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ABSTRACT OF THE THESIS
Multi-Language Support in a Program Analysis and Visualization Tool
by

Stuart P. Moskovics
Master of Science in Computer Science
University of California, San Diego, 2000
Professor William G. Griswold, Chair

Restructuring and analyzing software is difficult. Tools that allow pro-
grammers to view and plan modifications to existing programs can ease the burden
of maintenance and change. Modern software engineering projects often use many
different programming languages, including the use of multiple languages in a sin-
gle project.

The StarTool is a program visualization and restructuring tool for soft-
ware programs. This thesis discusses a method used to improve the Star Diagram’s
retargetability features by providing support for understanding multi-language
software programs. Our research shows a simple and extendible mechanism to use

single-language retargetable program analysis tools for multiple-language analysis.



Chapter I

Introduction

I.A Motivation

The computing industry has recently experienced substantial increases
in available computer processing power and fast memory, allowing for larger and
more complex software. The job of restructuring and enhancing such software is
difficult and time-consuming. It is not uncommon for programmers to start work
on a software project with minimal or no knowledge of the pre-existing system
and code structure. Any method or tool to help the engineer understand program
structure can be a valuable time-saver and assist in producing quality changes.

Large software projects are increasingly being written using multiple lan-
guages. Tcl/Tk is used to quickly create graphical user interfaces; it is also used
because it is portable across platforms. Frequently, the interface portion of a pro-
gram can be written in a language such as Tcl/Tk while the rest could be in
another language. A computation-intensive program might require the efficiency
of C, while a highly critical program dealing with a nuclear reactor would need
the software safety of Ada. Programs written for Microsoft Windows commonly
have their graphical user interface written in Visual Basic while the performance-
sensitive code is written in Visual C++. Choice of programming languages can

also involve the costs associated with their use. Studies have shown that a line of



Ada code costs about half as much as a line of C code, producing 70 percent fewer
internal fixes [Zeigler, 1995]. Some languages also have better compiler and tool
support than others, making their use more attractive to the programmer.

Many program analysis tools have been created and studied for program
restructuring and understanding. However, there has been a lack of readily avail-
able tools that were capable of processing programs written in multiple program-
ming languages. An excellent tool to analyze C would be completely useless for
the portions of a project written in Ada. There aren’t well-established methods of
taking existing program analysis tools and combining them to be used for multiple
languages. Generic tools such as UNIX grep can be used to search for identifiers in
source files of multiple languages, but the results do not indicate a multi-language
analsyis. Grep also lacks a graphical interface, minimizing the comprehensibil-
ity of its output. One option would be use a separate analysis tool for different
languages; for example, to analyze a program written in C and Ada, the C code
could be viewed in a C restructuring tool, while the Ada code is loaded in an
Ada analysis tool. Unfortunately, this approach provides no means to integrate
the separate analyses into one result. For example, attempting to locate identi-
fiers and variables that are used across multiple languages would be very difficult.
Multi-language tools are capable of examining cross-language issues that could not
be economically explored with multiple single-language tools.

This is the problem faced by users of the StarTool, a program restruc-
turing and analysis tool developed at the UCSD Software Evolution Laboratory
[Griswold et al., 1996]. This tool builds Star Diagrams, graphical views of program
elements that are customizable to the user. Hayes redesigned the StarTool infras-
tructure to allow easy retargetability to new programming languages [Hayes, 1998].
The new StarTool hides language-specific representation information in an adap-
tation layer containing 14 functions. A StarTool for a new language can be built
by taking existing program representations and adding an interface through the

creation of a language-specific adapter. Based on this interface, StarTools were



built for C, Tcl/Tk, and Ada.

Raytheon, a defense, engineering, and aviation business with offices in
California, has been a long-term user of the UCSD StarTool. The StarTools for
both C and Ada have been beta-tested at Raytheon on their software. Raytheon
has been one of the major motivators of a multi-language StarTool; since they have
software that uses both C and Ada, they have requested a StarTool implementation

that can help them to understand and restructure those types of programs.

I.B Approaches to Multi-Language Analysis

Through the use of a common representation approach, retargetable anal-
ysis tools are often usable for multi-language analysis. An example is a compiler
that is capable of linking together object code that is derived from multiple source
languages. By requiring the language-specific code generators to use a common
representation in their output, multi-language linkers can understand and combine
program representations from different languages.

The Computer Science Department at the Tennessee Technological Uni-
versity has developed a program called Poly CARE, a multi-language program
analysis tool. Poly CARE was extended from the original CARE tool used to
facilitate the comprehension of C programs. Using a graphical interface, Poly
CARE’s intended use is the comprehension and re-engineering of multi-language
programs. Through user studies, the creators of Poly CARE found that engineers
using the tool were 37% more productive when maintaining code than when not
using the tool [Linos et al., 1993] [Linos, 1995]. The tool has two main modules, a
code analyzer and a display manager. The code analyzer uses flex and bison, com-
mon UNIX tools for lexical analysis and parser generation. The lexer and parser
for each language supported by Poly CARE will be implemented using the same
tool-set. This reduces code-size and can help aid in efficiency and optimization.

Unfortunately, this limits the use of readily available language parsers and pro-



gram slicers, which could reduce the amount of work to integrate a new language
into Poly CARE. A literature search into the mechanisms used by Poly CARE
to integrate multiple-language information turned up very little information, so a

complete analysis of its multi-language retargetability features was not possible.

I.C Hypothesis

We hypothesize that a single-language program analysis tool designed for
retargetability can be extended into a multi-language tool by using a multiple-
level adapter approach with a mediator. If the program representation specific to
a source language is fully separated from generic display and analysis functions,
multi-language capability can be enabled by mediating between the separate lan-
guage instantiations and deciding which language implementation is involved in
tool queries. This approach allows adding support for additional languages to a
multi-language tool with minimal effort once the language-dependent portion of
the tool has been created. By using a mediator with multiple-level adapters, the
multi-language tool can understand issues specific to multi-language programs,
specifically the sharing of information across multiple programming languages.

We decided to test our hypothesis on the program analysis tool StarTool.
We hypothesized that by using Hayes’s adaptation layer interface, a multi-language
StarTool could be created without modifying any of the pre-existing code used to
create the C, Tcl/Tk, and Ada StarTools. Moreover, we desired this new multi-
language tool to be easily extendible; any new StarTool written for a new language
could be integrated into our multi-language tool through the addition of a new
adaptation layer and minimal modifications to the mediator. Any code to create
the multi-language tool would be in addition to the pre-existing code, preserving

the retargetability interface to allow for adaptations to new languages.



I.D Results

We successfully built two multi-language StarTools: one that supports C
and Tcl/Tk, and another that supports C, Tcl/Tk, and Ada. These tools allow a
programmer to load, display, and analyze source files from different languages in
one tool. We created a mediator that was capable of handling different language
representations by using a multi-level adapter approach. The mediators for the
two StarTools were created in 100 hours of work and they use less than 2,000 lines
of code. The requirement that we could not modify the previous retargetability
structure was challenging but eventually proved that Hayes’s interface allowed
for a multi-language design. One example of the difficulty we encountered is the
mechanism Hayes designed to interface with adaptation layers; this mechanism
required that a StarTool had only one adapter built into the tool. The multi-
language StarTool was built by working around this requirement. We were also
able to structure our multi-language StarTool such that additional languages can
be easily added to the interface.

