
UC San Diego
Technical Reports

Title
Multi-Language Support in a Program Analysis and Visualization Tool

Permalink
https://escholarship.org/uc/item/1jg3d5vc

Author
Moskovics, Stuart

Publication Date
2000-06-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jg3d5vc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Multi-Language Support in a Program Analysis and Visualization Tool

A thesis submitted in partial satisfa
tion of the

requirements for the degree Master of S
ien
e

in Computer S
ien
e

by

Stuart Phillip Moskovi
s

Committee in
harge:

Professor William G. Griswold, Chairperson

Professor William E. Howden

Professor Keith Marzullo

2000

Copyright

Stuart Phillip Moskovi
s, 2000

All rights reserved.

The thesis of Stuart Phillip Moskovi
s approved:

Chair

University of California, San Diego

2000

iii

To my parents

iv

TABLE OF CONTENTS

Signature Page . iii

Dedi
ation . iv

Table of Contents . v

List of Figures . vii

A
knowledgements . ix

Abstra
t . x

I Introdu
tion . 1

A. Motivation . 1

B. Approa
hes to Multi-Language Analysis 3

C. Hypothesis . 4

D. Results . 5

E. Overview of the Thesis . 5

II The StarTool . 6

A. The Star Diagram . 6

B. Star Diagram Operations . 9

1. Eliding Uninteresting Nodes . 9

2. Planning Program Restru
turing 10

C. History of the Star Diagram Stru
ture 10

1. Modi�
ation for Retargetability 12

2. Language-Dependent Resour
es 13

D. Adaptation Module Extensions . 14

III The Multi-Language StarTool . 15

A. User Interfa
e Modi�
ations . 16

B. Multiple adaptation layers . 16

1. An adaptation layer Mediator . 18

2. Mediation through a Hash Table 20

3. Populating the hash table . 22

4. Multi-Language Elision Options 23

C. Cross-Language Issues . 26

1. Conversion of SyntaxUnits . 28

D. Limitations of the approa
h . 31

E. Adaptation Layer Requirements for Multi-Language Support 32

v

IV Dis
ussion . 34

A. Tool Implementation . 34

B. Multi-Language StarTool . 34

C. Usability . 35

1. Elision Options . 35

2. Star Diagram Displays . 36

D. Relian
e on 3rd-party tools . 38

E. Performan
e . 39

V Con
lusion . 41

A. StarTool Programs . 41

B. Contributions of the Resear
h . 41

C. Future Work . 43

Bibliography . 44

vi

LIST OF FIGURES

II.1 A Star diagram built for the variable rooms. 7

II.2 Sear
hing for all referen
es to the variable rooms. Double-
li
king

on one instan
e of the variable will bring up the spe
i�
 se
tion of

ode
ontaining the variable. 8

II.3 After looking at an instan
e of the variable rooms, the rooms iden-

ti�er
an be added to the Star Diagram. 8

II.4 The various types of Star Diagrams that
an be built. 8

II.5 The trimmed arms window, displaying se
tions of the Star Dia-

gram that
an be annotated and then removed from the view. . . 9

II.6 The StarTool Adaptation Module interfa
e, whi
h
ontains 18 op-

erations. The identi�er sub-tag al stands for adaptation layer; the

tag su stands for syntax unit. 11

II.7 The adaptation layer relationship with the generi
 star diagram

fun
tionality and the language-spe
i�
 program representation. . . 13

III.1 Multi-language retarget of StarTool using adapter
lasses. The

generi
 star diagram fun
tionality was not modi�ed; C-T
l/Tk-

Ada Adapter is the mediating adapter
ontaining the multi-language

fun
tionality. 15

III.2 Dialog box displaying the extensions that
an be loaded into the

Multi-Language StarTool. 17

III.3 The MultiLanguage StarTool Hash Table interfa
e. 20

III.4 Fun
tions in the adaptation layer that return SyntaxUnits. 23

III.5 Elision options in the C StarTool Polaris. 24

III.6 Elision options in the T
l StarTool Twinkle. 24

III.7 Elision options in the Ada StarTool Fire
y. 24

III.8 Original attempt at providing elision options in the multilanguage

StarTool. 25

III.9 Elision options in the Multi-Language StarTool. 26

vii

III.10 Multilanguage Star Diagram with all C identi�ers similar to a C

variable and all Ada identi�ers similar to an Ada variable. The

view has been elided to show that the Diagram pulls in nodes from

both C and Ada sour
es. 27

III.11 Pro
ess for
onversion of SyntaxUnits. This pro
ess o

urs on
e

per sour
e �le loaded into the Star Diagram. 28

III.12 Pseudo-
ode for
onversion of SyntaxUnits to other adaptation

layers. 30

IV.1 The desired "
ustomizable sta
king" options, similar to the elision

window. 37

IV.2 The fun
tion that de
ides whether nodes are sta
kable for the display. 38

viii

A
knowledgements

I would like to thank my advisor, Bill Griswold, for his enormous guidan
e

and support. He has been extremely patient with me during my resear
h and

writing, and it has been a great pleasure to work with him.

I would like to thank Jim Hayes for helping me to understand the Star-

Tool's retargability me
hanisms. His fabulous work with redesigning the StarTool

laid the groundwork for the multi-language extensions
reated during my resear
h

and implementation. I would also like to thank Jimmy Yuan for being a
onstant

sour
e of support during my undergraduate and graduate
areer.

I would like to thank my parents for their
onstant support during my

s
hool
areer. From my early
hildhood, they have always en
ouraged me to

a
hieve. I would not have made it this far without them.

This work was supported by NSF Grant CCR-9508745 and UC MICRO

Grant 98-054 with Raytheon Systems Corporation.

ix

ABSTRACT OF THE THESIS

Multi-Language Support in a Program Analysis and Visualization Tool

by

Stuart P. Moskovi
s

Master of S
ien
e in Computer S
ien
e

University of California, San Diego, 2000

Professor William G. Griswold, Chair

Restru
turing and analyzing software is diÆ
ult. Tools that allow pro-

grammers to view and plan modi�
ations to existing programs
an ease the burden

of maintenan
e and
hange. Modern software engineering proje
ts often use many

di�erent programming languages, in
luding the use of multiple languages in a sin-

gle proje
t.

The StarTool is a program visualization and restru
turing tool for soft-

ware programs. This thesis dis
usses a method used to improve the Star Diagram's

retargetability features by providing support for understanding multi-language

software programs. Our resear
h shows a simple and extendible me
hanism to use

single-language retargetable program analysis tools for multiple-language analysis.

x

Chapter I

Introdu
tion

I.A Motivation

The
omputing industry has re
ently experien
ed substantial in
reases

in available
omputer pro
essing power and fast memory, allowing for larger and

more
omplex software. The job of restru
turing and enhan
ing su
h software is

diÆ
ult and time-
onsuming. It is not un
ommon for programmers to start work

on a software proje
t with minimal or no knowledge of the pre-existing system

and
ode stru
ture. Any method or tool to help the engineer understand program

stru
ture
an be a valuable time-saver and assist in produ
ing quality
hanges.

Large software proje
ts are in
reasingly being written using multiple lan-

guages. T
l/Tk is used to qui
kly
reate graphi
al user interfa
es; it is also used

be
ause it is portable a
ross platforms. Frequently, the interfa
e portion of a pro-

gram
an be written in a language su
h as T
l/Tk while the rest
ould be in

another language. A
omputation-intensive program might require the eÆ
ien
y

of C, while a highly
riti
al program dealing with a nu
lear rea
tor would need

the software safety of Ada. Programs written for Mi
rosoft Windows
ommonly

have their graphi
al user interfa
e written in Visual Basi
 while the performan
e-

sensitive
ode is written in Visual C++. Choi
e of programming languages
an

also involve the
osts asso
iated with their use. Studies have shown that a line of

1

2

Ada
ode
osts about half as mu
h as a line of C
ode, produ
ing 70 per
ent fewer

internal �xes [Zeigler, 1995℄. Some languages also have better
ompiler and tool

support than others, making their use more attra
tive to the programmer.

Many program analysis tools have been
reated and studied for program

restru
turing and understanding. However, there has been a la
k of readily avail-

able tools that were
apable of pro
essing programs written in multiple program-

ming languages. An ex
ellent tool to analyze C would be
ompletely useless for

the portions of a proje
t written in Ada. There aren't well-established methods of

taking existing program analysis tools and
ombining them to be used for multiple

languages. Generi
 tools su
h as UNIX grep
an be used to sear
h for identi�ers in

sour
e �les of multiple languages, but the results do not indi
ate a multi-language

analsyis. Grep also la
ks a graphi
al interfa
e, minimizing the
omprehensibil-

ity of its output. One option would be use a separate analysis tool for di�erent

languages; for example, to analyze a program written in C and Ada, the C
ode

ould be viewed in a C restru
turing tool, while the Ada
ode is loaded in an

Ada analysis tool. Unfortunately, this approa
h provides no means to integrate

the separate analyses into one result. For example, attempting to lo
ate identi-

�ers and variables that are used a
ross multiple languages would be very diÆ
ult.

