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Abstract

Simulations of open ballistic quantum systems and semiclassical semiconductor

superlattices

by

Jonathan Essen

The tunable antenna-coupled intersubband terahertz (TACIT) sensor is a heterodyne

mixer based on the coupling of intersubband absorption with the sheet resistivity of

doped GaAs/AlGaAs quantum wells. A theoretical treatment of this device as an open

quantum system operating at the ballistic limit leads to the development of perfectly

matched layers for the position-space Liouville-von Neumann equation.

Meanwhile, the nonlinear dynamics of weakly-coupled, doped GaAs/AlGaAs super-

lattices in the sequential-tunneling regime are theoretically characterized by computing

the Poincaré map of a self-consistent, semiclassical resonant tunneling model. Applied to

shorter superlattices at higher bias voltages, period-doubling cascades to high-frequency

chaos are observed, and their robustness to variations in the design parameters is ex-

plored.
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Chapter 1

The TACIT sensor: Coupling

in-plane and inter-subband dynamics

This work is motivated in part by the need to further the basic understanding the tun-

able antenna-coupled intersubband terahertz (TACIT) sensor, which has been iteratively

developed under Mark Sherwin at the Institute for Terahertz Science and Technology

(ITST) at UC Santa Barbara since the 1990s. This device promises to increase the sen-

sitivity and improve the operable temperature range of far-infrared sensors, which are

sensitive to electromagnetic fields at frequencies of a few terahertz (THz). An interesting

feature of the TACIT sensor is that it couples the motion of electrons between two very

different realms. In one realm, their motion is described by a two-state quantum system.

In the other realm, their motion takes place along two continuous spatial coordinates.

The physical system responsible for this strange combination is called a quantum

well. Quantum wells are semiconductor heterostructures consisting of three layers —

a thin layer of Aluminum Gallium Arsenide (AlGaAs), sandwiched between two much

thicker layers of Gallium Arsenide (GaAs). Depending on the Aluminum concentration,

the conduction band of AlGaAs can be made hundreds of meV lower than that of GaAs,
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Chapter 1

so that conduction band of the heterostructure contains a narrow channel, or “well.” The

conduction band of the thin sheet of AlGaAs is broken up into quantized subbands, where

each subband corresponds to a bound state of the confinement potential. For sufficiently

narrow wells at sufficiently low temperatures, the intersubband energy spacing becomes

large compared to the Boltzmann energy kBT .

The TACIT sensor relies on coupling a large population of electrons to the electro-

magnetic field in order to meet its design objectives. The collective dynamics of these

electrons contain nonlinear feedback mechanisms due to their mutual repulsion via the

Coulomb interaction. The electron-electron interaction in the TACIT sensor significantly

modifies the shape of the confinement potential. The stationary self-consistent solution of

the Schrödinger-Poisson equation for a uniform, 40 nm quantum well with sheet density

Ns = 1.5× 1011/cm2 is shown in Figure 1.1.

The TACIT sensor is populated with electrons by a process called remote delta dop-

ing: Silicon (Si) atoms, which are electron donors, are deposited over a thin sheet within

the GaAs layers of the heterostructure, near to the AlGaAs well. Many of the donated

electrons diffuse to the bottom of the well once the system has reached thermal equi-

librium. At the relevant doping densities and sufficiently low temperatures, the trapped

electrons mainly occupy the lowest subband. The resulting system of electrons is called a

two-dimensional electron gas (2DEG). The electrons behave like free, i.e. ballistic quan-

tum particles propagating two dimensions. The 2DEG can also oscillate into the third

dimension by undergoing intersubband transitions.

The TACIT sensor consists of a remotely-doped quantum well wafer with four electri-

cal contacts, as shown in Figure 1.2. The source and drain are designed to make Ohmic

contact with the 2DEG, allowing a two-dimensional sheet of current to flow between

them. The metallic top and back gates are deposited on opposite sides of the wafer, and

they are responsible for locally bending and tilting the quantum well. The top and back
2
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Figure 1.1: The self-consistent solution of a remotely-doped, 40nm, 200meV quan-
tum well at 30K under a uniform electric field of 1mV nm−1 with a sheet density of
1.5 × 1011cm−2. (Left) the envelope wavefunctions of the lowest two subbands and
the self-consistent confinement potential (solid lines). (Right) the sheet density profile
and the self-consistent confinement potential (solid lines). In both images, the bare
confinement potential (dashed line), and the chemical potential (dotted line) are also
visible.

gates may also drive intersubband transitions if their voltages oscillate relative to one

another at frequencies near the intersubband resonance. The intersubband resonance is

tunable over a wide frequency range (a few THz) by varying the average voltage between

the top and back gates. The area between the top and back gates is called the active

region. Assuming that the intersubband excitations due to the absorption of THz radi-

ation are rapidly thermalized within the active region, they cause the 2DEG to become

warmer, which reduces the source-drain conductivity. Hence the frequency and intensity

of the THz radiation may be detected by measuring the source-drain conductivity [1].

The description outlined above provides an intuitively appealing explanation of the

operation of the TACIT sensor, but in the extremely clean quantum wells available today,

the TACIT sensor may operate closer to the ballistic limit, and it is important to gain
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a better understanding of this limit in order to improve on the design of the sensor. A

theoretical description of the TACIT sensor in the ballistic limit needs to account for

transport between the source and the drain coupled with intersubband transitions inside

the active region. Additionally it needs to account for the collective nature of the response

of the 2DEG to the localized, vertically-polarized fields (between the top and back gates)

inside the active region, as well as the horizontally-polarized fields (between the source

and drain) at the edges of the active region. The first goal of this thesis is to lay out

the ballistic theory of the TACIT sensor and to develop computational methods for its

simulation. Of course, thermalization processes are also very important to the physics of

the TACIT sensor, therefore the theory under development here has been designed to be

amenable to the inclusion these effects.

Figure 1.2: Schematic diagram of the TACIT sensor.

In order to simulate the collective response of the 2DEG to the electromagnetic field,

it is necessary to define a computational box surrounding the active region, in which the

simulations of this theory are to be carried out. However, the complete set of electronic

wavefunctions for this system live on a much larger domain. The electronic density is
4
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given by the diagonal elements of the position-space density matrix, which involves a

sum over the complete set of wavefunctions. It is necessary to match the evolution of

the density matrix over the interior of the computational box with the exact evolution

over the larger domain. This implies that the edges of the computational box must be

transparent to any fluctuations propagating outwards from its interior. Hence we seek a

numerical method capable of absorbing the outgoing fluctuations at the edges of the box

without inducing artificial reflections.

The approach taken here is to develop perfectly matched layers (PMLs) for the

position-space Liouville-von Neumann equation. Some motivation and a review of PMLs

for the Schrödinger equation are reviewed in Chapter 2. An original numerical method

for the time-evolution of the density matrix in position space with perfectly matched lay-

ers is given in Chapter 3. This numerical method scales with computational complexity

of O(N2
x logNx), where Nx is the discrete position space of the computational domain.

The numerical method accurately captures the time evolution of pure quantum states,

and hence the ballistic limit. It is also naturally parallelizable and lends itself to efficient

implementation in distributed computing environments or on specialized hardware.

The purpose of this chapter is to provide a description of the TACIT sensor in the

ballistic limit, paying special attention to the complete set of basis wavefunctions. First,

the geometry of the conducting channel is laid out. Since the source and drain contacts

are tens of microns away from the active region, which is only about 5 square microns in

area, the active region will be treated as if the source and drain were infinitely far away.

Next, the three-dimensional stationary Schrödinger equation is expressed as a set of cou-

pled one-dimensional Schrödinger equations, one for each subband. The solution of the

stationary, subband-mixing Schrödinger equation gives a complete basis of transmission-

reflection states, and this is used to outline a first-order linear response theory using the

Born approximation.
5



Geometry of the TACIT sensor Chapter 1

Figure 1.3: The shape of the conducting channel. The top- and back-gates are placed
at z = 0nm and z = 800nm, spanning the interval 5 ≤ x ≤ 10µm. The donors are
deposited at z = 450nm and z = 690nm. The back gate voltage is chosen to coincide
with the conduction band energy. The top gate voltage is chosen to be 50mV above
the conduction band.

1.1 Geometry of the TACIT sensor

The quantum well making up the TACIT sensor is treated as though it spans an

infinite length in the x-direction and has a width of 5µm in the y-direction. The x-

direction points from the source to the drain, the y-direction points transverse to the

x-direction, and the z-direction points in the normal direction to the quantum well, aka

the growth direction. The shape of the conduction band, projected into the x-z plane, is

sketched in Figure 1.3. The channel is taken to be completely flat in the y-direction. It

is also taken to be flat in the x-direction, outside of the active region. The top and back

gates modify the shape of the well as follows: Simultaneously increasing the voltages of

the top and back gates raises the bottom of the well, developing a potential barrier. The

difference between the top and back gate voltages affects the slope of the active region

along the z-direction.

6



Separation of variables Chapter 1

The metallic plates forming top and back gates are square-shaped and have an area

of about 5µm2. In the real TACIT sensor, the electromagnetic field propagates down the

y-direction and this may create some inhomogeneities in the response of the 2DEG along

the y-direction. However, since the electromagnetic modes of the waveguide coupling

the device to the antenna are not being treated in this work, the TACIT is treated as

though it remains homogeneous along the y-direction. This allows for the y-direction

to be integrated out and the system to be reduced to a set of coupled one-dimensional

problems.

1.2 Separation of variables

The stationary Schrödinger equation in 3d is solved in this section. The result is an

eigenvalue problem which gives a complete set of states. Focusing our attention to the

electrons occupying the bottom of the well, the Schrödinger equation is

{
−~2

2m (∂2
x + ∂2

y + ∂2
z ) + v3d(x, y, z)

}
ψ3d(x, y, z) = εψ3d(x, y, z), (1.1)

where v3d(x, y, z) = u(x, z) + w(y) and ε is the total energy. The function u(x, z) is

similar in shape to the potential energy surface shown in Figure 1.3 and m = me/15 is

the electron’s effective mass in GaAs. The function w(y) is taken to be an infinitely-deep

well of width Ly = 5µm. The y-dependence is separated out as follows. First, put

ψ3d(x, y, z) = φ(x, z)χ`(y) (1.2)

7
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where

χ`(y) =
√

2
Ly

sin `πy
Ly

(1.3)

Then equation (1.1) reduces to

{
−~2

2m (∂2
x + ∂2

z ) + u(x, z)
}
φ(x, z) = εxφ(x, z) (1.4)

where ε = εx + ε`y and ε`y = ~2`2π2/2mL2
y. Next, put

φ(x, z) = ψ(x)ξn(x, z) (1.5)

where

{
−~2

2m ∂2
z + u(x, z)

}
ξn(x, z) = εnz (x)ξn(x, z) (1.6)

The equation above is solved by fixing x to some particular value and then solving

the resulting 1d eigenvalue problem along the z-direction. The solutions are the local

envelope wavefunctions ξn(x, z) with the eigenvalues εnz (x), where εnz (x) is the excitation

of subband n above v(x), defined to be the minimum of u(x, z) along the x-slice of

interest, ie. the bottom of the channel

v(x) = min
z
u(x, z). (1.7)

The TACIT sensor consists of 40nm quantum wells with doping densities near 1.5× 1011

cm−2. At low temperatures, only the lowest two subbands are significantly occupied, even

under strong driving fields near the intersubband resonance. In principle, any number of

8
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bound states could be included. Expanding the z-dependence of φ(x, z) in the basis of

local envelope wavefunctions, we have

φ(x, z) =
∑
n

ψn(x)ξn(x, z), (1.8)

where ψn(x) describes the x-dependence of an electronic state associated with the nth

subband. Then equation (1.4) reduces to

∑
n

{
−~2

2m ∂2
x + v(x) + εnz (x)

}
ψn(x)ξn(x, z) = εx

∑
n

ψn(x)ξn(x, z) (1.9)

Equation (1.9) is multiplied on both sides by ξn′(x, z) and then integrated on both sides

with respect to z. Making use of the orthogonality of the ξn(x, z), this gives

∑
n′

{
− ~2

2m
[
δnn′∂

2
x + 2wnn′(x)∂x + unn′(x)

]
+ δnn′

[
v(x) + εnz (x)

]}
ψn
′(x) = εnxψn(x)

(1.10)

where

wnn′(x) =
∫
dzξ∗n(x, z)∂xξn′(x, z) (1.11)

unn′(x) =
∫
dzξ∗n(x, z)∂2

xξn′(x, z) (1.12)

The local envelope energy εnz (x) appears as an effective potential term describing the

height of the barrier induced by the voltages of the top and back gates. This effect

is called subband bending. The off-diagonal terms wnn′(x) and unn′(x) reveal that it is

possible for an ingoing electron in a given subband to develop a non-zero amplitude in

another subband. This effect is called subband mixing.

