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ABSTRACT: We report a catalytic C−O coupling/Claisen
cascade reaction enabled by interception of vinyl carbocations
with allyl ethers. The reaction utilizes commercially available
borate salts as catalysts and is effective at constructing sterically
hindered C−C bonds. The reaction mechanism is studied
experimentally and computationally to support a charge-accel-
erated [3,3] rearrangement of a silyloxonium cation. Our reaction
is also applied to the highly stereoselective synthesis of fully substituted vinyl ethers.

Since its discovery 1912, the Claisen rearrangement has
earned considerable attention due to its synthetic utility

and intriguing mechanism.1,2 One of the challenges associated
with the classical Claisen rearrangement is the synthesis of allyl
vinyl ether substrates. Enolate alkylation can be problematic
due to unselective O- vs. C-alkylation, and potential E/Z olefin
isomer products, rendering selective substrate synthesis
challenging.3 Other strategies for preparation of allyl vinyl
ether substrates include alkyne hydroalkoxylation,4 carbonyl
alkenylation,5,6 olefin isomerization,7,8 leaving group elimi-
nation,9 C−O cross coupling,10 and metal-catalyzed vinyl ether
exchange.11 Methods for the in situ generation and subsequent
direct [3,3] rearrangement of allyl vinyl ethers eliminates the
need for their isolation (which can be challenging due to their
sensitivity to chromatography),12 while offering an attractive
strategy to rapidly generate complexity from simple reaction
partners. Such an approach has been applied to several
transition metal-catalyzed reactions (Figure 1A), such as
Buchwald’s Cu-catalyzed C(sp2)−O cross coupling of vinyl
iodides with allyl alcohols.13 Other approaches to intermo-
lecular Claisen rearrangements include Au-catalyzed hydro-
alkoxylation of alkynes,14 Pd-catalyzed vinyl ether exchange,15

Rh-catalyzed elimination,16 and O−H insertion of diazo
compounds.17 While these reports demonstrate the synthetic
utility of intermolecular Claisen cascade reactions, they require
transition metal catalysts and high reaction temperatures
(>100 °C) to affect the thermal [3,3] rearrangement of
unactivated substrates.

An alternative approach stems from Bellus and co-workers’
report that highly electrophilic dichloroketenes can be trapped
by allyl ethers to form zwitterionic intermediates that undergo
fast [3,3] sigmatropic rearrangements (Figure 1B).18 MacMil-
lan and Nubbemeyer have expanded on this work by
demonstrating that simpler acyl chlorides could similarly
engage allylamines via Lewis acid catalysis, wherein a charged

intermediate undergoes rearrangement at room temperature
(Figure 1B).19,20 This aza-Claisen approach has been expanded
to Lewis acid activation of allenoates21 and additions to
ketiminium ions,22,23 all of which have several attractive
features including (1) the ability to couple two components in
an intermolecular Claisen cascade reaction and (2) an
acceleration effect imparted by charge, enabling rearrangement
to occur at significantly lower temperatures (e.g., bracketed
intermediate, Figure 1B). However, these aza-Claisen-type
reactions are limited in scope, precluding their application to
products analogous to those accessed by classical aliphatic
Claisen rearrangements, which have found significant utility in
synthetic chemistry.48

Inspired by the ability to generate allyl vinyl ethers through
transition metal-catalyzed cross coupling reactions and the
documented accelerating effects of charge in sigmatropic
rearrangements,23−25 we envisioned a strategy that could
merge the two in a transition metal-free catalytic platform.
Drawing on previous work,26 we hypothesized that generation
of a high energy vinyl carbocation and subsequent reaction
with weakly nucleophilic allyl ethers would generate a vinyl
oxonium cation poised to undergo a charge-accelerated [3,3]
sigmatropic rearrangement (Figure 1C). Utilizing Li+ weakly
coordinating anion (WCA) salts to ionize vinyl sulfonates,27

we began exploring the reactions of allyl ethers with vinyl
tosylates in the presence of commercially available [Ph3C]+[B-
(C6F5)4]−, which generates Lewis acidic [Li]+[B(C6F5)4]−
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upon reaction with LiHMDS. After extensive optimization (see
Supporting Information), we found that 10 mol % [Ph3C]+[B-
(C6F5)4]− catalyzed the reaction of trimethylsilyl (TMS) allyl
ethers (2 equiv) with vinyl tosylates (1) in the presence of
stoichiometric LiHMDS, furnishing α-allylated ketones (2)
after 2 h of heating at 80 °C (Figure 2). In control reactions, it
was validated that the presence of both catalyst and LiHMDS
was crucial for productive chemistry (see Supporting
Information).