The merged version of the single-language tools had no mechanism to rec-
ognize whether variables and procedures were used across multiple languages. We
extended the identifier-matching mechanism to convert symbols in one language-
specific adaptation layer to another language-specific adaptation layer. This ex-
tended StarTool is more useful to a user attempting to understand a multi-language

program.

I.E Overview of the Thesis

Chapter II explains the Star Diagram structure. Chapter III describes the
modifications to the retargetable Star Diagram structure we performed to support
multi-language programs. Chapter IV discusses the usefulness and limitations of
our approach for multi-language programs. Chapter V summarizes our work and

presents opportunities for further research.



Chapter 11

The StarTool

II.A°  The Star Diagram

The Star Diagram is a graphical tool that helps a programmer with pro-
gram visualization and planning for program restructuring [Bowdidge, 1995]. Star
Diagrams are built around specific information that the programmer is looking for
in a set of source files. The programmer first loads a set of source files to be ana-
lyzed by the StarTool. A variable or identifier from one of the loaded source files
is then chosen to be the main context of the Star Diagram, and the StarTool looks
for all references to the chosen variable throughout the source files. The results
are then displayed in a graphical format.

The Star Diagram content is a tree shown with the root at the left and
the tree growing sideways to the right. The chosen variable becomes the root
node of the Star Diagram and all references to that variable are its children. Any
references to those children are the next level’s children, and so on, until the leaf
nodes are the source files containing the identifier. The Star Diagram stacks all
nodes that refer to the same variable or operation. Stacked nodes appear as a
single node but the node is drawn with other nodes behind it. This provides a
compact but complete view of the sources, allowing the programmer to focus on

a chosen aspect of restructuring. A leaf node’s parent is the function within the



source file containing the reference to the identifier. The Star Diagram is thus a

tree that contains all of the direct and indirect uses concerning a specific object

while excluding irrelevant source code.

Selected Star Arms I

rooms (36)

Function DoGoAction

\

File saveFilen.c

Function Print&ction \

Function PrintRoom

Function DescribeRoom

Declaration (5]

File printn.c

File saadvn.c

e Addto i List | Show Panel | Hide Panel Help | Savelmage | Dismiss

BRItk _i File < tiny - small * medium -~ large -~ huge L compan:tl

1 case, switch 1 Function j

s do, Tor, while i Stacked

A i else 1 Unstacked i - =

Function ReadDataFile File filen.c
W Depth - 3 + |
1 String Hext String
@ . desc (3] =
Clear Seledions | Apply to Diagram |

Remarks: |

=

Diagram contains 16 wvertices -- 7 normal, 4 File, 5 Function

Figure II.1: A Star diagram built for the variable rooms.

The programmer has many choices for customizing what information is

included in the Star Diagram. In addition to including all references to the same

identifier, the StarTool can also build a Star Diagram including all identifiers with

the same name, identifiers with the same type, and identifiers with the same un-

derlying type. The programmer also has the option of including all identifiers that

match a certain pattern by searching for matches based upon a regular expression.

These options are included since the goal of the tool is not to make assumptions

regarding how the programmer will perform their restructuring but to provide the

capability to view the data in any way they see fit.




First Selection Hext Selection Previous Selection Last Selection Dizmiss ||
Filename Line # Text I
filen.1 #475  extern Room *krooms;
filen.i #6524 rooms = (Room *)malloc({numRooms + 1) * sizeof (Room ) );
Filen.1 #E26 fscanf(file, "Hd %d %d %d ¥%d %d", scooms[il.dir[0], &rooms[i].dir[1], Bwooms[i].dir[2],
grooms[1].dir[3], &rooms[il.dir[4], &rooms[i].dir[S]);
filen.1 HEZ? rooms[il.desc = GetAString(file, 240];
filen.1 #BZ29 printf{"Room: %s %d %d %d %d %d %dsn", rooms[i).desc, rooms[il.dir[0], rooms[i].dir(4
1, rooms[il.dir[2], rooms[il.dir(3], rooms(il.dir(4], rooms(il.dir(5]1);
printn. i §185 extern Room #rooms;
printn.i #391 fprintf(f, "Room %d: %s“n", roomMumber, rooms[roomMumber].desc);
printn.i #392 fprintf(f, * MNorth:%d South:%d East:%d West:%d Up:%d Down:%d\n”, rooms[roomMumbe

rl.dir[0], rooms[roomMumber].dirl1], rooms(roomMumber].dir(2], rooms(roomMumber].dir[3], rooms[roomBumber].dir
[4], rooms(roomBumber].dir[5]);

printn.i #3596 forintf(f, "%s", [EEEE[roomMumber].desc);

printn.i #3501 fprintf (f, commandStringlemd - 521, rooms(room].desc, room);

printn.i #5249 fprintf (£, commandStringlemd - 521, items[objl.desc, obj, rooms[room].
desc, room);

saadvn. i ¥Z00Wextern Room *rooms;

saadvn. 1 #237 Room *rooms;

saadvn. i #341 if (rooms[currentRoom].desc[0] == “*7) {

saadvn. i #342 PrintDescription(roomslcurrentRoon] .desc + 1), v |

Figure I1.2: Searching for all references to the variable rooms. Double-clicking on
one instance of the variable will bring up the specific section of code containing
the variable.

| Add to Star | Search for a String I sl | DismiasJ

[

void PrintRoom(int roomNumber, FILE *f, int wverbose)

if (verbose) {
fprintf (£, "Room %d: %s\n', roomMumber, rooms[roombNumber].desc);
fprintfif, " Morth:%d South:%d East:¥d West:%d Up:¥d Down:#cdsn", ro
oms[roomMumber] .div[0], rooms[roomNumber] . dic[1], rooms[roomMumber].dic[2], roo
ms[roombumber].dirl3], roomslroomNumber].dirl4], rooms[roomBumber].dir(S51);
3

else {
fprintfif, "%s", B

B[ roomNumber] .desc) ;

3
_

vold PrintAction(int actionMumber, FILE #f)
i

ol T, o

int condition, condCmd, condParam;

int noun, werb;

int cmd;

int nextParam = 0; 7

Figure I1.3: After looking at an instance of the variable rooms, the rooms identifier
can be added to the Star Diagram.

* Same identifier

“ Identifiers with saune name

“ |dentifiers with same type

“ ldentifiers with same underdying type

Figure I1.4: The various types of Star Diagrams that can be built.



Selected Star Arms m

printf & »
|Prints a List of Riooms

W Trimmed Remove | Display |

Function ReadDataFile
|Hea.d3 a Description of Global Options

W Trimmed Remove | Diaplay |

Figure I1.5: The trimmed arms window, displaying sections of the Star Diagram
that can be annotated and then removed from the view.

II.B Star Diagram Operations

The goal of the Star Diagram is to allow the programmer to view the
important uses of program components to aid in restructuring. As you look at
the diagram from left to right, you can see higher-level views of the use of a
structure, from the actual identifier use to layers of function calls above the use of
the identifier. The Star Diagram main window has three main components. The
main window, shown on the right-hand side, contains all the nodes in the tree.
The left-hand side contains the elision window and the selected Star arm window,

shown on the top and bottom, respectively.