9
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1.2.1 Transmission-reflection states

In the rest of this work, we will assume that equation (1.10) does not support any

bound states. This is equivalent to the statement that all states are unbound in the x-

direction. Hence a complete basis of states is given by the solutions of the transmission-

reflection problem, which have a continuous energy spectrum (even after discretizing

the x-axis). The basis of transmission-reflection states is described as follows: The

reservoirs on the left and right sides of the active region supply a complete set of ingoing

states. The ingoing states are right- and left-moving eigenstates associated with the

left and right reservoirs respectively. The reservoirs are taken to be infinite, x-invariant

channels of identical geometry, which smoothly match with the active region at the edges

of the computational domain xL and xR. The envelope wavefunctions associated with

the reservoirs are the x-independent eigenfunctions ξn(z) with energies En
z . Since the

reservoirs are invariant in x, the Schrödinger equation describing the ingoing states does

not contain any subband mixing terms. Consequently the ingoing states are the plane

wave states

〈~x|k`nσ〉in = eiσk(x−xin)eiπ`y/Lyξn(z) (1.13)

where σ = ±1 signifies whether the ingoing state is associated with the left (+) or right

(−) reservoir and xin = xL,R respectively. The total eigen-energy of the state |k`nσ〉in is

Ek`nσ = Ekσ
x +E`

y +En
z , where Ekσ

x = ~2k2/2m and E`
y = ~2π2`2/2mL2

y. At the interfaces

between the reservoir and the active region, we have (Ekσ
x +En

z )→ εnx and En
z → εnz (xin).

(We already have E`
y = ε`y.)

It is necessary to compute transmission-reflection states numerically. This can be

accomplished by generalizing the one-dimensional numerical method due to Arnold [2] in

order to account for subband mixing terms. Some details of the numerical implementation
10
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are given in Appendix A. The basic idea is to choose the the ingoing state |k, `, n, σ〉in and

then solve the discrete form of equation (1.10) for the stationary wavefunction. In order

to account for the top and back gate voltages, the solution of the two-dimensional Poisson

equation must be obtained numerically. The numerical solution of Poisson’s equation is

discussed in Appendix B. Figure 1.3 was created from this numerical method.

An interesting effect of the mixing terms can be seen in Figure 1.4: In the top row,

an ingoing transmission-reflection state originating in the lowest subband (blue line)

approaching from the left side was chosen to have enough total energy (dashed line)

to make it over the potential barrier created by the gates, but not enough energy to

(classically) occupy the second subband. The middle row of Figure 1.4 shows the mixing

terms in dimensionless units. We can see that they are only nonzero near the edges of the

active region, where the fields of the top and back gates twist the shape the well, causing

it to tilt in the z-direction. The bottom row of Figure 1.4 shows the real part of the

transmission-reflection wavefunction projected onto the two lowest subbands. We can

see that the first-excited subband develops a nonzero amplitude where the mixing terms

are strongest. Since this electronic state not classically allowed to occupy the first-excited

subband, this behavior can be interpreted as a virtual transition.

The transmission-reflection states can be used to form the local density of states

(LDOS)

ρnloc(E(k), x) = |ψkn(x)|2 (1.14)

where E(k) = ~2k2/2m. The LDOS for ingoing reservoir states in the lowest subband is

shown in Figure 1.5. It can be observed that the LDOS is peaked near the leading of the

active region, as viewed from the reservoir. The LDOS is also somewhat larger inside

the active region, provided the ingoing states have enough energy to make it over the

11
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Figure 1.4: The top panel shows the bottom of the channel v(x) in black and
v(x) + εnz (x) for the lowest two values of n in blue and green. The dashed line
represents the energy of a state incoming from the left side into the lowest subband
(blue line). The middle row shows the mixing terms wnn′(x) and unn′(x). The 0→ 1
mixing terms are shown in blue and have the largest magnitude. The bottom row
shows the real parts of the transmission-reflection wavefunction.
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Figure 1.5: The local density of states for ingoing states of the left reservoir in the
lowest subband. Darker regions correspond to higher values of ρloc. The dashed line
represents the local envelope energy of the lowest subband ε0

z(x).

potential barrier. This feature can be interpreted as follows: In the ballistic limit, the

reflection amplitude for a potential barrier is the same as for a potential drop. Therefore

the active region can behave as a weak trap, since an electron inside the active region

approaching the edge has a significant probability of being reflected back inside.

1.3 Photoconductance

The formula for the first-order response of the 2DEG to the localized fields of the top

and back gate is now derived using the Born approximation. The constituent matrix ele-

ments give some insight into indirect intersubband transitions that exchange momentum

with oscillating fields of the top and back gate.

Since the confinement energy of the y-direction is extremely small compared with

the Fermi energy, we may replace the discrete index ` with the continuous index ky =

`π/Ly, and relabel the basis kets as |kxkynσ〉. It is sometimes convenient to label

13
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the basis kets |ExEynσ〉, where the dispersion relation in the y-direction matches with

the continuum limit, Ey = ~2k2
y/2m, and the dispersion relation in the x-direction is

Ex = ~2(1− cos(kxhx))/2mh2
x due to the discretization of the x-axis, where hx is the

spacing of the numerical grid. In order to check against the analytic results for the in-

finite plane geometry below, it is necessary refine the x-grid until the Ex(kx) matches

with the continuum limit (and also Ey(ky)) over the energy range of the Fermi integrals.

The dispersion relations are plotted in Figure 1.6. Choosing hx ∼ 1 nm there is almost

no visible discrepancy over about 50 meV.
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Figure 1.6: The Ex and Ey dispersion relations with hx = 0.916nm.

The next tool needed is the Landauer formula. The current of a ballistic quantum

system is written as [3]

J = 2e
h

∑
nσ

∫
dExdEy σfnσ(Ex, Ey)Tnσ(Ex, Ey) (1.15)

14
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where fnσ is the Fermi function

fnσ(Ex, Ey) =
[
1 + e(Ex+Ey+Enz −µσ)/kBT

]−1
, (1.16)

T is the temperature, and Tnσ(Ex, Ey), sometimes written as Tkxkynσ, is the total flux

transmission probability

Tkxkynσ =
∑
n′
|kx/k′x| |tn

′

kx,ky ,n,σ|
2 (1.17)

where k′x is the wavevector of the outgoing subband n′ for the transmission-reflection

state and tn
′
kx,ky ,n,σ is the transmission-reflection wavefunction evaluated at the outgoing

edge.

Assuming there are no transitions between the y energy levels, the transmission func-

tion is independent of Ey, and we can perform the integral over Ey in the Landauer

formula. We define the thermal weights

wnσ(Ex) =
∫
dEyfnσ(Ex, Ey) (1.18)

and write the current formula as

J = 2e
h

∑
nσ

∫
dEx σwnσ(Ex)Tnσ(Ex). (1.19)

The thermal weights are formally equal to a polylogarithm function, but in practice, we

represent wnσ using an interpolating function. It is sometimes useful to represent the

thermal weights as a function of kx instead of Ex. The accuracy of the interpolation can

be checked by computing the sheet density of a single-subband 2DEG using the thermal
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weights

Ns(µ, T ) = 1
π2

∑
σ

∫ ∞
−∞

dkxwσ(Ex(kx)− µ), (1.20)

and comparing the result against the exact result for the infinite plane geometry

N∞s (µ, T ) = mkBT

π~2 ln(1 + eµ/kBT ). (1.21)

Sampling a sufficient number of points for the interpolating function representing the

thermal weghts gives excellent agreement as shown in Figure 1.7.
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Figure 1.7: The sheet density of a single-subband 2DEG, T = 10K, Lz = 40nm.
The solid line corresponds to equation (1.21) and the dashed line corresponds to
equation (1.20)

1.3.1 Born approximation

The transmission-reflection states of provide a complete set of states with which we

can do perturbation theory. These basis states not orthogonal over the computational
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domain – they are orthogonal over the entire x-axis. However, the electric fields due

to the top and back gates are localized in space, which makes it possible to exploit the

orthogonality of the transmission-reflection states, yet the overlap integrals, necessary to

compute the matrix elements, can be carried out inside the finite-sized computational

domain.

We now rewrite equation (1.19) in the form

〈J〉 = Tr[Ĵ ρ̂] (1.22)

where the density matrix operator is

ρ̂ =
∫
dEx dEy

∑
nσ

fnσ(Ex, Ey) |ExEynσ〉 〈ExEynσ| (1.23)

and the current operator is

Ĵ = 2e
~

∫
dEx dEy

∑
nσ

σTnσ(Ex, Ey) |ExEynσ〉 〈ExEynσ| (1.24)

Making use of the first-order Born approximation, the basis states in the interaction

picture evolve according to

|kxkynσ, t〉I = |kxkynσ, t0〉I + 1
i~

∫ t

t0
dt′V̂I(t′) |kxkynσ, t′〉I , (1.25)

where V̂I(t) is the interaction term due to the oscillating gate potentials in the interaction

picture

V̂I(t) = eiH0t/~H1(t)e−iH0t/~, (1.26)
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where H0 is the Hamiltonian due to the static shape of the conducting channel, and H1(t)

is the Hamiltonian representing the oscillating electric fields, defined below.

We now consider the system in the presence of the time-dependent, external electric

fields êxEx(x) + êzEz(x), varying harmonically in time at frequency ω ∼ 1 THz, where

both the x- and z-polarized fields are taken to be constant over the y- and z-directions,

and êx, êz are unit vectors in the x- and z-directions. Small oscillations of top gate

voltage causes the magnitudes of Ex and Ez vary harmonically in time. This is called

the quasi-static approximation, which is useful as a crude approximation to the lowest

electromagnetic mode of the waveguide that couples the top and back gates to an antenna.

We will treat the interaction with the fields of the top and back gates in the electric dipole

approximation. 1 THz has a wavelength of about 0.3mm in vacuum, and about 13 times

shorter than this in GaAs, which is about 23µm, much larger than the active region, and

much larger than the thickness of the quantum well. In the quasi-static limit considered

here, the fields at the edges of the active region fall off in just a couple of microns, so the

dipole approximation is reasonably justifiable, but less so at 2–3 THz, especially for the

source-drain polarized fields at the edges of the active region.

The dipole approximation gives the interaction term

Ĥ1 = e

imω
(e−iωt − eiωt) {Ex(x)p̂x + Ez(x)p̂z} . (1.27)

The next steps are substituting the above into equation (1.25), then substituting the

result into equation (1.22), and following the usual procedure of introducing a slow turn-

on function and taking t0 → −∞, then putting in the Pauli exclusion principle by hand.
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Figure 1.8: The envelopes of the oscillating electric fields due to the top and back gates.

After this is carried out, we arrive at the result 〈J〉 = 〈J〉0 + 〈δJ〉, where

〈δJ(ω)〉 = 2e
~
∑
σ

σ
∫
dEx dEy

∫
dE ′x dE

′
y

∑
nn′

Tn′σ(E ′x, E ′y)fnσ(Ex, Ey)[1− fn′σ(E ′x, E ′y)]

× 2πδ(Exynσ − Ex′y′n′σ ± ~ω)
∣∣∣〈ExEynσ|Ex(x)p̂x + Ez(x)p̂z|E ′xE ′yn′σ〉

∣∣∣2 ,
(1.28)

where Exynσ = Ex+Ey+En
z in the reservoir associated with σ. This result is summarized

as the Fermi golden rule applied to the Landauer formula.

The shape of the electric fields due to the top and back gates in the quasi-static

approximation are shown in Figure 1.8. The matrix elements of the interaction po-

tential (1.27) are shown in Figure 1.9. These off-diagonal matrix elements provide a

mechanism by which the TACIT sensor may absorb energy at frequencies below the in-

tersubband resonance, which provides an explanation for some measurements of a recent

prototype of the TACIT sensor [4].