To explore the scope of this reaction, a range of vinyl
tosylates were prepared and subjected to the optimized
reaction conditions. We were pleased to find that a range of
sterically congested products could be accessed in moderate-
to-good yields. (Figure 2). Lewis basic heterocyclic substrates
containing piperidine (2d), tetrahydropyran (2e), and
dihydrobenzofuran (2f) groups were compatible with these
Lewis acidic conditions, delivering allylated products in 50−
71% yield. Both electron-rich (2h and 2k) and -deficient (2j,
2m, 2o, and 2q) vinyl tosylates led to the desired products in
moderate-to-good yields. Notably, aryl bromide 2m and iodide
2o, which can be labile under many transition metal-catalyzed
processes, were also well-tolerated. Diaryl vinyl tosylates could
also undergo the tandem C−O coupling/Claisen rearrange-
ment reaction to form products 2f−2j in good yields.
However, through optimization it was found that better yields
were obtained with diallyl ethers instead of TMS allyl ethers
with this substrate class (see Supporting Information).
Variation of the alkyl substituents was demonstrated, wherein
sterically congested isopropyl product 2i could be accessed
with slightly diminished yield. The allyl ether component could
also be varied to selectively produce branched (2p−2s) or

cyclohexenylated products (2t) in up to 81% yield by
employing the requisite allyl ether. Given the use of strong
base in this chemistry, nonfully substituted vinyl tosylate
substrates were incompatible. Moreover, our scope studies
elucidated that stabilizing aromatic groups are necessary for
vinyl cation generation using [Li]+[B(C6F5)4]−.27

Following our substrate scope studies, we carried out
experiments to probe the mechanism. Vinyl sulfonate
ionization by Li-WCA salts has been demonstrated previously
by our group as an effective strategy to catalytically generate
vinyl carbocations.27 Moreover, we observed in the present
study that running the reaction in benzene solvent resulted in
significant Friedel−Crafts reactivity to form 3, which is a
known reaction pathway of vinyl carbocations (Figure 3A).28

We propose that in non-nucleophilic solvents such as
trifluorotoluene, weakly nucleophilic silyl ethers are capable of
trapping electrophilic vinyl cations. While an alternative
reaction pathway could involve Lewis acid activation of the
allyl ether followed by nucleophilic attack from an enol species,
no reaction with vinyl ether 4 was observed under the reaction
conditions (Figure 3B). We next wanted to address our
hypothesis that an initial cationic vinyl silyloxonium inter-
mediate was undergoing a charge accelerated Claisen
rearrangement (Figure 1C). While the reactions in this study

Figure 1. Strategies toward Claisen-type rearrangements. (A)
Traditional methods enabled by transition metal catalysis. (B)
Selected examples of charge accelerated Claisen rearrangements
facilitated by electrophile trapping. (C) This work: a cationic Claisen
rearrangement via vinyl cations.

Figure 2. Scope of studies of catalytic Claisen reaction. Reactions
were run on a 0.2 mmol scale, and reported yields are isolated yields.
aReaction run at 100 °C for 24 h and 0.05 M with 20 mol % catalyst
and 1.5 equiv LiHMDS. b0.05 M, 3 equiv LiHMDS. cDiallyl ether (2
equiv) used instead of silyl ether. d95 °C. e5 equiv silyl ether.
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are heated to 80 °C, we hypothesize this temperature is
required for vinyl cation formation.

Furthermore, the proposed cationic [3,3] rearrangement is
likely to be facile at lower temperatures. To probe these
hypotheses, we prepared allyl vinyl ether 5 and found that the
neutral Claisen rearrangement is indeed sluggish at 80 °C
(<5% yield after 1 h); however, the addition of catalytic
[SiEt3]+[B(C6F5)4]− resulted in rapid conversion to the
Claisen product (2a) at room temperature in 30 min (Figure
3C). These findings are consistent with our mechanistic
proposal and reported accelerating effects of Claisen rearrange-
ments induced by positive charge.23−25 Finally, deuterated allyl
TMS ether 6 furnished product 2a-D2 with no sign of
deuterium incorporation at the allylic position by NMR,
consistent with a concerted [3,3] rearrangement (Figure 3D).

The reaction pathway was further studied utilizing density
functional theory (DFT) calculations, wherein the proposed
cationic rearrangement was found to possess a significantly
lower barrier (TS1’, ΔG‡ = 13.6 kcal/mol) compared to the
neutral pathway (TS1, ΔG‡ = 28.9 kcal/mol) (Supporting
Information, Figure S2). Additionally, CM5 calculations were
conducted on TS1 and TS1’ to compare the charge
delocalization in the allyl substructures in the transition states
(see Supporting Information, Figure S1). The carbocation in
the allyl substructure of TS1’ is found to be more delocalized,
and the lower kinetic barrier is attributed to significant

destabilization of the vinyl ether INT1’ relative to its transition
state (TS1’). Furthermore, intrinsic reaction coordinate (IRC)
calculations predicted the concerted [3,3] rearrangement with
oxonium INT1’, consistent with the isotopic labeling experi-
ments.

