x-axis.      
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perform an in-depth analysis of common variants in seven genes involved in serotonin 

function.  We have genotyped a well-characterized sample of patients with unipolar  

Major Depressive Disorder at a number of SNPs within each gene, and tested for 

association to a treatment response phenotype using individual loci and multi-locus 

haplotypes.  Using convergent analytic strategies, we found association between several 

of these genes and antidepressant response phenotype.  For our primary phenotype, 

categorical response versus non-response, several TPH1 SNPs were negatively associated 

with the phenotype.  Odds ratios estimates indicated that carriers of the rare allele had a 

higher risk of not responding to treatment.  This comparison also yielded a negative 

association to a single SLC6A4 SNP.  The location of this SNP, some 200 bases 5’ to 

exon 1a, raises suspicion about a potential role in regulatory elements.  But without 

biological evidence, it is premature to speculate on the function of this SNP.  Our results 

differ in regard to a number of other studies in which associations were found between 

response and 5-HTTLPR.  It might be argued that perhaps our population differs from 

other Caucasian samples in which this association has been noted.  However, for the 

SLC6A4 promoter polymorphism, we observed population allele frequencies (short 

=0.43, long = 0.57) that were close to those found in other European American 

populations (51;52).  Our own observations also closely match those reported in a recent 

study of 847 Caucasians in New Zealand, which revealed an allele frequency for the long 

allele of 0.57 (53).  Likewise, the intron 2 VNTR allele frequencies (9 = 0.005, 10 = 

0.390, 12 = 0.605) that we observed matched those seen in European Americans (54), 

although we did observe an under-representation of the rarer 9 allele when compared to 

Gelernter, et al (52).  We observed association between our second phenotype, specific 
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responders versus all other subjects, at two genes, HTR2A and TPH2.  With this 

comparison, our data supported an increased risk of specific response of carriers of the 

less frequent TPH2 allele, but decreased risk of carriers of the minor HTR2A allele.  

Finally, we observed negative associations between SNPs coming from HTR2A and 

MAOA and our third phenotype, specific responders versus non-specific responders.  We 

are intrigued by the finding that in almost all cases in which we had significant 

association between a response phenotype and a SNP, it was carrier status of the minor 

allele that appeared to be associated with non-response or the non-specific pattern of 

response.  Does this suggest that the default genetic and biological substrate for 

fluoxetine treatment leads to specific response, while the presence of less common alleles 

somehow degrades response or changes the specificity of the response?  Given the 

limitations of this study, this speculation is premature, but nevertheless a potentially 

exciting observation. 

 We have attempted to analyze multiple genetic components of the serotonin 

pathway for their role in antidepressant response.  The use of both single locus and 

haplotypic association is not novel, but it is still uncommon to see a coordinated 

investigation of multiple genes.  It will be important to extend our findings by employing 

a joint analysis of the pathway, but such methods are currently in development or are 

untested. 

Thus far, the vast majority of studies on serotonin pathway gene variants in 

antidepressant response have focused on single SNP associations.  The use of haplotypes, 

or particular combinations of alleles observed in a population, has been shown both 

theoretically and empirically to be a powerful approach for the dissection of complex 
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genetic traits (55-58).  We found haplotypes associated with our response phenotypes for 

several of the genes we investigated.  Further, using a haplotype SNP tagging approach, 

we were able to reduce the number of SNPs required to represent the majority of 

haplotypes, and generally noted even greater association between these htSNP haplotypes 

and phenotype.  It has become commonplace to note that limited haplotypic diversity 

exists in many regions of the genome, and the seven genes we investigated proved to be 

no exception.  The use of multiple SNPs also allows for estimation of linkage 

disequilibrium (LD) within a given gene, which provides useful information for 

association mapping, particularly for the selection of markers.  We were not surprised to 

find extensive LD across the genes under examination here. 

Accurate assessment of clinical response is essential in pharmacogenetic studies, 

as there is a need to limit the amount of phenotypic heterogeneity.  This is particularly 

true with antidepressant therapy, as placebo response rates can be as high as 60% for 

patients with Major Depressive Disorder (29;59).  Previous studies with serotonin 

pathway gene variants and SSRI antidepressant response have failed to address these 

concerns.  It is reasonable to hypothesize that genetic factors may influence placebo 

response to antidepressants, given recent evidence showing that subjects homozygous for 

the long allele of the 5-HTTLPR were more likely to respond to placebo in a fluoxetine 

trial in 51 depressed subjects (60).  In this study, we utilized a validated response pattern 

algorithm to classify patients as non-responders, specific responders, or placebo (non-

specific) responders to fluoxetine (24;25;27).  We were thus able to obtain a more precise 

assessment of clinical response phenotype, and potentially identify phenocopies.  The use 

of pattern analysis to define response type reduced the amount of phenotypic 
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heterogeneity in our comparison groups and was integral in uncovering some of our 

findings.  Indeed, had we only investigated the most obvious phenotypic comparison, 

responders versus non-responders, we would have found negligible association between 

response and genotype.  What is interesting in the current work is that we detected a 

number of differences between treatment populations using more precise phenotypic 

stratification, namely by trying to separate specific responders from non-specific 

responders.  A number of our findings suggest that specific responders differ genetically 

from all others (i.e., from non-responders and non-specific responders) (HTR2A, 

SLC6A4, and TPH2).  Similar findings indicate that even among responders, specific 

responders may differ at several candidate loci from non-specific responders (HTR2A and 

MAOA).  This suggests that there may be heritable differences underlying the nature of 

response to fluoxetine.  This is interesting in the context of imaging data that shows 

differential brain glucose metabolism in persons with depression administered placebo or 

fluoxetine (61).  Specifically, hospitalized males receiving placebo or fluoxetine for 

unipolar depression underwent positron emission tomography before and after six weeks 

of treatment.  The authors found that placebo response was associated with specific 

regional changes in brain function.  Remarkably, these regions showed overlap with 

changes seen in fluoxetine responders, but were not identical.  Similar differences were 

seen using quantitative electroencephalography, suggesting different biological responses 

underlying specific response, non-specific response, or non-response to antidepressant 

medication (62).  Although our methodology for assessing the placebo phenotype differs 

from that of Rausch et al. (60), it is interesting to note that our most positive findings for 

the serotonin transporter are seen when we attempted to dissect out placebo-responsive 
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subjects in the work described here.  Given the high placebo response rate for many 

antidepressants, it may prove necessary to control for non-specific responses in 

pharmacogenetic studies on antidepressant response. 

An important issue that has been overlooked in many case-control association 

studies of antidepressant response (or association studies in general) is population 

stratification, or differences in allele frequencies between populations that may lead to 

spurious associations.  One method that has been used to deal with population 

stratification is the use of ethnically matched cases and controls.  However, a significant 

amount of “cryptic stratification” may still exist even after cases and control are carefully 

matched (63).  We employed the method of genomic control (GC) to correct for any 

underlying stratification within our population.  This method uses allele frequency data 

for a number of unlinked loci to quantitatively assess the degree of stratification present 

within the study population (45;64).  This produces a correction factor which is used to 

adjust the critical level of significance required for a positive association at the candidate 

SNPs, thereby reducing the rate of false positives (45).  In general, we found little 

evidence for population stratification in our sample, suggesting that the genetic 

differences detected between our phenotypic groups are unlikely to be due to ethnic 

stratification.  Although our genomic control markers suggest minimal stratification, it is 

also possible that the sample size or number of markers may not be large enough to allow 

a more accurate estimation of stratification. 

Genotyping of five primate samples gave insight into the evolutionary history of 

these polymorphic sites.  Ancestral allele was inferred if the human SNP site was 

monomorphic across all non-human primate samples screened.  A high fraction (37/83) 
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of SNPs had discrepancy between the most common allele seen in humans and the most 

common allele from non-human primates.  The correlation between human common 

allele state and ancestral allele state was similar to previous findings, indicating caution is 

in order when assigning ancestral allele state based exclusively on major human allele 

frequency (Figure 2.4) (65).  Ancestral allele state was not predictive of association to 

fluoxetine response. 

While this study produced several encouraging results, it was also subject to some 

limitations.  The most obvious drawback of this study is the small sample size.  This 

contributes to wide confidence intervals and diminished power to detect associations 

between genotype and phenotype.  For example, to detect a difference in allele 

frequencies of 0.2 between responders and non-responders with α = 0.05 and 1-β = 0.8 

would require almost a tripling of the total sample size (66).  This is a critical limitation, 

as it suggests a much higher likelihood that our observations may contain more false 

negative results than if we had a much larger sample size.  We also believe that the highly 

characterized phenotypes used in this study helps to compensate for this limitation.  Also, 

multiple statistical comparisons were made with the data generated from this study.  

However, at this point, it is unclear how to correct for multiple testing with data of this 

type, since the comparisons made were not independent.  High levels of linkage 

disequilibrium and low haplotype diversity indicate that the individual loci are correlated 

and that using a standard Bonferroni correction would be overly conservative.  Further 

research into this statistical problem needs to be performed to fully understand how to 

interpret data from association studies investigating large number of SNPs and thus these 

results should be considered preliminary until replicated.  A further limitation may 
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involve our choice of D’ to estimate LD.  Although D’ can be upwardly biased with small 

sample sizes, it is robust to differences in allele frequencies and our sample of 96 may be 

adequate to capture a reasonable estimate of LD in the gene regions studied (67).  A final 

limitation might be our focus on a binary trait, antidepressant response, as our primary 

outcome variable.  Continuous outcome variables (such as quantitative changes in 

symptoms) can often provide more information than a binary trait.  However, the 

difficulty is in selecting which one to use.  Trying them all would compromise our type I 

error rate significantly.  We thus chose the most straightforward outcome variable for the 

present analyses. 

In summary, we have used a number of innovative molecular, phenotypic, and 

statistical approaches to investigate the role of DNA variants in candidate genes for 

fluoxetine response and found several interesting associations.  The TPH1 and SLC6A4 

genes seem to be nominally associated with response to fluoxetine.  The HTR2A, MAOA 

and TPH2 genes appear to be involved in determining the specificity of response to 

fluoxetine.  If confirmed in further studies, polymorphisms in these genes could be a 

useful tool for a genetically-informed psychopharmacology of depression. 
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CHAPTER 3 

SEQUENCING OF PHARMACODYNAMIC CANDIDATE GENES* 

 

3.1  Introduction 

In the previous chapter, I describe an indirect association study, in which I 

genotyped evenly spaced, largely non-coding, publicly available SNPs (N=93) in six 

serotonin genes in a well characterized sample (N=96) of depressed individuals taking 

fluoxetine (2).  Several variants were significantly (p<0.05) associated with fluoxetine 

response and response specificity, including variants in HTR2A, TPH1, TPH2, and 

MAOA.  Odds ratios for these single locus associations ranged from 2-5 (rare allele 

carrier relative to non-carrier).  Full-length haplotypes of SNPs in these genes were also 

associated with response and response specificity.  These initial results prompted the 

work described in this chapter, which has two main goals.  The first is to follow-up on the 

positive indirect association study by resequencing all exons, intron-exon boundaries, and 

5’ conserved non-coding sequence of six pharmacodynamic genes in the same depressed 

population taking fluoxetine.  We resequenced the HTR1A, HTR2A, HTR2C, TPH1, 

TPH2, and MAOA genes, but not the serotonin transporter (SLC6A4) which was similarly 

sequenced in previous work by another graduate student in our group (3).  By 

undertaking this, we hope to uncover any potentially functional variants in coding and 

regulatory regions that are in linkage disequilibrium (LD) with previously associated 

SNPs.  The second goal, which will be expanded on in the next chapter, is to use the 

combined variant data set (results from previous genotyping and current resequencing) to 

                                                 
* Components of this work have been published (1) and are reprinted with permission.  Other sections have 
been submitted for publication (Peters E.J., Slager S.L., McGrath P.J., Hamilton S.P. 2007 “Sequencing 
and tagging SNP selection in serotonin-related candidate genes and association to citalopram response.”) 
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define the LD structure of these six genes and select tagging SNPs for future studies.  The 

high density of the 188 variants in the combined data set allows us to define the variation 

in these six important serotonin candidate genes, which will be useful in larger studies 

investigating anti-depressant response and other serotonergic psychiatric phenotypes. 

While this project was ongoing, Zhang et al. reported on a naturally occurring, 

functional,  Arg441His (R441H) missense variant in the human tryptophan hydroxylase 2 

(TPH2) gene (4).  The frequency of the His441 allele was higher in the 87 depressed 

patients (0.06) than among 219 controls samples (0.009).  This association is 

strengthened by their in vitro work, which showed that this substitution reduced serotonin 

synthesis by approximately 80% in a heterologous expression assay in a rat cell line.  We, 

along with our collaborators, sequenced exon 11 and genotyped a number of samples 

(N=2,519) of subjects with and without depression and did not detect a single His441 

allele, as detailed in our letter to the journal Neuron and expanded on in this chapter (1).   

 

3.2  Methods 

3.2.1  Study populations.  The study population consisted of 95 research subjects 

enrolled in an NIMH-funded protocol (Patrick J. McGrath, Columbia University, 

principal investigator) to assess relapse following fluoxetine discontinuation in depressed 

subjects who had responded to fluoxetine.  The sample used in this current study is a 

subset of a larger population (N=96) that has been extensively described in the previous 

chapter as part of our study using publicly available markers (2).  In searching for the 

R441H TPH2 variant described by Zhang et al., we also utilized the Coriell Human 

Variation Collection panel of 100 unrelated Caucasians and panel of 100 unrelated 
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African Americans, as well as the STAR*D sample set which is described in detail in the 

next chapter.  Several genomic DNA (gDNA) samples were kindly provided by Marc 

Caron’s group (Duke University) to assist in assay development; these included two 

Arg441 (GG) homozygote samples, a heterozygote (AG) sample, and a His441 (AA) 

homozygote sample.  Additionally, they graciously provided samples of the DNA clone 

used in their lab for genotyping assay development (Figure 3.1).     

3.2.2  Pharmacodynamic gene variant discovery.  Patient genomic DNA was extracted 

from whole blood using a Puregene genomic DNA purification kit (Gentra Systems, 

Minneapolis, MN, USA).  DNA was quantified using an ND-1000 spectrophotometer 

(NanoDrop Technologies, Rockland, DE, USA).  PCR primers were designed to amplify 

all exons and ~20 bp of flanking intronic sequence of the six genes.  We also sequenced 

5’ proximal conserved non-coding sequence (CNS) identified using mammalian global 

sequence alignments.  For this study, we used the VISTA genome browser and searched 

5 kb of DNA 5’ proximal of the transcriptional start site and defined CNS as sequence 

that had at least 70% identity in both human-mouse and human-rat comparisons 

(minimum window size = 100 bp) (5).  Primers were designed using Primer3 software 

and were manufactured by Invitrogen (Carlsbad, CA, USA) (6).  Primer sequences and 

amplicon information are shown in Table 3.1.  PCR reactions of 5 microliters (µl) 

containing 200 nM of the forward and reverse primers, 20 ng genomic DNA template, 50 

µM dNTPs (Roche, Indianapolis, IN, USA), 1M anhydrous betaine (Acros Organics, 

Geel, Belgium), 50 mM KCl, 20 mM Tris-HCl (pH 8.4), 2.5 mM MgCl2, and 0.25 U 

Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA).  Samples were cycled 

using a touchdown protocol at 94°C for 3 min, followed by seven cycles of 94°C for 30 s,  
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h441H clone
T7T3 FP-2 FP-1

Variant His (A-allele) insert

h441R clone

Wildtype Arg (G-allele) insert

T3 T7FP-2FP-1

h441H clone
T7T3 FP-2 FP-1

Variant His (A-allele) insert

h441R clone

Wildtype Arg (G-allele) insert

T3 T7FP-2FP-1

h441R clone

Wildtype Arg (G-allele) insert

T3 T7FP-2FP-1

 

Figure 3.1.  hTPH2 clone schematic. These clones were used for genotyping assay 

development by the Caron group, whom kindly provided them to our group.  These 

vectors each have a 492bp insert, however, the variant His (A) insert has the opposite 

orientation compared to the wildtype Arg (G) insert.  Also shown are the two FP probes 

(FP-1 and FP-2) we used to determine insert orientation.     
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Amplicon name BAC Chr.  Length Start Stop Forward / Reverse primer seq
HTR1A Pro Amp 1 AC122707 5 455 63293984 63294439 CGGAGGTACCGTTTTGTTGT

TCCCTCTAGCTCAGCGTCTT
HTR1A Pro Amp 2 AC122707 5 849 63293256 63294105 GGTGGTGATGTGGTGTTGTT

TGGAGGCGGAGTTTATTTGT
HTR1A Amp 1 AC122707 5 649 63291642 63292291 GGCGGCTGTGTGTACAGTTT

GCCCGAGAGAGGAAGACAGT
HTR1A Amp 2 AC122707 5 685 63292199 63292884 CAGAACAAGAGCCACGATGA

ACCCCATCGACTACGTGAAC
HTR1A Amp 3 AC122707 5 696 63292722 63293418 CCATGATCCTTGCTAATGGTG

CATTCCCTTCCTCCGAAACT
HTR2A Pro Amp 1 AL160397 13 661 46368351 46369012 CGCTCGGGAAGATAAATGTC

GCCAACAGGATCCTAGCAGT
HTR2A Pro Amp 2 AL160397 13 812 46368036 46368848 GGGTGGCATATTTCTGCTG

TTCTGTGACTCGCTGCATCT
HTR2A Pro Amp 3 AL160397 13 829 46369887 46370716 GGCAAGCAGGGTACAGGTAG

CCCTGGACAAATTCAACCAC
HTR2A Amp 1 AL160397 13 693 46367533 46368226 GCCACCACAGTTCAGTTCTTT

TAGTTTGTTTGCCCCCTGAG
HTR2A Amp 2 AL160397 13 561 46364361 46364922 GCATTCATCAGCCAGTGCTA

TCTTTCCTGAAGCGAATCTGA
HTR2A Amp 3 AL136958 13 683 46307367 46308050 ATAATCAGAAAAATGTGGCATAAAA

ATGAAGAAAGGGCACCACAT
HTR2A Amp 4 AL136958 13 676 46306774 46307450 GTCCATCAGCAATGAGCAAA

TGCTGTCAGAACATTTTCCAAG
HTR2A Amp 5 AL136958 13 699 46306243 46306942 CACACTGAGCAAGTTTTCACCT

AAGACCACACTGGAAATTCAGA
HTR2A Amp 7 AL136958 13 598 46305183 46305781 TTTGGGAGGCTGAGATGG

TGAAATGAGTGAGTTTTTGGAGA
HTR2C Pro Amp 1 AC007022 X 840 113722477 113723317 CTCCGGCTCAGTCTTACAGG

GAATCCTCTGATTCCCTCCA
HTR2C Pro Amp 2 AC007022 X 451 113724506 113724957 TTTGGGGAGGGGTATGCTAT

TCATATGCAATCGGCAGGTA
HTR2C Amp 2 AC007022 X 493 113754293 113754786 CCCAGCCTCTATTCACGATG

TCAGGTTGCATTAAAATGCTGT
HTR2C Amp 3 AC004822 X 449 113867246 113867695 TGAAGCCATGTCTACTCCAAGA

GAGCAAGCTACCAAGCAAAGTTA
HTR2C Amp 4 AC004822 X 664 113871881 113872545 GTTGTTTTGCATGAGCAACG

GCAACTAACTGTTCATTCATTGTTT
HTR2C Amp 5 AL590097 X 392 113988669 113989061 CACCATCATCATCCCTATAGAAAA

TAGCCGCTGCAATTCTTATG
HTR2C Amp 6 AL355812 X 823 114047268 114048091 TCGATTATGCCGTGAATAGC

TAAGCTCCCTCCCAGACAAA
HTR2C Amp 7 AL355812 X 672 114048032 114048704 GCCTCCTGTCAGGCAGATT

GAGCAGAGCAAGAATGTAAAGTG
HTR2C Amp 8 AL355812 X 665 114048641 114049306 CAAATTCAGTGGACATTTGTTCTG

GGGCCCAATTCTGTAGTCCT
HTR2C Amp 9 AL355812 X 843 114049128 114049971 TGTGCTTCACACAAAGTGAAAT

TGGCAGTGTTGCAAATCAA  

Table 3.1.  Sequencing amplicon information. 
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Amplicon name BAC Chr.  Length Start Stop Forward / Reverse primer seq
HTR2C Amp 10 AL355812 X 659 114049899 114050558 ACAAGGGCAGTGGAAGAGC

TTGTTTCATACCAAACTGCACA
HTR2C Amp 11 AL355812 X 691 114050440 114051131 CAGCACATTTGTTAATGATTCTTG

TCATGAGGAATTGGTGATGCT
MAOA Pro Amp 3 AL109855 X 698 43399643 43400341 GGTCTTAGCGAGAGTACTGACTCC

GGGAGCTGGGCACTGAGA
MAOA Amp 1 AL109855 X 500 43400159 43400659 CCACCTCAGTGCCTGACA

GGTTCCCCTACCCCTCACT
MAOA Amp 2 AL109855 X 200 43427664 43427864 GCATTTGAATGTTACGTTGCTC

TCCAGTGGTGCCACTTGTAG
MAOA Amp 3 AL020990 X 369 43437307 43437676 ATTGTGCCCCAGTTCTTGAG

TGTTTTCTCAAATAAAATGCTTCC
MAOA Amp 4 AL020990 X 269 43472299 43472568 AAACATGACATTCTCTGACTCCTG

CCTGGGAGAAAGCAAAATCA
MAOA Amp 5 AL020990 X 830 43475376 43476206 ATTTTCCTTCCTTGGGCTTT

GTGTGGCCAAGGATATGAGG
MAOA Amp 6 AL020990 X 212 43476825 43477037 ATGTGTGTATGGGTGTCTCTGAT

CCAATACATCAACACAATTTGGAA
MAOA Amp 7 AL020990 X 246 43480356 43480602 AAAGGGCAGCTCTTAAAATAAACA

GGTTGGTTTGTTGGAATTTTG
MAOA Amp 8 AL020990 X 247 43484814 43485061 CCCATCAGTTACTCCTTCCCTA

TTATCCTCCAAGTTAAGCATATCG
MAOA Amp 9 AL020990 X 228 43486083 43486311 ACTCGCAGCATTTCAGCTTT

TGCATTGAACTCTGCTTTTCC
MAOA Amp 10 AL020990 X 490 43487939 43488429 CCCACCTTCCCAAGTAACTC

GGAGATGTGAGTTTTATGTTCCA
MAOA Amp 11 AL020990 X 595 43488501 43489096 TTTGTTCCTCCTTGTCAGCA

CCTACTCCACCTCCACAGACA
TPH1 Pro Amp 1 AC055860 11 793 18024031 18024824 GTTGCTCTGCCTCAAGGAAT

GACTTGGGTTGGACTCTGGA
TPH1 Pro Amp 2 AC055860 11 800 18023634 18024434 CGCCCGCTTCTATAAGAGAC

TTTCCTGGGTTAGCAAGTTCA
TPH1 Pro Amp 3 AC055860 11 538 18023011 18023549 ATATGTTATCACTGAGGTCCATTTGT

CCAACTGGTACCCTTTTCTCA
TPH1 Amp 2 AC055860 11 509 18013970 18014479 GTTTCTGGAGGATGGGATGA

GCAATTTGGAGAGCTTGTGTT
TPH1 Amp 3 AC055860 11 478 18011614 18012092 AGCTAAAATTAAAACTCTCATCCAA

GAGACCAAGGCAGGTGGA
TPH1 Amp 4 AC055860 11 526 18007242 18007768 TTCCCAAATATCATTTGTCAAGTA

AACAGAGTTCAGCAACTCCCTTA
TPH1 Amp 5 AC055860 11 299 18004542 18004841 ACGTGTTACTTGGTGCCACT

AACCCATAAGGTAGATGCCATT
TPH1 Amp 6 AC055860 11 390 18003578 18003968 TTTGATTAGTGTCCTTTGTGATCC

ACTGCAACCTCCAAGCAAAG
TPH1 Amp 7 AC055860 11 296 18001898 18002194 GGGTATTTTGGGTCAGTGACTA

GACATCCCCAAGTATGTTCCAT
TPH1 Amp 8 AC055860 11 316 18000814 18001130 TGAGCCAATTATGGAAGTTGC

TCCTTGTGGGCTTCAAATTA  

Table 3.1 (con’t).  Sequencing amplicon information. 
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Amplicon name BAC Chr.  Length Start Stop Forward / Reverse primer seq
TPH1 Amp 9 AC055860 11 398 17999453 17999851 GGGACCTCTGCAAATGTAGTGTA

CAAGAGATGGCCCAGACCT
TPH1 Amp 10 AC055860 11 669 18025553 18026222 TGGGTAGCATGGACATTTGA

AGGGGTGGCTCTAAGACGTT
TPH1 Amp 11 AC055860 11 680 18024938 18025618 CACTTTTGCTTGATTATTGATGGT

TTGTGAACAACAGGACATAGAGG
TPH2 Pro Amp 1 AC090109 12 662 70616773 70617435 CTTGGCACGTTTGTTGAAAA

TGTAAGGGTCAGCTCTAATCAGC
TPH2 Pro Amp 2 AC090109 12 576 70617608 70618184 TCAAACAAGCACATTTGGTCA

TTGTGCATGCAAATGTGTGA
TPH2 Pro Amp 3 AC090109 12 691 70618300 70618991 TGTTCGGGAGCACAATAATTT

GCGGAGATTGAGAGGAAGG
TPH2 Amp 1 AC090109 12 577 70618626 70619203 GGCAGGCTTGAGAGATGAGA

GGTGAGGAGAAGATGGTCACA
TPH2 Amp 2 AC090109 12 279 70621573 70621852 GGAGGATTCTGGAACCCTAACTA

CATAGCAGATAACAGGTTTGTACCC
TPH2 Amp 3 AC090109 12 582 70624239 70624821 GTGTGGGTACTTGGCACCTT

AGCATTGCAGCACAGAACAT
TPH2 Amp 4 AC090109 12 494 70629416 70629910 TTAGCCTGAATTGCCACACA

TGTGGCTCACAGGTCTCATT
TPH2 Amp 5 AC090109 12 441 70652414 70652855 TGCACAACATTAGAAGGTTAGCAT

CTGCAACCTGTGTCCTTGG
TPH2 Amp 6 AC090109 12 296 70658921 70659217 AAATAGTAGAAGCTCCTGCTTGG

AACAGGGCCTAAGTCATTTTCA
TPH2 Amp 7 AC090109 12 381 70674353 70674734 TCCCAGCATTGATGAACTGTA

GGTAAATTCACCATGTTTTCTCC
TPH2 Amp 8 AC090109 12 467 70702260 70702727 CATTCAACCTAGGGAGAGAATACTG

AAAGGCATGACCCATTTTCA
TPH2 Amp 9 AC090109 12 780 70711239 70712019 TGTGATGTCATGGAGCTTCG

AGATGCAGTTTGGTTAAGGACA
TPH2 Amp 10 AC090109 12 692 70711917 70712609 TCCAATGGCAGATAACCACTC

CTGCTTCAGGCAAATCACAA  

 
Table 3.1 (con’t).  Sequencing amplicon information.  Amplicons with “Pro” listed after 

the gene name amplify putative promoter region DNA, all other amplicons target exonic 

sequence.  The BAC that the amplicon maps to is shown, as well as the length in 

basepairs.  Chromosomal start and stop coordinates of the amplicons are listed relative to 

the March 2006 assembly (hg18) of the human genome.   
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65–59°C for 30 s (decreased by 1°C intervals per cycle), and 72°C for 30 s, followed by 

38 cycles of 90°C for 30 s, 58°C for 30 s, and 72°C for 30 s, with a final 10 min at 72°C.  