The lower-energy states near the bottom-left of the graphs represent states lacking

sufficient kinetic energy to enter the active region due to the potential barrier, cf. Fig-

ure 1.5. The higher-energy states near the top right of the graphs have entered the active

region. The z-element for these states is very sharply peaked when the initial and final
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Figure 1.9: The matrix elements for the photoconductivity due to the oscillating top
and back gates. (Left) the response due to the x-polarized fields at the edges of the
top and back gates. (Right) the response due to the z-polarized fields inside the active
region. The horizontal axis shows the value of Ex for the initial electron state in the
lowest subband and the vertical axis shows the value of Ex for the final state in the
first-excited subbands.

states have the same wavevector. This demonstrates the strength of the vertical transi-

tion. On the other hand, the x-element does not have a sharp peak for states that enter

the active region, instead reveals a fan-like feature for the higher-energy states. These

off-diagonal elements are called indirect transitions. Another feature of the x-element is

that the lower-energy states absorb energy from the electric fields near the edges of the

active regions. These features in the x-element can be interpreted as follows: An ingoing

electron encounters a twist in the channel along the z-direction due to top and back

gates. In the vicinity of the twist, there is also a localized, oscillating source-drain field.

The twist in the channel causes the electron to vibrate into the z-direction, a process

which is capable of absorbing energy from the localized source-drain field.

There are other quantities that can be calculated perturbatively, such as the photo-

impedance, in which the active region is probed in the x-direction by a uniform source-

drain field. This suggests a mode of operation for the TACIT detector in the ballistic

limit, whereby the energy in the source-drain field can be mixed with the energy in the
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field between the top and back gates. However, although it is an interesting effect, this

mixing turns out to be very weak. The most interesting aspect of these calculations,

from the perspective of this work, is the idea of locally perturbing an infinite system, and

computing the response entirely within a finite computational box. If response within

the box can be made to agree with the response of the infinite system, this treatment

is considered successful. This concept is referred to as open boundary conditions. In

the interest of pursuing the open boundary conditions more thoroughly, the perturbative

model of the TACIT sensor is concluded at this point.
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Perfectly matched layers for the

Schrödinger equation

Next, we address the simulation of the time evolution of open quantum systems. We will

use this chapter to give some background and review the existing results in the wave-

function approach before moving on the density matrix in the next chapter. Restricting

our attention to a single subband of the subband-mixing Schrödinger equation derived

in Chapter 1, the quantum state ψ(x) evolves according to the usual one-dimensional

Schrödinger equation. Our goal is to simulate the Schrödinger equation on a finite com-

putational domain, but for the numerical solution to match the solution computed on

an infinite domain. This is difficult to accomplish accurately with ad-hoc methods, such

as the introduction of a complex potential term. Since the solutions of the Schrödinger

equation are highly oscillatory, and it is difficult to damp out the oscillations without

inducing reflections. Two methods currently exist which address the issue: The discrete

transparent boundary condition (DTBC) of Arnold et al. [2], and the method of per-

fectly matched layers (PMLs) of Duru and Kreiss [5]. In this chapter, we will review the

method of perfectly matched layers.
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2.1 Motivation

Consider the free Schrödinger equation in the units of Appendix C.1

i∂tψ(x, t) = −1
2∂

2
xψ(x, t). (2.1)

The rightward-propagating plane wave ψ(x, t) = e−i(k0x−ω0t) is a solution of the above if
1
2k

2
0 = ω0, where k0 and ω0 are both positive real numbers. We now consider the Fourier

transform in time of the plane wave solution

ψ̂(x, ω) =
∫
dt e−iωtψ(x, t). (2.2)

The Fourier-transformed plane wave is written in the form

ψ̂(x, ω) = 2πδ(ω − ω0)e−iωκx, (2.3)

where κ = k/ω. We now attempt to modify the Schrödinger equation such that the

plane wave solution is decaying on the half space x > 0. This will occur if the solution

is modified to

ψ̂(x, ω)→ 2πδ(ω − ω0)e−κΓ(x)e−iωκx, (2.4)

where Γ(x) is a monotonically increasing, smooth, real function of x with Γ = 0 if x ≤ 0,

and Γ > 0 for x > 0. Rewriting equation (2.4) as

ψ̂(x, ω)→ 2πδ(ω − ω0)e−iωκ
(
x+

Γ(x)
iω

)
(2.5)
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we observe that the mapping

x→ x+ Γ(x)
iω

(2.6)

gives a decaying wave for x > 0, while the solution for x ≤ 0 is unchanged.

2.2 Coordinate stretching formulation

With this motivation, consider the Fourier-transformed free Schrödinger equation

i(iω)ψ̂(x, ω) = −1
2∂

2
xψ̂(x, ω). (2.7)

Under the change of coordinates x→ x+ Γ(x)/iω, the partial derivative with respect to

x changes to ∂x → s−1∂x, where s = 1 + σ(x)/iω and σ(x) = dΓ(x)/dx. Applying this

change of variables to equation (2.7), we have

i(iω)ψ̂(x, ω) = −1
2

1
s

∂

∂x

1
s

∂

∂x
ψ̂(x, ω). (2.8)

We now transform equation (2.8) back into the time domain. Multiplying both sides by

s, we have

i(iω)
(

1 + σ

iω

)
ψ̂(x, ω) = −1

2∂
2
xψ̂(x, ω) + 1

2∂x(σû(x, ω))

where u, an auxiliary variable, has been defined as

û(x, ω) = 1
s

∂xψ̂(x, ω)
iω

We transform back to the time domain by eliminating all the factors of iω appearing in the

denominator and then making the replacement iωf̂(x, ω)→ ∂tf(x, t), where f ∈ {ψ, u}.
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Assuming that the potential term is constant near over the absorbing layers and outside

the computational domain, it does not affect the PML. Adding the potential term, the

Schrödinger equation with PMLs is


i∂tψ(x, t) = (−1

2∂
2
x + v(x))ψ(x, t) + 1

2∂x(σu(x, t))− iσψ(x, t)

∂tu(x, t) = −σu(x, t) + ∂xψ(x, t)
(2.9)

So far, we have been treating the problem of absorbing the outgoing waves in the half

space x > 0. However, at this point we can pad the computational box with two short

intervals, called the absorbing layers, set σ = 0 over the active region and have σ smoothly

increase from zero as it approaches the edges of the computational box. Then outgoing

waves will be absorbed at either end of the computational box with controllable errors.

2.3 Discretization

Equations (2.9) are discretized in time according to the Crank-Nicolson scheme, and

according to the second-order centered difference scheme in space, with homogeneous

Dirichlet boundary conditions at the endpoints. For a brief outline of the Crank-Nicolson

method, see Appendix C.3. This yields a numerical scheme which is unitary over the

interior of the computational domain, unconditionally stable, and locally of second order

accuracy in time and space. Duru and Kreiss developed a spatially fourth-order accurate

scheme, and hence their error terms are somewhat smaller [5].

We begin by discretizing in time. Consider a single time step of size ht. Let

{ψn(x), un(x)} and {ψn+1(x), un+1(x)} be the initial and final wavefunctions and aux-
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iliary fields repectively. On the lefthand side of equation (2.9), we make the replacement


∂tψ(x, t) → ψn+1(x)− ψn(x)

ht

∂tu(x, t) → un+1(x)− un(x)
ht

.

(2.10)

On the righthand side of equation (2.9), we make the replacement


ψ(x, t) → ψn(x) + ψn+1(x)

2

u(x, t) → un(x) + un+1(x)
2

(2.11)

Next, the auxiliary field un+1 is isolated in the second line of equation (2.9)

un+1(x) =
−1

2htσ(x)un(x) + 1
2ht∂xψ

n(x) + 1
2ht∂xψ

n+1(x) + un(x)
1 + 1

2htσ(x)/2 . (2.12)

The result is substituted into the first line of equation (2.9). This gives a rather long

expression involving {ψn+1(x), ψn(x), un(x)}, as well as their first and second spatial

derivatives. It is desirable to use a computer algebra system to perform these substitu-

tions, and then generate the numerical routines automatically from the symbolic expres-

sions. The x-dependence of the fields is discretized onto a uniform grid {xj}, j = 1...Nx

with spacing hx, so that xj = jhx. The spatial derivatives are approximated using the

second-order centered difference scheme,

∂f

∂x
(xj)→

f(xj+1)− f(xj−1)
2hx

,

∂2f

∂x2 (xj)→
f(xj+1) + f(xj−1)− 2f(xj)

h2
x

,
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for any smooth function f(x). This yields a matrix equation for ψn+1(xj)

∑
j′
Tj,j′ψ

n+1(xj′) = r(xj;ψn(xj), un(xj))

where Tj,j′ is a tridiagonal matrix and r(xj;ψn(xj), un(xj)) represents the righthand side

given by the procedure outlined above. Then ψn+1 may be found using Gaussian elimi-

nation in O(Nx) steps. The result is substituted into the discrete form of the second line

of equation (2.9), which is solved for un+1.

We note that the same basic method can be applied to the 2d Schrödinger equation

with similar accuracy and stability results. For efficiency, an alternating-direction implicit

method should be used to invert the matrix on the lefthand side in the two-dimensional

case [6].

2.4 Simulation results

We demonstrate the accuracy of the PML using two numerical tests. First, we com-

pare the numerical evolution of equation (2.9) against the analytic evolution of a Gaussian

wave packet for v(x) = 0, which is derived in Appendix C.2.

ψ(x, t) = N√
2π

1√
σ2 − it

exp
[
−

1
2x

2 + iσ2(k0x− 1
2k

2
0t)

σ2 − it

]

The time step is adjusted until the local errors due to the finite difference scheme are

made significantly smaller than the errors due to reflections from the PML. The spatial

grid is refined with the number points in the absorbing layer Nb equal to one eigth of the

total number of points. The strength of the reflections is observed to decreases roughly

as O(N−2
x ) for small initial wavevectors k0 and sub-second-order accuracy for the larger

initial wavevectors.
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Relative error, numerical vs exact (v = 0)

k0 (nm−1) Nx = 256 Nx = 512 Nx = 1024
Nb = 32 Nb = 64 Nb = 128

0. 4.20× 10−3 1.36× 10−3 6.40× 10−4

0.296 4.30× 10−3 8.94× 10−4 3.69× 10−4

1.479 8.73× 10−3 3.23× 10−4 3.07× 10−4

Table 2.1: Relative error between the numerical solution of the Schrödinger equation
with PMLs with the exact solution for Gaussian wavepackets initialized with σ = 1.69
nm and various values of k0, with x0 near the center of the domain of length Lx = 33.8
nm. Each solution is propagated in time for 19.8 fs with a time step of ht = 6.58×10−3

fs.

Relative error, numerical vs reference (vb = 1000 meV)

k0 (nm−1) Nx = 256 Nx = 512 Nx = 1024 Nx = 2048
Nb = 32 Nb = 64 Nb = 128 Nb = 256

0.296 4.570× 10−3 1.23× 10−3 3.15× 10−4 7.91× 10−5

Table 2.2: Relative error between the numerical solution of the Schrödinger equation
with PMLs and the standard Crank-Nicolson discretization over a much larger domain.
The potential barrier is of height vb = 1000 meV and 3 nm in width. Unless otherwise
indicated, the rest of the parameters are the same as in Table 2.4

The presence of a potential bump does not affect the accuracy of the PML, provided

the potential is constant within the absorbing layers. In order to check the accuracy

including the potential bump, we solve equation (2.9) over a smaller domain and compare

the solution against the second-order Crank-Nicolson solution of the Schrödinger equation

without PMLs simulated over a much larger domain (see Appendix C.3). We can see

again that the strength of the reflections decreases roughly as O(N−2
x ).
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2.5 Discussion and future directions

We have confirmed that PMLs for the Schrödinger equation are capable of accurately

simulating the time evolution of wave packets initialized inside the active region with

open boundary conditions. However, in order to simulate a microstructure coupled to a

thermal reservoir, we must account for the presence of an incoming state ψres, which is

the solution of Schrödinger’s equation inside the reservoir. Taking the potential inside

the reservoir to be zero, the Hamiltonian inside the reservoir is Hres = −1
2∂

2
x, and the

solution of Schrödinger’s equation inside the reservoir is

ψres(x, t) ∼ e−i(k0x−
1
2k

2
0t), (2.13)

where k0 is the wave vector. We will assume that the active region does not support

any bound states, but it may contain a potential bump v(x, t), whose shape could vary

in time, where v(x, t) = 0 inside the reservoirs. Then the total Hamiltonian inside the

active region is Hres + v(x, t)

An important direction for future research is computing the response of the reservoir

wavefunction to the potential bump localized within the active region. If v(x, t) did not

depend on time, then in the limit of long times the total wavefunction will approach

a solution of the transmission-reflection problem. Writing the total wavefunction as

ψres + ψact, where ψact is associated with the perturbation inside to the active region, we

see that its time evolution is given by

i∂t(ψres + ψact) = (Hres + v(x, t))(ψres + ψact). (2.14)
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Since i∂tψres = Hresψres, the above may be simplified to

i∂tψact = (Hres + v(x, t))ψact + v(x, t)ψres. (2.15)

We see that the fluctuations away from the reservoir wavefunction are given by the usual

Schrödinger equation inside the active region plus a source term localized to the active

region. Hence the total wavefunction may be computed by solving equation (2.15) with

PMLs. It would be interesting to see whether a transmission-reflection state could be

recovered from the time-evolution of equation (2.15).
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Perfectly matched layers for the

Liouville von Neumann equation

In order to simulate a device in which the active region is immersed in a bath of

transmission-reflection states, it is necessary to account for a very large number of these

states, effectively a continuum of them, which together resolve the local electron density.

