
UC San Diego
Technical Reports

Title
Multi-Language Support in a Program Analysis and Visualization Tool

Permalink
https://escholarship.org/uc/item/1jg3d5vc

Author
Moskovics, Stuart

Publication Date
2000-06-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jg3d5vc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Multi-Language Support in a Program Analysis and Visualization Tool

A thesis submitted in partial satisfation of the

requirements for the degree Master of Siene

in Computer Siene

by

Stuart Phillip Moskovis

Committee in harge:

Professor William G. Griswold, Chairperson

Professor William E. Howden

Professor Keith Marzullo

2000

Copyright

Stuart Phillip Moskovis, 2000

All rights reserved.

The thesis of Stuart Phillip Moskovis approved:

Chair

University of California, San Diego

2000

iii

To my parents

iv

TABLE OF CONTENTS

Signature Page . iii

Dediation . iv

Table of Contents . v

List of Figures . vii

Aknowledgements . ix

Abstrat . x

I Introdution . 1

A. Motivation . 1

B. Approahes to Multi-Language Analysis 3

C. Hypothesis . 4

D. Results . 5

E. Overview of the Thesis . 5

II The StarTool . 6

A. The Star Diagram . 6

B. Star Diagram Operations . 9

1. Eliding Uninteresting Nodes . 9

2. Planning Program Restruturing 10

C. History of the Star Diagram Struture 10

1. Modi�ation for Retargetability 12

2. Language-Dependent Resoures 13

D. Adaptation Module Extensions . 14

III The Multi-Language StarTool . 15

A. User Interfae Modi�ations . 16

B. Multiple adaptation layers . 16

1. An adaptation layer Mediator . 18

2. Mediation through a Hash Table 20

3. Populating the hash table . 22

4. Multi-Language Elision Options 23

C. Cross-Language Issues . 26

1. Conversion of SyntaxUnits . 28

D. Limitations of the approah . 31

E. Adaptation Layer Requirements for Multi-Language Support 32

v

IV Disussion . 34

A. Tool Implementation . 34

B. Multi-Language StarTool . 34

C. Usability . 35

1. Elision Options . 35

2. Star Diagram Displays . 36

D. Reliane on 3rd-party tools . 38

E. Performane . 39

V Conlusion . 41

A. StarTool Programs . 41

B. Contributions of the Researh . 41

C. Future Work . 43

Bibliography . 44

vi

LIST OF FIGURES

II.1 A Star diagram built for the variable rooms. 7

II.2 Searhing for all referenes to the variable rooms. Double-liking

on one instane of the variable will bring up the spei� setion of

ode ontaining the variable. 8

II.3 After looking at an instane of the variable rooms, the rooms iden-

ti�er an be added to the Star Diagram. 8

II.4 The various types of Star Diagrams that an be built. 8

II.5 The trimmed arms window, displaying setions of the Star Dia-

gram that an be annotated and then removed from the view. . . 9

II.6 The StarTool Adaptation Module interfae, whih ontains 18 op-

erations. The identi�er sub-tag al stands for adaptation layer; the

tag su stands for syntax unit. 11

II.7 The adaptation layer relationship with the generi star diagram

funtionality and the language-spei� program representation. . . 13

III.1 Multi-language retarget of StarTool using adapter lasses. The

generi star diagram funtionality was not modi�ed; C-Tl/Tk-

Ada Adapter is the mediating adapter ontaining the multi-language

funtionality. 15

III.2 Dialog box displaying the extensions that an be loaded into the

Multi-Language StarTool. 17

III.3 The MultiLanguage StarTool Hash Table interfae. 20

III.4 Funtions in the adaptation layer that return SyntaxUnits. 23

III.5 Elision options in the C StarTool Polaris. 24

III.6 Elision options in the Tl StarTool Twinkle. 24

III.7 Elision options in the Ada StarTool Firey. 24

III.8 Original attempt at providing elision options in the multilanguage

StarTool. 25

III.9 Elision options in the Multi-Language StarTool. 26

vii

III.10 Multilanguage Star Diagram with all C identi�ers similar to a C

variable and all Ada identi�ers similar to an Ada variable. The

view has been elided to show that the Diagram pulls in nodes from

both C and Ada soures. 27

III.11 Proess for onversion of SyntaxUnits. This proess ours one

per soure �le loaded into the Star Diagram. 28

III.12 Pseudo-ode for onversion of SyntaxUnits to other adaptation

layers. 30

IV.1 The desired "ustomizable staking" options, similar to the elision

window. 37

IV.2 The funtion that deides whether nodes are stakable for the display. 38

viii

Aknowledgements

I would like to thank my advisor, Bill Griswold, for his enormous guidane

and support. He has been extremely patient with me during my researh and

writing, and it has been a great pleasure to work with him.

I would like to thank Jim Hayes for helping me to understand the Star-

Tool's retargability mehanisms. His fabulous work with redesigning the StarTool

laid the groundwork for the multi-language extensions reated during my researh

and implementation. I would also like to thank Jimmy Yuan for being a onstant

soure of support during my undergraduate and graduate areer.

I would like to thank my parents for their onstant support during my

shool areer. From my early hildhood, they have always enouraged me to

ahieve. I would not have made it this far without them.

This work was supported by NSF Grant CCR-9508745 and UC MICRO

Grant 98-054 with Raytheon Systems Corporation.

ix

ABSTRACT OF THE THESIS

Multi-Language Support in a Program Analysis and Visualization Tool

by

Stuart P. Moskovis

Master of Siene in Computer Siene

University of California, San Diego, 2000

Professor William G. Griswold, Chair

Restruturing and analyzing software is diÆult. Tools that allow pro-

grammers to view and plan modi�ations to existing programs an ease the burden

of maintenane and hange. Modern software engineering projets often use many

di�erent programming languages, inluding the use of multiple languages in a sin-

gle projet.

The StarTool is a program visualization and restruturing tool for soft-

ware programs. This thesis disusses a method used to improve the Star Diagram's

retargetability features by providing support for understanding multi-language

software programs. Our researh shows a simple and extendible mehanism to use

single-language retargetable program analysis tools for multiple-language analysis.

x

Chapter I

Introdution

I.A Motivation

The omputing industry has reently experiened substantial inreases

in available omputer proessing power and fast memory, allowing for larger and

more omplex software. The job of restruturing and enhaning suh software is

diÆult and time-onsuming. It is not unommon for programmers to start work

on a software projet with minimal or no knowledge of the pre-existing system

and ode struture. Any method or tool to help the engineer understand program

struture an be a valuable time-saver and assist in produing quality hanges.

Large software projets are inreasingly being written using multiple lan-

guages. Tl/Tk is used to quikly reate graphial user interfaes; it is also used

beause it is portable aross platforms. Frequently, the interfae portion of a pro-

gram an be written in a language suh as Tl/Tk while the rest ould be in

another language. A omputation-intensive program might require the eÆieny

of C, while a highly ritial program dealing with a nulear reator would need

the software safety of Ada. Programs written for Mirosoft Windows ommonly

have their graphial user interfae written in Visual Basi while the performane-

sensitive ode is written in Visual C++. Choie of programming languages an

also involve the osts assoiated with their use. Studies have shown that a line of

1

2

Ada ode osts about half as muh as a line of C ode, produing 70 perent fewer

internal �xes [Zeigler, 1995℄. Some languages also have better ompiler and tool

support than others, making their use more attrative to the programmer.

Many program analysis tools have been reated and studied for program

restruturing and understanding. However, there has been a lak of readily avail-

able tools that were apable of proessing programs written in multiple program-

ming languages. An exellent tool to analyze C would be ompletely useless for

the portions of a projet written in Ada. There aren't well-established methods of

taking existing program analysis tools and ombining them to be used for multiple

languages. Generi tools suh as UNIX grep an be used to searh for identi�ers in

soure �les of multiple languages, but the results do not indiate a multi-language

analsyis. Grep also laks a graphial interfae, minimizing the omprehensibil-

ity of its output. One option would be use a separate analysis tool for di�erent

languages; for example, to analyze a program written in C and Ada, the C ode

ould be viewed in a C restruturing tool, while the Ada ode is loaded in an

Ada analysis tool. Unfortunately, this approah provides no means to integrate

the separate analyses into one result. For example, attempting to loate identi-

�ers and variables that are used aross multiple languages would be very diÆult.