I1.B.1 Eliding Uninteresting Nodes

Since any restructuring requiring the use of an analysis tool will most
likely affect many program modules, a Star Diagram is capable of storing unlimited
nodes, bounded only by available memory. This abundance of nodes can clutter
the diagram and make it difficult to perform a restructuring. To improve the
usability of the StarTool, a single-language Star Diagram allows for the elision of
language-specific node types and nodes containing programmer-chosen strings. For
example, a StarTool user might choose to ignore all function calls or conditional

statements, choosing to focus on other aspects of the source.
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I1.B.2 Planning Program Restructuring

The ability to elide node types and certain strings from a Star Diagram is
useful, but sometimes a programmer needs to remove whole sections of the diagram
to focus on constructing a restructuring plan. The bottom-left side of the window
contains a set of trimmed arms, or portions of the tree that have been removed
from view. These arms would generally be parts of the display that are not related
to the restructuring being performed. Each trimmed arm contains a description
(the text from the root node that was shown in the diagram) and an optional text
box that can be used for annotation. This provides the ability for the programmer
to record a note describing the trimmed arm or maybe a potential restructuring
on the arm. The trimmed arms also have push-buttons to re-include them in the

Star Diagram or to build a new Star Diagram including only the trimmed arm.

II.C History of the Star Diagram Structure

The Star Diagram was created by Bowdidge as a program visualization
user interface for tool-assisted software restructuring [Bowdidge, 1995]. Chen cre-
ated a C Star Diagram Tool in 1996 with 5,000 lines of Tcl/Tk and 800 lines of
C++ [Chen, 1996]. This code was written on top of an AST front end already
written in C++ [Morganthaler and Griswold, 1995]. Chen added two facilities to
the Star Diagram to aid in the use of the Star Diagram: elision and trimming.
In 1998, Hayes invented a method for adapting the StarTool to different program
representations, creating StarTools for C, Tcl/Tk, and Ada [Hayes, 1998]. The
StarTool had always been used to study restructuring of C files. However, it is
common for large software to be written in a combination of different program-
ming languages. The StarTool itself includes a major portion of its functionality
in Tcl/Tk. Previous authors of StarTool implementations have desired to use the
StarTool to analyze a restructuring of the StarTool itself, providing the ultimate

test of the StarTool usefulness. Elbereth, a Java-only StarTool that was written
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int al_elaborate(int &argc, char *argv[]);

char *al_elision_attributes();
char *al_merging_attributes();

char *al_similarity_attributes();

/* Provides iteration of elements appropriately similar to #prototype#
under/inside the #container#. */
SyntaxUnit first_similar_su(SyntaxUnit container, SyntaxUnit prototype, char *similarity);

SyntaxUnit next_similar_su();

/* Provides iteration of elements with #attribute# under/inside the #container#. */
SyntaxUnit first_su_with_attribute(SyntaxUnit container, char *attribute);

SyntaxUnit next_su_with_attribute();

/* Formerly the ast_parent operation. */

SyntaxUnit su_superunit(SyntaxUnit item);

/* Given a SyntaxUnit #item# and the #subunit# from which it was reached, returns a label
indicative of #item#, possibly with an indication of which position #subunit# resides. */

char *su_label(SyntaxUnit item, subunit);
int su_skip_test(SyntaxUnit item);

struct FilePosition {
int line, column;

};

char xsu_file(SyntaxUnit item);

FilePosition su_begins(SyntaxUnit item);

FilePosition su_ends(SyntaxUnit item);

SyntaxUnit  file_to_su(char *pathname);

char xfile_text(SyntaxUnit item);

char *file_filters();

SyntaxUnit file_range_to_su(SyntaxUnit container, FilePosition *range_begin,

FilePosition *range_end);

Figure I1.6: The StarTool Adaptation Module interface, which contains 18 opera-
tions. The identifier sub-tag al stands for adaptation layer; the tag su stands for
syntazr unit.
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in Java, was also created in 1998 but does not use the same retargetable code

structure as the tools created by Hayes [Korman and Griswold, 1998].

II.C.1 Modification for Retargetability

Hayes restructured the StarTool with the goal of supporting retargetabil-
ity to new languages by making the tool representation and language independent.
The theory was that the StarTool could be adapted to existing program representa-
tions in a short amount of time as a means of retargeting the StarTool to different
programming languages. Hayes realized the algorithms to build, elide, and dis-
play a Star Diagram could be language-independent if the language-dependent
information was accessed via an interface common to all StarTools. In Hayes’s
implementation, the information required to parse and analyze a specific program-
ming language’s source files is kept in what Hayes termed an Adaptation Module
(see Figure I1.6). Using Hayes’s structure, a single-language StarTool is built by
the generic, language-independent StarTool submitting requests to the language-
specific Adaptation Module. The language-dependent Adaptation Module is re-
sponsible for processing and storing the AST nodes that are built from source
files. Functions included in an adaptation module are file-to-AST and AST-to-file
mapping functions, node attribute functions, and AST traversal functions. This
approach was successfully used to build three separate StarTools, polaris, twinkle,
and firefly, each capable of working with C, Tcl/Tk, and Ada files, respectively.

Separation of the language-dependent implementation from the language-
indepdent StarTool was achieved without excessive genericity via a query interface.
Each StarTool feature was assigned an operation in the adaptation layer that re-
turns a list describing the language-specific implementation. For example, to deter-
mine the merging attributes that are used in the Ada StarTool Firefly, the generic
StarTool calls the adaptation layer function al_merging_attributes, which then re-
turns a concatenated string containing package, subprogram, and task, which are

the Firefly merging operations. Through this function call, the StarTool can han-
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generic star
diagrarn
functionality

|

language
adapter

l

program
representation

Figure I[.7: The adaptation layer relationship with the generic star diagram func-
tionality and the language-specific program representation.

dle any sort of merging parameters without having specific support requirements
in the language-indepdent module. Elision, browsing, and similarity attributes are

queried through the similar function calls.

I1.C.2 Language-Dependent Resources

Hayes used readily-available program representations to prove the useful-
ness of his retargetability interface. The language-dependent portion of polaris, the
C StarTool, uses the Ponder language toolkit [Griswold and Atkinson, 1995|. The
Ponder toolkit generates program ASTs from C source files. Hayes didn’t have a
Tecl/Tk program representation readily available, so he built one himself. The Ada
program representation came from the Gnu Ada Compiler Gnat [Dewar, 1994].
Gnat is a public-domain Ada 95 compiler and code-generator that integrates with
the Gnu gcc compiler. Gnat’s program representation is built with AST nodes con-
taining information about program symbols. The Gnat compiler provides facilities

for manipulating an AST representation of Ada sources.
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II.D Adaptation Module Extensions

Since each single-language StarTool has a language-dependent and language-
independent portion, Hayes created a generic StarAdapter C++ class that includes
virtual functions with some default implementations that can be overridden in a
language’s Adaptation Module. To create an adaptation layer for a specific lan-
guage, a language-dependent class needs to be built on top of the StarAdapter.
The pure virtual implementations are replaced with language-specific functions,
and the provided default implementations are overridden if needed. The super-
classes built upon the StarAdapter are IcariaStarAdapter for C, TclStarAdapter
for Tcl, and GnatStarAdapter for Ada.

The generic StarTool engine links with the language-dependent Adap-
tation Modules for each language’s StarTool. However, each Adaptation Module
uses a unique data structure to store AST Nodes and the other associated pro-
gram representation information, such as type, scope, and line number. To allow
all adaptation modules to share the same interface, information is passed between
the generic StarTool and the Adaptation Modules via a SyntarUnit. The Syn-
taxUnit is actually a void * in C, a generic data store that points to an area of
memory. Using this approach, the representation- and language-independent Star-
Tool interface has no concern as to the language and representation being used in

the Star Adapters.