Multi-language tools are
apable of examining
ross-language issues that
ould not

be e
onomi
ally explored with multiple single-language tools.

This is the problem fa
ed by users of the StarTool, a program restru
-

turing and analysis tool developed at the UCSD Software Evolution Laboratory

[Griswold et al., 1996℄. This tool builds Star Diagrams, graphi
al views of program

elements that are
ustomizable to the user. Hayes redesigned the StarTool infras-

tru
ture to allow easy retargetability to new programming languages [Hayes, 1998℄.

The new StarTool hides language-spe
i�
 representation information in an adap-

tation layer
ontaining 14 fun
tions. A StarTool for a new language
an be built

by taking existing program representations and adding an interfa
e through the

reation of a language-spe
i�
 adapter. Based on this interfa
e, StarTools were

3

built for C, T
l/Tk, and Ada.

Raytheon, a defense, engineering, and aviation business with oÆ
es in

California, has been a long-term user of the UCSD StarTool. The StarTools for

both C and Ada have been beta-tested at Raytheon on their software. Raytheon

has been one of the major motivators of a multi-language StarTool; sin
e they have

software that uses both C and Ada, they have requested a StarTool implementation

that
an help them to understand and restru
ture those types of programs.

I.B Approa
hes to Multi-Language Analysis

Through the use of a
ommon representation approa
h, retargetable anal-

ysis tools are often usable for multi-language analysis. An example is a
ompiler

that is
apable of linking together obje
t
ode that is derived from multiple sour
e

languages. By requiring the language-spe
i�

ode generators to use a
ommon

representation in their output, multi-language linkers
an understand and
ombine

program representations from di�erent languages.

The Computer S
ien
e Department at the Tennessee Te
hnologi
al Uni-

versity has developed a program
alled Poly CARE, a multi-language program

analysis tool. Poly CARE was extended from the original CARE tool used to

fa
ilitate the
omprehension of C programs. Using a graphi
al interfa
e, Poly

CARE's intended use is the
omprehension and re-engineering of multi-language

programs. Through user studies, the
reators of Poly CARE found that engineers

using the tool were 37% more produ
tive when maintaining
ode than when not

using the tool [Linos et al., 1993℄ [Linos, 1995℄. The tool has two main modules, a

ode analyzer and a display manager. The
ode analyzer uses
ex and bison,
om-

mon UNIX tools for lexi
al analysis and parser generation. The lexer and parser

for ea
h language supported by Poly CARE will be implemented using the same

tool-set. This redu
es
ode-size and
an help aid in eÆ
ien
y and optimization.

Unfortunately, this limits the use of readily available language parsers and pro-

4

gram sli
ers, whi
h
ould redu
e the amount of work to integrate a new language

into Poly CARE. A literature sear
h into the me
hanisms used by Poly CARE

to integrate multiple-language information turned up very little information, so a

omplete analysis of its multi-language retargetability features was not possible.

I.C Hypothesis

We hypothesize that a single-language program analysis tool designed for

retargetability
an be extended into a multi-language tool by using a multiple-

level adapter approa
h with a mediator. If the program representation spe
i�
 to

a sour
e language is fully separated from generi
 display and analysis fun
tions,

multi-language
apability
an be enabled by mediating between the separate lan-

guage instantiations and de
iding whi
h language implementation is involved in

tool queries. This approa
h allows adding support for additional languages to a

multi-language tool with minimal e�ort on
e the language-dependent portion of

the tool has been
reated. By using a mediator with multiple-level adapters, the

multi-language tool
an understand issues spe
i�
 to multi-language programs,

spe
i�
ally the sharing of information a
ross multiple programming languages.

We de
ided to test our hypothesis on the program analysis tool StarTool.

We hypothesized that by using Hayes's adaptation layer interfa
e, a multi-language

StarTool
ould be
reated without modifying any of the pre-existing
ode used to

reate the C, T
l/Tk, and Ada StarTools. Moreover, we desired this new multi-

language tool to be easily extendible; any new StarTool written for a new language

ould be integrated into our multi-language tool through the addition of a new

adaptation layer and minimal modi�
ations to the mediator. Any
ode to
reate

the multi-language tool would be in addition to the pre-existing
ode, preserving

the retargetability interfa
e to allow for adaptations to new languages.

5

I.D Results

We su

essfully built two multi-language StarTools: one that supports C

and T
l/Tk, and another that supports C, T
l/Tk, and Ada. These tools allow a

programmer to load, display, and analyze sour
e �les from di�erent languages in

one tool. We
reated a mediator that was
apable of handling di�erent language

representations by using a multi-level adapter approa
h. The mediators for the

two StarTools were
reated in 100 hours of work and they use less than 2,000 lines

of
ode. The requirement that we
ould not modify the previous retargetability

stru
ture was
hallenging but eventually proved that Hayes's interfa
e allowed

for a multi-language design. One example of the diÆ
ulty we en
ountered is the

me
hanism Hayes designed to interfa
e with adaptation layers; this me
hanism

required that a StarTool had only one adapter built into the tool. The multi-

language StarTool was built by working around this requirement. We were also

able to stru
ture our multi-language StarTool su
h that additional languages
an

be easily added to the interfa
e.

The merged version of the single-language tools had no me
hanism to re
-

ognize whether variables and pro
edures were used a
ross multiple languages. We

extended the identi�er-mat
hing me
hanism to
onvert symbols in one language-

spe
i�
 adaptation layer to another language-spe
i�
 adaptation layer. This ex-

tended StarTool is more useful to a user attempting to understand a multi-language

program.

I.E Overview of the Thesis

Chapter II explains the Star Diagram stru
ture. Chapter III des
ribes the

modi�
ations to the retargetable Star Diagram stru
ture we performed to support

multi-language programs. Chapter IV dis
usses the usefulness and limitations of

our approa
h for multi-language programs. Chapter V summarizes our work and

presents opportunities for further resear
h.

Chapter II

The StarTool

II.A The Star Diagram

The Star Diagram is a graphi
al tool that helps a programmer with pro-

gram visualization and planning for program restru
turing [Bowdidge, 1995℄. Star

Diagrams are built around spe
i�
 information that the programmer is looking for

in a set of sour
e �les. The programmer �rst loads a set of sour
e �les to be ana-

lyzed by the StarTool. A variable or identi�er from one of the loaded sour
e �les

is then
hosen to be the main
ontext of the Star Diagram, and the StarTool looks

for all referen
es to the
hosen variable throughout the sour
e �les. The results

are then displayed in a graphi
al format.

The Star Diagram
ontent is a tree shown with the root at the left and

the tree growing sideways to the right. The
hosen variable be
omes the root

node of the Star Diagram and all referen
es to that variable are its
hildren. Any

referen
es to those
hildren are the next level's
hildren, and so on, until the leaf

nodes are the sour
e �les
ontaining the identi�er. The Star Diagram sta
ks all

nodes that refer to the same variable or operation. Sta
ked nodes appear as a

single node but the node is drawn with other nodes behind it. This provides a

ompa
t but
omplete view of the sour
es, allowing the programmer to fo
us on

a
hosen aspe
t of restru
turing. A leaf node's parent is the fun
tion within the

6

7

sour
e �le
ontaining the referen
e to the identi�er. The Star Diagram is thus a

tree that
ontains all of the dire
t and indire
t uses
on
erning a spe
i�
 obje
t

while ex
luding irrelevant sour
e
ode.

Figure II.1: A Star diagram built for the variable rooms.

The programmer has many
hoi
es for
ustomizing what information is

in
luded in the Star Diagram. In addition to in
luding all referen
es to the same

identi�er, the StarTool
an also build a Star Diagram in
luding all identi�ers with

the same name, identi�ers with the same type, and identi�ers with the same un-

derlying type. The programmer also has the option of in
luding all identi�ers that

mat
h a
ertain pattern by sear
hing for mat
hes based upon a regular expression.

These options are in
luded sin
e the goal of the tool is not to make assumptions

regarding how the programmer will perform their restru
turing but to provide the

apability to view the data in any way they see �t.

8

Figure II.2: Sear
hing for all referen
es to the variable rooms. Double-
li
king on

one instan
e of the variable will bring up the spe
i�
 se
tion of
ode
ontaining

the variable.

Figure II.3: After looking at an instan
e of the variable rooms, the rooms identi�er

an be added to the Star Diagram.

Figure II.4: The various types of Star Diagrams that
an be built.

9

Figure II.5: The trimmed arms window, displaying se
tions of the Star Diagram

that
an be annotated and then removed from the view.

II.B Star Diagram Operations

The goal of the Star Diagram is to allow the programmer to view the

important uses of program
omponents to aid in restru
turing. As you look at

the diagram from left to right, you
an see higher-level views of the use of a

stru
ture, from the a
tual identi�er use to layers of fun
tion
alls above the use of

the identi�er. The Star Diagram main window has three main
omponents. The

main window, shown on the right-hand side,
ontains all the nodes in the tree.

