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ABSTRACT OF THE DISSERTATION

Numerical, spectral, and group properties of random butterfly matrices
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Michael Cranston, Chair

The recursive structure of butterfly matrices has been exploited to accelerate common meth-

ods in computational linear algebra. This was first developed by D. Stott Parker [31].

Recently, the machine learning community has taken particular interest in these applica-

tions. Butterfly structures can now be found integrated into architectures for software used

in learning fast solvers for large linear systems and in image recognition, covering tasks such

as early cancer identification or smart vehicle navigation [1, 6, 27]. These new advances

have enabled less powerful computing systems, such as in mobile devices or portable smart

devices, to effectively utilize computationally heavy tools that were previously unavailable.

Although empirical evidence supports the use of butterfly matrices in these newer tech-

nologies, the literature on the mathematical theory that justified these results is lacking.

Building on research started in [37], I will give a fuller picture of the numerical, spectral,

and group properties of particular ensembles of random butterfly matrices. This document

will provide a stronger mathematical foundation to further support the approaches already

found in practice and can inform future applications not yet explored.

xi



Chapter 1

Introduction

In the light of the moon a little egg lay

on a leaf.

Eric Carle

Random butterfly matrices were first introduced by D. Stott Parker in 1995 as a matrix

realization of a recursively constructed randomization algorithm related to the Fast Fourier

Transform (FFT). Butterfly matrices get their name from the associated data flow “butterfly”

diagram used in the radix-2 Cooley-Tukey FFT (see Figure 1.1, which is adapted from [29]).

The FFT has many desirable attributes and has become a modern staple in a wide swath

of disciplines, including engineering, mathematics and music. The FFT has been in wide

use since the mid-1960s, when Cooley and Tukey published their eponymous algorithm that

allowed efficient computation of the Fourier transform, enabling its use in signal processing

and image compression [3]. The IEEE magazine Computing in Science & Engineering has

cited the FFT as one of the 10 most important algorithms of the 20th century [12].

Parker’s focus on butterfly matrices was on their application in removing the need for pivoting

in Gaussian elimination. We say a matrix is block degenerate if some upper left subblock is

1



Figure 1.1: Data flow radix-2 butterfly diagram for a DFT for N = 8, adapted from [29]
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singular, in which case an attempt at running Gaussian elimination without pivoting would

halt at an attempt to divide by 0. Parker showed the following application of butterfly

matrices can ensure any nonsingular matrix can be transformed into a block nondegenerate

matrix.

Theorem 1.1 ([31]). If A is a nonsingular square matrix and U, V are random butterfly

matrices, then U∗AV is block nondegenerate with probability 1.

For an order N matrix A and a vector x ∈ RN , the matrix-vector product Ax can be

computed using O(N2) arithmetic operations. Using the block structure of an order N

butterfly matrix Ω, one can carry out the matrix-vector multiplication Ωx using O(N log2N)

steps. Hence, we can carry out a matrix-matrix multiplication in O(N2 log2N) steps. So

when solving the linear system

Ax = b (1.1)

2



using Gaussian elimination, which takes O(N3) steps, we can instead solve the equivalent

system

(UAV ∗)(V x) = Ub (1.2)

now using Gaussian elimination without pivoting, for U, V random butterfly matrices. The

above discussion shows that only O(N2 log2N) operations are needed to get from (1.1) to

(1.2), and this does not impact the leading-order complexity of Gaussian elimination.

The additional scans needed to use Gaussian elimination with partial pivoting, compared to

Gaussian elimination without pivoting, also do not impact the leading complexity (unlike

for complete pivoting). However, the costs of moving large amounts of data using pivoting

can be substantial on many high performance machines, as the data movement can interrupt

the data flow. In [2], Baboulin, Li and Rouet showed that pivoting comprised approximately

20 percent of the total process time in an implementation of Gaussian elimination with full

pivoting. Pivoting and the communication overhead to coordinate data movements also is a

hindrance for parallel architectures and block algorithms [31]. Removing the need of pivoting

would clear up this potential bottleneck to enable faster computations.

The use of butterfly architectures have recently spiked in the machine learning and image

processing communities, with a particular rise in Convolution Neural Network (CNN) ar-

chitectures [1, 6, 27]. However, applications are ahead of the theoretical understanding of

the properties of random butterfly matrices. Building on top of [31, 37], the purpose of this

document is to fill in some of these missing pieces.

3



1.1 Outline

The remainder of Chapter 1 will introduce tools and results in algebra, linear algebra, nu-

merical analysis, probability and random matrix theory that will be used throughout this

document. In particular, later chapters will rely heavily on the properties of the Kronecker

product of matrices (Section 1.4.4) and an application of the Subgroup algorithm (Sec-

tion 1.6.4). A sufficient background for Gaussian elimination is provided, which includes a

formal proof regarding the uniqueness of the factors in the LU factorization using Gaussian

elimination with partial pivoting (see Theorem 1.10).

Additional preliminary material is established to support two independent results found in

Appendices A and B. The first project (Appendix A) relates to the divisibility of random

integers, which can be computed in a simple closed form using the characteristic function

(see Proposition A.1). This can be used to give alternative proofs for standard results of

limiting distributions of particular random variables, such as the binomial distribution.

The second project (Appendix B) provides a novel result showing spacings between ocean

waves can be accurately modeled using random matrices. Similar random matrix statistics

have been found to model other mathematical objects as well as physical systems, such as

transportation systems. Our project provides a sequence of new filtering techniques for ocean

wave data, using both frequency and time domain. We then establish standard statistical

significance of the model fit for the normalized spacings between peaks of successive ocean

waves to the Wigner surmise, which approximately models the spacings between eigenvalues

of Gaussian Unitary Ensemble random matrices. The remaining chapters focus on butterfly

matrices.

Chapter 2 gives a thorough background for butterfly matrices, including group and topo-

logical properties, as well as introducing new general butterfly models of arbitrary order. A

particular focus of this document falls on butterfly matrices formed using Kronecker products.

4



These structures enable closed-formed computations for particular statistics or factorizations

that are usually difficult or can only be approximated throughout the randomized linear al-

gebra literature. Additionally, new connections between butterfly matrices and Hadamard

matrices are established, including a new method to generate Hadamard matrices using but-

terfly matrices. Chapter 3 introduces the main definitions for random butterfly matrices,

which includes an overview of classification of the general Haar-butterfly models, which are

random butterfly matrices formed using Kronecker products. Chapter 4 gives an overview

of some spectral properties of butterfly matrices. This chapter begins a particular focus on

the Haar-butterfly models, whose Kronecker product structure enables closed-form matrix

factorizations, such as the eigenvalue and LU decompositions.

Chapter 5 focuses on numerical properties of butterfly matrices. This chapter explores the

application of random butterfly matrices to remove the need for pivoting when using Gaussian

elimination to solve a linear system. Parker showed randomizing a linear system on the left

and right (two-sided randomization) by random butterfly matrices almost surely enables

a linear system to have an LU factorization (see Theorem 1.1). Some implementations of

random butterfly models already in practice have used a simplified one-sided randomization

architecture. We present a result that shows one-sided randomization does not ensure an

LU factorization exists when using Haar-butterfly models. Section 5.2 gives an overview

on sampling Haar orthogonal matrices before introducing a butterfly QR algorithm, which

enables Haar orthogonal matrices sampling using butterfly matrices.

Section 5.3 provides a novel result giving the full distribution of the growth factors of Haar-

butterfly matrices using no pivoting, partial pivoting, or rook pivoting. This is a significant

step forward for analysis of growth factors of random matrices, which has been limited to

first moment estimates in the existing literature. Additional results relating to complete

pivoting growth factors are also introduced, which connect to an open problem relating to

Hadamard matrices.

5



1.2 Notation

Throughout the majority of the text, for an integer n we will writeN = 2n so that n = log2N .

Write Z,Q,R,C, respectively, for the integers, rationals, real numbers and complex numbers.

Let F denote one of these sets during this section, although most of the text will use F = R

or C. Write 1A for the indicator function of the set A and δij = δ(i, j) for the Kronecker

delta function. Let [n] = {1, 2, . . . , n}.

The power set of a set X will be denoted 2X = {A : A ⊂ X}. The commutator of

two elements in a ring is [x, y] = xy − yx, and we say x, y commute if [x, y] = 0. For

z = a + bi ∈ C, we write z̄ = a − bi for the complex conjugate, and x̄ for the vector where

we take the complex conjugate of each component of x. Similarly, treating an n×m matrix

as a vector in Cnm, we can define A for A ∈ Cn×m. For matrix notation, we write AT to

denote the transpose of A so that (AT )ij = Aji, and A∗ to denote the conjugate transpose

A∗ = AT . For f : R → S a function, we will occasionally shorthand the induced map

from Rn → Sn such that f is applied at each component again as f : Rn → Sn (e.g.,

f(x) = (f(x1), . . . , f(xn)) for x = (x1, . . . , xn) ∈ Rn). If X, Y ⊂ Z for Z a multiplicatively

closed set, then XY = {xy ∈ Z : x ∈ X, y ∈ Y }.

Let ei denote the standard basis elements of Fn with jth component δij. Let Eij = eie
T
j

be the standard basis elements of Fn×m, the collection of n×m matrices with entries in F.

Sometimes I will also write Mn(F) or Mm,n(F) to denote Fn×n and Fn×m, respectively, while

F may be suppressed if it does not needed to be emphasized. For A ∈ Fn×m, write Aij to

denote the element in row i and column j (where Aij = eTi Aej). Note (Ek`)ij = δikδj`. By

definition, we have

EijEk` = δjkEi`. (1.3)

6



Write I for identity matrix and 0 for the zero matrix or vector, where the dimensions are

either made explicit by using appropriate subscripts (e.g., I2 is the order 2 identity matrix) or

implicit from context. Let 1n =
∑

i ei be the vector of all ones. We will write f(n) = O(g(n))

if there exists a constant C > 0 such that f(n) ≤ Cg(n) for n sufficiently large.

Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1}, with S1 = {(cos θ, sin θ) : θ ∈ [0, 2π]}. Let Tn = (S1)n

denote the higher dimensional tori, with T2 = S1 × S1 the standard torus.

Let O(n) denote the set of order n (real) orthogonal matrices O such that O−1 = OT and

U(n) the set of order n (complex) unitary matrices U with U−1 = U∗. Let SO(n) ⊂ O(n)

and SU(n) ⊂ U(n) denote the special orthogonal and special unitary subgroups, which are

defined by the additional criterion that such matrices have unit determinant.

Let |A| denote the matrix such that |A|ij = |Aij|, i.e., apply the absolute value entrywise

throughout the matrix. For b ∈ R and n > 0, let b (mod n) denote the (unique) number

d ∈ [0, n) such that d ≡ b (mod n).

1.3 Algebra

This section gives an overview of tools and definitions from algebra that will be used later

in the text.

1.3.1 Divisibility

We say for d, n ∈ Z that d divides n, written d | n, if there exists c ∈ Z such that n = dc.

Write the greatest common divisor of n and m as

gcd(n,m) = min{|d| : d | n, d | m} = min
a,b∈Z
|an+ bm|. (1.4)

7



Recall Euclid’s algorithm can be used to compute gcd(n,m) as follows: with n ≥ m, and write

n = qm+r for integers q, r with 0 ≤ r ≤ m; if r = 0, return m, otherwise set (n,m) = (m, r)

and restart. In particular, working backward through this algorithm, one would then be able

to write d as a linear combination of n and m. Let the least common multiple of n and

m be lcm(n,m) = min{M ∈ Z : n,m | M ;M ≥ 1}. Recall nm = gcd(n,m) · lcd(n,m). If

gcd(n,m) = 1, then n and m are relatively prime or coprime. p ∈ Z is a prime number

if d | p implies d = ±1 or d = ±p. Let P = {2, 3, 5, . . .} denote the set of all positive prime

numbers. The following result shows that Z is a unique factorization domain such that every

integer can be written as a unique product of powers of prime numbers:

Theorem 1.2 (Fundamental Theorem of Arithmetic). If n is a positive integer, then there

exists a unique sequence of nonnegative integers e such that n =
∏

p∈P p
ep.

A nonzero integer is composite if it is not prime.

1.3.2 Group theory

A nonempty set G with an associative binary operator (which we will denote by multiplica-

tion) is a group if there exists e ∈ G such that ge = eg = g for all g ∈ G, and for every

g ∈ G there exists g−1 ∈ G such that gg−1 = g−1g = e. I will often write e = 1 when conve-

nient. G is abelian if the group action is commutative, i.e., ab = ba for all a, b ∈ G. Let Cn

denote the cyclic group of order n such that Cn = {xk : xn = 1, k ∈ Z}. g1, g2 ∈ G are

conjugate if there exist h ∈ G such that g1 = hg2h
−1. Conjugacy constitutes an equivalence

relationship on G, and hence G is a disjoint union of its conjugacy classes. If G is abelian,

then every element constitutes a distinct conjugacy class. We say g ∈ G has order k if k

is the minimal positive integer such that gk = 1. Moreover, if g has order k, then gm = 1 if

and only if k | m.

H ⊂ G is a subgroup of G if H is closed under the the group action of G and inverses. A

8



straightforward verification confirms

Proposition 1.1 (Subgroup criterion). Let G be a group and ∅ 6= H ⊂ G. Then H is a

subgroup of G if and only if xy−1 ∈ H for all x, y ∈ H.

N is normal in G if N is a subgroup of G and for all x ∈ N, y ∈ G, yxy−1 ∈ N . The

quotient space of (left) cosets of a subgroup H, denoted G/H, is the collection of sets

{xH : x ∈ G} where xH = {xh : h ∈ H}. Let [G : H] = |G/H| denote the index of H in

G. If N is a normal subgroup, then G/N is a group with group action (xN)(yN) = xyN .

If [G : H] = 2, then H is necessarily normal in G since the left and right nontrivial coset

of H must align so that xH = Hx for x 6∈ H. A function f : G → H for groups G and H

is a group homomorphism if f(ab) = f(a)f(b). Furthermore, if f is bijective, then f is

a group isomorphism, and we write G ∼= H to denote G and H are isomorphic groups.

Let ker f = {g ∈ G : f(g) = 1} be the kernel of a group homomorphism f . Then ker f is a

normal subgroup of G while f(G) is a subgroup of H.

Theorem 1.3 (Fundamental Homomorphism Theorem). If f : G → H is a group homo-

morphism, then G/ ker f ∼= f(G).

Proof. This follows naturally through restriction from the commutative diagram

G G/ ker f

H

π

f
f̃

for π : G→ G/ ker f the natural quotient map and f̃ the induced map from this diagram.

In particular, if f is a surjective group homomorphism, then G/ ker f ∼= H. For example,

det : O(N)→ {±1} is a group homomorphism with ker det = SO(N).
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If N is normal in G, then HN is a subgroup of G: for any hn, h′n′ ∈ HN we have

(hn)(h′n′)−1 = (hh′−1)(h′(nn′−1)h′−1) ∈ HN . Furthermore, if H ∩ N = {1}, then HN =:

HnN is a semidirect product of H and N . Write HnϕN for ϕ(n) an inner group homo-

morphism on H such that (h1n1)(h2n2) = (h1ϕ(n1)(h2))(n1n2). For example, the dihedral

group of 2n elements can be defined as

D2n = C2 n Cn = 〈abk : a2 = bn = 1, aba = b−1〉, (1.5)

where then ϕ(a)(b) = b−1. If G = HK where H ∩K = {1} and both H and K are normal

in G, then G = H ×K is the (direct) product of H and K; equivalently, if G = H nϕ K

where ϕ(k) : H → H is the identity map for all k, then G = H ×K.

Let V be a vector space over k, which is an abelian group under addition while addition

satisfies the distribution property with respect to scalar multiplication by elements in k.

Say V has dimension n if V is spanned by a set of n linearly independent vectors in V . Let

GL(V ) denote the general linear group, which consists of the invertible maps on the vector

space V with composition as the group action. Note GL(C) = C\{0}, which has torsion

part (i.e., the elements of finite order) the roots of unity. If ρ : G → GL(V ) where V is

dimension n, then we say ρ is an n-dimensional representation of G. A subspace W ⊂ V

is G-invariant if ρ(g)W ⊂ W for all g ∈ G. In this case, the restriction of ρ̃ : G→ W such

that ρ̃(g) = ρ(g)|W is a subrepresentation of ρ; this term is also used for the subspace W

itself. The trivial subrepresentations of ρ are the associated subrepresentations for W = V

or W = {0}. If the only subrepresentations of ρ are trivial, then ρ is irreducible. Note 1-

dimensional representations are always irreducible. Every finite-dimensional representation

of G can be written as a direct sum of irreducible subrepresentations, which will be called its

factors. χρ = Tr ◦ρ denotes the character of ρ. Moreover, the characters of ρ can be used

to uniquely determine the irreducible factors of ρ. Every finite-dimensional representation

of G is uniquely determined by χρ(g) for g ∈ G. If g ∈ G has order k, then ρ(g)k = ρ(gk) =
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ρ(1) = I. Hence, if λ is an eigenvalue of ρ(g) then λk = 1 (see Section 1.4) so that λ is a kth

root of unity, and hence λ = e2πji/k for some j ∈ Z. In particular, note if |G| = n is finite,

then any 1-dimensional representation of G must satisfy ρ(G) ⊂ {eiπk/n : k ∈ [n]}.

1.3.3 Symmetric group and permutation matrices

Let Sn denote the symmetric group of n elements, which consists of the set of bijections

on [n] with composition as the group action. Note |Sn| = n! = n(n− 1) · · · 3 · 2 · 1. Elements

of Sn will be called permutations. Using cycle notation, a k-cycle permutation can be

written of the form σ = (a1 a2 · · · ak), where σ(ai) = ai+1 for i < k, σ(ak) = a1 and

σ(b) = b for b 6∈ {a1, . . . , ak}. The transpositions are the permutations of the form (i j)

for i 6= j. Recall Sn can be generated by the transpositions (1 j) for j = 2, . . . , n, and every

permutation has a unique cycle decomposition as the product of distinct cycles. This last

decomposition can be used to define a set map from Sn to the partitions of n objects based

on the weakly increasing cycle lengths in this decomposition, which define the permutation’s

cycle type. The conjugacy classes of Sn are the permutations of the same cycle type, which

follows directly from the fact

τ(a1 a2 · · · ak)τ−1 = (τ(a1) τ(a2) · · · τ(ak)) (1.6)

for τ ∈ Sn. We can define the group homomorphism sgn : Sn → {±1} by sgn(τ) = −1 for any

transposition τ and sgn(σ1σ2) = sgn(σ1) sgn(σ2) for any σ1, σ2 ∈ SN . Then An = ker(sgn) is

the alternating group of n elements.

Let Pn denote the order n permutation matrices, which is the left regular representation

of the action of Sn on {ei : i ∈ [n]}, i.e, Pσ ∈ Pn for σ ∈ Sn satisfies Pσei = eσ(i). For

D ∈ Dn ∩ {±1}n×n and P ∈ Pn, then DP is a signed permutation matrix.
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Note P T
σ Pσ = I, so that P T

σ = P−1
σ , establishing Pn ⊂ O(n). Note also det(Pσ) = sgn(σ),

which then shows the alternating permutation matrices An satisfy An = Pn ∩ SO(n).

Also, note

(P T
σ APσ)ij = (Pσei)

TA(Pσej) = eTσ(i)Aeσ(j) = Aσ(i),σ(j), (1.7)

which is equivalent to (1.6).

Furthermore, note ρ : Sn → Pn such that ρ(σ) = Pσ is an n-dimensional representation of

Sn. Note ρ is not irreducible since Pσ1n = 1n for all σ ∈ Sn, so that W1 = span(1n) and

W2 = W⊥
1 are both subrepresentations of ρ. In fact, W1 and W2 are both irreducible: W1 is

trivially irreducible since it is 1-dimensional. To see W2 is irreducible, suppose W ⊂ W2 is

Sn-invariant. If W 6= {0}, for v =
∑

i viei ∈ W with v 6= 0, then

P(1 k)v − v = (vke1 + v1ek)− (v1e1 + vkek) = (vk − v1)(e1 − ek) (1.8)

for all k. Since v ⊥ 1n and v 6= 0, then necessarily vj 6= v1 for some j and hence e1−ej ∈ W

by (1.8). It follows then P(i j)(e1 − ej) = e1 − ei ∈ W for all i ≥ 2 so that W has dimension

at least n− 1 = dim(W2) and hence W = W2.

Note the character χ(σ) gives the number of fixed points of σ ∈ Sn as well as the sum of the

kth powers of the eigenvalues of σ. If σ is an n-cycle, then

χ(σk) = Tr(P k
σ ) =

n∑
j=1

e2πjk/n =

 n if n | k

0 if n - k
(1.9)

since σk(i) = i for some i if and only if σk(i) = i for all i if and only if σk = 1 if and only

if n | k. An application of (1.9) to the divisibility of random integers is explored further in

Appendix A.

12



1.3.4 Topological groups

We call (X, T ) a topological space if ∅, X ∈ T ⊂ 2X and T is closed under finite inter-

sections and arbitrary unions, and we say a set O is open in X if O ∈ T . A topological

space K is compact if any open covering admits a finite subcover. A topological space X is

connected if it cannot be written as the disjoint union of two open sets. The product of a

collection of compact spaces is compact by Tychenoff’s theorem. Finite products of compact

spaces can be verified to satisfy the open subcover criterion through induction. For (Y, T ′)

another topological space, we say f : X → Y is continuous if f−1(O) ∈ T whenever O ∈ T ′.

A bijective continuous map between two topological spaces is called a homeomorphism,

and we write X ∼= Y if X and Y are homeomorphic. We will call G a topological group

if G is a topological space that is a group under multiplication such that multiplication and

inverses are continuous maps on G. A space is Polish if it is metrizable, separable, and

complete. These will include all of the spaces of interest in the current document. If not

stated explicitly, one can assume a topological space means a Polish topological space.

An important example that we be revisited frequently: T = {z ∈ C : |z| = 1} = {eiθ : θ ∈

[0, 2π)} for the unit circle in C, which is a compact topological group under the group action

of multiplication.

1.4 Linear algebra

1.4.1 Background

For x ∈ Cn, define the p-norm ‖ · ‖p as

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, (1.10)
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for |xi| = (xixi)
1/2. In particular, for 〈u,v〉 = u∗v the inner product or dot product of

u,v ∈ Cn, we have ‖x‖2
2 = 〈x,x〉. Write x ⊥ y if 〈x,y〉 = 0. Note further if U ∈ U(n), then

‖Uv‖2 = ‖v‖2.

I will write detA for the determinant of A ∈Mn. The determinant is a polynomial of the

entries of A, which can be realized using the form

detA =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σ(i). (1.11)

Note sgn(σ−1) = sgn(σ) since 1 = sgn(1) = sgn(σσ−1) = sgn(σ) sgn(σ−1). It follows detA =

detAT since

detAT =
∑
σ∈Sn

sgn(σ)
n∏
i=1

(AT )i,σ(i) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Aσ(i),i =
∑
σ∈Sn

sgn(σ−1)
n∏
i=1

Ai,σ−1(i)

= detA.

It follows detA∗ = detA.

We will write rankA for the rank of A, which is the dimension of the column space of A.

Recall rankA = rankAT = rankA∗, so it follows rankA is also the dimension of the row

space of A and hence rankA ≤ min(m,n) for A ∈ Mm,n. A matrix A ∈ Mm,n is full rank

if rankA = min(m,n). For A ∈ Cn×n, we will write Tr(A) for the trace, which is the sum

of the diagonal entries of A. Note Tr(AB) = Tr(BA) whenever A,BT ∈ Cn×m. It follows if

B = CAC−1, then TrB = Tr(CAC−1) = Tr((AC−1)C) = TrA.

We will say λ is an eigenvalue for a square matrix A if there exists a nonzero v such that

Av = λv, with such a v then being called an associated eigenvector. Equivalently, λ is an

eigenvalue of A ∈Mn if λ is a root of the characteristic polynomial of A,

σA(x) := det(xI− A), (1.12)

14



which is a degree n monic polynomial in C[x]. Note if Av = λv then Akv = λkv for any

nonnegative integer k. Moreover, if A is nonsingular, then this also holds for k ∈ Z, so

that λk is an eigenvalue of Ak whenever λ is an eigenvalue. Similarly, cλ is an eigenvalue

of cA if λ is an eigenvalue of A. By the Fundamental Theorem of Algebra, σA(x) has at

least one root since C is algebraically closed, and hence every square matrix has at least

one eigenvalue. An eigenspace for the eigenvalue λ of A, denoted VA(λ), is the span of

the eigenvectors associated with λ, where we assume the convention VA(λ) = {0} for when

this space is empty. Recall if λ is an eigenvalue for U ∈ U(N) then |λ| = 1 since if v is an

associated unit eigenvector for λ then

1 = ‖v‖2 = ‖Uv‖2 = ‖λv‖2 = |λ|‖v‖2 = |λ|.

Recall A and AT have the same eigenvalues since

σA(x) = det(xI− A) = det((xI− A)T ) = det(xI− AT ) = σAT (x).

It follows A and A∗ have eigenvalues that are conjugate to one another: if λ is an eigenvalue

of A, then it is also an eigenvalue of AT , say with eigenvector v; it follows then v is an

eigenvector of A∗ for eigenvalue λ since A∗v = ATv = λv = λv. Moreover, if A = BDB−1

for D diagonal, then necessarily Djj is an eigenvalue of A with associated eigenvector Bej.

We call such a matrix diagonalizable. If A is diagonalizable, then TrA is the sum of its

eigenvalues.

A matrix A ∈Mn is nonsingular if A−1 exists, and singular otherwise. Recall A is singular

if and only if detA = 0 if and only if 0 is an eigenvalue for A if and only if A is not full rank.

Recall AB and BA have the same eigenvalues for A,B ∈Mn: let λ be an eigenvalue for AB.

If λ = 0, then detAB = (detA)(detB) = detBA = 0, so that λ = 0 is also an eigenvalue

for BA. If λ 6= 0, let v be an eigenvector for AB, such that ABv = λv, and in particular,
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Bv 6= 0 (since λv 6= 0). It follows then Bv is an eigenvector for BA for eigenvalue λ since

BA(Bv) = B(ABv) = B(λv) = λBv.

A matrix is symmetric if AT = A and Hermitian if A∗ = A, while a matrix is skew-

symmetric or skew-Hermitian ifAT = −A orA∗ = −A. Let SymN ,HermN , SkewS
N , SkewH

N

denote, respectively, the symmetric, Hermitian, skew-symmetric and skew-Hermitian order

N matrices. For R ⊂ C closed under complex conjugation, for any A ∈ MN(R) we have

AAT , A+AT ∈ Sym, A−AT ∈ SkewS, AA∗, A+A∗ ∈ Herm and A−A∗ ∈ SkewH, while also

[A,AT ] ∈ SkewS and [A,A∗] ∈ SkewH. Recall

MN(R) = Sym(R)⊕ SkewS(R) = Herm(R)⊕ SkewH(R), (1.13)

where we note

A =
1

2
(A+ AT ) +

1

2
(A− AT ) =

1

2
(A+ A∗) +

1

2
(A− A∗).

Also, recall a Hermitian matrix has real eigenvalues since if v is an unit eigenvector for

Hermitian A with eigenvalue λ, then

λ = λ〈v,v〉 = 〈v, λv〉 = 〈v, Av〉 = 〈A∗v,v〉 = 〈Av,v〉 = 〈λv,v〉 = λ̄〈v,v〉 = λ̄.

A matrix A ∈ HermN is positive definite (semi-definite) if all of its eigenvalues are

positive (nonnegative), or equivalently if for all v 6= 0 we have v∗Av = 〈v, Av〉 > 0 (v∗Av =

〈v, Av〉 ≥ 0). A ∈ HermN is negative definite (semi-definite) if −A is positive definite

(semi-definite). A matrix A is positive semi-definite if and only if there exists a positive

semi-definite matrix B such that B2 = A. For such a matrix B corresponding to A, we we

use the notation B =
√
A. If A is positive definite, then

√
A is unique.
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For any matrix A, A∗A is positive semi-definite since for any v we have

v∗A∗Av = 〈Av, Av〉 = ‖Av‖2
2 ≥ 0,

and rankA = rankA∗A.

The singular values of A ∈ CN×M are the (nonnegative) eigenvalues of
√
A∗A. It follows a

matrix is singular if and only if 0 is a singular value of A. The singular value decompo-

sition (SVD) of A is A = UΣV ∗ for U ∈ U(N) and V ∈ U(M), with Σ being a diagonal

N ×M matrix consisting of the singular values of A. Recall if A,A′ are nonsingular, then

rankB = rankAB = rankBA′, so that rankA = rank Σ is then the number of positive

singular values of A.

Since the singular values of a matrix A ∈ CN×M for N ≤ M are nonnegative, then we

can order them from smallest to largest, say σ1 = max diag(Σ) and σN = min diag(Σ) for

A = UΣV ∗ the SVD decomposition of A. Recall the (induced) operator norm of A is

‖A‖ = max
‖v‖=1

‖Av‖ = max
v

‖Av‖
‖v‖

. (1.14)

In finite dimensions, all norms are equivalent.

Let A ∈ CN×M . Let

‖A‖F = (Tr(AA∗))1/2 =

(∑
i,j

|Ai,j|2
)1/2

(1.15)

denote the Frobenius norm. Note if A = UΣV ∗, then AA∗ = UΣ2U∗ so that

‖A‖2
F = Tr(AA∗) = Tr(Σ2) =

n∑
k=1

σ2
k (1.16)

for σk the singular values of A. Let ‖ · ‖max be the elementwise max norm of a matrix
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defined by

‖A‖max = max
i,j
|Aij|. (1.17)

Recall the max norm is not submultiplicative, which is apparent from

1 1

1 2

 =

1

1 1


1 1

1

 . (1.18)

Let ‖ · ‖∞ denote the induced `∞ matrix norm, which satisfies the max row sum property

‖A‖∞ = max
i

N∑
j=1

|Aij|. (1.19)

Note ‖ · ‖max, ‖ · ‖∞ and ‖ · ‖F are invariant under row or column permutations or unit

multiples while, considering only these three norms, only ‖ · ‖F is invariant under general

orthogonal or unitary transformations: it enough to note for

B(θ) =

 cos θ sin θ

− sin θ cos θ

 (1.20)

the (counterclockwise) rotation matrix, ‖B(θ)‖∞ = | cos θ| + | sin θ| 6= 1 = ‖I2‖∞ and

‖B(θ)‖max = max(| cos θ|, | sin θ|) 6= 1 = ‖I2‖max when θ 6∈ π
2

+ Z.

Using ‖ · ‖2, we have ‖A‖2 = σ1: let v be a unit eigenvector for
√
A∗A for σ1, then

σ1 = ‖σ1v‖2 = ‖
√
A∗Av‖2 = 〈

√
A∗Av,

√
A∗Av〉1/2 = 〈v, A∗Av〉1/2 = 〈Av, Av〉1/2 = ‖Av‖2,

which shows σ1 ≤ ‖A2‖. Equality follows from the fact any unit vector v ∈ CM is a linear

combination of the columns of V ∈ U(M), with coefficients with unit 2-norm: this follows
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since if V u = v then ‖u‖2 = ‖V u‖2 = ‖v‖2 = 1 so that v =
∑

i uivi and hence

‖Av‖2 = ‖
∑
i

ui
√
AA∗vi‖2 = ‖

∑
i

σiuivi‖2 = ‖
∑
i

σiuiei‖2 = (
∑
i

σ2
i u

2
i )

1/2 ≤ σ1,

so that also ‖A‖2 ≤ σ1 and hence ‖A‖2 = σ1. Similarly, if A ∈ Cn×n is nonsingular (viz.,

σn > 0), then ‖A−1‖2 =
1

σn
.

We define the condition number of A for A nonsingular as

κ(A) = ‖A‖‖A−1‖. (1.21)

Additionally write κp(A) if ‖ · ‖ = ‖ · ‖p, which will be referred to as the p-condition number.

In particular, note

κ2(A) =
σ1

σn
(1.22)

The condition number of a matrix A controls how much the output of a vector multiplied

by A using floating-point arithmetic can change with respect to a small change in the input

vector. The 2-condition number is then minimized whenever σ1 = σn > 0. When A is

square, then this occurs only when A is a scalar multiple of a unitary matrix: then Σ = σI,

and A = UΣV ∗ = σUV ∗, where UV ∗ ∈ U(n). In particular, unitary matrices have minimal

2-condition number.

Let

Dn = span{Eii : i = 1, . . . , n} ⊂ Cn×n (1.23)

be the set of diagonal matrices of order n and

Ln(k) = span{Eij : i+ k ≥ j} ⊂ Cn×n (1.24)
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be the set of lower triangular square matrices of order n with only nonzero entries found k

diagonals below the main diagonal, where we use the convention Ln(k) = {0} when k ≥ n.

Furthermore, let Ln := Ln(0) be the set of lower triangular square matrices of order n. Note

Ln(k) ⊃ Ln(`) for k ≤ `. Clearly

Ln = Dn ⊕ Ln(1). (1.25)

Moreover, simple computations show

D2
n = Dn, (1.26)

Ln(k) + Ln(`) = Ln(min(k, `)), and (1.27)

DnLn(k) = Ln(k)Dn = Ln(k). (1.28)

Also, we have

Lemma 1.1.