Chapter 111

The Multi-Language StarTool

Our goal was to leverage the StarTool’s retargetability interface to create

a single StarTool capable of analyzing programs written in multiple languages. In

addition, we prohibited ourselves from modifying Hayes’s interface to create our

new tool. The architecture we designed to support a multi-language tool can be

found in Figure IIL.1.

Figure III.1:
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diagram
functionality

C-TelfTk-Ada
Adapter

Ponder C
Adapter

TelTk Adapter

Grat Adapter

Ponder C

Program
Fepresentation

TeliTk Program
Fepresentation

Gnat Ada

Progratn
Fepresentation

Multi-language retarget of StarTool using adapter classes.

The

generic star diagram functionality was not modified; C-Tecl/Tk-Ada Adapter is

the mediating adapter containing the multi-language functionality.

15
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IIT.A User Interface Modifications

The user interface for the three single-language implementations of the
StarTool all use a common interface implemented in Tcl/Tk. The Tcl/Tk source-
code is completely representation- and language-independent. Since this Tcl/Tk
code was already structured to handle ASTs from various language implementa-
tions, there were no changes required to the user interface portion of the Tel/Tk
code to build a multi-language tool. Any language-specific information that was
required for display on the interface (such as the programming language supported
by the specific tool or the file extensions to be loaded) was retrieved through the
Adaptation Module via a query interface containing 14 functions. Therefore, the
user interface created by Hayes to support retargetable StarTool implementations
was readily adaptable to multi-language StarTools. The only modifications needed

for multi-language support were the 14 query functions in the adaptation layers.

III.B Multiple adaptation layers

We modified one function in the adaptation module to support loading
files from multiple languages, file_filters. The file_filters function returns the file
mask used for displaying the default files to be loaded into the StarTool. The
programmer has the option of loading files into the StarTool by specifying files or
a file-mask on the command-line, or they can choose the Load Files option which
brings up a dialog for choosing files. The file_filters function in the C StarTool used
*.¢*.i (*.i refers to .c files that have already been run through a pre-processor),
the Tecl StarTool used *.tcl, and the Ada StarTool used *.adb*.ads. For the multi-
language tool, the file_filters function combines these file-masks to return all of
the file filters as a combined string. Thus, the Tcl/Tk file load window for the
multi-language tool allows for the loading of C, Tcl/Tk, and Ada source files, as
can be seen in Figure III.2.

On the surface, it seemed possible to simply take all of the separate
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Figure III.2: Dialog box displaying the extensions that can be loaded into the
Multi-Language StarTool.

=

adaptation layer implementations and link them together. However, one aspect
common to the single-language tools is that each tool instantiation contains only
one adaptation layer. Moreover, each of the adaptation layers uses the same exact
function names to help with project management. If the IcariaStarAdapter (the C
StarTool adaptation layer) is processing a SyntaxUnit, it assumes that the Syntax-
Unit is always an Icaria AST Node cast to a void * Under no circumstance is the
[cariaStarAdapter prepared to receive a SyntaxUnit that is actually a Tcl/Tk AST
Node. It was obvious that while Hayes created a completely retargetable interface,
this structure was not originally intended to be included in a multi-language tool.

The adaptation layers and the code that handles the calls to the adap-
tation layers are found in two modules in each implementation. The C implemen-
tation uses polaris.cxx and IcariaStarAdapterClass.cxx, the Tcl implementation
uses twinkle.cxx and TclStarAdapterClass.cxx, and the Ada implementation uses
firefly.cxx and GnatStarAdapterClass.cxx. The polaris.cxx, twinkle.cxx, and fire-

fly.cxx files all contain same-named function calls that are one layer above respec-
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tive calls in the adapter modules; the upper layer functions are wrappers for the
actual adaptation modules. However, since these upper layers use the same name

and prototypes, they are not available for inclusion in a multi-language tool.

III.B.1 An adaptation layer Mediator

We proceeded to integrate the multiple adaptation layers into a single
codebase, allowing a single Star'Tool to process multiple languages. Since the func-
tions one-layer above each of the adaptation layers had the same function name,
we created a merged upper-layer that would serve as a mediator. The mediator
receives requests intended for one of the adaptation layers and chooses which adap-
tation layer receives the information; the mediator also processes language-specific
information returned by the mediators. The modules polaris.cxx, twinkle.cxx, and
firefly.cxx were combined into one single module, twinklepolaris.cxx for the C/Tcl-
Tk StarTool and twinklepolarisfirefly.cxx for the C/Tcl-Tk/Ada StarTool. This
mediator is responsible for all functionality found in the upper layer of the single
language tools.

All information is passed between the StarTool user interface and the
adaptation layers as generic SyntaxUnits; these memory locations provide no in-
formation regarding identifier context or the information stored at the SyntaxU-
nit’s memory address. The common interface used to process information in the
adaptation layers made the merging of the adaptation layers easy. However, this
generality created difficulty in merging the implementations. Our main goal was
to provide multi-language capability using Hayes’s retargetable adaptation layer
without modifying his structure. In the single language tools, the language inde-
pendent code never required a decision regarding which Adaptation Module should
receive a SyntaxUnit. In a multi-language tool, SyntaxUnits can be processed by
the IcariaStarAdapter, TclStarAdapter, or GnatStarAdapter. The general void *
associated with each SyntaxUnit provides no means to indicate to which language

(and to which language implementation) a SyntaxUnit is associated.
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One obvious solution would have been to change the structure of the Syn-
taxUnit, adding a specialized data store that included object type and language
information. This would have required changing the rest of the StarTool imple-
mentation, including the single-language adaptation layers which are out of our
control, since they are developed by others. Another possibility would have been
to combine the multiple adaptation layers into one large adaptation layer. This
choice was avoided since the addition of another language to our multi-language
tool or modification of a pre-existing language would be difficult since language in-
formation previously stored in a single-language module would be exposed to other
language implementations. It was important that the effort to add a language to
the multi-language StarTool be incremental and non-redundant. We desired to
add onto the representation-independent structure without sacrificing the ease of
adapting another language into the multi-language tool.

Our solution was to create a mediator responsible for associating Syntax-
Units with languages. We analyzed several approaches to handling this task. One
possibility was to create an address pool from where the SyntaxUnits would be
distributed. For example, any SyntaxUnit with a memory address from 0 through
10,000 would be a C AST Node, while 10,000 through 20,000 would be a Tcl/Tk
AST Node. This approach would not be very efficient as it would require allocation
of memory that will probably not be used during the operation of the StarTool.
It also is not robust as it intrinsically requires hard limits on the number of AST
Nodes that could be loaded into the tool from any implementation. It would be
possible to allocate extra memory during run-time to extend these pointer allo-
cations, but this approach would require the program to pause for allocation and
to modify its table of language-pointer associations, forcing the user to wait for
the program to adjust itself. In order to process a very large software package,
a full recompile of StarTool would be necessary to change these pointer settings,
which is not very desirable. This approach might also require the address pool

to have knowledge of the Operating System and architecture, since code working
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AssociateSyntaxUnitToLanguage (SyntaxUnit, Language)

{
Language_SyntaxUnit_Map[SyntaxUnit] = Language;
}
GetLanguageFromSyntaxUnit (SyntaxUnit)
{
return Language_SyntaxUnit_Map[SyntaxUnit];
}

Figure II1.3: The MultiLanguage StarTool Hash Table interface.

with pointers might not be portable to every platform.

