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Introduction
Cholesterol and calcium play crucial signaling roles in the 
brain, influencing various cellular processes and functions. 
Cholesterol is a major structural component of neuronal cel-
lular membranes where it influences rigidity and fluidity to 
impact and tune an array of neuronal events including synaptic 
formation,1,2 synaptic transmission,3 and ion channel func-
tion.4 Additionally, cholesterol is a key component of myelin, 
the fatty substance that wraps around nerve fibers, providing 
insulation and facilitating the rapid transmission of nerve 
impulses.5-7 Like cholesterol, calcium ions are crucial for neu-
ronal signaling. They serve as second messengers in many 
intracellular signaling pathways with changes in intracellular 
calcium levels regulating processes such as neurotransmitter 
release, synaptic plasticity, and gene expression in neurons.8-10 
Given the importance of both cholesterol and calcium for reg-
ulating neurological activity in health, it is perhaps not surpris-
ing that dysfunctional cholesterol11,12 and calcium levels13-15 
contributes to various brain disorders.

This text discusses the role of cholesterol in the brain, par-
ticularly its importance in neuronal function and the impact of 
disruptions in cholesterol production or transport on the cen-
tral nervous system and neurodegeneration. The narrative pri-
marily focuses on the role of the Niemann-Pick type C (NPC) 
protein, specifically NPC1, in lysosomal cholesterol transport 
and provides insights and interpretations of published work16-

18 investigating the molecular link(s) between loss of lysosomal 
NPC1 function, remodeling of membrane contact sites, and 
cytotoxic alterations in calcium signaling pathways leading to 

neurodegeneration. We discuss the molecular mechanisms 
governing cholesterol transport, and how alterations in intra-
cellular cholesterol homeostasis initiate cellular programs that 
influence calcium signaling at organelle membrane contact 
sites to promote neurotoxicity. This work underscores the inti-
mate relationship between cholesterol and calcium signaling, 
and highlights opportunities for potential therapeutic avenues.

Cholesterol and Its Links to Neurodegeneration
Cholesterol is enriched in the brain and plays essential biophys-
ical and signaling roles affecting ion permeability, cellular sign-
aling, and transcription.19 Neurons obtain cholesterol from two 
sources: de novo synthesis in the Endoplasmic Reticulum (ER) 
and uptake of externally derived cholesterol-conjugated lipo-
proteins. Emerging evidence strongly supports a link between 
altered cholesterol homeostasis and neurodegeneration, with 
diseases such as Alzheimer’s disease (AD), Parkinson’s disease 
(PD), and NPC disease (NPC)20 reporting increases/accumula-
tion of cholesterol and it’s metabolites, while Huntington’s  
disease (HD) studies have reported deficits in cholesterol 
metabolism that correlate with disease progression.21,22 
Collectively, these reports emphasize that deviations from criti-
cal cholesterol setpoints may favor neurodegeneration. 
Supporting a role for elevated/accumulation of cholesterol in 
neurodegeneration, statins, a class of cholesterol-lowering drugs, 
have been investigated for their potential neuroprotective effects 
with studies in Alzheimer’s and NPC disease models demon-
strating that statins reduce the risk of neurodegenerative dis-
eases by modulating cholesterol metabolism and reducing 
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neuroinflammation.23-25 However, the use of statins in neurode-
generative diseases remains a topic of debate, as conflicting 
results have been reported in clinical trials.26,27 Further, for neu-
rodegenerative disorders that have deficits in cholesterol metab-
olism, statins may be expected to further reduce cholesterol 
levels and compound disease phenotypes. Thus, further research 
is needed to understanding the intricate mechanisms that link 
cholesterol to neurodegeneration to develop cholesterol-modi-
fying therapeutic strategies to mitigate the progression of these 
devastating disorders.

The NPC proteins, specifically NPC1, play a crucial role in 
transporting cholesterol across the endo/lysosomal membrane 
prior to its transfer to the ER (Figure 1). Loss of function dis-
ease mutations in NPC1 lead to reduced cholesterol efflux 
from the lysosome and parallel cholesterol accumulation in the 
lysosome lumen (Figure 1, right) and cause NPC disease, a 
progressive neurodegenerative disorder with severe and early 
onset symptoms. Neurologically, altered cholesterol signaling 
in NPC patient neurons gives rise to impaired motor functions, 

dementia, and seizures. Despite clear neuropathological conse-
quences for cholesterol dysregulation in NPC disease, the 
mechanisms through which cholesterol accumulation contrib-
utes to the neuropathology of NPC disease are poorly 
understood.