The left-hand side
ontains the elision window and the sele
ted Star arm window,

shown on the top and bottom, respe
tively.

II.B.1 Eliding Uninteresting Nodes

Sin
e any restru
turing requiring the use of an analysis tool will most

likely a�e
t many program modules, a Star Diagram is
apable of storing unlimited

nodes, bounded only by available memory. This abundan
e of nodes
an
lutter

the diagram and make it diÆ
ult to perform a restru
turing. To improve the

usability of the StarTool, a single-language Star Diagram allows for the elision of

language-spe
i�
 node types and nodes
ontaining programmer-
hosen strings. For

example, a StarTool user might
hoose to ignore all fun
tion
alls or
onditional

statements,
hoosing to fo
us on other aspe
ts of the sour
e.

10

II.B.2 Planning Program Restru
turing

The ability to elide node types and
ertain strings from a Star Diagram is

useful, but sometimes a programmer needs to remove whole se
tions of the diagram

to fo
us on
onstru
ting a restru
turing plan. The bottom-left side of the window

ontains a set of trimmed arms, or portions of the tree that have been removed

from view. These arms would generally be parts of the display that are not related

to the restru
turing being performed. Ea
h trimmed arm
ontains a des
ription

(the text from the root node that was shown in the diagram) and an optional text

box that
an be used for annotation. This provides the ability for the programmer

to re
ord a note des
ribing the trimmed arm or maybe a potential restru
turing

on the arm. The trimmed arms also have push-buttons to re-in
lude them in the

Star Diagram or to build a new Star Diagram in
luding only the trimmed arm.

II.C History of the Star Diagram Stru
ture

The Star Diagram was
reated by Bowdidge as a program visualization

user interfa
e for tool-assisted software restru
turing [Bowdidge, 1995℄. Chen
re-

ated a C Star Diagram Tool in 1996 with 5,000 lines of T
l/Tk and 800 lines of

C++ [Chen, 1996℄. This
ode was written on top of an AST front end already

written in C++ [Morganthaler and Griswold, 1995℄. Chen added two fa
ilities to

the Star Diagram to aid in the use of the Star Diagram: elision and trimming.

In 1998, Hayes invented a method for adapting the StarTool to di�erent program

representations,
reating StarTools for C, T
l/Tk, and Ada [Hayes, 1998℄. The

StarTool had always been used to study restru
turing of C �les. However, it is

ommon for large software to be written in a
ombination of di�erent program-

ming languages. The StarTool itself in
ludes a major portion of its fun
tionality

in T
l/Tk. Previous authors of StarTool implementations have desired to use the

StarTool to analyze a restru
turing of the StarTool itself, providing the ultimate

test of the StarTool usefulness. Elbereth, a Java-only StarTool that was written

11

int al_elaborate(int &arg
,
har *argv[℄);

har *al_elision_attributes();

har *al_merging_attributes();

har *al_similarity_attributes();

/* Provides iteration of elements appropriately similar to #prototype#

under/inside the #
ontainer#. */

SyntaxUnit first_similar_su(SyntaxUnit
ontainer, SyntaxUnit prototype,
har *similarity);

SyntaxUnit next_similar_su();

/* Provides iteration of elements with #attribute# under/inside the #
ontainer#. */

SyntaxUnit first_su_with_attribute(SyntaxUnit
ontainer,
har *attribute);

SyntaxUnit next_su_with_attribute();

/* Formerly the ast_parent operation. */

SyntaxUnit su_superunit(SyntaxUnit item);

/* Given a SyntaxUnit #item# and the #subunit# from whi
h it was rea
hed, returns a label

indi
ative of #item#, possibly with an indi
ation of whi
h position #subunit# resides. */

har *su_label(SyntaxUnit item, subunit);

int su_skip_test(SyntaxUnit item);

stru
t FilePosition {

int line,
olumn;

};

har *su_file(SyntaxUnit item);

FilePosition su_begins(SyntaxUnit item);

FilePosition su_ends(SyntaxUnit item);

SyntaxUnit file_to_su(
har *pathname);

har *file_text(SyntaxUnit item);

har *file_filters();

SyntaxUnit file_range_to_su(SyntaxUnit
ontainer, FilePosition *range_begin,

FilePosition *range_end);

Figure II.6: The StarTool Adaptation Module interfa
e, whi
h
ontains 18 opera-

tions. The identi�er sub-tag al stands for adaptation layer; the tag su stands for

syntax unit.

12

in Java, was also
reated in 1998 but does not use the same retargetable
ode

stru
ture as the tools
reated by Hayes [Korman and Griswold, 1998℄.

II.C.1 Modi�
ation for Retargetability

Hayes restru
tured the StarTool with the goal of supporting retargetabil-

ity to new languages by making the tool representation and language independent.

The theory was that the StarTool
ould be adapted to existing program representa-

tions in a short amount of time as a means of retargeting the StarTool to di�erent

programming languages. Hayes realized the algorithms to build, elide, and dis-

play a Star Diagram
ould be language-independent if the language-dependent

information was a

essed via an interfa
e
ommon to all StarTools. In Hayes's

implementation, the information required to parse and analyze a spe
i�
 program-

ming language's sour
e �les is kept in what Hayes termed an Adaptation Module

(see Figure II.6). Using Hayes's stru
ture, a single-language StarTool is built by

the generi
, language-independent StarTool submitting requests to the language-

spe
i�
 Adaptation Module. The language-dependent Adaptation Module is re-

sponsible for pro
essing and storing the AST nodes that are built from sour
e

�les. Fun
tions in
luded in an adaptation module are �le-to-AST and AST-to-�le

mapping fun
tions, node attribute fun
tions, and AST traversal fun
tions. This

approa
h was su

essfully used to build three separate StarTools, polaris, twinkle,

and �re
y, ea
h
apable of working with C, T
l/Tk, and Ada �les, respe
tively.

Separation of the language-dependent implementation from the language-

indepdent StarTool was a
hieved without ex
essive generi
ity via a query interfa
e.

Ea
h StarTool feature was assigned an operation in the adaptation layer that re-

turns a list des
ribing the language-spe
i�
 implementation. For example, to deter-

mine the merging attributes that are used in the Ada StarTool Fire
y, the generi

StarTool
alls the adaptation layer fun
tion al merging attributes, whi
h then re-

turns a
on
atenated string
ontaining pa
kage, subprogram, and task, whi
h are

the Fire
y merging operations. Through this fun
tion
all, the StarTool
an han-

13

Figure II.7: The adaptation layer relationship with the generi
 star diagram fun
-

tionality and the language-spe
i�
 program representation.

dle any sort of merging parameters without having spe
i�
 support requirements

in the language-indepdent module. Elision, browsing, and similarity attributes are

queried through the similar fun
tion
alls.

II.C.2 Language-Dependent Resour
es

Hayes used readily-available program representations to prove the useful-

ness of his retargetability interfa
e. The language-dependent portion of polaris, the

C StarTool, uses the Ponder language toolkit [Griswold and Atkinson, 1995℄. The

Ponder toolkit generates program ASTs from C sour
e �les. Hayes didn't have a

T
l/Tk program representation readily available, so he built one himself. The Ada

program representation
ame from the Gnu Ada Compiler Gnat [Dewar, 1994℄.

Gnat is a publi
-domain Ada 95
ompiler and
ode-generator that integrates with

the Gnu g

ompiler. Gnat's program representation is built with AST nodes
on-

taining information about program symbols. The Gnat
ompiler provides fa
ilities

for manipulating an AST representation of Ada sour
es.

14

II.D Adaptation Module Extensions

Sin
e ea
h single-language StarTool has a language-dependent and language-

independent portion, Hayes
reated a generi
 StarAdapter C++
lass that in
ludes

virtual fun
tions with some default implementations that
an be overridden in a

language's Adaptation Module. To
reate an adaptation layer for a spe
i�
 lan-

guage, a language-dependent
lass needs to be built on top of the StarAdapter.

The pure virtual implementations are repla
ed with language-spe
i�
 fun
tions,

and the provided default implementations are overridden if needed. The super-

lasses built upon the StarAdapter are I
ariaStarAdapter for C, T
lStarAdapter

for T
l, and GnatStarAdapter for Ada.

The generi
 StarTool engine links with the language-dependent Adap-

tation Modules for ea
h language's StarTool. However, ea
h Adaptation Module

uses a unique data stru
ture to store AST Nodes and the other asso
iated pro-

gram representation information, su
h as type, s
ope, and line number. To allow

all adaptation modules to share the same interfa
e, information is passed between

the generi
 StarTool and the Adaptation Modules via a SyntaxUnit. The Syn-

taxUnit is a
tually a void * in C, a generi
 data store that points to an area of

memory. Using this approa
h, the representation- and language-independent Star-

Tool interfa
e has no
on
ern as to the language and representation being used in

the Star Adapters.

Chapter III

The Multi-Language StarTool

Our goal was to leverage the StarTool's retargetability interfa
e to
reate

a single StarTool
apable of analyzing programs written in multiple languages. In

addition, we prohibited ourselves from modifying Hayes's interfa
e to
reate our

new tool. The ar
hite
ture we designed to support a multi-language tool
an be

found in Figure III.1.