Ln(k)Ln(`) = Ln(k + `) (1.29)

Proof. Suppose Ei1j1 ∈ Ln(k) and Ei2j2 ∈ Ln(`). We have Ei1j1Ei2j2 = δj1i2Ei1j2 6= 0 if and

only if j1 = i2 and i1 + k + ` ≥ j1 + ` = i2 + ` ≥ j2. The result follows.

Letting k = ` = 0 and a simple induction argument, we have

Corollary 1.1. Lower triangular square matrices are closed under multiplication, i.e., L2
n =

Ln.

Corollary 1.2. Strictly lower triangular matrices are nilpotent. In particular, Ln(1)n = {0}.

Moreover, an important property of lower triangular matrices is the following result:
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Lemma 1.2. Ln is closed under inverses when they exist.

Proof. Suppose L ∈ Ln is nonsingular. Let D ∈ Dn and N ∈ Ln(1) such that L = D−N , so

that D is also nonsingular (since detD = detL 6= 0). First suppose D = I. By Corollary 1.2

we have Nn = 0, so that

I = I−Nn = (I−N)(I +N + · · ·+Nn−1) = L(I +N + · · ·+Nn−1)

and hence

L−1 = I +N + · · ·+Nn−1 ∈ Ln

since I, Nk ∈ Ln for each k. Now for general D, we have L = D(I−D−1N) =: DL0. By the

prior case, L−1
0 ∈ Ln so that L−1 = L−1

0 D−1 ∈ Ln, using also Corollary 1.1.

Let

Un(k) = span{Eij : j + k ≥ i} ⊂ Cn (1.30)

and Un := Un(0), the set of upper triangular square matrices of order n. By using transpo-

sition, along with the fact A ∈ Ln(k) if and only if AT ∈ Un(k), we have immediately

Un = Dn ⊕ Un(1) (1.31)

Un(k) + Un(`) = Un(min(k, `)), and (1.32)

DnUn(k) = Un(k)Dn = Un(k). (1.33)

Moreover,

Corollary 1.3.

Un(k)Un(`) = Un(k + `) (1.34)
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Corollary 1.4. Upper triangular square matrices are closed under multiplication, i.e., U2
n =

Un.

Corollary 1.5. Strictly upper triangular matrices are nilpotent. In particular, Un(1)n = {0}.

Corollary 1.6. Un is closed under inverses when they exist.

1.4.2 Matrix factorization

This section will outline several matrix factorizations that have useful applications in com-

putational linear algebra. The general application of interest for these factorizations will be

in solving a linear system Ax = b. If A is nonsingular, then this has the unique solution

x = A−1b. Even for moderately sized A, it can be very expensive to calculate A−1 directly.

If A = BC, then one can solve Ax = b by first solving By = b and then Cx = y. If B

and C have certain desirable properties (e.g., unitary or triangular), then each separate step

can be significantly simpler in a computational sense. Moreover, finding such a factorization

once then enables one to solve any linear system using the same A and a different input b.

For any matrix A ∈ Cn×n, there exists U ∈ U(n) and an upper triangular matrix T such

that A = UTU∗. This is called the Schur decomposition of A.

Theorem 1.4. Every A ∈ Cn×n has a Schur decomposition.

Proof. The existence of such a decomposition can be established by induction on n along

with the fact A has at least one eigenvalue λ: this would allow us to construct U1 ∈ U(n)

with the first columns being an orthonormal basis of V (λ) and the remaining columns an

orthonormal basis of V (λ)⊥ so that

A = U1

λI A1

0 A2

U∗1 ,
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where the main result follows from using induction on A2 to find V ∈ U such that V ∗A2V

is upper triangular, so that then U2 = I⊕ V ∈ U(n) and U = U1U2 satisfies U∗AU is upper

triangular.

This shows every square matrix is (unitarily) triangularizable. We say a set of matrices is

simultaneously triangularizable if each matrix can be triangularized by the same unitary

matrix. Note for A = UTU∗ the Schur decomposition of A, we have T11 is an eigenvalue for

A with associated eigenvector u1, the first column of U , since

Au1 = UTe1 = T11u1.

This can be used to establish the following result:

Lemma 1.3. For A,B ∈ Cn×n, if [A,B] = 0 then A,B are simultaneously triangularizable.

Proof. Note first commuting matrices preserve eigenspaces: if λ is an eigenvalue of A with

eigenspace VA(λ), then for v ∈ VA(λ), we have

A(Bv) = B(Av) = B(λv) = λBv,

which shows BVA(λ) ⊂ VA(λ), i.e., VA(λ) is B-stable.

Now using induction on n (where the result is trivial for n = 1), first note that A and B

commuting implies there is a non-trivial subspace of minimal dimension that is invariant

under the actions of A and B: this just follows from the well-ordering principle along with

the result Cn is A- and B-invariant.

Next, note any nontrivial A-invariant subspace must contain an eigenvector of A: Suppose

S is A-invariant and has dimension k > 0, with basis s1, . . . , sk and let S =

[
s1 · · · sk

]
∈

Cn×k. Then AS = SC for some C ∈ Ck×k since AS ⊂ S. Moreover, since C has at least
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one eigenvalue/eigenvector pair, say (λ,v), then Sv 6= 0 (since S has full-rank), and we see

ASv = SCv = λSv, showing Sv ∈ S is an eigenvector of A.

Now we claim S, a minimal non-trivial subspace that is both A- and B-invariant, consists

of shared eigenvectors for A and B. Suppose first S contains some vector v 6= 0 that is not

an eigenvector for A. By above, S does contain an eigenvector of A for an eigenvalue λ, so

that S ′ = S ∩ VA(λ) 6= ∅ and S ′ 6= S since v 6∈ S ′. Since BVA(λ) ⊂ VA(λ) (and obviously

AVA(λ) ⊂ VA(λ)) and BS ⊂ S, then BS ′ ⊂ S ′, which shows S ′ is both A- and B-invariant,

which contradicts the minimality of S. It follows then S consists precisely of eigenvectors of

both A and B, and so S has an orthonormal basis of simultaneous eigenvectors of A and B.

It follows now we can form U = U1⊕U2 ∈ U(n) for U1 an orthonormal basis of S and U2 an

orthonormal basis of S⊥ such that

A = U

D1 A1

0 A2

U∗ and B = U

D2 B1

0 B2

U∗

for D1, D2 diagonal matrices. Since [A,B] = 0 then necessarily [A2, B2] = 0. Applying the

inductive hypothesis now yields V ∈ U such that V ∗A2V and V ∗B2V are triangular, so that

U(I ⊕ V ) = U1 ⊕ U2V ∈ U(n) simultaneously triangularlizes A and B.

A simple expansion of this argument yields that a finite set of mutually commuting matrices

are simultaneously triangularizable.

A matrix A is (unitarily) diagonalizable if there exists U ∈ U and a diagonal matrix

D such that A = UDU∗. In particular, the columns of U are eigenvectors of A with the

corresponding diagonal element of D = diag(λ1, . . . , λn) being the associated eigenvalue:

AUei = UDU∗(Uei) = UDei = λiUei.
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A set of matrices in Cn×n is simultaneously diagonalizable if each matrix is diagonalizable

with respect to the same U ∈ U(n). A matrix A is normal if [A,A∗] = 0, with diagonal

matrices and U(n) being examples of normal matrices (e.g., UU∗ = I = U∗U). Recall the

following results, for which we will include proofs for completeness.

Lemma 1.4. An upper triangular normal matrix is diagonal.

Proof. Suppose T is upper triangular and normal, then TT ∗ = T ∗T and in particular

‖Tei‖2
2 = 〈Tei, Tei〉 = 〈ei, T ∗Tei〉 = 〈ei, TT ∗ei〉 = ‖T ∗ei‖2

2

for all i. This shows the norm of each row of T equals the norm of each corresponding

column. Since T has (at most) one non-zero entry in its first column (viz., Te1 = T11e1)

occurring in the diagonal, then the same is true of its first row, so that T1,j = 0 if j 6= 1.

Continuing inductively, it follows the only non-zero entries of T can exist in its diagonal.

Lemma 1.5. Let A,B ∈ Cn×n be normal. A,B are simultaneously diagonalizable if and

only if [A,B] = 0.

Proof. Suppose A,B are simultaneously diagonalizable, so there exists U ∈ U(n) and diag-

onal D1, D2 such that A = UD1U
∗ and B = UD2U

∗. Since diagonal matrices commute, we

have

[A,B] = U [D1, D2]U∗ = 0,

showing A and B commute.

Now suppose [A,B] = 0. By Lemma 1.3, we have A and B are simultaneously triangulariz-

able, so that there exists U ∈ U(n) and upper triangular T1 and T2 such that A = UT1U
∗

and B = UT2U
∗. Since A and B are normal, then

[T1, T
∗
1 ] = U∗[A,A∗]U = 0 = U∗[B,B∗]U = [T2, T

∗
2 ],
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which yields T1 and T2 are both normal upper triangular matrices, and hence diagonal by

Lemma 1.4.

Again, this can be easily expanded to conclude a finite set of mutually commuting normal

matrices are simultaneously diagonalizable.

Theorem 1.5 (Spectral Theorem). A square matrix is normal if and only if it is diagonal-

izable.

Proof. If A is diagonalizable, then there exists U ∈ U(n) and diagonal D such that A =

UDU∗. Now [D,D∗] = 0 since diagonal matrices are normal, so

[A,A∗] = [UDU∗, UD∗U∗] = U [D,D∗]U∗ = 0.

Now suppose A is normal, so that [A,A∗] = 0. Since A has a Schur decomposition with

A = UTU∗ for U ∈ U and T upper triangular, we have

[T, T ∗] = U∗[UTU∗, UT ∗U∗]U = U∗[A,A∗]U = 0.

Lemma 1.4 yields T is diagonal since it is an upper triangular normal matrix.

One immediate application of this is:

Theorem 1.6. Every matrix has an SVD decomposition.

Proof. Let A be an order n ×m matrix and let M = A∗A, which is positive semi-definite.

Since M is normal of order n, then there exist V ∈ U(n) and diagonal D such that M =

V DV ∗ by Theorem 1.5. Since M is positive semidefinite, then D is a diagonal matrix of

nonnegative numbers. By relabeling (i.e., replacing D with PσDP
T
σ and V with V P T

σ for
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some σ ∈ Sn) we can assume D = D1 ⊕ 0 where D1 has positive diagonal entries, and

write V =

V1

V2

 such that V ∗1 MV1 = D1 and V ∗2 MV2 = 0. Now define U1 = AV1D
−1/2
1 ,

where Dk
1 denotes the diagonal matrix with associated entries of D1 raised to the kth power,

so that U1D
1
2
1 V
∗

1 = A − (AV2)V ∗2 = A (since V ∗2 MV2 = (AV2)∗AV2 = 0). Since U∗1U1 =

D
− 1

2
1 V ∗1 A

∗AV1D
− 1

2
1 = D

− 1
2

1 D1D
− 1

2
1 = I, then the columns of U1 are orthonormal and so can

be extended to form U =

[
U1 U2

]
∈ U(m). Now let Σ =

D 1
2 ⊕ 0

0

 be order n ×m. By

construction, it follows A = UΣV ∗.

We say A has an LU factorization if there exist a lower unit triangular matrix L and an

upper triangular matrix U such that A = LU . Here I am adopting the Doolittle definition

that requires L have unit diagonal rather than the Crout definition where the unit diagonal

is required on the U factor. By considering AT , we can move between these definitions. A

standard result shows an LU factorization is unique for nonsingular A when it exists:

Theorem 1.7 ([16]). There exists a unique LU factorization of A ∈ Rn×n if and only if

A:k,:k is nonsingular for all k = 1, . . . , n − 1. If A:k,:k is singular for some k < n, an LU

factorization may exist but it is not unique.

Proof. Suppose A:k,:k is nonsingular for all k = 1, . . . , n−1. We can prove the first statement

using induction on n. The result is trivial for n = 1. If the result holds for n−1, then writing

A ∈ Rn×n as

A =

 Ã b

cT Ann

 (1.35)

note Ã = A:n−1,:n−1 also satisfies Ã:k,:k is nonsingular for all k = 1, . . . , n−2. Hence, Ã = L̃Ũ

is a unique LU factorization by the inductive hypothesis, where we note L̃ = L:n−1,:n−1 and

27



Ũ = U:n−1,:n−1 are both nonsingular since also 0 6= det Ã = det L̃ det Ũ . It follows

A =

 L̃ 0

cT Ũ−1 1


Ũ L̃−1b

0 Ann − cT Ã−1b

 =: LU. (1.36)

This establishes the existence of an LU factorization. For the uniqueness result: if also

A = L0U0, then (L−1
0 L)U = U0 ∈ Un. Since L and L0 are unit lower triangular, then so

is L−1
0 L, so that L−1

0 L = I + N for some N ∈ Ln(1). Since then U0 = U + NU ∈ Un,

then 0 = (U0)ij = (NU)ij = (NTei)
T (Uej) for i > j. This establishes NTei ⊥ Uej for all

j = 1, . . . , i− 1. Since U:n−1,:n−1 is nonsingular, then

NTei ∈ span(Uej : j = 1, . . . , i− 1)⊥ = span(ej : j = 1, . . . , i− 1)⊥ = span(ej : j ≥ i).

Since NT ∈ Un(1) then NTei = 0 for all i and hence N = 0. It follows L−1
0 L = I so that

L0 = L and U0 = U .

Conversely, suppose A has a unique LU factorization with A = LU . We will again use

induction on n to show detA:k,:k 6= 0 for k = 1, . . . , n − 1. The result is trivial for n = 1

so assume the result holds for n − 1. Note then for Ã = A:n−1,:n−1, L̃ = L:n−1,:n−1, and

Ũ = U:n−1,:n−1 then necessarily Ã = L̃Ũ . Moreover, this must be unique since det Ã:k,:k 6= 0

for all k. For reference, note

A =

 L̃ 0

vT 1


Ũ u

0 u

 =

 L̃Ũ L̃u

vT Ũ vTu + u

 . (1.37)

It follows then Ũjj = Ujj 6= 0 for all j = 1, . . . , n − 2 by the inductive hypothesis. If
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Un−1,n−1 = 0, then eTn Ũ = 0, and hence for any α ∈ R

A =

 L̃ 0

vT + αeTn 1


Ũ u

0 u− αeTnu

 (1.38)

using (1.37), which contradicts the uniqueness of the LU decomposition of A. Hence,

necessarily Un−1,n−1 6= 0 as well so that detA:k,:k = detU:k,:k =
∏k

j=1 Ujj 6= 0 for all

k = 1, . . . , n− 1.

If A ∈ Cn×n, then there exist Q ∈ U(n) and R ∈ Un where Rjj > 0 for all j such that

A = QR. If A ∈ Rn×n, then Q ∈ O(n) and R is real. This is called the QR decomposi-

tion of A. Every square complex matrix has a QR decomposition. Common methods to

compute this decomposition, which is unique whenever A is nonsingular, include the Gram-

Schmidt orthogonalization, Householder reflections, or Givens rotations. I will give

an overview of Gram-Schmidt here and postpone a discussion about Householder reflections

and Givens rotations until Section 5.2.

If V = {vi : i ∈ [n]} is a collection of linearly independent vectors, then the Gram-Schmidt

process can be used to generate an orthonormal basis of span(V). For simplicity, I will only

consider the square case such that vi ∈ Cn for each i and so V constitutes the columns of a

nonsingular order n matrix. It follows as:

Algorithm 1 Gram-Schmidt Process

1: procedure GramSchmidt(V)
2: B = ∅
3: n = size(V)
4: for i = 1 : n do
5: qi = vi −

∑i−1
j=1〈qj,vi〉qj

6: qi =
qi
‖qi‖2

7: B = B ∪ {qi}
8: V = V\{vi}
9: return B
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By construction, if qi,qj ∈ B = GramSchmidt(V), then 〈qi,qj〉 = δij, so that B is an

orthonormal basis of span(V). Moreover, note

〈vi,qi〉 = 〈Ciqi +
i−1∑
j=1

〈qj,vi〉qj,qi〉 = Ci〈qi,qi〉+
i−1∑
j=1

〈qj,vi〉〈qj,qi〉 = Ci

for

C2
i = ‖vi‖2

2 −
i−1∑
j=1

|〈qj,vi〉|2 6= 0. (1.39)

This suffices to establish:

Theorem 1.8. If A ∈ Cn×n is nonsingular, then A has a unique QR decomposition.

Proof. For ai = Aei, let V = {ai : i ∈ [n]}. For qi ∈ GramSchmidt(V), let Q̃ ∈ U(n) such

that Q̃ei = qi. Let R̃ ∈ Un such that R̃ij = 〈qi, aj〉, where we note R̃ij = 0 for i > j by

construction. Let D̃ ∈ Dn such that D̃jj =
Rjj
‖Rjj‖2 , where we note Rjj 6= 0 by (1.39). It follows

then D̃ ∈ U(n), and so for Q = Q̃D̃∗ and R = D̃R̃, we have A = QR is a QR decomposition

of A, where we note R has positive diagonal by construction with Rjj = ‖R̃jj‖2 > 0. This

establishes existence.

For uniqueness, suppose also A = Q̂R̂. Since R and R̂ have positive diagonals, then both

are nonsingular, so we have Q∗Q̂ = RR̂−1 ∈ Un∩U(n). In particular, then RR̂−1 is an upper

triangular normal matrix and so it must be diagonal by Lemma 1.4; say D = RR̂−1. Since

R, R̂ have positive diagonal entries, then so does D, and since D ∈ U(n) then necessarily

D = I. It follows then Q = Q̂ and R = R̂.

For any positive semi-definite A, there exists a lower-triangular matrix L such that A = LL∗;

this is called the Cholesky decomposition of A, which is not unique if there are zeroes on

the diagonal. We do have
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Theorem 1.9. If A is positive definite, then A has a unique Cholesky decomposition

Proof. Since A is positive definite, then there exists B =
√
A such that A = BB∗ (let

B = U
√
DV for A = UDV the unique SVD factorization, where D is a diagonal matrix

of positive singular values of A and
√
D is the corresponding diagonal matrix where the

square root function is applied to the diagonal entries of D). Let B∗ = QR be the QR

decomposition of B∗, where Q ∈ U and R upper triangular with positive diagonal entries.

Then A = BB∗ = (QR)∗QR = (R∗Q∗)(QR) = R∗R = LL∗ for L = R∗ lower triangular with

positive diagonal. This shows existence.

For uniqueness, assume A = LL∗ = L0L
∗
0 for L0 with positive diagonal. In particular,

then L and L0 are nonsingular, so that I = L−1(L0L
∗
0)(L∗)−1 = (L−1L0)(L−1L0)∗. Hence,

(L−1L0)−1 = (L−1L0)∗ ∈ Ln ∩ Un = Dn. Write L−1L0 = D where necessarily D has positive

diagonal entries since both L and L0 do. It follows I = DD∗ = D2 such that (Djj)
2 = 1 for

all j. Since Djj > 0, then D = I so that L = L0.

1.4.3 Gaussian elimination

Gaussian elimination (GE) remains the most prominent approach to solving linear systems

Ax = b. A standard description involves using elementary row operators to zero out below

the main diagonal, moving one column at a time from left to right, which is outlined in

Algorithm 2.

GE without pivoting (GENP) results in the factorization A = LU for L lower triangular

with positive unit diagonal with

Lij =
A

(j)
ij

A
(j)
jj

(1.40)
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Algorithm 2 Gaussian Elimination

1: procedure GaussianElimination(A)
2: n = size(A)
3: L = In
4: U = A
5: for i = 1 : n− 1 do
6: L(i+ 1 : n, i) = U(i+ 1 : n, i)/U(i, i)
7: for j = i+ 1 : n do
8: U(j, :) = U(j, :)− L(j, i)U(j, :)

9: return [L,U ]

for i > j where A(k) be the matrix with zeros below the first k − 1 diagonal entries that

results before the kth step in GENP, and U = A(N) is upper triangular with Ujj = A
(j)
jj . Such

a factorization is the associated LU factorization of A. A standard result shows GENP

can be carried out in 2
3
N3 +O(N2) flops (see Section 1.5.1).

The pivot using GE is the leading entry in the remaining order n− k + 1 untriangularized

lower block of A(k). If zero is encountered in the pivot then the algorithm would terminate

to avoid dividing by zero. Such a matrix would not have an LU factorization using GENP.

Pivoting, which involves a sequence of row or column changes to change the pivot, is

sometimes necessary to enable an LU factorization to be possible for a nonsingular matrix

A. This would result in a factorization PAQ = LU for P and Q permutation matrices, which

will be called the LU factorization for the associated pivoting strategy. Although pivoting

adds computational costs to GE, pivoting is often employed for numerical stability in the

computed solution. Selecting a pivoting strategy for GE often involves weighing accuracy

against computation time.

The most common pivoting strategy is GE with partial pivoting (GEPP). GEPP involves

an additional scan at each intermediate step to find the entry of max norm in A(k) below

the diagonal within the column and then a row swap when this value exceeds the norm

of the initial pivot, which yields a factorization PA = LU for a permutation matrix P .

GE with complete pivoting (GECP) involves a scan through the lower-untriangularized
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remaining block of A(k) for the max norm entry, followed by row and column permutations

to move the max norm entry to the pivot. This results in a PAQ = LU factorization for

permutation matrices P,Q. For this document, we will assume a pivot search chooses the

pivot with minimal taxi cab distance with respect to the row and column indices to the main

leading diagonal entry in the remaining subblock, prioritizing minimal row index distance

over column index in the case of a tie.

GE with rook pivoting (GERP) involves iteratively scanning within each associated row

and column to find the max norm entry to find the candidate pivot. This is followed then by

the associated row and column swaps to move the resulting entry to the pivot. The name of

the pivoting scheme is derived from the limitation on the pivot scans to paths a rook could

make on a chess board. Note the added complexity for pivoting using GERP is bounded

below by twice the complexity of pivoting using GEPP to the full complexity of pivoting

using GECP. See [32] for further discussion regarding GERP. We will not explore additional

numerical experiments for GERP beyond highlighting additional connections to our chosen

models. Note for this document we will assume GERP always sequences column scans before

row scans at each intermediate step.

Remark 1.1. I will write A(k) to denote the matrix with zeros below the first k− 1 diagonal

entries using GE with a specified pivot scheme. By default, I will use A(k) to denote the

intermediate GENP step. Let L(k) denote the sequence of lower triangular row operations

such that L(k)A = A(k). If ambiguous, I will specify the pivoting strategy in consideration in

the superscript (e.g., A(k,PP ), L(k,CP )), where then A(k) = A(k,NP ).

The total operational costs of these pivoting schemes differs only in the approaches to find

each pivot. If we consider a comparison between two elements during a pivot scan as a flop,

the additional scans from these pivoting schemes add O(N2) and O(N3) flops, respectively,

for GEPP and GECP, while GERP ranges from twice the GEPP complexity to the full

GECP complexity. In [32], computations with iid models show that on average GERP is
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O(N2) as well, only accounting for 3 times more scans than GEPP.

Of note, GEPP can be carried out without affecting the leading order of complexity for GE.

In practice, however, pivoting can lead to significant computational overhead due to memory

storage. In [2], numerical experiments running GEPP on a order 10,000 random matrix using

a hybrid CPU/GPU environment resulted in pivoting accounting for 20 percent of the total

computation time.

Using GENP, Theorem 1.7 gives sufficient criteria for the existence and uniqueness of an LU

factorization. However, uniqueness of LU factorization using different pivoting strategies is

not invariant under row or column permutations: if B = PAQ for permutation matrices

P,Q, then the GE factorizations P ′AQ′ = L′U ′ and P ′′BQ′′ = L′′U ′′ do not necessarily

have L′ = L′′, U ′ = U ′′, P ′ = P ′′P T or Q′ = QTQ′′. Non-uniqueness results from a “tie”

encountered during a pivot search. The following example illustrates this point:

Example 1.1. Let

A =

2 1

2 2

 and B = P(1 2)A =

2 2

2 1

 .
Using GEPP, no pivoting would be required for either A or B, so that A and B have distinct

LU factors, with

A =

1

1 1


2 1

1

 and B =

1

1 1


2 2

−1

 .

Recall that the L factor from GEPP satisfies:

|Lij| ≤ 1 for any i > j. (1.41)
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A tie would occur using GEPP only when |Lij| = 1 for some i > j. When no ties are

encountered at any intermediate stage, GEPP results in unique P , L, and U factors, leading

to:

Theorem 1.10. Let A be a nonsingular square matrix. Then the factors in the GEPP

factorization PA = LU are invariant under row permutations on A iff |Lij| < 1 for all

i > j.

Proof. By relabeling B = PA, we can assume P = I. Suppose first |Lij| = 1 for some i > j.

Let j′ and then i′ be minimal such that this occurs. Since then |B(j′)
j′j′ | = |B

(j′)
i′j′ |, adding the

permutation (i′ j′) would yield a different Pσ factor with σ(j′) = i′ 6= j′, so that Pσ 6= I.

Now suppose |Lij| < 1 for all i > j. Suppose PσB = L′U ′ is another GEPP factorization of

B for some σ ∈ Sn. Suppose σ is a nontrivial permutation. Let i be the first non-fixed point

of σ, and note then i < min(σ(i), σ−1(i)). It follows

|(L′)σ(i),i| =

∣∣∣∣∣(PσB)
(i)
σ(i),i

(PσB)
(i)
ii

∣∣∣∣∣ =

∣∣∣∣∣ B
(i)
ii

B
(i)

σ−1(i),i

∣∣∣∣∣ =
1

|Lσ−1(i),i|
> 1.

This contradicts (1.41). It follows σ must be the trivial permutation so that P = I. The

uniqueness of the L and U factors follows from Theorem 1.7.

1.4.4 Direct sum of matrices and Kronecker product

Let A⊕B ∈ R(n1+n2)×(m1+m2) denote the direct sum of A and B, which is the block diagonal

matrix with blocks A ∈ Rn1×m1 and B ∈ Rn2×m2 , i.e.,

A⊕B =

A
B

 . (1.42)

35



Note (A⊕B)∗ = A∗ ⊕B∗, (A⊕B)T = AT ⊕BT and Tr(A⊕B) = Tr(A) + Tr(B). We can

then write
n⊕
j=1

dj for the diagonal matrix D ∈ Rn×n such that Djj = dj. If A and B are

square matrices, then det(A⊕B) = det(A) det(B), so (A⊕B)−1 = A−1⊕B−1 if either side

exists. Moreover, if A and B are both unitary or orthogonal, then so is A⊕B.

Let A⊗ B ∈ Rn1n2×m1m2 denote the Kronecker product of A ∈ Rn1×m1 and B ∈ Rn2×m2 ,

given by

A⊗B =


A11B · · · A1,m1B

...
...

...

An1,1B · · · An1,m1B

 . (1.43)

Note (A ⊗ B)∗ = A∗ ⊗ B∗, (A ⊗ B)T = AT ⊗ BT and Tr(A ⊗ B) = Tr(A) Tr(B). Recall

A⊗ B = P (B ⊗ A)Q for perfect shuffle permutation matrices P,Q. See [8] for an overview

of properties and structures of perfect shuffles. If A and B are both square then Q = P T ,

so that A⊗B and B ⊗A are conjugate. Also, recall the mixed-product property of the

Kronecker product: if the products AC and BD can be computed, then

(A⊗B)(C ⊗D) = AC ⊗BD. (1.44)

A useful mnemonic for the mixed-product property is “the product of the Kronecker products

is the Kronecker product of the products”.

If n1 = m1 = n and n2 = m2 = m, then

det(A⊗B) = det((A⊗ Im)(In ⊗B)) = det(A⊗ Im) det(In ⊗B)

= det(Im ⊗ A) det(In ⊗B) = det(
m⊕
A) det(

n⊕
B)

= det(A)m det(B)n,
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and so (A ⊗ B)−1 = A−1 ⊗ B−1 when either side exists. Moreover, we see if A,B are both

unitary or orthogonal, then so is A⊗B.

Note the mixed-product property and the bilinearity of the Kronecker product yields if

Au = λu and Bv = µv, then

(A⊗B)(u⊗ v) = Au⊗Bv = (λu)⊗ (µv) = (λµ)(u⊗ v). (1.45)

The Kronecker product in particular allows simplified matrix norm calculations:

Lemma 1.6. If ‖ · ‖ is an induced matrix norm or ‖ · ‖max, then ‖A ⊗ B‖ = ‖A‖‖B‖ for

A ∈ Rn1×m1 and B ∈ Rn2×m2.

Proof. The result for ‖ ·‖ = ‖ ·‖max follows immediately from the definition of ‖ ·‖max. If ‖ ·‖

is an induced matrix norm, then the multiplicative property is established in [26, Theorem

8].

Additionally, the Kronecker product allows for straightforward matrix factorizations deter-

mined directly from the corresponding factorizations of each factor. Of particular utility for

these factorizations is the fact that several classes of matrices of interest are closed under ⊗.

For example, as seen above, orthogonal and unitary matrices are closed under ⊗. Similarly,

direct computations would verify lower triangular, diagonal, and upper triangular matrices

are closed under ⊗. Combining this with the mixed-product property, this yields certain

factorizations can be computed by factoring each Kronecker product factor separately. This

is illustrated in the following result, which will be used repeatedly in Chapter 5:

Lemma 1.7. For j = 1, 2, . . . , n, if PjAjQj = LjUj for permutation matrices Pj, Qj and

unit lower triangular Lj and upper triangular Uj and A =
n⊗
j=1

Aj, then PAQ = LU for
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permutation matrices P =
n⊗
j=1

Pj, Q =
n⊗
j=1

Qj and unit lower triangular L =
n⊗
j=1

Lj and

upper triangular U =
n⊗
j=1

Uj.

Proof. This follows directly from the mixed-product property (1.44) and induction on n.

1.5 Numerical analysis

Note my particular focus within numerical analysis will be on rounding error analysis, so I

will limit an overview of relevant ideas here. For further background, even on the following

topics, see [16, 35].

1.5.1 Complexity

Floating-point arithmetic is a method to provide an approximate representation of real

numbers that enables machines to carry out common computational processes. This re-

mains to be the most commonly used method by computers for representing real numbers.

Alternative methods include fixed-point representations and logarithmic number systems.

Properties of these methods as well as other alternative methods, including comparisons to

floating-point arithmetic, can be further explored in standard texts (e.g., [16, 22]).

Standard implementations of floating-point arithmetic results in working with a fixed number

of significant digits. This is in contrast to exact arithmetic, which does not have a finite cut-

off and can handle exactly irrational numbers. The machine epsilon for a fixed computing

system, denoted by ε = εmachine, is defined by

ε = min{x > 0 : fl(1 + x) 6= 1}, (1.46)
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where fl(·) is used to denote rounding to a fixed significand.

Complexity of algorithms or processes are often measured in terms of the counts of floating-

point arithmetic operations or flops, which will include additions, subtractions, multiplica-

tions, divisions and sometimes other common or black box computations (e.g., square roots,

comparisons between two numbers, samples of a random number). Using standard floating

arithmetic, we have

fl(x op y) = (x op y)(1 + δ) (1.47)

for |δ| ≤ ε, where op is a stand-in for a flop. I will revisit this shortly after the discussion

about relative error.

As a short illustration of some of these ideas, I will include a few straightforward applications

of complexity computations for common computational processes.

Example 1.2 (Matrix-vector multiplication). Let A ∈ Rn×m and x ∈ Rm. Each component

of Ax consists of a dot product of a row from A and x, which then involves m multiplications

and m− 1 additions, so 2m− 1 flops overall. In total, then Ax takes n(2m− 1) total flops

to compute.

Example 1.3 (Matrix-matrix multiplication). Let A ∈ Rn×m and B ∈ Rm×k. Then AB

takes n(2m− 1)k total flops.

Example 1.4. We can analyze the complexity of Algorithm 1, again applied only to the

square case: for step i in the for loop, each dot product takes n multiplications and n − 1

additions and so 2n − 1 flops. So 〈qj,vi〉qj takes n more multiplications, meaning 3n − 1

flops. So then vi − 〈qj,vi〉qj then takes n subtractions on top of the prior step, so there

are 4n − 1 flops and hence vi −
∑i−1

j=1〈qj,vi〉qj takes (i − 1)(4n − 1) flops. Then vector

normalization takes a dot product, a square root, and n divisions, so 3n additional flops.

Hence, step i takes (i− 1)(4n− 1) + 3n = (4n− 1)i+ 1− n flops. So running Algorithm 1
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then takes

n∑
i=1

((4n− 1)i+ 1− n) = (4n− 1)
n∑
i=1

i+ n(1− n) =
1

2
(4n− 1)n(n+ 1) + n(1− n)

= 2n3 +
1

2
n(n+ 1) = 2n3 +O(n2)

total flops.