This approach has been successfully applied to nanoscale structures such as resonant

tunneling diodes in the ballistic limit [7, 8]. However, the number Ne of transmission-

reflection states necessary is arbitrarily large. Evolving each of these states in time using

the methods of the previous chapter would result in a total computational complexity

scaling as O(NeNx).

It is highly desirable to evolve the density matrix in time, instead of the wavefunc-

tions. Once the active region is discretized into some number of points Nx making up the

computational domain, the methods derived here demonstrate that the density matrix

may be evolved in time at a fixed computational complexity of O(N2
x logNx). Further-

more, compared with wavefunction methods, the density matrix approach described here

is much more amenable to the inclusion of scattering terms, which are necessary for
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a more realistic model of a semiconductor heterostructure that may depart from the

ballistic limit.

In this chapter, perfectly matched layers (PMLs) will be developed for the position-

space density matrix. The approach given here appears to be an original solution to the

problem of simulating the distribution function of a microscopic device using a so-called

phase-space approach. It took some trial and error to arrive at this approach, and it is

interesting to put the results of this chapter into some context.

The first attempt was to follow the approach of Arnold, Ringhofer, and Frensley, et

al. [9, 10, 11], and compute the time-evolution of the discrete Wigner function. The

Wigner function w(x, k, t) is related to the position-space density matrix ρ(x1, x2, t) by

rotating and scaling the coordinate system, followed by a spatial fourier transform

w(x, k, t) =
∫
dη eikηρ(x+ 1

2η, x−
1
2η, t) (3.1)

It evolves in time according to

∂w(x, k)
∂t

+ ~k
m

∂w(x, k)
∂x

+ 1
~

∫ dk

2πV(x, k − k′)w(x, k′) = 0, (3.2)

where

V(x, q) = 2
∫
dη sin(qη)[v(x+ 1

2η)− v(x− 1
2η)] (3.3)

and v is the potential energy. It was observed over the course of this work that the

discretized Wigner evolution equation was unable to recover the stationary solution of

the transmission-reflection problem, and hence unable to accurately capture the ballistic

limit. The essential reason for this is the Wigner function suffers from a property called

filamentation: Consider the case of v = 0 and the unit system of Appendix C.1. Then
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equation (3.2) reduces to

∂tw + k∂xw = 0. (3.4)

Suppose that the initial condition takes the form of a spatially-modulated Maxwellian

distribution

w(x, k, 0) = w0(x, k) = [1 + A cos(k0x)]e−k2/2. (3.5)

Then the solution at time t is

w(x, k, t) = w0(x− kt, k) = [1 + A cos(k0x− k0kt)]e−k
2/2. (3.6)

The “wavelength” of this function along k-direction is λk = 2π/k0t. After sufficient time

has passed, λk must grow smaller than the resolution of the (x, k) numerical grid. This

leads to aliasing effects and uncontrolled errors.

Eliasson simulated the classical limit ~→ 0 of the Wigner evolution equation, which

is equivalent to the Boltzmann equation [12, 42]. He observed that the Fourier transform

of the Wigner function

f(x, η) = ρ(x+ 1
2η, x−

1
2η) (3.7)

does not suffer from filamentation but instead grows smoother with increasing time under

free evolution. He worked with periodic boundary conditions in the x-direction and

developed a projection technique to absorb outgoing fluctuations at the edge of the η-

direction. In order to implement open boundary conditions in this work, it was attempted

to use Eliasson’s projection method at the edges of the computational domain in the x-
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direction. However, the projection method resulted in uncontrolled ringing artifacts.

The perfectly-matched layer approach described below is able to effectively control the

strength of the reflections at the edges of the computational domain.

Another question to consider is the following: Why the position-space density matrix,

instead of the energy-space density matrix? Let’s attempt to flesh out the energy-space

time-evolution further: Suppose one had computed a complete basis of transmission-

reflection for a self-consistent treatment of a micro-structure. The dynamical variables

would be the correlations between the various wavevectors of ingoing states associated

with the left- and right reservoirs. There are two major technical challenges with this

approach:

• The basis of energy eigenstates requires arbitrarily fine energy resolution in order

to accurately represent the time evolution of the density matrix.

• The overlap integrals necessary to compute the scattering rates require integration

over infinite intervals. It may be possible to compute them accurately. Some effort

was made to compute these integrals could within Fourier space, but the results

were rather cumbersome.

For example, consider a sequential-tunneling superlattice, as described in Chapter 4.

Each peak of the transmission function T (E) is by definition very narrow, and the energy

coordinate of the peak evolves in time, implying that it is necessary to use either an

arbitrarily large number of basis states would be necessary, or a non-unifom energy

grid would be necessary to evolve as a function of time. This generalizes the ideas of

MacLennan and Abdallah to the time-dependent problem [7, 8].

On the other hand, the position-space density matrix remains smooth, its transients

growing smoother in time. The amount of data necessary to numerically represent it is

controlled: It depends only on the energy scale of the quantum transitions involved in
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the time evolution, and the length of the computational domain. Scattering terms are in-

cluded naturally at the semiclassical level with the Wigner function and the Fermi golden

rule. The position-space density matrix approach is extremely simple in comparison to

the energy-space approach outlined above.

3.1 Evolution equation

Consider the time evolution of the one-body density matrix in one dimension with a

time-independent potential term. In the units of Appendix C.1, the usual Liouville-von

Neumann equation for the time evolution of the density matrix is

i∂tρ(x1, x2, t) =
[
−1

2(∂2
1 − ∂2

2) + v(x1)− v(x2)
]
ρ(x1, x2, t),

where ∂1 and ∂2 correspond to differentiation with respect to the first and second argu-

ments of ρ(·, ·, t) respectively. Interestingly, numerical experiments have shown that the

PML procedure outlined for the Schrödinger equation in Chapter 2 fails for the density

matrix in the x1-x2 coordinates. The reason appears to be that the wavefronts impinge

on the boundary layer at too shallow of an angle. However, it will be shown that in a

transformed coordinate system, the PML is well-behaved. The transformation is written

as


x1 → x+ 1

2η

x2 → x− 1
2η.

(3.8)

A visual representation this transformation is shown in Figure 3.1. In the new coordi-
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Figure 3.1: The coordinate transformation of equation (3.8) on a 100 nm compu-
tational domain. The shaded regions correspond to spatial correlations between the
active region (A), left contact (L) and right contact (R), have been labeled accordingly

nates, the Liouville-von Neumann equation is

i∂tρ(x+ 1
2η, x−

1
2η, t) =

[
−1

2(∂2
1 − ∂2

2) + v(x+ 1
2η)− v(x− 1

2η)
]
ρ(x+ 1

2η, x−
1
2η, t).

Making use of the identities

∂xρ(x+ 1
2η, x−

1
2η, t) = (∂1 + ∂2)ρ(x+ 1

2η, x−
1
2η, t)

∂ηρ(x+ 1
2η, x−

1
2η, t) = 1

2(∂1 − ∂2)ρ(x+ 1
2η, x−

1
2η, t)

the Liouville-von Neumann equation in the transformed coordinates is

i∂tρ(x+ 1
2η, x−

1
2η, t) =

[
−∂x∂η + v(x+ 1

2η)− v(x− 1
2η)

]
ρ(x+ 1

2η, x−
1
2η, t) (3.9)
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and Equation (3.9) is rewritten as

∂tf(x, η, t) = i∂x∂ηf(x, η, t)− iδv(x, η)f(x, η, t), (3.10)

where

f(x, η, t) = ρ(x+ 1
2η, x−

1
2η, t) (3.11)

and

δv(x, η) = v(x+ 1
2η)− v(x− 1

2η). (3.12)

3.2 Perfectly matched layers

We now implement PMLs for equation (3.10), following the same procedure as with

the Schrödinger equation. However, there is one inconvenient point: The potential term

in the LvN equation is not of a compact shape; it extends off to infinity. Hence it is not

possible to surround the computational domain with a layer in which the potential term

is constant. In practice, it is desirable to cut off the large-η correlations of the density

matrix before they reach the top boundary shown on the right of Figure 3.1. However,

in this work we will make a quantitative comparison with the ballistic limit, in order to

characterize the largest possible sources of error.

We begin by neglecting the potential term and Fourier transforming equation (3.10)

in time

iωf̂(x, η, ω) = i∂x∂ηf̂(x, η, ω) (3.13)
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Next we introduce the change of coordinates


x→ x+ Γx(x)

iω
,

η → η + Γη(η)
iω

.

(3.14)

Then equation (3.10) becomes

iωf̂(x, η, ω) = is−1
x ∂xs

−1
η ∂ηf̂(x, η, ω), (3.15)

where sx = 1 + σx(x)/iω, sη = 1 + ση(η)/iω, and σx(x) = dΓx(x)/dx, ση = dΓη(η)/dη.

The σ functions are both zero over the interior of the computational domain and increase

over the absorbing layers. Since sη commutes with ∂x, equation 3.15 is equivalent to

(
iω + σx + ση + σxση

iω

)
f̂(x, η, ω) = i∂x∂ηf̂(x, η, ω) (3.16)

Introducing the auxiliary field φ, where

φ̂(x, η, ω) = f̂(x, η, ω)
iω

, (3.17)

the evolution equation is mapped back into the time domain and the potential term is

re-inserted, which gives the Liouville-von Neumann equation with PMLs


∂tf(x, η, t) = [i∂x∂η − iδv − (σx + ση)]f(x, η, t)− σxσηφ(x, η, t)

∂tφ(x, η, t) = f(x, η, t).
(3.18)
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3.3 Operator splitting method

The Liouville-von Neumann equation is propagated in time using the method of

operator splitting [9]. If the kinetic term in equation (3.18) is neglected, this gives


∂tf(x, η, t) = [−iδv − (σx + ση)]f(x, η, t)− σxσηφ(x, η, t)

∂tφ(x, η, t) = f(x, η, t),
(3.19)

which is straightforward to discretize over the position space coordinates (x, η). If every-

thing except for the kinetic term in equation (3.18) is neglected, this gives


∂tf(x, η, t) = i∂x∂ηf(x, η, t)

∂tφ(x, η, t) = 0.
(3.20)

Since equation (3.20) comprises a 2d hyperbolic PDE, a high-resolution numerical method

is necessary in order to propagate it accurately in time. A spectral method, outlined

below, is used for this purpose:

Defining a map from position space to momentum space

f̃(q, k, t) =
∫
dxdη ei(qx+kη)f(x, η, t), (3.21)

equation (3.20) takes the form


∂tf̃(q, k, t) = iqkf̃(q, k, t)

∂tφ(x, η, t) = 0,
(3.22)

which is straightforward to discretize over momentum space coordinates (q, k). Assuming

that f(x, η) remains a sufficiently smooth function for all time, f̃(q, k) will rapidly decay
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to zero for high values of |q| and |k|. Additionally, due to the presence of the PML,

f(x, η) will smoothly decay to zero before it reaches the edges of the computational

domain. These two conditions allow for the imposition of periodic boundary conditions

on the computational domain, while the numerical solution evolves under open boundary

conditions. The mapping from f to f̃ is accomplished efficiently using the fast Fourier

transform.

Let ht be the size of the time step, so that the discrete time variable is ts = sht. The

discrete time evolution will consist of two steps:

1. A “kinetic step,” during which f solves equation (3.22) with the initial condition

f = f(x, η, ts). The solution after time ht is called f(x, η, ts+1/2).

2. A “potential step,” during which f̂ solves equation (3.19) with the initial condition

f = f(x, η, ts+1/2). The solution after time ht is called f(x, η, ts+1).

Setting f(x, η, ts+1) = f(x, η, ts+ht) results in a scheme that is locally first-order accurate

in time. For a second order scheme, we start by calculating f(x, η, ts+1) as given above.