Figure III.1: Multi-language retarget of StarTool using adapter
lasses. The

generi
 star diagram fun
tionality was not modi�ed; C-T
l/Tk-Ada Adapter is

the mediating adapter
ontaining the multi-language fun
tionality.

15

16

III.A User Interfa
e Modi�
ations

The user interfa
e for the three single-language implementations of the

StarTool all use a
ommon interfa
e implemented in T
l/Tk. The T
l/Tk sour
e-

ode is
ompletely representation- and language-independent. Sin
e this T
l/Tk

ode was already stru
tured to handle ASTs from various language implementa-

tions, there were no
hanges required to the user interfa
e portion of the T
l/Tk

ode to build a multi-language tool. Any language-spe
i�
 information that was

required for display on the interfa
e (su
h as the programming language supported

by the spe
i�
 tool or the �le extensions to be loaded) was retrieved through the

Adaptation Module via a query interfa
e
ontaining 14 fun
tions. Therefore, the

user interfa
e
reated by Hayes to support retargetable StarTool implementations

was readily adaptable to multi-language StarTools. The only modi�
ations needed

for multi-language support were the 14 query fun
tions in the adaptation layers.

III.B Multiple adaptation layers

We modi�ed one fun
tion in the adaptation module to support loading

�les from multiple languages, �le �lters. The �le �lters fun
tion returns the �le

mask used for displaying the default �les to be loaded into the StarTool. The

programmer has the option of loading �les into the StarTool by spe
ifying �les or

a �le-mask on the
ommand-line, or they
an
hoose the Load Files option whi
h

brings up a dialog for
hoosing �les. The �le �lters fun
tion in the C StarTool used

*.
.i (.i refers to .
 �les that have already been run through a pre-pro
essor),

the T
l StarTool used *.t
l, and the Ada StarTool used *.adb*.ads. For the multi-

language tool, the �le �lters fun
tion
ombines these �le-masks to return all of

the �le �lters as a
ombined string. Thus, the T
l/Tk �le load window for the

multi-language tool allows for the loading of C, T
l/Tk, and Ada sour
e �les, as

an be seen in Figure III.2.

On the surfa
e, it seemed possible to simply take all of the separate

17

Figure III.2: Dialog box displaying the extensions that
an be loaded into the

Multi-Language StarTool.

adaptation layer implementations and link them together. However, one aspe
t

ommon to the single-language tools is that ea
h tool instantiation
ontains only

one adaptation layer. Moreover, ea
h of the adaptation layers uses the same exa
t

fun
tion names to help with proje
t management. If the I
ariaStarAdapter (the C

StarTool adaptation layer) is pro
essing a SyntaxUnit, it assumes that the Syntax-

Unit is always an I
aria AST Node
ast to a void *. Under no
ir
umstan
e is the

I
ariaStarAdapter prepared to re
eive a SyntaxUnit that is a
tually a T
l/Tk AST

Node. It was obvious that while Hayes
reated a
ompletely retargetable interfa
e,

this stru
ture was not originally intended to be in
luded in a multi-language tool.

The adaptation layers and the
ode that handles the
alls to the adap-

tation layers are found in two modules in ea
h implementation. The C implemen-

tation uses polaris.
xx and I
ariaStarAdapterClass.
xx, the T
l implementation

uses twinkle.
xx and T
lStarAdapterClass.
xx, and the Ada implementation uses

�re
y.
xx and GnatStarAdapterClass.
xx. The polaris.
xx, twinkle.
xx, and �re-

y.
xx �les all
ontain same-named fun
tion
alls that are one layer above respe
-

18

tive
alls in the adapter modules; the upper layer fun
tions are wrappers for the

a
tual adaptation modules. However, sin
e these upper layers use the same name

and prototypes, they are not available for in
lusion in a multi-language tool.

III.B.1 An adaptation layer Mediator

We pro
eeded to integrate the multiple adaptation layers into a single

odebase, allowing a single StarTool to pro
ess multiple languages. Sin
e the fun
-

tions one-layer above ea
h of the adaptation layers had the same fun
tion name,

we
reated a merged upper-layer that would serve as a mediator. The mediator

re
eives requests intended for one of the adaptation layers and
hooses whi
h adap-

tation layer re
eives the information; the mediator also pro
esses language-spe
i�

information returned by the mediators. The modules polaris.
xx, twinkle.
xx, and

�re
y.
xx were
ombined into one single module, twinklepolaris.
xx for the C/T
l-

Tk StarTool and twinklepolaris�re
y.
xx for the C/T
l-Tk/Ada StarTool. This

mediator is responsible for all fun
tionality found in the upper layer of the single

language tools.

All information is passed between the StarTool user interfa
e and the

adaptation layers as generi
 SyntaxUnits; these memory lo
ations provide no in-

formation regarding identi�er
ontext or the information stored at the SyntaxU-

nit's memory address. The
ommon interfa
e used to pro
ess information in the

adaptation layers made the merging of the adaptation layers easy. However, this

generality
reated diÆ
ulty in merging the implementations. Our main goal was

to provide multi-language
apability using Hayes's retargetable adaptation layer

without modifying his stru
ture. In the single language tools, the language inde-

pendent
ode never required a de
ision regarding whi
h Adaptation Module should

re
eive a SyntaxUnit. In a multi-language tool, SyntaxUnits
an be pro
essed by

the I
ariaStarAdapter, T
lStarAdapter, or GnatStarAdapter. The general void *

asso
iated with ea
h SyntaxUnit provides no means to indi
ate to whi
h language

(and to whi
h language implementation) a SyntaxUnit is asso
iated.

19

One obvious solution would have been to
hange the stru
ture of the Syn-

taxUnit, adding a spe
ialized data store that in
luded obje
t type and language

information. This would have required
hanging the rest of the StarTool imple-

mentation, in
luding the single-language adaptation layers whi
h are out of our

ontrol, sin
e they are developed by others. Another possibility would have been

to
ombine the multiple adaptation layers into one large adaptation layer. This

hoi
e was avoided sin
e the addition of another language to our multi-language

tool or modi�
ation of a pre-existing language would be diÆ
ult sin
e language in-

formation previously stored in a single-language module would be exposed to other

language implementations. It was important that the e�ort to add a language to

the multi-language StarTool be in
remental and non-redundant. We desired to

add onto the representation-independent stru
ture without sa
ri�
ing the ease of

adapting another language into the multi-language tool.

Our solution was to
reate a mediator responsible for asso
iating Syntax-

Units with languages. We analyzed several approa
hes to handling this task. One

possibility was to
reate an address pool from where the SyntaxUnits would be

distributed. For example, any SyntaxUnit with a memory address from 0 through

10,000 would be a C AST Node, while 10,000 through 20,000 would be a T
l/Tk

AST Node. This approa
h would not be very eÆ
ient as it would require allo
ation

of memory that will probably not be used during the operation of the StarTool.

It also is not robust as it intrinsi
ally requires hard limits on the number of AST

Nodes that
ould be loaded into the tool from any implementation. It would be

possible to allo
ate extra memory during run-time to extend these pointer allo-

ations, but this approa
h would require the program to pause for allo
ation and

to modify its table of language-pointer asso
iations, for
ing the user to wait for

the program to adjust itself. In order to pro
ess a very large software pa
kage,

a full re
ompile of StarTool would be ne
essary to
hange these pointer settings,

whi
h is not very desirable. This approa
h might also require the address pool

to have knowledge of the Operating System and ar
hite
ture, sin
e
ode working

20

Asso
iateSyntaxUnitToLanguage(SyntaxUnit, Language)

{

Language_SyntaxUnit_Map[SyntaxUnit℄ = Language;

}

GetLanguageFromSyntaxUnit(SyntaxUnit)

{

return Language_SyntaxUnit_Map[SyntaxUnit℄;

}

Figure III.3: The MultiLanguage StarTool Hash Table interfa
e.

with pointers might not be portable to every platform.

III.B.2 Mediation through a Hash Table

Sin
e the address pool was unworkable, we de
ided to implement a hash

table. The advantages of the hash table are that it is simple, easy to understand,

and easy to implement. The disadvantage of this approa
h is that the hash table

requires extra spa
e to store its information, dependent on the hash table's internal

data stru
ture. The hash table would take as input a SyntaxUnit and return the

language asso
iated with the spe
i�ed SyntaxUnit. Implementing the hash table

required providing two operations, shown in Figure III.3:

We used the STL (Standard Template Library) map [ANSI, 1997℄ as the

basis for the hash table. The STL map(Key, T, Compare) supports unique keys

and provides for fast retrieval of another type T based on a given key. STL map

is implemented using red-bla
k trees, so the time to insert a SyntaxUnit into the

hash table or to retrieve the language asso
iated with a SyntaxUnit is of the

order O(log n) [Cormen, et al., 1997℄. However, the simpli
ity of the hash table

did not
ome without added
osts. Memory spa
e is required to store the hash

table entries. Ea
h hash entry
ontains a void * pointer and an asso
iated integer

indi
ating the language (and adaptation layer implementation) that a SyntaxUnit

21

was generated from. On a 32-bit ma
hine, ea
h hash table entry requires 8 bytes

of memory, in addition to the STL data stru
ture overhead. We felt that this

was a reasonable requirement to support multi-language Star Diagrams without

modifying the adaptation layer stru
ture.