Based on these results, our proposed mechanism commen-
ces with in situ formation of Lewis acidic [Li]+[B(C6F5)4]−

(Figure 4).27 Ionization of vinyl tosylate (1) generates a vinyl

carbocation (7),29 which is trapped by the allyl ether
nucleophile to afford a silyloxonium (INT1’) that is poised
to undergo a cationic [3,3] sigmatropic rearrangement.
Desilylation by LiHMDS produces N(TMS)3 (observed by
GC) and ketone product 2, while also regenerating catalytic
[Li]+[B(C6F5)4]−.

During our scope studies, we found that prenyl ether SI-1
generated low yields of the expected [3,3] product SI-2,
instead forming α-prenylated SI-3 as a major product (see
Supporting Information, Figure S2). While deuterated allyl
ether 6 demonstrated clean conversion to a single observable
isotopomer, this result was unexpected and suggested a
competing [1,3] rearrangement could be operative. Ether SI-
1 was computed to undergo a stepwise rearrangement
involving fragmentation and subsequent recapture to access
SI-2, perhaps due to increased stabilization of the prenyl
carbocation. The energy barrier for this (3,3) rearrangement
appears to still be favored relative to the barrier of a concerted
[1,3] rearrangement; however, the (3,3) intermediate INT3a is
significantly less stable than [1,3] intermediate INT2a’ given
its vicinal all-carbon quaternary centers. Based on these
energies, the (3,3) rearrangement can be reversible if
desilylation of INT3a by LiHMDS is slow. In fact, we found
experimentally that the product distribution of the reaction
using ether SI-1 was dependent on LiHMDS concentration,
wherein higher equivalents resulted in significantly increased
amounts of the (3,3) product (1:4 ratio SI-2-to-SI-3) (see
Supporting Information, Figure S2). Based on these exper-
imental and computational results, the observed preference for
product SI-3 could be thermodynamically driven. Thus, these
findings highlight that increased substitution on the allyl
fragment results in increasing deviation from a concerted [3,3]
pathway.

We recognized that our developed methodology could be
extended toward a simple platform for accessing highly
substituted vinyl ethers. These are useful functional groups
in organic synthesis, employed beyond the Claisen rearrange-
ment in a range of chemical reactions such as cyclo-

Figure 3. Mechanistic studies. Yields determined by NMR using
nitromethane as an internal standard. (A) Observation of Friedel−
Crafts arylation in benzene. (B) Evidence for cationic rearrangement
via [SiR3]+[B(C6F5)4]−. (C) Evidence against enol addition to
activated allyl ether via SN2′. (D) Isotopic labeling experiment with
D2-allyl ether (6).

Figure 4. Proposed mechanism.
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additions,30,31 Nazarov cyclization,32 and polymerization.33,34

While the geometry of vinyl ethers can dictate stereochemical
outcomes in their reactions, methods for the stereoselective
synthesis of vinyl ethers are limited, especially for highly
substituted substrates.5 Recently, Yoshikai and co-workers
reported a method for the stereoselective iodo(III)-
etherification of alkynes to access fully substituted iodanyl
vinyl ethers.35 However, this reaction required excess I(III)
reagent (3 equiv of IBX), large excess of alcohol nucleophile
(as solvent or in some cases 5 equiv), and a second step to
convert the benziodoxole moiety into a more desirable
functional group.

To this end, we found that catalytic quantities (8−10 mol
%) of [Ph3C]+[B(C6F5)4]− promoted coupling of TMS
alkoxyethers (1.5 equiv) with vinyl tosylates to generate fully
substituted enol ether products with high selectivity (up to
62:1/ E/Z) at 35 °C (Figure 5). Electron-poor (8b, 8f), -rich
(8c), and heterocyclic (8e) substrates were all tolerated and
demonstrated high stereoselectivities. Aryl iodide-containing
substrates (8f, 8i), which can be problematic in the case of
many transition metal-based C(sp2)−O coupling protocols,
were compatible under standard conditions. This reaction was
compared to published enolate O-alkylation approaches, which

demonstrated comparable yields but low selectivity for all
substrates tested in this study, ranging between 1:1 to 2.2:1 E/
Z (see Supporting Information).36 When steric discrimination
between the aryl and alkyl groups becomes less pronounced, as
in the case of substrate 8d, the selectivity is diminished to 12:1.
This is consistent with a kinetically controlled nucleophilic
addition to the vinyl cation. Furthermore, this reaction proved
tolerant of a variety of other silyl ethers, including natural
product derivatives (8j) and thioethers (8n). Interestingly, silyl
enol ether substrates show high preference for C−O bond
formation instead of C−C formation, generating divinyl ether
8k in good yield.

In summary, we have disclosed a new catalytic C−O
coupling/Claisen rearrangement cascade reaction using simple,
commercially available borate salts as catalysts. The reaction
was demonstrated on various substrates, showcasing the ability
to construct sterically hindered C−C bonds. Mechanistic
experiments and DFT calculations support a cationic [3,3]
rearrangement of a silyloxonium intermediate produced upon
trapping of a catalytically generated vinyl cation by allyl ethers.
Finally, our reaction was applied to the stereoselective
synthesis of fully substituted vinyl ethers.
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