NPC1 Cholesterol Transporter Influences Organelle 
Membrane Contacts
A key mechanism through which the lysosome communicates 
with other organelles is through physical membrane contacts. 
These intracellular synapses are intimate sites (~10-30 nm) of 
membrane contact between two or more organelles28-31 that are 
portals of information transfer akin to intracellular synapses 
(Figures 1 and 2). Unlike synapses, which use neurotransmitters, 
membrane contact sites use lipids and calcium to communicate 
information. A key signaling lipid that is transferred at endo-
plasmic reticulum (ER)– lysosome membrane contacts is choles-
terol. NPC1-mediated cholesterol transport is a crucial rheostat 
that influences virtually every organelle through remodeling of 

Figure 1. Role of NPC1 in cholesterol export from the lysosome. On the left, in a healthy neuron, the process of cholesterol transfer from external 

sources is outlined. Specifically, (1) lipoprotein-derived cholesterol binds to the NPC2 protein within the lysosome lumen, and (2) NPC2-bound cholesterol 

is then transferred to NPC1, facilitating the transport of cholesterol across the lysosomal membrane. (3) Further steps involve the transfer of cholesterol 

from the lysosome to the endoplasmic reticulum (ER) through sterol transfer proteins at lysosome-ER contact sites. (4) Cholesterol within the ER ensures 

the retention of the SREBP-SCAP-INSIG complex within the ER. On the right, the consequences of NPC1 loss of function or disease mutations are 

depicted. (5) NPC1 disease mutations lead to a decrease in the amount of functional NPC1 in lysosomal membranes, resulting in reduced cholesterol 

transport to the cytoplasmic side of the lysosomal membrane and the accumulation of cholesterol within the lysosome. (6) Disruption in cholesterol 

transport at ER-lysosome contacts leads to decreased ER cholesterol and the uncoupling of Insig from SREBP-SCAP. Consequently, the SREBP-SCAP 

complex is released from the ER, allowing it to be transported to the Golgi apparatus for proteolytic cleavage before being released to the nucleus, where 

it enhances the expression of cholesterol, phosphoinositide, and calcium handling proteins. (7) Increased production of PI(4)P33 on lysosome membranes 

recruits OSBP32 to ER– lysosome contacts for the transfer of cholesterol to lysosomal membranes. (8) Increased cholesterol on lysosomal membranes 

ultimately leads to the hyperactivation of mTORC132,40.
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membrane contact sites17,18,32,33 and hyperactivation of 
mTORC1 (Figure 1). Recent studies have demonstrated that 
NPC1 loss-of-function remodels ER-lysosome, ER-Golgi, and 
ER-mitochondria membrane contact sites (MCSs). However, 
there was an absence of information testing if it could also regu-
late ER–plasma membrane (PM) contacts. This is important 
because (i) 40 to 90% of cellular cholesterol is in the PM,34,35 
therefore disruption of NPC1-mediated cholesterol would be 
expected to modify PM identity, and (ii) ER–PM contact sites 
are generated and regulated by phosphoinositides and Ca2+, two 
crucial signals that if grossly perturbed can cause neurodegenera-
tion. One of the key regulators of somatic ER-PM MCSs in 
neurons is the voltage-gated potassium channel 2.1 (KV2.1). 
This channel not only regulates excitability but also generates 
ER-PM junctions through an association with ER-localized 
VAP proteins36 (Figure 2). KV2 channels also interact with Ca2+ 
signaling proteins like voltage-gated L-type Ca2+ channels 
(CaV1), which are essential for neuronal excitability and gene 
expression.37 However, until recently there was a lack of evidence 
linking lysosomal cholesterol with regulation of ion channels at 
ER–PM contacts in neurons. In the study by Casas et al,16 dis-
ruption of NPC1 function or the presence of disease mutations 
was observed to elevate ER–PM MCSs, resulting in increased 
calcium entry (Figure 2, right). The underlying molecular mech-
anism driving this phenomenon involves CDK5-dependent 
phosphorylation of KV2.1. This phosphorylation event enhances 
KV2.1–VAP interactions, promoting a higher frequency of ER–
PM membrane contacts. A secondary consequence of elevated 
KV2.1–membrane contact site formation is recruitment and 

clustering of voltage-gated L-type calcium 1.2 (CaV1.2) chan-
nels at ER–PM contacts. Clustering of CaV1.2 channels increases 
their opportunity for physical interactions with neighboring 
CaV1.2 channels thereby enhancing the probability of coopera-
tive gating38,39 leading to amplified calcium entry into neurons. 
Therefore, a cascade initiated by NPC1 loss of function reshapes 
the distribution and activity of CaV1.2 channels at ER–PM cal-
cium signaling nanodomains, leading to augmented calcium 
entry and elevated mitochondrial calcium levels, ultimately 
resulting in neuronal death.

Calcium: Friend or Foe in NPC
The mechanism(s) leading to neurodegeneration in NPC 
disease is/are unknown. The positioning of lysosomes as cru-
cial cellular signaling platforms suggests that more than one 
molecular mechanism may contribute to neuronal loss in 
NPC. Supporting complex disease pathogenesis, research 
has shown that various signaling pathways such as 
mTORC1,40 autophagy,41 mitochondrial dysfunction,42 and 
STING signaling43 are differentially regulated in NPC dis-
ease. Additionally, numerous calcium signaling pathways, 
spanning multiple organelles and membrane contact sites, 
are altered following NPC1 loss of function.16-18,44-46 Casas 
et al, adds to the list of reports documenting altered calcium 
signaling in NPC and details the molecular mechanisms 
linking enhanced neuronal ER–PM contact site formation to 
augmented calcium influx, elevated mitochondrial calcium 
levels, ultimately leading to neuronal death. Such a model 
supports the calcium hypothesis of neurodegeneration which 

Figure 2. Loss of NPC1 function alters membrane contact sites to promote calcium cytotoxicity. On the left, in a healthy neuron, (1) Endoplasmic 

reticulum–plasma membrane contacts (ER–PM contacts) are regions where two organelle membranes come within approximately 20 nm of each other. 