With the
apability to asso
iate SyntaxUnits and languages in pla
e, the

hange to the adaptation layers proved straightforward. Most of the fun
tions

that work with Syntax Units have one of these
hara
teristi
s: 1) The fun
tion

re
eives an identi�er (a �lename or an enumerated language type) indi
ating the

language being worked with, or 2) The fun
tion is passed in a SyntaxUnit that pro-

vides
ontext information sin
e it has already been mapped to a sour
e language.

In these fun
tions, we
all GetLanguageFromSyntaxUnit to determine the Syn-

tax Unit's sour
e language and whi
h adaptation layer implementation should be

alled. This builds upon Hayes's approa
h so that the representation-independent

module does not have knowledge of the separate language implementations. Sin
e

the data pro
essing by the
entral adapter is
ompletely transparent to the adap-

tation layers, ea
h implementation does not need to know that their AST data is

passed through a
entral adapter before their own adapter.

The ex
eptions to these rules are the fun
tion pairs f�rst similar su and

next similar sug and f�rst su with attribute and next su with attributeg. The sim-

ilar su fun
tions are used to look for a SyntaxUnit that is similar in a
ertain way

to another SyntaxUnit, while the su with attribute fun
tions lo
ate a SyntaxUnit

ontaining a
ertain attribute. The �rst fun
tion is always
alled to start the

sear
h pro
ess; if a mat
hing SyntaxUnit is found, more SyntaxUnits
an be found

through su

essive
alls to the next fun
tions. The next fun
tions do not re
eive

a SyntaxUnit as a parameter, whi
h poses a problem for the mediator sin
e no

language
ontext
an be found.

The la
k of a language indi
ator as an input to the next fun
tions was not

problemati
 in the single-language StarTools sin
e there was only one adaptation

layer that
ould re
eive a next
all, obviating the need for a language lookup. For

22

the multi-language tool, we
a
he the language that is used in a �rst
all; ea
h

time a next fun
tion is
alled, the
a
hed language value is used to determine

whi
h adaptation layer to be
alled. It is not legal that next similar su
ould be

alled after �rst su with attribute sets the global value, or vi
e versa, sin
e the

StarTool requires the appropriate �rst
all before a subsequent next
all
an go

through. Setting and
he
king this global data value does require extra overhead,

in
luding a data assignment for ea
h �rst
all and a data
omparison for ea
h next

all. However, these operations require a small amount of time and are reasonable,

onsidering that it allows us to use Hayes's retargetable adaptation layer for multi-

language pro
essing.

III.B.3 Populating the hash table

We
onsidered asso
iating all of the nodes within a sour
e �le with its

sour
e language by starting at the root node for a �le and iterating through all

of the nodes, assigning ea
h node individually. Sin
e the adaptation layer doesn't

have a me
hanism to iterate through all of its nodes, we would have been for
ed

to modify the language-dependent adaptation layers, violating one of the goals of

our work. An all-node iteration might also
ause large delays during the initial

pro
essing of loaded sour
e �les. Instead, we lo
ated all of the adaptation layer

fun
tions that return SyntaxUnits and
aptured the return values in the merged

upper layer. A total of 8 fun
tions within the upper merged layer, lo
ated in Fig-

ure III.4, return SyntaxUnits. When one of these fun
tions returns a SyntaxUnit,

Asso
iateSyntaxUnitToLanguage is
alled with the returned SyntaxUnit and its

asso
iated language. Two other fun
tions, �le to su and �le range to su, pro
ess

�les and return a SyntaxUnit representing the �le. They are able to use the �le-

name extension (*.
*.i for C, *.t
l for T
l/Tk, *.adb*.ads for Ada) to asso
iate

the newly
reated SyntaxUnit with a language. The rest of the fun
tions either

set the
a
hed last-language value or retrieve its
ontents for language
ontext. By

isolating the language asso
iation operations to the fun
tions that return Syntax-

23

SyntaxUnit first_similar_su(SyntaxUnit originalSyntaxUnit)

SyntaxUnit next_similar_su()

SyntaxUnit first_su_with_attribute(SyntaxUnit originalSyntaxUnit)

SyntaxUnit next_su_with_attribute()

SyntaxUnit su_superunit(SyntaxUnit originalSyntaxUnit)

SyntaxUnit su_subunit(SyntaxUnit originalSyntaxUnit)

SyntaxUnit file_to_su(
har *filename)

SyntaxUnit file_range_to_su(FileRange theFileRange)

Figure III.4: Fun
tions in the adaptation layer that return SyntaxUnits.

Units, we were able to
reate a pro
ess that
an be extended to more languages

with minimal e�ort. Modi�
ations required for adding support for a new language

asso
iation involve only 8 fun
tions and less than 100 lines of
ode.

III.B.4 Multi-Language Elision Options

Elision options are passed through the adaptation layer via three fun
-

tions, al browsing attributes, al elision attributes, and al merging attributes. As

an example, the merging attributes returned by the T
l StarTool are �le and

pro
, while the Ada StarTool returns Program, SubProgram, and Task. Sin
e pro-

gramming languages do not have
onstru
ts that always map to ea
h other, we

en
ountered a diÆ
ult issue regarding how to display elision options to the user.

For our original multi-language tool, we originally proposed to take the

union of all of the attributes and present them to the user. This provides
omplete

exibility to the programmer, allowing the elision of
ertain types of nodes from one

language implementation, while keeping them in another language implementation.

A view of the elision window using this methodology
an be seen in Figure III.8.

This interfa
e was too
luttered to a
tually be useful. Previous user

studies with the Star Diagram have shown that a poorly designed interfa
e
an

frustrate the StarTool user, redu
ing the usefulness of the tool [Cabaniss, 1997℄.

24

Figure III.5: Elision options in the C StarTool Polaris.

Figure III.6: Elision options in the T
l StarTool Twinkle.

Figure III.7: Elision options in the Ada StarTool Fire
y.

25

Figure III.8: Original attempt at providing elision options in the multilanguage

StarTool.

We de
ided that the programmer wouldn't a
tually want to think about low-level

language
onstru
ts as part of an overall multi-language program restru
turing.

Rather, they would be fo
using on whole-program analysis and would prefer to

operate at a higher level. To provide this interfa
e, we merged the elision/merging

attributes into more generi
 groups of attributes for
ompa
t presentation to the

programmer. The attributes that are available for elision in the multi-language

tool are Conditional Statements, Loop Statements, Case Statements, Compilation

Units, Fun
tions, and Tasks. The new elision panel
an be seen in Figure III.9.

The mediator used for the language and SyntaxUnit asso
iation is also

used for language and attribute asso
iations. When the mediator re
eives one of

the high-level attribute groups, it determines the language that will be re
eiving

the language-spe
i�
 attribute and
onverts the generi
 group into the language's

appropriate attributes. For example, if the mediator re
eives Conditional State-

26

Figure III.9: Elision options in the Multi-Language StarTool.

ments, the C StarTool re
eives if, the T
l StarTool re
eives if and else, and the

Ada StarTool re
eives if. As with the SyntaxUnit mediation, this
onversion is

transparent to the adaptation layers.

III.C Cross-Language Issues

After the mediators were added to handle language and attribute map-

ping, we were su

essfully able to load sour
e �les from multiple languages into

one Star Diagram using a single StarTool exe
utable. Files
ontaining C, T
l, and

Ada extensions were easily loaded into the StarTool for pro
essing. For example,

the user
ould build a diagram
ontaining all of the C nodes similar to a C variable

and all of the Ada nodes similar to an Ada variable, as seen in Figure III.10. This

would require a two-step pro
ess, �rst adding the C identi�er, then adding the

Ada identi�er. The programmer
ould also sear
h for all instan
es of a text pat-

tern a
ross multiple-language sour
es and then add the results to a Star Diagram.

Although these Star Diagrams are interesting to look at and quite useful to a pro-

grammer, we realized that a multi-language tool needs to do more than pro
ess

27

Figure III.10: Multilanguage Star Diagram with all C identi�ers similar to a C

variable and all Ada identi�ers similar to an Ada variable. The view has been

elided to show that the Diagram pulls in nodes from both C and Ada sour
es.

sour
es from multiple languages. To be fully useful, the tool needed to understand

ross-language issues that do not exist in single-language programs. The nature of

a true multi-language program is that some of the variables or fun
tions are shared

a
ross multiple languages. A C fun
tion might
all a T
l fun
tion, or an Ada fun
-

tion might
hange or a

ess a variable that is de
lared in a C �le. We desired

a Star Diagram built on a
ross-language identi�er to automati
ally in
lude any

instan
e of the identi�er in every language sour
e loaded into the StarTool. This

sort of multi-language view ensures that the programmer will see any o

urren
e

of the use of an identi�er a
ross all languages, helping to redu
e the possibility of

software errors.