Multi-language tools are apable of examining ross-language issues that ould not

be eonomially explored with multiple single-language tools.

This is the problem faed by users of the StarTool, a program restru-

turing and analysis tool developed at the UCSD Software Evolution Laboratory

[Griswold et al., 1996℄. This tool builds Star Diagrams, graphial views of program

elements that are ustomizable to the user. Hayes redesigned the StarTool infras-

truture to allow easy retargetability to new programming languages [Hayes, 1998℄.

The new StarTool hides language-spei� representation information in an adap-

tation layer ontaining 14 funtions. A StarTool for a new language an be built

by taking existing program representations and adding an interfae through the

reation of a language-spei� adapter. Based on this interfae, StarTools were

3

built for C, Tl/Tk, and Ada.

Raytheon, a defense, engineering, and aviation business with oÆes in

California, has been a long-term user of the UCSD StarTool. The StarTools for

both C and Ada have been beta-tested at Raytheon on their software. Raytheon

has been one of the major motivators of a multi-language StarTool; sine they have

software that uses both C and Ada, they have requested a StarTool implementation

that an help them to understand and restruture those types of programs.

I.B Approahes to Multi-Language Analysis

Through the use of a ommon representation approah, retargetable anal-

ysis tools are often usable for multi-language analysis. An example is a ompiler

that is apable of linking together objet ode that is derived from multiple soure

languages. By requiring the language-spei� ode generators to use a ommon

representation in their output, multi-language linkers an understand and ombine

program representations from di�erent languages.

The Computer Siene Department at the Tennessee Tehnologial Uni-

versity has developed a program alled Poly CARE, a multi-language program

analysis tool. Poly CARE was extended from the original CARE tool used to

failitate the omprehension of C programs. Using a graphial interfae, Poly

CARE's intended use is the omprehension and re-engineering of multi-language

programs. Through user studies, the reators of Poly CARE found that engineers

using the tool were 37% more produtive when maintaining ode than when not

using the tool [Linos et al., 1993℄ [Linos, 1995℄. The tool has two main modules, a

ode analyzer and a display manager. The ode analyzer uses ex and bison, om-

mon UNIX tools for lexial analysis and parser generation. The lexer and parser

for eah language supported by Poly CARE will be implemented using the same

tool-set. This redues ode-size and an help aid in eÆieny and optimization.

Unfortunately, this limits the use of readily available language parsers and pro-

4

gram sliers, whih ould redue the amount of work to integrate a new language

into Poly CARE. A literature searh into the mehanisms used by Poly CARE

to integrate multiple-language information turned up very little information, so a

omplete analysis of its multi-language retargetability features was not possible.

I.C Hypothesis

We hypothesize that a single-language program analysis tool designed for

retargetability an be extended into a multi-language tool by using a multiple-

level adapter approah with a mediator. If the program representation spei� to

a soure language is fully separated from generi display and analysis funtions,

multi-language apability an be enabled by mediating between the separate lan-

guage instantiations and deiding whih language implementation is involved in

tool queries. This approah allows adding support for additional languages to a

multi-language tool with minimal e�ort one the language-dependent portion of

the tool has been reated. By using a mediator with multiple-level adapters, the

multi-language tool an understand issues spei� to multi-language programs,

spei�ally the sharing of information aross multiple programming languages.

We deided to test our hypothesis on the program analysis tool StarTool.

We hypothesized that by using Hayes's adaptation layer interfae, a multi-language

StarTool ould be reated without modifying any of the pre-existing ode used to

reate the C, Tl/Tk, and Ada StarTools. Moreover, we desired this new multi-

language tool to be easily extendible; any new StarTool written for a new language

ould be integrated into our multi-language tool through the addition of a new

adaptation layer and minimal modi�ations to the mediator. Any ode to reate

the multi-language tool would be in addition to the pre-existing ode, preserving

the retargetability interfae to allow for adaptations to new languages.

5

I.D Results

We suessfully built two multi-language StarTools: one that supports C

and Tl/Tk, and another that supports C, Tl/Tk, and Ada. These tools allow a

programmer to load, display, and analyze soure �les from di�erent languages in

one tool. We reated a mediator that was apable of handling di�erent language

representations by using a multi-level adapter approah. The mediators for the

two StarTools were reated in 100 hours of work and they use less than 2,000 lines

of ode. The requirement that we ould not modify the previous retargetability

struture was hallenging but eventually proved that Hayes's interfae allowed

for a multi-language design. One example of the diÆulty we enountered is the

mehanism Hayes designed to interfae with adaptation layers; this mehanism

required that a StarTool had only one adapter built into the tool. The multi-

language StarTool was built by working around this requirement. We were also

able to struture our multi-language StarTool suh that additional languages an

be easily added to the interfae.

The merged version of the single-language tools had no mehanism to re-

ognize whether variables and proedures were used aross multiple languages. We

extended the identi�er-mathing mehanism to onvert symbols in one language-

spei� adaptation layer to another language-spei� adaptation layer. This ex-

tended StarTool is more useful to a user attempting to understand a multi-language

program.

I.E Overview of the Thesis

Chapter II explains the Star Diagram struture. Chapter III desribes the

modi�ations to the retargetable Star Diagram struture we performed to support

multi-language programs. Chapter IV disusses the usefulness and limitations of

our approah for multi-language programs. Chapter V summarizes our work and

presents opportunities for further researh.

Chapter II

The StarTool

II.A The Star Diagram

The Star Diagram is a graphial tool that helps a programmer with pro-

gram visualization and planning for program restruturing [Bowdidge, 1995℄. Star

Diagrams are built around spei� information that the programmer is looking for

in a set of soure �les. The programmer �rst loads a set of soure �les to be ana-

lyzed by the StarTool. A variable or identi�er from one of the loaded soure �les

is then hosen to be the main ontext of the Star Diagram, and the StarTool looks

for all referenes to the hosen variable throughout the soure �les. The results

are then displayed in a graphial format.

The Star Diagram ontent is a tree shown with the root at the left and

the tree growing sideways to the right. The hosen variable beomes the root

node of the Star Diagram and all referenes to that variable are its hildren. Any

referenes to those hildren are the next level's hildren, and so on, until the leaf

nodes are the soure �les ontaining the identi�er. The Star Diagram staks all

nodes that refer to the same variable or operation. Staked nodes appear as a

single node but the node is drawn with other nodes behind it. This provides a

ompat but omplete view of the soures, allowing the programmer to fous on

a hosen aspet of restruturing. A leaf node's parent is the funtion within the

6

7

soure �le ontaining the referene to the identi�er. The Star Diagram is thus a

tree that ontains all of the diret and indiret uses onerning a spei� objet

while exluding irrelevant soure ode.

Figure II.1: A Star diagram built for the variable rooms.

The programmer has many hoies for ustomizing what information is

inluded in the Star Diagram. In addition to inluding all referenes to the same

identi�er, the StarTool an also build a Star Diagram inluding all identi�ers with

the same name, identi�ers with the same type, and identi�ers with the same un-

derlying type. The programmer also has the option of inluding all identi�ers that

math a ertain pattern by searhing for mathes based upon a regular expression.

These options are inluded sine the goal of the tool is not to make assumptions

regarding how the programmer will perform their restruturing but to provide the

apability to view the data in any way they see �t.

8

Figure II.2: Searhing for all referenes to the variable rooms. Double-liking on

one instane of the variable will bring up the spei� setion of ode ontaining

the variable.

Figure II.3: After looking at an instane of the variable rooms, the rooms identi�er

an be added to the Star Diagram.

Figure II.4: The various types of Star Diagrams that an be built.

9

Figure II.5: The trimmed arms window, displaying setions of the Star Diagram

that an be annotated and then removed from the view.

II.B Star Diagram Operations

The goal of the Star Diagram is to allow the programmer to view the

important uses of program omponents to aid in restruturing. As you look at

the diagram from left to right, you an see higher-level views of the use of a

struture, from the atual identi�er use to layers of funtion alls above the use of

the identi�er. The Star Diagram main window has three main omponents. The

main window, shown on the right-hand side, ontains all the nodes in the tree.

The left-hand side ontains the elision window and the seleted Star arm window,

shown on the top and bottom, respetively.