Then, exchanging the order of the kinetic and potential steps, we calculate f̂(x, η, ts+1)

again, and take the arithmetic mean of the two results. The first- and second-order

splitting schemes are identical to one another in the case of zero potential. While the

second order method does improve the local accuracy of the splitting scheme, the spectral

accuracy of the first-order method is already much better than the finite-difference Crank-

Nicolson method used for the reference solution in the simulation results below. The

largest errors of this numerical method are due to the suboptimal performance of the

PML for nonzero potential functions, but even these errors remain within 1% or so of

the reference solution in the test cases below.

In order to have unitary evolution on the interior of the computational domain, the

temporal discretization makes use of the Crank-Nicolson method for each part of the
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split time step. For the potential step, this results in the set of equations



f s+1(x, η) = −htφs(x, η)σx(x)σy(η)

+
(
−1

4h
2
tσxσy − i

2htδv(x, η)− 1
2ht(σx + σy) + 1

1
4h

2
tσxσy + i

2htδv(x, η) + 1
2ht(σx + σy) + 1

)
f s(x, η)

φs+1(x, η) = 1
2htf

s(x, η) + 1
2htf

s+1(x, η) + φs(x, η)

(3.23)

For the kinetic step, this results in the set of equations


f̃ s+1(q, k) =

− i
2htqk + 1
i
2htqk + 1 f̂

s(q, k)

φs+1(x, η) = φs(x, η).
(3.24)

3.4 Simulation results

3.4.1 Free evolution

The first test considered is the free evolution of a Gaussian wave packet with v = 0.

In this case the error is calculated by comparing the numerical density matrix against

the density matrix formed from the exact solution of the Schrödinger equation.

ψ(x, t) = N√
2π

1√
σ2 − it

exp
[
−

1
2x

2 + iσ2(k0x− 1
2k

2
0t)

σ2 − it

]
, (3.25)

whereN is a normalization factor. For comparison, the density matrix f(x, η, t) is formed

from ψ(x, t) according to

f(x, η, t) = ψ(x+ 1
2η, t)ψ

∗(x− 1
2η, t). (3.26)

The density matrix is initialized with a gaussian wave packet, propagated in time nu-

merically, and compared against the exact density matrix computed from the equation
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Relative error, numerical vs exact (v = 0)

k0 (nm−1) Nb = 8 Nb = 16 Nb = 32 Nb = 64

0. 2.49× 10−3 1.58× 10−4 3.35× 10−6 1.07× 10−6

0.296 3.63× 10−3 2.55× 10−4 3.80× 10−6 1.13× 10−6

1.479 6.19× 10−1 6.13× 10−3 4.57× 10−5 8.54× 10−6

Table 3.1: Comparing the numerical solution of the LvN equation with PMLs with
the exact solution for Gaussian wavepackets initialized with σ = 1.69 nm and various
values of k0, with x0 near the center of the domain of length Lx = 33.8 nm. Each
solution is propagated in time for 39.5 fs with a time step of ht = 6.58× 10−3 fs. The
dimensions of the computational grid are Nx = Ny = 512, and Nb is the number of
points in the absorbing layer.

above. The results of the simulations are listed in Table 3.4.1. The higher the energy of

the state, the lower the accuracy of the PML. However, the accuracy of the PML improves

rapidly as the layer is widened. In fact, the accuracy of the PML for the Liouville-von

Neumann equation scales much more favorably than the numerical experiments for the

Schrödinger equation in Chapter 2. This is due to the use of a second-order scheme for

the Schrödinger equation compared with a spectral scheme for the LvN equation.

Similar numerical experiments also demonstrated that two separate initial condi-

tions of Schrödinger’s equation can be combined into a single initial condition for the

the Liouville-von Neumann equation and evolved in time with similar accuracy. This

demonstrates one advantage of the density matrix approach: With sufficient floating-

point accuracy, an arbitrarily large number of pure states could be combined into a

single mixed state, which can be evolved in time at a fixed computational cost.

3.4.2 Interaction with a potential barrier

The behavior of the PML in the presence of a nonzero potential term is tested next.

The LvN equation is again initialized with a Gaussian wave packet. Then the solution

of the LvN equation is compared against the density matrix formed from the solution of
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Figure 3.2: Snapshots of the initial state and an intermediate state of the time-evo-
lution of the Liouville-von Neumann equation initialized with a Gaussian wavepacket
with k0 = 1.479 nm−1 and Nb = 64, as listed in Table 3.4.1. The top frames show the
amplitude of the real part of the density matrix, where darker colors correspond to
more positive values. In the right column, the zero of the color map corresponds to
a medium grey. The bottom frames plot the diagonal elements of the density matrix
as well as the square potential barrier. The solution can be observed to decay to zero
inside the absorbing layers on the righthand column.
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Relative error, LvN vs Schrödinger

vb (meV) Nb = 8 Nb = 16 Nb = 32 Nb = 64

0 4.84× 10−3 3.70× 10−4 3.65× 10−5 2.59× 10−5

10 6.33× 10−3 5.49× 10−3 5.02× 10−3 5.54× 10−3

100 6.65× 10−2 6.02× 10−2 5.83× 10−2 5.34× 10−2

Table 3.2: Propagation error in the presence of a square potential barrier of length
6.6 nm and height vb, located near the right side of the domain. Comparing the
numerical solution of the LvN equation with PMLs against the density matrix formed
from the higher-resolution Crank-Nicolson propagation of Schrödinger’s equation on
a much larger domain. The simulation parameters are the same as in Table 3.4.1 with
k0 = 0.296 nm−1, except x0 is near the left side of the domain instead of the center,
and the dimensions of the computational grid are Nx = 512, Ny = 1024.

Schrödinger’s equation initialized with the same gaussian wave packet on a much larger

domain, with four times the resolution in space and ten times the resolution in time.

Comparing the first row of Table 3.4.2 against the second row of Table 3.4.1, we can

see that the “baseline” error of the Crank-Nicolson method for Schrödinger’s equation is

somewhat larger than the accuracy of the spectral scheme for the LvN equation in the

case of v = 0.

The main source of error is due to the interaction of the potential term with the PML.

This error dominates over the local errors due to the splitting scheme. We noticed that

if the potential term overlaps with the absorbing layer at the top of the computational

domain, the errors are greater than those associated with the left and right edges. The

reason is that the numerical reflections along the top edge are more able to pollute the

interior of the domain. In contrast, numerical reflections at the left and right edges of

the domain tend to stay more confined to the edges. For this reason, the intersections

of the potential term with the top of the domain were avoided by doubling the length of

the computational box in the η direction, cf. Figure 3.1

The PML performs within a few percent accuracy in the presence of the potential
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barrier of up to 100 meV. The error reported in Table 3.4.2 turns out to be the relative

error at the end of the time evolution interval, but the absolute error is down by about

another factor of 10–20 because the overall amplitude of the density matrix goes down by

about this much over the course of the time evolution. We also observe that the relative

error is mainly a function of the barrier height, rather than Nb, the number of points in

the PML.

3.5 Discussion and further directions

The density matrix formulation is a very natural way of approaching the time-

evolution of open quantum systems. It is an efficient and numerically well-posed method

of simulating the quantum mechanical density matrix, and it is the logical generalization

of the work of Galdrikian and Birnir, discussed in Chapter 4, to open systems. Taking

better account of the potential term in the PML procedure is still a work in progress.

There may be some clues in the work of Ringhofer et al. [10]. But the method outlined

here can already be extended in some useful directions:

Source terms In order to model the a system in contact with reservoirs, it is necessary

to account for the information streaming into the computational domain as well as absorb

the outgoing information. To address this, the total potential can be expressed as the

sum of a time-independent part v0 and a time-dependent part v1, which is not necessarily

small. Similarly, the total density matrix can be expressed as the sum of a stationary

solution f0 in the presence of v0 only and the time-dependent fluctuations f1 due to v1.

Then the total density matrix evolves according to

∂t(f0 + f1) = [i∂x∂η − i(δv0 + δv1)](f0 + f1). (3.27)
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Since f0 is assumed to solve the Liouville-von Neumann equation in the presence of v0

only, the expression above simplifies to

∂tf1 = [i∂x∂η − i(δv0 + δv1)]f1 − iδv1f0. (3.28)

The time evolution of the fluctuations is given by the usual Liouville-von Neumann

equation for f1, plus a source term due to the background solution f0. Taking v0 = 0,

the stationary density matrix is equal to an integral over plane-wave states

f0 =
∫
dk F (k, µ)ψ∗k(x+ 1

2η)ψk(x− 1
2η), (3.29)

where F (k, µ) is the Fermi function and ψk(x) ∝ exp(ikx). Once the source term due to

v1 is turned on, the system will begin to evolve in time. The accuracy of this approach can

be verified by choosing v1 to be a time-independent potential barrier, and then showing

that over long times, the solution of the Liouville-von Neumann equation approaches the

stationary state of the transmission reflection problem.

Scattering terms If scattering terms were included, then the long-range (large η) cor-

relations of the density matrix could be damped to zero before reaching the top edge of the

domain. Under these circumstances, the potential could be held constant over two suffi-

ciently wide intervals next to the left and right edges of the computational domain. Then

Lx could be made as large as desired compared with Lη. Fixing Lη, the computational

complexity would scale as O(Nx logNx). This approach will be very useful for simulat-

ing microstructures in the time-dependent Hartree framework discussed in Chapter 4.

However, in this work we have only investigated the effectiveness of PMLs at capturing

the ballistic limit, in order to obtain quantitative measurement of the performance of the

PML.
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In order to account for interactions with an external system, such as a thermal bath

of acoustic phonons, scattering terms can be included. In the splitting scheme for the

time step, the discrete Wigner representation of the density matrix w(x, k, t) is already

computed as an intermediary, and it provides a natural place to introduce scattering terms

[11]. The scattering terms could be treated according to the Fermi golden rule [3], and

included as an additional step of the first-order splitting scheme. For a one-dimensional

system of electrons, we have

(∂tw(x, k, t))coll = 2π
~
∑
k′∈Ω
| 〈k|U |k′〉 |2{w(x, k′)[1− w(x, k)]− w(x, k)[1− w(x, k′)]}

(3.30)

= 2π
~
∑
k′∈Ω
| 〈k|U |k′〉 |2{w(x, k′)− w(x, k)} (3.31)

where Ω is the computational Brillouin zone, and U is the scattering interaction term.
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High-frequency parameter

dependence of nonlinear dynamical

phenomena in GaAs/(Al,Ga)As

superlattices

An enormous effort was made by many experimentalists and theorists to understand the

basic properties of two-dimensional electron gases during the 1970s and ’80s. The inter-

subband absorption peak was found to be blue-shifted and at higher doping densities,

which was surprising, given that the bare intersubband energy spacings grow progres-

sively smaller with increased doping density. Hence it was shown that the absorption

peak did not correspond to single-particle intersubband transitions, but to the collective

response of all the electrons occupying the quantum well. This effect was termed the

depolarization shift. It was also shown that the time-dependent Hartree approximation

provided a reasonably quantitative model of the intersubband absorption of electromag-

netic radiation. The level of agreement between the Hartree theory and the experimental
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observations is quite remarkable, considering the simplicity of the theory [14].

In the 1990s, Bryan Galdrikian, a student of Mark Sherwin and also of Björn Birnir,

of the Mathematics department and the Center for Complex and Nonlinear Science at

UC Santa Barbara, simulated the nonlinear, time-dependent, self-consistent response of

a 2DEG to a spatially uniform, out-of-plane-polarized electric field. For small external

fields, this approach gives identical results to those of Ando et. al., who first calculated the

self-consistent response in the Hartree (random-phase) approximation [15]. Galdrikian

rigorously showed the mathematical equivalence of his approach to that of Ando et al. [16].

This intuitively-appealing approach can be described shortly as follows: The electronic

density matrix evolves in time under the influence of a periodic external electric field.

The time-dependent Hartree potential accounts for the the electron-electron interaction.

The Hartree potential is computed according to an iterative procedure. Initializing it to

zero, the following steps are performed:

1. The density matrix is evolved in time under the driving field until it settles onto a

periodic orbit.

2. The time-dependent Hartree potential is computed from the periodic response of

the density matrix by solving Poisson’s equation.

3. The Hartree potential is added to the external field

4. Repeat the process above until the Hartree potential converges to the same time-

periodic function at the end of each iteration.

The time-periodic Hartree iteration of Galdrikian et al. also allows for periodic orbits

having periods longer than that the driving period. In particular, this theory predicted a

period-doubling bifurcation, followed by a period-doubling cascade to chaos, in quantum
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wells with certain assymetric “steps” built into the bottom of the confinement potential

[17].