The reactions were performed on an Applied Biosystems GeneAmp PCR System 9700 

(Foster City, CA, USA) using 384-well plates (MJ Research, Waltham, MA, USA).  PCR 

products were run on a 1% agarose gel to confirm the specificity of the reaction and that 

product was of expected size.  Unsuccessful reactions were redesigned with different 

primers.  PCR products were prepared for sequencing by incubating product with 

exonuclease I (0.5 U/sample) and shrimp alkaline phosphatase (2.5 U/sample) at 37°C for 

90 min and inactivating the enzymes at 95°C for 15 min.  DNA sequencing of PCR 

product as template was performed using BigDye cycle sequencing on an ABI 3730 

DNA analyzer.  All amplicons in all samples (N=95) were sequenced in at least one 

direction, with the optimal strand choice based on sequencing both strands of a subset of 

these samples (N=6).  Sequencing traces were analyzed for polymorphisms using 

Mutation Surveyor v2.4.1 (Soft Genetics, State College, PA) and confirmed by visual 

inspection.  Variants identified on only one or two chromosomes in our population were 

confirmed by sequencing the opposite strand.  Hardy–Weinberg equilibrium for each 

SNP was calculated using the Arlequin 2.0 software suite (7). 

3.2.3  TPH2 Arg441His variant genotyping.  In addition to the 95 depressed subjects 

taking fluoxetine, we sequenced 200 Coriell Human Diversity samples for TPH2 exon 

11, using the same methods described above.  Furthermore, we used several different 

methods to genotype the control DNA sent from the Caron group, including allele 

specific PCR (AS-PCR), Taqman and FP-TDI.  FP-TDI was performed as described in 

Chapter 2, and Taqman was performed as described in Chapter 4.  AS-PCR was 
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performed as described in Zhang et al. (4).  Primer sequences and locations can be found 

in Figure 3.2.  The RNAse P quantitative PCR assay was run in duplicate using 1 ul or 2 

ul of control gDNA from the Caron group, on an ABI 7900 according to manufacturers’ 

protocol.    

3.2.4  Characterization of variable amino acids.  In order to investigate whether any of 

the cSNPs that we uncovered may affect protein function, we tested the level of 

conservation for each variable amino acid position using the SIFT (Sorting Intolerant 

From Tolerant) program (8).  This program uses protein sequence as input, and then 

performs an iterative psi-blast of the SWISSPROT/TrEMBL database in order to create 

an alignment of all available orthologous and paralogous protein sequences above a user 

defined cutoff for median conservation.  We used a median conservation of 3.9 and 

dropped sequences with >95% identity in this analysis. The score for whether a particular 

amino acid change is predicted to be tolerated is based on the site specific conservation; a 

low score (e.g., <0.05) indicates that this position is highly conserved in the alignment, a 

higher score indicates that this position is variable.    

3.2.5  Population genetic parameter estimation.  We calculated two estimators of the 

population mutation parameter theta (θ), based on the number of segregating sites (θs), 

and the mean number of pairwise differences (π).  θs was estimated as (S/a1)/B, where S 

is the number of segregating sites, B is the number of nucleotides sequenced, and a1 = 

n - 1

i = 1

1 
i∑ , where n is the number of chromosomes investigated (a1 = 5.827 for autosomal  
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Figure 3.2.  Primer location and sequences for the TPH2 Arg441His (G1463A) variant.  

Taqman primers and probes, which are not shown on the schematic, flank the SNP by a 

total of ~40 bp on each side.     

 

 

 

Primer Name Sequence
hOuterF ATGTGTGAAAGCCTTTGACCCAAAGACA
hOuterR TGCGTTATATGACATTGACTGAACTGCT
AS-G-allele TAGGGATTGAAGTATACTGAGAAGGCAC
AS-A-allele TAGGGATTGAAGTATACTGAGAAGGCAT
5.9-F TGTGATGTCATGGAGCTTCG
5.9-R AGATGCAGTTTGGTTAAGGACA
FP-1 GGGATTGAAGTATACTGAGAAGGGA
FP-2 TTGCAAAGTCAATTACCC
Taqman-F CTGTTTATTCTGCAGGGACTTTGC
Taqman-R TCTGTGTGTAGGGATTGAAGTATACTGA
Taqman AlleleG (VIC) TCAATTACCCGTCCCTTC
Taqman AlleleA (FAM) CAATTACCCATCCCTTC
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genes and 5.550 for X-linked genes in this study) (9). π was estimated as 

(
S

j j
j = 1

 2p (1- p )∑ )/((1-(1/n)) divided by the number of nucleotides sequenced, where pj is 

the observed frequency of the jth SNP (10).  We calculated θs and π for the coding 

regions of all genes, and calculated aggregate values for each functional gene region 

using the autosomal gene data.  We tested for selective effects using Tajima’s D statistic, 

which quantifies the deviation from the neutral expectation of θs = π (11).  Significance of 

Tajima’s D statistic was tested empirically by generating random samples (N=10,000) 

under the hypothesis of selective neutrality and population equilibrium using a coalescent 

simulation algorithm, as implemented in the software suite Arlequin (7). 

3.2.6  Single locus association analysis.  Single locus associations were tested via 

logistic regression using a custom script for the statistical package R v1.6.1 (12).  For 

each SNP, three phenotypic comparisons were made based on the results from the 

response pattern analysis described in the sample description.  The comparisons made 

were: (1) all responders (specific and nonspecific) vs nonresponders, (2) specific 

responders vs both nonspecific responders and nonresponders, and (3) specific 

responders vs nonspecific responders.  Genotypes were coded as 0, 1, or 2 corresponding 

to the presence of 0, 1, or 2 copies of the rare allele, and unconditional logistic regression 

was used to assess the association between genotype and response phenotype.  For each 

SNP with significant genotypic association (p<0.05), odds ratio estimates and 95% 

confidence intervals were computed, comparing carriers of the rare allele to non-carriers.  

3.2.7  Haplotype association analysis.  Haplotype analysis was performed using all 

common SNPs (>10% minor allele frequency, N=97) identified in this population, 

including 63 SNPs genotyped in the study described in the previous chapter.  Haplotypes 
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were inferred using a PL-EM algorithm, as implemented in the program TagSNPs (13).  

In order to limit haplotype diversity for haplotype association testing, regions of low 

haplotype diversity (“haplotype blocks”) were chosen using the program 

HAPLOBLOCKFINDER (14).  We defined haplotype blocks as regions in which at least 

80% of chromosomes assayed were represented by 3 or less common haplotypes.  

Common haplotypes (>0.01 population frequency) within blocks were tested for 

association with antidepressant response using COCAPHASE v2.43 (15).  This program 

uses an EM algorithm to obtain maximum likelihood estimates of haplotype frequencies 

and uses standard unconditional logistic regression to calculate likelihood ratio tests 

under a log-linear model of the probability that a haplotype belongs to the case rather 

than the control group.  

 

3.3  Results 

3.3.1  DNA sequencing.  In order to expand on the results of an earlier indirect 

association study using evenly spaced publicly available SNP makers, we sequenced the 

coding region, intron-exon boundaries, and 5’ flanking conserved non-coding sequence 

(CNS) of six serotonin pathway genes (HTR1A, HTR2A, HTR2C, TPH1, TPH2, and 

MAOA) in a subset (N=95) of the clinical population used in our previous study.  This 

sample set consisted of subjects of primarily Caucasian descent, as identified by self-

report. With this sample set, we had 85.2% power to detect autosomal (HTR1A, HTR2A, 

TPH1, and TPH2) gene variants at 1% MAF and 76.7% power to detect X-linked (MAOA 

and HTR2C) gene variants at 1% MAF.  We had >99.9% power to detect variants with 

5% MAF in all genes investigated.  We sequenced approximately 32 kb of DNA per 
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subject (3 Mb overall) and identified 115 variants (Table 3.2).  Most of the variants 

identified were rare, in fact 52 of the variants were seen on only one of 190 chromosomes 

screened (N=144 chromosomes for X-linked MAOA and HTR2C).  Two single and one 

two basepair insertion-deletion (indel) polymorphisms were observed; the rest of the 

variants were SNPs.  All three indels were only seen on a single chromosome and had no 

entry in dbSNP build 124.  We identified 60 polymorphisms that were novel and not in 

public databases, none of these were common in our population.   

 Of the 115 variants that we uncovered in these six genes, 11 of them were non-

synonymous (Table 3.3).  We identified four novel cSNPs, however, all of them were 

seen on only a single chromosome in our population and thus are not likely to be 

common in future studies of these genes in Caucasian individuals.  We analyzed the 

amino acid conservation of the variants with the SIFT algorithm.  Four SNPs had SIFT 

scores <0.05, and thus altered an evolutionarily conserved amino acid.  While three of the 

four SNPs predicted to be intolerable changes were seen on a single chromosome in our 

population, a notable exception was the His452Tyr substitution in the HTR2A receptor 

which had a SIFT score of 0.02 and had a MAF of 11% in our population.           

We estimated the population genetic parameters θs and π for each of the genes 

investigated (Table 3.4).  Since our sequencing data is unbiased in terms of SNP 

selection, the comparison of these two estimates of nucleotide diversity can be used to 

calculate Tajima’s D statistic.  Tajima’s D statistic can indicate whether these genes are 

under strong negative selective pressure (high frequency of rare variants), or under strong 

positive selection pressure (high frequency of common variants).  Given that the entire 

fluoxetine sample set has major depression, indicators of strong selection in serotonergic  
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Gene Amplicon MAF Position Region
AA 

Change FP? dbSNP ID Singleton? Indel? Context Sequence
HTR1A Pro 1 0.474 -1019 CNS - FP rs6295 - - GTAGCTTTTTAAAAA(G/C)GAAGACACACTCGGT
HTR1A Pro 2 0.005 -117 CNS - - - Singleton - CCTGCTTGGGTCTCT(G/T)CATTCCCTTCCTCCG
HTR1A 3 0.005 81 NS Ile->Val - rs1799921 Singleton - GGCAACACTACTGGT(A/G)TCTCCGACGTGACCG
HTR1A 3 0.005 194 S Arg-> - - Singleton - CATCGCCTTGGAGCG(C/T)TCCCTGCAGAACGTG
HTR1A 3 0.021 293 S Val-> FP rs6294 - - CGCGCTGTATCAGGT(G/A)CTCAACAAGTGGACA
HTR1A 3 0.005 506 S Ile-> - - Singleton - CTTCCTCATCTCTAT(C/T)CCGCCCATGCTGGGC
HTR1A 2 0.026 551 S Pro-> - rs1800043 - - AGACCGCTCGGACCC(C/T)GACGCATGCACCATT
HTR1A 2 0.005 658 NS Arg->Leu FP rs1800044 Singleton - ATGGGCGCATATTCC(G/T)AGCTGCGCGCTTCCG
HTR1A 1 0.005 1444 3' - - - Singleton - TCCACGGCAGGGCCC(T/G)TTGTGCAAAGGAGAC
HTR1A 1 0.495 1528 3' - - rs6449693 - - CATTGGCTCAGACTT(C/T)GCCTGTATCATCAGT
HTR1A 1 0.495 1555 3' - FP rs878567 - - CAGTTTTGATCCCAG(T/C)AATTGCCTCTTCTCT
HTR2A Pro 3 0.011 -2609 CNS - - - - - CACTCCCATGCCTAC(A/T)CTCCTGCAGTCCCTT
HTR2A Pro 3 0.005 -2563 CNS - - - Singleton - TCATTCCTATTGATA(T/G)TCTTACTGATATTAA
HTR2A Pro 3 0.005 -2500 CNS - - - Singleton - ATGTGTGTAAGTATT(T/C)GGCCCATGTCTGGCT
HTR2A Pro 3 0.111 -2263 CNS - - rs731244 - - GCCCCCCTCACTGCC(A/C)TGCCTGCCACCCTCC
HTR2A Pro 3 0.437 -2225 CNS - - rs731245 - - GAGATCTAGCCACCT(A/G)TTTCCTGGGTGGGTG
HTR2A Pro 3 0.005 -2135 CNS - - - Singleton - TGCCAGATCCCACTT(C/T)GTCTCCGGTGCTACC
HTR2A Pro 2 0.447 -1437 CNS - FP rs6311 - - AGTGCTGTGAGTGTC(C/T)GGCACTTCCATCCAA
HTR2A Pro 2 0.063 -1420 CNS - - rs6306 - - AAACAGTATGTCCTC(G/A)GAGTGCTGTGAGTGT
HTR2A Pro 2 0.026 -1272 CNS - - rs6315 - - GCTACATATTAATAT(T/C)GGGAAGTTTTCCTTT
HTR2A Pro 2 0.005 -1182 CNS - - rs6316 Singleton - TCAGACCTCCCTCTA(T/C)GTGTATGTCATAAGC
HTR2A Pro 2 0.005 -1007 CNS - - - Singleton Indel GGTTCCTCCCTCCCT(/het_insC)GTGCGGCTCGCCTCA
HTR2A Pro 1 0.005 -883 CNS - - - Singleton - TTCCACCAGCATAAT(A/G)TGATAGTAATTTGGT
HTR2A Pro 1 0.079 -783 CNS - FP rs6312 - - ATTTGTCTTCAGGGT(C/T)CACACATGAGATACA
HTR2A Pro 1 0.005 -559 CNS - - rs6309 Singleton - TCTCAGCCATTCTTA(A/G)GCTGAATTGCCACAG
HTR2A 1 0.011 73 NS Thr->Asn - rs1805055 - - TTACTGTAGAGCCTG(G/T)TGTCATCATTTAATT
HTR2A 1 0.005 92 S Asp-> - - Singleton - TTCTCCGGAGTTAAA(G/A)TCATTACTGTAGAGC
HTR2A 1 0.447 101 S Ser-> FP rs6313 - - AGTGTTAGCTTCTCC(G/A)GAGTTAAAGTCATTA
HTR2A 1 0.005 217 NS Glu->Gly - - Singleton - GCAGACCAGTTTTTT(T/C)CCTGGAGATGAAGTA
HTR2A 2 0.300 3260 Intron - - rs2296973 - - CTCCTGGAGCACATG(T/G)ATCCCTATCCTATGA
HTR2A 2 0.016 3419 S Asp-> FP rs6305 - - GATGGCGACGTAGCG(G/A)TCCAGCGAGATGGCG
HTR2A 2 0.016 3492 NS Ile->Val FP rs6304 - - TGGTCCAAACAGCAA(T/C)GATTTTCAGAAATGC
HTR2A 2 0.005 3602 Intron - - - Singleton - GATTGAGGATGTCAG(G/A)TTTCAGTACAACAAA
HTR2A 4 0.005 60893 S Thr-> - - Singleton - GGCCAAAGCCGGTAT(T/A)GTGTTCACTAAAATT
HTR2A 4 0.105 61008 NS His->Tyr FP rs6314 - - AAGCCTCTTCAGAAT(G/A)CTGCTTTCCTAGAGC
HTR2A 4 0.005 61037 S Ser-> - - Singleton - TTCATTCACTCCGTC(G/A)CTATTGTCTTTAGAA
HTR2A 5 0.179 61191 3' UTR - FP rs3125 - - ATAAAATGAGGCATA(C/G)AGATATGATCGTTGG
HTR2A 5 0.200 61472 3' UTR - - rs3803189 - - AAAATTTTCACTATT(T/G)ATAGCTATTTTTATT
HTR2A 6 0.005 62101 3' UTR - - - Singleton - ATAAATAGTATAAAC(C/T)GATGGATCTGAAAGC
HTR2A 7 0.011 62550 3' - - - - - AGTTTAGTCATTTTC(T/C)TTTTTTCTTTCTTTT
HTR2A 7 0.005 62580 3' - - - Singleton - CTGTATATATTTTTT(G/T)ACTAAGACCATTTCA
HTR2A 7 0.116 62612 3' - - rs11148016 - - GGAAATAAGTTGAAA(T/G)GATTCTAAAAATAAG
HTR2C Pro 1 0.007 -144652 CNS - - - Singleton - TTCTGGCGGGACTCG(T/A)ATTTATTTTGTCAGA
HTR2C Pro 1 0.153 -144529 CNS - - rs3795182 - - ACAGTAATTTATAAA(T/C)ATGGAAGAGAAAACG
HTR2C 1 0.153 -142827 CNS - FP rs3813929 - - TCTTGGGCCAAAAGC(G/A)GGATGAGGGGAGGAG
HTR2C 1 0.389 -142765 5' UTR - FP rs518147 - - GAAGGAAGCGTCCTC(C/G)GCAAGCACCAGAGCG
HTR2C 1 0.007 -142619 5' UTR - - - Singleton - GCGACGACTCCGACG(A/T)CAACGATGTACAGAC
HTR2C 2 0.021 -113028 5' UTR - - - - - TTTTTGAAGGATGGC(G/A)TCAGTTGGCCTATGT
HTR2C 2 0.021 -112989 Intron - - - - - AAGAGTCTTGAGGCA(C/T)GCTTATGTGTATACT
HTR2C 2 0.007 -112853 Intron - - - Singleton - TTTACCAATTACATA(A/G)TATTCTTTTTCAAAC
HTR2C 3 0.007 -277 Intron - - - Singleton - TTATTTATCATCGCA(G/A)TTTTTAAAAATTTTC
HTR2C 3 0.007 -176 Intron - - - Singleton - TGCACTTAATGGTGA(T/A)AAGAAACAGTTATTA
HTR2C 3 0.229 63 Intron - FP rs2248440 - - GCAAAGTTATCTTTT(C/T)ACTAAAATAATAAGT
HTR2C 4 0.222 4388 NS Cys->Ser FP rs6318 - - CTCACAGAAATATCA(C/G)ATTGCCAAACCAATA
HTR2C 5 0.181 121190 Intron - - rs5946005 - - GAGAAGACAAGAACA(C/T)GTCATCCAAATTGTA
HTR2C 6 0.007 180119 NS Arg->Gln - - Singleton - ACCAGAACGCACGCC(G/A)AAGAAAGAAGAAGGA
HTR2C 7 0.007 181019 3' UTR - - - Singleton - ATGACAGTGGTTATA(T/G)TTCAACCACACCTAA
HTR2C 8 0.056 181359 3' UTR - - rs1801412 - - ACTTCTTAAGGACAG(T/G)GTTCAAATTCTGATT
HTR2C 8 0.007 181432 3' UTR - - - Singleton - TTAGTAAATTCCTAA(T/C)TCTATGATTAAACTG
HTR2C 8 0.014 181443 3' UTR - - - - - CTAATTCTATGATTA(A/C)ACTGGGAAATGAGAT
HTR2C 9 0.007 182160 3' UTR - - - Singleton - GAATTCATGATGCTA(G/A)TTCTTACGCTTGACA
HTR2C 10 0.007 182360 3' UTR - - - Singleton - CTCTATTTGATTTGC(A/G)ACACTGCCAAACATC
HTR2C 10 0.007 182365 3' UTR - - - Singleton - TTTGATTTGCAACAC(T/G)GCCAAACATCAGTCA
HTR2C 11 0.028 183284 3' - - rs5987830 - - ATTAAATGTTGGCTA(A/C)TATGTCACATGTCTT  

Table 3.2.  Pharmacodynamic gene variants uncovered during resequencing.  
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Gene Amplicon MAF Position Region
AA 