II.B.1 Eliding Uninteresting Nodes

Sine any restruturing requiring the use of an analysis tool will most

likely a�et many program modules, a Star Diagram is apable of storing unlimited

nodes, bounded only by available memory. This abundane of nodes an lutter

the diagram and make it diÆult to perform a restruturing. To improve the

usability of the StarTool, a single-language Star Diagram allows for the elision of

language-spei� node types and nodes ontaining programmer-hosen strings. For

example, a StarTool user might hoose to ignore all funtion alls or onditional

statements, hoosing to fous on other aspets of the soure.

10

II.B.2 Planning Program Restruturing

The ability to elide node types and ertain strings from a Star Diagram is

useful, but sometimes a programmer needs to remove whole setions of the diagram

to fous on onstruting a restruturing plan. The bottom-left side of the window

ontains a set of trimmed arms, or portions of the tree that have been removed

from view. These arms would generally be parts of the display that are not related

to the restruturing being performed. Eah trimmed arm ontains a desription

(the text from the root node that was shown in the diagram) and an optional text

box that an be used for annotation. This provides the ability for the programmer

to reord a note desribing the trimmed arm or maybe a potential restruturing

on the arm. The trimmed arms also have push-buttons to re-inlude them in the

Star Diagram or to build a new Star Diagram inluding only the trimmed arm.

II.C History of the Star Diagram Struture

The Star Diagram was reated by Bowdidge as a program visualization

user interfae for tool-assisted software restruturing [Bowdidge, 1995℄. Chen re-

ated a C Star Diagram Tool in 1996 with 5,000 lines of Tl/Tk and 800 lines of

C++ [Chen, 1996℄. This ode was written on top of an AST front end already

written in C++ [Morganthaler and Griswold, 1995℄. Chen added two failities to

the Star Diagram to aid in the use of the Star Diagram: elision and trimming.

In 1998, Hayes invented a method for adapting the StarTool to di�erent program

representations, reating StarTools for C, Tl/Tk, and Ada [Hayes, 1998℄. The

StarTool had always been used to study restruturing of C �les. However, it is

ommon for large software to be written in a ombination of di�erent program-

ming languages. The StarTool itself inludes a major portion of its funtionality

in Tl/Tk. Previous authors of StarTool implementations have desired to use the

StarTool to analyze a restruturing of the StarTool itself, providing the ultimate

test of the StarTool usefulness. Elbereth, a Java-only StarTool that was written

11

int al_elaborate(int &arg, har *argv[℄);

har *al_elision_attributes();

har *al_merging_attributes();

har *al_similarity_attributes();

/* Provides iteration of elements appropriately similar to #prototype#

under/inside the #ontainer#. */

SyntaxUnit first_similar_su(SyntaxUnit ontainer, SyntaxUnit prototype, har *similarity);

SyntaxUnit next_similar_su();

/* Provides iteration of elements with #attribute# under/inside the #ontainer#. */

SyntaxUnit first_su_with_attribute(SyntaxUnit ontainer, har *attribute);

SyntaxUnit next_su_with_attribute();

/* Formerly the ast_parent operation. */

SyntaxUnit su_superunit(SyntaxUnit item);

/* Given a SyntaxUnit #item# and the #subunit# from whih it was reahed, returns a label

indiative of #item#, possibly with an indiation of whih position #subunit# resides. */

har *su_label(SyntaxUnit item, subunit);

int su_skip_test(SyntaxUnit item);

strut FilePosition {

int line, olumn;

};

har *su_file(SyntaxUnit item);

FilePosition su_begins(SyntaxUnit item);

FilePosition su_ends(SyntaxUnit item);

SyntaxUnit file_to_su(har *pathname);

har *file_text(SyntaxUnit item);

har *file_filters();

SyntaxUnit file_range_to_su(SyntaxUnit ontainer, FilePosition *range_begin,

FilePosition *range_end);

Figure II.6: The StarTool Adaptation Module interfae, whih ontains 18 opera-

tions. The identi�er sub-tag al stands for adaptation layer; the tag su stands for

syntax unit.

12

in Java, was also reated in 1998 but does not use the same retargetable ode

struture as the tools reated by Hayes [Korman and Griswold, 1998℄.

II.C.1 Modi�ation for Retargetability

Hayes restrutured the StarTool with the goal of supporting retargetabil-

ity to new languages by making the tool representation and language independent.

The theory was that the StarTool ould be adapted to existing program representa-

tions in a short amount of time as a means of retargeting the StarTool to di�erent

programming languages. Hayes realized the algorithms to build, elide, and dis-

play a Star Diagram ould be language-independent if the language-dependent

information was aessed via an interfae ommon to all StarTools. In Hayes's

implementation, the information required to parse and analyze a spei� program-

ming language's soure �les is kept in what Hayes termed an Adaptation Module

(see Figure II.6). Using Hayes's struture, a single-language StarTool is built by

the generi, language-independent StarTool submitting requests to the language-

spei� Adaptation Module. The language-dependent Adaptation Module is re-

sponsible for proessing and storing the AST nodes that are built from soure

�les. Funtions inluded in an adaptation module are �le-to-AST and AST-to-�le

mapping funtions, node attribute funtions, and AST traversal funtions. This

approah was suessfully used to build three separate StarTools, polaris, twinkle,

and �rey, eah apable of working with C, Tl/Tk, and Ada �les, respetively.

Separation of the language-dependent implementation from the language-

indepdent StarTool was ahieved without exessive generiity via a query interfae.

Eah StarTool feature was assigned an operation in the adaptation layer that re-

turns a list desribing the language-spei� implementation. For example, to deter-

mine the merging attributes that are used in the Ada StarTool Firey, the generi

StarTool alls the adaptation layer funtion al merging attributes, whih then re-

turns a onatenated string ontaining pakage, subprogram, and task, whih are

the Firey merging operations. Through this funtion all, the StarTool an han-

13

Figure II.7: The adaptation layer relationship with the generi star diagram fun-

tionality and the language-spei� program representation.

dle any sort of merging parameters without having spei� support requirements

in the language-indepdent module. Elision, browsing, and similarity attributes are

queried through the similar funtion alls.

II.C.2 Language-Dependent Resoures

Hayes used readily-available program representations to prove the useful-

ness of his retargetability interfae. The language-dependent portion of polaris, the

C StarTool, uses the Ponder language toolkit [Griswold and Atkinson, 1995℄. The

Ponder toolkit generates program ASTs from C soure �les. Hayes didn't have a

Tl/Tk program representation readily available, so he built one himself. The Ada

program representation ame from the Gnu Ada Compiler Gnat [Dewar, 1994℄.

Gnat is a publi-domain Ada 95 ompiler and ode-generator that integrates with

the Gnu g ompiler. Gnat's program representation is built with AST nodes on-

taining information about program symbols. The Gnat ompiler provides failities

for manipulating an AST representation of Ada soures.

14

II.D Adaptation Module Extensions

Sine eah single-language StarTool has a language-dependent and language-

independent portion, Hayes reated a generi StarAdapter C++ lass that inludes

virtual funtions with some default implementations that an be overridden in a

language's Adaptation Module. To reate an adaptation layer for a spei� lan-

guage, a language-dependent lass needs to be built on top of the StarAdapter.

The pure virtual implementations are replaed with language-spei� funtions,

and the provided default implementations are overridden if needed. The super-

lasses built upon the StarAdapter are IariaStarAdapter for C, TlStarAdapter

for Tl, and GnatStarAdapter for Ada.

The generi StarTool engine links with the language-dependent Adap-

tation Modules for eah language's StarTool. However, eah Adaptation Module

uses a unique data struture to store AST Nodes and the other assoiated pro-

gram representation information, suh as type, sope, and line number. To allow

all adaptation modules to share the same interfae, information is passed between

the generi StarTool and the Adaptation Modules via a SyntaxUnit. The Syn-

taxUnit is atually a void * in C, a generi data store that points to an area of

memory. Using this approah, the representation- and language-independent Star-

Tool interfae has no onern as to the language and representation being used in

the Star Adapters.

Chapter III

The Multi-Language StarTool

Our goal was to leverage the StarTool's retargetability interfae to reate

a single StarTool apable of analyzing programs written in multiple languages. In

addition, we prohibited ourselves from modifying Hayes's interfae to reate our

new tool. The arhiteture we designed to support a multi-language tool an be

found in Figure III.1.