III.B.2 Mediation through a Hash Table

Since the address pool was unworkable, we decided to implement a hash
table. The advantages of the hash table are that it is simple, easy to understand,
and easy to implement. The disadvantage of this approach is that the hash table
requires extra space to store its information, dependent on the hash table’s internal
data structure. The hash table would take as input a SyntaxUnit and return the
language associated with the specified SyntaxUnit. Implementing the hash table
required providing two operations, shown in Figure III.3:

We used the STL (Standard Template Library) map [ANSI, 1997] as the
basis for the hash table. The STL map(Key, T, Compare) supports unique keys
and provides for fast retrieval of another type T based on a given key. STL map
is implemented using red-black trees, so the time to insert a SyntaxUnit into the
hash table or to retrieve the language associated with a SyntaxUnit is of the
order O(log n) [Cormen, et al., 1997]. However, the simplicity of the hash table
did not come without added costs. Memory space is required to store the hash
table entries. Each hash entry contains a void * pointer and an associated integer

indicating the language (and adaptation layer implementation) that a SyntaxUnit
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was generated from. On a 32-bit machine, each hash table entry requires 8 bytes
of memory, in addition to the STL data structure overhead. We felt that this
was a reasonable requirement to support multi-language Star Diagrams without
modifying the adaptation layer structure.

With the capability to associate SyntaxUnits and languages in place, the
change to the adaptation layers proved straightforward. Most of the functions
that work with Syntax Units have one of these characteristics: 1) The function
receives an identifier (a filename or an enumerated language type) indicating the
language being worked with, or 2) The function is passed in a SyntaxUnit that pro-
vides context information since it has already been mapped to a source language.
In these functions, we call GetLanguageFromSyntazUnit to determine the Syn-
tax Unit’s source language and which adaptation layer implementation should be
called. This builds upon Hayes’s approach so that the representation-independent
module does not have knowledge of the separate language implementations. Since
the data processing by the central adapter is completely transparent to the adap-
tation layers, each implementation does not need to know that their AST data is
passed through a central adapter before their own adapter.

The exceptions to these rules are the function pairs {first_similar_su and
next_similar_su} and { first_su_with_attribute and next_su_with_attribute}. The sim-
tlar_su functions are used to look for a SyntaxUnit that is similar in a certain way
to another SyntaxUnit, while the su_with_attribute functions locate a SyntaxUnit
containing a certain attribute. The first function is always called to start the
search process; if a matching SyntaxUnit is found, more SyntaxUnits can be found
through successive calls to the next functions. The nezt functions do not receive
a SyntaxUnit as a parameter, which poses a problem for the mediator since no
language context can be found.

The lack of a language indicator as an input to the nezt functions was not
problematic in the single-language StarTools since there was only one adaptation

layer that could receive a next call, obviating the need for a language lookup. For
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the multi-language tool, we cache the language that is used in a first call; each
time a next function is called, the cached language value is used to determine
which adaptation layer to be called. It is not legal that next_similar_su could be
called after first_su_with_attribute sets the global value, or vice versa, since the
StarTool requires the appropriate first call before a subsequent nezt call can go
through. Setting and checking this global data value does require extra overhead,
including a data assignment for each first call and a data comparison for each next
call. However, these operations require a small amount of time and are reasonable,
considering that it allows us to use Hayes’s retargetable adaptation layer for multi-

language processing.

I11.B.3 Populating the hash table

We considered associating all of the nodes within a source file with its
source language by starting at the root node for a file and iterating through all
of the nodes, assigning each node individually. Since the adaptation layer doesn’t
have a mechanism to iterate through all of its nodes, we would have been forced
to modify the language-dependent adaptation layers, violating one of the goals of
our work. An all-node iteration might also cause large delays during the initial
processing of loaded source files. Instead, we located all of the adaptation layer
functions that return SyntaxUnits and captured the return values in the merged
upper layer. A total of 8 functions within the upper merged layer, located in Fig-
ure I11.4, return SyntaxUnits. When one of these functions returns a SyntaxUnit,
AssociateSyntaxUnit ToLanguage is called with the returned SyntaxUnit and its
associated language. Two other functions, file_to_su and file_range_to_su, process
files and return a SyntaxUnit representing the file. They are able to use the file-
name extension (*.c*.i for C, *.tcl for Tcl/Tk, *.adb*.ads for Ada) to associate
the newly created SyntaxUnit with a language. The rest of the functions either
set the cached last-language value or retrieve its contents for language context. By

isolating the language association operations to the functions that return Syntax-
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SyntaxUnit first_similar_su(SyntaxUnit originalSyntaxUnit)
SyntaxUnit next_similar_su()

SyntaxUnit first_su_with_attribute(SyntaxUnit originalSyntaxUnit)
SyntaxUnit next_su_with_attribute()

SyntaxUnit su_superunit(SyntaxUnit originalSyntaxUnit)

SyntaxUnit su_subunit(SyntaxUnit originalSyntaxUnit)

SyntaxUnit file_to_su(char *filename)

SyntaxUnit file_range_to_su(FileRange theFileRange)

Figure I11.4: Functions in the adaptation layer that return SyntaxUnits.

Units, we were able to create a process that can be extended to more languages
with minimal effort. Modifications required for adding support for a new language

association involve only 8 functions and less than 100 lines of code.

II1.B.4 Multi-Language Elision Options

Elision options are passed through the adaptation layer via three func-
tions, al_browsing_attributes, al_elision_attributes, and al_merging_attributes. As
an example, the merging attributes returned by the Tcl StarTool are file and
proc, while the Ada StarTool returns Program, SubProgram, and Task. Since pro-
gramming languages do not have constructs that always map to each other, we
encountered a difficult issue regarding how to display elision options to the user.

For our original multi-language tool, we originally proposed to take the
union of all of the attributes and present them to the user. This provides complete
flexibility to the programmer, allowing the elision of certain types of nodes from one
language implementation, while keeping them in another language implementation.
A view of the elision window using this methodology can be seen in Figure I11.8.

This interface was too cluttered to actually be useful. Previous user
studies with the Star Diagram have shown that a poorly designed interface can

frustrate the StarTool user, reducing the usefulness of the tool [Cabaniss, 1997].
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Figure III.8: Original attempt at providing elision options in the multilanguage

StarTool.

We decided that the programmer wouldn’t actually want to think about low-level
language constructs as part of an overall multi-language program restructuring.
Rather, they would be focusing on whole-program analysis and would prefer to
operate at a higher level. To provide this interface, we merged the elision/merging
attributes into more generic groups of attributes for compact presentation to the
programmer. The attributes that are available for elision in the multi-language
tool are Conditional Statements, Loop Statements, Case Statements, Compilation
Units, Functions, and Tasks. The new elision panel can be seen in Figure II1.9.
The mediator used for the language and SyntaxUnit association is also
used for language and attribute associations. When the mediator receives one of
the high-level attribute groups, it determines the language that will be receiving
the language-specific attribute and conwverts the generic group into the language’s

appropriate attributes. For example, if the mediator receives Conditional State-



26

Hodes to Exclude m
- Al Statements I Compilation Units
o I Functions
1 Conditional Statements
1 Tasks
I Loop Statements
1 Stacked
1 Case Statements
o Unstacked

_i Depth - ||u— + |
1 Striny | Mext Striny |

Clear Selections | Apply to Diagram |

Figure II1.9: Elision options in the Multi-Language StarTool.

ments, the C StarTool receives if, the Tcl StarTool receives if and else, and the
Ada StarTool receives if. As with the SyntaxUnit mediation, this conversion is

transparent to the adaptation layers.