Semiconductor superlattices (SSLs) are GaAs/AlGaAs heterostructures that can be

thought of as a number of identical quantum wells layered one atop the other. In contrast

to the TACIT sensor, electron transport in SSLs occurs by tunneling from one well to the

next, ie. through the barriers. Since the 1990s, it has been observed experimentally that

the electronic dynamics of SSLs feature nonlinear Gunn-like oscillations and chaos at low

temperatures [18]. More recently, and more surprisingly, similar nonlinear oscillations

have been observed in SSLs at room temperature [39, 40]. A schematic diagram of the

SSL developed by Huang et al. is shown in Figure 4.1.

Figure 4.1: Schematic diagram of the conduction band in GaAs/AlGaAs superlattices,
showing the energies of the Γ and X valleys, after Huang et al. [39]. The top image
(a) corresponds to GaAs/Al0.7Ga0.3As SSLs and the bottom image corresponds to
GaAs/Al0.45Ga0.55As SSLs.

In this work we will consider SSLs in the weakly-coupled, sequential tunneling limit.

In this limit, the rate of tunneling transport is taken to occur on much longer timescales

than the inter-subband transitions, and consequently the inter-subband processes are

averaged away, replacing the populations of the subbands of each quantum well with

thermal distributions, which depend on the sheet density. The tunneling only occurs

when the quantized energy levels of adjacent wells are in alignment with an occupied level.
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Similarly to the depolarization shift theory in single quantum wells, the nonlinearity in

this model again comes from the response of the self-consistent potential to the shifting

populations of the wells. It is worth mentioning that the recent observations of chaos

in SSLs at room temperature were motivated by the idea of preserving the sequential

tunneling limit at warmer temperatures.

This simple, self-consistent model of the time-evolution of the electric fields in SSLs,

due to Luis Bonilla et al. [32] has also been shown to undergo period-doubling bifurcations

and it also features a period-doubling cascade to chaos [34]. There is an interesting

analogy to make between these results and those of Galdrikian et al. At face value,

the theories appear to be quite different from one another, however it is our point of

view that the nonlinearities and chaos induced by the Coulomb interaction in doped

semiconductors can be very robust and apply equally well to both semiclassical and

highly-quantized systems.

The sequential resonant tunneling (SRT) model of Bonilla et. al. (see reviews in

[42, 37]) captures the essential physics of tunneling transport in SSLs. The model contains

nonlinearities arising from feedback between resonant tunneling through the barriers and

the self-consistent electric field of the mobile carriers. Simulations of the 50-period SSLs

by Alvaro et. al. [33] demonstrated extreme sensitivity to weak stochastic perturbations

of the local electric fields and the bias voltage, which provided a qualitative description

of the experimental results. However, the unperturbed dynamics of the 50-period SRT

model contained only a period doubling bifurcation, rather than fully-developed chaos.

Recently, it was observed that shorter (10-period) SSLs, support chaotic oscillations on

much faster timescales [34]. In contrast with the 50-period simulations, the chaos in

shorter SSLs exhibited a complete period-doubling cascade.

One of the practical applications of chaotic oscillations in SSLs is the secure generation

of random bit sequences. With faster chaotic oscillations, shorter SSLs would achieve
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a higher random bit rate. In this work, we provide aid to the experimental search for

period-doubling cascades in shorter SSLs by mapping out the response of the SRT model

to variations of the basic design parameters.

We simulate the SRT theory, which describes electronic transport in SSLs in the

weakly-coupled, self-consistent regime. Two different time scales are taken into account in

this description: The inter-site tunneling and inter-subband relaxation processes occur on

much shorter timescales than the dielectric relaxation processes [43]. Therefore, the long

timescale dynamics of semiconductor lasers [30] and superlattices [32, 33] are typically

modeled using semiclassical equations, while the short timescale processes are treated

through the addition of stochastic terms to the dynamical equations. Nonlinearities

enter the model via the the self-consistent electron-electron Coulomb interaction, which

bends the conduction band of the SSL, modifying the inter-subband tunneling rates by

casting the energy levels of adjacent wells into or out of resonance [43].

Over some intervals of the bias voltage, the total current J(t) through the SSL is

a monotonically increasing function of the bias voltage. At higher bias voltages, J(t)

suddenly changes to a time-dependent, oscillatory function, which undergoes a series of

transitions, leading to chaotic behavior. We summarize the behavior of J(t) below:

Bistability: The earliest signal of the oscillatory behavior is a bistable response of

J(t) to slow variations in Vbias. This behavior is observable only at sufficiently low

temperatures [49, 50, 38]. Generically, bistable behavior is found at voltages just below

those of the Hopf bifurcation described next.

Supercritical Hopf Bifurcation: As the bias voltage is increased, J(t) undergoes

a supercritical Hopf bifurcation. The fixed point becomes unstable, and J(t) becomes

attracted to a closed periodic orbit. In this regime, the SSL acts as a GHz oscillator
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with a discrete power spectrum involving the frequencies fn = n/T, n = 1, 2, 3, ..., where

the fundamental period T is the period of the lowest-frequency oscillation present. The

superharmonics n > 1 arise due to the nonlinearities of the SRT model. Since T varies

smoothly with the bias voltage, the oscillator is also tunable.

Period Doubling Bifurcation: The periodic orbit described above is topologically

equivalent to a circle in phase space. The Poincaré map of this trajectory consists of

a single point, called a one-cycle. Increasing the bias voltage further, one-cycles of the

Poincaré map transition to two-cycles, i.e. two points, meaning that the orbit circles

twice before it closes onto itself. The fundamental period of the oscillator is doubled,

T → 2T , and the fundamental frequency is cut in half: f1 → f1/2. A new peak appears

in the power spectrum spectrum at half the fundamental frequency, and the number of

superharmonics doubles. Following a period doubling bifurcation, it is possible that the

reverse (period-halving) bifurcation may occur. We refer to the regions between these

bifurcations as period doubling bubbles. An application of period doubling, due to the

subharmonic peak, is the generation of squeezed states [47], which have applications in

the area of noise reduction.

Period Doubling Cascade: An infinite number of period doublings is possible within

a finite voltage interval. The invariant phase space structures transition from a smooth

compact manifolds (periodic orbits of high periods) to irregular sets called strange at-

tractors. The Poincaré map takes on a fractal structure.

Transport in SSLs can take place through two possible channels: Quantum tunneling

between the Γ valleys of adjacent wells, or phonon-assisted transport through the X

valley of the barriers (Γ-X transfer). Chaotic oscillations in SSLs are only possible when

tunneling transport dominates over diffusive transport [39, 40]. The phonon-assisted
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transport may be suppressed by (a) lowering the temperature of the SSL, (b) reducing

the level of doping (and hence the Fermi energy), or (c) adding Aluminum to the barriers.

For GaAs/AlAs SSLs, the X-valley of the AlAs barriers is only 110 meV higher than the

lowest subband of the 4 nm GaAs wells considered in this paper. Adding Aluminum to the

barriers has the effect of lowering the Γ-minimum and increasing the X-minimum. For

AlxGa1−xAs SSLs with Aluminum concentration x = 0.45, the Γ- and X-minima are both

337meV above the lowest subband of the GaAs well. Therefore at room temperature,

the x = 0.45 SSLs suppress the phonon-assisted transport by a factor of about 1.6 ×

10−4 compared with the x = 0 SSLs [39]. In this work, we fix the doping density to

ND = 6 × 1010 cm−2 and simulate two scenarios: GaAs/Al0.7Ga0.3As SSLs at 77K and

GaAs/Al0.45Ga0.55As SSLs at 295K.

With an eye towards development of fast, electronic true random number generators,

we investigate the response of the chaotic signal to variations of the design parameters of

these systems: The number of periods, the contact conductivity, and the strength of the

disorder (aperiodicity) of the SSL. The outline of our paper is as follows: In Section 4.1,

we review the SRT model. In Section 4.2, we describe the numerical methods. In

Section 4.3, we present the results of our simulations. A discussion of our results is given

in Section 4.4.

4.1 Model

Many phenomena are captured by SRT model of nonlinear charge transport in SSLs

[32, 41, 42, 37]. Consider a weakly coupled superlattice having N identical periods of

length l and total length L = Nl subject to a dc bias voltage Vbias. The time evolution

of the average electric field of SSL period i, Fi, and the total current density, J(t), are
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coupled together by Ampere’s law

J(t) = ε
dFi
dt

+ Ji→i+1, (4.1)

with the voltage bias constraint

N∑
i=1

Fi = Vbias

l
. (4.2)

Fluctuations of Fi away from its average value Favg = eVbias/L arise from the inter-site

tunneling current Ji→i+1, which appears in equation (4.1). A microscopic derivation of

Ji→i+1 produces the result [43, 41]

Ji→i+1 = eni
l
v(f)(Fi)− J−i→i+1(Fi, ni+1, T ), (4.3)

in which ni is the electron sheet density at site i, −e < 0 is the electron charge and T is

the lattice temperature. The forward velocity, v(f)(Fi), which is modeled as a Lorentzian

distribution, is peaked at resonant values of Fi, where the lowest energy level at site i are

aligned with one of the levels at site i+ 1. The backward tunneling current is given by

J−i→i+1(Fi, ni+1, T ) = em∗kBT

π~2l
v(f)(Fi) ln

[
1 + e

− eFil

kBT

(
e
π~2ni+1
m∗kBT − 1

)]
, (4.4)

where the reference value of the effective electron mass in AlxGa1−xAs is m∗ = (0.063 +

0.083x)me, and kB is the Boltzmann constant. The ni are determined self-consistently

from the discrete Poisson equation,

ni = ND + ε

e
(Fi − Fi−1), (4.5)
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ND (cm−2) d (nm) w (nm) s (µm)
6× 1010 4 7 60

Vbarr (meV) T (K) E1 (meV) E2 (meV) E3 (meV)
600 77 53 207 440
388 295 45 173 346

Table 4.1: (Top) The design parameters of the superlattice. (Bottom) Values of the
potential barrier and energy levels for GaAs/Al0.7Ga0.3As and GaAs/Al0.45Ga0.55As
superlattices, first and second row, respectively.

where ND is the doping sheet density and ε is the average permittivity. The field variables

Fi are constrained by boundary conditions at i = 0 and i = N that represent Ohmic

contacts with the electrical leads

J0→1 = σ0F0, JN→N+1 = σ0
nN
ND

FN , (4.6)

where σ0 is the contact conductivity. Shot and thermal noise can be added as indicated

in [33, 44].

Table 4.1 gives the numerical values of the parameters used in the simulations. The

GaAs/Al0.45Ga0.55As configuration corresponds with the configuration used in recent ex-

periments [31, 39, 45]. The rest of the parameters are as follows: A = s2 is the transversal

area of the superlattice, d and w are the barrier and well widths, and l = d+w is the SSL

period. The contact conductivity σ0 is a linear approximation of the behavior of J0→1,

which depends on the structure of the emitter. We treat σ0 as an empirical parameter

and investigate the response of the SRT model as it is varied. Some representative values

have been chosen in order to reproduce the experimental results produced by Huang et

al. with N = 50: σ0 = 0.783 A/Vm for Vbarr = 388 meV (x = 0.45) and σ0 = 0.06 A/Vm

for Vbarr = 600 meV (x = 0.7), where Vbarr is the height of the barrier [33, 39].
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4.1.1 Noise

To model the unavoidable fluctuations in the bias voltage, as well as the short-

timescale processes in the electronic dynamics, stochastic terms [33] are introduced into

equations (4.1)–(4.6). To account for the noise in the bias voltage, equation (4.2) is

modified to

N∑
i=1

Fi = Vbias + η(t)
l

, (4.7)

where η(t) is taken to be a Gaussian random variable with standard deviation ση. To

account for the short-timescale processes at each site of the SSL, equation (4.1) is modified

to include shot noise in the local tunneling current

ε
dFi
dt

+ Ji→i+1(Fi) + ξi(t) = J(t), (4.8)

where

〈ξi(t)ξj(t′)〉 = e

A

[
ev(f)(Fi)

l
ni + J−i→i+1(Fi, ni+1, T ) + 2J−i→i+1(Fi, ni, T )

]
δijδ(t− t′).