1.5.2 Stability

For a procedure with exact solution x and computed solution x̂, the relative error is

‖x− x̂‖
‖x‖

. (1.48)

Example 1.5. We can explore the relative error of a flop. For scalars x and y, let x =

(x op y) and x̂ = fl(x) where op is a stand-in for a flop (e.g., addition or multiplication).

By (1.47), then

‖x− x̂‖
‖x‖

=
‖x(1− (1 + δ))‖

‖x‖
= |δ| ≤ ε. (1.49)

For a procedure y = f(x), the forward error of the computed output ŷ is the relative error

of ŷ relative to y. The backward error of ŷ is

min

{
‖δx‖
‖x‖

: ŷ = f(x + δx)

}
. (1.50)

In particular, if the backward error of ŷ is sufficiently small relative to ε (e.g., O(ε)), then ŷ

is the exact answer to a slightly perturbed input.

If a procedure always produces a small backward error, then the procedure is called back-
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ward stable. A lot of the framework used in backward error analysis was established by

Wilkinson in his analysis of Gaussian elimination with partial pivoting [39]. Section 5.3 will

look deeper into this particular result.

1.6 Probability background

1.6.1 Background

We say (Ω,A,P) is a probability space if Ω ∈ A ⊂ 2Ω is a σ-algebra and P : A → [0, 1]

is a measure such that P(Ω) = 1. Elements of A are called events. Two events A and B

are independent if P(A∩B) = P(A)P(B). A map X : Ω→ F is a random variable if X is

measurable with respect to A and BF, the Borel set of F = R or C, which is the σ-algebra

generated by the open sets in F; i.e., f−1(B) ∈ A for all B ∈ BF. For X a random variable,

we define the expectation,

EX =

∫
X dP =

∫
X(ω) dP(ω). (1.51)

If E|X|2 <∞, we define the variance of X to be Var(X) = E(X − EX)2 − EX2 − (EX)2.

We can define the induced measure PX by PX(A) = P(X ∈ A). If PX = PY , then we say

X and Y are equal in distribution, which is denoted X ∼ Y . If X is a real random

variable, then the (cumulative) distribution function of X, FX(t) = P(X ≤ t), completely

determines the distribution of X. Let supp(X) = {ω ∈ Ω : |X(ω)| > 0} denote the

support of X. If supp(X) is discrete, then X is a discrete random variable, and we can

define the probability mass function P(X = t) for t ∈ supp(X). If X is a continuous

real random variable, then we can define the density function fX(t) = d
dt
FX(t) for t ∈

supp(X). We define the characteristic function of X by ϕX(t) = EeitX , which completely

determines the distribution of X. We say X and Y are independent if [X ∈ A] and
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[Y ∈ B] are independent for all A,B ∈ A. Equivalently, X and Y are independent if and

only if Ef(X)g(Y ) = (Ef(X))(Eg(Y )) for all continuous bounded f, g. Induction can extend

this definition to include a finite collection of independent random variables. We say a family

of random variables {Xi : i ∈ I} is independent if any finite subcollection of events using

distinct Xi is independent, and the family is iid (independent and identically distributed) if

additionally Xi ∼ X1 for each i.

Suppose {Xi : i = 1, 2, . . .} is a family of real random variables. We say Xn converges in

r-mean if

lim
n→∞

E|Xn − Y |r = 0 (1.52)

for some random variable Y defined on the same probability space as Xi. (Such a probability

space is guaranteed to exist by Carathéodory’s Extension Theorem.) We say Xn converges

in distribution to a random variable Y if for all t in the continuity set of FY we have

lim
n→∞

FXn(t) = FY (t). (1.53)

We say Xn convergences in probability if for all ε > 0

lim
n→∞

P(|Xn − Y | > ε) = 0 (1.54)

for a random variable Y . We say Xi converges almost surely to Y if P(Xn → Y ) = 1.

Almost sure convergence and convergence in r-mean both imply convergence in probability,

which implies convergence in distribution, while the reverse implications in general do not

hold.

If P,Q are two probability measures on a finite group G, then we can define the convolution
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of P and Q, written P ∗Q as

P ∗Q(s) =
∑
t∈G

P (st−1)Q(t). (1.55)

If G is a compact group, then for measurable A ⊂ G,

P ∗Q(A) =

∫
1A(s) dP (st−1) dQ(t). (1.56)

1.6.2 Common distributions

Below are several common distributions that will be studied in the following text:

Normal distribution

If X ∼ N(µ, σ2) then X has density

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

, (1.57)

while EX = µ and Var(X) = σ2. Let Z ∼ N(0, 1) denote a standard normal random

variable, where we note if X ∼ N(µ, σ2) then X ∼ σZ + µ. We write X ∼ NC(0, 1) if

X = X1 +X2i for Xi iid N(0, 1
2
).

Uniform distribution

If A is a finite set, then we say X ∼ Uniform(A) if for a ∈ A we have mass function

P(X = a) =
1

|A|
. (1.58)
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If X ∼ Uniform(a, b) then X has support on (a, b) where

FX(t) =
t− a
b− a

(1.59)

for t ∈ (a, b), and so has density

fX(t) =
1

b− a
1(a,b)(t). (1.60)

The following result will be used a few times throughout the document:

Lemma 1.8. If X ∼ Uniform(0, 1) and Y is independent of X, then (X+Y ) (mod 1) ∼ X.

Proof. Since X + Y | Y ∼ Uniform(Y, Y + 1) and so (X + Y ) (mod 1) | Y ∼ Uniform(0, 1),

then

P((X + Y ) (mod 1) ≤ t) = EP((X + Y ) (mod 1) ≤ t | Y ) = EP(X ≤ t) = P(X ≤ t).

For example, if θ ∼ Uniform([0, 2π)), then since cosx and sinx are periodic of period 2π,

then sin θ = cos(π
2
− θ) = cos(θ − π

2
) ∼ cos θ.

Arcsine distribution

If Y ∼ Arcsine(0, 1) then for t ∈ [0, 1]

FY (t) =
2

π
arcsin

√
t (1.61)
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with density

fY (t) =
1

π

1√
t(1− t)

1(0,1)(t). (1.62)

The Arcsine distribution can be generated using uniform random variables:

Lemma 1.9. If θ ∼ Uniform([0, 2π)) then sin2(2θ) ∼ Arcsine(0, 1).

Proof. Let ϕ ∼ Uniform([0, π)). Note first 2θ (mod π) ∼ θ (mod π) ∼ ϕ, so since | sin(x)|

has period π then | sin(2θ)| ∼ sinϕ. Now note for t ∈ [0, 1]

P(| sin 2θ| ≤ t) = P(sinϕ ≤ t) = P(ϕ ∈ [0, arcsin t] ∪ [π − arcsin t, π]) =
2

π
arcsin t.

Hence, P(sin2(2θ) ≤ t) = P(| sin(2θ)| ≤
√
t) =

2

π
arcsin

√
t.

Cauchy distribution

For X ∼ Cauchy(1), then

FX(t) =
1

π
arctan t+

1

2
(1.63)

with density

fX(t) =
2

π

1

1 + t2
. (1.64)

Note X ∼ −X (since arctanx is an odd function), and so

P(|X| ≤ t) = 2P(X ≤ t)− 1 =
2

π
arctan t. (1.65)
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In particular, P(|X| ≤ 1) = 1
2
.

IfX ∼ Cauchy(1), thenX has no absolute moments of order k ≥ 1: by the Cauchy inequality,

it suffices to show X does not have a finite absolute first moment (since L1(P) ⊃ Lk(P) for

k ≥ 1). Note if |x| ≥ 1 then 1 + 1
x2
≤ 2 so that |x|fX(x) ≥ 1

π
1
|x| . It follows

E|X| =
∫ ∞
−∞
|x|fX(x) dx = 2

∫ ∞
0

|x|fX(x) dx ≥ 2

∫ ∞
1

|x|fX(x) dx

≥ 2

π

∫ ∞
1

1

|x|
dx =∞.

Similarly, one can show E|X|k <∞ for k < 1 and hence E ln |X| <∞.

Cauchy random variables can also be generated using uniform random variables, as follows:

Lemma 1.10. If θ ∼ Uniform([0, 2π)), then tan θ, cot θ ∼ Cauchy(1).

Proof. Recall first tan(π(Y − 1
2
)) ∼ Cauchy(1) for Y ∼ Uniform(0, 1) since for t ∈ (0, 1) we

have

P(tan(π(Y − 1

2
)) ≤ t) = P(Y ≤ 1

π
arctan t+

1

2
) =

1

π
arctan t+

1

2
= P(X ≤ t).

Note π(Y − 1
2
) ∼ Uniform(−π

2
, π

2
) and π(Y − 1

2
) (mod π) ∼ Uniform(0, π) while θ (mod π) ∼

Uniform(0, π). Using the periodicity of tanx, we have

tan θ = tan(θ (mod π)) ∼ tan(π(Y − 1

2
) (mod π)) = tan(π(Y − 1

2
)) ∼ Cauchy(1).

Hence, we have also cot θ ∼ cot(θ − π
2
) = − tan θ ∼ Cauchy(1) by Lemma 1.8.

Lemma 1.11. If θ ∼ Uniform([0, 2π)) and X ∼ Cauchy(1), then

min(| tan θ|, | cot θ|) ∼ |X| | |X| ≤ 1.
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Proof. Using Lemma 1.10, then for t ∈ [0, 1], we have

P(min(| tan θ|, | cot t|) ≤ t)

= 1− P(min(|X|, 1

|X|
) ≥ t) = 1− P(|X| ≥ t,

1

|X|
≥ t)

= 1− P(t ≤ |X| ≤ 1

t
) = 1 + P(|X| ≤ t)− P(|X| ≤ 1

t
)

= 1 +
2

π

(
arctan t− arctan

1

t

)
= 1 +

2

π

(
2 arctan t− π

2

)
=

4

π
arctan t =

P(|X| ≤ t)

P(|X| ≤ 1)

= P(|X| ≤ t | |X| ≤ 1)

using also the fact arctan t and arctan 1
t

comprise complementary angles when t > 0.

Haar measure

If G is a compact and separable topological group, then there exists a (left and right)

invariant (inner and outer regular) Radon measure µ, called the Haar measure on G, such

that µ(G) = 1 and µ(A) = µ(gA) = µ(Ag) for any measurable A ⊂ G. The following is a

classical result first due to Weil:

Theorem 1.11 ([38]). Let G be a locally compact Hausdorff group. Then there exists a left

(right) Haar probability measure on G.

Write X ∼ Haar(G) if PX = µ. This allows one to sample uniformly from G. If G is finite,

then µ(g) = 1
|G| , so that Haar(G) = Uniform(G).

Note if G is also compact, then it is unimodular, so that a left Haar measure and right

Haar measure necessarily coincide. If ϕ : G1 → G2 is a group isomorphism of compact Polish

groups and µ1 is the Haar measure on G1, then the push forward measure µ2 = µ1 ◦ ϕ−1

is the Haar measure on G2.
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If H is a closed normal group of a locally compact Hausdorff group G, then the quotient

map π : G→ G/H induces the Haar measure on G/H through the push forward measure

µG/H =
1

C
µ ◦ π−1, (1.66)

where C is a normalizing constant so that µG/H is a probability measure: since H is normal,

then we can write π−1(A) = AH = HA for A ⊂ G/H, where we note then

gH · A = gH · AH = gH ·HA = g ·HA = g · π−1(A)

so that

µG/H(gH · A) =
1

C
µ(gπ−1(A)) =

1

C
µ(π−1(A)) = µG/H(A);

we further note this measure is Radon since its compact sets are of the form KH for K

compact in G.

For example, the Haar measure on T can be defined as the push forward of the Haar measure

on [0, 2π) using θ 7→ eiθ, so that it has density 1
2πi

d z
z

.

1.6.3 Universality

For complex systems, computing exact solutions for common questions can be difficult – if not

impossible – as the number of variables increases. However, a particular phenomenon arises

in some instances when an increase in the number of variables leads to higher structure and

predictability in the system, and enables asymptotic analysis of particular statistics. This

phenomenon is called a universality principle. Universality principles often focus on the

limiting distribution for a family of random objects, which can have weak restrictions on

their initial structures (e.g, iid with finite first moment while being agnostic of the particular

initial distribution). This then leads to a series of other closely tied shared statistics for
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objects in the same universality class.

The most famous universality result, which is perhaps the most widely used result from

mathematics, is the central limit theorem.

Theorem 1.12 (Central limit theorem (CLT)). Let {Xi : i = 1, 2, . . .} be a family of iid

random variables with finite second moments such that EX1 = µ and VarX1 = σ2. For

Sn =
∑n

i=1 Xi,
Sn − nµ√

nσ
converges to Z ∼ N(0, 1) in distribution.

Note in the CLT, the limiting distribution has nothing to do with the actual distributions

of the Xi other than the fact they have a finite second moment.

Another famous universality result is:

Theorem 1.13 (Strong Law of Large Numbers ((S)LLN)). Let {Xi : i = 1, 2, . . .} be a se-

quence of random variables with finite first moment such that EX1 = µ. Then 1
n
Sn converges

almost surely to µ.

The Weak Law of Large Numbers (WLNN) is a corollary involving this convergence holding

in probability, although this can be proved directly (and much more simply) without using

the SLNN. Other universality results will be explored further in Section 1.7.

1.6.4 Subgroup algorithm

Suppose G is a finite group and let 1 = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk = G be a chain of

subgroups inside G. Any element g ∈ G can be written as g = h1h2 · · ·hk for h1 ∈ H1 and

hk ∈ Hk/Hk−1. This yields a surjective map f :
∏k

j=1Hk/Hk−1 → G. If one can sample

Hk/Hk−1 uniformly from each coset, then this map would produce a uniform element of

G. This is the idea behind the Subgroup algorithm, which was introduced by Diaconis and

Shahshahani in [9].
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Theorem 1.14 (Subgroup algorithm, [9]). Let G be a compact Polish topological group

group and H a closed subgroup. For π : G → G/H the quotient map, let ϕ : G/H → G be

measurable such that π ◦ ϕ is the identity map on G/H (using the Axiom of choice). Let

T : G→ G/H ×H be defined by

T (g) = (π(g), (ϕπ(g))−1g). (1.67)

T is bijective and bimeasurable with inverse T−1(x, h) = ϕ(x)h. Let dPG, dPH , dPG/H be

invariant probability measures on G,H,G/H, respectively. For ϕ̃ : G/H → G a measure

preserving transformation of G/H, let d P̃G/H denote the image of dPG/H under ϕ̃. Then

dPG = d P̃G/H ∗ dPH . (1.68)

Note (1.68) yields

∫
G

f(g) dPG(g) =

∫
G/H

∫
H

f(gh) dPH(h) dPG/H(gH) (1.69)

for any integrable f .

If one has a way of uniformly sampling from a subgroup and the quotient space of its cosets,

then one can uniformly sample from the group itself.

Example 1.6. Note [O(n) : SO(n)] = 2 and In−1 ⊕ −1, P(1 2) ∈ O(n)\ SO(n). It follows

then if X ∼ Haar(SO(n)) and Y ∼ Bernoulli(1
2
) then X(In−1 ⊕ (−1)Y ) ∼ Haar(O(n)) and

P Y
(1 2)X ∼ Haar(O(n)).

A straightforward implication of Theorem 1.14 is the following, which I will make excessive

use of in Chapter 3:

Corollary 1.7. Let G =
∏n

j=1Gj for Gj a compact Polish topological group. Then G is
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a compact Polish topological group. Moreover, if Xj ∼ Haar(Gj), then X =
∏n

j=1 Xj ∼

Haar(G).

Proof. First, note G is a compact Polish space since it is the product of compact Polish

spaces. Moreover, since multiplication on G and inverses are performed componentwise, on

which each operation is continuous, then these operations are continuous on G so that G is

also a topological group. It follows G has a unique Haar probability measure.

For the last statement we will use induction on n. The result is trivial for n = 1. Now

consider G = G1×G2, and let µi denote the Haar probability measure on Gi and µ the Haar

probability measure on G. Let H = G1 × 1, which is a normal closed subgroup of G that is

naturally isomorphic with G1. We see further G/H ∼= G2 via the commutative diagram of

short exact sequences:

1 G1 G G2 1

1 H G G/H 1

∼=

π2

∼= ∼=

π

where π2 is the projection map onto the second coordinate, which is an open map and is

hence continuous. Since each of the associated maps are continuous, then the induced group

isomorphisms are homeomorphisms. For ϕ1 : G1 → H and ϕ2 : G2 → G/H the isomorphisms

x 7→ (x, 1) and y 7→ (1, y)H, then the push forward measures µ̃i = µi ◦ ϕ−1
i are the Haar

measures for H and G/H. By the Subgroup Algorithm (Theorem 1.14), we have µ = µ̃2 ∗ µ̃1.

Using (1.69), for measurable A ⊂ G, we see

µ(A) =

∫
G

1A(x, y) dµ(x, y)

=

∫
G/H

∫
H

1A((x, y)(h, 1)) d µ̃1(h, 1) d µ̃2((x, y)H)

=

∫
G/H

∫
H

1A(xh, y) dµ1(ϕ−1
1 (h, 1)) dµ2(ϕ−1

2 ((x, y)H)

51



=

∫
G2

∫
G1

1A(xh, y) dµ1(h) dµ2(y)

=

∫
G2

(∫
G1

1x(Ay)(h) dµ1(h)

)
dµ2(y)

=

∫
G2

µ1(x(Ay)) dµ2(y)

=

∫
G2

µ1(Ay) dµ2(y)

= (µ1 × µ2)(A),

where Ay = {x ∈ G1 : (x, y) ∈ A} is the sector of A; we used the invariance of µ1 in the

penultimate line and Fubini’s theorem for the last line. It follows µ = µ1 × µ2. For the

general case, where we assume the result holds for n − 1, we can reduce to the n = 2 case

by writing G = G′1 × Gn for G′1 =
∏n−1

j=1 Gj, which then has Haar measure
∏n−1

j=1 µj by the

inductive hypothesis.

Corollary 1.8. If G =
⊗n

j=1Gj for Gj a compact topological subgroup of U(mj) for mj ≥ 2.

Then G is a compact topological subgroup of U(N) for N =
∏n

j=1mj. Moreover, if Xj ∼

Haar(Gj), then X =
⊗n

j=1Xj ∼ Haar(G).

Proof. Note ϕ :
∏n

j=1Gj 7→ G given by ϕ(
∏n

j=1Xj) =
⊗n

j=1Xj is a surjective continuous

group homomorphism using the mixed-product property. Note this map is not necessarily

injective since IN = (−Im1)⊗ (−IN/m1), while the kernel is a compact subgroup of
∏n

j=1 Gj.

We do have, though, G is isomorphic to (
∏n

j=1Gj)/K for compact K = kerϕ. By Corol-

lary 1.7, µ =
∏n

j=1 µj is the Haar probability measure on
∏n

j=1Gj for µj the Haar probability

measure on Gj. The result then follows by (1.66) since µG = 1
C
µ ◦ ϕ−1 is the Haar measure

on G for C a normalizing constant.

52



1.7 Random Matrix Theory

Random Matrix Theory (RMT) is the study of matrices whose entries are random

variables. Of particular interest is the study of the spectral and numerical properties of these

matrices. A focus of a lot of RMT research relates to determining universality properties for

different families of random matrices. In RMT, famous universality results similarly follow

limiting distributions determined by particular Gaussian ensembles.

1.7.1 Common distributions

We say X is sampled from the Ginibre ensemble, written X ∼ Gin(n,m) or X ∼ Gin(n) if

n = m, if X is an order n×m random matrix with Xij iid N(0, 1), and write X ∼ GinC(n,m)

or GinC(n) if n = m when Xij are iid NC(0, 1). Note if X ∼ Gin(n,m) and U ∈ O(n), then

UX ∼ Gin(n,m): First, suppose X ∼ Gin(n, 1). Since the components are iid N(0, 1), then

their joint density is multiplicative in terms of the density of Xi ∼ N(0, 1). That is, for

measurable A ⊂ Rn

P(X ∈ A) =
1

(2π)n/2

∫
A

e−
1
2
‖x‖22

n∏
j=1

dxj. (1.70)

Since ‖Ux‖2 = ‖x‖2 for any U ∈ O(n), it follows P(UX ∈ A) = P(X ∈ A) for any

U ∈ O(n). It follows if X ∼ Gin(n,m) then UX ∼ Gin(n,m) for any U ∈ O(n). Similarly,

UX ∼ GinC(n,m) if X ∼ GinC(n,m) and U ∈ U(n). Also, if X ∼ Gin(n,m), then

XT ∼ Gin(m,n). It follows

Lemma 1.12. If X ∼ Gin(n) and U ∈ O(n), then UXUT ∼ Gin(n).

Similarly, UXU∗ ∼ GinC(n) if U ∈ U(n) and X ∼ GinC(n).

We say X is sampled from the Gaussian orthogonal ensemble, written X ∼ GOE(n),
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if X = 1√
2
(G + GT ) for G ∼ Gin(n). Note if X ∼ GOE(n), then Xii ∼ N(0, 2) and

Xij ∼ N(0, 1) for i > j. Similarly, we say X is sampled from the Gaussian unitary

ensemble, written X ∼ GUE(n) if X = 1√
2
(G+G∗) for G ∼ GinC(n). By the invariance of

Gin(n) by conjugation of orthogonal matrices by Lemma 1.12, it follows UXUT ∼ GOE(n)

if X ∼ GOE(n) and U ∈ O(n). Similarly, UXU∗ ∼ GUE(n) if X ∼ GUE(n) and U ∈ U(n).

We say X is a (real) Wigner matrix if X is (symmetric) Hermitian and its off-diagonal

entries are iid with mean 0 and variance 1, whose diagonal is iid and independent of its

off-diagonal entries and has a finite first moment. For example, GOE(n) and GUE(n) are

real and complex Wigner ensembles.

Since SO(n),O(n), SU(n) and U(n) are compact Polish topological spaces (in fact, they are

Lie groups), then one can define the Haar measure on each group. A natural question then

is how to actually sample a matrix from this distribution. Using the invariance of Gin(n)

under left multiplication by O(n), Stewart provided the following construction:

Theorem 1.15 ([33]). Let G ∼ Gin(n) and G = QR is the QR factorization of G, where R

has positive diagonal. Then Q ∼ Haar(O(n)).

This result will be explored more extensively in Section 5.2.

1.7.2 Universality in RMT

A particular measure of interest associated with a given matrix is the empirical spectral

distribution (ESD), defined by

µA =
1

n

n∑
j=1

δλj(A) (1.71)
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for λj(A) denoting the eigenvalues of an order n Hermitian matrix A. Note if A is a random

Hermitian matrix, then µA is a random measure on R, while if A is a random unitary matrix,

then µA is a random measure on T. Using the Riesz representation theorem, we can define

the density of states of µA as

∫
f dEµA := E

∫
f dµA (1.72)

for f ∈ Cc(R), the continuous functions on R with compact support. Another type of conver-

gence of particular interest in RMT is the following: For An a sequence of random matrices,

we say µAn converges in expectation to a probability measure P if EµAn converges in

the vague topology to P, that is,

lim
n→∞

E
∫
f dµAn =

∫
f dP (1.73)

for all f ∈ Cc(R). This is a weaker notion of convergences since convergence in probability

(and so also convergence in expectation or convergence in r-mean) implies convergence in

expectation. Note if a sequence of random matrices with increasing order have ESDs that

converge in expectation to a fixed probability measure, then taking the average of a large

number of independent samples would yield a picture close to the limiting distribution by the

LLN. If the ESDs converge in probability or almost surely to P, then for a large enough order

matrix, one sample would be sufficient to generate an approximate picture of the limiting

distribution.

One of the most famous results in RMT is the following, due to Wigner. Define the semi-

circular law on R by the density

µsc(dx) =
1

2π

√
4− x21[−2,2](x) dx. (1.74)

Theorem 1.16 (Semicircular law). If Xn is an order n Wigner matrix. Then µ 1√
n
Xn

con-
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Figure 1.2: µsc versus µ 1
n
Xn

for Xn ∼ GOE(n) for n = 256 and n = 4096

verges almost surely (and hence in probability and in expectation) to µsc as n→∞.

Figure 1.2 show one sample of X ∼ GOE(256) is sufficient to get a decent approximation of

µsc, while one gets a very close approximation with X ∼ GOE(4096).

Of particular interest are the spacings between successive eigenvalues from a Hermitian

ensemble, with a distinction made between edge statistics and bulk statistics of the spectral

picture. Focusing on the bulk statistics for X ∼ GUE(n), Wigner showed that the successive

spacings normalized to 1 (approximately) follow the Wigner surmise (β = 2) distribution,

µWS(dx) ≈ 32

π2
x2e−

4
π
x2 dx. (1.75)

(1.75) is exact when n = 2. A similar universality result shows this holds for X sampled

from a Wigner ensemble.

The origin of RMT less than a century ago arose from a need for statistical modeling of

physical systems. Eugene Wigner introduced a lot of results in early RMT through the

lens of nuclear physics. Computations relating to the level spacings between the nuclei of
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heavy atoms led to his conjecture that became the Wigner surmise. Other results that have

shown empirical Wigner surmise spacing statistics include prime number gaps, the spacings

between parallel parked cars, gaps in arrival times of subway trains in New York City or

buses in Cuernavaca, and even the spacings between rods in chicken eyes [20, 21, 24, 25, 28].

Appendix B outlines a novel result showing the spacings between ocean waves satisfy the

Wigner surmise.
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Chapter 2

Butterfly matrices

I cannot separate the aesthetic

pleasure of seeing a butterfly and the

scientific pleasure of knowing what it

is.

Vladimir Nabokov

I will first introduce a structure for butterfly matrices of order N = 2n. This is the model

originally studied in [31, 37]. I will then introduce a general structure of butterfly models

for N = mn, along with a butterfly model that uses the prime factorization of N close in

relationship to the Cooley-Tukey FFT construction. This chapter will provide a thorough

foundation for the remainder of this document.
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2.1 Order N = 2n butterfly matrices

By default this section will assume N = 2n. Note the definitions of the generalized rotation

matrices and butterfly factors work for any even sized matrices, but the focus will often

return to this strict assumption on N .

2.1.1 Rotation matrices

Definition 2.1. A generalized rotation matrix is an order N matrix for N even of the

form

 C S

−S C

 (2.1)

where C, S are commuting, symmetric N/2 order real matrices such that C2 + S2 = I.

The scalar rotation matrices and diagonal rotation matrices are the corresponding

generalized rotation matrices formed using, respectively, scalar or diagonal matrices C, S;

these are denoted by R(N) and Rd(N).

Note the generalized rotation matrices of order 2 are precisely the (clockwise) rotational

matrices, SO(2).

Since [C, S] = 0 and C, S are symmetric, then C, S are simultaneously diagonalizable, that

is, there exists a Q ∈ U(N) such that

C = QΛ1Q
∗ and S = QΛ2Q

∗. (2.2)
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Moreover, we necessarily have

Λ1 =

N/2⊕
j=1

cos(θj) and Λ2 =

N/2⊕
j=1

sin(θj), (2.3)

since the corresponding real eigenvalues (since C, S are symmetric) need to satisfy the

Pythagorean identity λ2
C + λ2

S = 1, meaning (λC , λS) lies on the unit circle, and hence

(λC , λS) = (cos(θ), sin(θ)) for some θ.

A lot can be established about generalized rotation matrices from their definitions, such as:

Proposition 2.1. The generalized rotation matrices belong to SO(N). Moreover, the gener-

alized rotation matrices generated by simultaneously diagonalizable C, S matrices (viz., they

all mutually commute with one another) form an abelian subgroup of SO(N).

Additionally, R(N) forms an abelian subgroup of SO(N), and R(N) ∼= T for all n ≥ 1, both

as a group and topologically.

Remark 2.1. It is useful to note that

R(N) = SO(2)⊗ IN/2. (2.4)

Recall there exists a perfect shuffle Q such that A⊗B = Q(A⊗B)QT . Hence, we can find a

permutation matrix Q such that for RN(θ) = R(θ)⊗ IN/2 ∈ R(N) for R(θ) ∈ R(2) = SO(2),

we have

Q(R(θ)⊗ IN/2)QT = IN/2 ⊗R(θ) =

N/2⊕
R(θ). (2.5)

If R(θ) ∈ Rd(N), then using the same Q we have

QR(θ)QT =

N/2⊕
j=1

R(θN/2−j+1) (2.6)
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where R(θj) ∈ R(2) = SO(2).

Proof of Proposition 2.1. Note the identity matrix can be realized as a generalized rotation

matrix formed using (C, S) = (I, 0). Now we check

 C S

−S C


 C S

−S C


T

=

 C S

−S C


 C −S

S C

 =

 C2 + S2 [S,C]

[C, S] C2 + S2

 = I.

(2.7)

Using Schur’s complement formula and the fact C, S commute, we have

det

 C S

−S C

 = det(C2 + S2) = det(I) = 1

if C is nonsingular (a slightly modified argument is needed if C is singular1). These collec-

tively show the generalized rotation matrices belong to SO(N) and are closed under comple-

ments (since the inverse of the generalized rotation matrix formed by (C, S) is the generalized

rotation matrix formed by (C,−S)).

Next, we see these are closed under multiplication, and multiplication is commutative: we

first compute

 C1 S1

−S1 C1


 C2 S2

−S2 C2

 =

 C1C2 − S1S2 C1S2 + S1C2

−(S1C2 + C1S2) −S1S2 + C1C2

 . (2.8)

Since [C1, C2] = [S1, S2] = [C1, S2] = [S1, C2] = 0, then it is clear these matrices commute

with one another (we can freely interchange the indices above), and also (C1C2 − S1S2)T =

1If C is singular, use the decompositions C = QΛ1Q
∗, S = QΛ2Q

∗ from (2.3) to reduce to the diagonal C
and S case, followed then by using the corresponding row transpositions to switch any zeros in C with the ±1
in S followed then by a sign change for the row/column moved from −S, which will preserve the determinant.
The resulting nonsingular C ′ and S′ still satisfy the conditions of C, S, and so form a generalized rotation
matrix with the same determinant as the matrix formed by C, S.
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C2C1 − S2S1 = C1C2 − S1S2, (C1S2 + S1C2)T = S2C1 + C2S1 = C1S2 + S1C2, [C1C2 −

S1S2, C1S2 + S1C2] = 0 (since each is a composition of commuting matrices) and

(C1C2 − S1S2)2 + (C1S2 + S1C2)2 = (C2
1 + S2

1)(C2
2 + S2

2) = I.

In particular, we have the diagonal rotation matrices form a subgroup of SO(N), with a

smaller subgroup formed by the scalar rotation matrices, R(N), which follows directly from

Remark 2.1 and the mixed-product property.

To see R(N) ∼= T, it suffices to show the result for N = 2. This follows directly from the

relationship RN(θ) ∼= SO(2) via the map B(θ)⊗ IN/2 7→ B(θ). Moreover, this is a bijective

map, which is a group homomorphism by the mixed-product property and a homeomorphism

since it is equivalently a projection onto the middle 2 × 2 block of RN(θ) and is hence an

open map. Using both (2.7) and (2.8), we have

R2(θ)−1 = R2(−θ) and R2(θ)R2(ϕ) = R2(θ + ϕ), (2.9)

which then completes the task at hand.

Next, since multiplication in R(2) = SO(2) is equivalent to addition of angles modulo 2π,

then R(2) = SO(2) ∼= T. In particular, the map B(θ) 7→ eiθ is then a group homomorphism,

which is clearly an isomorphism. Moreover, this map is continuous: it is the composition

of the projection map sending B(θ) onto its first column in R2 followed by the isometry

R2 → C. Again, since projections are open maps, then this map is also a homeomorphism.

It follows R(N) and T are isomorphic and homeomorphic.
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2.1.2 Order N = 2n butterfly matrices

Definition 2.2. A butterfly matrix, denoted collectively as B(N), is an iteratively defined

matrix of order N = 2n, where we start with {1} if N = 1, of the following form:

 CA1 SA2

−SA1 CA2

 =

 C S

−S C


 A1

A2

 , (2.10)

where A1, A2 ∈ B(N/2), and C, S form a generalized rotation matrix. A butterfly matrix is

simple if A1 = A2 at each iterative step; otherwise, such a butterfly matrix is nonsimple.

Note a butterfly matrix is the product of a generalized rotation matrix and a block diagonal

butterfly matrix. A simple walkthrough of how to build a butterfly matrix is established in

the next two examples.