Change FP? dbSNP ID Singleton? Indel? Context Sequence
TPH1 10 0.337 -7228 CNS - FP rs6486405 - - GAGTATTTTATAGTT(T/G)TCATTGTAGAGATCT
TPH1 10 0.347 -7113 CNS - FP rs6486404 - - ATTGGCATACAGAAA(C/T)GCTATTGATTTTTGT
TPH1 10 0.011 -7067 CNS - - rs11024455 - - CCTGCAACATTAGTG(A/C)ATTATTTAATCAGTT
TPH1 10 0.005 -6951 CNS - - - Singleton Indel TCCAGTTTGGATGCC(C/het_del)TTTATTTCTTCTCTT
TPH1 10 0.011 -6873 CNS - - rs11024454 - - GGTGAAATTGGGCAT(C/A)CTTATCGTGTTCCAG
TPH1 10 0.005 -6867 CNS - - - Singleton - ATTGGGCATCCTTAT(C/T)GTGTTCCAGATCTAC
TPH1 11 0.005 -6616 CNS - - - Singleton - TGTACCTCATAGAAG(C/T)ATTATACAGATAAAA
TPH1 11 0.358 -6574 CNS - - rs4537731 - - AGAAAAGCTGTAAAG(A/G)TCCTGAGCTTTAAAG
TPH1 11 0.005 -6501 CNS - - - Singleton - ACAAATCACTAATAC(C/T)TGCATGAAACTCAAA
TPH1 11 0.011 -6398 CNS - - rs12273833 - - AAGGCAAAACTGTGG(A/G)GACAGAAATCAGATC
TPH1 12 0.332 -5855 CNS - FP rs7130929 - - CCAGAAGCACAGAGA(G/T)GTGTGGGAGGTGGGG
TPH1 12 0.011 -5776 CNS - - - - - GCAGGTCATTGTGTC(G/C)ATAATAGGCGTTATC
TPH1 Pro 2 0.005 -5277 CNS - - - Singleton Indel GGAGAAAAGACACTT(TT/het_del)TGAGTGCCTCCTGTG
TPH1 Pro 2 0.332 -4873 CNS - - rs6486403 - - GTCAGTTAAGAGTCC(G/A)TGTGAACTCAACCTT
TPH1 Pro 3 0.358 -4353 CNS - - rs7122118 - - TGTGCTTCCTAGATC(C/A)GGTAAATATAAATTA
TPH1 1 0.200 -174 CNS - - rs10488682 - - TTTTGGTCTCACTAG(A/T)TTCTTGCAAAGCTTA
TPH1 3 0.453 7531 Intron - - rs10832874 - - AGTCTTGCTCTGCTG(T/C)CCAGACTGGAGTGCA
TPH1 4 0.005 11318 Intron - - - Singleton - AGAATAAATTGTGTT(C/T)ATTTGGTAAGTAGAA
TPH1 4 0.011 11466 S Gln-> - - - - GGGAACCGTATTCCA(A/G)GAGCTCAACAAACTC
TPH1 5 0.016 14284 Intron - - - - - GCCGTAAGTACTTCT(A/G)TTTCAGCCAGGAATT
TPH1 6 0.453 15053 Intron - FP rs1799913 - - CAAACTTGTACCTCT(C/A)TTTCAGAGATACCTG
TPH1 8 0.005 17898 S Leu-> - - Singleton - CAAACAGGAATGTCT(T/C)ATCACAACTTTTCAA
TPH1 9 0.005 19795 Intron - - - Singleton - GTCATCCAGGAACAT(T/C)TGAGCATCAATTCGG
TPH1 9 0.005 19800 Intron - - - Singleton - CCAGGAACATTTGAG(C/T)ATCAATTCGGAGGTC
TPH2 Pro 1 0.021 -1971 CNS - - - - - GGTTCAGCTTTCCCA(T/G)GACTGCAAAGCCTTT
TPH2 Pro 1 0.084 -1913 CNS - - rs11178996 - - TAATTTTTTGTTGCC(A/G)TTGTTTTCCAACTTA
TPH2 Pro 1 0.005 -1782 CNS - - - Singleton - TTATAAATAAATTAC(T/G)TTTAATATCTTTTTT
TPH2 Pro 1 0.021 -1666 CNS - - - - - CATTAGCTACTATTA(T/C)TGTCATTAGTTCATT
TPH2 Pro 2 0.005 -1178 CNS - - - Singleton - TAACGCACAGATCTC(G/T)TATATTTAAGTAGCA
TPH2 Pro 2 0.005 -888 CNS - - - Singleton - GCCCTTTTATGAAAG(C/T)CATTACACATATATA
TPH2 Pro 3 0.084 -614 CNS - - rs11178997 - - TTTGATCATTACACA(T/A)TGTACGCTTGTGTCA
TPH2 1 0.011 -52 5' UTR - - rs11178998 - - TCCGCCAGCGCTGCT(A/G)CTGCCCCTCTAGTAC
TPH2 2 0.005 2613 NS Ser->Tyr - - Singleton - TAAATAAACCTAACT(C/A)TGGCAAAAATGACGA
TPH2 4 0.026 10520 Intron - - rs11179003 - - AATTGAACACTCAGA(C/T)ACCACAGTGATTTTC
TPH2 5 0.458 33419 Intron - - rs7963720 - - TGGGATCCTTTCAGA(C/T)GCTCATGTGCTCCAC
TPH2 6 0.432 40095 S Pro-> - rs7305115 - - TCCCCTCTACACCCC(A/G)GAACCGTGAGTACCT
TPH2 7 0.189 55607 Intron - - rs1007023 - - CAACTTAAAACCAGT(G/T)CTATTTATGTCCATT
TPH2 7 0.026 55657 Intron - - - - - CAGGATTATTGACTA(T/C)GAGTTATAGGTAAAT
TPH2 8 0.347 83468 S Ala-> - rs4290270 - - AGGGCAACTGCGGGC(A/T)TATGGAGCAGGACTC
TPH2 9 0.016 92483 Intron - - - - - CTTTTATCTATCCCT(C/T)GTACCAATGAGGGTT
TPH2 10 0.116 93187 3' UTR - - - - - CATCACAATAACAAA(G/A)GTTCAATATTCTATT
TPH2 10 0.005 93218 3' UTR - - - Singleton - TCAAAAATTGTTGAG(G/A)TAACACAGCAGTTGG
MAOA Pro 3 0.007 -579 CNS - - - Singleton - GGGACCTCCTATACC(C/T)AATGACCTTTCGCAA
MAOA Pro 3 0.007 -537 CNS - - - Singleton - AGCACCTCCTACACC(C/T)AGTAACACCCCCGAG
MAOA 4 0.007 53505 Intron - - - Singleton - ACAGGAGTCAGAGAA(T/A)GTCATGTTTTTACAA
MAOA 5 0.007 56904 Intron - - - Singleton - CAACCAAGGCTGGTA(A/G)TTTGGAAGACTGAGG
MAOA 6 0.306 57177 S Arg-> FP rs6323 - - AGCTCCCATTGGAAG(C/A)CGCTGAATTAACTGG
MAOA 10 0.035 69450 Intron - - - - - GAGGCTGTATAGTTT(C/T)TACAGATTCAAGGCC
MAOA 10 0.306 69532 S Asp-> - rs1801291 - - TTCTTGTACCCAGAT(A/G)TCTTTCTCGGTCACC
MAOA 10 0.007 69533 NS Ile->Val - - Singleton - GTTCTTGTACCCAGA(T/C)ATCTTTCTCGGTCAC
MAOA 11 0.007 69876 NS Lys->Arg - rs1800466 Singleton - GGCAGGAGCTTGTAT(T/C)TGTACAGCACAAACC  

Table 3.2 (con’t).  Pharmacodynamic gene variants discovered during resequencing.  

Displayed are all 115 variants discovered during resequencing, as well as the amplicon, 

minor allele frequency (MAF), and position from the translational start site.  Also shown 

are the region (CNS – conserved non-coding region, S – synonymous change, NS – non-

synonymous change, 5’ – 5’ proximal region, 3’ – 3’ proximal region, UTR – 

untranslated region) and amino acid change if applicable.  SNPs also assayed via FP-TDI 

are indicated as “FP”, and dbSNP IDs are shown for known SNPs (dbSNP build 124).  

SNPs with alleles seen on a single chromosome are designated with “Singleton” and 

insertion/deletion polymorphism are designated with as “Indel”.  DNA sequence flanking 

the variants is also shown.  
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Gene
AA 

position dbSNP rs#
No. of 

chromsomes 

No. of seqs 
used for 

alignment SIFT score 
HTR1A I28V 1799921 1 11 0.32
HTR1A R220L 1800044 1 13 0.02
HTR2A T25N 1805055 2 7 0.18
HTR2A E73G N/A 1 7 0.00
HTR2A I197V 6304 3 13 0.76
HTR2A H452Y 6314 20 13 0.02
HTR2C C23S 6318 32 5 0.10
HTR2C R288Q N/A 1 16 0.36
TPH2 S41Y N/A 1 12 0.91
MAOA I471V N/A 1 18 0.04
MAOA K520R 1800466 1 17 0.10  

Table 3.3.  SIFT scores for the 11 non-synonymous SNPs.  The SIFT algorithm was used 

to predict in silico the function of the amino acid altering SNPs.  A median conservation 

of 3.9 was used and we dropped sequences with >95% identity for this analysis.  Where 

applicable, dbSNP IDs are shown.  Also shown are the number of chromosomes that the 

minor allele was observed (N=190).  A SIFT score of <0.05 indicates a lack of 

conservation and thus potentially altered protein function.  Only one common variant, the 

well-known His452Tyr SNP in HTR2A, was predicted to have altered function using this 

method. 
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 DNA sequenced
 (kb) θs x 104 π x 104 Number of SNPs 

uncovered 
Number of novel 

SNPs 

5' Conserved non-coding 11.1 7.7 7.1 51 (30) 24 (5) 
Intronic 6.6 5.8 4.9 22 (13) 14 (5) 

Untranslated region 6.0 4.6 2.7 16 (8) 11 (3) 
        

Amino acid coding 8.2 5.0 3.8 26 (12) 11 (1) 
Synonymous    15 (8) 7 (1) 

Non-synonymous    11 (4) 4 (0) 
        

Total 31.9     115 (63) 60 (14) 
 

Table 3.4a  
 
 

Gene θs x 104 π x 104 Tajima's D P(Dobs > Dsim) 

HTR1A 8.12 1.06 -1.78 0.02 
HTR2A 11.14 5.85 -1.09 - 
HTR2C 2.62 2.63 0.00 - 
TPH1 2.57 0.24 -1.25 - 
TPH2 3.50 6.51 1.39 - 
MAOA 5.25 6.42 0.42 - 

       
Average 5.53 +/- 3.45 3.79 +/- 2.83 -0.38 +/- 1.19 - 

 
Table 3.4b 
 
Table 3.4.  Population genetic parameters for the pharmacodynamic genes.   

a)  Variant identification summary for the six genes. θs and π are shown per nucleotide 

sequenced.  Values in parentheses are for a subset of SNPs in which the minor allele was 

seen in at least 2 out of 190 chromosomes (i.e., non-singletons).  Novel SNPs are defined 

as variants that were not in dbSNP build 124. 

b)  Population genetic parameter estimates for coding regions of the six candidate genes. 

θs and π are shown per nucleotide sequenced.  Overall parameter estimates are listed as 

mean +/- SD for the six genes.  Significance of Tajima’s D departure from neutrality is 

also shown if nominally significant (p<0.05).   
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candidate genes in this population may lend additional evidence to the serotonergic 

hypothesis of depression.  The coding region of the TPH1 gene had the lowest nucleotide 

diversity, with only two low frequency synonymous variants detected (π = 2.4 x 10-5).  

Tajima’s D estimates for coding regions were negative for half of the genes investigated, 

and was significantly negative for the HTR1A coding region.  While a negative Tajima’s 

D can be caused by negative selection pressure, the estimates for these genes are within 

the range of values previously reported for other genomic regions and consistent with a 

recent expansion of the human population (16;17).  Nucleotide diversity (π) was highest 

in the CNS (π = 7.1 x 10-4) and lowest in the protein coding (3.8 x 10-4) and untranslated 

regions (2.7 x 10-4) of these genes.  

Our resequencing effort identified 20 SNPs that were initially genotyped using 

fluorescence polarization detection of template-directed dye-terminator incorporation 

(FP-TDI) in our previous study. We found 2 out of 1900 matched calls were inconsistent 

between genotyping using FP-TDI and sequencing, yielding a reproducibility across 

assays of 99.89%.  This value is reassuring given the substantial effect genotyping errors 

can have on haplotype inference (18). 

3.3.2  TPH2 Arg441His variant.  A highly publicized report of the functional 

Arg441His TPH2 variant by Zhang et al. was of substantial interest to us, since we had 

not observed this variant in our fluoxetine population (N=95).  We thus sequenced an 

additional 200 unrelated individuals (Coriell Diversity Panel) for exon 11 and did not 

observe a single His441 allele.  The STAR*D sample set (N=1,941) was also genotyped 

for this variant by our colleagues, and not a single instance of the His441 allele was 

found.  Thus, we genotyped 2,036 DNA samples from patients with major depression for 
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a total of 4,072 alleles and did not see this non-synonymous variant.  Using our data and 

assuming a binomial distribution, we can rule out the His441 allele as being as frequent 

as 0.06 in depressed individuals (Table 3.5).  Based on a threshold probability of 0.01, the 

maximum allele frequency in major depression is 0.001. 

  In order to validate our genotyping assays, we received four genomic DNAs from 

the Caron group; two homozygous Arg (GG) samples, a heterozygous (AG) sample, and 

a homozygous His (AA) sample.  Several experiments were performed on these control 

samples, and the results are summarized in Table 3.6.  We initially performed the ARMS 

ASPCR method that is described in Zhang et al., and all the genotypes were concordant 

with the expected genotypes.  Next, a Taqman allelic discrimination assay for the 

Arg441His variant was run on the controls, and again the results were concordant with 

expected genotypes.  We then ran an FP-TDI assay specific for the Arg441His variant on 

the controls.  For the initial PCR step of the FP-TDI, I used the sequencing primers for 

exon 11 (5.9-F and 5.9-R).  The genotypes were concordant with expected for all samples 

except the His homozygote sample (AA), which was genotyped by FP-TDI as GG.  Note 

that the primers for this assay lie outside the cloned 492 bp insert region (Figure 3.2).  

The control samples were then amplified using the exon 11 sequencing primers and 

products were sequenced.  Genotyping results were again concordant with expected for 

all samples except the His homozygote sample (AA), which again was genotyped as GG.  

We then amplified the control samples with the primers for the ASPCR (hOuterF and 

hOuterR, which are internal to the cloned insert region), and sequenced the products.  

Using these primers, results were concordant with expected genotypes for all control 

samples.  At this point, contamination of genomic DNA with clone seemed like a  



 

 105

His allele 
frequency

0.06 7x10-116

0.03 3x10-58

0.01 7x10-20

0.005 3x10-10

0.0025 2x10-5

0.001 0.01
0.0005 0.11

Probability of not 
detecting allele

 

Table 3.5.  Probability of not detecting the variant TPH2 His441 allele in 2,036 depressed 

subjects.  Several putative His allele population frequencies are shown, with the 

corresponding probability of not detecting the variant allele in our population, assuming a 

binomial distribution.   

 

 

 

 

 

 

 

 

 



 

  

Exp Method Primer F Primer R Internal primer(s) GG-1 GG-2 AG AA Arg (G) His (A)
1 ASPCR hOuterF hOuterR A or G AS-primer GG GG AG AA
2 Taqman Taqman-F Taqman-R Taqman Allele A + G GG GG AG AA
3 FP-TDI 5.9-F 5.9-R FP-1 GG GG AG GG
4 Sequencing 5.9-F 5.9-R GG GG AG GG
5 Sequencing hOuterF hOuterR GG GG AG AA
6 RNAse P qPCR + + + -
7 PCR T7 FP-1 - - - - + -
8 PCR T7 FP-2 - - - + - +
9 PCR T3 FP-1 - - - + - +

10 PCR T3 FP-2 - - - - + -

Control gDNA samples Clone DNA samples

 
 
Table 3.6.  Results of experiments with the TPH2 His441Arg control samples.  Genotyping results using each method are shown, with 

the expected genotype shown in the first row of the table.  Primer sequences and positions are shown in Figure 3.2.  For the RNAse P 

qPCR method, a + or – indicates the presence or absence, respectively, of detectable genomic DNA in the sample.  For the PCR 

methods, a + or – indicates the presence or absence, respectively, of a specific band of the expected size, as shown in Figure 3.3.   
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possibility.  In order to quantify the amount of genomic DNA in these control samples, an 

RNAse P quantitative PCR assay was performed.  All samples had expected amounts of 

signal from the RNAse P probe, expect for the His homozygote sample (AA), which had 

no detectable product.   So as to verify that the discordant genotyping results were due to 

clone contamination in the sample, four PCRs were performed (Table 3.6, experiments 7-

10), using universal cloning primers T3 and T7, and primers FP-1 and FP-2, which are 

internal to the clone insert and face in opposite directions (Figure 3.1).  The two clones, 

His441 and Arg441 have their insert in the opposite directions, allowing us to 

differentiate between them.  The results of these PCR experiments are shown in Figure 

3.3.  This gel confirms that the AA control, which was supposed to contain genomic 

DNA representing the AA homozygote, actually contained the His441 clone, as it 

produced the specified band using T7 and FP-2 primers or T3 and FP-1 primers.  The 

very small amount of genomic DNA (based on the RNAse P assay) in the AA control 

sample appeared to actually be homozygous GG. 

3.3.3  Single locus association analysis.  Variants identified during resequencing were 

tested for association to fluoxetine response or response specificity.  Three phenotypic 

comparisons were made: (1) responders (N=76) vs. non-responders (N=19), (2) specific 

responders (N=56) vs. non-specific and non-responders (N=39), and (3) specific 

responders vs. non-specific responders (N=20).  Genotypic association was tested using 

logistic regression.  Given the low minor allele frequency of the coding region variants 

identified (80% had a MAF <0.10), our power to detect association of these variants was  

limited in this sample.  For instance, for medium risk alleles (e.g., OR=2.5), we had 
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Figure 3.3.  Results of PCR experiments on TPH2 Arg441His control samples.  Shown 

are the PCR products on a 2% agarose gel, with a 100 bp ladder in the first lane of each 

primer combination, which is listed at the top of the gel.  Lane 1: clone His (A), lane 2: 

clone Arg (G), lane 3: Control AG gDNA, lane 4: Control AA gDNA, lane 5: Control 

GG-1 gDNA, lane 6: Control GG-2 gDNA, lane 7: H2O control.     
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greater than 80% power to detect association of variants with >0.10 MAF (Figure 3.4).  

Four SNPs in the promoter region of TPH1 showed nominally significant association to 

categorical response to fluoxetine (Table 3.7).  These SNPs have extensive LD and occur 

in conserved mammalian sequence 5’ proximal of the TPH1 gene.  Two coding region 

SNPs in the HTR2A gene were associated with the specificity of response (specific vs. 

non-specific), including the evolutionarily conserved His452Tyr substitution.  Two 

synonymous SNPs in the MAOA gene were also associated with response specificity.  Six 

of these eight associated variants were also genotyped in our previous work (2).   

3.3.4  Haplotype analysis.  Levels of LD varied across the genes sequenced, with 

HTR1A, HTR2C, TPH1 and MAOA exhibiting strong LD and TPH2 and HTR2A showing 

much lower levels of LD.  In order to take advantage of all the information available on 

these genes, we combined the genotype data from our previous study and the current 

sequencing data for haplotype analysis.  In our previous work, we genotyped 

approximately 8-10 SNPs per gene region.  Genotyped SNPs were largely non-coding, 

with average spacing of 7.6 kb (median, 2.7 kb).  The combined data set (N=188 unique 

SNPs) included 97 common SNPs (>10% MAF), consisting of 63 from our previous 

genotyping work, 19 from the current sequencing effort, and 15 that were assayed in both 

studies.  Levels of LD may be overestimated for genomic regions when only coding 

region variants are included in the analysis due to the low density and minor allele 

frequency of these variants.  This is illustrated by the results for HTR2A, in which we had 

genotype information for 15 common SNPs across the gene region, which yielded 25 

inferred common haplotypes (data not shown).  As expected, the addition of non-coding 

SNPs increased the haplotype diversity for this gene region when compared to a recent 
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Figure 3.4.  Power to detect association to categorical response in fluoxetine sample 

(N=95).  On the left y-axis is the power (1-β) of detecting an association at the various 

minor allele frequencies shown on the x-axis.  Three different effect sizes (dominant 

ORs) are shown, indicated by the lighter lines.  Power was calculated using the method of 

Purcell et al. (19).  The right y-axis shows the proportion of SNPs at each minor allele 

frequency (binned in 0.02 intervals).  The variants uncovered during resequencing (dark 

dashed line) and the variants assayed in our previous study via FP-TDI are also shown 

(dark solid line).    
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FP? SNP type p-value OR Lower Upper p-value OR Lower Upper
HTR2A
90473 SH51 Y NS - 0.02 0.30 0.08 1.15
90290 SH53 Y 3' UTR - 0.03 0.27 0.08 0.87

TPH1
71715 SH102 Y CNS 0.02 0.41 0.11 1.11 -
71830 SH103 Y CNS 0.04 0.43 0.13 1.35 -
73088 SH112 Y CNS 0.02 0.41 0.11 1.09 -
74070 SH115 N CNS 0.02 0.41 0.11 1.09 -

MAOA
74459 SH182 Y S - 0.05 0.27 0.08 0.90
62104 SH186 N S - 0.05 0.32 0.12 0.92

Response vs. Non-response Specific response vs. Non-specific response

 
 
Table 3.7. Variants nominally associated (p<0.05) with response to fluoxetine.  Gene 

name is displayed as well as SNP position.  Variants genotyped via FP-TDI in our 

previous study (described in Chapter 2) are designated with a “Y”.  Odds ratios (OR) 

shown are calculated for variant carrier vs. non-carrier, and 95% lower and upper 

confidence intervals are also shown.   
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coding region centered screening in a Caucasian population of similar size (20).  Full 

length haplotypes using all common SNPs were inferred for each gene using the EM 

algorithm.  All of the common SNPs in HTR1A, TPH1 and MAOA had strong LD and 

thus limited haplotype diversity and were tested for association to response using the 

likelihood ratio test procedure in COCAPHASE (Table 3.8).  The other genes had 

moderate to weak LD, which made full gene length haplotype testing problematic due to 

the uncertainty associated with the inference of rare haplotypes.  Gene regions were 

therefore partitioned into blocks of low haplotype diversity using the 0.8 chromosome 

coverage criteria of HAPLOBLOCKFINDER.  Block size varied by gene region, with an 

average size of 70 kb (median = 23 kb) and an average of 1.5 blocks per gene 

investigated (Table 3.8).  Average block size was larger than reported in previous studies 

on random genomic regions using Caucasian samples, which was due to the large blocks 

observed in the X-linked genes MAOA and HTR2C (21). 

Haplotypes were constructed within blocks and tested for association to fluoxetine 

response (Table 3.8).  A block of six SNPs in 3’ end of the HTR2A gene was associated 

with response in our second phenotypic comparison, specific response versus all other 

responses (global p = 0.05), as well as in our third comparison, specific responders versus 

non-specific responders (global p = 0.01).  Haplotypes of the MAOA gene region, which 

was contained in a single block, were nominally associated to response specificity in our 

third comparison (global p = 0.05).  

 

3.4  Discussion 

 In this study, we sought to expand on the results of our previous indirect  
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Gene Block no. Block size (kb) SNPs/Block
Response vs. 
non-response

Specific vs. all 
others

Specific  vs. non-
specific

HTR1A 1 7.7 8 - - -
TPH1 1 26.7 22 - - -
TPH2 1 64.9 14 - - -
TPH2 2 21.1 5 - - -

HTR2A 1 21.7 5 - - -
HTR2A 2 23.4 4 - - -
HTR2A 3 14.4 6 - 0.04 0.01
HTR2C 1 367.4 26 - - -
MAOA 1 81.3 7 - - 0.04

Average 69.8 10.8
Median 23.4 7  

 
Table 3.8.  Haplotype block distribution and association results. Size of haplotype blocks 

and number of SNPs within each block are shown.  Within-block haplotype distributions 

with global p-values <0.05 are shown for each phenotypic comparison, as tested in 

COCAPHASE.   
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association study, which utilized evenly spaced, publicly available SNP markers in a well 

phenotyped patient population taking fluoxetine.  Since most of the SNPs used in our 

previous indirect association study were intronic and non-coding, we wanted to identify 

putative functional SNPs associated with antidepressant response by resequencing all 

exons, intron-exon boundaries, and 5’ conserved non-coding sequence (CNS) in this 

patient population. We uncovered 60 novel SNPs during resequencing, none of which 

were common (>10% MAF). We identified four novel non-synonymous SNPs, however 

these were all seen on only a single chromosome in our study population. This indicates 

that public databases such as dbSNP contain the majority of common cSNPs, and that 

further cSNP (or tagSNP) discovery efforts may be unnecessary for these genes.  The 

database of SNPs has expanded considerably since this work was performed, and the lack 

of additional common variants in these genes supports this contention.  We found two 

exonic substitutions (His452Tyr and a 3’ UTR SNP) in the HTR2A gene and two linked 

synonymous SNPs in the MAOA gene that were associated with response specificity. The 

association of response subtype with the His452Tyr substitution in the HTR2A gene is 

strengthened by the evolutionary conservation seen at this genomic location and the fact 

that several studies have suggested that this polymorphism has altered function in vitro 

(22;23).  

While most Mendelian disorders studied to date have been shown to be caused by 

non-synonymous coding variants or splicing variants, there is evidence that this may not 

be true for common, complex genetic disorders (24).  Several reports have shown 

substantial differences in allelic expression across the human genome, and variation in 

regulatory DNA is a likely candidate for complex genetic phenotypes (25;26).  
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Unfortunately, identification of regulatory DNA elements is not as straightforward as 

identifying protein coding sequence.  We used comparative genomics in order to identify 

potentially functional 5’ regulatory DNA sequence (CNS), and then sequenced these 

CNS elements in order to uncover any variants.  The nucleotide diversity parameters π 

and θ were higher for CNS than any other region investigated, indicating that this gene 

region harbors substantial variation.  Furthermore, much of this variation has not been 

investigated as we found more novel variation in CNS than in coding regions, which is 

where most previous variant screens have focused.  By uncovering this variation, we 

were able to define the haplotype block structure in putative regulatory regions of these 

genes.  In our association testing, we found four linked SNPs in the 5’ CNS of the TPH1 

gene that displayed significant single locus association to categorical antidepressant 

response.  Additionally, these SNPs have been shown to affect transcription of the TPH1 

gene in vitro (27).  

While in silico methods such as comparative genomics can help to identify 

potentially functional elements in the genome, certain functional elements may be missed 

due to lack of conservation across species.  This is especially true if primate-specific 

functional elements are present, as mammalian alignments (i.e., human and mouse, rat, or 

dog) might not show conservation (28).  Additionally, we did not sequence the entire 

intronic region of these genes or CNS located outside of 5 kb upstream of the 

transcriptions state site, and thus may have missed functional SNPs that affect splicing or 

gene regulation.  This may explain why we failed to find putatively functional SNPs in 

the coding region and 5’ CNS of the TPH2 gene, where we previously had seen an 

association using non-coding SNPs (2).  In our population, the TPH2 gene region 
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contained only one non-synonymous SNP (S41Y), and this variant was seen on a single 

chromosome in our screen.  