(4.9)

We see that η(t) is independent of i, while ξi(t) are independent Gaussian random vari-

ables associated with each site of the SSL. The strength of the fluctuations in the bias

voltage may be tuned via the empirical parameter ση, while the strength of the fluc-

tuations in the local tunneling current is completely determined by the parameters of

Table 4.1.
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4.1.2 Disorder

We also consider time-independent perturbations that break the periodicity of the

SSL. We introduce variations in the widths of the wells and barriers via the scaling

parameters βi and ζi. The perturbed well and barrier lengths are

wi = βiw, (4.10)

di = ζid. (4.11)

The change in total length of the SSL modifies the bias constraint equation (4.2) to

Vbias =
N∑
i=1

Fili. (4.12)

To lowest order, the energy levels scale with βi according to

εC,mi = εC,m

β2
i

. (4.13)

These modifications imply that the effective dielectric constant becomes dependent on i,

εi = li/(wi/εw + di/εd). (4.14)

Following Bonilla et. al. [49], equations (4.3) and (4.4) are modified to account for the

effects of disorder on v(f)(Fi) and τi:

v(f)(Fi) = ~3

2m∗2
3∑

m=1

li
(
γC1 + γC,m

)
τi(εiC,m)(

εC,1i − ε
C,m
i+1 + eFi

(
di + wi+wi+1

2

))2
+
(
γC,1 + γC,m

)2 (4.15)

τi = 16k2
i k

2
i+1α

2
i(

k2
i + α2

i

)(
k2
i+1 + α2

i

)(
wi + 1

αi−1
+ 1

αi

)(
wi + 1

αi+1
+ 1

αi

)
e2αidi

(4.16)

58



Computing the Poincaré map Chapter 4

The parameters γC,m describe the width of the Lorentzian broadening functions that

govern the degree to which the energy levels must be aligned in order for tunneling to

take place. From reference [49], these are taken to be γC,1 = 2.5 meV, γC,2 = 8.0 meV,

γC,3 = 24 meV. The magnitudes of the propagating (kmi ) or decaying (αmi ) wavevectors

are given by

~kmi =
√

2m∗εC,mi (4.17)

~kmi+1 =
√

2m∗
(
εC,mi + e

[
di + 1

2
(
wi + wi+1

)]
Fi

)
(4.18)

and

~αmi−1 =
√

2m∗
(
eVb + e

[
di−1 + wi

2

]
Fi − εC,mi

)
(4.19)

~αmi =
√

2m∗
(
eVb − e

[1
2wi

]
Fi − εC,mi

)
(4.20)

~αmi+1 =
√

2m∗
(
eVb − e

[
di + 1

2wi + wi+1

]
Fi − εC,mi

)
(4.21)

4.2 Computing the Poincaré map

The Poincaré map is used to gain insight into the structure of trajectories through

high-dimensional space. In this section we outline our method of numerically comput-

ing the Poincaré map. The evolution equations (4.1)–(4.6) are evolved in time using

the forward Euler method and the trajectory (Fi(t), ni(t), J(t)) through the (2N + 1)-

dimensional phase space is stored. When applicable, the stochastic terms ξi(t) and η(t)

are included using the Euler-Maruyama method. The first step is to construct the phase

portrait, i.e. to project the evolution onto a two-dimensional surface in phase space.

We choose the surface spanned by the the coordinates (Fi, Fj) for some values of i and
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j near the anode and cathode of the SSL. Several phase portraits corresponding to a

period-doubling cascade are illustrated in the second column of Figure 4.2.

The next step is to compute the Poincaré map of the phase portrait. After sufficient

time has elapsed, and regardless of the initial conditions, the phase space trajectory settles

onto one of the following time-invariant structures: (a) Fixed point, (b) periodic orbit, (c)

strange attractor. The Poincaré map is used to distinguish between these structures. It is

computed according to the following procedure: First, the transient behavior associated

with the initial conditions is excised from the trajectory and only the remaining data is

considered in what follows: When Fi(t) passes through its median value, the time t∗ and

the field Fj(t∗) are stored. We also compute the quantity Ḟi(t∗) from equation (4.1). We

then discard all of the values of t∗ for which Ḟi(t∗) > 0, in order to prevent sampling

the same orbit more than once per cycle. The remaining points constitute the Poincaré

map PFi. The Poincaré map transforms the essentially continuous trajectory through

phase space into a discrete map from the one-dimensional interval onto itself [46]. We

represent it visually in terms of (a) phase portraits, plotting PFj(t∗) against PḞj(t∗), as

in the third column of Figure 4.2, or (b) bifurcation diagrams, plotting PFj against some

external parameter such as the bias voltage, as in the bottom row of Figure 4.3.

Both fixed points and periodic orbits appear as a single point in the visualization of

the Poincaré map. However, fixed points are easily distinguished from periodic orbits

(one-cycles) by computing the power spectrum associated with the current J(t):

P [J ](f) =
∣∣∣∣∫ tf

ti
dt e−i2πftJ(t)

∣∣∣∣2 , (4.22)

where f is the frequency. A period-doubling bifurcation is identified when one-cycles

transition to two-cycles, producing two points in the Poincaré map. Chaotic regions are

identified where a proliferation of period-doubling bifurcations occur, and the number of
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Figure 4.2: Representative phase portraits for the 10-period GaAs/Al0.7Ga0.3As SSL.
The first column shows the average current J plotted against time t. The second
column shows the phase portrait F6(t) plotted against F4(t). The third column shows
the Poincare map PḞ6(t∗) plotted against PF6(t∗). The last column shows the power
spectrum of J(t). A periodic oscillation is shown in the first row. The period-doubling
cascade to a chaotic attractor is shown in the bottom four rows. Reprinted figure with
permission from M. Ruiz-Garcia et al., Phys. Rev. B 95, 085204 (2017). Copyright
(2017) by the American Physical Society.

61



Computing the Poincaré map Chapter 4

Power Spectra and Bifurcation Diagram
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Figure 4.3: Power spectra and bifurcation diagram of a 10-period GaAs/Al0.7Ga0.3As
SSL. (Top row) Power spectrum of J(t) versus voltage. (Bottom row) Bifurcation di-
agram of Poincaré map versus voltage. The Hopf bifurcation from the steady state
is shown in the first column. A period doubling bubble is shown in the second col-
umn. A period-doubling cascade is shown in the third column. Reprinted figure with
permission from M. Ruiz-Garcia et al., Phys. Rev. B 95, 085204 (2017). Copyright
(2017) by the American Physical Society.

points in the Poincaré map increases without bound, yielding a fractal structure in the

bifurcation diagram.

Dynamical structures revealed by the Poincaré map are associated with various power

spectra as follows: (a) Periodic orbits correspond to a series of peaks with widths of the

same order as the frequency bin size, falling at integer multiples of the fundamental

frequency, (b) period doubling bifurcations are recognized when the number of peaks in

the spectrum changes by a factor of two, and a new peak appears in the power spectrum

at half the fundamental frequency, (c) chaotic attractors exhibit power spectra containing

both sharp peaks and broadband noise. We illustrate the bifurcation diagram and power

spectrum in Figure 4.3.
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4.3 Results

Dynamical instabilities are found in two distinct plateaus, over which the local electric

fields of the SSL cease to increase monotonically as a function of Vbias. The first plateau

occurs at very low voltages, where tunneling transport between the ground states of

adjacent wells are nearly aligned with one another in energy. The second plateau occurs

in the region of Vbias such that the external electric field tilts the potential of the SSL to

align the ground state of well i with first excited state of well i + 1. We do not observe

a third plateau because the third excited state becomes unbound at bias voltages that

align it with the ground state of the previous well.

Within a plateau, we may observe period-doubling bifurcations, period-doubling cas-

cades, and chaotic attractors, whose locations depend upon on the values of the rest of

the parameters, in particular σ, the contact conductivity, N , the number of wells making

up the SSL, and β (ζ), the strength of the perturbations to the well (barrier) widths.

Shorter superlattices exhibit faster oscillations and a greater variety of dynamical behav-

ior in the second plateau [34]. We are concerned with finding the parameter regions with

the strongest nonlinear phenomena. Our observable of interest is the periodicity, i.e. the

number of distinct points in the Poincaré map, which is equivalent to the number of

branches in the bifurcation diagram. The nonlinear orbits of higher periodicity are found

deeper into the period doubling cascade, either within or near to the chaotic windows.

An important empirical parameter of the SRT model is the contact conductivity. In

Figure 4.4, we show the response of the periodicity to variations in the contact conduc-

tivity. We have chosen the values of N which maximize the total area of the high-period

orbits in the Poincaré mapping as a function of voltage: N = 14 for GaAs/Al0.7Ga0.3As

SSLs, and N = 10 for GaAs/Al0.45Ga0.55As SSLs.

In both cases we observe that the second plateau remains in existence for very low
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Figure 4.4: Varying the conductivity. The second plateau is shown in the figures. It
exists for low conductivities, then fragments and disappears for higher conductivity.
The black dots and bands indicate orbits of high periodicity.

conductivity, then narrows, fragments, and disappears at sufficiently high conductivity.

The highest-period orbits and chaos are concentrated at high conductivity and the highest

voltages contained in the second plateau. These results suggest that in order to find the

most chaotic dynamics, the highest possible conductivities that allow for the existence of

the second plateau should be sought out. In the rest of our results, we set the conductivity

to σ = 0.06 A/Vm for GaAs/Al0.7Ga0.3As SSLs (the same as in [34]) and σ = 0.30 V/Am

for GaAs/Al0.45Ga0.55As SSLs.

We next consider varying N , the number of periods making up the SSL in Fig-

ure 4.5. In both cases, we observe a band of higher periodicity including chaotic behav-

ior in the vicinity of N = 10. The shorter superlattice appears to have a gap in the

chaotic behavior between N=10 and N=15, but in fact the voltage windows containing

the chaos are too narrow to be observed at this scale. The band of chaotic behavior in the

GaAs/Al0.7Ga0.3As SSLs is located along the higher voltages of the second plateau. In

both cases, the chaotic windows narrow and finally close for values of N between 15 and
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(a) GaAs/Al0.7Ga0.3As SSL
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(b) GaAs/Al0.45Ga0.55As SSL

Figure 4.5: Varying the number of wells N in the superlattice. A band of higher
period orbits appears around N = 10, both for the tall barriers on the left and shorter
barriers on the right. For the latter barriers the windows narrow to become hardly
observable between N = 11 and N = 14.

20. Part of the first plateau is also visible in the bottom right corners of Figures 4.5b(a)

and (b).

Finally, we investigate the sensitivity of the chaos to disorder by varying β in Fig-

ure 4.6. The width of one GaAs monolayer is about 0.28 nm. In our simulations, the

addition of a single monolayer is capable of destroying the chaos in the case of the taller

barriers. On the other hand, the chaotic signal of the shorter barriers appears to be

enhanced by the presence of disorder. We note that the location of the added disorder

is nearer to the cathode for the taller barriers and nearer to the anode for the shorter

barriers. It would would be interesting to further investigate the conditions where the

chaos is enhanced by the presence of disorder.

We simulate the effects of noise on the bifurcation diagram in Figure 4.7, including

both shot noise and bias voltage noise. We can see that in regions where the periodicity

(number of branches in the bifurcation diagram) is low, the noise widens the Poincaré
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Figure 4.6: Varying the disorder (defect size) β. (Left) the tall barriers permit high
periodicity only for small values of β. (Right) the short barriers show greatly enhanced
high periodicity at larger values of disorder (β ≥ 0.65 nm).

map from an isolated point into a cluster, but the branches are still recognizable. On the

other hand, where the periodicity is higher or the dynamics are chaotic, the noise widens

the Poincaré map into a broad band.

Let us imagine an experiment which detects the local field F6, shown in Figure 4.7, at

some finite resolution, i.e. the number of bins, with the objective of reading out a sequence

of random bits. Then the random bit generation rate will scale proportionally to the

width of the Poincaré map times the resolution of the imaginary F6-sensor. The bands

within the regions of higher periodicity or intrinsic dynamical chaos would cover a larger

number of bins. Hence these regions would generate random bits at higher bandwidth in

comparison with the regions of lower periodicity. In practice, the local current I6 would

be easier to measure, but the results would be qualitatively very similar.
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Figure 4.7: Including shot noise and bias noise for the N=10 GaAs/Al0.7Ga0.3As SSL;
the simulation parameters are otherwise the same as in Figure 4.3. The addition of
noise widens the branches of the bifurcation diagram obscures the fine details of the
period-doubling cascade.

4.4 Conclusions

The discovery of robust, high-frequency, intrinsic nonlinear phenomena and chaos in

shorter semiconductor superlattices in the sequential tunneling regime points the way

toward a variety of useful devices. In this work, we have characterized the response

of the chaotic oscillations to variations in the number of SSL periods and the contact

conductivity, providing a guide for the experimental investigation of the emergence of

chaos in short SSLs. The chaos is predicted to appear as the result of a period-doubling

cascade.

We have also investigated the response of the chaotic signal to stochastic perturbations

in the local tunneling currents and the bias voltage. In contrast with the slower, noise-

driven chaos in the first plateau for longer superlattices, we observe that shorter SSLs

allow for faster, intrinsic chaos in the second plateau.