Figure III.1: Multi-language retarget of StarTool using adapter lasses. The

generi star diagram funtionality was not modi�ed; C-Tl/Tk-Ada Adapter is

the mediating adapter ontaining the multi-language funtionality.

15

16

III.A User Interfae Modi�ations

The user interfae for the three single-language implementations of the

StarTool all use a ommon interfae implemented in Tl/Tk. The Tl/Tk soure-

ode is ompletely representation- and language-independent. Sine this Tl/Tk

ode was already strutured to handle ASTs from various language implementa-

tions, there were no hanges required to the user interfae portion of the Tl/Tk

ode to build a multi-language tool. Any language-spei� information that was

required for display on the interfae (suh as the programming language supported

by the spei� tool or the �le extensions to be loaded) was retrieved through the

Adaptation Module via a query interfae ontaining 14 funtions. Therefore, the

user interfae reated by Hayes to support retargetable StarTool implementations

was readily adaptable to multi-language StarTools. The only modi�ations needed

for multi-language support were the 14 query funtions in the adaptation layers.

III.B Multiple adaptation layers

We modi�ed one funtion in the adaptation module to support loading

�les from multiple languages, �le �lters. The �le �lters funtion returns the �le

mask used for displaying the default �les to be loaded into the StarTool. The

programmer has the option of loading �les into the StarTool by speifying �les or

a �le-mask on the ommand-line, or they an hoose the Load Files option whih

brings up a dialog for hoosing �les. The �le �lters funtion in the C StarTool used

..i (*.i refers to . �les that have already been run through a pre-proessor),

the Tl StarTool used *.tl, and the Ada StarTool used *.adb*.ads. For the multi-

language tool, the �le �lters funtion ombines these �le-masks to return all of

the �le �lters as a ombined string. Thus, the Tl/Tk �le load window for the

multi-language tool allows for the loading of C, Tl/Tk, and Ada soure �les, as

an be seen in Figure III.2.

On the surfae, it seemed possible to simply take all of the separate

17

Figure III.2: Dialog box displaying the extensions that an be loaded into the

Multi-Language StarTool.

adaptation layer implementations and link them together. However, one aspet

ommon to the single-language tools is that eah tool instantiation ontains only

one adaptation layer. Moreover, eah of the adaptation layers uses the same exat

funtion names to help with projet management. If the IariaStarAdapter (the C

StarTool adaptation layer) is proessing a SyntaxUnit, it assumes that the Syntax-

Unit is always an Iaria AST Node ast to a void *. Under no irumstane is the

IariaStarAdapter prepared to reeive a SyntaxUnit that is atually a Tl/Tk AST

Node. It was obvious that while Hayes reated a ompletely retargetable interfae,

this struture was not originally intended to be inluded in a multi-language tool.

The adaptation layers and the ode that handles the alls to the adap-

tation layers are found in two modules in eah implementation. The C implemen-

tation uses polaris.xx and IariaStarAdapterClass.xx, the Tl implementation

uses twinkle.xx and TlStarAdapterClass.xx, and the Ada implementation uses

�rey.xx and GnatStarAdapterClass.xx. The polaris.xx, twinkle.xx, and �re-

y.xx �les all ontain same-named funtion alls that are one layer above respe-

18

tive alls in the adapter modules; the upper layer funtions are wrappers for the

atual adaptation modules. However, sine these upper layers use the same name

and prototypes, they are not available for inlusion in a multi-language tool.

III.B.1 An adaptation layer Mediator

We proeeded to integrate the multiple adaptation layers into a single

odebase, allowing a single StarTool to proess multiple languages. Sine the fun-

tions one-layer above eah of the adaptation layers had the same funtion name,

we reated a merged upper-layer that would serve as a mediator. The mediator

reeives requests intended for one of the adaptation layers and hooses whih adap-

tation layer reeives the information; the mediator also proesses language-spei�

information returned by the mediators. The modules polaris.xx, twinkle.xx, and

�rey.xx were ombined into one single module, twinklepolaris.xx for the C/Tl-

Tk StarTool and twinklepolaris�rey.xx for the C/Tl-Tk/Ada StarTool. This

mediator is responsible for all funtionality found in the upper layer of the single

language tools.

All information is passed between the StarTool user interfae and the

adaptation layers as generi SyntaxUnits; these memory loations provide no in-

formation regarding identi�er ontext or the information stored at the SyntaxU-

nit's memory address. The ommon interfae used to proess information in the

adaptation layers made the merging of the adaptation layers easy. However, this

generality reated diÆulty in merging the implementations. Our main goal was

to provide multi-language apability using Hayes's retargetable adaptation layer

without modifying his struture. In the single language tools, the language inde-

pendent ode never required a deision regarding whih Adaptation Module should

reeive a SyntaxUnit. In a multi-language tool, SyntaxUnits an be proessed by

the IariaStarAdapter, TlStarAdapter, or GnatStarAdapter. The general void *

assoiated with eah SyntaxUnit provides no means to indiate to whih language

(and to whih language implementation) a SyntaxUnit is assoiated.

19

One obvious solution would have been to hange the struture of the Syn-

taxUnit, adding a speialized data store that inluded objet type and language

information. This would have required hanging the rest of the StarTool imple-

mentation, inluding the single-language adaptation layers whih are out of our

ontrol, sine they are developed by others. Another possibility would have been

to ombine the multiple adaptation layers into one large adaptation layer. This

hoie was avoided sine the addition of another language to our multi-language

tool or modi�ation of a pre-existing language would be diÆult sine language in-

formation previously stored in a single-language module would be exposed to other

language implementations. It was important that the e�ort to add a language to

the multi-language StarTool be inremental and non-redundant. We desired to

add onto the representation-independent struture without sari�ing the ease of

adapting another language into the multi-language tool.

Our solution was to reate a mediator responsible for assoiating Syntax-

Units with languages. We analyzed several approahes to handling this task. One

possibility was to reate an address pool from where the SyntaxUnits would be

distributed. For example, any SyntaxUnit with a memory address from 0 through

10,000 would be a C AST Node, while 10,000 through 20,000 would be a Tl/Tk

AST Node. This approah would not be very eÆient as it would require alloation

of memory that will probably not be used during the operation of the StarTool.

It also is not robust as it intrinsially requires hard limits on the number of AST

Nodes that ould be loaded into the tool from any implementation. It would be

possible to alloate extra memory during run-time to extend these pointer allo-

ations, but this approah would require the program to pause for alloation and

to modify its table of language-pointer assoiations, foring the user to wait for

the program to adjust itself. In order to proess a very large software pakage,

a full reompile of StarTool would be neessary to hange these pointer settings,

whih is not very desirable. This approah might also require the address pool

to have knowledge of the Operating System and arhiteture, sine ode working

20

AssoiateSyntaxUnitToLanguage(SyntaxUnit, Language)

{

Language_SyntaxUnit_Map[SyntaxUnit℄ = Language;

}

GetLanguageFromSyntaxUnit(SyntaxUnit)

{

return Language_SyntaxUnit_Map[SyntaxUnit℄;

}

Figure III.3: The MultiLanguage StarTool Hash Table interfae.

with pointers might not be portable to every platform.

III.B.2 Mediation through a Hash Table

Sine the address pool was unworkable, we deided to implement a hash

table. The advantages of the hash table are that it is simple, easy to understand,

and easy to implement. The disadvantage of this approah is that the hash table

requires extra spae to store its information, dependent on the hash table's internal

data struture. The hash table would take as input a SyntaxUnit and return the

language assoiated with the spei�ed SyntaxUnit. Implementing the hash table

required providing two operations, shown in Figure III.3:

We used the STL (Standard Template Library) map [ANSI, 1997℄ as the

basis for the hash table. The STL map(Key, T, Compare) supports unique keys

and provides for fast retrieval of another type T based on a given key. STL map

is implemented using red-blak trees, so the time to insert a SyntaxUnit into the

hash table or to retrieve the language assoiated with a SyntaxUnit is of the

order O(log n) [Cormen, et al., 1997℄. However, the simpliity of the hash table

did not ome without added osts. Memory spae is required to store the hash

table entries. Eah hash entry ontains a void * pointer and an assoiated integer

indiating the language (and adaptation layer implementation) that a SyntaxUnit

21

was generated from. On a 32-bit mahine, eah hash table entry requires 8 bytes

of memory, in addition to the STL data struture overhead. We felt that this

was a reasonable requirement to support multi-language Star Diagrams without

modifying the adaptation layer struture.