One limitation of this study is the small sample size of our population (N=95), 

which limited our power to detect association of low to medium risk alleles with 

antidepressant response (Figure 3.4).  As most of the protein altering variants we 

uncovered by resequencing were extremely rare, they will require further testing in 

larger, perhaps family-based, clinical populations.  Our limited statistical power to detect 

association also precluded us from performing analysis of joint association (interaction 

effects) between pairs of SNPs or haplotypes in these serotonergic genes and 

antidepressant response.  

In order to expand on a previous indirect association study of antidepressant 

response, we sequenced the coding regions, intron-exon boundaries and 5’ CNS of six 

serotonergic candidate genes in order to identify any potentially functional SNPs.  We 

found four SNPs in the 5’ CNS region of TPH1 that were associated with categorical 

response, and found the previously described His452Tyr variant and two synonymous 

SNPs in the MAOA gene to be associated with response subtype.  The majority (6 of 8) of 

these variants were assayed in our previous work using publicly available markers.  

While the His452Tyr and 5’ TPH1 variants have been shown to affect protein function 

and expression in vitro, further association studies in larger clinical populations will be 

required to determine if these variants influence patient response to antidepressants.   

Given that several other groups (29-31) besides our own (1) have published letters 

stating they have not observed the His441 allele in unrelated sample sets, along with the 

fact that we were able to detect clone contamination in their control genomic DNA 



 

 118

samples, it seems unlikely that this allele exists an any appreciable frequency in outbred 

human populations.  It should be noted that the control His/Arg heterozygote gDNA did 

appear to be uncontaminated and real.  However, based on our genotyping of 2,036 

subjects with major depression and never observing the allele (even as a heterozygote), 

the maximum allele frequency of this variant is 0.001, far from the 0.06 reported in 

Zhang et al. (Table 3.5).  A check of Hardy-Weinberg equilibrium on the data reported 

by Zhang et al. also points to possible genotyping problems.  They report having found 

six heterozygotes and three homozygous His samples in their depression cohort of 87 

patients.  They also report on two heterozygotes and one homozygous His sample in their 

cohort of 219 control patients.  Both the depressed cohort (χ2=19.5, df=1, p<3.7x10-10) 

and the control cohort (χ2=53.5, df=1, p<1.2x10-36) had genotype distributions displaying 

an abundance of His homozygotes, several more than would be expected based on the 

observed minor allele frequency and Hardy-Weinberg equilibrium.  Thus, it appears this 

variant does not contribute to the genetic risk of major depression in outbred populations. 
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CHAPTER 4 

PHARMACODYNAMIC CANIDATE GENE TAGGING SNP SELECTION AND 

ASSOCIATION OF TAGGING SNPS TO CITALOPRAM RESPONSE* 

 

4.1  Introduction 

The genotype data from our previous indirect association study (Chapter 2) 

combined with the genotype data from our sequencing effort (Chapter 3) provided dense 

marker coverage within these pharmacodynamic serotonin candidate genes from which 

we could chose tagging SNPs.  Here I describe our criteria and performance assessment 

of tagging SNPs (tagSNPs), as well as our exploration of the role of common variation in 

these candidate genes on antidepressant response in a large clinical population taking the 

SSRI citalopram.  For this purpose, we genotyped a subset of patients (N=1,953) from the 

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, which is a 

prospective, multi-center, randomized clinical trial involving 4,041 depressed outpatients 

in both primary and specialty care settings (1).  The overall goal of the STAR*D trial was 

to define what subsequent treatment strategies, in what order or sequence, and in what 

combination prove most efficacious and tolerable to patients whom have failed to 

respond to an initial trial with the SSRI citalopram.  STAR*D clinical findings suggest 

that patients who fail initial treatment with citalopram can respond to other 

antidepressants (including other SSRIs) and treatments (2), however their odds of 

responding decrease as more treatments are needed (3).   

                                                 
* This work has been submitted for publication (Peters E.J., Slager S.L., McGrath P.J., Hamilton S.P. 2007 
“Sequencing and tagging SNP selection in serotonin-related candidate genes and association to citalopram 
response.”) 
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In this report, we focus on five pharmacodynamic candidate genes (HTR1A, 

HTR2A, TPH1, TPH2 and MAOA); the HTR2C gene was not investigated due to lack of 

any association to fluoxetine in our previous work (4).  While not the focus of the work 

reported here, we also interrogated tagging SNPs in the serotonin transporter (SLC6A4) in 

the STAR*D population, which were not associated to citalopram response or response 

specificity (5).  We also report on the comparison of tagSNP selection methods.  In 

response to the substantial levels of linkage disequilibrium (LD) in the human genome 

and the high density SNP marker information being generated, several tagSNP selection 

methods have been developed to reduce redundancy in downstream genotyping and 

retain the genetic diversity.  Some of these methods focus on using tagSNPs as proxies 

for untyped SNPs and thus exploit pairwise SNP LD (6).  Other methods attempt to tag 

multimarker haplotypes, with no formal regard for pairwise SNP LD (7-9).  It is unclear 

which method is superior, but this will likely depend on study design and resources as 

well as local patterns of LD.  Here we use our high density SNP data to test the 

performance of tagSNPs selected using pairwise LD in reconstructing underlying 

haplotypes.  This is an important comparison as we are interested in testing for haplotypic 

associations using haplotypes inferred from tagSNP genotypes.    

 

4.2  Methods 

4.2.1  STAR*D sample set.  Of the 4,041 subjects, DNA was obtained from 1,953 

subjects as part of the NIMH Human Genetics Initiative.  The design of STAR*D was to 

enroll adults experiencing a major depressive episode who exhibited neither an 

inadequate response nor intolerance to an adequate trial of any of the STAR*D protocol 
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treatments during the current episode.  The overall aim of STAR*D (P.I., A. John Rush, 

NIMH Contract N01-MH-90003) was to prospectively determine which of a number of 

treatments are beneficial for subjects experiencing an unsatisfactory clinical outcome 

following treatment with citalopram.  Since the STAR*D design trial has been described 

extensively we shall only briefly summarize it here (1;10;11).  In order to make the 

findings as generalizable as possible, STAR*D utilized broad inclusion criteria and 

enrolled a diverse population, including good minority representation.  Diagnoses were 

made using the Psychiatric Diagnostic Screening Questionnaire, while depressive 

symptoms were assessed with the 16-item Quick Inventory of Depressive 

Symptomatology collected at clinic visits (Self-Report [QIDS-SR] version) (12).  The 

QIDS-SR is highly correlated with the 17-item Hamilton Rating Scale for Depression 

(HRSD17), and scores can be converted readily between the two instruments (12).  

Subjects meeting criteria and providing consent were administered citalopram as the 

initial treatment.  The protocol encouraged 12 weeks of treatment with vigorous dosing of 

open-label citalopram (20-60 mg/day).  The sub-sample of 1,953 participants who 

consented to provide DNA samples was 61.8% female and 38.2% male, and with ethnic 

proportions of 78.1% Caucasians, 16.1% African-Americans, 3.5% multi-racial, 1.1% 

Asian, 1.2% Pacific Islander/Native American, and 0.1% unspecified.  Further, 14.0% of 

the sample reported being Hispanic, and 43.5% of the sample came from primary care 

clinics, with the remaining 56.5% coming from specialty clinics.  At the time of this 

report, we have received DNA from 1,914 participants (98%).  Baseline demographic and 

clinical data on these 1,914 subjects are presented in Table 4.1. 
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Access to the DNA samples and clinical data was approved by the STAR*D 

Ancillary Studies Committee, and clinical data was obtained from the Data Coordinating 

Center of STAR*D.  Approval to carry out the work described here was obtained by the 

Committee on Human Research at the University of California, San Francisco. 

4.2.2  STAR*D response phenotypic definitions.  We define five inter-related response 

phenotype definitions of response to citalopram.  The first two are responders and non-

responders: responders are subjects who had at least 42 days of treatment and whose 

QIDS-SR on their final clinical visit shows ≥50% reduction in score; the remaining 

subjects, who had at least 42 days of treatment, were then considered non-responders.  

The ≥50% reduction in symptom severity on the HRSD17 is the conventional definition 

of response in clinical trials.  We used the QIDS-SR score to estimate severity since all 

subjects had this rating and it correlates highly with the HRSD17 scores (12).  We 

required this 42 day (or six week) threshold to ensure an adequate exposure to citalopram 

and to enhance the power to find associations between genotype and response by 

reducing potential heterogeneity. Using this threshold, we found no statistical difference 

in the average total dosage of citalopram between those who were on the trial for at least 

42 days (average total dosage = 29.9 mg) and those who were not (average total dosage = 

30.4 mg).  The 254 subjects with < 42 days of treatment were excluded from analysis.  

The third phenotype definition is remission.  Remission was defined as a QIDS-SR score 

≤5, which closely corresponds to the conventional definition of a HSRD score of ≤7 (12).  

The final two phenotypes are based on our attempt to further reduce heterogeneity by 

attempting to separate placebo response from true drug response in antidepressant trials 

(13).  Some response to antidepressant medication is a placebo response, which we posit 



 

 

Baseline Variable

Total 
subjects in 
Analysis 

(N=1,914)

Subjects 
classified as 
Responders 

(N=991)

Subjects classified 
as   Non-

Responders 
(N=669)

p value

Subjects classified 
as Specific 
Responders 

(N=679)

Subjects classified 
as Non-Specific 

Responders 
(N=187)

Subjects 
Classified as 

Remitters 
(N=826)

Number in Race / Ethnicity (%)
Caucasian 1,501 (78.4) 799 (80.6) 509 (76.1) 0.06 559 (82.3) 146 (78.1) 679 (82.2)
African American 299 (15.6) 130 (13.1) 121 (18.1) 77 (11.3) 28 (15.0) 100 (12.1)
Other (Multi-racial) 68 (3.6) 36 (3.6) 23 (3.4) 23 (3.4) 9 (4.8) 25 (3.0)
Asian 21 (1.1) 15 (1.5) 5 (0.7) 12 (1.8) 2 (1.1) 13 (1.6)
Pacific Islander/Native American 24 (1.2) 11 (1.1) 11 (1.6) 8 (1.2) 2 (1.1) 9 (1.1)
Unspecified 1 (0.1) 0 0

Number of Hispanic (%) 269 (14.1) 122 (12.3) 102 (15.2) 0.09 82 (12.1) 25 (13.4) 96 (11.6)
Number of Females (%) 1,179 (61.6) 621 (62.7) 404 (60.4) 0.35 424 (62.4) 126 (67.4) 518 (62.7)
Mean Age in Years (SD) 42.6 (13.4) 42.2 (13.4) 43.0 (13.2) 0.11 41.7 (13.3) 43.4 (14.0) 42.0 (13.7)
Mean Years of Schooling (SD) 13.6 (3.3) 14.1 (3.3) 13.2 (3.1) <0.001 14.2 (3.3) 13.9 (3.3) 14.2 (3.3)
Marital Status

Married 819 (42.8) 435 (43.9) 290 (43.3) 0.27 301 (44.3) 76 (40.6) 377 (45.6)
Never Married 536 (28.0) 278 (28.1) 185 (27.7) 190 (28.0) 53 (28.3) 239 (28.9)
Divorced 483 (25.2) 249 (25.1) 162 (24.2) 169 (24.9) 52 (27.8) 189 (22.9)
Widowed 76 (4.0) 29 (2.9) 32 (4.8) 19 (2.8) 6 (3.2) 21 (2.5)

Clinical Characteristics
Age at first MDE (SD) 26.1 (14.9) 26.2 (14.4) 25.6 (14.9) 0.19 26.4 (14.6) 24.8 (13.7) 26.4 (14.5)
Months in current MDE (SD) 25.0 (53.9) 21.6 (45.8) 31.7 (65.8) <0.001 20.4 (45.5) 24.6 (51.5) 21.3 (45.9)
Index Length 24+ Months (%) 487 (25.4) 230 (23.2) 203 (30.3) 0.001 142 (20.9) 53 (28.3) 187 (22.6)
Presence of Recurrent Depression (%) 1,347 (70.4) 701 (70.7) 469 (70.1) 0.71 481 (70.8) 130 (70.0) 574 (69.5)
Presence of Family History of Depression (%) 1,037 (54.2) 557 (56.2) 346 (51.7) 0.09 382 (56.3) 103 (55.1) 466 (56.4)
Baseline QIDS (SD) 16.4 (3.4) 16.2 (3.3) 16.6 (3.4) 0.008 16.2 (3.3) 16.1 (3.1) 15.8 (3.3)
Years Since 1st MDE (SD) 16.6 (13.9) 16.0 (13.8) 17.5 (14.0) 0.018 15.4 (13.8) 18.6 (14.6) 15.7 (13.8)

 

 

Table 4.1.  Baseline demographic and clinical characteristics of the STAR*D sample.  Data shown are for the subset of DNA samples 

received at the time of this report (N=1,914).  Tests of differences between responders and non-responders, using chi-square for 

categorical data and t-tests for continuous data, are presented in the column labeled “p-value”. 
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may have either no genetic determinant or a different underlying genetic mechanism than 

"true" drug response.  Thus, it is of interest to limit our definition of response to true 

pharmacologic response rather than placebo response.  For these phenotypes, a “specific” 

pattern of response was defined by persistence, or the maintenance of response for the 

remainder of the study once it was attained.  Previous studies considered "specific" 

patterns to be further characterized by delayed response, i.e., after the first two weeks 

(14;15).  We were unable to employ this criterion because the STAR*D study design did 

not include ratings before week two.  We defined persistent responders as those subjects 

who had a sustained response at all consecutive visits following the first visit with 

response, as measured by ≥50% reduction in QIDS-SR scores.  Those whose response 

occurred only at the last visit were removed from the analysis.  In contrast, “non-specific” 

responders were those subjects who did not maintain their response following the first 

visit with a response. Note that "specific" and "non-specific" responders are a subset of 

responders (as defined by the response phenotype above).  Moreover, because visits were 

at least two weeks apart, we assumed that intervening weeks were characterized by the 

response defined by the previous visit.  We compared "specific" responders to 

nonresponders, allowing us to test the hypothesis that the "specific" response to 

citalopram represented a more genetically homogenous group of persons taking 

citalopram.  We also compared "specific" responders to "non-specific" responders to test 

whether there are genetic differences between "true drug" responders and "placebo" 

responders, as suggested in our previous work (4).  Table 4.1 presents the demographic 

and clinical characteristics of our phenotype groups. 
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4.2.3  Tagging SNP selection.  All Caucasian samples in our population taking 

fluoxetine (N=75) were used in tagSNP selection, regardless of response phenotype.  We 

used the method of Carlson et al (“ldselect.pl”), which is based on pairwise LD between 

SNP markers and does not require haplotype block-like structure (16).  We ran this 

algorithm to group SNPs into high LD “bins”, which contain SNPs with a minimum 

pairwise r2 of 0.80.  A single tagSNP from each “bin” was then chosen to represent that 

group of SNPs in future studies.  We were also interested in testing for haplotype specific 

effects in the study, thus we wanted to explore how accurately the tagSNPs chosen using 

a pairwise r2 threshold could reconstruct the underlying haplotypes.  In order to limit 

haplotype diversity and facilitate haplotype inference, haplotype blocks were chosen 

using the program HAPLOBLOCKFINDER (17).  We defined haplotype blocks as 

regions in which at least 80% of chromosomes assayed were represented by three or less 

common haplotypes.  Within each haplotype block, we then employed two haplotype 

tagging approaches.  We used the method of Stram et al (“TagSNPs”), which selects 

haplotype tagging SNPs in order to optimize Rh
2, which is the squared correlation 

between estimates of the number of copies of a particular haplotype h (inferred using 

only the tagSNPs) and the true number of copies of haplotype h carried by a subject 

(inferred using the entire SNP set), averaging over all possible genotype data under an 

assumption of Hardy-Weinberg equilibrium (8).  We also selected haplotype tagging 

SNPs using the pattern recognition approach of Ke et al., which does not account for the 

uncertainty of inferring haplotypes for genotypic data (9).  Using these three sets of 

tagging SNPs, we then calculated the minimum Rh
2 for all common (>1%) haplotypes 
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within each haplotype block in order to asses how well these sets predict the underlying 

haplotype structure. 

4.2.4  DNA amplification.  PCR reactions of 5 microliters (µl) containing 200 nM of the 

forward and reverse primers, 10 ng genomic DNA template, 50 µM dNTPs (Roche, 

Indianapolis, IN, USA), 1M anhydrous betaine (Acros Organics, Geel, Belgium), 50 mM 

KCl, 20 mM Tris-HCl (pH 8.4), 2.5 mM MgCl2, and 0.25 U Platinum Taq DNA 

polymerase (Invitrogen, Carlsbad, CA, USA).  Samples were cycled using a touchdown 

protocol at 94°C for 3 minutes, followed by seven cycles of 94°C for 30 seconds, 65–

59°C for 30 seconds (decreased by 1°C intervals per cycle), and 72°C for 30 seconds, 

followed by 38 cycles of 90°C for 30 seconds, 58°C for 30 seconds, and 72°C for 30 

seconds, with a final 10 minutes at 72°C.  The reactions were performed on an Applied 

Biosystems GeneAmp PCR System 9700 (Foster City, CA, USA) using 384-well plates 

(MJ Research, Waltham, MA, USA). 

4.2.5  Tagging SNP genotyping using FP-TDI.  Genotyping of tagSNPs was performed 

using either fluorescence polarization detection of template-directed dye-terminator 

incorporation (FP-TDI) or 5’ exonuclease fluorescence assays (TaqMan) (Table 4.2).  For 

tagSNPs genotyped by FP-TDI, following PCR the excess primers, deoxynucleotides, 

and pyrophosphate in the PCR reaction were degraded by adding 0.1µl of 10X PCR 

Clean-Up Reagent, containing a mixture of shrimp alkaline phosphatase and exonuclease 

I (PerkinElmer, Wellesley, MA, USA), 0.1µl of inorganic pyrophosphatase (Roche 

Applied Science, Indianapolis, IN, USA),  and 0.8 µl of PCR Clean-Up Dilution Buffer 

to each 5 µl PCR reaction (PerkinElmer, Wellesley, MA, USA).  The mixture was then 

incubated at 37°C for 60 minutes, followed by inactivation for 15 minutes at 80°C.   



 

 

 

Gene SNP Assay method Common name Also captures 
HTR1A rs6295 FP-TDI C-1019G rs6449693, rs878567, rs749099, rs1423691, rs970453
HTR1A rs1364043 C___1393788_10 rs749098
HTR2A rs731245 FP-TDI -
HTR2A rs6313 C___3042197_1_ T102C rs6311 (A-1438G)
HTR2A rs2296973 FP-TDI -
HTR2A rs927544 FP-TDI -
HTR2A rs666693 FP-TDI -
HTR2A rs2770296 FP-TDI -
HTR2A rs2246127 FP-TDI -
HTR2A rs1923884 C__11696916_10 -
HTR2A rs1923882 FP-TDI -
HTR2A rs6314 FP-TDI His452Tyr -
HTR2A rs3125 FP-TDI rs3803189
TPH1 rs7130929 FP-TDI rs6486405, rs6486404, rs4537731, rs6486403, rs7122118
TPH1 rs623580 FP-TDI -

TPH1 rs684302 FP-TDI  rs1799913 (A779C), rs1800532 (A218C), rs2056246, rs1607395, rs2237907, rs10832874, 
rs652458, rs685249, rs211107

TPH1 rs211105 FP-TDI rs10488682, rs172423
TPH1 rs211102 FP-TDI -
TPH1 rs2108977 FP-TDI -
TPH2 rs2129575 FP-TDI -
TPH2 rs2171363 C__15836061_10 rs7963720, rs7305115
TPH2 rs1007023 C___8872308_10 rs1386488, rs1843809, rs1386492, rs1843812, rs1487281, rs1386497
TPH2 rs1487278 Custom Taqman rs1386491, rs1487284
TPH2 rs1487276 FP-TDI -
TPH2 rs1386487 Custom Taqman rs4290270
TPH2 rs17110747 Custom Taqman -
TPH2 rs1872824 C__11407441_10 -
MAOA rs1465108 FP-TDI rs2310820, rs1465107, rs6323, rs979606, rs979605, rs1801291  

Table 4.2

132



 

 133

Table 4.2.  Tagging SNPs assayed in the STAR*D population.  Listed are the 28 tagSNPs 

chosen from our genotype data in the fluoxetine population (N=75 Caucasians), using the 

method of Carlson et al.(section 4.3.1) (1).  One SNP (rs2246127) was removed from the 

analysis after genotyping due to HWE violations.  SNPs assayed via FP-TDI are 

designated as “FP-TDI”; details on these assays can be found in Chapter 1.  SNPs 

interrogated using the Taqman assay indicate their Applied Biosystems assay ID (C…), 

assays that were custom designed by Applied Biosystems are designated “Custom 

Taqman”.  Also shown are the dbSNP IDs of the additional SNPs that are in high LD 

(r2>0.8) with the assayed SNPs in the Caucasian subset of the fluoxetine sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 134

The final step was the addition of a 4 µl solution containing a final concentration of 0.5 

µM TDI probe, 1 µl of 10X TDI Reaction Buffer, 0.5 µl of AcycloTerminator Mix 

(containing R110 and TAMRA-labeled AcycloTerminators, corresponding to the 

polymorphic base), and 0.025 µl of AcycloPol DNA polymerase (PerkinElmer).  This 

mixture was cycled at 95°C for 2 minutes, followed by 25 cycles of 94°C for 15 seconds 

and 55°C for 30 seconds. Following template-directed incorporation, fluorescence 

polarization was read using a VICTOR2 1420 Multilabel Counter (PerkinElmer), and 

genotypes were scored using custom software. 

4.2.6  Tagging SNP genotyping using 5’ exonuclease fluorescence assay.  For tagSNPs 

genotyped using 5’ exonuclease fluorescence (Taqman) assays (Table 4.2), 5 µl reactions 

containing 10 ng of dried genomic DNA template, 2.5 µl of Universal Taqman PCR 

Master Mix (Applied Biosystems), 0.085 µl of 20X Taqman assay probe (Applied 

Biosystems), and 2.42 µl of sterile H20 were cycled at 95°C for 10 minutes, followed by 

40 cycles of 92°C for 15 seconds and 60°C for 1 minute.  Reaction fluorescence was read 

and genotypes were scored on an ABI 7900HT Sequence Detection System (Applied 

Biosystems).  

4.2.7  Statistical analysis.  The frequency distributions of demographic and clinical 

variables were examined in the combined sample and by the five phenotypes.  To control 

for any potential population stratification, all analyses were stratified by race categories: 

Caucasian and African-American.  Other racial categories were not considered because of 

the small numbers of those samples.  We tested for Hardy-Weinberg equilibrium within 

both the Caucasian and African-American groups, and all subjects from a stratum were 
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used in the analysis since all subjects had depression and the evaluated polymorphisms 

were not suspected to influence risk of depression.   

 We used unconditional logistic regression analysis to examine associations of the 

eleven genetic polymorphisms and each of the four phenotypic comparisons.  These 

comparisons are (1) responder vs. non-responder, (2) remitter vs. non-responders, (3) 

specific responders vs. both non-responders and non-specific responders, and (4) specific 

responders vs. non-specific responders.  Each polymorphism was modeled individually as 

gene-dosage effects in the regression models.  This coding scheme was chosen because of 

its robustness to departure from the true additive genetic model (18).   Regression 

analyses were performed either unadjusted or adjusted for potential confounding effects, 

including sex, age, education (years of school), months in current major depressive 

episode (MDE), and years since first MDE.  We found that adjustment for potential 

confounders did not significantly influence the results, thus the values reported here are 

unadjusted.  We estimated odds ratios (OR) and 95% confidence intervals (CIs) for the 

carriers of the minor allele versus non-carriers of the minor allele.   Because of the large 

number of statistical tests, significance threshold was set at 0.01, and permutation tests 

were performed on any test that resulted in an asymptotic p value of 0.01 or less. 

Association between haplotypes within the haplotype blocks and citalopram 

response were calculated using a score test implemented in the computer program 

HAPLO.SCORE (19).  This test uses the expectation-maximization algorithm to estimate 

the posterior probability of each person’s haplotype.  These posterior probabilities are 

then used to calculate a person’s expected haplotype score in the logistic regression 

analyses.  All haplotypes with frequencies > 0.01 were simultaneously tested in the 
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analysis.  Global p values and individual haplotype p values were obtained.  Statistical 

tests were performed in SAS version 8.2 or Splus version 6.2.1 statistical packages.     