Example 2.1. The order 2 butterfly matrices (which are necessarily simple) are comprised

precisely by the (clockwise) rotation matrices, SO(2),

A = B(θ) =

 cos θ sin θ

− sin θ cos θ

 .
Example 2.2. Using A = B(θ) from the prior example and now (C2, S2) = (cosϕ, sinϕ)I2,

we can form the order 4 simple butterfly matrix

 C2A S2A

−S2A C2A

 =



cosϕ cos θ cosϕ sin θ sinϕ cos θ sinϕ sin θ

− cosϕ sin θ cosϕ cos θ − sinϕ sin θ sinϕ cos θ

− sinϕ cos θ − sinϕ sin θ cosϕ cos θ cosϕ sin θ

sinϕ sin θ − sinϕ cos θ − cosϕ sin θ cosϕ cos θ


.
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Example 2.3. For some concrete order 4 examples, here are two simple butterfly matrices:



−0.65 −0.15 −0.72 −0.17

0.15 −0.65 0.17 −0.72

0.72 0.17 −0.65 −0.15

−0.17 0.72 0.15 −0.65


and



0.32 −0.19 0.80 −0.47

0.19 0.32 0.47 0.80

−0.80 0.47 0.32 −0.19

−0.47 −0.80 0.19 0.32


;

and two nonsimple butterfly matrix:



−0.51 0.86 0.06 0.05

−0.86 −0.51 −0.05 0.06

0.04 −0.07 0.80 0.59

0.07 0.04 −0.59 0.80


and



−0.22 0.97 −0.13 0.03

−0.97 −0.22 −0.03 −0.13

0.03 −0.13 −0.97 0.19

0.13 0.03 −0.19 −0.97


.

.

Since the generalized rotation matrices are the main building blocks of butterfly matrices,

we immediate get the following result:

Proposition 2.2. B(N) ⊂ SO(N).

Proof. Using induction on n, the result is trivial for n = 0. Now assume B(N/2) ⊂ SO(N/2).

We have then the block diagonal matrices with blocks from B(N/2) are also in SO(N), and so

B(N) ⊂ SO(N) since this consists precisely of products of two special orthogonal matrices,

using also Proposition 2.1.

Remark 2.2. Note the formation of a butterfly matrix B = RD for R a generalized rotation

matrix and D a block diagonal butterfly matrix is unique only when n = 1 (there is only one

possible block diagonal butterfly matrix of order 2, viz., I), since for n ≥ 2, −R,−D ∈ B(N)

and so

B = RD = (−R)(−D).
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This shows the map R(N)×
2⊕

B(N/2)→ B(N) is a 2:1 map when N ≥ 4.

Definition 2.3. The diagonal butterfly matrices and scalar butterfly matrices are

the butterfly matrices formed iteratively using diagonal and scalar rotation matrices, respec-

tively. Let Bs(N) denote the simple scalar butterfly matrices. For B ∈ Bs(N), we will write

B = B(A, θ) for A ∈ Bs(N/2) if B is of the form

 cos θA sin θA

− sin θA cos θA

 =

 cos θI sin θI

− sin θI cos θI


 A

A

 =

 A

A


 cos θI sin θI

− sin θI cos θI

 .
(2.11)

Unless otherwise stated, B(N) denotes the nonsimple scalar butterfly matrices.

Remark 2.3. For Bs(N) then (2.10) can be written as

B(θ) =
n⊗
j=1

B(θn−j+1) = B(θn)⊗ · · · ⊗B(θ1) (2.12)

for B(θj) ∈ SO(2). This form will be used frequently throughout this document. Additionally,

B(N) (the nonsimple scalar butterfly matrices) are of the form

(B(θ)⊗ IN/2)(B(θ)⊕B(ϕ)) (2.13)

for B(θ) ∈ B(2) and B(θ), B(ϕ) ∈ B(N/2).

2.1.3 Matrix-vector multiplication

Parker’s original interest in using butterfly matrices for reducing complexity for common

computations relied on the fact products using these matrices can be carried out very effi-

ciently. This is outlined explicitly in this section. Algorithms 3 and 4 show how one compute
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the product of by a butterfly matrix with a matrix V ∈ RN×M . Both algorithms show how to

implement this multiplication by first splitting the input matrix into two blocks of equal size

(Step 2), implementing the multiplication on each subblock (Steps 3 and 4 in Algorithm 3;

Step 3 in Algorithm 4), and then stitching the outputs together to form the final output

product (Step 5 in Algorithm 3; Step 4 in Algorithm 4).

Note one does not need to store the matrix itself to compute the product, but one would

need storage of the input parameters to generate the matrix if one needs to undo this

multiplication. See [2, 31] for discussions relating to data storage. I will not explore data

storage further in this document.

Algorithm 3 Butterfly matrix-vector multiplication

1: procedure BMult(V)

2:

[
V1

V2

]
= V for V1,V2 ∈ RN/2×M

3: V1 = BMult(V1)
4: V2 = BMult(V2)

5: V =

[
CV1 + SV2

−SV1 + CV2

]
6: return V

Algorithm 4 Simple butterfly matrix-vector multiplication

1: procedure SBMult(V)

2:

[
V1

V2

]
= V for V1,V2 ∈ RN/2×M

3:
[
V1 V2

]
= SBMult(

[
V1 V2

]
)

4: V =

[
CV1 + SV2

−SV1 + CV2

]
5: return V

We can determine the complexity in Algorithm 3: considering only the case when C and S are

diagonal, then for V a vector (i.e., M = 1) we have CV1 +SV2 takes 2 ·N/2 multiplications

and N/2 additions for 3N/2 total flops, so that V =

 CV1 + SV2

−SV1 + CV2

 takes 3N flops. Each

recursive step in the middle then accounts for 3 ·N/2 flops plus two more smaller recursive
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steps. Hence, since there are n = log2N total recursive steps, we have

3N + 2(3N/2 + 2(3N/4 + · · · )) = 3N + 3N + 3N + · · · = 3Nn

total flops. (Equivalently, one can see complexity satisfies the recurrence αn = 3N + 2αn−1,

so that αn = 3Nn can be verified through induction.) The calculation is identical for

Algorithm 4. Hence, both of these methods are substantially faster than the (dense) matrix-

vector multiplication, which takes N(2N − 1) = 2N2 +O(N) flops (see Example 1.2).

Note to attain this O(Nn) complexity order, it is necessary for C, S to be matrices such that

matrix-vector multiplication takes O(N) flops. Above we considered only the scalar and

diagonal cases, which satisfy this property. For simplicity, we will focus on these models.

2.1.4 Butterfly block factors

Focusing on a scalar butterfly matrix B, we see inductively from (2.10) that B can be written

of the form

B = D0D1 · · ·Dn−1 (2.14)

where Dj is a block diagonal matrix with 2j blocks of order 2n−j and each block is a scalar

rotation matrix in R(2n−j). If B ∈ Bs(n) then Dj would then have identical blocks. These

can be used to better establish the topological picture of butterfly matrices.

Definition 2.4. For N and j such that 2j | N , the butterfly block factors, denoted by

Dj(N) =
⊕jR(N/j), are the set of order N block diagonal matrices of the form

j⊕
`=1

A`, (2.15)
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such that Ak ∈ R(N/j) for each k. The simple butterfly block factors, denoted by

Djs(N), comprise the subset of Dj(N) such that each block is identical.

The (simple) diagonal butterfly block factors, denoted by Djd(N) (Djds(N)), are com-

prised of the block diagonal matrices such that Ak ∈ Rd(N/j) for each k (with Ak = A1 for

all k).

Note the condition 2j | N ensures that N/j is an even integer, and hence RN/j is defined.

In particular, D1(N) = R(N) when N is even. Also, Dj ∈ D2j(N) in (2.14).

Remark 2.4. Building off of Remark 2.3, we see

Dj(N) =

j⊕
(SO(2)⊗ IN/2j) (2.16)

and

Djs(N) = Ij ⊗ SO(2)⊗ IN/2j. (2.17)

Proposition 2.3. Dj(N) and Djs(N) are compact abelian subgroups of SO(N), where for

B(θ), B(ϕ) ∈ Dj(N) (Djs(N)) then B(θ)B(ϕ) = B(θ + ϕ) ∈ Dj(N) (Djs(N)). As groups

and topologically Dj(N) ∼= Tj and Djs(N) ∼= T. If 2j, 2k | N with j 6= k, then

Dj(N) ∩ Dk(N) =


gcd(j,k)⊕
`=1

A` : A` = ±IN/ gcd(j,k)

 , (2.18)

while

Djs(N) ∩ Dk(N) = Dj(N) ∩ Dks (N) = Djs(N) ∩ Dks (N) = {±IN}. (2.19)

Proof. The first statement follows directly from Proposition 2.1 (and Corollary 1.8).
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To establish (2.18), suppose A ∈ Dj(N) ∩ Dk(N), and so there exist θ,ϕ such that

A =

j⊕
i=1

RN/j(θi) =
k⊕
i=1

RN/k(ϕi).

By equating diagonals of both representations, we have each N/j interval of diagonal entries

are equal as these are the blocks in the
⊕jR(N/j) setting, and similarly each N/k interval

of diagonal entries are equal. Considering then overlapping intervals, we have each

m := lcm(N/j,N/k)

interval of diagonal entries must be equal.

Since nm = gcd(n,m) · lcm(n,m) and

gcd(N/j,N/k) = min
a,b∈Z

∣∣∣∣aNj + b
N

k

∣∣∣∣ =
N

jk
min
a,b∈Z
|ak + bj| = N

jk
gcd(j, k) =

N

lcm(j, k)
,

then

m =
N2/jk

gcd(N/j,N/k)
=

N2/jk

N/ lcm(j, k)
=

N

gcd(j, k)
(2.20)

and hence

N

m
= gcd(j, k). (2.21)

We have

cos θ1 = cos θ2 = · · · = cos θb = cosϕ1 = · · · = cosϕa
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where

b =
m

N/j
=
mj

N
=

j

gcd(j, k)
and a =

k

gcd(j, k)
. (2.22)

In general,

cos θdb+1 = cos θdb+s = cosϕda+1 = cosϕda+t, (2.23)

where s = 1, . . . , b and t = 1, . . . , a, and d = 0, . . . , gcd(j, k) − 1. (Note j/b = gcd(j, k) =

k/a.)

Fix d between 0, . . . , gcd(j, k)− 1. Now consider the (dm+ 1)th column of A, which is

cos θdb+1edm+1 − sin θdb+1edm+N/2j+1 = cosϕda+1edm+1 − sinϕda+1edm+N/2k+1. (2.24)

Using the linear independence of the ei, we have sin θdb+1 = 0 so that ±1 = cos θdb+1, and

hence

0 = sin θdb+1 = sin θdb+s = sinϕda+1 = sinϕda+t

for s = 1, . . . , b and t = 1, . . . , a using now (2.23). In particular, the m ×m block starting

at the dm+ 1 diagonal entry is ±I. Since d was arbitrary, then we have (2.18).

(2.19) then follows directly from (2.18) along with the definition of Djs(N) and Dks (N), viz.,

that the blocks need be identical.

Note if also j | k so that gcd(j, k) = j, then (2.18) yields

Dj(N) ∩ Dk(N) =

{
j⊕
`=1

A` : A` = ±IN/j

}
.

In particular, we can establish a straightforward relationship when considering N = 2n.
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Corollary 2.1. If N = 2n, then for 1 ≤ j1 < j2 < · · · < jk ≤ n, then

k⋂
i=1

D2ji (N) =


2j1⊕
`=1

A` : A` = ±I2n−j1

 (2.25)

and

k⋂
i=1

D2ji
s (N) =

⋂
`∈S

D2j`
s (N) ∩

k⋂
i=1

D2ji (N) = {±I} (2.26)

for ∅ 6= S ⊂ [k].

Note the right hand side in (2.26) considers the intersection in (2.25) with at least one

D2ji (N) replaced by D2ji
s (N).

Proof. Using (2.18), we have

D2j1 (N) ∩ D2ji (N) =


2j1⊕
`=1

A` : A` = ±I2n−j1


for i = 2, . . . , k. Hence, (2.25) follows after noting

k⋂
i=1

D2ji (N) =
k⋂
i=2

D2j1 (N) ∩ D2ji (N).

(2.26) follows immediately from (2.25) by noting the blocks need be identical.

Using a similar argument, updated appropriately in light of (2.1), one can also show:

Proposition 2.4. Djd(N) and Djds(N) are compact abelian subgroups of SO(N), where for

B(θ), B(ϕ) ∈ Djd(N) (Djds(N)) then B(θ)B(ϕ) = B(θ + ϕ) ∈ Djd(N) (Djds(N)). As groups

and topologically, Djd(N) ∼= TN/2 and Djds(N) ∼= T N/2j.
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2.1.5 Topological properties of butterfly matrices

We then can outline the topological picture of the scalar butterfly matrices.

Remark 2.5. I will now exclusively use B(N) and Bs(N) to denote the scalar nonsimple

and simple butterfly matrices, respectively.

Proposition 2.5. B(N) and Bs(N) are compact spaces in SO(N), which are homeomorphic

to quotients of higher dimensional tori Tn and TN−1, respectively.

Proof. By Proposition 2.3, we have D2j(N) and D2j

s (N) are compact for each j = 0, . . . , n−1,

so that
∏n−1

j=0 Dj(N) and
∏n−1

j=0 Djs(N) are each compact. The map

fn : SO(N)n → SO(N)

given by (D0, D1, . . . , Dn−1) 7→ D0D1 · · ·Dn−1 is continuous (since SO(N) is a Lie group

then matrix multiplication is continuous). By (2.14), we have

fn

(
n−1∏
j=0

D2j(N)

)
= B(N) and fn

(
n−1∏
j=0

D2j

s (N)

)
= Bs(n).

It follows B(N) and Bs(N) are each compact since they are the continuous images of compact

spaces.

By Proposition 2.3, we have topologically

n−1∏
j=0

D2j(N) ∼=
n−1∏
j=0

T2j = T
∑n−1
j=0 2j = TN−1

and
n−1∏
j=0

D2j

s (N) ∼=
n−1∏
j=0

T = Tn.
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Since

gn :
n−1∏
j=0

D2j(N)→ B(N) and hn :
n−1∏
j=0

D2j

s (N)→ Bs(N)

given both by (D0, D1, . . . , Dn−1) 7→ D0D1 · · ·Dn−1 are continuous surjective maps, then

they are quotient maps. This establishes the last statement.

These arguments can be updated appropriately to establish the following result for the

diagonal butterfly matrices:

Proposition 2.6. The diagonal simple and nonsimple butterfly matrices are compact spaces

in SO(N), which are homeomorphic to quotients of higher dimensional tori TN−1 and T 1
2
Nn,

respectively.

2.1.6 Butterfly parameters

I will refer to the number of angles θ that are needed to generate a given butterfly matrix

as the needed butterfly parameters. Using the iterative structure of butterfly matrices,

we can enumerate the needed parameters to construct some particular classes of butterfly

matrices. Note that this corresponds directly to the dimension of the butterfly matrices as

manifolds.

Proposition 2.7. The simple and nonsimple scalar butterfly matrices are constructed, re-

spectively, using n = log2N and N − 1 parameters, while the simple and nonsimple diagonal

butterfly matrices are constructed, respectively, using N − 1 and 1
2
Nn parameters.

Proof. Note the scalar cases follow from Proposition 2.5 and Proposition 2.6. Instead, I can

independently verify these results using only (2.10).

Let αn be the number of parameters needed for an order N such matrix, and note α0 = 0 for

all cases above. Then we can verify each of the above counts by solving the corresponding
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iterative equations following from (2.10) of the form

αn = 2an + 2δαn−1 (2.27)

where δ = 0 in the simple case and δ = 1 in the nonsimple case and an = 0 in the scalar case

and an = n− 1 in the diagonal case, which is done with straightforward induction.

Note the prior proposition shows we can write a scalar or diagonal butterfly matrix as B(θ)

for θ ∈ [0, 2π)αn for αn is the number of needed butterfly parameters. Note if n ≥ 1 and

B(θ) is a scalar or diagonal butterfly matrix, then using (2.27) we can write θ = (θ1,θ2,θ3)

so that

B(θ) = R(θ3)

 B(θ1)

B(θ2)

 , (2.28)

for θ1 = (θ1, . . . , θαn−1),θ2 = (θδαn−1+1, . . . , θ(δ+1)αn−1), and θ3 = (θ2δαn−1+1, . . . , θαn) where

δ = 0 if B(θ) is simple and δ = 1 if B(θ) is nonsimple, and R(ϕ) is the order N diagonal or

scalar rotational matrix formed by

(C, S)(ϕ) =

N/2⊕
i=1

(cos(ϕi), sin(ϕi)),

where ϕ = ϕ1N/2 in the scalar case.

2.1.7 Reverse butterfly matrices

Since one desirable attribute of a butterfly matrix is that we can efficiently multiply a vector

by it (see Section 2.1.3), we would also like to be able to undo this multiplication. By

Proposition 2.2, we know if B = RD ∈ B(N) where R is a generalized rotation matrix and

74



D a block diagonal butterfly matrix, then B−1 = BT = DTRT . In general, B−1 6∈ B(N).

For this, we will introduce a new subset of special orthogonal matrices:

Definition 2.5. A reverse butterfly matrix, collectively denoted by BR(N) for N = 2n

with BR(1) = {1}, is an iteratively defined matrix of order N of the following form:

 CA1 SA1

−SA2 CA2

 =

 A1

A1


 C S

−S C

 , (2.29)

where A1, A2 ∈ BR(N/2), and C, S form a generalized rotation matrix. Analogously, define

simple, nonsimple, diagonal and scalar reverse butterfly matrices.

By (2.11), the prior conversation shows there is a one-to-one correspondence between B(N)

and BR(N) given by the map B 7→ B−1. This immediately yields the following results:

Corollary 2.2. BR(N) ⊂ SO(N), while simple and nonsimple scalar (diagonal) reverse

butterfly matrices are formed, respectively, using n and N − 1 (N − 1 and 1
2
Nn) parameters.

We can also write a scalar or diagonal reverse butterfly matrix of the form

BR(θ) for θ ∈ [0, 2π)αn

where αn is the number of needed butterfly parameters to generate to same order scalar or

diagonal butterfly matrix. For θ = (θ1,θ2,θ3) we then have

BR(θ) =

 BR(θ1)

BR(θ2)

R(θ3). (2.30)

We can now establish the following:
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Proposition 2.8. If B(θ) is a scalar or diagonal butterfly matrix, then B(θ)−1 is the cor-

responding scalar or diagonal reverse butterfly matrix of the form BR(−θ).

Proof. We will use induction on n. The result is trivial for n = 0. Now assume the

result holds for B(N/2). Using (2.9), (2.28), (2.30), and the inductive hypothesis, for

θ = (θ1,θ2,θ2) appropriately partitioned, we have

B(θ)−1 =

 B(θ1)−1

B(θ2)−1

R(θ3)−1

=

 BR(−θ1)

BR(−θ2)

R(−θ3)

= BR(−θ).

2.1.8 Group properties of butterfly matrices

This section will explore particular group properties of scalar butterfly matrices. Appendix C

will outline more properties relating the scalar butterfly matrices with respect to the larger

group generated by B(N).

Which butterfly matrices can satisfy a group structure relies on the following result:

Lemma 2.1. Let A1, A2 be order N/2 normal matrices. A generalized rotation matrix formed

by C, S with nonsingular S commutes with A1 ⊕A2 if and only if A1, A2 both commute with

C, S and A1 = A2.

In particular, a scalar rotation matrix formed by (C, S) = (cos θ, sin θ)I commutes with a

block diagonal matrix with block entries A1, A2 ∈ B(N/2) if and only if S = 0 or S 6= 0 and
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A1 = A2.

Proof. We first compute the commutator of a generalized rotation matrix and a block diag-

onal matrix:
 C S

−S C

 ,
 A1

A2


 =

 [C,A1] SA2 − A1S

A2S − SA1 [C,A2]

 . (2.31)

If A1 = A2 and [C,A1] = [C,A2] = [S,A1] = [S,A2] = 0, then (2.31) evaluates to 0.

Conversely, suppose (2.31) evaluates to 0. It follows [C,A1] = [C,A2] = 0. For i = 1, 2,

since Ai is normal then Ai is diagonalizable, and so C and Ai are both simultaneously

diagonalizable, as then are also S and Ai, so that also [S,A1] = [S,A2] = 0. It follows

0 = SA1−A2S = S(A1−A2). Since S is nonsingular, then A1 = A2. The scalar case follows

immediately from this result, where we note now the scalar rotation matrix with S = 0 is

necessarily ±I and hence commutes with any matrix.

Note the condition [C,A1] = [C,A2] = 0 is always satisfied by the scalar rotation matrices.

It follows:

Proposition 2.9. Bs(N) is a compact abelian subgroup of SO(N).

Proof. We already established Bs(N) is a compact space in SO(N) in Proposition 2.5, so it

remains to establish Bs(N) is an abelian group.

We will again use induction on n. The result for n = 1 follows from Proposition 2.1.

Now suppose Bs(N/2) is an abelian subgroup of SO(N/2). Let D be the collection of

block diagonal matrices whose two blocks are identically taken from Bs(N/2), and R(N)

the abelian group of scalar rotation matrices of order N (using Proposition 2.1). By the

inductive hypothesis, D ∼= Bs(N/2) is an abelian group, as is then R(N)×D. Since elements

from R(N) and D commute by Lemma 2.1, then R(N)D is a subgroup of SO(N), and
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Bs(N) = R(N)D by construction. Moreover, the map R(N) × D → Bs(N) given by

(R,D) 7→ RD is a surjective group homomorphism, using also (2.10). It follows Bs(N)

is isomorphic to a quotient of an abelian group and is hence abelian.

Alternatively, one can inductively show hn :
∏n−1

j=0 D2j

s (N)→ Bs(N) given by (D0, . . . , Dn−1) 7→

D0 · · ·Dn−1 from Proposition 2.5 is a surjective group homomorphism, where
∏n−1

j=0 D2j

s (N) ∼=

Tn is abelian, with kernel

kerhn = {((−I)a1 , (−I)a2 , . . . , (−I)an) : a ∈ {0, 1}n,
n∑
i=1

ai ∈ 2Z}, (2.32)

using (2.26). In particular, we see kerhn is abelian with (group) order 2, and | kerhn| = N/2

(the number of ways of choosing an even number of indices among the n options is 2n−1 =

N/2), so that kerhn ∼= (Z/2Z)n−1. It follows

Bs(N) ∼= Tn/K (2.33)

for

K := {((−1)a1 , . . . , (−1)an) ∈ Tn : a ∈ {0, 1}n,
n∑
i=1

ai ∈ 2Z} ∼= (Z/2Z)n−1.

The following is immediate from this proof:

Corollary 2.3. The scalar rotation matrices are a compact subgroup of Bs(N).

Also, we can extend Proposition 2.8 in the case of simple scalar butterfly matrices:

Corollary 2.4. For B(θ), B(ϕ) ∈ Bs(N), B(θ)−1 = B(−θ) ∈ Bs(N) and B(θ)B(ϕ) =

B(θ +ϕ) ∈ Bs(N).

Proof. It remains only to show B(θ)B(ϕ) = B(θ + ϕ). The result for n = 1 follows from

Proposition 2.1, so assume the result holds for Bs(N/2). Write θ = (θ′, θn) and ϕ = (ϕ′, ϕn).
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Using Lemma 2.1, Proposition 2.1, (2.28), (2.9), and the inductive hypothesis, we have

B(θ)B(ϕ) = R(θn)

 B(θ′)

B(θ′)

R(ϕn)

 B(ϕ′)

B(ϕ′)


= R(θn)R(ϕn)

 B(θ′)B(ϕ′)

B(θ′)B(ϕ′)


= R(θn + ϕn)

 B(θ′ +ϕ′)

B(θ′ +ϕ′)


= B(θ +ϕ).

In Section C, we show the nonsimple butterfly matrices are not closed under multiplication,

that is, B(N)2 6⊂ B(N) (cf., Proposition C.1). This can potentially be exploited later to use

butterfly matrices to approximate SO(N), and hence O(N) (see Section 5.2).

2.1.9 Connectedness

A natural question with butterfly matrices is far can a butterfly matrix change through per-

turbations of the input butterfly parameters. This can be answered explicitly by computing

bounds for ‖B(θ)− B(θ + ε)‖F , which show the map θ 7→ B(θ) is Lipshitz continuous. In

particular, this shows Bs(N) and B(N) are connected. Only scalar butterfly matrices are

considered in this section. Analogous results can be attained for diagonal butterfly matrices.

First, recall ‖ · ‖F is invariant under unitary transformations. Using also the triangle in-
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equality, we have for Ui, Vi ∈ U(N) then

‖U1V1 − U2V2‖F ≤ ‖U1 − U2‖F + ‖V1 − V2‖F . (2.34)

Moreover, directly by the definition of ‖ · ‖F ,

‖A⊕B‖2
F = ‖A‖2

F + ‖B‖2
F . (2.35)

Next, we will explore the continuity of the butterfly factors.

Lemma 2.2. Let ε ∈ R. Then

‖Ik −Rk(ε)‖F ≤
√
k|ε|. (2.36)

Proof. Since k is necessarily even, we can consider 2k. Recall

R2k(θ) = B(θ)⊗ Ik = QT (Ik ⊗B(θ))Q

for B(θ) ∈ SO(2) and Q a perfect shuffle matrix. It follows

‖I2k −R2k(ε)‖2
F = ‖I2k −QT (Ik ⊗B(ε))Q‖2

F = ‖Ik ⊗ (I2 −B(ε))‖2
F

= ‖
k⊕

(I2 −B(ε))‖2
F = k‖I2 −B(ε)‖2

F

= kTr ((I2 −B(ε))(I2 −B(ε))∗)

= kTr(2I2 − (B(ε) +B(−ε)))

= kTr(2(1− cos ε)I2) = 4k(1− cos ε)

≤ 2kε2

using the bilinearity of ⊗ and (2.35), while the last inequality follows directly from the
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elementary bound

1− cosx ≤ x2

2
(2.37)

for all x ∈ R.

This leads to the result for simple scalar butterfly matrices:

Proposition 2.10. Let B(θ) ∈ Bs(N) and ε ∈ Rn. Then

‖B(θ)−B(θ + ε)‖F ≤
√
N‖ε‖1. (2.38)

Proof. Recall B(θ + ε) = B(θ)B(ε). Using the mixed-product property, we have

‖B(θ)−B(θ + ε)‖F = ‖B(θ)(IN −B(ε))‖F

= ‖IN −
n⊗
j=1

B(εn−j+1)‖F

= ‖IN −
n∏
k=1

n⊗
j=1

B(εn−j+1)δk,j‖F

= ‖InN −
n∏
k=1

IN2−(n−k+1) ⊗R2n−k+1(εn−k+1)‖F

≤
n∑
k=1

‖IN − IN2−k ⊗R2k(εk)‖F

=
n∑
k=1

‖IN2−k ⊗ (I2k −R2k(εk))‖F

=
n∑
k=1

‖
N2−k⊕

(I2k −R2k(εk))‖F

=
n∑
k=1

√
N2−k‖I2k −R2k(εk)‖F

≤
n∑
k=1

√
N2−k

√
2k|εk|

=
√
N‖ε‖1
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using (2.34) and Lemma 2.2, respectively, for the inequalities.

The result for scalar butterfly matrices is established similarly, focusing first on the diagonal

block butterfly factors:

Lemma 2.3. Let B(θ) ∈ Dk(N) and ε ∈ Rn. Then

‖B(θ)−B(θ + ε)‖F ≤
√
N

k
‖ε‖2. (2.39)

Proof. Similarly, B(θ + ε) = B(θ)B(ε), and recall necessarily k | N . It follows

‖B(θ)−B(θ + ε)‖F = ‖B(θ)(IN −B(ε))‖F

= ‖IN −
k⊕
j=1

RN/k(εj)‖F

= ‖
k⊕
j=1

(IN/k −RN/k(εj))‖F

=

(
k∑
j=1

‖IN/k −RN/k(εj)‖2
F

)1/2

≤

(
k∑
j=1

N

k
ε2
j

)1/2

=

√
N

k
‖ε‖2

using (2.35) and Lemma 2.2 for the inequality.

Now we can establish the result for general scalar butterfly matrices.

Proposition 2.11. Let B(θ) ∈ B(N) and ε ∈ RN−1. Then

‖B(θ)−B(θ + ε)‖F ≤
√
N − 1‖ε‖2 (2.40)
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Proof. Let θj ∈ RN2−j such that θ = (θ1, . . . ,θn) and

B(θ) = Bn(θn) · · ·B1(θ1) =
n∏
j=1

Bn−j+1(θn−j+1) (2.41)

for Bj(θj) ∈ D2j(N). Similarly decompose ε so that

‖B(θ)−B(θ + ε)‖F = ‖
n∏
j=1

Bn−j+1(θn−j+1)−
n∏
j=1

Bn−j+1(θn−j+1 + εn−j+1)‖F

≤
n∑
j=1

‖Bj(θj)−Bj(θj + εj)‖F

≤
n∑
j=1

√
N2−j‖εj‖2

≤

(
n∑
j=1

N2−j

)1/2( n∑
j=1

‖εj‖2
2

)1/2

=
√
N − 1‖ε‖2.

using (2.34), Lemma 2.3, and the Cauchy-Schwarz inequality, respectively, for the above

inequalities.

2.2 Order N = mn butterfly matrices

Now I will introduce a new butterfly structure of order N = mn for any integer m ≥ 2,

which is a generalization of the scalar butterfly matrices.

The most general structure I will consider will be the following:

Definition 2.6. For G a class of groups such that G(m) is a compact subgroup of GL(Cm),

a m-butterfly G matrix, collectively denoted by B(m,n,G), with B(m, 0, G) = G(1), is an
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iteratively defined matrix of order N = mn of the following form:

(A⊗ IN/m)
m⊕
j=1

Bj, (2.42)

where Bj ∈ B(m,n− 1, G) and A ∈ G(m). The simple m-butterfly G matrices, denoted

by Bs(m,n,G), are formed such that Bj = B ∈ Bs(m,n− 1, G) for all j; such matrices are

of the form

n⊗
j=1

Bj (2.43)

for Bj ∈ G(m).

Definition 2.7. Let B(m,n) = B(m,n, SO) and Bs(m,n) = Bs(m,n, SO) denote the m-

butterfly matrices and the simple m-butterfly matrices.

Note for N = 2n then

B(N) = B(2, n) = B(2, n, SO) and Bs(N) = Bs(2, n) = Bs(2, n, SO). (2.44)

So far we have only considered butterfly matrices initiated using G = SO, but a lot of the

arguments will go through similarly, with some (notable) exceptions using different G.

Proposition 2.12. Let N = mn and let G = SO,O, SU, or U. Then B(m,n,G) is a compact

subset of G(N), which is homeomorphic to a quotient of G(m)
N−1
m−1 . Moreover, Bs(m,n,G)

is a compact topological group that is isomorphic and homeomorphic to a quotient of G(m)n,

and is abelian if and only if m = 2 and G = SO.

Remark 2.6. I am abstaining from considering also the symplectic models in this document.

Similar arguments should be able to derive similar results for these models if one is interested.
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Proof of Proposition 2.12. This follows directly from induction using results in Section 1.4.4

and Definition 2.6: Let

B = (A⊗ IN/m)
m⊕
j=1

Bj. (2.45)

We have B is orthogonal or unitary, respectively, if A,Bj are all orthogonal or unitary.

Moreover,

detB = det

(
(A⊗ IN/m)

(
m⊕
j=1

Bj

))
= det(A⊗ IN/m) det

(
m⊕
j=1

Bj

)

= det(A)N/m
m∏
j=1

det(Bj)

yields B has unit determinant when all of A,Bj have unit determinant. If A =
⊗n

j=1 Aj, B =⊗n
j=1 Bj ∈ Bs(m,n,G), then AjB

−1
j ∈ G for all j and hence AB−1 =

⊗n
j=1AjB

−1
j ∈

Bs(m,n,G), which shows Bs(m,n,G) is a subgroup of SO(N),O(N), SU(N) and U(N) when-

ever G is, respectively, SO,O, SU,U.

To see B(m,n,G) is compact, we use induction on n. The result is trivial for n = 1.

If the result holds for n − 1, then G(m) × B(m,n − 1, G)m is compact by the inductive

hypothesis. Hence, the multiplication map f : G(m) × B(m,n − 1, G)m → U(N) with

f(A,B1, . . . , Bm) = (A⊗ IN/m)
⊕m

j=1Bj, which is continuous since U(N) is a Lie group, has

a compact image f(G(m)× B(m,n− 1, G)m) = B(m,n,G). It follows then B(m,n,G) is a

quotient of

G(m)× B(m,n− 1, G)m ∼= G(m)1+m(N/m−1
m−1 ) = G(m)

N−1
m−1 . (2.46)

Using the same argument with Bs(m,n,G) yields this is a compact space homeomophic to a

quotient of G×B(m,n− 1, G) ∼= Gn (again using induction to justify the last equivalence).

Moreover, the multiplication map then is also a group homomorphism (by the mixed-product
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property), so that Bs(m,n,G) is also isomorphic as a group to a quotient of Gn.

The first statement regarding Bs(m,n,G) follows directly from Corollary 1.8.

For the last statement, we have Bs(2, n, SO) is abelian by Proposition 2.9. To see this is

the only possible abelian butterfly model, it is enough to note O(2), SU(2) and SO(3) are

nonabelian: sufficiency follows since O(2) embeds into O(N) ⊂ U(N) and SU(2) embeds

into SU(N) ⊂ U(N) (via A 7→ A ⊕ Imn−2) for N ≥ 2, while SO(3) embeds into SO(N)

(via A 7→ A ⊕ IN−3) for N ≥ 3. Hence, we have each of these embed into a subgroup of

Bs(m,n,G) by considering, appropriately, (O(2)⊕ Im−2)⊗ IN/m, (SU(2)⊕ Im−2)⊗ IN/m and

(SO(3)⊕ Im−3)⊗ IN/m.