III.C Cross-Language Issues

After the mediators were added to handle language and attribute map-
ping, we were successfully able to load source files from multiple languages into
one Star Diagram using a single StarTool executable. Files containing C, Tcl, and
Ada extensions were easily loaded into the StarTool for processing. For example,
the user could build a diagram containing all of the C nodes similar to a C variable
and all of the Ada nodes similar to an Ada variable, as seen in Figure II1.10. This
would require a two-step process, first adding the C identifier, then adding the
Ada identifier. The programmer could also search for all instances of a text pat-
tern across multiple-language sources and then add the results to a Star Diagram.
Although these Star Diagrams are interesting to look at and quite useful to a pro-

grammer, we realized that a multi-language tool needs to do more than process
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Figure II1.10: Multilanguage Star Diagram with all C identifiers similar to a C
variable and all Ada identifiers similar to an Ada variable. The view has been
elided to show that the Diagram pulls in nodes from both C and Ada sources.

sources from multiple languages. To be fully useful, the tool needed to understand
cross-language issues that do not exist in single-language programs. The nature of
a true multi-language program is that some of the variables or functions are shared
across multiple languages. A C function might call a Tcl function, or an Ada func-
tion might change or access a variable that is declared in a C file. We desired
a Star Diagram built on a cross-language identifier to automatically include any
instance of the identifier in every language source loaded into the StarTool. This
sort of multi-language view ensures that the programmer will see any occurrence
of the use of an identifier across all languages, helping to reduce the possibility of

software errors.
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III.C.1 Conversion of SyntaxUnits

Since each adaptation layer may use unique methods and data structures
to store language representation, SyntaxUnits created by one adaptation layer are
not correctly processed by other adaptation layers. To use Hayes’s adaptation
layers without modification, we created a temporary dummy SyntaxUnit that can
be correctly parsed by other implementations. The dummy SyntaxUnit contains
the information represented by the old SyntaxUnit but in the correct data structure

format for another implementation.

Createa
Identifier that [dentifier that termporary
the Star el i modification of
Di i tnay be "similar ke Check the two
iagram iz built T the identifier for PR
. to the original i identifiers for
P identifier TnLanl; sirmitarity

Are the two
languages the
sarne?

Figure I11.11: Process for conversion of SyntaxUnits. This process occurs once per
source file loaded into the Star Diagram.

When the StarTool builds a Star Diagram, it searches for identifiers that
are similar in some chosen way to the specified identifiers. For example, the Star-
Tool might be asked to search for identifiers that have the same name, type, or the
same underlying type as chosen identifiers. The language-independent front-end
has a function called insert_similar_nodes that is responsible for filling a Star Dia-

gram with objects that are similar to a chosen object. This is performed through a
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call to first_similar_su and successive calls to next_similar_su. When searching for
similar identifiers, first_similar_su in the multi-language tool checks the language of
the source identifier and the language of the identifier to be compared. If they are
the same, the tool lets the similarity check proceed as it did in the single-language
tools. Otherwise, a dummy temporary SyntaxUnit is created to encapsulate the
original SyntaxUnit information for the specific implementation. The function
ConvertSU receives the node to be converted along with the destination language,
which then calls either ConvertSU_C, ConvertSU_Tcl, or ConvertSU_Ada. This
process can be seen in Figure I11.11.

The conversion of SyntaxUnits from one implementation to another re-
quires filling in an identifier’s label (or name), its kind, and its scope; this infor-
mation is required to search for an identifier that is similar to an identifier from a
different language. The first step for creating a dummy SyntaxUnit for language
conversion is to allocate a new AST Node for the target representation. The C
adaptation layer uses an AST Node type defined in the Icaria library, the Tcl type
is a custom AST representation built by Hayes, and the Ada adaptation layer uses
a combination of Gnat program representation information and other StarTool-
specific AST information. This process requires a memory allocation for the new
AST Node.

The new SyntaxUnit then needs to take on the label contained by the
old SyntaxUnit, which is retrievable through the su_label function. This step may
require some conversion of the label, since Hayes’s retargetable interface does not
guarantee that a label from one adaptation layer will match a label from another
adaptation layer. Also, some parsers might perform name mangling on an identifier
that would need to be processed.

The conversion routines then fill in kind information. Objects in Star Di-
agrams can hold many different attributes including AST Identifier, Variable, Dec-
laration, etc. Reconciling the different types among the adaptation layers proved

to be one of the difficult steps in creating a multi-language tool. The Icaria Libary
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ConvertSyntaxUnit (SyntaxUnit oldSyntaxUnit, SyntaxUnit newSyntaxUnit,
Language newLanguage)

{
newSyntaxUnit.allocateMemory () ;
newSyntaxUnit.label =
CreateNewLabel (0ldSyntaxUnit.getLabel());
newSyntaxUnit.Child = NULL;
newSyntaxUnit.Parent = NULL;
newSyntaxUnit.Siblings = NULL;
newSyntaxUnit.IdentifierType =
NewIdentifier (oldSyntaxUnit.getIdentifierType());
AssociateSyntaxUnitToLanguage (newSyntaxUnit,newLanguage) ;

Figure II1.12: Pseudo-code for conversion of SyntaxUnits to other adaptation lay-

ers.

in the C StarTool has 14 types, the Tcl tool supports 3 major types, and the Ada
tool has 211 major types. The Ada interface includes much more types since it was
built directly on an Ada language parser, while the Tcl interface was hand-built
and the C interface used a C program slicer. The issues created by these large
differences in type information are addressed in Chapter IV.

Lastly, scope information needs to be filled in. The C adaptation layer’s
AST Node has data values for parent, child, left sibling, and right sibling. Hayes’s
Tcl AST Node has a data field for children; a new Tcl AST Node automatically sets
its parent and sibling to NULL. The Ada AST data structure also has values for
parent, child, and sibling. To correctly compute scope information when searching
for the same identifier, all of these data fields need to be filled in.

After the label, kind, and scope are set, the converted AST node is as-
sociated with the target language in the language hash table. The advantage of
this approach is that only one conversion routine needs to be written for every
language that is added to a multi-language StarTool. However, this conversion

routine needs to be aware of the other adaptation layer’s representations to be
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sure that it is fully compatible with the other languages supported by the Star-
Tool. This requirement creates some work for the implementer when adding a
new language to the multi-language tool. One side benefit is the AST node con-
version is optional, or it can be delayed after introduction of a new language. If
a cross-language conversion needs to be performed but is skipped, the StarTool
will process the incorrect SyntaxUnit and consider it a non-match when looking
for similar nodes. Multi-language Star Diagrams could still be built with such a
tool, but cross-language identifier searches will not include identifiers that are lo-
cated in source files containing the newly added language. Cross-language variable
searching might work if the programmer chooses an identifier in the new language;
since the conversion routine will already have been written for the other languages,
the tool will most likely correctly convert the SyntaxUnit from the newly added
language. Choosing a variable in an already implemented language would not find

the variable in the new language without the new language’s conversion routine.

III.D Limitations of the approach

We were limited by the amount of cross-language variable searching we
could perform in the multi-language tool. Since the multi-language StarTool does
not have access to the full parse trees of the source files that are loaded, we are
not able to extract full information concerning AST nodes. Therefore, we had
to make some concessions concerning the ability of the multi-language tool to do
Cross-Language searching.