 

4.3  Results 

4.3.1  Tagging SNP selection.  We utilized the combined dataset of variant information 

from our previous resequencing (Chapter 3) and genotyping (Chapter 2) efforts to select 

maximally informative tagSNPs for use in our larger clinical population taking 

citalopram.  The combined dataset consisted of 145 SNPs; 77 from resequencing, 52 

from our previous genotyping effort, and 16 that were assayed using both methods.  For 

tagSNP selection, we only used data from a subgroup of Caucasian individuals (N=75) in 

our patient population taking fluoxetine. Difficulties arise from attempting to predict rare 

genotypes (defined here as <10% minor allele frequency) or haplotypes (defined here as 

<1% population frequency) using a reduced tagging SNP set, as has been noted using 

other datasets and tagging methods (20;21).  Attempts to tag rare SNPs resulted in the 

majority of these rare SNPs being selected as tagSNPs (Figure 4.1).  The inclusion of rare 

SNPs almost doubled the number of tagging SNPs selected (28 for common SNPs vs. 51 

for all SNPs).  Similarly, for haplotype tagging methods such as the approach of Stram et 

al., tagging rare recombinant haplotypes required large increases in tagging SNP 

selection.  In several instances, rare haplotypes were not tagged accurately (i.e., Rh
2 <0.8) 

even when all SNPs within a block were selected as tagging SNPs (data not shown).  

Here, we thus limited our analysis of tagSNP performance to the tagging of common 

SNPs (N=71 SNPs) and common haplotypes.       
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Figure 4.1.  Effect of minor allele frequency on tagging SNP selection.  The above 

histogram displays the number of SNPs (N=145 total) at each minor allele frequency bin 

(solid black bars).  The striped bars indicate the number of SNPs, in each minor allele 

frequency bin, that were selected as tagSNPs using the method of Carlson et al. (6)   
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In addition to serving as proxies for other SNPs, we sought to investigate how 

accurately these tagSNPs would infer the underlying haplotype structure.  In order to aid 

haplotype tagging SNP selection we selected regions of limited haplotype diversity, also 

known as haplotype blocks.  In total, eight haplotype blocks were identified, with an 

average length of 33 kb, using the chromosomal coverage criteria of Zhang et al.  The 

HTR2A gene was composed of three blocks, while the TPH2 gene had two blocks and the 

three other genes were all captured by a single haplotype block. 

As shown in Figure 4.2, tagSNPs selected using Carlson et al.’s pairwise r2 

criteria predicted all the common haplotypes well in all blocks investigated (>0.75 

average minimum Rh
2).  The tagSNPs selected by the method of Stram et al. predicted all 

common haplotypes in all blocks accurately (>0.80 average minimum Rh
2), which is not 

surprising given that this method selects tagSNPs based solely on satisfying the Rh
2 

threshold.  In contrast, tagSNPs chosen using the pattern recognition approach of Ke et 

al. do not predict all common haplotypes well for 4 of the 8 blocks (<0.60 average  

minimum Rh
2).  The three methods varied in their efficiency in reducing number of 

tagSNPs to be genotyped.  The pattern recognition approach of Ke et al. was the most 

efficient, and selected 16 tagSNPs for the five genes out of a total of 71 common SNPs.  

The Stram et al. method selected 21 tagSNPs, and the Carlson et al. method selected 28 

tagSNPs overall.  Given that using a pairwise r2 criteria is analytically straightforward 

and that the tagSNPs chosen will be sufficient in accurately reconstructing the underlying 

common haplotypes, we attempted to genotype the 28 tagSNPs selected by the method of 

Carlson et al in our clinical population taking citalopram (STAR*D).  Of these 28 SNPs, 

a single SNP in the HTR2A gene (rs2246127) was out of Hardy-Weinberg equilibrium  
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Figure 4.2.  Accuracy of haplotype inference for three sets of tagging SNPs.  Each of the 

eight haplotype blocks are shown on the x-axis.  The minimum haplotype Rh
2 value for 

all common haplotypes reconstructed from each tagSNP set is shown on the y-axis.  Due 

to the fact that methods of Carlson et al. (6) and Ke et al. (9) do not output a unique set of 

tagSNPs, average (± SD) minimum Rh
2 of all combinations of tagSNPs are shown.   
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and thus dropped from the analysis.  

4.3.2  Tagging SNP association to citalopram response.  We sought to test two main 

hypotheses with the tagSNPs selected in these candidate genes using the response 

phenotypes described above.  We first tested whether these variants were associated with 

overall response to citalopram by comparing responders to non-responders and remitters 

to non-responders.  We also tested whether these variants affect “true” or specific drug 

response by comparing specific responders to non-responders and specific responders to 

non-specific responders.  All analyses were stratified by self-reported ethnicity 

(Caucasian or African-American) to limit potential population stratification.       

 Table 4.3 shows the association results for our primary phenotypic comparison; 

response versus non-response.  As can be seen, none of the tagSNPs were significantly 

associated with citalopram response at the p<0.01 threshold in this phenotypic 

comparison.  The only variant to meet this threshold was an intronic SNP in the HTR2A 

gene (rs1923884) in a related phenotypic comparison; remitter versus non-responder 

(p<0.008, OR=0.72, 95% C.I. 0.55-0.93).  This association was seen in the Caucasian 

subset, but was not significant within the African American samples (data not shown).  

No tagSNPs met our threshold for significance (p<0.01) in our “true” drug response 

comparisons; specific responders versus non-responders, and specific responders versus 

non-specific responders (Table 4.4). 

 As expected based on our tagSNP ascertainment, allelic association between the 

variants was low in our citalopram population, with no pairwise r2 value greater than 0.8 

in the STAR*D sample set.  We inferred haplotypes within each haplotype block in the 

five candidate genes and tested them globally for association to citalopram response.  No  
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NR Resp NR Remit

HTR1A rs6295 0.48 0.47 - - 0.48 0.47 - -
HTR1A rs1364043 0.22 0.21 - - 0.22 0.22 - -
HTR2A rs731245 0.47 0.47 - - 0.47 0.47 - -
HTR2A rs6313 0.42 0.40 - - 0.42 0.39 - -
HTR2A rs2296973 0.30 0.32 - - 0.30 0.31 - -
HTR2A rs927544 0.27 0.28 - - 0.27 0.27 - -
HTR2A rs666693 0.19 0.20 - - 0.19 0.20 - -
HTR2A rs2770296 0.25 0.29 0.07 1.13 (0.90, 1.43) 0.25 0.29 0.06 1.16 (0.91, 1.47)
HTR2A rs1923884 0.15 0.12 0.02 0.75 (0.59, 0.97) 0.15 0.12 0.008 0.72 (0.55, 0.93)
HTR2A rs1923882 0.25 0.23 - - 0.25 0.23 - -
HTR2A rs6314 0.10 0.09 - - 0.10 0.09 - -
HTR2A rs3125 0.16 0.14 - - 0.16 0.14 - -
TPH1 rs7130929 0.40 0.38 - - 0.40 0.37 - -
TPH1 rs623580 0.32 0.33 - - 0.32 0.33 - -
TPH1 rs684302 0.41 0.42 - - 0.41 0.42 - -
TPH1 rs211105 0.23 0.21 - - 0.23 0.21 - -
TPH1 rs211102 0.18 0.18 - - 0.18 0.19 - -
TPH1 rs2108977 0.45 0.44 - - 0.45 0.44 - -
TPH2 rs2129575 0.26 0.25 - - 0.26 0.25 - -
TPH2 rs2171363 0.43 0.42 - - 0.43 0.42 - -
TPH2 rs1007023 0.15 0.15 - - 0.15 0.15 - -
TPH2 rs1487278 0.21 0.22 - - 0.21 0.23 - -
TPH2 rs1487276 0.17 0.17 - - 0.17 0.17 - -
TPH2 rs1386487 0.40 0.36 0.08 0.87 (0.69, 1.10) 0.40 0.36 - -
TPH2 rs17110747 0.15 0.15 - - 0.15 0.15 - -
TPH2 rs1872824 0.39 0.35 0.05 0.81 (0.64, 1.02) 0.39 0.36 - -
MAOA rs1465108 0.29 0.3 - - 0.29 0.3 - -

Gene
MAF

p-valuetagSNP Odds ratio (95% CI)p-value

Responders (Resp, N=789) vs.            
non-responders (NR, N=501)

MAF

Remitters (Remit, N=669) vs.              
non-responders (NR=501)

Odds ratio (95% CI)

 

Table 4.3.  Tagging SNP association results for the citalopram response and remission 

phenotype comparisons.  Minor allele frequency in each phenotype group are shown, as 

well as the p-value and odds ratio for all SNPs with a p<0.1.   
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NS Spec NS+NR Spec

HTR1A rs6295 0.46 0.47 - - 0.48 0.47 - -
HTR1A rs1364043 0.19 0.22 - - 0.22 0.22 - -
HTR2A rs731245 0.43 0.47 - - 0.46 0.47 - -
HTR2A rs6313 0.36 0.39 - - 0.41 0.39 - -
HTR2A rs2296973 0.34 0.32 - - 0.30 0.32 - -
HTR2A rs927544 0.30 0.28 - - 0.28 0.28 - -
HTR2A rs666693 0.23 0.20 - - 0.20 0.20 - -
HTR2A rs2770296 0.29 0.29 - - 0.26 0.29 - -
HTR2A rs1923884 0.12 0.12 - - 0.14 0.12 0.06 0.81 (0.62, 1.05)
HTR2A rs1923882 0.23 0.23 - - 0.24 0.23 - -
HTR2A rs6314 0.10 0.09 - - 0.10 0.09 - -
HTR2A rs3125 0.13 0.14 - - 0.16 0.14 - -
TPH1 rs7130929 0.33 0.39 0.07 1.65 (1.13, 2.41) 0.39 0.39 - -
TPH1 rs623580 0.33 0.34 - - 0.33 0.34 - -
TPH1 rs684302 0.45 0.40 - - 0.42 0.40 - -
TPH1 rs211105 0.18 0.22 - - 0.22 0.22 - -
TPH1 rs211102 0.19 0.18 - - 0.18 0.18 - -
TPH1 rs2108977 0.44 0.44 - - 0.45 0.44 - -
TPH2 rs2129575 0.27 0.25 - - 0.26 0.25 - -
TPH2 rs2171363 0.45 0.42 - - 0.44 0.42 - -
TPH2 rs1007023 0.15 0.15 - - 0.15 0.15 - -
TPH2 rs1487278 0.24 0.22 - - 0.22 0.22 - -
TPH2 rs1487276 0.17 0.18 - - 0.17 0.18 - -
TPH2 rs1386487 0.34 0.37 - - 0.38 0.37 - -
TPH2 rs17110747 0.16 0.15 - - 0.16 0.15 - -
TPH2 rs1872824 0.37 0.36 - - 0.39 0.36 - -
MAOA rs1465108 0.34 0.27 0.05 0.66 (0.3, 0.95) 0.31 0.27 - -

Gene tagSNP

Specific responders (Spec, N=553) vs.         
Non-specific responders (NS, N=146)

Specific responders (Spec, N=553) vs. Non-
specific and non-responders (NS+NR, N=645)

MAF
p-value

MAF
p-valueOdds ratio (95% CI) Odds ratio (95% CI)

 

Table 4.4.  Tagging SNP association results for the citalopram specific response 

phenotype comparisons.  Minor allele frequency in each phenotype group are shown, as 

well as the p-value and odds ratio for all SNPs with a p<0.1.    
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significant haplotypic associations were observed in any of the haplotype blocks using 

our four phenotypic comparisons (data not shown).   

 

4.4  Discussion 

 In this chapter, we sought to test whether DNA variation in five serotonergic 

candidate genes is associated with clinical response to citalopram treatment.  To 

accomplish this we used our previous genotype information and complete exon 

resequencing to select tagSNPs within these genes and then examined them in a large 

population taking citalopram.  In our primary phenotypic, responders versus non-

responders, no variants met our significance threshold (p<0.01).  While a single SNP 

exceeded this threshold in a related phenotype comparison, remitters versus non-

responders, the association is at best considered marginal given the large number of 

statistical tests that were performed.  Additionally, no variants met our significance 

threshold in our other phenotypic comparisons investigating association to “true”, or 

specific drug response.  Similar results were obtained using inferred haplotypes within 

these genes.  Given that we had adequate power to detect reasonable effect sizes (Figure 

4.3), it appears that variation in these five genes does not significantly influence patient 

response to citalopram. 

 We had previously reported an association to fluxoetine response for several of 

these variants, but none of them were significantly associated with citalopram response in 

our current study.  Several factors could explain this difference, including different 

underlying mechanisms of action for the two drugs, differences in patient ascertainment 
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Figure 4.3.  Power to detect association to categorical response to citalopram in the STAR*D population (N=1,914).  On the y-axis is 

the power (1-β) of detecting an association at the various minor allele frequencies shown on the x-axis.  Three different effect sizes 

(dominant ORs) are shown.  Power was calculated using the method of Purcell et al (23).  SNPs that were associated with response in 

the fluoxetine sample had ORs ranging from 2-5, thus we had adequate power to replicate these findings in the STARD population.
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between the two studies, cryptic population stratification, or simply Type I error.  We 

attempted to control for population stratification in this study by analyzing the data 

within self-identified ethnic groups, as this has been shown to correlate well with marker 

allele frequencies (22).   

One strength of this study is the comprehensive approach we took to selecting 

tagSNPs within these candidate genes using dense marker data in our small population 

taking fluoxetine.  It could now be argued that simply using markers from the HapMap 

Project (24) would suffice, although there are several reasons why our approach had 

merit. First, the HapMap was not available when many of the experiments were carried 

out. Second, our resequencing provides finer granularity in our data, particularly for less 

common variants. Finally, the characteristics of the markers were measured in a 

population much like our test population, raising the possibility that the empirically tested 

marker set would be useful in the STAR*D dataset.  Our coverage of variants within 

African American samples in this study was limited, due to the fact that our discovery 

sample was enriched with Caucasian samples.  Our comparison of haplotype and SNP 

tagging methods revealed that the methods vary in the number of tagSNPs selected and 

their ability to accurately reconstruct common haplotypes.  The pattern recognition 

approach to selecting haplotype tagging SNPs was the most efficient at reducing 

genotyping load, however within several blocks the tagSNPs could not accurately 

reconstruct the underlying haplotypes.  This is not surprising given that this method does 

not take into account the uncertainty involved in predicting haplotypes from genotypic 

data.  The Rh
2 method of Stram et al. accounts for this uncertainty, and selected a greater 

number of tagSNPs to be genotyped.  The pairwise r2 SNP tagging method of Carlson et 
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al. was the least efficient at reducing genotyping costs.  However, we were able to show 

that the tagSNPs selected using pairwise r2 measures were sufficient to tag the common 

haplotypes as well.  Given the computational simplicity of this method and since it allows 

us to test for both single locus and haplotypic effects, we chose to use the tagSNPs 

selected by this method in our citalopram population.   

 While we have attempted to capture the majority of common variation within 

these genes, current genotyping costs prohibit complete ascertainment of all variants.  

Interestingly, a recent study by McMahon et al which utilized the same STAR*D clinical 

population reported a significant association between a SNP in the HTR2A gene 

(rs7997012) and citalopram remission after interrogating 768 SNPs in 68 

pharmacodynamic candidate genes (25).  This intronic SNP was not initially included in 

our study, though we subsequently genotyped it in our STAR*D sample.  This SNP was 

not in significant LD with any of our tagSNPs within this gene (max r2 = 0.19).  In fact, 

Phase 2 HapMap data shows that only one variant (rs9567732) within 1Mb of this SNP 

has moderate (r2 > 0.80) LD with it.  Analysis of this SNP using our phenotypic 

definitions and statistical methods also showed modest association with citalopram 

remission (p<0.002), however, our level of significance was two orders of magnitude less 

than reported by the McMahon group (p<0.00004).  This is largely due to the fact that we 

stratified our analyses by race, whereas their primary analysis is performed on the entire 

sample.  We stratified our analysis since both remission rate and the minor allele 

frequency of rs7997012 are strongly correlated with self-reported race in the STAR*D 

sample.  Thus, confounding due to population stratification seems to increase the 

significance of their finding, though within racial subgroups, the variant is still nominally 
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associated with remission.  As always, replication of this finding in an independent 

sample is critical, and because the effect size of the variant was small, additional risk 

variants are required in order to utilize genetic information in clinical decision making. 

In summary, our study has attempted to broadly investigate these five serotonin 

genes for association to citalopram response in a large patient population.  Using both 

single locus and haplotype tests, none of the polymorphisms we interrogated appear to be 

strongly associated with citalopram response or response specificity in the STAR*D 

population. Given that little is known about exactly how SSRIs exert their antidepressant 

effects in vivo, interrogation of DNA variation in other neuronal pathways or across the 

entire genome may be required to gain further insight. 
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CHAPTER 5 

TESTING FUNCTIONAL VARIATION IN PHARMACOKINETIC GENES FOR 

ASSOCIATION TO CITALOPRAM RESPONSE AND TOLERANCE* 

 

5.1  Introduction 

 Significant inter-individual variation exists in clinical response to and tolerance of 

antidepressant medication. Common genetic variation may be partly responsible for these 

phenotypic differences. The use of genotype information in clinical psychopharmacology 

could potentially help clinicians avoid the standard trial and error approach, and allow a 

more efficient way to maximize efficacy and minimize toxicity (1) as is done in certain 

situations with cancer treatment (2).  

Drug metabolism and transport genes such as CYP2D6 and CYP2C19 are obvious 

pharmacogenetic candidate genes given their known interaction with drugs like selective 

serotonin reuptake inhibitors (SSRI) and their metabolites in vivo (3).  For example, Yin 

et al. found that homozygous carriers of the non-functional allele of CYP2C19 show a 

42% decrease in clearance of the SSRI citalopram compared to that of homozygous 

carriers of the wild type allele (4).  Moreover, several of these pharmacokinetic genes 

harbor common variants that have been shown to impair enzyme function (5).  

 Despite these known in vivo relationship between antidepressant medications and 

pharmacogenetic genes, few epidemiological studies investigating the relationship 

between antidepressant response and pharmacokinetic gene variants have been carried 

out.  In a prospective study of subjects taking the SSRI paroxetine, CYP2D6 genotype 

                                                 
* This work has been submitted for publication (Peters E.J., Slager S.L., Kraft J.B., Jenkins G.D., Reinalda 
M.S., McGrath P.J., Hamilton S.P. 2007 “Pharmacokinetic genes do not influence response or tolerance to 
citalopram in the STAR*D sample.”) 
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was not associated with side effect burden (6).  Another recent study found that CYP2D6 

genotype does not influence the frequency of gastrointestinal side effects, although when 

CYP2D6 genotype is combined with a serotonin 2A receptor polymorphism, the authors 

did observe such an association (7).  Despite the equivocal results of these studies, some 

investigators have advocated the use of pharmacokinetic enzyme variant information to 

guide clinical therapy of SSRIs, particularly by adjustment of the dose prescribed (8;9).  

Here, we investigate the potential role of five pharmacokinetic genes on the response to 

and tolerance of citalopram using a large clinical sample of depressed patients who are 

enrolled in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) 

study (10).  

 The majority of the metabolism of citalopram occurs through two sequential N-

methylations, the first to form desmethylcitalopram (DCT) and the second to form 

didesmethylcitalopram (DDCT) (11).  The first step is primarily catalyzed by the 

CYP2C19 enzyme with some contribution from CYP3A4, and the second step is 

primarily catalyzed by the CYP2D6 enzyme (12).  P-glycoprotein (encoded by ABCB1) 

is thought to contribute to the control of citalopram flux across the blood brain barrier 

(13).  At steady state, DCT and DDCT are half and one-tenth as abundant, respectively, 

in plasma compared to unchanged citalopram (11).  Furthermore, DCT and DDCT are 

0.12 fold and 0.08 fold less potent, respectively, at inhibiting the serotonin transport in 

vitro than the parent compound (14) (Figure 5.1).  The combination of low plasma 

concentrations and weak inhibition of the serotonin transporter suggest that DCT and 

DDCT do not contribute significantly to citalopram’s antidepressant effects.   
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Figure 5.1.  Metabolism of citalopram by CYP enzymes.  Steady state plasma levels and 

in vitro serotonin transporter (SERT) inhibition are shown relative to the parent 

compound.   
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5.2  Methods 

5.2.1  STAR*D clinical sample.  Subjects are those enrolled in STAR*D who consented 

to give DNA (N=1,953). The STAR*D trial was a large NIMH-sponsored treatment trial 

involving 4,041 subjects that was designed to assess effectiveness of antidepressant 

treatments in generalizable samples, and to determine outcomes for outpatients with non-

psychotic major depressive disorder (MDD) treated with citalopram.  The study design 

and methods for this clinical trial are reviewed in Chapter 4 as well as in the literature 

(15).  Further demographic information on the cohort that consented to give DNA is 

presented in our previous work (16) (Table 4.1).  The aim of STAR*D was to 

prospectively determine which of a number of treatments are beneficial for subjects 

experiencing an unsatisfactory response to citalopram.  To increase the generalizability of 

the findings, STAR*D utilized broad inclusion criteria and enrolled an ethnically diverse 

population (10).   Diagnosis was made using the Psychiatric Diagnostic Screening 

Questionnaire, and depressive symptoms were assessed with the 16-item Quick Inventory 

of Depressive Symptomatology (Self-Report [QIDS-SR] version) (17) collected at clinic 

visits.  Subjects meeting criteria and providing consent were administered citalopram for 

12 weeks of treatment with vigorous dosing (20-60 mg/day).  The subset of subjects who 

provided DNA samples was 61.8% female, and was 78.1% Caucasian, 16.1% African-

American, and 5.8% other races (16).  Hispanics accounted for 14.0% of the sample.  The 

average citalopram dose at study exit was 45.5 mg (s.d. = 15.7).  Subjects were consented 

for genetic studies as part of the National Institute of Mental Health’s Human Genetic 

Initiative, and the work described here was approved by the institutional review board of 

the University of California, San Francisco. 
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5.2.2  Phenotypic definitions.  We defined six phenotypes to evaluate citalopram 

response and tolerability. The first two were responders and non-responders: 

responders are subjects who had at least 42 days of treatment and whose QIDS-SR score 

on their final clinical visit shows ≥50% reduction in score; the remaining subjects, who 

also had at least 42 days of treatment, were then considered non-responders.  The ≥50% 

reduction in symptom severity on the HRSD17 is the conventional definition of response 

in clinical trials.  We used the QIDS-SR score to estimate severity since all subjects had 

this rating and it correlates highly with the 17-item Hamilton Rating Scale for Depression 

(HRSD17) score (17).  We required this 42 day threshold to ensure an adequate exposure 

to citalopram and to enhance the power to find associations between genotype and 

response by reducing potential heterogeneity.  The third phenotype was remission, 

defined as a final QIDS-SR score ≤5.  Our specific response phenotype is based on our 

attempt to further reduce heterogeneity by attempting to separate placebo response from 

true drug response in antidepressant trials (18).  Some response to antidepressant 

medication is a placebo response, which we posit may have either no genetic determinant 

or a different genetic underpinning than "true" drug response.  Thus it is of interest to 

limit our definition of response to true pharmacologic response rather than placebo 

response.  For these phenotypes, a “specific” pattern of response was defined by 

persistence, or the maintenance of response for the remainder of the study once it was 

attained.  Previous studies considered "specific" patterns to be further characterized by 

delayed response, i.e., after the first two weeks (19).  We were unable to employ this 

criterion because the STAR*D study design did not include ratings before week two.  We 

defined persistent, or “specific” responders, as those subjects who had a sustained 
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response at all consecutive visits following the first visit with response, as measured by 

≥50% reduction in QIDS-SR scores.  Those whose response occurred only at the last visit 

were removed from the analysis.  Note that "specific" responders are a subset of 

responders (as defined by the response phenotype above).  Moreover, because visits were 

at least two weeks apart, we assumed that intervening weeks were characterized by the 

response defined by the previous visit.  Our tolerance outcome was based on study exit 

data; all patients who continued with citalopram at the end of STAR*D Level 1 treatment 

were considered tolerant, while patients who refused to continue citalopram or left the 

study due to side effects were considered intolerant.  For those who left Level 1 for 

further treatment but did not want to continue with citalopram, their phenotype was 

probably tolerant, probably intolerant, or intolerant based on the level of side effects at 

the study exit based on the Global Rating of Side Effect Burden (20).  In order to reduce 

heterogeneity, we did not use subjects who were considered probably tolerant or probably 

intolerant.  