With the apability to assoiate SyntaxUnits and languages in plae, the

hange to the adaptation layers proved straightforward. Most of the funtions

that work with Syntax Units have one of these harateristis: 1) The funtion

reeives an identi�er (a �lename or an enumerated language type) indiating the

language being worked with, or 2) The funtion is passed in a SyntaxUnit that pro-

vides ontext information sine it has already been mapped to a soure language.

In these funtions, we all GetLanguageFromSyntaxUnit to determine the Syn-

tax Unit's soure language and whih adaptation layer implementation should be

alled. This builds upon Hayes's approah so that the representation-independent

module does not have knowledge of the separate language implementations. Sine

the data proessing by the entral adapter is ompletely transparent to the adap-

tation layers, eah implementation does not need to know that their AST data is

passed through a entral adapter before their own adapter.

The exeptions to these rules are the funtion pairs f�rst similar su and

next similar sug and f�rst su with attribute and next su with attributeg. The sim-

ilar su funtions are used to look for a SyntaxUnit that is similar in a ertain way

to another SyntaxUnit, while the su with attribute funtions loate a SyntaxUnit

ontaining a ertain attribute. The �rst funtion is always alled to start the

searh proess; if a mathing SyntaxUnit is found, more SyntaxUnits an be found

through suessive alls to the next funtions. The next funtions do not reeive

a SyntaxUnit as a parameter, whih poses a problem for the mediator sine no

language ontext an be found.

The lak of a language indiator as an input to the next funtions was not

problemati in the single-language StarTools sine there was only one adaptation

layer that ould reeive a next all, obviating the need for a language lookup. For

22

the multi-language tool, we ahe the language that is used in a �rst all; eah

time a next funtion is alled, the ahed language value is used to determine

whih adaptation layer to be alled. It is not legal that next similar su ould be

alled after �rst su with attribute sets the global value, or vie versa, sine the

StarTool requires the appropriate �rst all before a subsequent next all an go

through. Setting and heking this global data value does require extra overhead,

inluding a data assignment for eah �rst all and a data omparison for eah next

all. However, these operations require a small amount of time and are reasonable,

onsidering that it allows us to use Hayes's retargetable adaptation layer for multi-

language proessing.

III.B.3 Populating the hash table

We onsidered assoiating all of the nodes within a soure �le with its

soure language by starting at the root node for a �le and iterating through all

of the nodes, assigning eah node individually. Sine the adaptation layer doesn't

have a mehanism to iterate through all of its nodes, we would have been fored

to modify the language-dependent adaptation layers, violating one of the goals of

our work. An all-node iteration might also ause large delays during the initial

proessing of loaded soure �les. Instead, we loated all of the adaptation layer

funtions that return SyntaxUnits and aptured the return values in the merged

upper layer. A total of 8 funtions within the upper merged layer, loated in Fig-

ure III.4, return SyntaxUnits. When one of these funtions returns a SyntaxUnit,

AssoiateSyntaxUnitToLanguage is alled with the returned SyntaxUnit and its

assoiated language. Two other funtions, �le to su and �le range to su, proess

�les and return a SyntaxUnit representing the �le. They are able to use the �le-

name extension (*.*.i for C, *.tl for Tl/Tk, *.adb*.ads for Ada) to assoiate

the newly reated SyntaxUnit with a language. The rest of the funtions either

set the ahed last-language value or retrieve its ontents for language ontext. By

isolating the language assoiation operations to the funtions that return Syntax-

23

SyntaxUnit first_similar_su(SyntaxUnit originalSyntaxUnit)

SyntaxUnit next_similar_su()

SyntaxUnit first_su_with_attribute(SyntaxUnit originalSyntaxUnit)

SyntaxUnit next_su_with_attribute()

SyntaxUnit su_superunit(SyntaxUnit originalSyntaxUnit)

SyntaxUnit su_subunit(SyntaxUnit originalSyntaxUnit)

SyntaxUnit file_to_su(har *filename)

SyntaxUnit file_range_to_su(FileRange theFileRange)

Figure III.4: Funtions in the adaptation layer that return SyntaxUnits.

Units, we were able to reate a proess that an be extended to more languages

with minimal e�ort. Modi�ations required for adding support for a new language

assoiation involve only 8 funtions and less than 100 lines of ode.

III.B.4 Multi-Language Elision Options

Elision options are passed through the adaptation layer via three fun-

tions, al browsing attributes, al elision attributes, and al merging attributes. As

an example, the merging attributes returned by the Tl StarTool are �le and

pro, while the Ada StarTool returns Program, SubProgram, and Task. Sine pro-

gramming languages do not have onstruts that always map to eah other, we

enountered a diÆult issue regarding how to display elision options to the user.

For our original multi-language tool, we originally proposed to take the

union of all of the attributes and present them to the user. This provides omplete

exibility to the programmer, allowing the elision of ertain types of nodes from one

language implementation, while keeping them in another language implementation.

A view of the elision window using this methodology an be seen in Figure III.8.

This interfae was too luttered to atually be useful. Previous user

studies with the Star Diagram have shown that a poorly designed interfae an

frustrate the StarTool user, reduing the usefulness of the tool [Cabaniss, 1997℄.

24

Figure III.5: Elision options in the C StarTool Polaris.

Figure III.6: Elision options in the Tl StarTool Twinkle.

Figure III.7: Elision options in the Ada StarTool Firey.

25

Figure III.8: Original attempt at providing elision options in the multilanguage

StarTool.

We deided that the programmer wouldn't atually want to think about low-level

language onstruts as part of an overall multi-language program restruturing.

Rather, they would be fousing on whole-program analysis and would prefer to

operate at a higher level. To provide this interfae, we merged the elision/merging

attributes into more generi groups of attributes for ompat presentation to the

programmer. The attributes that are available for elision in the multi-language

tool are Conditional Statements, Loop Statements, Case Statements, Compilation

Units, Funtions, and Tasks. The new elision panel an be seen in Figure III.9.

The mediator used for the language and SyntaxUnit assoiation is also

used for language and attribute assoiations. When the mediator reeives one of

the high-level attribute groups, it determines the language that will be reeiving

the language-spei� attribute and onverts the generi group into the language's

appropriate attributes. For example, if the mediator reeives Conditional State-

26

Figure III.9: Elision options in the Multi-Language StarTool.

ments, the C StarTool reeives if, the Tl StarTool reeives if and else, and the

Ada StarTool reeives if. As with the SyntaxUnit mediation, this onversion is

transparent to the adaptation layers.

III.C Cross-Language Issues

After the mediators were added to handle language and attribute map-

ping, we were suessfully able to load soure �les from multiple languages into

one Star Diagram using a single StarTool exeutable. Files ontaining C, Tl, and

Ada extensions were easily loaded into the StarTool for proessing. For example,

the user ould build a diagram ontaining all of the C nodes similar to a C variable

and all of the Ada nodes similar to an Ada variable, as seen in Figure III.10. This

would require a two-step proess, �rst adding the C identi�er, then adding the

Ada identi�er. The programmer ould also searh for all instanes of a text pat-

tern aross multiple-language soures and then add the results to a Star Diagram.

Although these Star Diagrams are interesting to look at and quite useful to a pro-

grammer, we realized that a multi-language tool needs to do more than proess

27

Figure III.10: Multilanguage Star Diagram with all C identi�ers similar to a C

variable and all Ada identi�ers similar to an Ada variable. The view has been

elided to show that the Diagram pulls in nodes from both C and Ada soures.

soures from multiple languages. To be fully useful, the tool needed to understand

ross-language issues that do not exist in single-language programs. The nature of

a true multi-language program is that some of the variables or funtions are shared

aross multiple languages. A C funtion might all a Tl funtion, or an Ada fun-

tion might hange or aess a variable that is delared in a C �le. We desired

a Star Diagram built on a ross-language identi�er to automatially inlude any

instane of the identi�er in every language soure loaded into the StarTool. This

sort of multi-language view ensures that the programmer will see any ourrene

of the use of an identi�er aross all languages, helping to redue the possibility of

software errors.