(2) ER–PM contacts can be initiated by the phosphorylation of KV2.1, facilitating interactions with the ER protein, VAP. (3) Physical interactions among 

KV2.1, CaV1.2, and RyR result in the creation of calcium nanodomains at ER–PM contacts. (4) Similarly, at ER–mitochondrial contacts, interactions 

between IP3R, GRP75, and VDAC1 lead to calcium transfer from the ER to mitochondria. On the right, following the loss of NPC1 function, (5) CDK5 

drives phosphorylation of KV2.1, increasing its interactions with VAP and promoting enhanced clustering to CaV1.2 and RyR. (6) This process results in 

elevated calcium entry into neurons. (7) Simultaneously, increased interactions between IP3R and VDAC1 promote excess calcium entry from the ER to 

mitochondria. (8) This leads to increased mitochondrial calcium, ultimately promoting neuronal death in vitro.
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posits that elevations in intracellular/organellar calcium are 
toxic for cells. However, such a model is likely an oversimpli-
fication and it is entirely possible that initial alterations in 
Ca2+ gradients across membrane contact sites represent cel-
lular programs attempting to redistribute cholesterol rapidly 
and efficiently to cellular membranes to restore cholesterol 
homeostasis.46-48 Critically, unless new homeostatic choles-
terol set points are found quickly, these gross alterations in 
Ca2+ gradients could provide a substrate for neurodegenera-
tion.17,18 Supporting such a hypothesis, we and others have 
shown that targeting Ca2+ handling proteins can reduce cel-
lular toxicity in models of NPC disease.16,17,45

Treating the Origin or the Consequences of a 
Neurodegenerative Disorder
The most common NPC disease mutation is the substitution of 
an isoleucine for a threonine at the 1061 position (NPC1I1061T). 
This devastating amino acid exchange results in NPC1 mis-
folding and subsequent proteasomal degradation which results 
in approximately 90% functional reduction at the lysosomal 
limiting membrane. As with any genetic disorder debates center 
around the importance of treating the origin of the disease (i.e. 
increase the amount of functional NPC1 in the lysosomal 
membrane), the immediate consequence (i.e. cholesterol accu-
mulation in the lysosome) or treating the downstream conse-
quences of the mutation (i.e. target the signaling pathways 
responsible for toxicity). To increase the functional amount of 
NPC1 on lysosomal limiting membranes gene therapy remains 
an attractive option despite the regulatory issues and concerns 
about the ability to faithfully package and deliver this large pro-
tein to its desired locations. Other approaches to increase the 
functional amount of NPC1 include targeting its degradation 
and increasing the environment of the ER to enhance protein 
folding.45 There has been significant research attention around 
attempting to correct the cholesterol accumulation phenotypes 
in NPC disease using 2-Hydroxypropyl-β-cyclodextrin (i.e. 
HP-β-CD or VTS-270)49,50 to transport unesterified choles-
terol across the lysosomal membrane into the cytosol thereby 
reducing its accumulation in the endo-lysosomes independently 
of NPC1 and NPC2 proteins. Casas et al demonstrate that the 
targeting CDK5 or KV2.1–CaV1.2 interactions using pharma-
cological agents or synthetic peptides, respectively, holds the 
potential to successfully alleviate all subsequent cellular pheno-
types. This includes the restoration of mitochondrial calcium 
levels and the mitigation of neurotoxicity observed in isolated 
neurons. These findings suggest a promising therapeutic avenue 
for addressing NPC1 disease. The hypothesis gains further sup-
port from data obtained in NPC animal models, revealing that 
targeting CDK5 has the capacity to impede disease progres-
sion.51 Additionally, insights from models of ischemic stroke 
and Alzheimer’s disease indicate that the targeting of KV2 
channel clustering is effective in slowing down the progression 
of disease pathology.52,53 This collective evidence underscores 

the potential therapeutic significance of modulating CDK5 
and/or KV2.1–CaV1.2 interactions in addressing the cellular 
manifestations of neurodegeneration.

Conclusion and Perspectives
In conclusion, the text presents findings that demonstrate the 
link between NPC1 function, cholesterol transport, and reor-
ganization of calcium handling proteins at membrane contact 
sites. It emphasizes the role of KV2.1 and CaV1 channels in this 
process and the potential for therapeutic interventions in NPC 
disease. The study suggests that disruptions in calcium signal-
ing contribute to neurodegeneration in NPC disease and high-
lights the importance of understanding these mechanisms for 
potential treatments.
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