We have also investigated the effects of variations in the widths of the wells and
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barriers on the period-doubling cascade. We find that the period-doubling cascade is

very sensitive to these perturbations. An error of only a single monolayer has a strong

impact on the width of the windows of chaotic behavior. The chaotic windows may be

either widened or suppressed depending on the location of the irregularities, hence it may

be possible to engineer aperiodicities in SSLs in order to increase the chaotic signal.

We had initially conjectured that the presence of aperiodicities could unfold the

period-doubling bifurcation into a second Hopf bifurcation. However, this turned out

not to be the case. Our study of the DC-biased SRT model shows only a period-doubling

route to chaos (no second Hopf bifurcation). On the experimental side, quasi-periodic

orbits and the associated invariant tori are commonplace. An interesting theoretical ques-

tion is: By what mechanism do quasi-periodic orbits appear in weakly-coupled SSLs?
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Transmission-reflection states

Figure A.1 shows the basic geometry of the transmission-reflection problem in one di-

mension. The active region is taken to be situated inside an infinitely-long channel in the

x-direction. The interval x ∈ [0, Lx] containing the active region is discretized into the

Nx+1 points xj = jhx, where j = 0 . . . Nx and hx = Lx/Nx. In the units of Appendix C.1

and the centered difference scheme, which has accuracy of O(h2
x), equation (1.10) is writ-

ten on the interior of the active region as

−
ψnj+1 + ψnj−1 − 2ψnj

2∆x2 − 1
2
∑
n′

[
2wnn′j

ψn
′

j+1 − ψn
′

j−1

2∆x + unn
′

j ψn
′

j

]
=
[
Ex − vj − En

zj

]
ψnj ,

(A.1)

where j = 1 . . . J − 1. In order to impose the discrete transparent boundary condition

below, we will assume that the contacts are completely flat in the x-direction: v1 = v0,

unn
′

1 = 0, wnn′1 = 0, and En
z1 = En

z0. This implies a homogeneous Neumann boundary

condition on the electrostatic potential.
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Figure A.1: Schematic diagram of the 1-dimensional transmission-reflection problem
on a 100nm active region

Within the contacts, we have wnn′ = 0, unn′ = 0,

εn(x) =


εn0 , x ≤ 0

εnJ , x ≥ L

and

v(x) =


v0, x ≤ 0

vJ , x ≥ L

Then the discrete Schrödinger equation simplifies to

−1
2
ψnj+1 + ψnj−1 − 2ψnj

∆x2 = [Ex − vj − εn]ψnj

The solution in this case consists of left-and right-travelling plane waves.

Within the left contact,

ψnj = (σn±)j, j ≤ 0
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where

σn± = 1− (Ex − v0 − εn0 )∆x2 ± i
√

2(Ex − v0 − εn0 )∆x2 − (Ex − v0 − εn0 )2∆x4

Within the right contact,

ψnj = (τn±)j, j ≤ 0

where

τn± = 1− (Ex − vJ − εnJ)∆x2 ± i
√

2(Ex − vJ − εnJ)∆x2 − (Ex − vJ − εnJ)2∆x4

For a wave injected from the left, we need ∆x <
√

2/(Ex − v0 − εn0 ) in the left contact,

in order that (σn±)j be a traveling wave. Within the right contact, waves injected from

the left may be either traveling or evanescent, depending on the sign of the discriminant.

A similar condition on ∆x holds for waves injected from the right contact.

The discrete momentum kn of a left- or right-injected wave is defined by the relation-

ship 
(Ex − v0 − εn0 )∆x2 = 1− cos kn0 ∆x, kn0 > 0 (left contact)

(Ex − vJ − εnJ)∆x2 = 1− cos knJ∆x, knJ < 0 (right contact)

Then we have 
σn± = e±ik

n
0 ∆x, (left contact)

τn± = e±ik
n
J∆x, (right contact)

We will take

∆x < min


{√

2/(Ex − v0 − εn0 ), π/kn0
}

{√
2/(Ex − vJ − εnJ), π/knJ

}
For a unit-amplitude wave injected from the left contact, the boundary condition at
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the left contact is

ψnj = (σn+)j +R(σn+)−j, j ≤ 1

where R is the reflection amplitude. Considering the j = 0 and j = 1 terms above and

eliminating the R between them, the DTBC at the left contact is

−(σn+)−1ψn0 + ψn1 = σn+ − (σn+)−1

At the right contact,

ψnj = T (τn+)j−J , j ≥ J − 1

where T is the transmission amplitude. Considering the j = J and j = J − 1 terms

above and eliminating T between them, the DTBC at the right contact is

ψnJ−1 − (τn+)−1ψnJ = 0

Then the discrete Schrödinger equation for a unit-amplitude wave injected from the left

into mode n is given in equation (A.2). The matrix on the lefthand side of the discrete

stationary Schrödinger equation above is identical to G−1, where G is the non-equilibrium

Green function. The discrete transmission-reflection equation has a block-tridiagonal

structure, which makes it considerably easier to solve.
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Numerical solution of Poisson’s

equation

Here we describe the numerical solution of Poisson’s equation in 2d We start with the

continuous Poisson equation

(∂2
x + ∂2

z )u(x, z) = f(x, z)

with mixed boundary conditions:

• Specify the electric field at the source and drain contacts, x = 0, Lx (Neumann

condition)

• Specify the electric potential along the top and bottom contacts, z = 0, Lz (Dirichlet

condition)

It is tempting to use the discrete sine transform (DST) along the Dirichlet direction and

a discrete cosine transform (DCT) along the Neumann direction. However the purely

spectral method only works properly for the pure Dirichlet problem. Placing a line of
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constant charge between the source to the drain, the pure spectral method results in a

potential function equal to zero. This is because the zero-frequency term in the basis of

cosines must be neglected in order to invert the Laplacian operator, and DCT of a line

of constant charge contains only the zero-frequency contribution.

Therefore, a hybrid approach has been implemented following some notes by William

McLean of Northwestern University. The idea is to take only the DST, which results in

a set of uncoupled tridiagonal equations in the mixed coordinate space, which may be

solved with the Crout algorithm, in parallel.

Next, we make a finite difference approximation. Let uij ≈ u(xi, zj), and similar for

f(x, z), where

(xi, zj) = (ihx, jhz), i = 0 . . . Nx, j = 0 . . . Nz

Using the central difference scheme, the discrete Poisson equation is

ui+1,j + ui−1,j − 2ui,j
h2
x

+ ui,j+1 + ui,j−1 − 2ui,j
h2
z

= fi,j

Next, we take the DST in the z-direction. Let

ui,j =
Nz−1∑
m=1

ûi,m sin
(
πjm

Nz

)

Making use of the identity

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

we have

ui,j+1 =
∑
m

ûi,m

[
sin

(
πjm

Nz

)
cos

(
πm

Nz

)
+ cos

(
πjm

Nz

)
sin

(
πm

Nz

)]
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ui,j−1 =
∑
m

ûi,m

[
sin

(
πjm

Nz

)
cos

(
πm

Nz

)
− cos

(
πjm

Nz

)
sin

(
πm

Nz

)]

As a result, the second term in Poisson’s equation simplifies considerably. After a few

more steps, Poisson’s equation becomes

ûi+1,m + ûi−1,m − 2ûi,m
h2
x

+ 2
[
cos

(
πm

Nz

)
− 1

]
ûi,m
h2
z

= f̂i,m

which is equivalent to

ûi+1,m + ûi−1,m

h2
x

+
(

2
h2
z

[
cos πm

Nz

− 1
]
− 2
h2
x

)
ûi,m = f̂i,m

In these mixed coordinates, Poisson’s equation appears as a set of Nz − 1 uncoupled

tridiagonal equations (one for each value of m). Each tridiagonal equation will involve

Nx + 1 variables.

Next we need to address the boundary conditions. At x = 0, Lx (source and drain

contacts), we will have Neumann conditions.

∂x u(x, z)|x=0 = s(z)

∂x u(x, z)|x=Lx = d(z)

We will impose these conditions using a centered difference scheme. Introducing ’ghost

points,’ labeled with a tilde, which represent the value of u just outside the computational

domain, we have
u1,j − ũ−1,j

2hx
= sj

ũNx+1,j − uNx−1,j

2hx
= dj

for j = 1 . . . Nz − 1, The data at the ghost points is completely determined by the data
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inside the computational domain

ũ−1,j = u1,j − 2hxsj

ũNx+1,j = uNx−1,j + 2hxdj

Substituting into Poisson’s equation at the boundaries, we have

2û1,m

h2
x

+
(

2
h2
z

[
cos πm

Nz

− 1
]
− 2
h2
x

)
û0,m = f̂0,m + 2

hx
ŝm

and
2ûNx−1,m

h2
x

+
(

2
h2
z

[
cos πm

Nz

− 1
]
− 2
h2
x

)
ûNx,m = f̂Nx,m −

2
hx
d̂m

We can see that the difference between the solution of the inhomogeneous problem and

the homogeneous problem may be accounted for by a modification of the source term at

the boundary.

f0,j → f0,j + 2
hx
sj

fNx,j → fNx,j −
2
hx
dj

At the boundaries at z = 0, Lz (top and back gates) we will have Dirichlet conditions.

u(x, z)|z=0 = b(x)

u(x, z)|z=Lz = t(x)

In discrete form, these conditions are

ui,0 = bi
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ui,Nx = ti

Similarly to before, the solution to the inhomogeneous problem may be obtained from

the homogeneous problem with a modified source term.

fi,1 → fi,1 −
1
h2
z

bi

fi,Nz−1 → fi,Nz−1 −
1
h2
z

ti

A more detailed explanation may be found in Numerical Recipes ch 19.4 [6].
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Some elementary results

These results are useful as a reference throughout the discussion of PMLs

C.1 Units

Start with Schrödinger’s equation

i~∂tψ(x, t) =
[
− ~2

2m∂2
x + v(x)

]
ψ(x, t)

We choose the unit of energy [E] to be

[E] = 1meV

and the unit of length [x] such that the coefficient in front of the x-derivative term is

equal to 1/2
~2

m[x]2 J · 1eV
1.6 · 10−19J ·

1000meV
1eV = 1meV,
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where m = me/15 is the effective mass of the electron in GaAs. This gives the unit of

length

[x] = 33.8nm

We choose the unit of time so that the coefficient in front of the t-derivative term is equal

to i
~
[t]J ·

1eV
1.6 · 10−19J ·

1000meV
1eV = 1meV

This gives the unit of time

[t] = 0.658ps

(notice that 1ps = 1THz−1).

C.2 Gaussian wave packets

In our unit system, with v = 0, Schrödinger’s equation is

i∂tψ(x, t) = −1
2∂

2
xψ(x, t).

We can see that a traveling wave solution is

ξk(x, t) = e
i

(
kx−1

2k
2t

)
.

We can write the general solution as

ψ(x, t) =
∫ dk

2πA(k)ξk(x, t).

Choosing

A(k) = N e−
1
2σ

2(k−k0)2
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and doing the integral over k, we have

ψ(x, t) = N√
2π

1√
σ2 − it

exp
[
−

1
2x

2 + iσ2(k0x− 1
2k

2
0t)

σ2 − it

]

With the normalization 1 =
∫
dx |ψ(x, t)|2, we have N =

√
2σ
√
π.

C.3 Discretization of Schrödinger’s equation in 1D

We begin with

i∂tψ(x, t) = [−1
2∂

2
x + v(x)]ψ(x, t).

Discretizing the x-coordinate x→ xj, where xj = jhx, and j = 0 . . . Nx, with the central

difference scheme, we have

i∂tψ(xj, t) = − 1
2h2

x

[ψ(xj−1, t) + ψ(xj+1, t)− 2ψ(xj, t)] + v(xj)ψ(xj, t) +O(h3
x).

We rewrite this in matrix form as

i∂t ~ψ(t) = H ~ψ(t),

where ~ψ(t) = (ψ(x0, t), . . . , ψ(xNx , t))ᵀ, and

[H]j,j′ = − 1
2h2

x

(δj−1,j′ + δj+1,j′ − 2δj,j′) + v(xj)δj,j′ .

The boundary values of H are determined from the vanishing boundary condition

ψ(x0, t) = ψ(xNx , t) = 0.
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Discretization of Schrödinger’s equation in 1D Chapter C

Discretizing the t-coordinate t → ts, where ts = sht, and s = 0, 1, . . ., with the Crank-

Nicolson scheme, we have

[1− i
2htH]~ψ(ts+1) = [1 + i

2htH]~ψ(ts) (C.1)
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