Lacking a full parse-tree, the multi-language Star'Tool needs heuristics
when looking for the same identifier across multiple languages. Some programming
languages have certain commands that are used to register identifiers or variables
that are declared in another language. The StarTool uses T'cl_Create_Command
to register functions in C that are called in Tcl. Without full AST information

from the adaptation layer, the multi-language tool does not know which identifiers
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have been mapped via a cross-language registration function. Moreover, each
language has its own method for registering another language’s identifiers and
this registration process can be dynamic.

We made the assumption that if the user is looking for the same identifier
to one that is declared in a procedure, any identifier that has a global scope with
the same name and type is considered a match. The same goes for performing a
search on a global identifier; it will only find identifiers with a local scope, not global
ones. This provides a high confidence that the multi-language tool is finding the
information that the programmer is looking for. One requirement for this search to
succeed is that if an identifier is used across multiple languages, it must be named
the same (have the same label) in every implementation. Since using the same
name would be good programming practice, we considered this requirement to be

reasonable.

III.E Adaptation Layer Requirements for Multi-
Language Support

Our multi-language StarTool can be extended to support more languages
if an adaptation layer has been created for the new language. For multi-language
support, the single-language adaptation layer needs to be widened through the

following functionality:

1. A make_dummy function. The new tool must support the creation of a
temporary fake SyntaxUnit to search for identifiers in the new language that

are similar to chosen identifiers from other languages.

2. A remove_dummy function. The new tool must support the deallocation of

the dummy SyntaxUnit after it is no longer needed.

3. A function to identify the name, scope, and kind associated with an identifier

for the new language.
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The difficulty associated with creating these functions was directly related
to the data structures used for each adaptation layer. Creation of these functions
for the C adaptation layer was the most difficult, due to the complex and multi-
layered data structures used by the Icaria toolkit. Tcl/Tk was the easiest language
to support, since Hayes created a clean and simple adaptation layer for the Tcl/Tk
StarTool. The simplicity of the Tcl/Tk language also simplified the creation of

these functions.



Chapter IV

Discussion

In this section we discuss the results of our project as well as an evaluation

of the design and its limitations.

IV.A Tool Implementation

The multi-language transformation to the retargetable StarTool was im-
plemented entirely in the C++ programming Language. The C/Tcl-Tk/Ada tool
and C/Tecl tool has 21,000 and 16,000 lines of code, respectively; 2,000 lines of
code in each multi-language tool is for multi-language support. These totals do
not include the Icaria and Gnat libraries. The gnu g++ compiler was used for
compilation of the C and C++ sources, and the Gnat add-on for gcc was used
to compile the Ada sources. The Gnat compiler is also used for processing Gnat

sources when they are loaded into the StarTool.

IV.B Multi-Language StarTool

Our work has produced an extendible multi-language StarTool that can
be used to analyze and restructure software written using multiple programming

languages. Moreover, we were able to implement our design without modifying
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the retargetable StarTool interface created by Hayes or the generic user interface.
Our framework allows for new languages to be integrated into the StarTool with
minimal effort once an adaptation layer has been written for that new language.
Cross-language variable searching can be functional with the new adaptation layer
through the creation of 3 extra functions to support dummy SyntaxUnits. This
provides an incentive to the programmer deciding whether to retarget the StarTool

to a preferred new language.

IV.C Usability

We encountered many issues when trying to create a usable interface for
a multi-language program analysis tool that would be used by programmers with
different programming assumptions and styles of work. Having very little previous
research in this field to use in our efforts, we had to make some educated guesses

concerning the use of the tool.

IV.C.1 Elision Options

The Elision Options are part of what gives the StarTool its uniqueness;
they provide the ability to hone-down a Star Diagram view to support the pro-
grammer’s needs. In a multi-language tool, the programmer can either be thinking
in a multi-language or a single-language perspective. However, the StarTool will
always display all of the information from each language loaded into the tool.
We desired to give the programmer the maximum flexibility in eliding all possible
nodes, shown in Figure II1.8. Unfortunately, this made the interface seem cluttered
and could overwhelm the StarTool user. We also felt that providing the user with
too much functionality might be a reason to not use the tool. The multi-language
StarTool’s merged categories, shown in Figure II1.9, is our attempt to provide
flexibility to the programmer while keeping the interface as language-generic as

possible. Another option for the elision window would be to provide a new eli-
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sion panel containing one language’s elision options for each language loaded into
the StarTool. Unfortunately, this scenario is not preferred since the StarTool will
run out of window space as more languages are added to the StarTool. Requiring
the programmer to scroll through panels of elision options to find what they are
looking for would be counter-intuitive.

The elision categories provided might also be problematic to the user. We
created the generic label Compilation Units to represent the C and Tcl File and
the Ada package. However, an Ada user might feel that a package does not belong
in the same category as a file. The Ada task construct also did not seem to fit in
with any of the other language’s elision options, so we left Task as an elision option
by itself, providing more language-specific information in the elision window than

we’d prefer.

IV.C.2 Star Diagram Displays

A multi-language StarTool user is able to retrieve the language associated
with an on-screen node by viewing the file or package that the node derives from,
assuming the user has not elided that information from the view. A possible
improvement to the StarTool would be to add color information to indicate the
language associated with an AST Node; the use of color might aid in restructuring
by helping to locate cross-language dependencies. The user also has the option
of double-clicking on a node to bring up the associated source code to discover
the AST’s language, but this operation may become tedious. Double-clicking on
a stacked node will bring up a listing of all the source files, displaying the nodes’
language information. Node display could be further differentiated by using a
separate color or box demarcation for identifiers that are used across multiple
languages. We would also like to give the StarTool user the option of viewing the
Star Diagram with generic labels. For example, all function calls would be labeled
function. A Star Diagram with generic labels might help the user to simplify their

restructuring process by stacking chosen identifiers with a common generic label.
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Hodes to Stack

-1 Al Statements
i Compilation Units i Stack C

1 Functions 1 Stack Tcl
J Tasks o Stack Ada

J Conditional Statements

I Loop Statements

1 Case Statements

Clear Selections Apply to Diagram

Figure IV.1: The desired ”customizable stacking” options, similar to the elision
window.

The single-language Star Diagrams stack nodes that are considered sim-
tlar, but extending the similarity notion to multiple-languages is difficult because
it can be interpreted in numerous ways. For example, consider a C struct and an
Ada package; defining what makes them similar is difficult. One programmer might
feel they are similar if the data structures have members with the same name; an-
other programmer might feel they are similar if the structures are the same size.
And enumerated types from two different languages might not be syntactically
considered the same construct.

We considered providing the StarTool user the option to customize their
own stacking, similar to the method used to elide nodes from the view. Our
proposed interface can be seen in Figure IV.1. The programmer could selectively
choose which kinds of nodes are stacked and which aren’t, providing more control
over the interface. For example, the user could stack all loop statements and all
case statements; they could also stack all of the nodes within a single language,
such as every Tcl/Tk node. The code that decides stackability of Star Nodes is
shown in Figure IV.2. The algorithm used for determining whether to stack two
nodes checks a context label for the identifiers to see if they are the same. To
provide the capability to customize stacking, we would have had to modify the

Adaptation Layer to provide a path to pass stacking information through.
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static int

stackable(const SyntaxUnit first,
const SyntaxUnit first_context,
const SyntaxUnit second,
const SyntaxUnit second_context)

return (context_label(first, first_context) ==
context_label(second, second_context));

Figure IV.2: The function that decides whether nodes are stackable for the display.