28

III.C.1 Conversion of SyntaxUnits

Sine eah adaptation layer may use unique methods and data strutures

to store language representation, SyntaxUnits reated by one adaptation layer are

not orretly proessed by other adaptation layers. To use Hayes's adaptation

layers without modi�ation, we reated a temporary dummy SyntaxUnit that an

be orretly parsed by other implementations. The dummy SyntaxUnit ontains

the information represented by the old SyntaxUnit but in the orret data struture

format for another implementation.

Figure III.11: Proess for onversion of SyntaxUnits. This proess ours one per

soure �le loaded into the Star Diagram.

When the StarTool builds a Star Diagram, it searhes for identi�ers that

are similar in some hosen way to the spei�ed identi�ers. For example, the Star-

Tool might be asked to searh for identi�ers that have the same name, type, or the

same underlying type as hosen identi�ers. The language-independent front-end

has a funtion alled insert similar nodes that is responsible for �lling a Star Dia-

gram with objets that are similar to a hosen objet. This is performed through a

29

all to �rst similar su and suessive alls to next similar su. When searhing for

similar identi�ers, �rst similar su in the multi-language tool heks the language of

the soure identi�er and the language of the identi�er to be ompared. If they are

the same, the tool lets the similarity hek proeed as it did in the single-language

tools. Otherwise, a dummy temporary SyntaxUnit is reated to enapsulate the

original SyntaxUnit information for the spei� implementation. The funtion

ConvertSU reeives the node to be onverted along with the destination language,

whih then alls either ConvertSU C, ConvertSU Tl, or ConvertSU Ada. This

proess an be seen in Figure III.11.

The onversion of SyntaxUnits from one implementation to another re-

quires �lling in an identi�er's label (or name), its kind, and its sope; this infor-

mation is required to searh for an identi�er that is similar to an identi�er from a

di�erent language. The �rst step for reating a dummy SyntaxUnit for language

onversion is to alloate a new AST Node for the target representation. The C

adaptation layer uses an AST Node type de�ned in the Iaria library, the Tl type

is a ustom AST representation built by Hayes, and the Ada adaptation layer uses

a ombination of Gnat program representation information and other StarTool-

spei� AST information. This proess requires a memory alloation for the new

AST Node.

The new SyntaxUnit then needs to take on the label ontained by the

old SyntaxUnit, whih is retrievable through the su label funtion. This step may

require some onversion of the label, sine Hayes's retargetable interfae does not

guarantee that a label from one adaptation layer will math a label from another

adaptation layer. Also, some parsers might perform name mangling on an identi�er

that would need to be proessed.

The onversion routines then �ll in kind information. Objets in Star Di-

agrams an hold many di�erent attributes inluding AST Identi�er, Variable, De-

laration, et. Reoniling the di�erent types among the adaptation layers proved

to be one of the diÆult steps in reating a multi-language tool. The Iaria Libary

30

ConvertSyntaxUnit(SyntaxUnit oldSyntaxUnit, SyntaxUnit newSyntaxUnit,

Language newLanguage)

{

newSyntaxUnit.alloateMemory();

newSyntaxUnit.label =

CreateNewLabel(oldSyntaxUnit.getLabel());

newSyntaxUnit.Child = NULL;

newSyntaxUnit.Parent = NULL;

newSyntaxUnit.Siblings = NULL;

newSyntaxUnit.IdentifierType =

NewIdentifier(oldSyntaxUnit.getIdentifierType());

AssoiateSyntaxUnitToLanguage(newSyntaxUnit,newLanguage);

}

Figure III.12: Pseudo-ode for onversion of SyntaxUnits to other adaptation lay-

ers.

in the C StarTool has 14 types, the Tl tool supports 3 major types, and the Ada

tool has 211 major types. The Ada interfae inludes muh more types sine it was

built diretly on an Ada language parser, while the Tl interfae was hand-built

and the C interfae used a C program slier. The issues reated by these large

di�erenes in type information are addressed in Chapter IV.

Lastly, sope information needs to be �lled in. The C adaptation layer's

AST Node has data values for parent, hild, left sibling, and right sibling. Hayes's

Tl AST Node has a data �eld for hildren; a new Tl AST Node automatially sets

its parent and sibling to NULL. The Ada AST data struture also has values for

parent, hild, and sibling. To orretly ompute sope information when searhing

for the same identi�er, all of these data �elds need to be �lled in.

After the label, kind, and sope are set, the onverted AST node is as-

soiated with the target language in the language hash table. The advantage of

this approah is that only one onversion routine needs to be written for every

language that is added to a multi-language StarTool. However, this onversion

routine needs to be aware of the other adaptation layer's representations to be

31

sure that it is fully ompatible with the other languages supported by the Star-

Tool. This requirement reates some work for the implementer when adding a

new language to the multi-language tool. One side bene�t is the AST node on-

version is optional, or it an be delayed after introdution of a new language. If

a ross-language onversion needs to be performed but is skipped, the StarTool

will proess the inorret SyntaxUnit and onsider it a non-math when looking

for similar nodes. Multi-language Star Diagrams ould still be built with suh a

tool, but ross-language identi�er searhes will not inlude identi�ers that are lo-

ated in soure �les ontaining the newly added language. Cross-language variable

searhing might work if the programmer hooses an identi�er in the new language;

sine the onversion routine will already have been written for the other languages,

the tool will most likely orretly onvert the SyntaxUnit from the newly added

language. Choosing a variable in an already implemented language would not �nd

the variable in the new language without the new language's onversion routine.

III.D Limitations of the approah

We were limited by the amount of ross-language variable searhing we

ould perform in the multi-language tool. Sine the multi-language StarTool does

not have aess to the full parse trees of the soure �les that are loaded, we are

not able to extrat full information onerning AST nodes. Therefore, we had

to make some onessions onerning the ability of the multi-language tool to do

Cross-Language searhing.

Laking a full parse-tree, the multi-language StarTool needs heuristis

when looking for the same identi�er aross multiple languages. Some programming

languages have ertain ommands that are used to register identi�ers or variables

that are delared in another language. The StarTool uses Tl Create Command

to register funtions in C that are alled in Tl. Without full AST information

from the adaptation layer, the multi-language tool does not know whih identi�ers

32

have been mapped via a ross-language registration funtion. Moreover, eah

language has its own method for registering another language's identi�ers and

this registration proess an be dynami.

We made the assumption that if the user is looking for the same identi�er

to one that is delared in a proedure, any identi�er that has a global sope with

the same name and type is onsidered a math. The same goes for performing a

searh on a global identi�er; it will only �nd identi�ers with a loal sope, not global

ones. This provides a high on�dene that the multi-language tool is �nding the

information that the programmer is looking for. One requirement for this searh to

sueed is that if an identi�er is used aross multiple languages, it must be named

the same (have the same label) in every implementation. Sine using the same

name would be good programming pratie, we onsidered this requirement to be

reasonable.

III.E Adaptation Layer Requirements for Multi-

Language Support

Our multi-language StarTool an be extended to support more languages

if an adaptation layer has been reated for the new language. For multi-language

support, the single-language adaptation layer needs to be widened through the

following funtionality:

1. A make dummy funtion. The new tool must support the reation of a

temporary fake SyntaxUnit to searh for identi�ers in the new language that

are similar to hosen identi�ers from other languages.

2. A remove dummy funtion. The new tool must support the dealloation of

the dummy SyntaxUnit after it is no longer needed.

3. A funtion to identify the name, sope, and kind assoiated with an identi�er

for the new language.

33

The diÆulty assoiated with reating these funtions was diretly related

to the data strutures used for eah adaptation layer. Creation of these funtions

for the C adaptation layer was the most diÆult, due to the omplex and multi-

layered data strutures used by the Iaria toolkit. Tl/Tk was the easiest language

to support, sine Hayes reated a lean and simple adaptation layer for the Tl/Tk

StarTool. The simpliity of the Tl/Tk language also simpli�ed the reation of

these funtions.

Chapter IV

Disussion

In this setion we disuss the results of our projet as well as an evaluation

of the design and its limitations.