28

III.C.1 Conversion of SyntaxUnits

Sin
e ea
h adaptation layer may use unique methods and data stru
tures

to store language representation, SyntaxUnits
reated by one adaptation layer are

not
orre
tly pro
essed by other adaptation layers. To use Hayes's adaptation

layers without modi�
ation, we
reated a temporary dummy SyntaxUnit that
an

be
orre
tly parsed by other implementations. The dummy SyntaxUnit
ontains

the information represented by the old SyntaxUnit but in the
orre
t data stru
ture

format for another implementation.

Figure III.11: Pro
ess for
onversion of SyntaxUnits. This pro
ess o

urs on
e per

sour
e �le loaded into the Star Diagram.

When the StarTool builds a Star Diagram, it sear
hes for identi�ers that

are similar in some
hosen way to the spe
i�ed identi�ers. For example, the Star-

Tool might be asked to sear
h for identi�ers that have the same name, type, or the

same underlying type as
hosen identi�ers. The language-independent front-end

has a fun
tion
alled insert similar nodes that is responsible for �lling a Star Dia-

gram with obje
ts that are similar to a
hosen obje
t. This is performed through a

29

all to �rst similar su and su

essive
alls to next similar su. When sear
hing for

similar identi�ers, �rst similar su in the multi-language tool
he
ks the language of

the sour
e identi�er and the language of the identi�er to be
ompared. If they are

the same, the tool lets the similarity
he
k pro
eed as it did in the single-language

tools. Otherwise, a dummy temporary SyntaxUnit is
reated to en
apsulate the

original SyntaxUnit information for the spe
i�
 implementation. The fun
tion

ConvertSU re
eives the node to be
onverted along with the destination language,

whi
h then
alls either ConvertSU C, ConvertSU T
l, or ConvertSU Ada. This

pro
ess
an be seen in Figure III.11.

The
onversion of SyntaxUnits from one implementation to another re-

quires �lling in an identi�er's label (or name), its kind, and its s
ope; this infor-

mation is required to sear
h for an identi�er that is similar to an identi�er from a

di�erent language. The �rst step for
reating a dummy SyntaxUnit for language

onversion is to allo
ate a new AST Node for the target representation. The C

adaptation layer uses an AST Node type de�ned in the I
aria library, the T
l type

is a
ustom AST representation built by Hayes, and the Ada adaptation layer uses

a
ombination of Gnat program representation information and other StarTool-

spe
i�
 AST information. This pro
ess requires a memory allo
ation for the new

AST Node.

The new SyntaxUnit then needs to take on the label
ontained by the

old SyntaxUnit, whi
h is retrievable through the su label fun
tion. This step may

require some
onversion of the label, sin
e Hayes's retargetable interfa
e does not

guarantee that a label from one adaptation layer will mat
h a label from another

adaptation layer. Also, some parsers might perform name mangling on an identi�er

that would need to be pro
essed.

The
onversion routines then �ll in kind information. Obje
ts in Star Di-

agrams
an hold many di�erent attributes in
luding AST Identi�er, Variable, De
-

laration, et
. Re
on
iling the di�erent types among the adaptation layers proved

to be one of the diÆ
ult steps in
reating a multi-language tool. The I
aria Libary

30

ConvertSyntaxUnit(SyntaxUnit oldSyntaxUnit, SyntaxUnit newSyntaxUnit,

Language newLanguage)

{

newSyntaxUnit.allo
ateMemory();

newSyntaxUnit.label =

CreateNewLabel(oldSyntaxUnit.getLabel());

newSyntaxUnit.Child = NULL;

newSyntaxUnit.Parent = NULL;

newSyntaxUnit.Siblings = NULL;

newSyntaxUnit.IdentifierType =

NewIdentifier(oldSyntaxUnit.getIdentifierType());

Asso
iateSyntaxUnitToLanguage(newSyntaxUnit,newLanguage);

}

Figure III.12: Pseudo-
ode for
onversion of SyntaxUnits to other adaptation lay-

ers.

in the C StarTool has 14 types, the T
l tool supports 3 major types, and the Ada

tool has 211 major types. The Ada interfa
e in
ludes mu
h more types sin
e it was

built dire
tly on an Ada language parser, while the T
l interfa
e was hand-built

and the C interfa
e used a C program sli
er. The issues
reated by these large

di�eren
es in type information are addressed in Chapter IV.

Lastly, s
ope information needs to be �lled in. The C adaptation layer's

AST Node has data values for parent,
hild, left sibling, and right sibling. Hayes's

T
l AST Node has a data �eld for
hildren; a new T
l AST Node automati
ally sets

its parent and sibling to NULL. The Ada AST data stru
ture also has values for

parent,
hild, and sibling. To
orre
tly
ompute s
ope information when sear
hing

for the same identi�er, all of these data �elds need to be �lled in.

After the label, kind, and s
ope are set, the
onverted AST node is as-

so
iated with the target language in the language hash table. The advantage of

this approa
h is that only one
onversion routine needs to be written for every

language that is added to a multi-language StarTool. However, this
onversion

routine needs to be aware of the other adaptation layer's representations to be

31

sure that it is fully
ompatible with the other languages supported by the Star-

Tool. This requirement
reates some work for the implementer when adding a

new language to the multi-language tool. One side bene�t is the AST node
on-

version is optional, or it
an be delayed after introdu
tion of a new language. If

a
ross-language
onversion needs to be performed but is skipped, the StarTool

will pro
ess the in
orre
t SyntaxUnit and
onsider it a non-mat
h when looking

for similar nodes. Multi-language Star Diagrams
ould still be built with su
h a

tool, but
ross-language identi�er sear
hes will not in
lude identi�ers that are lo-

ated in sour
e �les
ontaining the newly added language. Cross-language variable

sear
hing might work if the programmer
hooses an identi�er in the new language;

sin
e the
onversion routine will already have been written for the other languages,

the tool will most likely
orre
tly
onvert the SyntaxUnit from the newly added

language. Choosing a variable in an already implemented language would not �nd

the variable in the new language without the new language's
onversion routine.

III.D Limitations of the approa
h

We were limited by the amount of
ross-language variable sear
hing we

ould perform in the multi-language tool. Sin
e the multi-language StarTool does

not have a

ess to the full parse trees of the sour
e �les that are loaded, we are

not able to extra
t full information
on
erning AST nodes. Therefore, we had

to make some
on
essions
on
erning the ability of the multi-language tool to do

Cross-Language sear
hing.

La
king a full parse-tree, the multi-language StarTool needs heuristi
s

when looking for the same identi�er a
ross multiple languages. Some programming

languages have
ertain
ommands that are used to register identi�ers or variables

that are de
lared in another language. The StarTool uses T
l Create Command

to register fun
tions in C that are
alled in T
l. Without full AST information

from the adaptation layer, the multi-language tool does not know whi
h identi�ers

32

have been mapped via a
ross-language registration fun
tion. Moreover, ea
h

language has its own method for registering another language's identi�ers and

this registration pro
ess
an be dynami
.

We made the assumption that if the user is looking for the same identi�er

to one that is de
lared in a pro
edure, any identi�er that has a global s
ope with

the same name and type is
onsidered a mat
h. The same goes for performing a

sear
h on a global identi�er; it will only �nd identi�ers with a lo
al s
ope, not global

ones. This provides a high
on�den
e that the multi-language tool is �nding the

information that the programmer is looking for. One requirement for this sear
h to

su

eed is that if an identi�er is used a
ross multiple languages, it must be named

the same (have the same label) in every implementation. Sin
e using the same

name would be good programming pra
ti
e, we
onsidered this requirement to be

reasonable.

III.E Adaptation Layer Requirements for Multi-

Language Support

Our multi-language StarTool
an be extended to support more languages

if an adaptation layer has been
reated for the new language. For multi-language

support, the single-language adaptation layer needs to be widened through the

following fun
tionality:

1. A make dummy fun
tion. The new tool must support the
reation of a

temporary fake SyntaxUnit to sear
h for identi�ers in the new language that

are similar to
hosen identi�ers from other languages.

2. A remove dummy fun
tion. The new tool must support the deallo
ation of

the dummy SyntaxUnit after it is no longer needed.

3. A fun
tion to identify the name, s
ope, and kind asso
iated with an identi�er

for the new language.

33

The diÆ
ulty asso
iated with
reating these fun
tions was dire
tly related

to the data stru
tures used for ea
h adaptation layer. Creation of these fun
tions

for the C adaptation layer was the most diÆ
ult, due to the
omplex and multi-

layered data stru
tures used by the I
aria toolkit. T
l/Tk was the easiest language

to support, sin
e Hayes
reated a
lean and simple adaptation layer for the T
l/Tk

StarTool. The simpli
ity of the T
l/Tk language also simpli�ed the
reation of

these fun
tions.

Chapter IV

Dis
ussion

In this se
tion we dis
uss the results of our proje
t as well as an evaluation

of the design and its limitations.