5.2.3  Molecular methods.  Several cytochrome P450 genes (CYP2C19, CYP2D6, 

CYP3A4, CYP3A5) as well as the P-glycoprotein transporter protein (ABCB1) are thought 

to be involved in the metabolism and distribution of citalopram, based on human and 

animal model pharmacokinetic studies (12;13).  We chose to examine DNA variants in 

cytochrome P450 genes that cause or are suspected to cause severe functional changes in 

the targeted proteins.  We also investigated three common SNPs in the ABCB1 gene 

(C1236T, G2677T, and C3435T) which may be associated with treatment outcome in 

acute myeloid leukemia patients and reduced P-glycoprotein expression in vivo, though 

results are not unequivocal (21;22).   
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Gene Variant Caucasian African-
American Enzyme function in vivo

CYP2D6 *3 0.02 0.003 none
CYP2D6 *4 0.19 0.07 none
CYP2D6 *5 0.03 0.06 none
CYP2D6 *6 0.01 0.003 none
CYP2D6 *7 0.0003 0.002 none
CYP2D6 *8 - - none
CYP2D6 *9 0.03 0.005 decreased
CYP3A4 *1B 0.04 0.65 unknown
CYP3A5 *3C 0.09 0.70 decreased

CYP2C19 *2 0.13 0.19 none
CYP2C19 *3 - 0.02 none
CYP2C19 *17 0.21 0.20 increased

ABCB1 C1236T 0.44 0.19 unknown
ABCB1 G2677T 0.44 0.08 unknown
ABCB1 C3435T 0.51 0.21 unknown

CYP2D6 PM 0.05 0.02 none
CYP2C19 PM 0.02 0.02 none  

Table 5.1.  List of genotyped variants in pharmacokinetic genes. Variants are listed by 

gene (accepted nomenclature at (http://www.cypalleles.ki.se/ for cytochrome P450 

genes), allele frequencies in the STAR*D sample, and known functional status of the 

variant. PM, poor metabolizer, defined as described in Methods. 
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Patients were genotyped for CYP3A5*3C, all three CYP2C19 variants (*2, *3, 

*17), and all three ABCB1 variants using commercially available 5’ exonuclease 

fluorescence (Taqman) assays (see section 4.2.7 for laboratory assay conditions). 

CYP2D6*5 deletion status was determined using a previously published tetra-primer long 

range PCR assay (23).  All other CYP2D6 alleles (*3, *4, *6, *7, *8, *9) were determined 

by first specifically amplifying the CYP2D6 gene as a 5.1kb long range PCR product (as 

described in (23)) followed by direct sequencing of two regions containing exons 3-4 

(sequencing primer: AAAGAGTGGGCCCTGTGACCAGCT) and exons 5-6 

(sequencing primer: GGGTGTCCCAGCAAAGTTCATGG).  This two step 

amplification procedure was performed in order to avoid non-specific amplification of 

the CYP2D6 pseudogene located near the CYP2D6 gene.  CYP3A4*1B genotype was 

determined by direct sequencing of a 320 bp PCR product that specifically amplifies the 

5’ proximal region of the CYP3A4 gene (24).  A synopsis of the 15 variants is shown in 

Table 5.1.  Direct sequencing genotypes were scored using Mutation Surveyor v2.61. 

5.2.4  Statistical methods.  To reduce type I error, we relied on a two-stage design for 

analysis (25).  Within each ethnic group, gender, and response to citalopram (using only 

our responder and nonresponder phenotypes), we randomly split our subjects a priori into 

a discovery set and validation set.  Within each set, we stratified all analyses by self-

reported ethnicity due to the large allele frequency differences and phenotype prevalence 

differences between ethnic groups.  Only the two largest ethnic groups (Caucasian and 

African-American) were analyzed.  Hardy-Weinberg equilibrium was evaluated for each 

SNP within the discovery set using all participants within each ethnic group.  This is 

because all subjects had depression, and we do not suspect the variants to influence risk 
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of depression.  No SNPs were found to violate Hardy-Weinberg equilibrium using a 

Bonferroni-corrected threshold.  We used unconditional logistic regression analysis to 

examine associations between each genetic polymorphism and each phenotypic 

comparison.  Comparisons performed were: 1) responders vs. non-responders, 2) 

remitters vs. non-responders, 3) specific responders vs. non-responders, and 4) tolerant 

vs. intolerant.  Table 5.2 displays the sample sizes of our phenotypic comparisons and 

race and gender information for each group.  Each polymorphism was modeled 

individually as gene-dosage effects in the regression models, and odds ratios (OR) and 

95% confidence intervals were estimated.  For the CYP2D6 and CYP2C19 genes, we 

also modeled the putative metabolism status of the subjects as follows.  Individuals with 

two (phase known) non-functional alleles in these genes were considered poor 

metabolizers (PMs); all other genotypes were considered extensive metabolizers (EMs).  

Ultra rapid metabolizers (UMs) were not detectable by our genotyping methodology.  

Association between haplotypes and the phenotypes were calculated using a score test 

implemented in the computer program HAPLO.SCORE (26).  Pair-wise interactions 

among all independent SNPs were tested using logistic regression.  A likelihood ratio test 

was used to test for significance of the interaction effect.  Only those SNPs with a p-value 

of <0.05 from the single SNP analyses in the discovery set were evaluated in the 

validation set.  Those SNPs in the validation set that had a p-value <0.05 and the same 

directionality of association as that in the screening set were reported as statistically 

significant.  We used survival analysis to examine whether metabolizer status influenced 

the ability to complete the trial.  Survival curves were generated by the  



 

 

 

Table 5.2.  Sample sizes and frequency distribution of race and gender in the discovery and validation sets for each phenotype 

comparison.   
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method of Kaplan-Meier, and differences between PM and EM curves were tested using 

the log rank statistic.  We also examined the relationship between metabolizer status and 

citalopram dose, comparing final dose between extensive and poor metabolizers at the 

CYP2D6 and CYP2C19 loci with a t-test.  

 

5.3  Results 

Patients were genotyped for 15 polymorphisms in the CYP2D6, CYP2C19, 

CYP3A4, CYP3A5, and ABCB1 genes.  We compared genotype frequencies between 

responders and non-responders, remitters and non-responders, and specific responders 

and non-responders within each racial subgroup.  Note that remitters and specific 

responders are subsets of responders.  We also compared genotype frequencies of 

subjects intolerant to citalopram to those who could tolerate the medication.  Table 5.2 

displays the frequency distribution of the phenotypes by ethnicity among subjects for the 

discovery and validation sets.  Because one of our criteria for splitting our sample was 

based on the response/non-response phenotypes, the distribution of response and non-

response are similar between the discovery and validation set.  In the discovery set, we 

found seven variants to be associated (p<0.05) with citalopram response or tolerance.  All 

but one of these were found in the African-American ethnic group.  However, none of 

these SNPs were replicated in our validation set (Table 5.3).  It is of note that the point 

estimates for the odds ratios for nearly all of these variants switched directionality in the 

second stage, most likely as a result of small samples sizes and the low allele frequencies 

of those variants.  Similar non-significant results were obtained using haplotype testing 

(results not shown).  CYP2D6 or CYP2C19 metabolizer status (PM vs. EM) was also not 
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associated with citalopram response or tolerance in the first stage (results not shown).  

We also found no evidence for interaction (P > 0.05) between the variants in any of the 

genes tested (results not shown).  We further sought to determine if metabolizer genotype 

was correlated with other clinical variables of interest, namely the dosage of citalopram 

and the length of time a subject would continue with citalopram treatment.  For all 

subjects, regardless of outcome or length of trial, dose was not correlated with CYP2D6 

or CYP2C19 metabolizer status (Table 5.4).  Additionally, CYP2C19 or CYP2D6 

metabolizer status did not significantly influence the subject’s ability to remain in the 

trial (Figure 5.1).   

 

5.4  Discussion 

There is growing interest in the utility of pharmacokinetic gene polymorphism 

screening in psychopharmacological treatment, particularly with antipsychotic 

medications and older antidepressant agents (5).  Others have further argued that the use 

of most psychotropics could be impacted by DNA variants in pharmacokinetic genes, 

with decisions about which drug to use, as well as the appropriate dosing, based on 

genotypic information (8;9).  The pharmacokinetics of many SSRIs, including 

citalopram, are affected by CYP2D6 and CYP2C19 genotype status, although there is no 

evidence regarding how plasma levels of citalopram influence clinical efficacy (27).  For 

example, CYP2C19 poor metabolizers show a 42% decrease in citalopram clearance 

when compared to homozygous extensive metabolizers, yet there was no difference in 

side effects.  Despite the intuitive appeal of ascribing differences in drug tolerance and 

efficacy to variation in pharmacokinetic genes (9;28), no adequately powered studies



 

 

 

Discovery set Validation set 
Ethnicity Phenotypic comparison Gene Variant p-value (OR, 95% CI) p-value (OR, 95% CI)
Caucasian Tolerant vs. intolerant CYP2C19 *2 0.005 (0.44, 0.24 - 0.81) 0.86 (1.00, 0.63 - 1.57)

African Amer. Responders vs. non-responders ABCB1 C3435T 0.01 (0.36, 0.17 - 0.75) 0.59 (1.51, 0.70 - 3.26)
African Amer. Remitters vs. non-responders ABCB1 C3435T 0.02 (0.36, 0.16 - 0.78) 0.85 (1.28, 0.56 - 2.93)
African Amer. Specific responders vs. non-responders CYP2D6 *5 0.03 (4.44, 1.07 - 18.39) 0.32 (0.45, 0.09 - 2.37)
African Amer. Specific responders vs. non-responders CYP2D6 *4 0.04 (0.26, 0.05 - 1.23) 0.96 (1.24, 0.35 - 4.41)
African Amer. Specific responders vs. non-responders ABCB1 C3435T 0.02 (0.40, 0.17 - 0.93) 0.71 (1.39, 0.58 - 3.35)
African Amer. Tolerant vs. intolerant CYP3A5 *3 0.04 (0.32, 0.08 - 1.37) 0.33 (1.57, 0.48 - 5.07)  

Table 5.3.  Single locus results for tests that were significant (p<0.05) in the discovery sample set.  Significance was assessed using 

logistic regression, and odds ratios (OR) and confidence intervals (CI) shown are for minor allele carrier versus non-carrier.  No 

variants were significantly associated in both the discovery and validation sets. 
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Table 5.4 a) 

Metabolizer status Mean final dose (s.d.) p-value
CYP2C19 EM 45.3 (15.7) 0.13
CYP2C19 PM 40.7 (16.4)

CYP2D6 EM 45.4 (15.8) 0.25
CYP2D6 PM 43.2 (16.8)  

 

 

Table 5.4 b) 

Metabolizer status Mean final dose (s.d.) p-value
CYP2C19 EM 46.7 (15.6) 0.87
CYP2C19 PM 45.7 (15.1)

CYP2D6 EM 46.7 (15.7) 0.30
CYP2D6 PM 53.3 (10.3)  

 

 

Table 5.4.  Effect of metabolizer status on final citalopram dose prescribed.  Mean final 

dose (mg) for each metabolizer group is shown, along with the standard deviation (s.d.) 

and significance level assessed using Student’s t test.  Results are shown for the 

Caucasian subgroup (a), as well as the African-American subset (b). 
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Figure 5.2 a)  
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Figure 5.2 b) 
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Figure 5.2.  Survival curves displaying fraction of subjects remaining in the trial, 

separated by cytochrome P450 metabolizer status for the Caucasian subgroup.  a)  

Subjects who were poor metabolizers (PM) for CYP2C19 were not significantly more 

likely to drop out of the trial earlier than extensive metabolizers (EM).  b) Similar non-

significant results were observed for subjects who were CYP2D6 PMs 
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Figure 5.3 a)  
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Figure 5.3 b) 
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Figure 5.3.  Survival curves displaying fraction of subjects remaining in the trial, 

separated by cytochrome P450 metabolizer status for the African American subgroup.  a)  

Subjects who were poor metabolizers (PM) for CYP2C19 were not significantly more 

likely to drop out of the trial earlier than extensive metabolizers (EM).  b) Similar non-

significant results were observed for subjects who were CYP2D6 PMs 

 

p = 0.89 

p = 0.94 
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have been published that consistently report a significant clinical effect.  Considerable 

debate exists regarding the relevance of drug metabolizing enzymes for the clinical 

pharmacology of SSRIs (11).  The flat dose-response curve and wide toxicity index argue 

against a strong relationship between plasma levels and clinical response (29).  This 

appears to be the case for citalopram, which has few drug-drug interactions based on in 

vitro and in vivo studies (12).  Nevertheless, polymorphisms in enzymes involved in 

citalopram metabolism, such as CYP2C19 and CYP2D6, do alter citalopram disposition 

(4;30-32).  For example, in one study of seven non-responders to citalopram, six of seven 

were extensive metabolizers for CYP2D6 and all seven were CYP2C19 extensive 

metabolizers (33).  When given an inhibitor of these two enzymes, citalopram serum 

levels rose in all seven subjects, with six of them showing substantial clinical 

improvement. These data suggest that enzymes involved in citalopram metabolism may 

contribute to response, at least in some extensive metabolizers.  There are no similar data 

regarding side effects, although a sizable (n=749) Swedish study found no difference in 

citalopram or desmethylcitalopram levels between those experiencing a number of 

common side effects compared with those who did not (34).   

The size of the STAR*D study provides a clinical sample with statistical power to 

detect moderately sized genetic influences.  In this study, we detected no significant 

association between any of the polymorphisms and our treatment phenotypes.  Our two-

stage analysis allowed us to control type I error by requiring validation of our results in a 

second sample.  However, by splitting our sample as such, we sacrificed statistical power.  

For our response phenotype in the discovery set, we had 80% power to detect a minimum 

detectable odds ratio of 1.9 assuming an allele frequency of 0.05 and 5% significance 
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level and using our Caucasian sample.  The minimum detectable odds ratio increased to 

2.74 for the tolerant phenotype.  Given the lack of a dose-response relationship with 

citalopram in the literature, we expected that the results for the response phenotypes 

would not be significant.  The negative association results for the tolerance phenotype in 

our Caucasian sample, however, were unexpected, as alterations of circulating drug or 

metabolite levels could conceivably lead to medication side effects and intolerance (27), 

although the power to detect small effects with this phenotype was limited.  It is possible 

that genetic influence on a patient’s medication tolerance is derived largely from 

pharmacodynamic as opposed to pharmacokinetic gene variation, as observed in a study 

of paroxetine tolerance by Murphy et al. (6). 

The study described here has several limitations.  Given the heterogenous sample, 

population stratification may be a potential explanation for our negative findings, with 

true associations being obscured by unobserved population sub-structure.  However, 

population studies have found that self-reported ethnicity is a close surrogate for 

underlying genetic ancestry information (35).  We limited our genotyping of 

pharmacokinetic candidate genes to known, deleterious alleles that are common in 

Caucasian populations.  In order to comprehensively screen these genes, rare and 

functionally unknown variants would need to be genotyped.  The STAR*D clinical study, 

while large and broad in scope, was not designed for pharmacogenetic studies of this 

type.  For instance, citalopram was chosen partly due to its lower potential for influence 

by pharmacokinetic polymorphism.  Citalopram dosage was also not fixed, though the 

majority of subjects (78%) were receiving 40-60 mg per day at the end of the study.  The 

final citalopram dosage prescribed was not influenced by the subject’s genotype status.  
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This is consistent with work carried out with many of the same functional DNA variants 

in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study, in 

which there was no association to dosing, efficacy, or tolerability to five antipsychotics 

(Iris Grossman and David Goldstein, personal communication).  This observation is 

particularly interesting in that others have noted a strong correlation between maximum 

prescribed dose of phenytoin or carbamazepine in epilepsy and genetic variants in 

CYP2C9 or SCN1A , suggesting the utility of clinical adjustment of dose in response to 

genotype (36).  An additional limitation involves the allowance of concomitant 

medications in the STAR*D trial that potentially interfere with or accelerate the 

metabolism of citalopram. Without having data on co-administered medications, we were 

unable to control for this theoretical drug-drug interaction effect.  It is noteworthy that the 

analysis of the CATIE study indicates that using concomitant medications known to alter 

metabolic status did not alter the results.  Additionally, circulating concentrations of 

citalopram or citalopram metabolites were not obtained, which might have been useful as 

a proxy measure of compliance.  Finally, our findings regarding citalopram may not be 

generalizable to other SSRIs, each of which has a unique metabolic disposition.  Any 

broadly administered pharmacogenetic test will have to tolerate similar limitations in 

order to be clinically useful.  Thus, at least for citalopram, it appears to be premature to 

advocate routine pharmacokinetic gene analysis for dose adjustment or clinical decision 

making. 

In summary, here we have tested known functional variation in relevant 

pharmacokinetic genes for association to citalopram response and tolerance.  Using a two 

stage study design and the STAR*D clinical population, none of these variants were 
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significantly associated with clinical outcome in both our discovery and validation 

sample sets.  Furthermore, combinations of these variants in the form of predicted 

metabolizer status for CYP2D6 and CYP2C19 (EM vs. PM) were not associated with 

clinical outcome.  Final prescribed citalopram dose and length of time in trial was also 

not associated with pharmacokinetic gene variants.  Thus, this study does not support a 

strong role for common pharmacokinetic gene variants in patient outcome from treatment 

with citalopram.   
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CHAPTER 6 

WHOLE GENOME ASSOCIATION STUDY OF CITALOPRAM REMISSION AND 

TOLERANCE 

 

6.1  Introduction 

 While candidate gene study designs are often utilized in the investigation of 

complex diseases, having a prioi knowledge of the causative (or even likely causative) 

candidate genes is often difficult for most phenotypes.  Indeed, identification of new 

genes is often the driving force behind complex disease studies.  Gene-agnostic genome-

wide linkage studies have been performed for years, but as discussed in Chapter 1, 

logistical difficulties arise from collecting families for pharmacogenetic studies.  Recent 

advances in SNP genotyping technology and reduction in costs have made whole genome 

association (WGA) studies feasible (1).  The first reports of WGA studies are just 

beginning to appear in the literature and there have been some great success such as the 

CFH gene and macular degeneration (2), however, complexities and questions remain 

regarding the optimal analysis of WGA data (3).  The obvious strength of being able to 

assay most of the genes in the human genome is tempered by concerns about multiple 

testing penalties, population stratification, and the apparent non-replication of many 

smaller candidate gene association studies (4).  There is still much debate over the most 

powerful method for detecting interacting loci (SNP x SNP), which will be critical for 

successful mapping in a common-disease common-variant framework, where individual 

variants will not display great increases in risk of having the phenotype.  Despite these 

methodological considerations, large WGA studies are currently underway such as the 
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Wellcome Trust Case Control Consortium (WTCCC), which will genotype over 16,000 

subjects with various common diseases as well as 3,000 control samples, and the Genetic 

Association Information Network (GAIN).  Both of these projects are consortium-based 

and have pledged to make their raw genotype and clinical data publicly available shortly 

after it is generated, allowing other investigators to apply different analytical strategies.   

We embarked on a large WGA study using a subset of the STAR*D patient 

population for which DNA samples were collected, which consists of over 1,900 

depressed subjects taking the SSRI citalopram.  In order to limit Type I error and reduce 

overall genotyping costs, we used a two-stage study design (5).  In the first stage, we 

genotyped approximately half of the sample (discovery set, N=967) for 591,158 SNPs 

distributed across the human genome.  The most highly associated SNPs were then 

genotyped in the second half of the sample (validation set, N=985) to assess if they 

would replicate the initial association.   

 Here we report the initial analysis of the WGA data, including descriptions of the 

genotype data manipulation and quality control checks.  Single locus SNP association 

results are reported for the remission and intolerance phenotypes in the self-identified 

Caucasian, non-Hispanic subjects, which is the largest racial subgroup.  In addition to 

single locus testing, we also report on the development and testing of multi-SNP clinical 

decision trees.  While none of the putative associations investigated in the second stage 

replicated their strong initial associations, as discussed below, this is a very preliminary 

analysis involving the “lowest hanging fruit” and as such, broader, more comprehensive 

genotyping in the validation sample set needs to be performed.  The results of those 

experiments will be reported in the future elsewhere.  



 

 180

6.2  Methods 

6.2.1  STAR*D study population.  The study population consisted of the subjects who 

consented to give DNA from the STAR*D antidepressant trial, as reviewed elsewhere 

(see Chapter 5).  Within each ethnic group, and gender, we randomly split our subjects a 

priori into a discovery and validation sample set (Table 6.1).  The entire discovery set 

was genotyped using the WGA platforms.  Due to heterogeneity within our self-identified 

“White” subjects, as uncovered via the structure analysis described below, all analyses 

were split into three racial subgroups: White, non-Hispanic; White, Hispanic; and African 

American.  Other self-reported race classes were not analyzed.  

6.2.2  Discovery set genotyping.  A total of four high density SNP panels were used to 

genotype the discovery set.  The Affymetrix 500K array (6) was used (N=500,568 

successful SNPs), and genotypes were scored using Affymetrix’s BRLMM algorithm (7).  

In addition, ParAllele’s molecular inversion probe (MiP) technology (8) was utilized to 

genotype a panel of coding region SNPs (cSNPs, N=19,986), a panel of gene-centric 

SNPs (N=20,127), and a “linker” panel designed to fill in the regions with low coverage 

on the 500K array (N=50,477).  In total, we received successful genotype calls for a total 

of 591,158 SNPs.   

6.2.3  Validation set genotyping.  SNPs that were significantly associated in the 

discovery set with citalopram remission or intolerance in the largest racial subgroup 

(Non-Hispanic White) were genotyped in the validation set using 5’ exonuclease 

(Taqman) assays.  A total of 14 SNPs were genotyped in the validation set (Table 6.2), in 

an attempt to validate single locus associations and SNP interaction decision trees.  We  



 

 

Non-Hispanic White Hispanic White African American Non-Hispanic White Hispanic White African American
Remitter 336 49 61 263 39 42

Non-Responder 238 61 73 186 33 55
Unclassified 62 13 16 194 52 66

Tolerant 506 91 104 427 60 78
Intolerant 52 7 9 101 26 14

Unclassified 78 25 37 115 38 71

Discovery Set Validation Set

 

Table 6.1.  Sample sizes for the discovery and validation sample sets.  Shown are the number of subjects with each phenotype 

classification for the remission vs. non-responder (top) comparison, and the tolerant vs. intolerant (bottom) comparison.  Subjects are 

divided into discovery and validation sets, and further subdivided by self reported race.  Unclassified refers to subjects who did not 

meet our classification criteria.  For the remission phenotype, generally these subjects were not in the study long enough (<4 weeks) to 

make accurate determination of their response to citalopram.  For the intolerance phenotype, the unclassified subjects did not meet the 

STAR*D algorithm for intolerance or tolerance and were classified as probably intolerant and probably tolerant; these subjects were 

not used in our analyses.   
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also re-genotyped the discovery set for these SNPs using the Taqman assays in order to 

assess the quality of the initial WGA genotyping.  For a description of the laboratory 

methods used for the Taqman assays, see section 4.2.7. 

6.2.4  WGA data manipulation and quality control.  Raw genotype data files were 

output to us by Affymetrix in long (samples as columns in the database) form and were 

converted to wide (SNPs as columns) form in order to perform data analysis.  This 

transposition was accomplished using a custom Perl script kindly provided by Jason 

Peters (“transpose_rows_columns_NSP_STY.pl”). 

 We removed six samples from the dataset due to low sample call rates (<85%), 

leaving 633 White non-Hispanic, 121 White Hispanic, and 149 African American 

samples in the final discovery dataset.  Of the 591,158 SNPs that were successfully 

genotyped, we removed: 282 SNPs which had no chromosomal annotation in dbSNP, 

1,129 SNPs that had a call rate less that 85% across the entire discovery set, 1,589 SNPs 

that were monomorphic across the entire discovery set, and 5,935 SNPs that were 

duplicated across panels.  The remaining SNPs (N=582,223) were used in the analyses 

described below.  In order to be tested for association to citalopram response phenotypes, 

SNPs were required to conform to Hardy-Weinberg equilibrium (HWE).  SNPs with a  

significant departure from HWE (p<0.00001) were excluded from association analysis.  

SNPs were tested for departure from HWE within each racial subgroup.  Using this 

threshold, 11,529 SNPs were dropped from analysis in the White, non-Hispanic 

subgroup.  This threshold is conservative, given that our Bonferroni corrected p-value for 

582,223 tests at a study-wide alpha of 0.05 would be p<8.6x10-8.   

SNP data quality control and descriptive statistics were generated using custom 
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Phenotype  Analysis dbSNP ID ABI Taqman ID Gene Chr. Chr. position
Remission  single locus rs4246510 C___3147092_10 - 1 38886987
Remission  single locus rs6660134 C__30419851_10 - 1 38885739
Remission  single locus rs10183914 C____157561_10 NFE2L2 2 177923173
Remission  single locus / interaction rs12033075 C__31226656_10 - 1 53609538
Remission  interaction rs2514276 C___1747463_10 - 11 90945600
Remission  interaction rs4821197 C___2520477_10 - 22 32649854
Tolerance  single locus rs16900795 C__32750710_10 CDH6 5 31297645
Tolerance  single locus rs828360 C___8945981_10 HTR1E 6 87705285
Tolerance  single locus rs6489035 C__29408252_10 - 12 124928948
Tolerance  single locus rs7145321 C___1815889_10 - 14 65507316
Tolerance  single locus rs1367841 C___2050336_10 CPEB1 15 81107680
Tolerance  interaction rs4512110 C__28976342_10 COL4A3BP 5 74791977
Tolerance  interaction rs2648849 C__16055367_10 - 8 129251833
Tolerance  interaction rs17600619 C__33544364_10 - 13 58057924  

Table 6.2.  Follow-up SNPs genotyped in the validation sample set.  Four single locus 

associations were tested for the remission phenotype comparison, five were tested for the 

intolerance phenotype comparison.  Three SNPs in each phenotype comparison were 

tested in the interaction analysis.  Shown are the dbSNP IDs for the 14 SNPs, as well as 

the ABI Taqman assay ID.  Chromosome, chromosome position, and gene annotation (if 

applicable) are from NCBI build 35. 
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do-files (“WGA_QC.do”, “MAF_Analysis.do”, “WGA_Spacing.do”, written by Eric 

Peters) and executed in STATA-MP version 9.   