IV.A Tool Implementation

The multi-language transformation to the retargetable StarTool was im-

plemented entirely in the C++ programming Language. The C/Tl-Tk/Ada tool

and C/Tl tool has 21,000 and 16,000 lines of ode, respetively; 2,000 lines of

ode in eah multi-language tool is for multi-language support. These totals do

not inlude the Iaria and Gnat libraries. The gnu g++ ompiler was used for

ompilation of the C and C++ soures, and the Gnat add-on for g was used

to ompile the Ada soures. The Gnat ompiler is also used for proessing Gnat

soures when they are loaded into the StarTool.

IV.B Multi-Language StarTool

Our work has produed an extendible multi-language StarTool that an

be used to analyze and restruture software written using multiple programming

languages. Moreover, we were able to implement our design without modifying

34

35

the retargetable StarTool interfae reated by Hayes or the generi user interfae.

Our framework allows for new languages to be integrated into the StarTool with

minimal e�ort one an adaptation layer has been written for that new language.

Cross-language variable searhing an be funtional with the new adaptation layer

through the reation of 3 extra funtions to support dummy SyntaxUnits. This

provides an inentive to the programmer deiding whether to retarget the StarTool

to a preferred new language.

IV.C Usability

We enountered many issues when trying to reate a usable interfae for

a multi-language program analysis tool that would be used by programmers with

di�erent programming assumptions and styles of work. Having very little previous

researh in this �eld to use in our e�orts, we had to make some eduated guesses

onerning the use of the tool.

IV.C.1 Elision Options

The Elision Options are part of what gives the StarTool its uniqueness;

they provide the ability to hone-down a Star Diagram view to support the pro-

grammer's needs. In a multi-language tool, the programmer an either be thinking

in a multi-language or a single-language perspetive. However, the StarTool will

always display all of the information from eah language loaded into the tool.

We desired to give the programmer the maximum exibility in eliding all possible

nodes, shown in Figure III.8. Unfortunately, this made the interfae seem luttered

and ould overwhelm the StarTool user. We also felt that providing the user with

too muh funtionality might be a reason to not use the tool. The multi-language

StarTool's merged ategories, shown in Figure III.9, is our attempt to provide

exibility to the programmer while keeping the interfae as language-generi as

possible. Another option for the elision window would be to provide a new eli-

36

sion panel ontaining one language's elision options for eah language loaded into

the StarTool. Unfortunately, this senario is not preferred sine the StarTool will

run out of window spae as more languages are added to the StarTool. Requiring

the programmer to sroll through panels of elision options to �nd what they are

looking for would be ounter-intuitive.

The elision ategories provided might also be problemati to the user. We

reated the generi label Compilation Units to represent the C and Tl File and

the Ada pakage. However, an Ada user might feel that a pakage does not belong

in the same ategory as a �le. The Ada task onstrut also did not seem to �t in

with any of the other language's elision options, so we left Task as an elision option

by itself, providing more language-spei� information in the elision window than

we'd prefer.

IV.C.2 Star Diagram Displays

A multi-language StarTool user is able to retrieve the language assoiated

with an on-sreen node by viewing the �le or pakage that the node derives from,

assuming the user has not elided that information from the view. A possible

improvement to the StarTool would be to add olor information to indiate the

language assoiated with an AST Node; the use of olor might aid in restruturing

by helping to loate ross-language dependenies. The user also has the option

of double-liking on a node to bring up the assoiated soure ode to disover

the AST's language, but this operation may beome tedious. Double-liking on

a staked node will bring up a listing of all the soure �les, displaying the nodes'

language information. Node display ould be further di�erentiated by using a

separate olor or box demaration for identi�ers that are used aross multiple

languages. We would also like to give the StarTool user the option of viewing the

Star Diagram with generi labels. For example, all funtion alls would be labeled

funtion. A Star Diagram with generi labels might help the user to simplify their

restruturing proess by staking hosen identi�ers with a ommon generi label.

37

Figure IV.1: The desired "ustomizable staking" options, similar to the elision

window.

The single-language Star Diagrams stak nodes that are onsidered sim-

ilar, but extending the similarity notion to multiple-languages is diÆult beause

it an be interpreted in numerous ways. For example, onsider a C strut and an

Ada pakage; de�ning what makes them similar is diÆult. One programmer might

feel they are similar if the data strutures have members with the same name; an-

other programmer might feel they are similar if the strutures are the same size.

And enumerated types from two di�erent languages might not be syntatially

onsidered the same onstrut.

We onsidered providing the StarTool user the option to ustomize their

own staking, similar to the method used to elide nodes from the view. Our

proposed interfae an be seen in Figure IV.1. The programmer ould seletively

hoose whih kinds of nodes are staked and whih aren't, providing more ontrol

over the interfae. For example, the user ould stak all loop statements and all

ase statements; they ould also stak all of the nodes within a single language,

suh as every Tl/Tk node. The ode that deides stakability of Star Nodes is

shown in Figure IV.2. The algorithm used for determining whether to stak two

nodes heks a ontext label for the identi�ers to see if they are the same. To

provide the apability to ustomize staking, we would have had to modify the

Adaptation Layer to provide a path to pass staking information through.

38

stati int

stakable(onst SyntaxUnit first,

onst SyntaxUnit first_ontext,

onst SyntaxUnit seond,

onst SyntaxUnit seond_ontext)

{

return (ontext_label(first, first_ontext) ==

ontext_label(seond, seond_ontext));

}

Figure IV.2: The funtion that deides whether nodes are stakable for the display.

IV.D Reliane on 3rd-party tools

The interfae used to implement the Ada adaptation layer proved prob-

lemati for future use of the tool. The Gnat adaptation layer implementation is

atually based upon Gnat's Ada AST de�nitions. When the Gnat StarTool was

originally reated, the ode used version 3.10 of the Gnat soure ode. During the

ourse of our projet, we desired to migrate to Gnat version 3.12 sine the new

version inluded Windows DLL apabilities. Unfortunately, the Ada adaptation

layer used some identi�ers from Gnat's version 3.10 soure ode that do not exist

in Gnat version 3.12. Migrating to the new Gnat version would have required

modifying the Ada adaptation layer, so we deided to use the older version of

Gnat for the implementation of the multi-language tool. This exempli�es one of

the problems assoiated with diretly using a 3rd-party implementation. Had an

interfae been written on-top of the Gnat AST representation, we might have been

able to more easily swith to later versions of the Gnat tool. An interesting task

would be to verify that Hayes's Adaptation Layer an still be used with the new

Gnat Soure Code.

39

IV.E Performane

The StarTool performane overhead that is inurred by our multi-language

extensions ours during three phases: 1) When a soure �le is proessed, 2) When

a Star Diagram is built and the tool does language lookups on SyntaxUnits, and 3)

When a multi-language StarTool is being built and dummy identi�ers are reated

for ross-language searhing. To benhmark the multi-language StarTool perfor-

mane overhead, we alulated the amount of time required for these operations

using the single-language tools and the amount of time to do the same operations

in the multi-language tool. Our testing platform was a 200 MHz Sun UltraSpar 2

with 192 megabytes of RAM. The GNU g++ and Gnat Ada ompilers were used

by the StarTool for ompiling the C and Ada soures. We loaded a set of 100 �les

from C, Tl/Tk, and Ada soures; eah test was run 5 times with the high and

low results dropped and the other sores averaged.

1. Loading soure �les into the StarTool. The testing showed that the amount

of time to load the soure �les into the multi-language tool required less than

4.7% more time than the total time of loading the C soures into Polaris, the

Tl/Tk soures into Twinkle, and Ada soures into Firey. Sine our run-

time numbers do not inlude the amount of time to exit the individual tools

and re-start the other tools, it is atually faster to use the multi-language

tool to load soure �les from multiple languages.

2. Building a Star Diagram without ross-language onversions. To benhmark

the slow-down for simply building a Star Diagram, we loaded a series of �les

from a single language into the multi-language StarTool to prevent it from

doing SyntaxUnit onversions. We reated Star Diagrams for identi�ers with

the same name as a hosen identi�er and alulated the time from seleting

Display on the main StarTool sreen until the Star Diagram appeared on

the sreen. The multi-language tool required less than 11.5% more time to

display the ombined Star Diagram than the total time to use the single-

40

language tools individually. We again did not inlude the time to exit and

re-start the tools. Depending on the size of the projet, it may be faster

to use the multi-language StarTool to load multi-language soures; in ase

of an extremely large program, the user might experiene at most a 11.5%

slowdown in loading soures. We feel that the slight performane derease

is reasonable onsidering the value of using the multi-language tool. Im-

provements in the Standard Template Libary map implementation or the

substition of a di�erent hash table interfae are possible optimizations to

improve this performane.