IV.A Tool Implementation

The multi-language transformation to the retargetable StarTool was im-

plemented entirely in the C++ programming Language. The C/T
l-Tk/Ada tool

and C/T
l tool has 21,000 and 16,000 lines of
ode, respe
tively; 2,000 lines of

ode in ea
h multi-language tool is for multi-language support. These totals do

not in
lude the I
aria and Gnat libraries. The gnu g++
ompiler was used for

ompilation of the C and C++ sour
es, and the Gnat add-on for g

 was used

to
ompile the Ada sour
es. The Gnat
ompiler is also used for pro
essing Gnat

sour
es when they are loaded into the StarTool.

IV.B Multi-Language StarTool

Our work has produ
ed an extendible multi-language StarTool that
an

be used to analyze and restru
ture software written using multiple programming

languages. Moreover, we were able to implement our design without modifying

34

35

the retargetable StarTool interfa
e
reated by Hayes or the generi
 user interfa
e.

Our framework allows for new languages to be integrated into the StarTool with

minimal e�ort on
e an adaptation layer has been written for that new language.

Cross-language variable sear
hing
an be fun
tional with the new adaptation layer

through the
reation of 3 extra fun
tions to support dummy SyntaxUnits. This

provides an in
entive to the programmer de
iding whether to retarget the StarTool

to a preferred new language.

IV.C Usability

We en
ountered many issues when trying to
reate a usable interfa
e for

a multi-language program analysis tool that would be used by programmers with

di�erent programming assumptions and styles of work. Having very little previous

resear
h in this �eld to use in our e�orts, we had to make some edu
ated guesses

on
erning the use of the tool.

IV.C.1 Elision Options

The Elision Options are part of what gives the StarTool its uniqueness;

they provide the ability to hone-down a Star Diagram view to support the pro-

grammer's needs. In a multi-language tool, the programmer
an either be thinking

in a multi-language or a single-language perspe
tive. However, the StarTool will

always display all of the information from ea
h language loaded into the tool.

We desired to give the programmer the maximum
exibility in eliding all possible

nodes, shown in Figure III.8. Unfortunately, this made the interfa
e seem
luttered

and
ould overwhelm the StarTool user. We also felt that providing the user with

too mu
h fun
tionality might be a reason to not use the tool. The multi-language

StarTool's merged
ategories, shown in Figure III.9, is our attempt to provide

exibility to the programmer while keeping the interfa
e as language-generi
 as

possible. Another option for the elision window would be to provide a new eli-

36

sion panel
ontaining one language's elision options for ea
h language loaded into

the StarTool. Unfortunately, this s
enario is not preferred sin
e the StarTool will

run out of window spa
e as more languages are added to the StarTool. Requiring

the programmer to s
roll through panels of elision options to �nd what they are

looking for would be
ounter-intuitive.

The elision
ategories provided might also be problemati
 to the user. We

reated the generi
 label Compilation Units to represent the C and T
l File and

the Ada pa
kage. However, an Ada user might feel that a pa
kage does not belong

in the same
ategory as a �le. The Ada task
onstru
t also did not seem to �t in

with any of the other language's elision options, so we left Task as an elision option

by itself, providing more language-spe
i�
 information in the elision window than

we'd prefer.

IV.C.2 Star Diagram Displays

A multi-language StarTool user is able to retrieve the language asso
iated

with an on-s
reen node by viewing the �le or pa
kage that the node derives from,

assuming the user has not elided that information from the view. A possible

improvement to the StarTool would be to add
olor information to indi
ate the

language asso
iated with an AST Node; the use of
olor might aid in restru
turing

by helping to lo
ate
ross-language dependen
ies. The user also has the option

of double-
li
king on a node to bring up the asso
iated sour
e
ode to dis
over

the AST's language, but this operation may be
ome tedious. Double-
li
king on

a sta
ked node will bring up a listing of all the sour
e �les, displaying the nodes'

language information. Node display
ould be further di�erentiated by using a

separate
olor or box demar
ation for identi�ers that are used a
ross multiple

languages. We would also like to give the StarTool user the option of viewing the

Star Diagram with generi
 labels. For example, all fun
tion
alls would be labeled

fun
tion. A Star Diagram with generi
 labels might help the user to simplify their

restru
turing pro
ess by sta
king
hosen identi�ers with a
ommon generi
 label.

37

Figure IV.1: The desired "
ustomizable sta
king" options, similar to the elision

window.

The single-language Star Diagrams sta
k nodes that are
onsidered sim-

ilar, but extending the similarity notion to multiple-languages is diÆ
ult be
ause

it
an be interpreted in numerous ways. For example,
onsider a C stru
t and an

Ada pa
kage; de�ning what makes them similar is diÆ
ult. One programmer might

feel they are similar if the data stru
tures have members with the same name; an-

other programmer might feel they are similar if the stru
tures are the same size.

And enumerated types from two di�erent languages might not be synta
ti
ally

onsidered the same
onstru
t.

We
onsidered providing the StarTool user the option to
ustomize their

own sta
king, similar to the method used to elide nodes from the view. Our

proposed interfa
e
an be seen in Figure IV.1. The programmer
ould sele
tively

hoose whi
h kinds of nodes are sta
ked and whi
h aren't, providing more
ontrol

over the interfa
e. For example, the user
ould sta
k all loop statements and all

ase statements; they
ould also sta
k all of the nodes within a single language,

su
h as every T
l/Tk node. The
ode that de
ides sta
kability of Star Nodes is

shown in Figure IV.2. The algorithm used for determining whether to sta
k two

nodes
he
ks a
ontext label for the identi�ers to see if they are the same. To

provide the
apability to
ustomize sta
king, we would have had to modify the

Adaptation Layer to provide a path to pass sta
king information through.

38

stati
 int

sta
kable(
onst SyntaxUnit first,

onst SyntaxUnit first_
ontext,

onst SyntaxUnit se
ond,

onst SyntaxUnit se
ond_
ontext)

{

return (
ontext_label(first, first_
ontext) ==

ontext_label(se
ond, se
ond_
ontext));

}

Figure IV.2: The fun
tion that de
ides whether nodes are sta
kable for the display.

IV.D Relian
e on 3rd-party tools

The interfa
e used to implement the Ada adaptation layer proved prob-

lemati
 for future use of the tool. The Gnat adaptation layer implementation is

a
tually based upon Gnat's Ada AST de�nitions. When the Gnat StarTool was

originally
reated, the
ode used version 3.10 of the Gnat sour
e
ode. During the

ourse of our proje
t, we desired to migrate to Gnat version 3.12 sin
e the new

version in
luded Windows DLL
apabilities. Unfortunately, the Ada adaptation

layer used some identi�ers from Gnat's version 3.10 sour
e
ode that do not exist

in Gnat version 3.12. Migrating to the new Gnat version would have required

modifying the Ada adaptation layer, so we de
ided to use the older version of

Gnat for the implementation of the multi-language tool. This exempli�es one of

the problems asso
iated with dire
tly using a 3rd-party implementation. Had an

interfa
e been written on-top of the Gnat AST representation, we might have been

able to more easily swit
h to later versions of the Gnat tool. An interesting task

would be to verify that Hayes's Adaptation Layer
an still be used with the new

Gnat Sour
e Code.

39

IV.E Performan
e

The StarTool performan
e overhead that is in
urred by our multi-language

extensions o

urs during three phases: 1) When a sour
e �le is pro
essed, 2) When

a Star Diagram is built and the tool does language lookups on SyntaxUnits, and 3)

When a multi-language StarTool is being built and dummy identi�ers are
reated

for
ross-language sear
hing. To ben
hmark the multi-language StarTool perfor-

man
e overhead, we
al
ulated the amount of time required for these operations

using the single-language tools and the amount of time to do the same operations

in the multi-language tool. Our testing platform was a 200 MHz Sun UltraSpar
 2

with 192 megabytes of RAM. The GNU g++ and Gnat Ada
ompilers were used

by the StarTool for
ompiling the C and Ada sour
es. We loaded a set of 100 �les

from C, T
l/Tk, and Ada sour
es; ea
h test was run 5 times with the high and

low results dropped and the other s
ores averaged.

1. Loading sour
e �les into the StarTool. The testing showed that the amount

of time to load the sour
e �les into the multi-language tool required less than

4.7% more time than the total time of loading the C sour
es into Polaris, the

T
l/Tk sour
es into Twinkle, and Ada sour
es into Fire
y. Sin
e our run-

time numbers do not in
lude the amount of time to exit the individual tools

and re-start the other tools, it is a
tually faster to use the multi-language

tool to load sour
e �les from multiple languages.