6.2.5  LD analysis.  In order to assay the amount of redundancy in the SNP genotype 

data, SNP binning based on pairwise r2 values was performed.  Within each racial 

subgroup (White, non-Hispanic, White Hispanic, and African American), pairwise r2 for 

each SNP with all other SNPs within a 1 megabase sliding window was calculated.  This 

process was repeated for all the SNPs in the WGA panel.  Data was then complied, any 

redundancy was removed, and the number of proxy SNPs at several r2 thresholds was 

calculated.  This was performed using custom do-files (“LD_R2_binning.do” and 

“Appending_LD_bins.do”, written by Eric Peters) and executed in STATA-MP version 

9. 

6.2.6  Structure analysis.  In order to assess the levels of genetic heterogeneity in the 

sample, the MCMC method of Pritchard et al was performed, as implemented in 

Structure version 2.0 (9).  Using the discovery sample set and 500 random SNPs from the 

WGA data from across the genome, the algorithm was run using 100,000 burn-ins 

followed by 1,000,000 iterations.  Several runs were performed assuming from 1 to 4 

underlying subpopulations (“K”), and results for each “K” were stable in terms of 

estimates of alpha, Fst, and proportion ancestry (“Q”) for each individual, indicating the 

algorithm had not inadvertently settled at a local maximum.  However, given that the 

validation sample set was genotyped for a very limited number of markers, a 

corresponding analysis could not be performed in that group.      

6.2.7  Single locus analysis.  In this report, we focused all the association analyses on the 

largest racial subgroup, self-identified non-Hispanic White subjects.  We investigated two 
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clinical phenotypes, citalopram remission (defined as a final QIDS score of less than 6), 

and intolerance to citalopram (defined using clinical exit and GRSEB data).  Both of 

these phenotypes have been described in detail previously for this study population (see 

section 5.2.2).  We used a custom do-file (“single_locus_analysis.do”, written by Eric 

Peters and incorporating the genass2.ado script kindly provided by Dr. Neil Shephard) to 

test each SNP in the WGA panel for association to the two phenotypes within the White 

non-Hispanic subgroup in the discovery set.  Only SNPs that passed the QC filters 

described above were used in the association analysis.  Given that we do not know the 

mode of inheritance a priori, we used a genotypic model (data coded as: AA, Aa, aa), and 

Fisher’s exact test to investigate single locus associations.  Dominant (minor allele carrier 

versus non-carrier) odds ratios for each SNP were also calculated.   

 The selection of our statistical threshold for which SNPs to genotype in the 

validation sample set was based on the capacity to genotype these samples in the lab for 

minimal costs.  As such, we only sought to investigate the most highly associated SNPs.  

Our threshold was a p-value of less than 1x10-5 using the genotypic model in the 

discovery set, which yielded a reasonable number of SNPs to follow up using singleplex 

genotyping assays.  We then required these follow-up SNPs to have a p<0.05 in the 

validation sample set in order to declare study-wide significance. 

6.2.8  Interactions.  In order to test for SNP x SNP interactions, as well as interactions 

between SNPs and clinical covariates, we developed decision trees using the discovery 

dataset and tested them using the validation sample set.  Decisions trees were constructed 

for both phenotype comparisons in the White, non-Hispanic subgroup.  The entire 

genotype data of the discovery set, along with age, gender, marital status, depression 
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subtype, recurrence, and severity at baseline were all included in the model.  The decision 

tree was built using the most parsimonious split at each node, defined as the division of 

the data based on a single variable’s value that creates the two most distinct subnodes, as 

measured by the frequency of the phenotype (e.g., remission) within those subnodes.  The 

data is split in this way until no further statistically significant splits can be made.  

Genotypic splits were allowed using either recessive or dominant models.  Since this is 

the model generation step, we only required a Bonferroni corrected p<0.1 to declare a 

split statistically significant.   

We used the validation data set to empirically assess the clinical significance of 

the decision trees.  In order to utilize these trees, a subject is “run” through the model 

(starting at the top, and continuing in whichever direction their genotype dictates), until a 

terminal node is reached.  That subject’s predicted probability of having the phenotype in 

question is equal to the frequency of that phenotype in the same terminal node using the 

discovery set data.  We rounded the subject’s phenotype probability to a dichotomous 

variable (e.g., 1 or 0) and assessed the significance of the decision trees using standard 

diagnostic test metrics.  Alternatively, logistic regression with the actual outcome as the 

dependent variable and the subject’s phenotype probability (from the decision tree) as the 

independent variable was used to assess the statistical significance of the decision trees.  

Interaction analyses were performed in HelixTree and STATA-MP version 9. 

        

6.3  Results 

6.3.1  WGA data descriptions and QC.  A total of 582,223 unique SNPs passed our QC 

filters that are described in the methods section.  Overall, these SNPs had a very high call  
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Figure 6.1.  SNP marker density across the genome.  Shown is the SNP density (y-axis, in 

SNPs per megabase) versus physical position across the genome, which is shown on the 

x-axis (chromosome 1 to Y, left to right).  Large gaps seen are centromeric and telomeric 

portions of the chromosomes, where hybridization-based SNP assays do not work.  

Average density is shown by horizontal dashed line, approximately 190 SNPs per 

megabase. 
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rate (mean 99.1%, standard deviation 1.7%).  There were 5,935 SNPs that were assayed 

across multiple panels.  These duplicated SNPs had a genotype concordance of 99.59% 

(21,740 discordant genotypes out of 5,254,488 possible comparisons). 

 SNPs were not uniformly distributed across the entire genome.  Large gaps exist 

in centromeric and telomeric regions of some chromosomes, as seen in Figure 6.1.  This 

is due to technical difficulties that arise from assaying those regions which are abundant 

in repetitive DNA sequences.  On average, there were approximately 190 SNPs assayed 

per megabase of sequence. Assay coverage was markedly lower on the X and Y 

chromosomes.  On average there was a marker every 4.9 kb (median 2.3 kb), though the 

distribution of intermarker distances is skewed due to a small number of very large gaps 

(Figure 6.2). 

 Marker minor allele distribution varied between racial subgroups.  The white non-

Hispanics subgroup had fewer SNPs with a minor allele frequency greater than 5% than 

the African American subgroup (447,696 and 502,194, respectively, see Figure 6.3).  

Large differences in allele frequencies for individual SNPs were observed between the 

White non-Hispanic and African American subgroups (Figure 6.4). This highlights the 

potential for confounding due to genetic structure, which we hope to avoid by testing for 

association within self-identified racial subgroups.  

6.3.2  Structure analysis.  Population stratification can lead to confounding in case-

control association studies.  We ran a Structure analysis on the discovery sample set 

using 500 random SNPs from across the genome (Figure 6.5).  Results indicated that a 

model with three genetic subgroups (i.e., K=3) was the best fit for the data.  Clear 

distinction was  
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Figure 6.2.  Hisotgram of inter-marker distances.  Shown is the distance between adjacent 

SNPs (kb) on the x-axis (in 1 kb bins), and the proportion of gaps with that given distance 

(y-axis).  The distribution is skewed (average gap = 4.9 kb, median = 2.3 kb) due to a 

small number of very large gaps.   
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Figure 6.3.  Histogram of SNPs by minor allele frequencies (MAF) in each racial 

subgroup.  On the x-axis is the SNP MAF (in 1% bins), with each bin’s proportion of the 

total SNPs shown on the y-axis.  a)  Results for the non-Hispanic White subgroup.  Note 

the skewed distribution, with almost 10% of the SNPs having a MAF of 1% or less.  Only 

77% of the total markers had a MAF greater than 5%.  b.)  Results for the African 

American subgroup.  The distribution is almost flat, with 86% of the total markers having 

a greater than 5% MAF.   
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Figure 6.4.  Scatterplot of SNP allele frequency by racial subgroup.  Each of the 

discovery set genotypes is represented as a single point, with African American allele 

frequency on the y-axis and non-Hispanic White allele frequency on the x-axis.   
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Figure 6.5.  Results of Structure analysis using 500 random SNPs in the discovery sample 

set.  Top plot shows the percent identity (Q) from the three historical subpopulations for 

each subject.  Subjects are ordered based on self-reported race, as shown to the right of 

the Structure plot.  Also shown is a graph of the posterior probability of the model at 

various numbers of historical subpopulations (K).  As can be seen, the addition of a 4th 

subpopulation does not significantly strengthen the model fit, thus a K=3 was used.   
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seen between the self-reported African American and White samples, and the third 

genetic subpopulation correlated well with Hispanic ancestry.  Due to the fact that we did 

not genotype enough markers in the validation set for a similar structure analysis, we 

used self-reported racial and ethnic status as a proxy for genetically determined ancestry.  

Thus, all analyses presented here are within these subgroups (non-Hispanic White, 

Hispanic White, African American), unless otherwise noted.   

6.3.3  LD analysis.  Not surprisingly, given the marker density in this study, there was a 

great amount of LD between the SNPs on our WGA panels.  As expected based on 

population history, the African American subgroup showed less LD on average than the 

non-Hispanic White subgroup (Figure 6.6).  For instance, for common SNPs (MAF>5%) 

within 5 kb of each other, the average pairwise r2 was 0.4 in the non-Hispanic White 

subgroup, and 0.27 in the African American subgroup.  Average LD decayed relatively 

uniformly with distance, but as can be seen below, there were clusters of SNPs with 

locally high levels of LD. 

 In order to get a sense of the redundancy of the genotype data, which is an 

important consideration in determining the number of independent tests performed, we 

ran an r2 threshold binning approach on the common SNPs in the WGA panels (Figure 

6.7a).  Using a sliding window of 1mb around the target SNP, the number of proxy SNPs 

was determined using various thresholds of r2.  These analyses revealed significant 

redundancy in the SNPs genotyped.  In the non-Hispanic White subgroup, using an r2=1 

threshold, which means the genotype of one SNP perfectly predicts the genotype of 

another SNP in all cases, over 9% of the SNPs have at least one perfect proxy.  At a 

reduced, but still conservative, threshold of r2=0.95, over 30% of the SNPs have at least  
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Figure 6.6.  Average pairwise r2 between SNPs by intermarker distance.  Distance 

between SNPs is shown on the x-axis, in 5 kb intervals. Average pairwise r2 for all SNP 

pairs with intermarker distances within that interval is shown on the y-axis.  Results for 

the non-Hispanic White subgroup are shown in red, African American results are in 

green.  Only common SNPs (>5% MAF) were used in this analysis. 
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Figure 6.7 
 



 

 198

Figure 6.7.  Redundancy of common SNPs at various r2 thresholds in each racial 

subgroup.  All common SNPs (>5% MAF) are shown on the y-axis.  Using a sliding 

window of 1mb around the target SNP, the number of proxy SNPs (SNPs in LD above 

the threshold) for each SNP was determined using an r2 threshold of 1, 0.95 and 0.8 (x-

axis).  a)  Results for the non-Hispanic White subgroup.  b)  Results for the African 

American subgroup. 
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one very good proxy in the dataset.  In the African American subgroup, redundancy was 

still high, though less than in the non-Hispanic Whites (Figure 6.7b). 

6.3.4  Single locus association – discovery set.  We performed two phenotype 

comparisons in our non-Hispanic White subjects; remitters versus non-remitters, and 

citalopram intolerant versus tolerant.  The results for all the SNPs across the genome for 

the remission phenotype are shown in Figure 6.8.  While no SNP was significant using a 

Bonferroni corrected threshold (p < 8.6x10-8), four SNPs met our threshold (p < 1x10-5) 

for follow-up in the validation sample set.  Dominant odds ratios for these SNPs, 

transformed to >1, ranged from 2 - 3.15 (Table 6.3).  None of these variants were also 

nominally (p<0.05) associated in our other two racial subgroups. Quantile-Quantile (QQ) 

plots for this phenotype comparison showed no gross inflation of the chi-squared 

statistics (Figure 6.9).  Systematic inflation can be indicative of confounding due to 

population stratification or other factors. 

 The results for the intolerance phenotype are shown in Figure 6.10.  Again, no 

SNPs met a strict Bonferroni corrected threshold, however five SNPs met our threshold 

for follow-up in the validation sample set, with dominant ORs, transformed to >1, 

ranging from 1.5 to 12.6 (Table 6.4).  None of the SNPs were also nominally associated 

(p<0.05) with intolerance in our other two racial subgroups.  QQ plots for this phenotype 

showed an inflation of the chi-squared statistics (Figure 6.11).  While this inflation may 

be driven by unaccounted for population stratification in our non-Hispanic White 

subgroup, results of analyzing the entire discovery set, regardless of self-identified race, 

did not seem to increase the inflation of the chi-squared.  Thus, the initial result may be 

due to the fact that the intolerance phenotype is rare (~9% in the discovery set) and we  
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Figure 6.8.  Single locus association results in the discovery sample set for the remission 

phenotype in the non-Hispanic White subgroup.  Each point represents a single SNP.  

The negative log of the p-value for association is shown on the y-axis, and the variants 

are in order across the genome from chromosome 1-22 on the x-axis.  Chromosome X 

and Y are not shown, but no significant results were obtained on those chromosomes.  

The dashed line at 1x10-7 is approximately the threshold for Bonferroni corrected 

significance (no SNPs meet this criteria).  The dashed line at 1x10-5 represents our 

criteria for testing the association in the validation sample set (four SNPs). 
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dbSNP ID Remit NR p-value OR (95% CI)
rs4246510 0.39 0.53 3.9E-06 0.39 (0.26, 0.59)
rs6660134 0.42 0.58 1.8E-06 0.40 (0.26, 0.60)

rs12033075 0.16 0.06 1.5E-07 3.15 (1.97, 5.14)
rs10183914 0.35 0.40 6.0E-06 0.50 (0.35, 0.72)

Discovery set

 

Table 6.3.  The most highly associated SNPs for the remission phenotype in the non-

Hispanic White subgroup in the discovery set.  Shown are the minor allele frequencies in 

the remitters (“Remit”) and non-responders (“NR”).  The p-value for association is 

shown, as well as the odds ratio (OR) and 95% confidence intervals.  ORs were 

calculated using a dominant model (minor allele carrier vs. non-carrier). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 6.9.  Quantile-Quantile (QQ) plots of single locus associations for the remission phenotype in the non-Hispanic White 

subgroup. The quantiles for the expected chi-squared distribution are shown on the x-axis, and the quantiles for the actual chi-squared 

distribution are shown on the y-axis.  The distribution appears to follow unity (line at 45° from origin) well, indicating that gross 

inflation of the chi-squared (due to stratification or other reasons) is not present.  The four follow up SNPs are seen at the very right-

most portion of the plot.  While these are above the unity line, the majority of the data is consistent with what one would expect by 

chance. 
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Figure 6.10.  Single locus association results in the discovery sample set for the 

intolerance phenotype in the non-Hispanic White subgroup.  Each point represents a 

single SNP.  The negative log of the p-value for association is shown on the y-axis, and 

the variants are in order across the genome from chromosome 1-22 on the x-axis.  

Chromosomes X and Y are not shown, but no significant results were obtained on those 

chromosomes.  The dashed line at 1x10-7 is approximately the threshold for Bonferroni 

corrected significance (no SNPs meet this criteria).  The dashed line at 1x10-5 represents 

our criteria for testing the association in the validation sample set (five SNPs). 
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dbSNP ID Intolerant Tolerant p-value OR (95% CI)
rs16900795 0.16 0.04 6.30E-06 0.17 (0.08, 0.37)

rs828360 0.02 0.18 6.92E-06 12.69 (3.26, 108.64)
rs6489035 0.28 0.53 5.18E-06 3.61 (1.93, 6.75)
rs7145321 0.37 0.22 5.67E-06 0.66 (0.36, 1.22)
rs1367841 0.56 0.33 3.11E-06 0.16 (0.06, 0.39)

Discovery set

 

Table 6.4.  The most highly associated SNPs for the intolerance phenotype in the non-

Hispanic White subgroup in the discovery set.  Shown are the minor allele frequencies in 

the citalopram tolerant and intolerant subjects.  The p-value for association is shown, as 

well as the odds ratio (OR) and 95% confidence intervals.  ORs were calculated using a 

dominant model (minor allele carrier vs. non-carrier). 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 6.11.  Quantile-Quantile (QQ) plots of single locus associations for the intolerance phenotype in the non-Hispanic White 

subgroup.  The quantiles for the expected chi-squared distribution are shown on the x-axis, and the quantiles for the actual chi-squared 

distribution are shown on the y-axis.  The distribution does not follow unity (line at 45° from origin) well, indicating that gross 

inflation of the chi-squared (due to stratification or other reasons) is present.  The reason for this is unknown, but may be due to the 

rareness of the intolerance phenotype (and several SNPs) and thus the inappropriateness of comparing our results to the standard chi-

squared distribution.  The five follow-up SNPs are seen at the very right-most portion of the plot.  
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have several rare SNPs in the panels, thus comparing our results to the standard chi-

squared distribution may not be appropriate assumption.  

6.3.5  Single locus association – validation set.  In order to verify the genotype data we 

received from our Affymetrix panels was accurate through use of an alterative 

genotyping method (e.g., Taqman), we genotyped the discovery set as well as the 

validation set in the second phase of the study.  For the remission phenotype, genotype 

data for three of the four SNPs had high concordance with the Affymetrix genotype calls 

(99.9%).  For one SNP (rs4246510), 31 subjects with homozygous genotypes in the 

Affymetrix data had heterozygous genotypes using the Taqman assay, which appear 

unambiguous (Figure 6.12).  Furthermore, by adjusting the Affymetrix genotype calls in 

this way SNP rs4246510 has near perfect LD with SNP rs6660134, which is less than 2 

kb away.  Indeed these two SNPs are in perfect LD (e.g., r2=1) in HapMap data from 

Caucasian individuals.  None of these four SNPs yielded a significant association to 

remission in the validation sample (p<0.05), using the same genotypic model and data 

coding format as in the discovery set analysis (Table 6.5). 

 The genotype concordance between the Affymetrix and Taqman calls was high 

(99.8%) for all of the SNPs that were selected for follow-up using the citalopram 

intolerance phenotype.  Interestingly, one SNP (rs6489035) showed four distinct clusters 

on the Taqman raw data plot as opposed to the expected three clusters (Figure 6.13).  

Subjects that were in the intermediate cluster were scored as missing in our Taqman data 

for the validation sample set, while they were generally scored as heterozygotes in the 

Affymetrix data.  The intermediate fourth cluster accounted for approximately 6% of 

subjects.  Distinct extra clusters can be caused by repeated DNA segments or variation in  
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rs4246510 Taqman results
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Figure 6.12.  Taqman results for SNP rs4246510 across the entire STAR*D sample set. 

VIC and FAM label intensities are on the x- and y-axis, respectively.  Results appear 

unambiguous, though 31 samples, called via Taqman as heterozygotes, were called 

homzygotes (FAM) in the Affymetrix data.   
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dbSNP ID Remit NR p-value OR (95% CI)
rs4246510 0.44 0.49 0.42 0.77 (0.49, 1.19)
rs6660134 0.45 0.50 0.32 0.74 (0.47, 1.15)

rs12033075 0.12 0.14 0.57 0.85 (0.53, 1.36)
rs10183914 0.34 0.36 0.81 0.98 (0.65, 1.46)

dbSNP ID Remit NR p-value OR (95% CI)
rs4246510 0.41 0.51 2.4E-05 0.53 (0.39, 0.71)
rs6660134 0.42 0.52 3.9E-05 0.54 (0.40, 0.72)

rs12033075 0.14 0.09 0.004 1.68 (1.22, 2.32)
rs10183914 0.35 0.38 0.002 0.68 (0.52, 0.89)

Overall

Validation set

 

 

Table 6.5.  Single locus association results for the remission phenotype follow-up SNPs 

in the validation sample set.   Shown at the top are the results for the validation sample 

set, and below it are the results for the overall sample (joint analysis).  Shown are the 

minor allele frequencies in the remitters (“Remit”) and non-responders (“NR”).  The p-

value for association is shown, as well as the odds ratio (OR) and 95% confidence 

intervals.  ORs were calculated using a dominant model (minor allele carrier vs. non-

carrier).  None of these SNPs were significantly associated (p<0.05) in the validation 

sample set. 
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rs6489035 Taqman results
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Figure 6.13.  Taqman results for SNP rs6489035 across the entire STAR*D sample set.  

VIC and FAM label intensities are on the x- and y-axis, respectively.  Clearly visible is 

an intermediate fourth cluster, which we coded as “missing” in our Taqman data but was 

scored as heterozygous in the Affymetrix data.  The reason for this fourth cluster is 

unknown, though it could be caused by structural variation or mis-priming of the probe to 

related sequence.    
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DNA copy number.  None of these five SNPs showed significant association (p<0.05) to 

intolerance in the validation sample set using the same analytic methods as in the 

discovery set analysis (Table 6.6).  A single SNP (rs7145321), had a trend (p<0.06) 

towards significance in the validation sample set and the effect had the same 

directionality as the one observed in the discovery set.  

6.3.6  Interaction analysis – discovery set.  Multi-node decision trees were generated 

for each phenotypic comparison, as described in detail in section 6.2.8.  Briefly, the 

discovery population is “split” based on the most parsimonious SNP (i.e., the SNP that 

produces the most differentiated sub-nodes).  This process is repeated until no more 

significant splits can be made.  The remission phenotype comparison yielded a tree 

incorporating three SNPs (Figure 6.14).  One of these SNPs, rs12033075, was also 

significantly associated in the discovery set in our single locus testing above.  This final 

tree predicted the remission status correctly for 395 out of 571 subjects (69%) in the 

discovery (“training”) data set (Table 6.7).  The decision tree for the intolerance 

phenotype included three SNPs (Figure 6.15).  This tree was able to correctly predict 

intolerance status in 514 out of 555 (92%) subjects in the discovery set (Table 6.8).     

6.3.7  Interaction analysis – validation set.  Concordance between Affymetrix and 

Taqman genotype calls was high (99.8%) for the six SNPs used in the remission and 

intolerance decision tree.  For the remission phenotype comparison, using the validation 

sample set genotype data and the predicted probabilities of the terminal nodes from the 

training set, the decision tree correctly predicted only 227 out of 441 (52%) subject’s 

remission status (Table 6.7).  The results were similarly non-significant for the 

intolerance decision tree, with only 415 out of 522 (80%) of the validation sample  
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dbSNP ID Intolerant Tolerant p-value OR (95% CI)
rs16900795 0.06 0.04 0.27 0.70 (0.33, 1.60)

rs828360 0.16 0.15 0.75 0.97 (0.59, 1.65)
rs6489035 0.55 0.47 0.15 0.72 (0.40, 1.25)
rs7145321 0.26 0.21 0.06 0.88 (0.55, 1.40)
rs1367841 0.34 0.37 0.11 1.43 (0.90, 2.27)

dbSNP ID Intolerant Tolerant p-value OR (95% CI)
rs16900795 0.09 0.04 0.0009 0.39 (0.23, 0.66)

rs828360 0.11 0.17 0.01 1.79 (1.16, 2.84)
rs6489035 0.45 0.50 0.22 1.40 (0.94, 2.08)
rs7145321 0.30 0.21 2.03E-06 0.78 (0.54, 1.13)
rs1367841 0.41 0.35 0.09 0.77 (0.53, 1.11)

Overall

Validation set

 

Table 6.6.  Single locus association results for the intolerance phenotype follow-up SNPs 

in the validation sample set.  At the top are the results for the validation sample set, and 

below it are the results for the overall sample (joint analysis).  Shown are the minor allele 

frequencies in citalopram tolerant and intolerant subjects.  The p-value for association is 

shown, as well as the odds ratio (OR) and 95% confidence intervals.  ORs were 

calculated using a dominant model (minor allele carrier vs. non-carrier).  None of these 

SNPs were significantly associated (p<0.05) in the validation sample set, though a single 

SNP (rs7145321) was close, with a p=0.06 in the validation set. 
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Figure 6.14.  Decision tree for the remission phenotype in the non-Hispanic White 

discovery sample set.  The node at the top of this tree contains all the subjects (“n”), the 

percentage in that node that are remitters (“u”), and the unadjusted p-value for the first 

split of the sample.  The first split (rs12033075) divides the sample into those carrying 

the “B_B” genotype and those that do not.  Partitioning of the sample continues with two 

additional SNPs.   
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Actual Remit NR
Remit 269 65

NR 111 126
Sensitivity: 80.5%
Specificity: 53.2%
Positive predictive value: 70.8%
Negative predictive value: 66.0%
Correctly predicts 395 / 571 (69.2%)

Actual Remit NR
Remit 164 96

NR 118 63
Sensitivity: 63.1%
Specificity: 34.8%
Positive predictive value: 58.2%
Negative predictive value: 39.6%
Correctly predicts 227 / 441 (51.5%)

Discovery set

Validation set

Tree prediciton

Tree prediciton

 

 
Table 6.7.  Decision tree predictions for the remission phenotype in the discovery and 

validation sample sets.  Shown at top are the predictions of the decision tree and the 

actual phenotype in the discovery sample set (Remit – remitters, NR – non-responders).  