To see O(2) is nonabelian, we note

1

−1


T

1√
2

 1 1

−1 1


1

−1

 =
1√
2

1 −1

1 1

 . (2.47)

To see SU(2) is nonabelian, we note

i
−i


∗

1√
2

 1 1

−1 1


i
−i

 =
1√
2

1 −1

1 1

 . (2.48)

To see SO(3) is nonabelian, we note


−1

1

−1


T

1√
2


1

1 1

−1 1



−1

1

−1

 =
1√
2


1

1 −1

1 1

 . (2.49)

Remark 2.7. For N = mn, recall O(m) and SO(m) are
(
m
2

)
-manifolds while U(m) and
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SU(m) are (m2 − 1)-manifolds. Proposition 2.12 shows B(m,n, SO) and B(m,n,O) are

quotients of N−1
m−1

(
m
2

)
-manifolds while B(m,n, SU) and B(m,n,U) are quotients of N−1

m−1
(m2−

1)-manifolds. Similarly, Bs(m,n, SO) and Bs(m,n,O) are quotients of n
(
m
2

)
-manifolds while

Bs(m,n, SU) and Bs(m,n,U) are quotients of n(m2 − 1)-manifolds. In the case of G = SO

and m = 2, then the quotients maps have finite kernels and so B(n) and Bs(n) are themselves

N − 1- and n-manifolds (by Proposition 2.7).

2.3 Order N =
∏k
j=1 p

ej
j butterfly matrices

Now we will explore butterfly matrices of arbitrary orders. First we will consider a butterfly

matrix formed only using m-butterfly matrices, such as the 2-butterfly matrices. We will

then explore a general structure depending directly on the prime factorization of N .

Another choice for G in Definition 2.6 can include the following:

Definition 2.8. Let p be a prime number. The p-nary butterfly matrices of order N ,

denoted by B(p,N), are of the form

B(p,N) =

blogpNc⊕
j=0

ablogp Nc−j+1⊕
Bs(p, blogpNc − j + 1) (2.50)

where N =
∑

j≥0 ajp
j for aj ∈ {0, 1, . . . , p− 1} for all j. The binary butterfly matrices

and ternary butterfly matrices are, respectively, B(2, N) and B(3, N).

Remark 2.8. The aj give the p-nary representation of N .

Remark 2.9. I am not using a subscript to denote the use of the simple butterfly structures

since this is the only model that satisfies a group structure.

A straightforward calculation verifies:
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Corollary 2.5. B(p,N) is a compact topological subgroup of SO(N) isomorphic with a quo-

tient of SO(p)
∑blogp Nc
j=1 jaj for N =

∑
j≥0 ajp

j, and B(p,N) is abelian if and only if p = 2.

Remark 2.10. Using Remark 2.7, B(p,N) is a quotient of a
(∑blogpNc

j=1 jaj

) (
p
2

)
-manifold.

Remark 2.11. There are certain limitations in using this simpler structure for a general

order butterfly matrix. If N = 2k + 1 is odd, then BeN = BTeN = eN for B ∈ B(2, N). So

if B,B′ ∈ B(2, N), then B(I2k ⊕ θ)B′T = I2k ⊕ θ. If one desired to randomize a vector using

a butterfly transformation to spread out the weights among its components, then one is out

of luck using only binary butterfly matrices if most of the weight is in the last component.

We will now explore a different structure that is more robust in its randomization properties.

This butterfly structure is an exact analogue of the Cooley-Tukey FFT algorithm that allows

an FFT decomposition of a composite integer.

I will first give the most general structure I will consider here:

Definition 2.9. Let G denote a class of groups such that G(m) is a compact subgroup of

GL(Cm) for any positive integer m. Let N =
∏k

j=1 p
ej
j be the prime factorization of N such

that pj < pj+1 for each j. An order N butterfly G matrix, collectively denoted by B(N,G),

with B(1, G) = G(1), is the matrix of the form

k⊗
j=1

Bj (2.51)

where Bj ∈ B(pj, ej, G). The simple butterfly G matrices, denoted by Bs(N,G), are

formed using Bj ∈ Bs(pj, ej, G) for all j.

Definition 2.10. Let B(N) = B(N, SO) and Bs(N) = Bs(N, SO) denote the butterfly

matrices and the simple butterfly matrices.

Remark 2.12. Note Definition 2.10 is consistent with the scalar butterfly matrices definition

in Definition 2.3 when N = 2n.
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Note the ordering in (2.51) then enforces the smallest prime factors to constitute the top

Kronecker factors. If one desired, one could instead choose the descending order of the prime

factors for the Kronecker ordering, or an ordering of the form

n⊗
j=1

Bσ(j) (2.52)

for any σ ∈ Sk, again when N =
∏k

j=1 p
ej
j . Any fixed ordering then can be transformed into

another order through a sequence of perfect shuffle transformations.

Example 2.4. Using examples B1 ∈ SO(2) and B2 ∈ SO(3) with

B1 =

 0.68 0.73

−0.73 0.68


and

B2 =


−0.22 0.90 0.38

−0.96 −0.14 −0.23

−0.15 −0.42 0.90


together produce the order 6 butterfly matrices

B1 ⊗B2 =



−0.15 0.61 0.26 −0.16 0.66 0.28

−0.66 −0.10 −0.15 −0.71 −0.10 −0.17

−0.10 −0.29 0.61 −0.11 −0.31 0.66

0.16 −0.66 −0.28 −0.15 0.61 0.26

0.71 0.10 0.16 −0.66 −0.10 −0.15

0.11 0.31 −0.66 −0.10 −0.29 0.61


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and

B2 ⊗B1 =



−0.15 −0.16 0.61 0.66 0.26 0.28

0.16 −0.15 −0.66 0.61 −0.28 0.26

−0.66 −0.71 −0.10 −0.10 −0.15 −0.16

0.71 −0.66 0.10 −0.10 0.17 −0.15

−0.10 −0.11 −0.29 −0.31 0.61 0.66

0.11 −0.10 0.31 −0.29 −0.66 0.61


.

For Q = P(2 4 5 3), we have QT (B1 ⊗B2)Q = B2 ⊗B1.

Moreover, repeating the previous arguments yield

Proposition 2.13. Let G = SO,O, SU or U. Then B(N,G) is a compact subset of G(N).

For N =
∏k

j=1 p
ej
j for pj < pj+1, then B(N,G) is homeomorphic to a quotient of

k∏
j=1

G(pj)
p
ej
j
−1

pj−1 . (2.53)

Moreover, Bs(N,G) is a compact topological group that is isomorphic and homeomorphic to

a quotient of

k∏
j=1

G(pj)
ej , (2.54)

and is abelian if and only if N = 2n and G = SO.

2.4 Other butterfly matrix models

Other considerations one can explore could involve fixing the depth of a butterfly matrix in

terms of limiting how many butterfly factors are used. This can be done either by cutting

off the factors to the left or right, which would have equivalent impact on randomization
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applications. As noted above, R(N),Dj(N) and Djs(N) can be defined as long as N is even

and 2j | N , which would lead to similar constructions of butterfly matrices that would result

from limiting the depth on the right: that is, instead of starting with B(1) = {1} we can

start with B(m)(1) = {Im} and then iteratively build butterfly matrices B(m)(2n) of order

2nm. The results in Section 2.1 would follow through nearly identically for these models.

[2] looked specifically at limiting depths of similar butterfly models, indicating even desired

numerical accuracy calculations sufficed from their experiments with very small depth, such

as 2 or 3 levels. Limiting depth, especially in the one-sided preconditioning model, can be

shown to have undesirable results (see Section 5.3). However, the payoff for the reduction

in complexity by using fewer parameters is a worthwhile balance to explore further.

2.5 Hadamard matrices

This chapter will end with a brief discussion on Hadamard matrices. Some connections to

butterfly matrices and potential applications are outlined below.

2.5.1 History and background

Definition 2.11. H ∈ {±1}n×n is a Hadamard matrix if HHT = nIn.

Equivalently, H is a Hadamard matrix if its rows and columns of only ±1 are orthogonal.

In 18932, Hadamard investigated the question of how large the detA could be for A ∈
2The same year as the World’s Columbian Exposition where HH Holmes silently wrecked havoc on the

streets of Chicago.
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[−1, 1]n×n. He presented the bound

| det(A)| ≤ nn/2. (2.55)

Hadamard observed that Sylvester had provided a recursive construction for certain order

2n matrices that satisfied this upper bound, that were constructed as

H0 =
n⊗1 1

1 −1

 . (2.56)

A simple observation shows if H is a Hadamard matrix, then

(detH)2 = detHHT = det(nIn) = nn (2.57)

so that H satisfies the upper bound in (2.55).

Using Sylvester’s construction, with these being called Sylvester Hadamard matrices for

different order 2 Hadamard matrices in each intermediate Kronecker factor, a Hadamard

matrix can be constructed for every power of 2. Note a similar construction using the

form (H1 ⊗ IN/2)(H2 ⊕ H3) for H1 an order 2 Hadamard matrix and H2, H3 each order

N/2 Hadamard matrices is called the Walsh-Hadamard construction. The existence of

Hadamard matrices for a given order remains the most famous open question relating to

Hadamard matrices. Other than n = 1 and n = 2, a simple consideration of the first few

rows of a Hadamard matrix shows that the order of a Hadamard matrix must be divisible

by 4. This leads to the famous open problem:

Conjecture 1. A Hadamard matrix of order 4n exists for every positive integer n.

Once a Hadamard matrix is shown to exist of order k, then one can construct through

Kronecker products Hadamard matrices of order k2n for any positive integer, and similarly
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of order km using an order m Hadamard matrix. Currently, the lowest integer divisible

by 4 that a Hadamard matrix has not been verified to exist is of order 668 = 4 · 167

[11]. If a Hadamard matrix exists of order n, then multiplying on the left and right by

permutation matrices generate distinct Hadamard matrices. This shows there are at least

(n!)2 = O(2n logn) Hadamard matrices of order n. It is an interesting question in itself to

look into how many Hadamard matrices exist of a fixed order, and whether this matches the

same scaling as the lower bound.

Conjecture 2. There are O(2n logn) distinct Hadamard matrices of order n if a Hadamard

matrix exists of order n.

In a recent result, Ferber, Jain and Zhao present an upper bound for the number of Hadamard

matrices of 2
1
2

(1−c)n2
for n sufficiently large and an absolute constant c > 0 [14]. This is still

far from establishing Conjecture 2

2.5.2 Butterfly Hadamard matrices

One can define an equivalence class on Hadamard matrices by relating matrices that are

transformations of one another through a sequence of signed permutation matrices or trans-

position. I will say two Hadamard matrices are in the same class if they are equivalent

using this relationship. It can be shown there is only one class of Hadamard matrices (the

Sylvester class) for orders up to 12, but it stops there: there are 4 distinct classes of order

16 Hadamard matrices. Hadamard matrices remain a continued focus of research. Butterfly

matrices have the potential application as being a continuous generalization of the Sylvester

Hadamard matrices, as is illustrated here:

Proposition 2.14. Let N = 2n and θ ∈ (π
4

+ π
2
Z)n. For B(θ) ∈ Bs(N), then

√
NB(θ) is a

Hadamard matrix in the Sylvester class.
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Proof. Let H =
√
NB(θ). Since | cos(θj)| = | sin(θj)| = 1√

2
for all j, then Hij =

√
NB(θ)ij =

±
√
N2−n/2 = ±1 so that H ∈ {±1}N×N . Checking also

HHT = NB(θ)B(θ)T = NIN (2.58)

verifies H is a Hadamard matrix.

To check H is in the Sylvester Hadamard class, note first for n = 1 we see

√
2B
(π

4

)
=

 1 1

−1 1

 =

1

−1


1 1

1 −1


√

2B

(
3π

4

)
=

−1 1

−1 −1

 =

1 1

1 −1


−1

1


√

2B

(
5π

4

)
=

−1 −1

1 −1

 =

−1

−1


1 1

1 −1


√

2B

(
7π

4

)
=

1 −1

1 1

 =

1 1

1 −1


1

−1


Let

P (θ) =



1

−1

 if θ = π
4

−I2 if θ = 5π
4

I2 otherwise
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and

Q(θ) =



−1

1

 if θ = 3π
4

1

−1

 if θ = 7π
4

I2 otherwise.

It follows then for P =
⊗n

j=1 P (θn−j+1) and Q =
⊗n

j=1 Q(θn−j+1), then PHQ = H0 using

the mixed-product property.

This gives one way to generate a Sylvester Hadamard matrix using the butterfly matri-

ces, with 4n = N2 possible butterfly Hadamard matrices of order N . Rather than fixing

given angles, one can generate a Hadamard matrix using (almost) any butterfly matrix

combined with the sgn function, which when applied to a matrix acts componentwise so

that (sgn(A))ij = sgn(Aij) =
Aij
|Aij | , where we define sgn(0) := 0. If A ∈ (R\{0})n×m then

sgn(A) ∈ {±1}n×m.

Proposition 2.15. Let N = 2n and θ ∈ [0, 2π)n\(π
2
Z)n. For B(θ) ∈ Bs(N) then sgn(B(θ))

is a Hadamard matrix in the Sylvester class.

Proof. It suffices to note sgn is constant on fixed sectors, where sgn((Aij(0,∞))N×N) = A

for A ∈ {±1}N×N and so is continuous on each sector. The result then follows by Proposi-

tions 2.10 and 2.16.

Note sgn(DA) = sgn(D) sgn(A) if D is a diagonal matrix. It follows then

sgn(A⊗B) = sgn(A)⊗ sgn(B). (2.59)
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and

sgn
(
(A⊗ IN/2)(B ⊕ C)

)
= (sgn(A)⊗ IN/2)(sgn(B)⊕ sgn(C)). (2.60)

for A ∈ R2×2 and B,C ∈ RN/2. In particular, for C, S diagonal, then

sgn


 CA1 SA2

−SA1 CA2


 =

 sgn(C) sgn(A1) sgn(S) sgn(A2)

− sgn(S) sgn(A1) sgn(C) sgn(A2)

 . (2.61)

For B(θ) ∈ Bs(N), from (2.59) we have

sgn(B(θ)) =
√
NB(θ′) where θ′j =

π

4

(
2

⌊
2θj
π

⌋
+ 1

)
. (2.62)

This gives an alternative proof of Proposition 2.15. Additionally, from (2.61) we have sgn(B)

is a Walsh-Hadamard matrix for also B a nonsimple scalar butterfly matrix, simple diagonal

butterfly matrix and nonsimple diagonal butterfly matrix assuming θj 6∈ π
2
Z for any j. The

nonsimple scalar butterfly matrix case follows immediately from (2.61). The diagonal case

is less direct:

Proposition 2.16. If B(θ) is a scalar or diagonal order N butterfly matrix with θj 6∈ π
2
Z

for all j, then sgn(B) is a Hadamard matrix.

Proof. It suffices to consider only the general case ofB = B(θ) a nonsimple diagonal butterfly

matrix. Since θj 6∈ π
2
Z, then sgn(B) ∈ {±1}N×N . To see sgn(B) sgn(B)T = NIN , we

will use induction on n. The result is immediate for n = 1 while the n = 2 case follows

from Proposition 2.15. Assume the result holds for n − 1. From (2.61), for (C, S)(θ) =

96



⊕N/2
j=1(cos θj, sin θj) and A1, A2 order N/2 diagonal butterfly matrices, we have

sgn(B) =

 sgn(C) sgn(S)

− sgn(S) sgn(C)


sgn(A1)

sgn(A2)

 (2.63)

By the inductive hypothesis, sgn(Ai) sgn(Ai)
T = N

2
IN/2 so that

(sgn(A1)⊕ sgn(A2))(sgn(A1)⊕ sgn(A2))T =
N

2
IN . (2.64)

Since C and S are nonsingular diagonal matrices, then sgn(C)2 = sgn(S)2 = IN/2 and

[sgn(C), sgn(S)] = 0. It follows

 sgn(C) sgn(S)

− sgn(S) sgn(C)


 sgn(C) sgn(S)

− sgn(S) sgn(C)


T

= 2IN . (2.65)

Together, this yields sgn(B) sgn(B)T = NIN .

2.5.3 Constructions of Hadamard matrices

Note the Sylvester and Walsh-Hadamard constructions only work for N = 2n or N = mk

where a Hadamard matrix is know to exist of order m and k. Alternative constructions of

Hadamard matrices include the Paley construction, which uses tools from finite fields, and

the Williamson construction, which uses the sum of four squares [30, 41]. Applications of

these only work for very particular orders and do not cover all potential multiple of 4 orders.

A very rudimentary method to (try to) construct a Hadamard matrix is the rejection method.

For 4 | n, one can sample a random matrix in {±1}n×n and keep the resulting matrix Ĥ if

ĤĤT = nIn. This approach is not viable using any reasonable measurement of the term: If
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Ĥ ∈ Haar({±1}n×n, then

pn = P(Ĥe1 ⊥ Ĥe2) =

(
n
n/2

)
2n

(2.66)

as this is the probability a simple symmetric random walk is at 0 at step n (noting 4 | n

yields pn is nonzero, while if 2 - n then pn = 0). Hence, the probability Ĥ has orthogonal

columns is bounded above by pn−1
n , which is the probability that the first column of Ĥ is

orthogonal to the remaining columns. Using Stirling’s approximation formula,

pn ∼
√

2

πn
(2.67)

so that

p = P(ĤĤT = nIn) ≤ pn−1
n . n

1
2

(1−n). (2.68)

For example, n
1
2

(1−n) ≈ 8.651 ·10−943 for n = 668 (the smallest order that has the potential of

having a Hadamard matrix) where we note p668 ≈ 0.03086. Hence, (using the Geometric(p)

distribution) the expected number of trials needed to produce one Hadamard matrix using

this method is

1

p
& n

1
2

(n−1). (2.69)

For n = 668, this means (approximately) at least 1.156 · 10942 trials would be needed on

average for a first success. For comparison, there are an estimated 1082 particles in the

observable universe. Considering there have been about 4.355 · 1017 seconds since the Big

Bang, this method is not reasonable to say the least, especially considering the lower bound

in (2.69) is far from sharp.

Perhaps one can increase the chance of producing a Hadamard matrix using this crude
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rejection method by instead choosing Ĥ = sgn(B) for B ∈ B(N) for N =
∏k

j=1 p
ej
j . For

N = 2n, this will always produce a Hadamard matrix by Proposition 2.16. Unfortunately

this does not work for any other p: Let n = 2km for m odd. sgn(SO(m)) cannot have the

first two columns orthogonal since a simple random walk cannot be at 0 at an odd step. It

follows then 1√
n

sgn(B1⊗B2) = 1√
m

sgn(B1)⊗2−k/2 sgn(B2) for B1 ∈ SO(m) and B2 ∈ B(2k)

cannot be orthogonal since B1B
T
1 6= mIm. One can still increase the probability the first two

columns are orthogonal by using sgn(H) for H ∼ SO(n) for 4 | n.

Example 2.5. Using an experiment with 106 samples of Ĥ = sgn(H) for H ∼ Haar(O(n))

for n = 12, the sample proportion p̂ = 0.305073 of trials such that the first two columns are

orthogonal is larger than p12 = 0.2256. However, no Hadamard matrices were found in this

experiment.

This method does not seem very promising for any practical applications in the current state.

Additional applications of butterfly matrices to questions of interest involving Hadamard

matrices will be further explored in Section 5.3.
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Chapter 3

Random butterfly matrices

A butterfly can flap its wings in

Peking and in Central Park you get

rain instead of sunshine.

Ian Malcolm

The previous chapter considered deterministic butterfly matrices and their properties. Now

we will consider an ensemble of orthogonal random matrices, using the same structures al-

ready established. This chapter focuses mostly on definitions and preliminary results relating

to these random butterfly models, while Chapters 4 and 5 will look more into specific spectral

and numerical properties and applications of these models.

3.1 Order N = 2n random butterfly matrices

We will again start first by consideringN = 2n, where we first start with the general definition

for the matrices along with the corresponding butterfly factors.
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Definition 3.1. A random butterfly matrix is a butterfly matrix whose generating gen-

eralized rotation matrices are random matrices such that

Σ := {(Cj, Sj)}j≥1 (3.1)

is an independent sequence of pairs of matrices, where each pair (Cj, Sj) generates a random

generalized rotation matrix of order 2j−1. We will denote the set of random butterfly matrices

of order N using the sequence of pairs of random matrices Σ collectively as B(N,Σ).

We will use Dj(N,Σ) (Djs(N,Σ)) to denote the corresponding (simple) random butterfly

block factor ensemble and R(N,Σ) for the corresponding random rotation ensem-

ble generated by Σ. Similarly, we will denote the corresponding diagonal butterfly block

factor ensembles by Djd(N,Σ) and Djds(N,Σ) and the random diagonal rotation en-

semble by Rd(N,Σ).

Note a random butterfly matrix B ∼ B(N,Σ) is generated by a random generalized rotation

matrix R = R(Cn, Sn) and two iid random butterfly matrices A1, A2 ∼ B(N/2,Σ).

Define the independent sequence of pairs of random matrices

ΣS := {(cos θj, sin θj)I2j : θj ∼ Uniform([0, 2π)) iid, j ≥ 1}. (3.2)

By Proposition 2.1, R(N) ∼= T. Note also T ∼= [0, 2π)/ ∼, the additive quotient space

modulo 2π, using the map θ → eiθ. Since the uniform and Haar measures on [0, 2π)/ ∼

coincide, then the resulting push-forward measure on R(N) induced by composing these

isomorphisms is the Haar measure on R(N). This establishes the following result:

Proposition 3.1. If θ ∼ Uniform([0, 2π)), then B(θ)⊗ IN/2 ∼ Haar(R(N)).

Random ensembles formed using ΣS will be particularly emphasized throughout the remain-
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der of this document.

First, we can study Dj(N,ΣS) and Djs(N,ΣS). A straightforward argument now shows:

Proposition 3.2. If 2j | N , Dj(N,ΣS) ∼ Haar(Dj(N)) and Djs(N,ΣS) ∼ Haar(Djs(N)).

Proof. This follows directly from Corollary 1.7 and Proposition 2.3.

Definition 3.2. We will refer to B(N,ΣS) as the random butterfly matrices (drop-

ping the scalar descriptor, and sometimes also dropping the random descriptor when it is

unnecessary), and Bs(N,ΣS) as the Haar-butterfly matrices.

Note, the naming for Bs(N,ΣS) is suggestive, particularly for this result:

Theorem 3.1 ([37]). Bs(N,ΣS) ∼ Haar(Bs(N))

Proof. We will continually make use of the form

Bs(N) =
n⊗
j=1

SO(2). (3.3)

Hence, the desired result follows from an application of Corollary 1.8 to Bs(N).

The conclusions also follow from Corollary 1.7 and Proposition 3.2 with respect to the

multiplication map
∏n

j=1D2j

s (N)→ Bs(N).

Remark 3.1 (Left invariance). The original proof presented in [37] used the following useful

criteria, which verifies the left (and hence right since compact groups are unimodular) invari-

ance of Bs(N,ΣS): Let B(θ) ∈ Bs(N) and B(ϕ) ∼ Bs(N,ΣS). Since ϕi ∼ Uniform([0, 2π))

then θi + ϕi (mod 2π) ∼ Uniform([0, 2π)) iid for all i = 1, . . . , n by Lemma 1.8. Hence,

B(θ)B(ϕ) = B(θ +ϕ) ∼ Bs(N,ΣS), using also Corollary 2.4.
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This can also be used to give an alternative proof of Theorem 3.1 in terms of the induced

measure resulting from the multiplication map on SO(N).

We will also occasionally consider the random diagonal butterfly matrices, B(N,ΣD)

and Bs(N,ΣD) where

ΣD = {
2j⊕
k=1

(cos θj, sin θj) : θj ∼ Uniform([0, 2π)) iid, j ≥ 1}. (3.4)

A similar argument would yield the diagonal butterfly diagonal factors (i.e.,
⊕j QR(N/j)QT

for Q a perfect shuffle as in (2.4) and (2.5)) sampled using ΣD would be equal in distribution

to the Haar diagonal butterfly diagonal factors. I will not explore this particular result

further.

3.2 Random butterfly Hadamard matrices

One method of producing random Hadamard matrices of order N = 2n is to start with

one Hadamard matrix, and then multiply each row by independent Rademacher random

variables (these take values ±1 each with probability 1
2
). Using Proposition 2.16, we can

sample a random Hadamard matrix of order N by H = sgn(B) for B ∼ B(N,Σ) or B ∼

Bs(N,Σ) for Σ = ΣS or Σ = ΣD. Since P(
⋃
i,j[Bij = 0]) = 0 for B ∼ B(N,Σ) or B ∼

Bs(N,Σ) for Σ = ΣS or Σ = ΣD, we then have P(sgn(B) ∈ {±1}N×N) = 1. Hence, by

Proposition 2.16 then sgn(B) is almost surely a Hadamard matrix. So we can now introduce:

Definition 3.3. For H = sgn(B), then H is a Haar-butterfly Hadamard matrix if

B ∼ Bs(N,ΣS), H is a random butterfly Hadamard matrix if B ∼ B(N,ΣS), H is a

random simple diagonal butterfly Hadamard matrix if B ∼ Bs(N,ΣD) and H is a

random diagonal butterfly Hadamard matrix if B ∼ B(N,ΣD).
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If B ∼ Bs(N,ΣS), then H = sgn(B) would then be uniformly sampled from the 4n = N2

distinct Haar-butterfly Hadamard matrices. Using B ∼ B(N,ΣD), then sgn(B) would be

uniformly sampled from the at most 4
1
2
nN = NN diagonal butterfly Hadamard matrices

(using Proposition 2.7). Future work can determine the exact number of Hadamard matrices

attainable by the butterfly Hadamard models.

3.3 Order N = mn random butterfly matrices

Considering then the general case, we can similarly define random m-butterfly G matrices:

Definition 3.4. For G a class of groups such that G(m) is a compact subgroup of GL(Cm),

a random m-butterfly G matrix, denoted B(m,n,Haar(G)), is of the form Haar(G(m))

if n = 1 and

(A⊗ IN/m)
m⊕
j=1

Bj, (3.5)

where Bj ∼ B(m,n − 1,Haar(G)) are iid and A ∼ Haar(G(m)) independent of the Bj if

n ≥ 2. The random simple m-butterfly G matrices, denoted by Bs(m,n,Haar(G)), are

of the form

m⊗
j=1

Bj (3.6)

for Bj ∼ Haar(G(m)) iid. The random m-butterfly matrices and Haar m-butterfly

matrices, denoted by B(m,n,Haar) and Bs(m,n,Haar), respectively, are the corresponding

m-butterfly SO matrices.

Similarly to Theorem 3.1, we have:

Proposition 3.3. Bs(m,n,Haar(G)) ∼ Haar(Bs(m,n,G))
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Proof. Use Corollary 1.8 and proposition 2.12.

3.4 Order N =
∏k
j=1 p

ej
j random butterfly matrices

Continuing on with the structure of Chapter 2, we will explore random butterfly matrices

of general orders. We will start with the p-nary structure before visiting the Cooley-Tukey

analogous butterfly models.

Definition 3.5. Let p be a prime number. The Haar p-nary butterfly matrices of order

N , denoted by B(p,N,Haar), are of the form

B(p,N,Haar) =

blogpNc⊗
j=0

ablogp Nc−j+1⊕
Bs(p, blogpNc − j + 1,Haar) (3.7)

where N =
∑

j≥0 ajp
j for aj ∈ {0, 1, . . . , p − 1} for all j. The Haar binary butterfly

matrices and Haar ternary butterfly matrices are, respectively, B(2, N,Haar) and

B(3, N,Haar).

Again, using a similar argument, we have

Proposition 3.4. B(p,N,Haar) ∼ Haar(B(p,N))

Proof. Now use Corollaries 1.7, 1.8 and 2.5 and Proposition 3.3.

We can next introduce the general random butterfly matrices, akin to the Cooley-Tukey

structure:

Definition 3.6. Let G denote a class of groups such that G(m) is a compact subgroup of

GL(Cm) for any positive m. Let N =
∏k

j=1 p
ej
j be the prime factorization of N such that
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pj < pj+1 for each j. An order N random butterfly G matrix, collectively denoted by

B(N,Haar(G)), is a matrix of the form

k⊗
j=1

Bj (3.8)

where Bj ∼ B(pj, ej,Haar(G)) are mutually independent for each j. The Haar-butterfly G

matrices, denoted by Bs(N,Haar(G)), are formed using independent Bj ∼ Bs(pj, ej,Haar(G))

for each j. Let B(N,Haar) = B(N,Haar(SO)) and Bs(N,Haar) = Bs(N,Haar(SO)) denote

the random butterfly matrices and the Haar-butterfly matrices.

Remark 3.2. Again, for N = 2n, we can note the Definitions 3.1 and 3.6 are consistent for

B(N,ΣS) = B(N,Haar) and Bs(N,ΣS) = Bs(N,Haar).

A similar argument yields:

Proposition 3.5. Bs(N,Haar(G)) ∼ Haar(Bs(N,G)).

Proof. Use Corollary 1.8 and Proposition 3.3.
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Chapter 4

Spectral properties of butterfly

matrices

Float like a butterfly, sting like a bee.

The hands can’t hit what the eyes

can’t see.

Muhammad Ali

Typical questions in random matrix theory (RMT) focus on computing or estimating the

spectra of random matrices. These approaches often use the empirical spectral distribution

(ESD),

µA =
1

n

n∑
j=1

δλj(A) (4.1)

for λj(A) the eigenvalues of A for j = 1, . . . , n when A is normal. In Section 1.7, famous

results in RMT involve identifying universality principles for large ensembles of random

matrices in terms of the limiting distributions for the ESDs (e.g., Theorem 1.16). It is often

107



(i) (ii)

(iii) (iv)

Figure 4.1: (i) Bs(2
8,ΣS) eigenvalues, (ii) B(28,ΣS) eigenvalues, (iii) 256 sampled Uniform(T)

points, and (iv) eigenvalues for a Haar(O(28)) matrix. All plots are restricted to T in the
complex plane.

difficult or not reasonable to give a closed form for the exact eigenvalues and eigenvectors for

a random matrix. The limiting distributions of the ESDs can give a good approximation of

the spectral picture for a large random matrix, but are not necessarily a good fit for smaller

order matrices.

This chapter will give an overview of the spectral picture of random butterfly matrices.

Figure 4.1 provides a comparison for the spectral pictures for certain order 28 = 256 random

butterfly matrices versus the uniform distribution on T = {z ∈ C : |z| = 1} (showing

256 independently sampled uniform points) and the spectral picture a random Haar(O(28))

matrix. Of note, some random butterfly matrices, including the Haar-butterfly matrices,
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have the rare property that their eigenvalues and eigenvectors can be computed explicitly.

4.1 Butterfly factors

We can first give the full spectral picture for both the general rotation and block diagonal

butterfly factors. For generality, we only need to assume N is even for this section.

4.1.1 Scalar butterfly factors

First, we will consider deterministic scalar rotation matrices. For j such that 2j | N ,

recall Dj(N) =
⊕jR(N/j) is an abelian subgroup of SO(N) by Proposition 2.3, as is

Djs(N) = Ij ⊗ R(N/j), which is a subgroup of Dj(N). Since normal matrices commute if

and only if they are simultaneously diagonalizable (cf. Lemma 1.5), then it follows Dj(N) act

on identical eigenspaces, that is, all such matrices have the same eigenvectors. In particular,

we see the following result first for simple scalar rotation matrices:

Lemma 4.1. If A = R(θ) ∈ R(N) for N even, then A has eigenvalues e±iθ with eigenvectors

v = ej ± ieN/2+j for j = 1, . . . , N/2.

Proof. Compute

Av = A(ej ± ieN/2+j) = Aej ± iAeN/2+j

= (cos θej − sin θeN/2+j)± i(sin θej + cos θeN/2+j)

= (cos θ ± i sin θ)(ej ± ieN/2+j)

= e±iθv.
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Example 4.1. The rotation matrix B(θ) ∈ R(2) = SO(2) has eigenvalues e±iθ with eigen-

vectors

e1 ± ie2 =

 1

±i

 .
An alternative proof to Lemma 4.1 uses the Kronecker product structure of R(N) = SO(2)⊗

IN/2. In particular,

R(θ) =

 cos θ sin θ

− sin θ cos θ

 = QΛ(θ)Q∗ for Λ(θ) = eiθ⊕e−iθ and Q =
1√
2

1 1

i −i

 (4.2)

yields then

RN(θ) = R(θ)⊗ IN/2 = QNΛN(θ)Q∗N (4.3)

for

ΛN(θ) = Λ(θ)⊗IN/2 =

eiθIN/2
e−iθIN/2

 and QN = Q⊗IN/2 =
1√
2

 IN/2 IN/2

iIN/2 −iIN/2


(4.4)

using the mixed-product property.