3. Building a Star Diagram with ross-language onversions. The last area

where the multi-language StarTool a�ets performane is with ross-language

onversion. We again loaded the same soures but this time loaded all of the

soures from all of the languages at one. We built star diagrams inluding

the same name and the same identi�er and alulated the time to display

the diagrams; the multi-language StarTool required at most 15.1% more time

to alulate and display the Star Diagram than using eah of the tools indi-

vidually. We onlude that the extra 3.6% time slowdown is a good result,

onsidering the addition of ross-language searhing. Sine program restru-

turing is time onsuming, and the extra time to build a multi-language Star-

Tool does not require user interation, many programmers ould onlude

that the extra time is outweighted by the multi-language bene�ts.

Chapter V

Conlusion

V.A StarTool Programs

The StarTool at UCSD now has seven members: the original C-only

StarTool, Elbereth for Java, Hayes's retargetable single-language implementations

for C, Tl/Tk, and Ada, and the multi-language C-Tl/Tk and C-Tl/Tk-Ada

StarTools.

V.B Contributions of the Researh

A method for ombining retargetable single-language analysis

tools into multiple-language analysis tools. We have developed a method for

easily and quikly reating multi-language analysis tools from retargetable single-

language tools using a multi-level adaptor approah with a mediator. With our new

approah, a programmer that reates a StarTool for a new programming language

will be able to add its funtionality into the multi-language tool with minimal

e�ort. A ouple weeks work and less than 1000 lines of soure ode should suÆe

to add a new language from a single-language StarTool into our multi-language

framework.

The method required to add a new language to the multi-language tool

41

42

(after an adaptation layer has been reated for the new language) is as follows:

1. Modify the hash table de�nitions to support the assoiation of identi�ers

with the newly added language.

2. Customize the mediator's elision options to support onstruts from the

newly added language and the pre-existing supported languages. This might

require adding a new elision ategory to the user interfae, ombining new

ategories with existing ategories, or the renaming of ategories to improve

the usability of the interfae.

3. Modify the 8 funtions within the mediator that return SyntaxUnits to as-

soiate SyntaxUnits returned by the new adaptation layer with the newly

supported language.

4. Modify the multi-language mediator to pass information to the new adapta-

tion layer upon enountering a SyntaxUnit intended for the new language.

5. Add funtionality to reate a dummy node for the new language for ross-

language searhing. This will require implementing the make dummy, re-

move dummy, and retrieve name sope kind funtion, widening the adapta-

tion layer interfae.

Multi-Language StarTool Implementations. We have developed

versions of the StarTool for C-Tl/Tk-Ada and C-Tl/Tk.

Insights into multi-language program analysis. Through the use

of our Multi-Language StarTool, we have disovered several issues with how pro-

grammers want to view information that omes from multiple soure languages.

Information an be displayed in a language-spei� form or in a manner that gen-

eralizes aross multiple languages. Tools apable of performing multi-language

analsyis need to use a ommon interfae with a mehanism to retrieve language-

spei� information hidden behind the interfae. We have shown that a mediator

ombined with an adaptation layer is one e�etive solution.

43

V.C Future Work

We would like to test the multi-language interfae on a large-sale om-

merial projet. We are in the proess of identifying a suitable andidate to help

us with using the multi-language tool on a long-term basis. Raytheon is a likely

andidate to assist us with using our multi-language extensions to restruture a

large, multi-language software program.

The opportunity to provide ustomizable staking to the user would be

a great addition to the StarTool. More researh needs to be done whether this

would require modi�ation of the adaptation layer or not. Even if it does, this

would still be a worthwhile hange. Sine the adaptation layer wasn't originally

intended to be multi-language ready, this onlusion wouldn't diminish the value

of the adaptation layer and Hayes's retargetability approah.

We would like to add support for additional languages to the multi-

language StarTool. The languages C, Tl/Tk, Ada are all imperative programming

languages. The similarity among the languages supported by the StarTool might

have simpli�ed our multi-language extensions, shadowing some language nuanes

we might have onsidered.

We plan to make our work available at the UCSD Software Evolution

Laboratory web page, http://www-se.usd.edu/users/wgg/swevolution.html. Bi-

naries for both UNIX and Windows will be available for download.

Bibliography

[ANSI, 1997℄ Programming languages - C++ (1997). C++ Standard, ISO/IEC

14882:1998.

[Bowdidge, 1995℄ Bowdidge, R.W. (1995). Supporting the Restruturing of Data

Abstrations through Manipulation of a Program Visualization. PhD thesis,

University of California, San Diego, Department of Computer Siene and

Engineering. Tehnial Report CS95-457.

[Bowdidge and Griswold, 1994℄ Bowdidge, R.W. and Griswold, W.G. (1994). Au-

tomated support for enapsulating abstrat data types. In ACM SIGSOFT

'94 Symposium on the Foundations of Software Engineering, pages 97-9110.

[Cabaniss, 1997℄ Cabniss, J.L. (1997). Lessons Learned from Applying HCI Teh-

niques to the Redesign of a User Interfae. Masters Thesis, University of Cal-

ifornia, San Diego, Department of Computer Siene and Engineering. Teh-

nial Report CS97-548.

[Chen, 1996℄ Chen, M.I. (1996) A Tool for Planning the Restruturing of Data

Abstrations in Large Systems. Masters Thesis, University of California, San

Diego, Department of Computer Siene and Engineering. Tehnial Report

CS96-472.

[Cormen, et al., 1997℄ Cormen, T.H., Leiserson, C.E., and Rivest, R.L. (1997) In-

trodution to Algorithms. The MIT Press, Cambridge, Massahusetts, 1997.

[Dewar, 1994℄ Dewar, R.B.K. (1994) The GNAT Model of Compilation. In Pro-

eedings of Tri-Ada '94, pp. 58-70, November, 1994.

[Griswold et al., 1996℄ Griswold, W.G., Chen, M.I., Bowdidge, R.W., and Mor-

genthaler, J.D. (1996). Tool Support for Planning the Restruturing of Data

Abstrations in Large Systems. ACM SIGSOFT '96 Symposium on the Foun-

dations of Software Engineering (FSE-4), San Franiso, Otober, 1996.

[Griswold and Atkinson, 1995℄ Griswold, W.G., and Atkinson, D.C. (1995). Man-

aging the design trade-o�s for a program understanding and transformation

tool. Journal of Systems and Software, 30(1-2):99-116, July-August 1995.

44

45

[Hayes, 1998℄ Hayes, J.J. (1998). A Method for Adapting a Program Analysis Tool

to Multiple Soure Languages. Masters Thesis, University of California, San

Diego, Department of Computer Siene and Engineering. Tehnial Report

CS98-600.

[Korman and Griswold, 1998℄ Korman, W., and Griswold, W.G. (1998) Elbereth:

Tool Support for Refatoring Java Programs. Tehnial Report CS98-576, De-

partment of Computer Siene and Engineering, University of California, San

Diego, April 1998.

[Linos, 1995℄ Linos, P.K. (1995) PolyCARE: A Tool for Understanding and Re-

engineering Multi-language Program Integrations. In First IEEE International

Conferene on Engineering of Complex Computer Systems, Nov. 6-10, 1995,

pp. 338-341.

[Linos et al., 1993℄ Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P.,

and Tulula, P. (1993) Failitating the Comprehension of C Programs: An

Experimental Study. In Proeedings of the Seond IEEE Workshop on Program

Comprehension, Capri, Italy, July 8-9, 1993, pp. 55-63.

[Morganthaler and Griswold, 1995℄ Morganthaler, J.D., and Griswold, W.G.

(1995) Program Analysis for Pratial Program Restruturing. In Proeedings

of the ICSE-17 Workshop on Program Transformation for Software Evolution,

Seattle, WA, pp. 75-80, April 1995.

[Zeigler, 1995℄ Zeigler, S.P. (1995) Comparing Development Costs of C and Ada.

Online.