The bottom table shows the predictions and actual phenotypes in the validation sample 

set.  Sensitivity (percent of remitters predicted to be remitters), specificity (percent of 

non-responders predicted to be non-responders), positive predictive value (percent of 

predicted remitters that are actual remitters), and negative predictive value (percent of 

predicted non-responders that are actual non-responders) are also displayed.   
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Figure 6.15.  Decision tree for the intolerance phenotype in the non-Hispanic White 

discovery sample set.  The node at the top of this tree contains all the subjects (“n”), the 

percentage in that node that are tolerant to citalopram (“u”), and the unadjusted p-value 

for the first split of the sample.  The first split (rs4512110) divides the sample into those 

carrying the “A_A” genotype and those that do not.  Partitioning of the sample continues 

with two additional SNPs.   
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Actual Intolerant Tolerant
Intolerant 11 41
Tolerant 0 503

Sensitivity: 21.2%
Specificity: 100%
Positive predictive value: 100%
Negative predictive value: 92.5%
Correctly predicts 514 out of 555 (92.6%)

Actual Intolerant Tolerant
Intolerant 2 97
Tolerant 10 413

Sensitivity: 2.0%
Specificity: 97.6%
Positive predictive value: 16.7%
Negative predictive value: 81.0%
Correctly predicts 415 out of 522 (79.5%)

Tree prediciton

Tree prediciton

Discovery set

Validation set

 

Table 6.8.  Decision tree predictions for the intolerance phenotype in the discovery and 

validation sample sets.  Shown at top are the predictions of the decision tree and the 

actual phenotype in the discovery sample set.  The bottom table shows the predictions 

and actual phenotypes in the validation sample set.  Sensitivity (percent of intolerant 

predicted to be intolerant), specificity (percent of tolerant predicted to be tolerant), 

positive predictive value (percent of predicted intolerant that are actually intolerant), and 

negative predictive value (percent of predicted tolerant that are actually tolerant) are also 

displayed.   
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subject’s intolerance status predicted correctly (Table 6.8).  Thus, the decision trees 

constructed were not prognostic for either remission or intolerance, and likely over-fit the 

data in the discovery set.  Furthermore, neither decision tree yielded quantitative 

predictions that were significantly associated (p<0.05) with the true dichotomous 

phenotype status via logistic regression (results not shown).   

  

6.4  Discussion 

 Association studies involving this density of markers present unique analytical 

and computational challenges.  In our study, we pursued a limited number (N=9) of 

single locus associations in our validation sample set, none of which replicated (p<0.05) 

the initial association for either phenotype comparison.  One SNP, rs7145321, trended 

towards significance (p<0.06) in the validation sample set for the intolerance phenotype, 

in the same directionality of association as seen in the discovery sample set.  While it did 

not meet our criteria for study-wide significance, this variant (which is greater than 200 

kb from any known gene) deserves follow-up testing in other study populations taking 

SSRIs.  It has been argued that a joint analysis of the combined discovery and validation 

sample sets is more powerful than the two-stage replication strategy (10).  However, 

given the low number of SNPs that we chose to replicate here, it is unclear what the most 

statistically powerful strategy is.  We chose a replication based strategy as we were 

chiefly interested in the ability of the putatively associated SNPs to consistently show 

association in different populations.  In order for these SNPs to be used in clinical 

decision making, replication in different populations is essential – non-replication of 

putative associations is a sobering reality that is common with complex genetic 
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phenotypes.  In addition to our single locus testing, we also genotyped five additional 

SNPs in the validation sample set in an attempt to replicate multi-SNP decision trees 

constructed for each phenotype using the discovery dataset.  These decision trees did not 

have useful predictive power in the validation sample set.   

Given that we had an adequate sample size to replicate the initial associations in 

the validation set, the reason for the lack of replication is unclear, though there could be 

several underlying causes.  In order to limit Type I error in the screening stage and to 

limit the amount of replication SNPs to be genotyped in-house with singleplex assays, we 

only attempted to replicate SNPs that were associated above a conservative p-value 

threshold (p<1x10-5).  However, none of the associations in either phenotype comparison 

would survive a Bonferroni correction for multiple comparisons, so there is a reasonable 

risk that these are false-positive signals in the discovery dataset.  Unfortunately, it’s 

unclear how many independent tests were performed and thus require adjustment, given 

the high levels of LD seen in the data.  Population stratification could also be underlying 

the lack of replication.  We attempted to control for population stratification using self-

reported race, including Hispanic ancestry, as a proxy for genetic ancestry.  This strategy 

was guided by a Structure analysis using 500 SNPs in the discovery population dataset.  

Ideally, we would be able to cluster the subjects for analysis based solely on their 

estimated proportion of ancestry, using the results from Structure or similar methods.  

We were unable to use this approach due to lack of high density SNP genotyping in the 

validation sample set.  Interestingly, 8 out of 14 SNPs genotyped in the validation sample 

set had genotype distributions that significantly differed (p>0.05) between the non-

Hispanic White and Hispanic White subgroups, and 12 out of the 14 SNPs had 
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significantly different distributions between the non-Hispanic White and African 

American subgroups.  While a large fraction of SNPs in the genome display differences 

in allele frequencies across racial subpopulations, this does reinforce the possibility of 

confounding due to stratification.  The non-replication could also be due to unknown 

heterogeneity between the discovery and validation sample sets.  This heterogeneity 

could be a clinical characteristic (e.g., depression subtype) or epistatic DNA variation 

that was not controlled for in the sample splitting, but that nonetheless alters the strength 

of the association.  Genotype quality in the discovery set could also be a concern.  We 

found two SNPs (rs4246510 and rs6489035) out of the 14 that we assayed using Taqman 

had genotype differences between Affymetrix’s call and our Taqman data, with the other 

12 SNPs having almost perfect concordance.  Given the large amount of data to be 

scored, perfectly accurate genotyping cannot be expected in every case, and indeed, 

follow-up genotyping of the entire set using alternative methods will guard against false 

positive associations due to genotyping artifacts. However, false negative associations in 

the discovery set due to genotyping error will be harder to detect and perhaps more 

costly.  Extending or altering the BRLMM algorithm, which is designed to give the 

highest call rates the data allows, to focus on call quality (and structural DNA variants, 

see below) will be useful and is under development (11).  

  As mentioned previously, this study was designed to investigate only the most 

“low hanging fruit”, and was not intended to be a comprehensive follow-up of the 

discovery sample set results.  Certainly, additional genetic models need to be tested in the 

discovery set (dominant, recessive, etc.).  Also, a larger proportion of follow-up SNPs 

will need to be genotyped.  This scale of genotyping would be best performed using 
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highly multiplexed assays such as the MiP assay.  Given the two-stage study design, 

multiple correction penalties for the follow-up of SNPs will be far less than the correction 

for the entire WGA panels, allowing for more liberal selection criteria.  The statistical 

sacrifice with the two-stage design is of course a reduction in power.  However, even 

with a split sample, we can capture (and replicate) clinically meaningful effect sizes with 

reasonable power.  An FDR based approach may be worthwhile given that the actual 

causative SNPs may not be the most highly associated SNPs.  Interestingly, applying an 

FDR approach to the data presented here reveals that only a single SNP (rs6489035) in 

the intolerance phenotype has a reasonable chance (q<0.10) of not being a false positive 

signal.  However, this SNP did not replicate the association in the validation sample set, 

and in fact the directionality of the association changed between the two sample sets. 

Permutation techniques could also be used, but due to current computational limits, “stop 

points” for the analysis would have to be specified, though newer techniques can 

approximate permutation results more quickly (12).  Alternatively, follow-up SNPs could 

also be selected using an effect-size (OR) threshold, instead of one based on an α 

threshold.  This approach may be of particular utility in pharmacogenetic studies, where 

the eventual goal is to develop genetic tests for use in clinical treatment.  Fine mapping of 

SNPs in the validation set for regions surrounding the putatively associated SNPs would 

also be beneficial, since differences in LD patterns across the discovery and validation 

sample sets could complicate indirect association analysis.  Indirect association analysis 

could also possibly be improved through use of haplotype testing, with the hope of 

“tagging” untyped SNPs through use of multimarker haplotypes (13).  However, the 

statistical penalties for multiple testing and the computational burden may limit the utility 
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of haplotype analysis in WGA studies.  Bayesian techniques, incorporating other SNP 

information (known functional change, conserved genomic region, expression changes, 

etc.) as weights in determining the ranking of follow-up SNPs could also be used (14).  In 

addition to SNP data, the panels used to genotype the discovery sample set yield 

quantitative hybridization data that can in theory be used to score copy number 

variations, or CNVs (15).  Identifying and testing these CNVs for association to 

citalopram response would be worthwhile, though the techniques for performing this are 

still being developed.   

 For complex genetic diseases, the common disease common variant hypothesis 

states that several DNA variants will, in combination, contribute a clinically meaningful 

risk of having the phenotype.  Techniques for uncovering interacting loci are poorly 

developed, largely due to the computational and statistical burden of the number of tests 

that can be performed.  For instance, performing all pairwise comparisons (SNP x SNP) 

with our WGA panels would require 1.7 x 1011 statistical tests.  With this many tests 

needing correction, sample sizes like the one used in this study have power only to detect 

implausibly large interaction effects (16).  The correction penalties for three and four way 

SNP interactions are even larger.  Additionally, as higher level interaction testing is 

performed, the number of subjects with the causative allelic combination is reduced, 

further decreasing statistical power.  Thus, for powerful interaction analysis, extremely 

large clinical populations will need to be collected.  Here, we used decision trees as a way 

to test for interactions in a step-wise manner in order to avoid having to perform all pair-

wise comparisons.  Decision trees also have the added benefit of being easily interpreted.  

However, given the large number of possible trees, decision trees and related modeling 
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methods have a tendency to over-fit the training set data.  This is likely why our decision 

trees were not predictive in the validation sample set.  Thus, replication of SNP 

interactions in different populations will be essential in association studies, as well as the 

development of powerful interaction testing strategies utilized on real data (17-19). 

 In summary, here we have presented the preliminary results of a two stage whole 

genome association study for citalopram remission and intolerance using the STAR*D 

clinical population.  While none of the single locus associations (N=9) or SNP interaction 

decision trees in our discovery sample set met our strict replication criteria in the 

validation sample set, further genotyping and analysis is required to comprehensively 

follow-up the discovery set results.  Given the lack of understanding of citalopram’s 

mechanism of action, gene-agnostic studies such as these may be required to find genetic 

markers that are informative of remission or intolerance, if they exist.   
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CHAPTER 7 

SUMMARY AND FUTURE DIRECTIONS 

 

7.1  Summary of thesis 

 The experiments described in the previous chapters have attempted to establish 

genetic markers that are predictive of a depressed subject’s clinical outcome following 

antidepressant therapy.  To that end, several complementary genetic approaches have 

been utilized (outlined in Figure 1.1).  Our initial efforts focused on linkage 

disequilibrium (LD) mapping of several serotonin-related pharmacodynamic candidate 

genes (HTR1A, HTR2A, HTR2C, TPH1, TPH2, and MAOA) using 110 SNPs selected 

from the online database dbSNP.  In a small but highly characterized (N=96) depressed 

patient population taking the selective serotonin reuptake inhibitor (SSRI) fluoxetine, 

several SNPs and multimarker haplotypes in these genes were associated (p<0.05) with 

response and response specificity (1).  In order to uncover novel tagSNPs or potentially 

functional variants, the coding regions, intron-exon boundaries, and conserved non-

coding regions were directly sequenced in all subjects in the fluoxetine population.  

While no obvious functional variants were discovered in these genes, a few additional 

tagSNPs were identified, which provide more comprehensive coverage of the variation in 

these regions.  In an attempt to replicate the initial associations, the tagSNPs were then 

genotyped in the large STAR*D population (N=1,953), which had been given the SSRI 

citalopram.  None of the variants were associated with citalopram response or response 

specificity.  This non-replication could be due to several factors including simple Type I 
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error, differences between the drug’s mechanism of action, or unknown differences 

between the clinical populations.   

 We then explored pharmacokinetic gene variation as a possible modulator of 

citalopram response or tolerance.  Instead of the indirect LD based approach we used for 

the pharmacodynamic candidate genes, here we utilized a direct association approach 

since there are known, functional variants in several relevant pharmacokinetic genes 

(ABCB1, CYP3A4, CYP3A5, CYP2C19, and CYP2D6).  Using a two-stage study design, 

none of the pharmacokinetic variants that we screened in the STAR*D population were 

significantly (p<0.05) associated with citalopram response or tolerance in both the 

discovery and validation sample sets.   

 Given the difficulty in predicting relevant candidate genes a priori, we used a 

whole genome association (WGA) platform and a two-stage study design to genotype 

over 590,000 SNPs in approximately half of the STAR*D sample.  Several of these SNPs 

were associated with citalopram remission and tolerance at a very high significance level 

in the discovery sample set.  We attempted to replicate the nine most significantly 

associated SNPs in the validation sample set.  However, none of the SNPs showed 

significant (p<0.05) association with remission or tolerance in the validation sample set.  

Furthermore, the multi-SNP decision trees that were constructed using the discovery 

sample dataset were not predictive of remission or tolerance using the validation sample 

set SNP data.  This non-replication could be due to a variety of factors, including 

uncorrected population stratification, unknown clinical confounders, or simple Type I 

error in the discovery set.  However, this was an attempt to replicate the “low hanging 

fruit” of the discovery portion of the WGA study.  For example, the “truly” associated 
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variants may not have provided the most extreme estimates of statistical significance, and 

instead may be represented by more modest, but consistent, measures of significance. 

The most extreme values may be enriched with signals due to the factors listed above and 

others, such as genotyping errors. An unanswered question is how far to pursue findings 

for replication (e.g., absolute p-value threshold, effect size, significance in more than one 

subgroup of phenotype).  In order to fully explore the initial discovery set findings, much 

more genotyping of the validation set will need to be performed.  This will allow 

additional analytical techniques, such as different genetic models, the ability to control 

for stratification in the validation set, and more rigorous testing of variant interactions, all 

of which will be important to comprehensively explore the role of genetic variation in 

SSRI response.   

 

7.2  Future directions 

 The field of complex human phenotype genetics has been evolving at an amazing 

pace since the sequencing of the human genome.  Much of the evolution of the field can 

be traced to rapidly advancing genotyping technologies that increase genotype throughput 

and reduce genotyping costs.  For instance, when this project was started in 2002, most 

genetic association studies investigated less than a dozen candidate SNPs, with most 

focusing on a single marker.  Our initial fluoxetine pharmacodynamic gene project 

involving 110 SNPs was considered a formidable amount of genotyping at the time and 

the genotyping took approximately 4 months to complete.  With current multiplex 

technologies, such as Illumina’s BeadArray assay (2), the genotyping would require less 

than a week of laboratory work and could genotype many more SNPs (3).  Larger scale 
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genotyping, like our WGA study involving 590,000 SNPs, can now be completed in a 

few weeks.  The scale of genotyping will continue to grow, as Affymetrix and Illumina 

have both already announced the commercialization of a 1 million SNP panel, part of 

which will be designed to detect copy number variants (CNVs).  It is now becoming clear 

that within the next decade, whole genome resequencing of large sample sets will become 

economically feasible.  A question with both practical and theoretical implications, 

however, is will the field be able to interpret such high density genetic data? 

 Analytical techniques in complex phenotype genetics have not evolved as quickly 

as methods for genotyping.  For instance, around 10 years ago, it was still unclear 

whether useful amounts of LD exist in the human genome (4).  It is clear now that 

significant LD extends to useful distances in outbred human populations (5;6).  At the 

time of our initial fluoxetine pharmacodynamic project, it was still necessary to 

empirically measure LD in a region of interest. Our work showed these serotonin-related 

genes to have extensive LD, which was not a foregone conclusion at the time.  

Unfortunately, this LD resulted in redundancy in our genotyping.  The international 

HapMap project, which was completed (phase II) after this project, allows users to select 

tagging SNPs from the publicly avaiable dataset of dense markers across the genome, 

which is an invaluable resource to LD mapping.  However, much is still unclear about the 

most powerful way to utilize LD in association studies.  For instance, the use of 

haplotypes in association studies needs further development (7).  When this project was 

started, techniques for inferring haplotypes from unphased genotype data and testing for 

association were in their infancy (8).  Currently, the utility of haplotype testing in 

association studies is still debatable, as some feel it does not add enough additional 
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information to single locus testing to justify the multiple correction penalties (9).  A 

substantial number of methods have been published in the past five years that utilize LD 

in order to select tagging SNPs (10-14).  It seems that the most analytically 

straightforward, based on a threshold for pairwise r2, has also become the most popular 

method for selecting tagging SNPs, though other methods appear to be more efficient at 

reducing genotyping load.  It’s still unclear exactly how well tagging SNPs will transfer 

across different human populations, although much research has focused on this question 

(15;16).  These may ultimately be moot considerations, given that whole genome 

resequencing will soon make tagging unnecessary. 

 One of the major hurdles in the development of analytical methods is the issue of 

multiple testing (17).  It is difficult to separate true associations from those caused by 

chance when performing 500,000 or more single locus tests.  When several phenotypes 

and several populations are examined, the problem obviously is amplified.  The problem 

becomes much larger when searching for interacting SNPs, which are a cornerstone of 

the common disease common variant hypothesis.  False discovery rate (FDR) methods 

can be used to gauge how many SNPs to move forward in multi-stage studies, and aren’t 

affected by inter-marker relatedness (18).  Increases in computational power will allow 

for permutation based methods to be applied across entire WGA panels, which will take 

into account inter-marker relatedness.  Bayesian methodology, incorporating information 

from QTLs, multi-species alignments, or functional predictions may also be useful (19).  

However, given the inherent risk of Type I error from the number of tests and since we 

often have no a priori reason to believe putatively associated SNPs in WGA studies, 

replication in separate populations will be of paramount importance.  Even this gold 
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standard is problematic, when “independent” populations may differ subtly by 

phenotypic definition or less subtly by differences in population ancestry or genotyping 

platform.  Statistical limits may make innovative study designs, along with the collection 

of large clinical populations for replication, the only way to get through the multiple 

testing concerns in large scale associations studies. 

 Another key to the success of future large scale association studies will be the 

development of statistically powerful techniques for uncovering interacting SNPs.  The 

common disease common variant (CDCV) hypothesis predicts that individual variants 

will have small phenotypic effect sizes (20).  However, in combination, variants are 

thought to have clinically meaningful effects, although there are few examples of such 

interactions (21;22).  In our studies we attempted to find variant interactions using 

logistic regression (for small numbers of SNPs) and decision trees (for the WGA data).  

While neither of these techniques uncovered significantly interacting SNPs in our data, 

they may have utility in other studies.  However, one particular barrier for the 

development of interacting SNPs models is the multiple testing burden (which increases 

exponentially with the number of SNPs investigated); additionally, power is further 

reduced by the limited number of subjects with each causative allelic combination.  The 

collection of large clinical samples is the only way to overcome these statistical limits.  

Once interacting SNPs have been discovered and validated in these large sample 

collections, easily interpretable clinical diagnostic models will also need to be developed.  

However, pharmacogenetic models that are limited to using only genetic markers for 

association to clinical outcome may not be capturing a large portion of the variation in 

response.  Robust clinical models for personalized medicine will require non-genetic 
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biomarkers (e.g., protein expression, liver function tests, etc.) as well as clinical 

demographics (age, concomitant medications, race, etc.) in order to have maximum 

utility.  Pharmacogenetic phenotypes, as opposed to most complex disease phenotypes, 

have the additional benefit of allowing for alteration of pharmacological treatment once 

susceptibility variants and other factors are known. 

 A major concern for population based association studies has been the risk of 

confounding due to population stratification.  Population stratification is thought to play a 

role in the non-replication of many association studies, and as study populations become 

larger the risk of confounding also increases.  Current methods for detecting and 

correcting for population stratification, such as structure, can perform adequately, but for 

small scale genotyping studies they require additional marker genotyping which can be 

cost prohibitive (23).  The development of efficient ancestry informative marker (AIM) 

panels that have maximal allele frequency differences across subpopulations would have 

great utility in small scale association studies.  The selection of AIMs for distant 

subpopulations (e.g., Africans and Asians) in order to detect large levels of stratification 

is straightforward, given the dense marker data available from the HapMap project (24-

26).  Recent reports suggest population stratification may have a confounding effect even 

within isolated populations such as Iceland and Europe, which were both thought to be 

relatively homogeneous (27;28).  Selection of AIMs for more subtle levels of 

stratification across continental clines will require more large scale genotyping in these 

subpopulations in order to define their allele frequencies.  For WGA studies, and in the 

future whole genome resequencing studies, the dense amount of marker data available 



 234

should allow for accurate matching of cases and control based on ancestry and 

consequently little reduction in statistical power.   

 Single nucleotide polymorphisms have been the workhorse of genetic association 

studies for the past decade, largely because of their ability to be easily assayed in a cost-

effective manner.  However, it is becoming clear that other types of variation, namely 

copy number variation (CNVs), is common in the genome and may contribute to human 

phenotypes.  Copy number variants take the form of segmental duplications or deletions, 

and are thought to alter at least as much of the human genome as SNPs (29).  Given their 

sizable changes to the genome, CNVs are reasonably thought to cause considerable 

differences in expression or function of the genes they encompass, although there is little 

evidence for this as of yet.  Since the majority of genotyping techniques focus on a small 

area around the SNP of interest (generally less than 100 bp), CNVs that encompass 

interrogated SNPs can have a detrimental and often unknown effect on genotype 

accuracy and quality.  Fortunately in WGA studies, current genotyping methods often 

rely on hybridization to a fixed DNA array, which yields quantitative data and thus can 

be scored for copy number variants as well as SNPs (30).  Currently limiting the 

widespread utilization of CNVs in WGA studies are efficient algorithms for scoring them 

from the raw genotype data as well as a catalog of common CNVs in the human genome, 

which would help by narrowing the search space.  A large, detailed search for common 

CNVs across the genome similar to the SNP Consortium project would greatly aid in the 

integration of CNVs into WGA studies.   

 As was mentioned above, large collections of well-phenotyped subjects is crucial 

to the success of pharmacogenetics in the next decade.  Large populations are necessary 
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in order to provide replication of initial findings, to lessen the multiple testing burden by 

increasing power, and for studies of interacting SNPs, which is a crux of the common 

disease common variant hypothesis of complex diseases.  Alternatively, for the common 

disease rare variant hypothesis, where individual variants are thought to have large effect 

sizes but occur very infrequently, large collections of patients will be necessary to find 

adequate number of subjects carrying the risk variant.  Single investigators typically have 

the resources to collect on the order of hundreds of patients at best.  Large government 

sponsored clinical trials (such as STAR*D) and late phase investigational drug trials can 

involve large numbers of subjects, but usually not more than two or three thousand.  Even 

with all the resources used to fund such studies, sufficiently powered pharmacogenetic 

studies will require many more, on the order of tens of thousands of patients.  For this 

scale of populations, large consortia will need to be formed, where investigators share 

subject DNA, phenotype data, and ultimately, credit for any findings.  An example of an 

effort on a similar scale can be seen with the Type I diabetes genetic consortium (31).  

Having the foresight to collect DNA from all consenting individuals enrolled in a large 

Phase 3 drug trial will hopefully become more common as the field develops.  The use of 

large health insurance registries (such as Kaiser Permanente in California) could aid in 

identifying subjects, but could prove complicated due to their retrospective nature.  As 

academic medical centers (such as UCSF) and large hospitals move towards fully 

electronic record keeping, enrolling patients (and collecting DNA) at admittance or 

discharge for pharmacogenetic studies of common medications may be a realistic way of 

enrolling large numbers of subjects.  As with all epidemiological research, false positive 

and dashed hopes are common, and more subjects are always needed.  I feel with 
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cooperation among researches, adequate resources, hard work and a little luck, in the next 

ten years there will be profound examples of the clinical utility of prescribing the right 

drug to the right person at the right time and dose. 
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