A simple application yields the general result for the butterfly block factors Dj(N) for

arbitrary j such that 2j | N :

Corollary 4.1. If B(θ) ∈ Dj(N) for 2j | N , then B(θ) has eigenvalues e±iθk with eigenvec-

tors e(k−1)N/j+` ± ie(k−1)N/j+N/2j+` for ` = 1, . . . , N/2j, k = 1, . . . , j.

Proof. Apply Lemma 4.1 to the kth block of B(θ).
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Alternatively, and building off of (4.3) we have

Djs(N) = Ij ⊗R(N/j) = Ij ⊗ SO(2)⊗ IN/2j. (4.5)

For B(θ) ∈ Djs(N), then

B(θ) = QN
j ΛN

j,s(θ)(Q
N
j )∗ (4.6)

for

ΛN
j,s(θ) = Ij⊗ΛN/j(θ) = Ij⊗Λ(θ)⊗ IN/2j and QN

j = Ij⊗QN/j = Ij⊗Q⊗ IN/2j. (4.7)

Since Djs(N) is a subgroup of Dj(N), which is abelian, then QN
j is always consists of the

eigenvectors for B(θ) ∈ Dj(N). In particular, we have

B(θ) = QN
j ΛN

j (θ)(QN
j )∗ (4.8)

for

ΛN
j (θ) =

j⊕
k=1

ΛN/j(θk). (4.9)

Note ΛN
j,s(θ) = ΛN

j (θ1j).

This outlines the complete spectral picture for scalar butterfly factors in the deterministic

case. Interestingly, this also almost completely takes care of the random case. Since R(N),

Dj(N) and Djs(N) are abelian, then each is simultaneously diagonalizable, as evident in

(4.3) and (4.8). It follows then any random distribution put on these models will always

have deterministic eigenvectors.

In particular, if B(θ) ∼ Haar(R(N)), then (4.3) holds where θ ∼ Uniform([0, 2π)). If
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B(θ) ∼ Haar(Djs(N)), then (4.6) holds where θ ∼ Uniform([0, 2π)). If B(θ) ∼ Haar(Dj(N)),

then (4.8) holds where θj ∼ Uniform([0, 2π)) are iid for each j.

We can then combine these results into the following proposition:

Proposition 4.1. Let B(θ) ∼ Dj(N,Σ) for θ ∈ [0, 2π)j. Then

B(θ) = QN
j ΛN

j (θ)(QN
j )∗ (4.10)

for

ΛN
j (θ) =

j⊕
k=1

Λ(θk)⊗ IN/2j and QN
j = Ij ⊗Q⊗ IN/2j, (4.11)

where

Λ(θ) =

eiθ
e−iθ

 and Q =
1√
2

1 1

i −i

 . (4.12)

Moreover, QN
j is deterministic and independent of θ.

If B(θ) ∼ Djs(N,Σ), then

B(θ) = QN
j ΛN

j,s(θ)(Q
N
j )∗ (4.13)

where

ΛN
j,s(θ) = Ij ⊗ Λ(θ)⊗ IN/2j. (4.14)

If B(θ) ∼ R(N,Σ), then

B(θ) = (QΛ(θ)Q∗)⊗ IN/2 = (Q⊗ IN/2)(Λ(θ)⊗ IN/2)(Q⊗ IN/2)∗. (4.15)

112



Moreover, for each case above, the corresponding eigenvectors are deterministic.

4.1.2 Diagonal butterfly factors

Now we can consider the diagonal butterfly factors. A lot of the work has been done already

by make appropriate connections to the scalar butterfly factors. Recall if UN is the perfect

shuffle such that

UN(A⊗ IN/2)UT
N = IN/2 ⊗ A =

N/2⊕
A (4.16)

for A ∈ R2×2, then for R(θ) ∈ Rd(N), we have

UT
NR(θ)UN = B(θ) ∈ DN/2(N). (4.17)

In particular, Rd(N) ∼= DN/2(N). Hence, for R(θ) ∈ Rd(N), we have

R(θ) = (UNQ
N
N/2)ΛN

N/2(θ)(UNQ
N
N/2)∗ (4.18)

using Proposition 4.1.

For 2j | N , we can write

Djds(N) = Rd(N/j)⊗ Ij = (UN/jDN/2j(N/j)UT
N/j)⊗ Ij. (4.19)

By Proposition 4.1, it follows immediately for B(θ) ∈ Djds(N) then

B(θ) = QN
j,d

(
Λ
N/j
N/2j(θ)⊗ Ij

)
(QN

j,d)
∗ = QN

j,d

N/2j⊕
k=1

Λ(θk)⊗ Ij

 (QN
j,d)
∗ (4.20)
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where

QN
j,d = UN/jQ

N/j
N/2j ⊗ Ij = (UN/j(IN/2j ⊗Q))⊗ Ij. (4.21)

Again, since Djds(N) is a subgroup of the abelian group Djd(N), then the eigenvectors coincide

for both groups. For B(θ) ∈ Dj(N)(d) =
⊕jRd(N/j), write θ = (θ1, . . . ,θj) for θ` ∈

[0, 2π)N/2j for each `. Hence, we have

B(θ) = QN
j,d

(
j⊕
`=1

Λ
N/j
N/2j(θ`)

)
(QN

j,d)
∗ = QN

j,d

 j⊕
`=1

N/2j⊕
k=1

Λ(θ(`−1)N/2j+k)

 (QN
j,d)
∗

= QN
j,d

N/2⊕
m=1

Λ(θm)

 (QN
j,d)
∗ (4.22)

Note the diagonal factor is independent of j.

Now considering the case for random instead of deterministic diagonal butterfly factors,

again the picture is already mostly painted. Since Rd(N),Djd(N) and Djds(N) are abelian for

each j, then the eigenvectors are necessarily the same as in the deterministic case. Similarly,

as with the scalar case, any distribution put on these models is confined to the eigenvalues

themselves. In particular, the Haar probability measure then necessarily coincides with the

uniform measure on each input angle through the induced push-forward measure from the

map θ 7→ B(θ) as in (4.22).

I will summarize these results in the following proposition:

Proposition 4.2. Let B(θ) ∼ Djd(N,Σ) for θ ∈ [0, 2π)N Then

B(θ) = QN
j,dΛ

N
d (θ)(QN

j,d)
∗ (4.23)
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for

ΛN
d (θ) =

N/2⊕
m=1

Λ(θm) and QN
j,d = (UN/j(IN/2j ⊗Q))⊗ Ij (4.24)

where Q and Λ(θ) are defined by (4.12) and Um is the perfect shuffle permutation such that

Um(A⊗B)UT
m = B ⊗ A for A and B square matrices of orders 2 and m/2.

If B(θ) ∼ Djds(N,Σ) for θ ∈ [0, 2π)N/2j, then

B(θ) = QN
j,d

N/2j⊕
k=1

Λ(θk)⊗ Ij

 (QN
j,d)
∗. (4.25)

If B(θ) ∼ Rd(N,Σ) for θ ∈ [0, 2π)N/2, then

B(θ) = (UN(IN/2 ⊗Q))

N/2⊕
k=1

Λ(θk)

 (UN(IN/2 ⊗Q))∗. (4.26)

Moreover, for each case above, the corresponding eigenvectors are deterministic.

4.2 Order N = 2n butterfly matrices

Proposition 2.12 showed Bs(m,n,G) is a compact topological group when G = SO,O, SU,

or U, and it is abelian if and only if m = 2 and G = SO. This shows then that Bs(2
n) =

Bs(2, n, SO) has a similar decomposition akin to the butterfly factors in that the abelian

structure mandates the group is simultaneously diagonalizable and so share the same eigen-

vectors, which carries over (as with the butterfly factors) to the Haar-butterfly case.
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4.2.1 Haar-butterfly matrices

Next, will we focus on Haar-butterfly matrices. These results will build on top of the cor-

responding results for the butterfly factors. In particular, the Kronecker product structure

enables direct spectral factorizations of Haar butterfly matrices.

The computational advantage of this structure is illustrated in the following result:

Lemma 4.2. Let u be an eigenvector for A with associated eigenvalue λ, and let

B =

 cos θA sin θA

− sin θA cos θA

 = B(θ)⊗ A.

Then B has eigenvectors v =

 u

±iu

 with associated eigenvalues λe±iθ.

Proof. Compute

Bv =

 cos θAu± i sin θAu

− sin θAu± i cos θAu

 = λ(cos θ ± i sin θ)v = λe±iθv.

This can be used to show that for any B ∼ Bs(N,ΣS), the eigenvalues of B are stochastic

and uniformly distributed on T while the eigenvectors are deterministic.

First, I will introduce some notation and an auxiliary function:

Definition 4.1. For y ∈ Zn and a ∈ C, write ay := [ay1 , ay2 , . . . , ayn ]T ∈ Cn.

Definition 4.2. Define fn : { − 1, 1}n → ZN , where we define {−1, 1}0 := {0}, iteratively
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as follows: set f0(0) = 0 and for x = (x′, xn) ∈ {−1, 1}n, then

fn(x) = fn(x′, xn) =

 fn−1(x′)

fn−1(x′) + xn

 . (4.27)

Example 4.2. We see

f1(x1) = [0, x1]T , f2(x1, x2) = [0, x1, x2, x1 + x2]T , and

f3(x1, x2, x3) = [0, x1, x2, x1 + x2, x3, x1 + x3, x2 + x3, x1 + x2 + x3]T .

Proposition 4.3. For every x ∈ {−1, 1}n with n ≥ 1 and every B = B(θ) ∈ Bs(N), ifn(x)

is an eigenvector for B with associated eigenvalue eiθ·x. In particular,

B(θ) =

(
n⊗
Q

)(
n⊗
j=1

Λ(θn−j+1)

)(
n⊗
Q

)∗
(4.28)

for Q and Λ(θ) are defined by (4.12).

If B ∼ Bs(N,ΣS), then the eigenvalues and eigenvectors are exactly as in the Bs(N) case,

where each eigenvalue is uniformly distributed on T (the one-point correlation of B) and the

associated eigenvector is deterministic.

Proof. First, I will provide a direct argument using induction on n. The result follows

from Lemma 4.1 for n = 1. Now assume the result holds for Bs(N/2). Fix x ∈ {−1, 1}n.

Write θ = (θ′, θn) and x = (x′, xn) for θ′ ∈ ([0, 2π))n−1,x′ ∈ {−1, 1}n−1. By the inductive

hypothesis, λ = eiθ
′·x′ is an eigenvalue of B(θ′) ∈ Bs(n − 1) with associated eigenvector

u = ifn−1(x′). By Lemma 4.2, B(θ) then has eigenvalue

λeiθnxn = eiθ
′·x′+iθnxn = eiθ·x
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with eigenvector

v =

 u

xniu

 =

 u

ixnu

 =

 ifn−1(x′)

ifn−1(x′)+xn

 = ifn(x),

where we note ±i = i±1.

When B(θ) ∼ Bs(N,ΣS), it only remains to show the eigenvalues are each uniform on T,

but this follows directly from Lemma 1.8 since θn, 2π − θn ∼ Uniform([0, 2π)), so that θ · x

(mod 2π) ∼ Uniform([0, 2π)).

Alternatively, and perhaps more naturally in light of the Kronecker product form of Bs(N):

Let B(θ) ∈ Bs(N). Since

B(θ) =

 cos θ sin θ

− sin θ cos θ

 = QΛ(θ)Q∗ (4.29)

then

B(θ) =
n⊗
j=1

B(θn−j+1) =
n⊗
j=1

QΛ(θn−j+1)Q∗

=

(
n⊗
Q

)(
n⊗
j=1

Λ(θn−j+1)

)(
n⊗
Q

)∗

using the mixed-product property.

Remark 4.1. Since Djs(N) is a subgroup of Bs(N), which is abelian, then the eigenvectors of

Bs(N) are also eigenvectors of Djs(N). This can be used to give a direct relationship between

Proposition 4.1 and Proposition 4.3.

For instance, the mixed-product property and (4.13) show how the spectral decompositions

factor, respectively: Let R(θ) ∈ SO(2) denote the corresponding standard rotation matrix.
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Note Bj(θ) = Ij ⊗ R(θ) ⊗ IN/2j ∈ Djs(N) has factorization Bj(θ) = QN
j ΛN

j,s(θ)(Q
N
j )∗ for

QN
j = Ij ⊗Q⊗ IN/j and ΛN

j,s(θ) = Ij ⊗ Λ(θ)⊗ IN/j by Proposition 4.1. Hence,

B(θ) =
n∏
j=1

Bn−j+1(θn−j+1) ∈ Bs(N)

for Bk(θ) ∈ Djs(N) for each k, and so

n⊗
j=1

Q =
n∏
j=1

QN
j and

n⊗
j=1

Λ(θn−j+1) =
n∏
j=1

ΛN
j,s(θn−j+1).

Example 4.3. A straightforward application of Proposition 4.3 yields

B(θ, ϕ) =



cosϕ cos θ cosϕ sin θ sinϕ cos θ sinϕ sin θ

− cosϕ sin θ cosϕ cos θ − sinϕ sin θ sinϕ cos θ

− sinϕ cos θ − sinϕ sin θ cosϕ cos θ cosϕ sin θ

sinϕ sin θ − sinϕ cos θ − cosϕ sin θ cosϕ cos θ


has eigenvalues ei(θ+ϕ), ei(θ−ϕ), ei(−θ+ϕ), ei(−θ−ϕ) with respective eigenvectors

if2(1,1) =



1

i

i

−1


, if2(1,−1) =



1

i

−i

1


, if2(−1,1) =



1

−i

i

1


, if2(−1,−1) =



1

−i

−i

−1


.

If B(θ, ϕ) ∼ Bs(4,ΣS), then each eigenvalue is uniformly distributed on T (but not jointly,

as they must be complex conjugates) and the associated eigenvector is deterministic.

119



4.2.2 Nonsimple scalar butterfly matrices

Proposition 4.3 shows the eigenvalues and eigenvectors of any simple scalar butterfly matrix,

either random or nonrandom, can be completely determined in a closed form. The case for

nonsimple scalar butterfly matrices is a different matter altogether. The case for n = 2 is

simpler than n ≥ 3, as the following lemma will show. This also suggests how the higher

order matrices have have progressively more computationally complex spectra pictures.

Lemma 4.3. (a) Let u be an eigenvector for both A1 and A2, for respective associated

eigenvalues of λ1, λ2, and let

B =

 cos θA1 sin θA2

− sin θA1 cos θA2

 .
If sin θ = 0 or λ1 = 0, then [u,0]T is an eigenvector for B with eigenvalue λ1 cos θ. If sin θ =

0 or λ2 = 0, then [0,u]T is an eigenvector for B with eigenvalue λ2 cos θ. If sin θ, λ1, λ2 are

all nonzero, then B has eigenvalue

λ1 cos θ + αλ2 sin θ

with eigenvector v =

 u

αu

, where

α = α(±) =
1

2

(1− λ1

λ2

)
cot θ ±

√(
1− λ1

λ2

)2

cot2 θ − 4
λ1

λ2

 ,
using the principle branch of the logarithm to define the square root.
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(b) When sin θ 6= 0 and λ1, λ2 ∈ T, then the discriminant

∆ :=

(
1− λ1

λ2

)2

cot2 θ − 4
λ1

λ2

(4.30)

is nonzero.

Remark 4.2. When the discriminant is nonzero, the two choices of α lead to two distinct

eigenvalues and eigenvectors of B, with potentially two additional eigenvalues and eigenvec-

tors obtained by taking complex conjugates.

Proof of Lemma 4.3. (a) Since

B

 u

0

 =

 λ1 cos θu

−λ1 sin θu

 and B

 0

u

 =

 λ2 sin θu

λ2 cos θu

 ,
we see [u,0]T is an eigenvector for B with eigenvalue λ1 cos θ if and only if λ1 sin θ = 0, and

[0,u]T is an eigenvector for B with eigenvalue λ2 cos θ if and only if λ2 sin θ = 0.

Now assume λ1λ2 sin θ 6= 0, and assume α 6= 0. Now we compute

Bv =

 cos θA1u + α sin θA2u

− sin θA1u + α cos θA2u

 =

 (λ1 cos θ + αλ2 sin θ)u

(−α−1λ1 sin θ + λ2 cos θ)αu

 .
We then have v is an eigenvector for B for eigenvalue λ1 cos θ + αλ2 sin θ if and only if

λ1 cos θ + αλ2 sin θ = −α−1λ1 sin θ + λ2 cos θ

if and only if

α2 −
(

1− λ1

λ2

)
cot θα +

λ1

λ2

= 0. (4.31)

121



The result then follows by using the quadratic formula to solve (4.31) for α to find α(+) and

α(−).

(b) Suppose ∆ = 0. We would have λ := λ1
λ2
∈ T satisfies 4λ = (1 − λ)2 cot2 θ, with also

necessarily cos θ 6= 0, and hence

λ2 − 2(1 + 2 tan2 θ)λ+ 1 = 0.

Again using the quadratic formula, it would follow then

λ = (1 + 2 tan2 θ)±
√

(1 + 2 tan2 θ)2 − 1.

Since 1+2 tan2 θ > 1 and 1+2 tan2 θ >
√

(1 + 2 tan2 θ)2 − 1, then λ > 0, so that necessarily

1 = |λ| = λ. But then

4 = 4λ = (1− λ)2 cot2 θ = 0,

a contradiction.

Note Lemma 4.3(a) gives an alternative proof of Lemma 4.2, where we let A1 = A2 so that

λ1 = λ2 := λ and hence α = ±i when λ 6= 0; otherwise, [u,0]T and [0,u]T and hence

[u,±iu]T is an eigenvector for λ = 0.

Since B(2) = Bs(2) = SO(2) all have the same eigenvectors by Proposition 4.3, then we

have the eigenvalues and eigenvectors for any B ∈ B(2) can be determined explicitly by

Lemma 4.3.

Example 4.4. Suppose sinψ 6= 0. Define the nonsimple butterfly matrix

B = B(θ, ϕ, ψ) =

 cosψAθ sinψAϕ

− sinψAθ cosψAϕ


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=



cosψ cos θ cosψ sin θ sinψ cosϕ sinψ sinϕ

− cosψ sin θ cosψ cos θ − sinψ sinϕ sinψ cosϕ

− sinψ cos θ − sinψ sin θ cosψ cosϕ cosψ sinϕ

sinψ sin θ − sinψ cos θ − cosψ sinϕ cosψ cosϕ


.

Let u =

 1

i

. Then B has eigenvalue(s)

eiθ cosψ + αeiϕ sinψ

with respective eigenvector(s) v =

 u

αu

 where

α = α(±) =
1

2

[
(1− ei(θ−ϕ)) cotψ ±

√
(1− ei(θ−ϕ))2 cot2 ψ − 4ei(θ−ϕ)

]
.

If θ = ϕ, so that B is simple, then α(±) = ±i.

Since ‖u‖2
2 = 2 then ‖v‖2

2 = 2(1 + |α|2)

Note also necessarily when sinψ 6= 0 the discriminant is nonzero by Lemma 4.3(b). Hence,

it follows all eigenvalues and eigenvectors for B can be determined explicitly from the above

construction, when considering also complex conjugates.

Explicitly determining the eigenvalues and eigenvectors for B ∈ B(N) or B ∼ B(N,ΣS)

when n ≥ 3 is not as straightforward. In particular, we can no longer use Lemma 4.3 since

B(4) does not preserve eigenspaces, which should be expected since multiplication on B(2)

is not commutative (nor is B(N) a group). As such, it follows B(4,ΣS) has both stochastic

eigenvalues and eigenvectors, while only the eigenvalues for B(2,ΣS) were stochastic. But the

rigid structure of B(N) forces some rigidity to carry over to the structure of the eigenvectors.
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A closed form may be harder to attain for n ≥ 3, but repeated empirical results suggest:

Conjecture 3. Let B = B(θ) ∈ B(N) with

B = RN(θN−1)

B(θ1)

B(θ2)



for B(θ1), B(θ2) ∈ B(N/2). For u =

1

i

, then all eigenvectors of B are of the form or are

(complex) conjugate to the form

v =



α1u

α2u

...

αN/2u


(4.32)

for some αi 6= 0 when sin θN−1 6= 0, otherwise they are completely determined by the eigen-

vectors of B(θ1) and B(θ2).

Example 4.5. Sampling B ∈ Bs(8,ΣS), we have

B =



0.2793 −0.4539 0.3040 0.4761 0.4842 −0.1295 0.1166 −0.3633

0.4539 0.2793 −0.4761 0.3040 0.1295 0.4842 0.3633 0.1166

0.2960 −0.4811 −0.2868 −0.4492 −0.3686 0.0986 0.1532 −0.4773

0.4811 0.2960 0.4492 −0.2868 −0.0986 −0.3686 0.4773 0.1532

0.2266 −0.3682 0.2466 0.3862 −0.5970 0.1597 −0.1437 0.4479

0.3682 0.2266 −0.3862 0.2466 −0.1597 −0.5970 −0.4479 −0.1437

0.2401 −0.3902 −0.2326 −0.3644 0.4544 −0.1215 −0.1888 0.5884

0.3902 0.2401 0.3644 −0.2326 0.1215 0.4544 −0.5884 −0.1888



.

(4.33)
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B has eigenvectors of the form in (4.32) where α =

[
α1 α2 α3 α4

]T
are found in





0.573i

0.2931 + 0.1435i

−0.0045 + 0.2001i

0.0461 + 0.1515i


,



−0.0293 + 0.1454i

−0.0132 + 0.2131i

0.2716− 0.0963i

−0.5911i


,



−0.1715− 0.2108i

0.2573 + 0.0993i

0.5410

−0.0458 + 0.2353i


,



−0.2591 + 0.0931i

−0.5214i

0.0979 + 0.2733i

−0.2123− 0.1518i




.

4.3 Almost uniform eigenvalue distribution

A natural direction in RMT with respect to random butterfly matrices is to determine the

limiting distribution of the butterfly matrices of increasing order. This section builds off

directly of results found in [37].

First, we will establish some standard background necessary for the following steps.

Definition 4.3. A random matrix Mn has a uniform eigenvalue distribution if EµMn

is the uniform measure on T.

A useful criterion for this is:

Theorem 4.1 ([37]). A random unitary matrix Q of order N has uniform eigenvalue dis-

tribution if and only if

E
1

N
TrQk = δk0 (4.34)

for k = 0, 1, . . .

Definition 4.4. For a sequence of matrices, Mn, the eigenvalues of the sequence are said to
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be almost surely uniform if for each f ∈ C(T) then

lim
n→∞

∫
T
f dµMn =

1

2πi

∫
T
f(z)

d z

z
almost surely, (4.35)

where µMn is the empirical spectral distribution of Mn.

Again, I will restate a useful classical criterion (also given in [37]), which follows almost

directly from the Borel-Cantelli lemma:

Theorem 4.2. Let Mn be a sequence of random matrices of order N = N(n) that is strictly

increasing such that Mn has uniform eigenvalue distribution for each n. Suppose if for each

k = 1, 2, . . . then

E
∣∣∣∣ 1

N
TrMk

n

∣∣∣∣2 ≤ Ckn
1−ck (4.36)

for absolute positive constants Ck, ck. Then the eigenvalues of the sequence Mn are almost

surely uniform.

We can reproduce the result found in [37] regarding Haar-butterfly matrices of order 2n using

a different argument using the tools established earlier:

Theorem 4.3 ([37]). Let Bn ∼ Bs(2
n,ΣS). Then the sequence Bn has almost uniform

eigenvalues.

Proof. For an alternative but equivalent proof from that found in [37], recall Tr(A ⊗ B) =

Tr(A) Tr(B). Hence, if B(θ) ∼ Bs(N,ΣS), then

Tr(B(θ)k) = Tr

(
n⊗
j=1

B(θn−j+1)k

)
=

n∏
j=1

Tr(B(θn−j+1)k) =
n∏
j=1

2 cos kθj

= N

N∏
j=1

cos kθj.
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Since cos kθj ∼ cos θ1 if θj ∼ Uniform([0, 2π)) are iid, it follows

E
∣∣∣∣ 1

N
Tr(B(θ)k)

∣∣∣∣2 = E

∣∣∣∣∣
n∏
j=1

cos kθj

∣∣∣∣∣
2

= (E cos2 θ1)n = 2−n. (4.37)

The result then follows from Theorem 4.2.

Next, we can extend this result to include the more general case with Bs(m,n,G).

Theorem 4.4. Let Bn ∼ Haar(Bs(m,n,G)) = Bs(m,n,Haar(G)) for G = SO,O, SU or U.

Then Bn has almost uniform eigenvalues.

Proof. Note if A ∼ Haar(G(m)) for G as above, then

1

m
Tr(Ak) =

1

m

m∑
`=1

λk` (4.38)

for λ` the eigenvalues of A, each of which is on T as is λk` for each k. Since this is then

a convex combination of m points on T, with the points being almost surely distinct, then∣∣ 1
m

Tr(Ak)
∣∣ < 1 almost surely. We can say a lot more than this, though.

In [7] (which corrects similar results in [10]), we have if A ∼ Haar(U(m)), then E|Tr(Ak)|2 =

min(m, k) then B =
⊗n

j Bj for Bj ∼ Haar(U(m)) iid, we have

E|Tr(Bk)|2 =
n∏
j=1

E|Tr(Bk
j )|2 = min(m, k)n ≤ N. (4.39)

Similarly, E|Tr(Bk)|2 ≤ N for B ∼ Haar(Bs(m,n,G)) for G = SO,O and SU (e.g., see also

[19]). It follows then for B ∼ Haar(Bs(m,n,G)) for G = SO,O, SU or U we have

E
∣∣∣∣ 1

N
TrBk

∣∣∣∣2 ≤ 1

N
= m−n. (4.40)

The result then follows again from Theorem 4.2.
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Note, however, this argument does not carry over directly to Haar(Bs(N)) for general N =∏k
j=1 p

ej
j : the upper bound does not decay sufficiently fast enough with respect to the growth

of the orders of each sequence term, as the order 1
N

remains the same scaling with respect to

the sequence order growth. This is unlike when using the exponentially growing subsequences

in Theorem 4.4 that then led to exponential decay. Convergence in expectation does carry

over, at least.

Corollary 4.2. Let Bn ∼ Haar(Bs(n,G)) for G = SO,O, SU or U. Then µBn converges in

expectation to the uniform measure on T.

A sparsification argument may be able to strengthen this result. Future work can explore

the potential of this direction.

4.4 CLT for moments of the trace

Since Tr(A⊗B) = Tr(A) Tr(B), for B ∼ Haar(Bs(m,n,G)), then Tr(Bk) =
∏n

j=1 Tr(Bk
j ) for

Bj ∼ Haar(G(m)) iid. Furthermore, note B ∼ B−1 so that Tr(B−k) ∼ Tr(Bk) for k ∈ Z\{0}

and B ∼ Haar(Bs(m,n,G)). Since E log2 |Tr(Bk
1 )| < ∞ for each m and G = SO,O, SU,U,

we can apply the Central Limit Theorem to yield:

Theorem 4.5. Let B ∼ Haar(Bs(m,n,G)) for B =
⊗n

j=1Bj where Bj ∼ Haar(G(m)) iid

for G = SO,O, SU or U. For k ∈ Z\{0}, let µk = E log |Tr(Bk
1 )| and σ2

k = Var(log |Tr(Bk
1 )|),

then for any real t we have

lim
n→∞

P
(

log |Tr(Bk)| − nµk√
nσk

≤ t

)
= P(Z ≤ t) (4.41)

for Z ∼ N(0, 1).

Example 4.6. Consider Bs(2
n,ΣS). This is again expanding on a result in [37]. Since
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cos kθ ∼ cos θ for θ ∼ Uniform([0, 2π)) and k = 1, 2, . . ., we have

µk = E log |Tr(B(θ)k)| = E log |2 cos kθ| = E ln | cos θ|+ log 2 = 0 (4.42)

and

σ2
k = E log2 |Tr(B(θ)k)| = E log2 |2 cos kθ| = E log2 |2 cos θ|

= log2 2 + (2 log 2)E log | cos θ|+ E log2 | cos θ|

= log2 2− 2 log2 2 +
2

π

(
π3

24
+
π

2
log2 2

)
=
π2

12
.

As is true with CLTs, the universal bell curve shape does not emerge until n is sufficiently

large, as evidenced by Figure 4.2.

Remark 4.3. Theorem 4.5 can be used to get asymptotics on quantiles for Tr(Bk). I will

postpone a further exploration until a similar result after Corollary 5.3.
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Figure 4.2: Histogram of 1√
n·π2

12

log |Tr(Bk)| versus the standard normal density function fZ

for Z ∼ N(0, 1) using 106 samples for B ∼ Bs(2
n,ΣS) for n = 5, 10, 100, 1000
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Chapter 5

Numerical properties of butterfly

matrices

I know not if I was then a man

dreaming I was a butterfly, or if I am

now a butterfly dreaming I am a man.

René Descartes

This chapter will focus on applications of butterfly matrices to reduce complexity in common

applications in numerical linear algebra. Parker’s original focus was on the application of

butterfly matrices to transform a nonsingular matrix to a nondegenerate matrix so Gaussian

elimination (GE) can be carried out without pivoting. A general overview of this application

is presented here. The remainder of this chapter will focus almost exclusively on the N = 2n

butterfly models. Section 5.2 will outline the hierarchy in randomness moving from Bs(N)

to Haar(O(N)), which will include a method of sampling from Haar(O(N)) using butterfly

matrices. A method to approximate Haar(O(N)) properties with butterfly matrices will also

be introduced. Section 5.3 gives the full distribution of the growth factor of a Haar-butterfly
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matrix. Previous results relating to the growth factors of (dense) random matrices was

limited to estimates of the first moment of a random growth factor. The full distribution

of the growth factor of a dense matrix is a significant step forward in the analysis of the

numerical stability of methods in randomized linear algebra.

5.1 Nondegenerate transformation

In [31], Parker presents Theorem 1.1, which shows if A is nonsingular, then UAV ∗ is al-

most surely block nondegenerate for random butterfly matrices U, V . Again, this is a useful

property if one wants to avoid pivoting, as big data movement and communication over-

head commiserate with pivoting can impede parallel processing and block algorithms. Since

matrix-matrix multiplication using butterfly matrices take O(N2n) flops (see Section 2.1.3),

multiplying a linear system on the left and right by a random butterfly matrix does not im-

pact the leading order complexity of Gaussian elimination of O(N3). Additional motivations

to remove pivoting are highlighted in [2, 31].

Parker’s application specifically uses a two-sided butterfly transformation to form a nonde-

generate linear system. One interesting and natural question to pose in light of Theorem 1.1

is whether one can gain enough benefit from using only a one-sided transformation. Through

experiments, [2, 37] tested the impact of one-sided butterfly transformations. For a specific

set of test cases, these experiments did both show benefits from the one-sided model. How-

ever, the benefit of these applications are limited in scope based on the actual test cases

used and do not hold for all nonsingular matrices. Some potential applications can be shown

to never achieve a block nondegenerate form through a one-sided butterfly transformation.

For a given random butterfly matrix Ω, I can produce a nonsingular matrix A such that

ΩA is nondegenerate. In fact, I can show a random permutation matrix P then has ΩP is

nondegenerate with strictly positive probability.
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Proposition 5.1. Let N = mn and B ∼ Haar(Bs(m,n)) for n ≥ 2 and let σ ∈ SN . Then

a.s.

det

[I2 0

]
BPσ

I2

0


 = 0 (5.1)

if and only if σ(1) ≡ σ(2) (mod m). Moreover, if σ ∼ Uniform(SN) independent of B, then

P

det

[I2 0

]
BPσ

I2

0


 = 0

 =
1

m

(
1− m− 1

mn − 1

)
. (5.2)

Proof. Let B = A⊗ C for C ∼ Haar(SO(m)) and A ∼ Haar(Bs(m,n− 1)). Note

[
I2 0

]
=

[
I2 0

] [
Im 0

]
(5.3)

so that

[
I2 0

]
B =

[
I2 0

] [
Im 0

]
(A⊗ C) =

[
I2 0

] [
A11C · · · A1mC

]

where we note P(Aij = 0) = 0 since A ∼ Haar(Bs(m,n)). Moreover,

Pσ

I2

0

 =

[
eσ(1) eσ(2)

]
. (5.4)

Let σ(i) = qim+ ri for qi, ri ∈ Z with 0 ≤ ri < m. Let

mi = δ0ri + ri =

 ri ri 6= 0

m ri = 0.
(5.5)
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Then

[
I2 0

]
BPσ

I2

0

 =

[
I2 0

] [
A1,1+q1Cem1 A1,1+q2Cem2

]

=

[
I2 0

]
C

[
em1 em2

]
(A1,1+q1 ⊕ A1,1+q2).

If σ(1) ≡ σ(2) (mod m) then r1 = r2, so that for m0 = m1 = m2 we have

[
I2 0

]
BPσ

I2

0

 =

[
I2 0

]
CP(1 m0)

1 1

0 0

 (A1,1+q1 ⊕ A1,1+q2). (5.6)

has rank at most 1 and so is singular. If σ(1) 6≡ σ(2) (mod m), then m1 6= m2 and

[
I2 0

]
BPσ

I2

0

 =

[
I2 0

]
CPτ (A1,1+q1 ⊕ A1,1+q2) (5.7)

for τ = (2 m2)(1 m1) ∈ SN . Since CPτ ∈ O(N) has full rank then (BPσ):2,:2 has rank equal

to the rank of (A1,1+q1 ⊕ A1,1+q2), which is almost surely full rank.