IV.D Reliance on 3rd-party tools

The interface used to implement the Ada adaptation layer proved prob-
lematic for future use of the tool. The Gnat adaptation layer implementation is
actually based upon Gnat’s Ada AST definitions. When the Gnat StarTool was
originally created, the code used version 3.10 of the Gnat source code. During the
course of our project, we desired to migrate to Gnat version 3.12 since the new
version included Windows DLL capabilities. Unfortunately, the Ada adaptation
layer used some identifiers from Gnat’s version 3.10 source code that do not exist
in Gnat version 3.12. Migrating to the new Gnat version would have required
modifying the Ada adaptation layer, so we decided to use the older version of
Gnat for the implementation of the multi-language tool. This exemplifies one of
the problems associated with directly using a 3rd-party implementation. Had an
interface been written on-top of the Gnat AST representation, we might have been
able to more easily switch to later versions of the Gnat tool. An interesting task
would be to verify that Hayes’s Adaptation Layer can still be used with the new
Gnat Source Code.



39

IV.E Performance

The StarTool performance overhead that is incurred by our multi-language
extensions occurs during three phases: 1) When a source file is processed, 2) When
a Star Diagram is built and the tool does language lookups on SyntaxUnits, and 3)
When a multi-language StarTool is being built and dummy identifiers are created
for cross-language searching. To benchmark the multi-language StarTool perfor-
mance overhead, we calculated the amount of time required for these operations
using the single-language tools and the amount of time to do the same operations
in the multi-language tool. Our testing platform was a 200 MHz Sun UltraSparc 2
with 192 megabytes of RAM. The GNU g++ and Gnat Ada compilers were used
by the StarTool for compiling the C and Ada sources. We loaded a set of 100 files
from C, Tcl/Tk, and Ada sources; each test was run 5 times with the high and

low results dropped and the other scores averaged.

1. Loading source files into the StarTool. The testing showed that the amount
of time to load the source files into the multi-language tool required less than
4.7% more time than the total time of loading the C sources into Polaris, the
Tecl/Tk sources into Twinkle, and Ada sources into Firefly. Since our run-
time numbers do not include the amount of time to exit the individual tools
and re-start the other tools, it is actually faster to use the multi-language

tool to load source files from multiple languages.

2. Building a Star Diagram without cross-language conversions. To benchmark
the slow-down for simply building a Star Diagram, we loaded a series of files
from a single language into the multi-language StarTool to prevent it from
doing SyntaxUnit conversions. We created Star Diagrams for identifiers with
the same name as a chosen identifier and calculated the time from selecting
Display on the main StarTool screen until the Star Diagram appeared on
the screen. The multi-language tool required less than 11.5% more time to

display the combined Star Diagram than the total time to use the single-
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language tools individually. We again did not include the time to exit and
re-start the tools. Depending on the size of the project, it may be faster
to use the multi-language StarTool to load multi-language sources; in case
of an extremely large program, the user might experience at most a 11.5%
slowdown in loading sources. We feel that the slight performance decrease
is reasonable considering the value of using the multi-language tool. Im-
provements in the Standard Template Libary map implementation or the
substition of a different hash table interface are possible optimizations to

improve this performance.

. Building a Star Diagram with cross-language conversions. The last area
where the multi-language StarTool affects performance is with cross-language
conversion. We again loaded the same sources but this time loaded all of the
sources from all of the languages at once. We built star diagrams including
the same name and the same identifier and calculated the time to display
the diagrams; the multi-language StarTool required at most 15.1% more time
to calculate and display the Star Diagram than using each of the tools indi-
vidually. We conclude that the extra 3.6% time slowdown is a good result,
considering the addition of cross-language searching. Since program restruc-
turing is time consuming, and the extra time to build a multi-language Star-
Tool does not require user interaction, many programmers could conclude

that the extra time is outweighted by the multi-language benefits.



Chapter V

Conclusion

V.A StarTool Programs

The StarTool at UCSD now has seven members: the original C-only
StarTool, Elbereth for Java, Hayes’s retargetable single-language implementations
for C, Tcl/Tk, and Ada, and the multi-language C-Tcl/Tk and C-Tcl/Tk-Ada
StarTools.

V.B Contributions of the Research

A method for combining retargetable single-language analysis
tools into multiple-language analysis tools. We have developed a method for
easily and quickly creating multi-language analysis tools from retargetable single-
language tools using a multi-level adaptor approach with a mediator. With our new
approach, a programmer that creates a StarTool for a new programming language
will be able to add its functionality into the multi-language tool with minimal
effort. A couple weeks work and less than 1000 lines of source code should suffice
to add a new language from a single-language StarTool into our multi-language
framework.

The method required to add a new language to the multi-language tool
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(after an adaptation layer has been created for the new language) is as follows:

1. Modify the hash table definitions to support the association of identifiers
with the newly added language.

2. Customize the mediator’s elision options to support constructs from the
newly added language and the pre-existing supported languages. This might
require adding a new elision category to the user interface, combining new
categories with existing categories, or the renaming of categories to improve

the usability of the interface.

3. Modify the 8 functions within the mediator that return SyntaxUnits to as-
sociate SyntaxUnits returned by the new adaptation layer with the newly

supported language.

4. Modify the multi-language mediator to pass information to the new adapta-

tion layer upon encountering a SyntaxUnit intended for the new language.

5. Add functionality to create a dummy node for the new language for cross-
language searching. This will require implementing the make_dummy, re-
move_dummy, and retrieve_name_scope_kind function, widening the adapta-

tion layer interface.

Multi-Language StarTool Implementations. We have developed
versions of the StarTool for C-Tcl/Tk-Ada and C-Tcl/Tk.

Insights into multi-language program analysis. Through the use
of our Multi-Language StarTool, we have discovered several issues with how pro-
grammers want to view information that comes from multiple source languages.
Information can be displayed in a language-specific form or in a manner that gen-
eralizes across multiple languages. Tools capable of performing multi-language
analsyis need to use a common interface with a mechanism to retrieve language-
specific information hidden behind the interface. We have shown that a mediator

combined with an adaptation layer is one effective solution.
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V.C Future Work

We would like to test the multi-language interface on a large-scale com-
mercial project. We are in the process of identifying a suitable candidate to help
us with using the multi-language tool on a long-term basis. Raytheon is a likely
candidate to assist us with using our multi-language extensions to restructure a
large, multi-language software program.

The opportunity to provide customizable stacking to the user would be
a great addition to the StarTool. More research needs to be done whether this
would require modification of the adaptation layer or not. Even if it does, this
would still be a worthwhile change. Since the adaptation layer wasn’t originally
intended to be multi-language ready, this conclusion wouldn’t diminish the value
of the adaptation layer and Hayes’s retargetability approach.

We would like to add support for additional languages to the multi-
language StarTool. The languages C, Tcl/Tk, Ada are all imperative programming
languages. The similarity among the languages supported by the StarTool might
have simplified our multi-language extensions, shadowing some language nuances
we might have considered.

We plan to make our work available at the UCSD Software Evolution
Laboratory web page, http://www-cse.ucsd.edu/users/wgg/swevolution.html. Bi-
naries for both UNIX and Windows will be available for download.
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