2. Building a Star Diagram without
ross-language
onversions. To ben
hmark

the slow-down for simply building a Star Diagram, we loaded a series of �les

from a single language into the multi-language StarTool to prevent it from

doing SyntaxUnit
onversions. We
reated Star Diagrams for identi�ers with

the same name as a
hosen identi�er and
al
ulated the time from sele
ting

Display on the main StarTool s
reen until the Star Diagram appeared on

the s
reen. The multi-language tool required less than 11.5% more time to

display the
ombined Star Diagram than the total time to use the single-

40

language tools individually. We again did not in
lude the time to exit and

re-start the tools. Depending on the size of the proje
t, it may be faster

to use the multi-language StarTool to load multi-language sour
es; in
ase

of an extremely large program, the user might experien
e at most a 11.5%

slowdown in loading sour
es. We feel that the slight performan
e de
rease

is reasonable
onsidering the value of using the multi-language tool. Im-

provements in the Standard Template Libary map implementation or the

substition of a di�erent hash table interfa
e are possible optimizations to

improve this performan
e.

3. Building a Star Diagram with
ross-language
onversions. The last area

where the multi-language StarTool a�e
ts performan
e is with
ross-language

onversion. We again loaded the same sour
es but this time loaded all of the

sour
es from all of the languages at on
e. We built star diagrams in
luding

the same name and the same identi�er and
al
ulated the time to display

the diagrams; the multi-language StarTool required at most 15.1% more time

to
al
ulate and display the Star Diagram than using ea
h of the tools indi-

vidually. We
on
lude that the extra 3.6% time slowdown is a good result,

onsidering the addition of
ross-language sear
hing. Sin
e program restru
-

turing is time
onsuming, and the extra time to build a multi-language Star-

Tool does not require user intera
tion, many programmers
ould
on
lude

that the extra time is outweighted by the multi-language bene�ts.

Chapter V

Con
lusion

V.A StarTool Programs

The StarTool at UCSD now has seven members: the original C-only

StarTool, Elbereth for Java, Hayes's retargetable single-language implementations

for C, T
l/Tk, and Ada, and the multi-language C-T
l/Tk and C-T
l/Tk-Ada

StarTools.

V.B Contributions of the Resear
h

A method for
ombining retargetable single-language analysis

tools into multiple-language analysis tools. We have developed a method for

easily and qui
kly
reating multi-language analysis tools from retargetable single-

language tools using a multi-level adaptor approa
h with a mediator. With our new

approa
h, a programmer that
reates a StarTool for a new programming language

will be able to add its fun
tionality into the multi-language tool with minimal

e�ort. A
ouple weeks work and less than 1000 lines of sour
e
ode should suÆ
e

to add a new language from a single-language StarTool into our multi-language

framework.

The method required to add a new language to the multi-language tool

41

42

(after an adaptation layer has been
reated for the new language) is as follows:

1. Modify the hash table de�nitions to support the asso
iation of identi�ers

with the newly added language.

2. Customize the mediator's elision options to support
onstru
ts from the

newly added language and the pre-existing supported languages. This might

require adding a new elision
ategory to the user interfa
e,
ombining new

ategories with existing
ategories, or the renaming of
ategories to improve

the usability of the interfa
e.

3. Modify the 8 fun
tions within the mediator that return SyntaxUnits to as-

so
iate SyntaxUnits returned by the new adaptation layer with the newly

supported language.

4. Modify the multi-language mediator to pass information to the new adapta-

tion layer upon en
ountering a SyntaxUnit intended for the new language.

5. Add fun
tionality to
reate a dummy node for the new language for
ross-

language sear
hing. This will require implementing the make dummy, re-

move dummy, and retrieve name s
ope kind fun
tion, widening the adapta-

tion layer interfa
e.

Multi-Language StarTool Implementations. We have developed

versions of the StarTool for C-T
l/Tk-Ada and C-T
l/Tk.

Insights into multi-language program analysis. Through the use

of our Multi-Language StarTool, we have dis
overed several issues with how pro-

grammers want to view information that
omes from multiple sour
e languages.

Information
an be displayed in a language-spe
i�
 form or in a manner that gen-

eralizes a
ross multiple languages. Tools
apable of performing multi-language

analsyis need to use a
ommon interfa
e with a me
hanism to retrieve language-

spe
i�
 information hidden behind the interfa
e. We have shown that a mediator

ombined with an adaptation layer is one e�e
tive solution.

43

V.C Future Work

We would like to test the multi-language interfa
e on a large-s
ale
om-

mer
ial proje
t. We are in the pro
ess of identifying a suitable
andidate to help

us with using the multi-language tool on a long-term basis. Raytheon is a likely

andidate to assist us with using our multi-language extensions to restru
ture a

large, multi-language software program.

The opportunity to provide
ustomizable sta
king to the user would be

a great addition to the StarTool. More resear
h needs to be done whether this

would require modi�
ation of the adaptation layer or not. Even if it does, this

would still be a worthwhile
hange. Sin
e the adaptation layer wasn't originally

intended to be multi-language ready, this
on
lusion wouldn't diminish the value

of the adaptation layer and Hayes's retargetability approa
h.

We would like to add support for additional languages to the multi-

language StarTool. The languages C, T
l/Tk, Ada are all imperative programming

languages. The similarity among the languages supported by the StarTool might

have simpli�ed our multi-language extensions, shadowing some language nuan
es

we might have
onsidered.

We plan to make our work available at the UCSD Software Evolution

Laboratory web page, http://www-
se.u
sd.edu/users/wgg/swevolution.html. Bi-

naries for both UNIX and Windows will be available for download.

Bibliography

[ANSI, 1997℄ Programming languages - C++ (1997). C++ Standard, ISO/IEC

14882:1998.

[Bowdidge, 1995℄ Bowdidge, R.W. (1995). Supporting the Restru
turing of Data

Abstra
tions through Manipulation of a Program Visualization. PhD thesis,

University of California, San Diego, Department of Computer S
ien
e and

Engineering. Te
hni
al Report CS95-457.

[Bowdidge and Griswold, 1994℄ Bowdidge, R.W. and Griswold, W.G. (1994). Au-

tomated support for en
apsulating abstra
t data types. In ACM SIGSOFT

'94 Symposium on the Foundations of Software Engineering, pages 97-9110.

[Cabaniss, 1997℄ Cabniss, J.L. (1997). Lessons Learned from Applying HCI Te
h-

niques to the Redesign of a User Interfa
e. Masters Thesis, University of Cal-

ifornia, San Diego, Department of Computer S
ien
e and Engineering. Te
h-

ni
al Report CS97-548.

[Chen, 1996℄ Chen, M.I. (1996) A Tool for Planning the Restru
turing of Data

Abstra
tions in Large Systems. Masters Thesis, University of California, San

Diego, Department of Computer S
ien
e and Engineering. Te
hni
al Report

CS96-472.

[Cormen, et al., 1997℄ Cormen, T.H., Leiserson, C.E., and Rivest, R.L. (1997) In-

trodu
tion to Algorithms. The MIT Press, Cambridge, Massa
husetts, 1997.

[Dewar, 1994℄ Dewar, R.B.K. (1994) The GNAT Model of Compilation. In Pro-

eedings of Tri-Ada '94, pp. 58-70, November, 1994.

[Griswold et al., 1996℄ Griswold, W.G., Chen, M.I., Bowdidge, R.W., and Mor-

genthaler, J.D. (1996). Tool Support for Planning the Restru
turing of Data

Abstra
tions in Large Systems. ACM SIGSOFT '96 Symposium on the Foun-

dations of Software Engineering (FSE-4), San Fran
is
o, O
tober, 1996.

[Griswold and Atkinson, 1995℄ Griswold, W.G., and Atkinson, D.C. (1995). Man-

aging the design trade-o�s for a program understanding and transformation

tool. Journal of Systems and Software, 30(1-2):99-116, July-August 1995.

44

45

[Hayes, 1998℄ Hayes, J.J. (1998). A Method for Adapting a Program Analysis Tool

to Multiple Sour
e Languages. Masters Thesis, University of California, San

Diego, Department of Computer S
ien
e and Engineering. Te
hni
al Report

CS98-600.

[Korman and Griswold, 1998℄ Korman, W., and Griswold, W.G. (1998) Elbereth:

Tool Support for Refa
toring Java Programs. Te
hni
al Report CS98-576, De-

partment of Computer S
ien
e and Engineering, University of California, San

Diego, April 1998.

[Linos, 1995℄ Linos, P.K. (1995) PolyCARE: A Tool for Understanding and Re-

engineering Multi-language Program Integrations. In First IEEE International

Conferen
e on Engineering of Complex Computer Systems, Nov. 6-10, 1995,

pp. 338-341.

[Linos et al., 1993℄ Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P.,

and Tulula, P. (1993) Fa
ilitating the Comprehension of C Programs: An

Experimental Study. In Pro
eedings of the Se
ond IEEE Workshop on Program

Comprehension, Capri, Italy, July 8-9, 1993, pp. 55-63.

[Morganthaler and Griswold, 1995℄ Morganthaler, J.D., and Griswold, W.G.

(1995) Program Analysis for Pra
ti
al Program Restru
turing. In Pro
eedings

of the ICSE-17 Workshop on Program Transformation for Software Evolution,

Seattle, WA, pp. 75-80, April 1995.

[Zeigler, 1995℄ Zeigler, S.P. (1995) Comparing Development Costs of C and Ada.

Online.