Since N = mn, then [N ] splits evenly among the residues modulo m. If σ(1) ≡ σ(2)

(mod m), then since σ(2) 6= σ(1) there are N/m − 1 remaining choices of j ≡ i (mod 2)

for σ(2) to take after σ(1) is assigned, which have equal weight when σ ∼ Uniform (SN). It

follows

P

det

[I2 0

]
BPσ

I2

0


 = 0

 = P(σ(1) ≡ σ(2) (mod m))

=
N(N

m
− 1)(N − 2)!

N !
=

N
m
− 1

N − 1

=
1

m

(
1− m− 1

mn − 1

)
.
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For example, if B ∼ Haar(Bs(m,n)) and σ ∼ Uniform(SN), then if m = 2 we have

P

det

[I2 0

]
BPσ

I2

0


 = 0

 =
1

2

(
1− 1

N − 1

)
. (5.8)

while if n = 2 then

P

det

[I2 0

]
BPσ

I2

0


 = 0

 =
1

m+ 1
. (5.9)

Example 5.1. For n = 1, then BPσ is orthogonal for any σ ∈ S2, and so is nonsingular.

If n = 2, if σ(1) = 1 then (BPσ):2,:2 is singular if and only if σ(2) = 3, for which only (2 3)

and (2 3 4) satisfy this. If σ(1) = 2, then (BPσ):2,:2 is singular if and only if σ = (1 2 4)

or σ = (1 2 4 3). If σ(1) = 3, then (BPσ):2,:2 is singular if and only if σ = (1 3 2) or

σ = (1 3 4 2). Lastly, if σ(1) = 4, then (BPσ):2,:2 is singular if and only if σ = (1 4)

or σ = (1 4 3). Hence, the probability of choosing a permutation uniformly that results in

(BPσ):2,:2 being singular is

4 · 2
4!

=
1

3
=

1

2
− 1

6
.

5.2 Haar orthogonal matrices

One common application of random Fourier transformations (RFTs) is to randomize an in-

put vector to spread out the mass on each component to uniformize a vector before analysis.

Without knowing beforehand the structure of an input vector, near localization of a vector

can lead to undesirable numerical instabilities when using fixed-point arithmetic. To not

limit the additional compounding and propagation of numerical errors, a desirable attribute
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of a RFT is to have a small 2-condition number κ2. Using real inputs, orthogonal trans-

formations are desirable since they minimize κ2. So a natural goal is to be able to sample

an orthogonal transformation uniformly. This is accomplished by sampling a matrix using

the Haar probability measure on O(N). This section will explore some existing methods

to sample Haar orthogonal matrices and introduce a new sampling method using butterfly

matrices.

5.2.1 Sampling Haar orthogonal matrices

As mentioned in Section 1.6.4, Stewart introduced a method to sample a Haar orthogonal

matrix (see Theorem 1.15). Stewart’s construction, which is still used widely for (exact)

sampling of Haar orthogonal matrices uses Householder reflections.

For v ∈ Rn is a vector, the projection map onto span(v) is given by Pv = vvT

vTv
. If u ∈

span(v)⊥, then Pvu = 0. A Householder reflection is the projection Hv = In − 2Pv. Note

Hvv = −v while if u ∈ span(v)⊥, then Hvu = u so that detHv = −1 (since 1 is an

eigenvalue with multiplicity n − 1 and −1 is an eigenvalue with multiplicity 1). Moreover,

Hv is symmetric and since H2
vv = v and H2

vu = u for u ∈ span(v)⊥, then H2
v = In, so that

H−1
v = Hv = HT

v . It follows Hv is orthogonal.

Householder reflections can be used to transform a matrix into an upper triangular matrix

as follows: for ai = Aei, we have

H‖a1‖2e1−a1A =



‖a1‖2 ∗ · · · ∗

∗ · · · ∗
...

...
...

∗ · · · ∗


(5.10)

One could then apply a Householder reflector to the bottom right order n− 1 matrix A(2) =
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H1A
(1). Note one does need to add a correction to the above construction to ensure the

diagonal remains positive throughout. Hence, after n Householder reflector transformations,

one can form an upper triangular matrix with positive diagonal R. Since each Householder

reflector is orthogonal, then the transpose of the product of these Household reflectors is

necessarily the Q factor in the QR factorization of A.

Now this can be combined with Stewart’s result: if A ∼ Gin(n) and A = QR is theQR factor-

ization of A with R an upper triangular matrix with positive diagonal, then Q ∼ Haar(O(n)).

Hence, one can sample a Haar orthogonal matrix by using G ∼ Gin(n). Moreover, since

Gin(n) is invariant under orthogonal transformations, then G2:,2: ∼ (HvG)2:,2:. Hence, one

does not need to keep all of G but only needs to use Household reflectors using iid Gaussian

vectors of length n− i+ 1. Hence, one can form a product of a Haar orthogonal matrix and

a vector using a sequence of Gaussian vectors, as outlined in Algorithm 5.

Algorithm 5 Haar orthogonal matrix-vector multiplication

1: procedure HOMult(V)
2: [n,m] = size(V)
3: U = V
4: for j = 1 : n do
5: w ∼ Gin(n− j + 1, 1)
6: s = − exp(−i angle(w(1))
7: w = sw
8: w(1) = w(1)− ‖2‖2

9: w = w
‖w‖2

10: Uj:,: = s
(
Uj:,: − 2wwTUj:,:

)
11: return U

Applying Algorithm 5 to In then would produce H ∼ Haar(O(N)).

Remark 5.1. To sample U ∼ Haar(U(n)), one would only need to update Step 5 to w ∼

GinC(n− j + 1, 1) in Algorithm 5.
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5.2.2 Givens rotations

Using Stewart’s result, any algorithm to compute a QR factorization can be used to sample

a Haar orthogonal matrix by applying the algorithm to Gin(n) and returning only the Q

factor. One particular method is closely related to butterfly matrices:

Definition 5.1. A Givens rotation, G = G(θ, i, j), is the special orthogonal matrix such

R(θ) =

 Gii Gij

Gji Gjj

 ∈ R2 = SO(2),

and Gk` = δk` for any other k, `.

Givens rotation matrices were introduced by Wallace Givens in the 1950s as an efficient

means to introduce zeros in a matrix [15].

Example 5.2. Let x = (r cos θ, r sin θ) for r > 0. Then

G(θ, 1, 2)x =

 cos θ sin θ

− sin θ cos θ


r cos θ

r sin θ

 =

r
0

 . (5.11)

In particular, if x = (x, y) ∈ R2 and x 6= 0 and

θ =

 arccos( x
‖x‖2 ) if y ≥ 0 and

− arccos( x
‖x‖2 ) if y < 0,

then

R(θ)x =

‖x‖
0

 . (5.12)

It follows Givens rotations can be used to compute the QR decomposition of a nonsingular
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matrix. Starting with the first column, use N − 1 Givens rotations to progressively 0 out

each element below the first entry. Now starting at the second entry on the second column,

use N − 2 Givens rotations to 0 out every below. Continuing on, after multiplication by(
N
2

)
total Givens rotations, we have necessarily an upper triangular matrix R̃ with positive

entries on its diagonal, with the possible exception of the last entry. Pulling out the sign of

R̃nn to form R such that Rnn = |R̃nn| yields

A =

(∏
i<j

G(θij, i, j)

)
(IN−1 ⊕ sgn(R̃nn))R = QR (5.13)

for A nonsingular. Note the resulting Q is a product of (at most)
(
N
2

)
Givens rotations,

with the last term Qnn completely determining the sign of detQ, that is, detQ = Qnn.

In particular, applying this to an element of SO(N) would have an R factor that is upper

triangular with positive real entries, which must necessarily be the identity matrix. This

yields:

Proposition 5.2. The Givens rotations generate SO(N).

In fact, every element of SO(N) is the product of at most
(
N
2

)
Givens rotations.

5.2.3 Butterfly QR algorithm

Givens rotations are intimately related to butterfly matrices. This is established by noting

G = G(θ, 1, 2) ∈ B(N) for all N ≥ 1, while also

PσGP
T
σ = G(θ, σ(1), σ(2)), (5.14)

which follows directly from (1.7) (and hence from (1.6)): apply the result

Pσ(eie
T
j )P T

σ = (Pσei)(Pσej)
T = eσ(i)e

T
σ(j)
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to

G =
N∑
k=1

eke
T
k + (cos θ − 1)(e1e

T
1 + e2e

T
2 ) + sin θ(e1e

T
2 − e2e

T
1 ).

In particular, if σ = (2 j)(1 i) for i < j, then PσGP
T
σ = G(θ, i, j). This then yields:

Theorem 5.1.

〈Pσ B(N)P T
σ : σ = (2 j)(1 i), 1 ≤ i < j ≤ N〉 = SO(N).

Since [O(N) : SO(N)] = 2 and P(1 2) ∈ PN\AN , then we get also:

Corollary 5.1.

〈B(N),PN〉 = O(N).

In fact, we can provide an upper bound on the number of butterfly matrices needed to

generate M ∈ SO(N). In particular, we can use DN/2(N) ⊂ B(N).

We want to carry out operations similar to how the Givens process generates the QR de-

composition. For the first column, one butterfly matrix can 0 out the even indices, which

followed then with (2 N/2 + 1)(4 N/2 + 3) · · · (N/2 N − 1) can assume the bottom half are

zeroed out. In fact, the first n steps can be chosen such that N/2 zeros are introduced,

and each successive step now needs to fix at least two columns. I will walk through some

examples, where I keep track of which step I remove a given nonzero cell. I am not going to

be exact with the permutation needed in these examples, but I want to outline the general

Butterfly QR Algorithm.
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Example 5.3. Using a 4× 4 matrix, which has
(

4
2

)
= 6 lower triangular entries, we see

A =



∗

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗


. (5.15)

I will use the top two rows to eliminate the first entries from the last two rows. I can do

this using G(θ1, 1, 3) and G(θ2, 2, 4) for θ1 we first choose B1 ∈ D2(4) and P1 = Pσ1 for

σ1 = (2 3) such that

P T
1 B1P1A =



∗

∗ ∗

[1] ∗ ∗

[1] ∗ ∗ ∗


. (5.16)

Next B2 ∈ D2(4) (and σ2 = 1) such that

B2P
T
1 B1P1A =



∗

[2] ∗

[1] ∗ ∗

[1] [2] ∗ ∗


(5.17)

then B3 ∈ D2(4) and σ3 = (2 3)(1 2) = (1 3 2) such that

P T
2 B3P3B2P

T
1 B1P1A =



∗

[2] ∗

[1] [3] ∗

[1] [2] ∗ ∗


(5.18)
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Step Zeros Cumulative Zeros Fixed Rows
1 2 2
2 2 4
3 1 5 1,4
4 1 6 1,2

Table 5.1: QR butterfly steps for N = 4

so that B4 = I ⊕B and σ4 = 1 with

B4P
T
2 B3P2B2P1B1A =



∗

[2] ∗

[1] [3] ∗

[1] [2] [4] ∗


(5.19)

Table 5.1 provides an overview of the process through each step by keeping track of how many

zeros were introduced along with which rows are fixed with respect to a Givens rotation.

Example 5.4. Now consider the 8× 8 case, which has
(

8
2

)
= 28 lower diagonal entries.



∗

[3] ∗

[2] [5] ∗

[2] [4] [7] ∗

[1] [3] [6] [8] ∗

[1] [3] [5] [7] [9] ∗

[1] [2] [4] [6] [8] [10] ∗

[1] [2] [3] [5] [7] [9] [11] ∗



(5.20)

Table 5.2 similarly shows how many zeros are introduced in each step in the process for
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Step Zeros Cumulative Zeros Fixed Rows
1 4 4
2 4 8
3 4 12
4 2 14 1,3,6,8
5 3 17 1,5
6 2 19 1,2,4,8
7 3 22 1,2
8 2 24 1,2,3,8
9 2 26 1,2,3,4
10 1 27 1,2,3,4,5,8
11 1 28 1,2,3,4,5,6

Table 5.2: QR butterfly steps for N = 8

N = 8.

Example 5.5. And for the 16 × 16 case, with
(

16
2

)
= 120 lower diagonal terms, I will only
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include the final output:



∗

[4] ∗

[3] [6] ∗

[3] [5] [8] ∗

[2] [5] [7] [10] ∗

[2] [4] [7] [9] [12] ∗

[2] [4] [6] [9] [11] [14] ∗

[2] [4] [6] [8] [10] [13] [16] ∗

[1] [3] [5] [8] [10] [12] [15] [18] ∗

[1] [3] [5] [7] [9] [11] [14] [17] [20] ∗

[1] [3] [5] [7] [9] [11] [13] [16] [19] [21] ∗

[1] [3] [4] [6] [8] [10] [12] [15] [18] [20] [22] ∗

[1] [2] [4] [6] [8] [10] [12] [14] [17] [19] [21] [23] ∗

[1] [2] [4] [5] [7] [9] [11] [13] [16] [18] [20] [22] [24] ∗

[1] [2] [3] [5] [7] [9] [11] [13] [15] [17] [19] [21] [23] [25] ∗

[1] [2] [3] [4] [6] [8] [10] [12] [14] [16] [18] [20] [22] [24] [26] ∗


(5.21)

Table 5.3 again provides the accumulation of zeros for each step in the N = 16 case.

In particular, note the last line of each final output. Following this algorithm, we add a zero

to the last row in the first n steps, and then the remaining steps we alternate in fixing the

last row, so that there are

αn = n+ 2 · (N − (n+ 1)) = 2(N − 1)− n (5.22)
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Step Zeros Cumulative Zeros Fixed Rows
1 8 8
2 8 16
3 8 24
4 8 32
5 7 39 1,16
6 6 45 1,6,11,15
7 6 51 1,2,9,16
8 6 57 1,2,7,15
9 6 63 1,2,3,16
10 6 69 1,2,3,15
11 5 74 1,2,3,4,5,16
12 5 79 1,2,3,4,8,15
13 4 83 1,2,3,4,5,7,10,16
14 4 87 1,2,3,4,5,9,12,15
15 3 90 1,2,3,4,5,6,8,11,14,16
16 4 94 1,2,3,4,5,6,10,13
17 3 97 1,2,3,4,5,6,7,9,12,16
18 4 101 1,2,3,4,5,6,7,11
19 3 104 1,2,3,4,5,6,7,8,10,16
20 4 108 1,2,3,4,5,6,7,8
21 3 111 1,2,3,4,5,6,7,8,9,16
22 3 114 1,2,3,4,5,6,7,8,9,10
23 2 116 1,2,3,4,5,6,7,8,9,10,11,16
24 2 118 1,2,3,4,5,6,7,8,9,10,11,12
25 1 119 1,2,3,4,5,6,7,8,9,10,11,12,13,16
26 1 120 1,2,3,4,5,6,7,8,9,10,11,12,13,14

Table 5.3: QR butterfly steps for N = 16

total steps to complete the QR butterfly process. Hence, we need αn block diagonal butterfly

matrices to generate Haar(O(N)).

Note α1 = 2(2−1)−1 = 1, α2 = 2(4−1)−2 = 4 (compare to
(

4
2

)
= 6), α3 = 2(8−1)−3 = 11

(compare to
(

8
2

)
=28), α4 = 2(16−1)−4 = 26 (compare to

(
16
2

)
= 120). So α5 = 2(32−1)−5 =

57 (compare to
(

32
2

)
= 496) and α6 = 2(64− 1)− 6 = 120 (compare to

(
64
2

)
= 2016).

In the first n steps, as we eliminate precisely N/2 entries each time, this can be condensed

into exactly one reverse diagonal butterfly matrix: by changing the affiliated permutations

from the first n steps, we can let the large diagonal rotation matrix correspond to the zeroing
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out of the bottom half of the components of the first column, then the next block diagonal

component that zeros out the bottom of what remains in the first column and the bottom

quarter of the second column, and so on. Hence, we need at most 2(N − n) − 1 butterfly

matrices to generate a random element of SO(N) distributed according to the Haar measure.

Using this idea, we can outline Algorithm 6 to encapsulate this QR butterfly process:

Algorithm 6 Butterfly QR Algorithm

1: procedure ButterflyQR(A)
2: n = size(A)
3: Q = In
4: R = A
5: for j = 1 : n− 1 do
6:

[
Qj:,: Rj:,:

]
= Pσ

[
Qj:,: Rj:,:

]
for σ ∈ PN−j+1 such that each leading column has

all zero entries moved to the bottom, that is, (PσR)ik = 0 and (PσR)i−1,k−1 6= 0 implies
(PσR)`k = 0 for ` ≥ i

7:
[
Qj:,: Rj:,:

]
= (
⊕d

i=j B(θi)⊕Ij′i)
[
Qj:,: Rj:,:

]
for B(θi) ∈ Djiji/2 that zeros out half

of the nonzero terms below the diagonal of each leading column; that is, for d = max{j :

RN−1:N,:j−1 = 0} and n− j + 1 =
∑d

i=1 ji + j′i where B(θi)Rj:,i =
∑b(n−j)/2c

k=0 |rk|ej+2k

8: Q = QT

9: return [Q,R]

Let DbN/2c(N) = DN/2(N) if 2 | N and DbN/2c(N) = D(N−1)/2(N−1)⊕1 if 2 - N . Combining

the above results and observations leads to:

Theorem 5.2 (Butterfly QR Algorithm).

SO(N) =

2(N−1)−n∏
j=1

PσjDbN/2c(N)Pσ−1
j τj

(5.23)

for σj, τj ∈ SN .

Future work can explore how the Butterfly QR algorithm, which is a compression of the

Givens QR algorithm, compares against the Householder reflection method to generate

Haar(O(N)).
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In particular, it would be interesting to explore how this algorithm can be used to approx-

imate Haar orthogonal matrices by sampling B(θ) ∼ Haar(DbN/2c(N)), and how far away

smaller products of butterfly factors are from Haar orthogonal.

5.2.4 Hierarchy of randomness

Now we can relate Bs(N,Σ) to B(N,Σ) to Haar(SO(N)) for Σ = ΣS and Σ = ΣD. Note this

hierarchy is natural in light of the fact the angle derived from applying a Givens rotation

to a Gaussian vector is necessarily uniform. This can be established using only elementary

calculus. Alternatively, this follows since for G ∼ Ginibre(2) then G = QR for R upper

triangular with positive diagonal, has Q = R(θ)(1⊕ sgn(g22)) ∼ Haar(O(2)) so that R(θ) ∼

Haar(SO(2)) and hence θ ∼ Uniform([0, 2π)). This shows each Givens matrix transformation

projects to the 2×2 case, such that necessarily the induced angle is Uniform([0, 2π)) at each

stage. Hence, each angle that arises in the butterfly QR algorithm applied to a Ginibre

matrix must also necessarily be uniform.

Using Section 2.1.6, we see B ∼ Bs(N,ΣS) is sampled using n uniform angles, B ∼ B(N,ΣS)

is sampled using N − 1 uniform angles, B ∼ Bs(N,ΣD) is sampled using N − 1 uniform

angles, B(N,ΣD) is sampled using 1
2
Nn uniform angles, and Haar(SO(N)) and Haar(O(n))

are sampled using
(
N
2

)
uniform angles.

A simple consideration of the number of uniform angles needed to generate each model indi-

cates the butterfly models are far from Haar(O(N)) by themselves. Appendix D explores one

particular property relating to the signs of the components of each column that distinguishes

butterfly matrices from Haar orthogonal matrices.
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5.3 Growth factors of random butterfly matrices

This section will present a novel result that gives the full distribution of the growth factor

of Haar-butterfly matrices. Standard results in the literature relating to growth factors of

random matrices are limited to first moment estimates. The recursive structure of Haar-

butterfly matrices enables us to go beyond this limited scope.

This section will be structured to explore the impact on the growth factor of preconditioning

the linear system Ax = b using random butterfly matrices. Two basic models will be focused

on in the following document.

First, we will consider the näıve model where A = I. This is given its name since this

linear system has the obvious solution x = b. In essence, this model will allow us to study

how much we can mess things up using butterfly matrices. This will contain our significant

results relating to the full distribution of the growth factors of Haar-butterfly matrices. The

second model will be the worst-case model where ρ(A) = 2N−1 maximizes the max-norm

growth factor. This will enable us to study the potential dampening impacts on the growth

factors using random butterfly matrices.

Other motivating goals that will be touched on in this section include exploring whether

removing pivoting is a good idea to begin with. Parker’s focus was on reducing computational

complexity at the potential cost of numerical accuracy, so we want to explore how this cost-

benefit analysis can play out with regard to precision.

A final motivating goal is to explore whether butterfly matrices could potentially be used

to upgrade accuracy between pivoting strategies. This particular question can be revisited

at a future point when more pivoting strategies are explored. Our initial focus limits our

consideration to only GENP, GEPP, GERP and GECP.
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5.3.1 Background

The growth factor of a matrix A is determined by the computed LU factorization PAQ = LU

using the corresponding pivoting scheme. We will focus on two particular growth factor

definitions in this document. See [4] for an overview on other common definitions found

in the literature, along with some explicit properties and relationships comparing different

definitions.

The first growth factor we will visit is related to the max-norm of the associated factors

encountered during GE, given by

ρ(A) :=
‖L‖max ·max

k
‖A(k)‖max

‖A‖max

. (5.24)

This is the classical definition first used by Wilkinson in the 1960s in his error analysis on

the backward stability of GEPP (note necessarily ‖L‖max = 1 using GEPP) [39, 40]. Our

experiments in the last section will focus on the growth factor derived from the `∞-induced

matrix norm:

ρ∞(A) :=
‖L‖∞‖U‖∞
‖A‖∞

. (5.25)

The growth factor is an important component in controlling the relative error in a computed

solution to a linear system using floating-point arithmetic. If PAQ = LU is the computed

LU factorization used to compute the approximate solution x̂ to the linear system Ax = b

for nonsingular A ∈ RN×N , then (cf. [39])

‖x− x̂‖∞
‖x‖∞

≤ 4N2εκ∞(A)ρ(A) (5.26)
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for ε = εmachine and

κ∞(A) = ‖A‖∞‖A−1‖∞ (5.27)

is the `∞-induced condition number and (cf. [16, Section 9.7])

‖x− x̂‖∞
‖x‖∞

≤ γ3Nκ∞(A)ρ∞(A) (5.28)

where γM =
Mε

1−Mε
.

This section will focus on the impact of the growth factor through orthogonal transforma-

tions as a means of controlling the relative error. Even through κ∞ is not invariant un-

der orthogonal transformations, the impact is relatively moderate. In particular, although

the worst-case bounds inherent from the matrix norm inequalities ‖A‖∞ ≤
√
N‖A‖2 yield

κ∞(A) ≤ Nκ2(A) = N , butterfly matrices have growth factors far from this worst case

behavior. Even though we always have κ∞(B) ≤ Nκ2(B) = N , in the next section we will

see Eκ∞(B) ≈ N0.710719.

Previous results on growth factors of random matrices

Interest in growth factors of random matrices dates back to Wilkinson’s original work es-

tablishing the backward stability of GEPP, which established maximal exponential growth

factors of order 2N−1 that could lead to a loss of N − 1 bits of precision [39]. Early focus

was on the worst-case behavior of growth factors, which led to very pessimistic views of pre-

cision using LU factorizations. In [36], Trefethen and Schreiber shifted the view away from

the worst-case model to introduce average-case analysis of the stability of GE. They were

interested why GEPP was successful in practice, with much higher precision than would be

expected from the worst-case scenario. To accomplish this, they carried out experiments to
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compute the growth factors of a variety of random matrices.

Through statistical arguments and numerical experiments, they showed that the average

growth factor ρ using GEPP was no larger than O(N) for various random matrices with iid

entries. Limiting their experiments to matrices of order at most 210, they showed ρ using

GEPP is approximately N2/3 while ρ using GECP was approximately N1/2 for ensembles

with iid entries. They do conjecture further the growth factor should be asymptotically

O(N1/2) for both GEPP and GECP. Additionally, they observe in the iid case that only a

few intermediate steps of GE were needed until the remaining entries exhibited approximately

normal behavior. Hence, the Ginibre ensemble was a good stand-in for an approximately

universal growth factor model for iid matrices.

In the same paper, Trefethern and Schreiber also experimented with Haar orthogonal ma-

trices and observed the average growth factors were significantly larger than the iid models.

This was not too surprising since orthogonal scaled Hadamard matrices have growth fac-

tors that are near the largest recorded using GECP [5, 13]. In [18], Higham, Higham and

Pranesh establish ρ(A) & N
4 logN

for A ∼ Haar(O(N)). Hence, they show asymptotically a

lower bound growing at a higher rate than the iid ensemble growth factors.

One common note among these preceding works on random growth factors is analysis is

limited to computing specific statistics or bounds relating to the growth factors, which

only give a small glimpse at the distribution of random growth factors. Haar-butterfly

matrices enable us to go beyond these prior limitations. We are able to pull back the curtain

completely and see the full distribution of the growth factors of Haar-butterfly matrices.
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5.3.2 Growth factors of Haar-butterfly matrices (Näıve model)

The näıve model enables us to study the growth factors of the random butterfly matrices

directly. This section will focus explicitly on the growth factors of Haar-butterfly matrices,

for which we are able to give the full distribution.

Computations using simple scalar butterfly or Haar-butterfly matrices are made significantly

more tractable by combining (2.12) along with Lemmas 1.6 and 1.7. Section 5.3.4 will contain

the proofs of the outstanding technical details. The resulting main statements regarding the

full distribution of growth factors of Haar-butterfly matrices will be given here:

Theorem 5.3. (I) Let B = B(θ) ∈ Bs(N). Then B has an LU factorization using GENP

iff cos θj 6= 0 for all j. Moreover, using GENP then

ρ(B) =
n∏
j=1

(1 + tan2 θj) (5.29)

ρ∞(B) =
n∏
j=1

(1 + max(| tan θj|, tan2 θj)), (5.30)

with 1 ≤ ρ(B) ≤ ρ∞(B) while 1 = ρ(B) = ρ∞(B) iff cos θj = 0 for all j, N ≤ ρ(B) = ρ∞(B)

iff | tan θj| ≥ 1 for all j, and strict inequalities hold otherwise.

Using GEPP or GERP, then

ρ(B) =
n∏
j=1

(1 + min(tan2 θj, cot2 θj)) (5.31)

ρ∞(B) =
n∏
j=1

(1 + min(| tan θj|, | cot θj|)), (5.32)

with 1 ≤ ρ(B) ≤ ρ∞(B) ≤ N with 1 = ρ(B) = ρ∞(B) iff cos θj = 0 or sin θj = 0 for all j,

ρ(B) = ρ∞(B) = N iff | tan θj| = 1 for all j, and strict inequalities hold otherwise.

(II) Let B ∼ Bs(N,ΣS) and Xj iid Cauchy(1). Then B has an LU factorization using GENP
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almost surely, with

ρ(B) ∼
n∏
j=1

(1 +X2
j )

ρ∞(B) ∼
n∏
j=1

(1 + max(|Xj|, X2
j )),

with 1 ≤ ρ(B) ≤ ρ∞(B).

Using GEPP or GERP, B almost surely has unique factors with PB = LU and

ρ(B) ∼
n∏
j=1

(1 +X2
j | |Xj| ≤ 1)

ρ∞(B) ∼
n∏
j=1

(1 + |Xj| | |Xj| ≤ 1)

with 1 ≤ ρ(B) ≤ ρ∞(B) ≤ N . Moreover, P(P = I) = 1
N

.

Using GENP, then ρ(B) and ρ∞(B) have no finite moments of any orders k ≥ 1 since the

absolute Cauchy has no finite moments of these sizes. However, since ρ(B) and ρ∞(B) are

bounded when using pivoting, then we can calculate the average growth factors exactly rather

than being restricted to first moment estimates, as has been the case in previous results with

random growth factors:

Corollary 5.2. Let B ∼ Bs(N,ΣS). Using GEPP or GERP, then

Eρ(B) =

(
4

π

)n
= Nα

Eρ∞(B) =

(
1 +

log 4

π

)n
= Nβ

for α = log2( 4
π
) ≈ 0.34850387 and β = log2(1 + log 4

π
) ≈ 0.52734183.

Remark 5.2. We can now relate directly the growth factors of Haar-butterfly matrices to the

growth factors of other random ensembles of matrices studied in [18, 36]. Using only GEPP,
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Theorem 5.3 and Corollary 5.2 show ρ(B) is sublinear and Eρ(B) ≈ N0.34850387. Of note, this

is smaller than the first moment estimates of growth factors of iid ensembles using both GEPP

and even GECP: Trefethen and Schreiber showed these were, respectively, about N2/3 using

GEPP and N1/2 using GECP. This supports the underlying motivating question as to whether

accuracy using different pivoting schemes can be upgraded by using butterfly preconditioning.

Future work will consider the GECP factorization of simple butterfly matrices.

Section 5.3.4 will include the technical details needed to prove the above results relating to

Haar-butterfly matrices. Many of the small technical steps are straightforward and follow

from standard results relating the uniform distribution to the Cauchy and Arcsine distri-

butions. Heavier technical machinery is used to establish the GENP, GEPP and GERP

factorizations of B ∼ Bs(N,ΣS) satisfy

max
k
‖B(k)‖max = ‖U‖max (5.33)

(see Proposition 5.6). The methods used in these steps currently do not generalize to other

Haar-butterfly models initiated with SO(m) for m > 2.

Although |X| has no finite moments of size k ≥ 1 for X ∼ Cauchy(1), log(1 +X2) has finite

moments of any order; in particular, E log(1+X2) = log 4 and E log(1+X2)2 = π2

3
+(log 4)2

so that Var log(1 + X2) = π2

3
. Since log ρ(B) (and log ρ∞(B)) are then sums of iid terms,

each of which is dominated by 1 + log(1 + X2), then a simple consequence of the central

limit theorem is:

Corollary 5.3. Let B ∼ Bs(N,ΣS), X ∼ Cauchy(1) and Z ∼ N(0, 1). Using GENP,

GEPP, or GERP, then for any t ∈ R

lim
n→∞

P
(

log ρ(B)− nµ√
nσ

≤ t

)
= P(Z ≤ t) (5.34)

154



where µ = E log(1 + X2) = log 4, σ2 = Var log(1 + X2) = π2

3
when using GENP and

µ = E log(1 +X2 | |X| ≤ 1), σ2 = Var log(1 +X2 | |X| ≤ 1) when using GEPP or GERP.

One application of this is that if a distribution is skewed then the average value is a skewed

approximation of typical behavior one might encounter. The median, Mn, would perhaps

be more desirable statistic to gauge behavior of ρ(B). Since for n sufficiently large, then by

Corollary 5.3 we have

1

2
= P(ρ(B) ≤Mn) = P

(
log ρ(B)− nµ√

nσ
≤ logMn − nµ√

nσ

)
≈ P

(
Z ≤ logMn − nµ√

nσ

)
,

(5.35)

so that logMn ≈ nµ and hence

Mn ≈ Nµ/ log 2. (5.36)

Using GENP, then µ = log 4 = 2 log 2 and so the median ρ(B) is asymptotically N2, while

the average is not even finite. Using pivoting, we have E(1 +X2 | |X| ≤ 1) = µ = log 4− 4G
π

,

using Catalan’s constant

G =
∑
n≥0

(−1)n

(2n+ 1)2
≈ 0.91596559. (5.37)

This yields Mn is asymptotic with N2− 4G
π log 2 ≈ N0.31746612, which is not too far off from

Eρ(B) ≈ N0.34850387. Similarly, Corollary 5.3 can be used to find asymptotic quantiles for

ρ(B) (and ρ∞(B)).

Additionally, explicit results relating to κ∞(B) can be computed for B ∈ Bs(N) and B ∼

Bs(N,ΣS):
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Proposition 5.3. (I) Let B = B(θ) ∈ Bs(N). Then

κ∞(B) =
n∏
j=1

(1 + | sin(2θj)|) (5.38)

with 1 ≤ κ∞(B) ≤ N , where 1 = κ∞(B) iff sin θj = 0 or cos θj = 0 for all j, κ∞(B) = N iff

| tan θj| = 1 for all j, and strict inequalities otherwise.

(II) Let B ∼ Bs(N,ΣS) and Yj iid Arcsine(0, 1). Then

κ∞(B) ∼
n∏
j=1

(1 +
√
Yj) (5.39)

with 1 ≤ κ∞(B) ≤ N .

Similarly, explicit average condition numbers as well as the average product of the condition

number and growth factor when using GEPP or GERP (since κ∞ ≥ 1 this product is still

not integrable in the GENP case), as found in (5.24) and (5.25), can be computed:

Corollary 5.4. Let B ∼ Bs(N,ΣS). Then

Eκ∞(B) =

(
1 +

2

π

)n
= Nγ (5.40)

for γ = log2(1 + 2
π
) ≈ 0.71071919. Using GEPP or GERP, then

Eκ∞(B)ρ(B) =

(
4

π
(1 + log 2)

)n
= N1+ζ (5.41)

Eκ∞(B)ρ∞(B) =

(
2 +

log 4

π

)n
= N1+ξ (5.42)

for ζ = log2( 2
π
(1 + log 2)) ≈ 0.10821126 and ξ = log2(1 + log 2

π
) ≈ 0.28763257.

Note since 1 ≤ ρ(B) ≤ ρ∞(B) ≤ N for B ∈ Bs(N) by Theorem 5.3, then (5.25) provides a

156



Floating-point format Precision (bit) 4N3+ζε 3N2+ξε

half precision 11 2n(3+ζ)−9 2n(2+ξ)+log2 3−11

single precision 24 2n(3+ζ)−22 2n(2+ξ)+log2 3−24

double precision 53 2n(3+ζ)−51 2n(2+ξ)+log2 3−53

quad precision 113 2n(3+ζ)−111 2n(2+ξ)+log2 3−113

Table 5.4: Average upper bounds (from (5.25) and (5.24)) on the `∞-relative error of the
computed solution using the GEPP LU factorization of Ω ∼ Bs(N,Σs) to solve the linear
system Ωx = b

sharper bound for the relative error in the näıve model than (5.24):

4N2εκ∞(B)ρ(B)

γ3Nκ∞(B)ρ∞(B)
&

4N2εκ∞(B)ρ(B)

3Nεκ∞(B)ρ∞(B)
=

4

3

Nρ(B)

ρ∞(B)
≥ 4

3
. (5.43)

By computing the expected values of the right-hand bounds in (5.25) and (5.24), Table 5.4

gives a reference using different floating-point formats for the worst-case `∞-relative error

in using GEPP (or GERP) to compute a solution to the linear system Ωx = b for Ω ∼

Bs(N,ΣS). In particular, the last two columns of Table 5.4 give an upper bound for the

`∞-relative error of the computed solution x̂.

For example, if one wanted to ensure the `∞-relative error 10-bit average accuracy in the

näıve model, then this would be unattainable using half precision, while using single precision

one needs n(2 + ξ) + log2 3 − 24 < −10 and so n < 14−log2 3
2+ξ

≈ 5.42702427. Using double

precision, one needs n < 43−log2 3
2+ξ

≈ 18.10388521 and using quad precision one needs n <

103−log2 3
2+ξ

≈ 44.33187336. In particular, if ‖x‖∞ = 1, then each component in the computed

solution x̂ maintains an average of at least 10-bits of accuracy for an order 218 = 262, 144

order butterfly matrix using double precision and an order 244 ≈ 1.7592·1013 butterfly matrix

using quad precision.

Although the intermediate GE matrices B(k) do not have convenient Kronecker product

factorizations, they can be derived directly from B and L which do have these factorizations

(see Lemma 5.2). In particular, the symmetry from the start partially carries through each
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intermediate GE step, which results in the GEPP factorization then aligning exactly with

the GERP factorization (see Proposition 5.5). However, this does not go through to the

GECP factorization, as the following example illustrates:

For B(θ1, θ2) ∈ Bs(4), using GENP we have

B = B(1) =



cos θ2 cos θ1 cos θ2 sin θ1 sin θ2 cos θ1 sin θ2 sin θ1

− cos θ2 sin θ1 cos θ2 cos θ1 − sin θ2 sin θ1 sin θ2 cos θ1

− sin θ2 cos θ1 − sin θ2 sin θ1 cos θ2 cos θ1 cos θ2 sin θ1

sin θ2 sin θ1 − sin θ2 cos θ1 − cos θ2 sin θ1 cos θ2 cos θ1



B(2) =



cos θ2 cos θ1 cos θ2 sin θ1 sin θ2 cos θ1 sin θ2 sin θ1

cos θ2 sec θ1 sin θ2 sec θ1

sec θ2 cos θ1 sec θ2 sin θ1

− sin θ2 sec θ1 − sec θ2 sin θ1 sec θ2 sec θ1(cos2 θ1 − sin2 θ2)



B(3) =



cos θ2 cos θ1 cos θ2 sin θ1 sin θ2 cos θ1 sin θ2 sin θ1

cos θ2 sec θ1 sin θ2 sec θ1

sec θ2 cos θ1 sec θ2 sin θ1

− sec θ2 sin θ1 sec θ2 cos θ1



U = B(4) =



cos θ2 cos θ1 cos θ2 sin θ1 sin θ2 cos θ1 sin θ2 sin θ1

cos θ2 sec θ1 sin θ2 sec θ1

sec θ2 cos θ1 sec θ2 sin θ1

sec θ2 sec θ1


(using Lemma 5.2). If | tan θ1|, | tan θ2| < 1 then no pivoting would be needed using GEPP,

so that the above intermediate GE steps would coincide for both the GENP and GEPP

methods. Furthermore, the symmetry in the lower blocks, and in particular in the lower

leading column and row, yield GERP also coincides with these other methods. However,
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this does not hold for GECP. If | cos θ1| > | cos θ2| then

|B(2)
33 | = | cos θ1 sec θ2| = | sec θ1 sec θ2| cos2 θ1 > | sec θ1 sec θ2| cos2 θ2 = |B(2)

22 |

and since | tan θ1|, | tan θ2| < 1 yields sin2 θ2 < cos2 θ1 then also

|B(2)
33 | = | sec θ1 sec θ2| cos2 θ1 ≥ | sec θ1 sec θ2|(cos2 θ1 − sin2 θ2) = |B(2)

44 |.

In this case, GECP would require an additional set of row and column pivots in the second

GE step using P(2 3). Since P = P(2 3) ∈ P4 is a perfect shuffle matrix, we see PB(θ1, θ2)P T =

B(θ2, θ1), whose resulting GENP factorization is also its GECP factorization. Future work

will explore the GECP factorization of butterfly matrices further.

Also, while (5.33) holds using any pivoting scheme explored here so that the max-norm

of the final GE step maximizes the intermediate max-norms, empirical results suggest the

max-norm increases weakly with each intermediate step in the pivoting cases. This suggests:

Conjecture 4. Let B ∈ Bs(N). Using pivoting, then ‖B(k)‖max ≤ ‖B(k+1)‖max for all

1 ≤ k < N .

This was not needed to yield our desired results, so this was not explored further in this

document.

Using GENP this monotonicity does not hold. Just to quickly illustrate this point, we can

return to the previous example: for B(θ1, θ2) ∈ Bs(4) from before, with GENP then

‖B(1)‖max = max(| cos θ1|, | sin θ1|) max(| cos θ2|, | sin θ2|)

|B(2)‖max = | sec θ1 sec θ2|max(cos2 θ1, | cos θ1 sin θ1|, cos2 θ2, | cos θ2 sin θ2|, | cos2 θ1 − sin2 θ2|)

‖B(3)‖max = | sec θ1 sec θ2|max(cos2 θ1, | cos θ1 sin θ1|, cos2 θ2, | cos θ2 sin θ2|)
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‖B(4)‖max = | sec θ1 sec θ2|,

so that

‖B(1)‖max ≤ ‖B(3)‖max ≤ ‖B(2)‖max ≤ ‖B(4)‖max.

If θj = π
6

for each j, then ‖B(1)‖max = 3
4
, ‖B(2)‖max = 2, ‖B(3)‖max =

√
3 and ‖B(4)‖max = 4,

so that ‖B(2)‖max > ‖B(3)‖max, showing monotonicity fails in the GENP case. If | tan θj| ≤ 1

for each j, then as before these are also the intermediate GE steps using GEPP. It follows

then necessarily cos2 θ1 ≥ sin2 θ2, so that | cos2 θ1 − sin2 θ2| = cos2 θ1 − sin2 θ2 ≤ cos2 θ1 and

hence ‖B(2)‖max = ‖B(3)‖max.

Figure 5.1: ρ using GENP on B = B(θ1, θ2) ∈ Bs(2).

Figures 5.1 and 5.2 show maps of ρ(B) and ρ∞(B) using GENP for B = B(θ1, θ2) ∈ Bs(2).

Note the singularity lines for the model accounting for when θi = π ± π
2

for some i, which

coincide with the case when B11 = cos θ1 cos θ2 = 0 and GENP factorization fails on the

first step. Figures 5.3 and 5.4 show maps of ρ(B) and ρ∞(B) using GEPP or GERP for
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Figure 5.2: ρ∞ using GENP on B = B(θ1, θ2) ∈ Bs(2).

Figure 5.3: ρ using pivoting on B = B(θ1, θ2) ∈ Bs(2).
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Figure 5.4: ρ∞ using pivoting on B = B(θ1, θ2) ∈ Bs(2).

B = B(θ1, θ2) ∈ Bs(2). The relationship 1 ≤ ρ(B) ≤ ρ∞(B) can easily be viewed for this

case, as Figure 5.1 fits inside Figure 5.2 and Figure 5.3 fits inside Figure 5.4.

From Theorem 5.3, then each of the peaks in Figures 5.3 and 5.4 occur precisely at the

scaled Hadamard matrices, B(θ) ∈ Bs(N) for θ ∈ (π
4

+ π
2
Z)n so that

√
NB(θ) ∈ {±1}n

with orthogonal rows and columns. As such, butterfly models can be used as a continuous

approximation of Hadamard matrices to derive other desirable properties. This will be

further explored in future work.

5.3.3 Worst-case model

This section will look at a specific application of butterfly matrices to decrease the growth

factor in the worst-case model.
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Wilkinson proved the backward stability of GEPP by showing ρ(A) ≤ 2N−1 for any non-

singular A ∈ RN×N (cf. [39, 40]). In [39, pg. 202], Wilkinson further shows this bound on

worst case growth factor is sharp, using the following example:

AN = IN −
∑
i>j

Eij +
N−1∑
i=1

EiN . (5.44)

By construction, GEPP would carry out without using any pivoting, so that the LU factor-

izations coincide for the GENP and GEPP pivoting schemes, where

L = IN −
∑
i>j

Eij and U = IN − ENN +
N∑
i=1

2i−1EiN . (5.45)

It follows ρ(A) = |UNN | = 2N−1. For example,

A4 =



1 1

−1 1 1

−1 −1 1 1

−1 −1 −1 1


=



1

−1 1

−1 −1 1

−1 −1 −1 1





1 1

1 2

1 4

8


has ρ(A4) = 23 = 8.

It happens that also ρ∞(AN) = 2N−1, although this is not the upper bound using the

induced `∞-induced growth factor. Note GECP or any column pivoting scheme would result

in PAQ = LU for P = I and Q = P(2 N)(3 N)···(N−1 N) = P(2 N N−1 ··· 3), where ρ(A) = 2

(and ρ∞(A) = 3 for N ≥ 3 with ρ∞(A) = 2 when N = 2). For example,

A4P(2 4 3) =



1 1

−1 1 1

−1 1 −1 1

−1 1 −1 −1


=



1

−1 1

−1 1 1

−1 1 1 1





1 1

2 1

−2 1

−2


.
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Moreover, a lower bound on κ2(AN) can be computed. We have

ANA
T
N = −ENN +

N∑
k=1

(k + 1)Ekk +
∑
i>j

(j − 1)(Eij + Eji). (5.46)

Using the same example, we see

A4A
T
4 =



2

3 1 1

1 4 2

1 2 4


. (5.47)

Let σ1 ≥ σ2 ≥ · · · ≥ σN denote the singular values of AN . Hence, σ2
k are the eigenvalues of

ANA
T
N .

We can give an explicit quadratic form of xTANA
T
Nx. This follows again from straightforward

induction:

Lemma 5.1. For any x ∈ R,

xT
(
ANA

T
N − 2IN

)
x =

N−2∑
j=1

(
N∑

k=N−j

xk

)2

. (5.48)

Proof. We will use induction on N . For N = 2, we have A2A
T
2 = 2I2 so the result holds

trivially. For N = 3, then

A3A
T
3 − 2I2 =


0

1 1

1 1

 (5.49)

so that xT (A3A
T
3 − 2I3)x = (x2 + x3)2.
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Now assume the result holds for N . Note

AN+1A
T
N+1 − 2IN+1 =

ANATN − 2IN + ENN v

vT N − 1

 (5.50)

for

v =
N∑
j=2

(j − 1)ej. (5.51)

For x = (x′, xN+1) ∈ RN+1, then

xT (AN+1A
T
N+1 − 2IN+1)x

= x′
T

(ANA
T
N − 2IN)x′ + x2

N + 2xN+1v
Tx′ + (N − 1)x2

N+1

=
N−2∑
j=1

(
N∑

k=N−j

xk

)2

+ x2
N + 2xN+1

N∑
j=2

(j − 1)xj + (N − 1)x2
N+1

=
N−2∑
j=0

x2
N+1 +

(
N∑

k=N−j

xk

)2
+ 2xN+1

N∑
j=2

(j − 1)xj

=
N−2∑
j=0

(
xN+1 +

N∑
k=N−j

xk

)2

+ 2xN+1

(
N∑
j=2

(j − 1)xj −
N−2∑
j=0

N∑
k=N−j

xk

)

=
N−1∑
j=1

(
N+1∑

k=N+1−j

xk

)2

using the inductive hypothesis for the second line along with the fact

N−2∑
j=0

N∑
k=N−j

xk =
N∑
k=2

N−2∑
j=N−k

xk =
N∑
k=2

((N − 2)− (N − k) + 1)xk =
N∑
j=2

(j − 1)xj.
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Corollary 5.5. For any x ∈ RN ,

xTANA
T
Nx =

N−2∑
j=1

(
N∑

k=N−j

xk

)2

+ 2‖x‖2
2. (5.52)

In particular, the eigenvalues of ANA
T
N are bounded below by 2: if x is a unit eigenvector

for σ2
k, then

σ2
k = xTANA

T
Nx =

N−2∑
j=1

(
N∑

k=N−j

xk

)2

+ 2‖x‖2
2 ≥ 2.

Since e1 and eN−1− eN are eigenvectors for ANA
T
N with associated eigenvalue 2, then σ2

N =

σ2
N−1 = 2. Since also

σ2
1 ≥

1

N
1TNANA

T
N1N =

1

N

(
N−2∑
j=1

(j + 1)2 + 2N

)
=
N2

3
− N

2
+

13

6
− 1

N
,

it follows

κ2(AN) =
σ1

σN
≥
√
N2

6
− N

4
+

13

12
− 1

2N
=

N√
6

(1 + o(1)). (5.53)

Also using (5.52), if ‖x‖2 = 1 is such that xTANA
T
Nx = σ2

1 then

σ2
1 = xTANA

T
Nx ≤

N−2∑
j=1

(
(j + 1)

N∑
k=N−j

x2
k

)
+ 2‖x‖2

2 ≤ 1 +
N−1∑
j=1

j =
N2

2
− N

2
+ 1

using the Cauchy-Schwarz inequality. Similarly, it follows

κ2(AN) ≤
√
N2

4
− N

4
+

1

2
=
N

2
(1 + o(1)). (5.54)

Figure 5.5 shows how these lower and upper bounds compares against the computed value

of κ2(AN).
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Figure 5.5: κ2(AN) versus the bounds in (5.53) and (5.54)

Higham and Higham show that any square matrix A ∈ RN×N with worst case growth factor

ρ(A) = 2N−1 can be classified as follows:

Theorem 5.4 ([17]). Let A ∈ RN×N . Then ρ(A) = 2N−1 using GEPP if and only if

A = DEF for F =

 G

0T
θv

 (5.55)

where D = diag(±1), E is unit lower triangular with Eij = −1 for i > j, G is an upper

triangular nonsingular matrix of order N − 1, v ∈ RN−1 with vi = 2i−1, and θ = |A1n| =

‖A‖max.

For example, AN is constructed with D = IN , G = IN−1 and θ = 1. Note A = LU using

GENP or GEPP holds for L = DED and U = DF .

This model can be used to construct matrices with maximal growth factors (with respect to

167



GEPP) and arbitrarily large 2-condition numbers. Recently, Higham, Higham and Pranesh

studied a particular model with relatively large (viz., linear) growth factors and a parameter

that controls the 2-condition number [18]. This construction relies multiplying a diagonal

matrix IN−1 ⊕ θ on the left and right by two independent Haar(O(N)) matrices. We will

explore two separate new constructions, which can then be used for form random ensembles

with maximal growth factors and arbitrarily large 2-condition numbers.

First model: AN(X)

First, we can consider the case when randomness is introduced only in the θ parameter in

Theorem 5.4. Note ANENNA
T
N = 1N1TN . Hence, taking the model AN(θ) as in Theorem 5.4

with D = IN , G = IN−1 and θ ≥ 1, we have AN(θ) = AN(IN−1 ⊕ θ). Since

(IN−1 ⊕ θ)(IN−1 ⊕ θ)T = IN + (θ2 − 1)ENN ,

then

AN(θ)AN(θ)T = ANA
T
N + (θ2 − 1)1N1TN . (5.56)

Using (5.52), we have for any x ∈ RN

xTAN(θ)AN(θ)Tx =
N−2∑
j=1

(
N∑

k=N−j

xk

)2

+ 2‖x‖2
2 + (θ2 − 1)

(
N∑
j=1

xj

)2

. (5.57)

Now for σk(θ) the singular values of AN(θ), we similarly have σk(θ)
2 ≥ 2 for all k using

(5.57) along with θ ≥ 1. Note for u = eN−1 − eN then AN(θ)AN(θ)Tu = ANA
T
Nu = 2u, so

that σN(θ)2 = 2. Also,

σ1(θ)2 ≥ 1

N
1TNAN(θ)AN(θ)T1N =

1

N
1TNANA

T
N1N + (θ2 − 1)

1

N
(1TN1N)2
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=
N2

3
+

(
θ2 − 3

2

)
N +

13

6
− 1

N

Hence,

κ2(AN(θ)) =
σ1(θ)

σN(θ)
≥
(
N

3
+ θ2

)1/2
√
N

2
(1 + o(1)). (5.58)

In particular, for ϕ ≥ 0 and θ = Nϕ then

κ2(AN(θ)) &


1√
6
N if ϕ < 1

2√
2
3
N if ϕ = 1

2

1√
2
Nϕ+ 1

2 if ϕ > 1
2
.

(5.59)

Now write AN(X) = AN(NX+ 1
2 ) for X a nonnegative random variable. For example, taking

X ∼ Bernoulli(p), then

Eκ2(AN(X)) &

√
2

3
N(1− p) +

1√
2
N3/2p =

p√
2
N3/2 +O(N). (5.60)

If X ∼ Poisson(λ), then

Eκ2(AN(X)) & e−λ
√

2

3
N + e−λ

√
N

2

∑
j≥1

(Nλ)j

j!
= e−λ

√
N

2
eNλ +O(N).

If X ∼ Uniform(0, 1), then

Eκ2(AN(X)) &

√
N

2
(N − 1) =

1√
2
N3/2 +O(

√
N). (5.61)

If X ∼ |Z| for Z ∼ N(0, 1), then

Eκ2(AN(X)) &

√
N

2
Ee(logN)|Z| =

√
N

2
N

1
2

logN

(
1 + erf

(
logN√

2

))
=
√

2eN
1
2

logN(1+o(1)).

(5.62)
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If X ∼ Z2 for Z ∼ N(0, 1) or X ∼ Cauchy(1), then κ2(AN(X)) does not have a finite mean.

Second model: AN(β)

This model will limit randomness in how G is generated in Theorem 5.4. Take A ∼

Ginibre(N −1) and X independent of A with independent entries such that Xk ∼ χk(β(N −

k + 1)). Let G = diag(X) +
∑

j>iAijEij. Let

θ =

∥∥∥∥∥∥∥E
G

0T


∥∥∥∥∥∥∥

max

. (5.63)

Now write AN(β) = EF for F = F (G, θ) formed as in Theorem 5.4.

As mentioned in [17], implementing AN(β) versus AN(X) using floating-point arithmetic

instead of exact arithmetic can encounter some unexpected snags in that running GEPP can

inadvertently trigger pivoting. This follows since the computed product EF may no longer

have leading entries of the same magnitude for each intermediate GE step. This can occur

for small N even. An early introduction of pivoting on these class of matrices can have a

significant reduction in the growth factor.

Example 5.6. Using the row pivot P(2 3) on A
(2)
5 results in ‖U‖max = 4 instead of 24.

Note this potential unexpected behavior results in using GEPP with floating-point arithmetic

instead of exact arithmetic with AN(β). This does not occur when using AN(X) since the

leading untriangularized columns are not impacted by any accumulated error from earlier

steps. For example, the unexpected behavior occurs as early as N = 4. Here is one sample
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point for A4(1) that illustrates this point:

W =



2.1249 −1.2820 0.9062 4.0689

−2.1249 4.0689 0.2786 4.0689

−2.129 −1.5050 −1.1367 4.0689

−2.1249 −1.5050 −3.0452 4.0689


. (5.64)

Then

W (3) =



2.1249 −1.2820 0.9062 4.0689

2.7870 1.1848 8.1379

0.9542 16.2758

−0.9542 16.2758


. (5.65)

Using double precision in MATLAB, we have |W43| − |W33| = 3.3307 · 10−16, so that running

LU in MATLAB results in a row pivot for the last two rows before the final step. With

exact arithmetic, W43 = −W33, so no final pivot is needed.

For a workaround to avoid unnecessary pivoting when running a built-in LU function, one

can introduce an additional perturbation in the E factor. With an ε perturbation, we can

replace E = IN −
∑

i>j Eij with Ẽ = IN − (1 − ε)
∑

i>j Eij. Through experiments, this

perturbation needs to grow with N , which makes this model highly unstable in the goal of

preserving the maximal growth factor property when using floating-point arithmetic. For

N = 5, ε = 10−12 suffices, but for N = 50, ε = 10−1. Again, this indicates why GEPP

is often successful in practice. Even with models that would have a large growth factor,

the accumulated computational errors compound to introduce a perturbation that shifts the

maximal growth model to an often moderate growth factor class.
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Example 5.7. Introducing a row pivot in step 2 using

A5 =



1 1

−1 1 1

−1 −1 1 1

−1 −1 −1 1 1

−1 −1 −1 −1 1


so that Ã

(2)
5 = P(2 3)A

(2)
5 =



1 1

−1 1 2

1 2

−1 −1 1 2

−1 −1 −1 2


results in the final

U =



1 1

−1 1 2

−2 1

−2

4


such that ‖U‖max = 4 instead of 24 = 16.

Numerical experiments

For the worst-case model, our goal is to understand how much of a dampening impact

preconditioning by butterfly matrices may have on the growth factor. We will study only

one-sided conditioning by looking at models of the form ΩAN for Ω a random orthogonal

transformation. For comparison, we will consider Ω ∼ Bs(N,Σ), Ω ∼ B(N,Σ) for Σ = ΣS

and Σ = ΣD, along with Ω ∼ Haar(O(N)) and Ω ∼ DCT, with the latter indicating a

(deterministic) implementation of the Discrete Cosine Transformation (DCT) II that is then

multiplied on the left by a diagonal matrix D with diag(D) ∼ Uniform({±1}N). For these

experiments, we will compute only ρ∞(ΩAN) using GENP, GEPP and GECP. Each set of

experiments consists of 104 trials for 2n for n = 2 to 8, with the explicit results given below

focused on the n = 8 case.
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Figure 5.6: log2(ρ∞(ΩAN)) using GENP for random orthogonal Ω and N = 28 = 256, using
104 trials.
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Figure 5.7: log2(ρ∞(ΩAN)) using GEPP for random orthogonal Ω and N = 28 = 256, using
104 trials.
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Figure 5.8: log2(ρ∞(ΩAN)) using GECP for random orthogonal Ω and N = 28 = 256, using
104 trials.

Recall ρ∞(AN) = 2N−1 so that log2(ρ∞(AN)) = N − 1. So using Figures 5.6 and 5.7,

with N − 1 = 28 − 1 = 255, each of the orthogonal models introduced have a significant

dampening affect. Using GENP, the DCT had less of a dampening impact compared to

the other models while using GEPP and GECP then DCT and Haar(O(N)) had similar

behavior. Note Figure 5.8 is closer to the näıve model in that ρ∞(AN) = 3 (for N ≥ 3), so

this case determines which random orthogonal transformations do the least damage. Also,

it is worth noting that overall each figure provides a visual cue for the median rather than

the mean of the logarithmic growth factors since we are mapping log2(ρ∞).

5.3.4 Proofs of theorems

Note first using (2.12) then we can find the GENP and GEPP factorizations of simple

butterfly matrices directly:
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Proposition 5.4. Let B = B(θ) ∈ Bs(N). If cos θi 6= 0 for all i, then B has GENP

factorization B = LθUθ for

Lθ =
n⊗
j=1

 1

− tan θn−j+1 1

 and Uθ =
n⊗
j=1

cos θn−j+1 sec θn−j+1

sec θn−j+1

 (5.66)

Moreover, for knkn−1 . . . k0 the binary representation of k where kj = 1[2j ,∞)(k (mod 2j+1)),

then

Ukk =
n∏
j=1

(cos θj)
(−1)(k−1)j−1

(5.67)

and

detB:k,:k =
k∏
j=1

Ujj =
n∏
j=1

(cos θj)
max(|k (mod 2j)|,|−k (mod 2j)|). (5.68)

Let θ′ be such that

θ′i =

 θi if | tan θi| ≤ 1

π
2
− θi if | tan θi| > 1.

(5.69)

The GEPP factorization of B is PB = LU where

P = Pθ =
n⊗
j=1

P
1(1,∞)(| tan θn−j+1|)
(1 2) and Dθ =

n⊗
j=1

(
(−1)1(1,∞)(| tan θn−j+1|) ⊕ 1

)
(5.70)

and L = Lθ′, U = Uθ′Dθ. Moreover, for B(θ′) ∈ Bs(N) then (PB)(k) = B(θ′)(k)D for all k.

Proof. First consider the GENP case. Note if cos θ 6= 0, then B(θ) ∈ SO(2) has an LU
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factorization with

B(θ) =

 1

− tan θ 1


cos θ sin θ

sec θ

 = LθUθ. (5.71)

The result then follows by Lemma 1.7 and (2.12). (5.67) follows directly form (5.66). Next,

write

L =

L11 0

L21 L22


for L11 ∈ Rk×k and detL11 = 1, so that

detB:k,:k = det

[Ik 0

]
LU

Ik

0


 = det

L11

[
Ik 0

]
U

Ik

0




= detU:k,:k =
k∏
j=1

Ujj.

The last equality in (5.68) follows directly from (5.67).

For the GEPP case: Let PB = LU be the GEPP factorization of B. Note first using GEPP

for B(θ) ∈ SO(2), then a row pivot is needed only if | tan θ| > 1. The format for P then

follows immediately from Lemma 1.7. Let ej = 1[| tan θj |>1]. Note

P(1 2) =

 1

1

 =

 1

−1


−1

1

 = B
(π

2

)
(−1⊕ 1).

so that

P
ej
(1 2) = B

(π
2
ej

)
((−1)ej ⊕ 1). (5.72)
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Note also

(−1⊕1)B(θ)(−1⊕1) =

−1

1


 cos θ sin θ

− sin θ cos θ


−1

1

 =

cos θ − sin θ

sin θ cos θ

 = B(−θ).

(5.73)

Using the mixed-product property (1.44) and (2.12), we have PB = B′D for D = Dθ

diagonal with diagonal entries in {±1} and B′ = B(θ′) ∈ Bs(N) with θ′ such that

θ′j =
π

2
ej + (−1)ejθj =

 θj if | tan θj| ≤ 1

π
2
− θj if | tan θj| > 1.

If B′ = L′U ′ is the GENP factorization of B′ then B′D = L′(U ′D) is the GENP factorization

of B′D. It follows

(PB)(k) = (B′D)(k) = (L′)(k)B′D = B′
(k)
D. (5.74)

The final factorization follows from the GENP case applied to B′.

Having this explicit LU factorization of B ∈ Bs(N) allows us to also construct each of the

intermediate matrices B(k) as well.

Lemma 5.2. Suppose A ∈ RN/2×N/2 has an LU factorization using GENP. Let

B =

 cos θA sin θA

− sin θA cos θA

 = B(θ)⊗ A
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for cos θ 6= 0. Then B has an LU factorization using GENP. Moreover, if k ≤ N/2, then

B(k) =


cos θA(k) sin θA(k)

− sin θ

0

IN/2−k+1

A(k) sec θ

A− sin2 θ

0

IN/2−k+1

A(k)


 . (5.75)

If k = N/2 + j for j ≥ 1, then

B(k) =

cos θA(N/2) sin θA(N/2)

sec θA(j)

 . (5.76)

Proof. Let A = L′U ′ be the GENP factorization of A. Note first

B(θ) =

 1

− tan θ 1


cos θ sin θ

sec θ

 = LθUθ. (5.77)

Then B has an LU factorization using GENP, and let B = LU where

L = Lθ ⊗ L′ =

 L′

− tan θL′ L′

 and U = Uθ ⊗ U ′ =

cos θU ′ sin θU ′

sec θU ′

 (5.78)

by Lemma 1.7. Recall

B(k) = LkB
(k−1) = LkLk−1 · · ·L1B =: L(k)B, (5.79)

where L(1) := I, L(N) = L−1, and for 1 ≤ k < N

Lk = I−
∑
i≥k

Li,k−1Ei,k−1.
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It follows

L(k)−1
= L−1

1 · · ·L−1
k = (I +

∑
i>1

Li1Ei1) · · · (I +
∑
i>k−1

Li,k−1Ei,k−1)

= I +
∑

i>j,k>j

LijEij

=

 L:,:k−1

0

IN−k+1

 . (5.80)

If k ≤ N/2, then by (5.78) we have

L(k)−1
=


L′:,:k−1

0

IN/2−k+1

− tan θL′:,:k−1 0 IN/2



=


L′(k)−1

− tan θL′(k)−1

Ik−1

0

 IN/2



=

L′(k)−1

L′(k)−1




IN/2

− tan θ

Ik−1

0

 IN/2


IN/2

L′(k)

 ,

and so

L(k) =

IN/2

L′(k)−1




IN/2

tan θ

Ik−1

0

 IN/2


L′(k)

L′(k)


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=


L′(k)

tan θL′(k)−1

Ik−1

0

L′(k) IN/2

 .

It follows

B(k) = L(k)B =

I

L′(k)−1




I

tan θ

Ik−1

0

 I


L′(k)

L′(k)

B

=

I

L′(k)−1




I

tan θ

Ik−1

0

 I


 cos θA(k) sin θA(k)

− sin θA(k) cos θA(k)



=

I

L′(k)−1




cos θA(k) sin θA(k)

sin θ


Ik−1

0

− I

A(k) sec θ

sin2 θ

Ik−1

0

+ cos2 θI

A(k)



=

I

L′(k)−1




cos θA(k) sin θA(k)

− sin θ

0

IN/2−k+1

A(k) sec θ

Ik−1

cos2 θIN/2−k+1

A(k)



=


cos θA(k) sin θA(k)

− sin θL′(k)−1

0

IN/2−k+1

A(k) sec θL′(k)−1

Ik−1

cos2 θIN/2−k+1

A(k)

 .
(5.81)

We can write

L′(k) =

L1

L2 IN/2−k+1

 =

L1

IN/2−k+1


Ik−1

L2 IN/2−k+1


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and so

L′(k)−1
=

 L−1
1

−L2L
−1
1 IN/2−k+1

 =

Ik−1

−L2 IN/2−k+1


L−1

1

IN/2−k+1

 .
First, we see

L′(k)−1

0

IN/2−k+1

 =

0

IN/2−k+1

 . (5.82)

Next, note

A(k) = L′(k)A =

L1

L2 I


A:k−1,:k−1 A:k−1,k:

Ak:,:k−1 Ak:,k:

 =

L1A:k−1,:k−1 L2A:k−1,k:

L2A:k−1,k: + Ak:,k:

 ,
where we further note

A
(k)
k:,:k−1 = L2A:k−1,:k−1 + Ak:,:k−1 = 0

since A(k) has zeros below the first k − 1 diagonals. It follows

L′(k)−1

I

cos2 θIN/2−k+1

A(k) =

 I

−L2 I


L−1

1

I


L1A:k−1,:k−1 L2A:k−1,k:

cos2 θA
(k)
k:,k:


=

 I

−L2 I


A:k−1,:k−1 A:k−1,k:

cos2 θA
(k)
k:,k:


=

 A:k−1,:k−1 A:k−1,k:

−L2A:k−1,:k−1 −L2A:k−1,k: + cos2 θA
(k)
k:,k:


=

A:k−1,:k−1 A:k−1,k:

Ak:,:k−1 Ak:,k: − sin2 θA
(k)
k:,k:



181



= A− sin2 θ

0

IN/2−k+1

A(k), (5.83)

using also −L2A:k−1,k: = Ak:,k: − A
(k)
k:,k:. Combining (5.81), (5.82) and (5.83) then yields

(5.75).

If k = N/2 + j for j ≥ 1, then again using (5.78) we have

L(k)−1
=


L′

− tan θL′ L′:,1:j−1

0

IN/2−j+1


=

 L′

− tan θL′ L′(j)
−1


=

 I

− tan θI I


L′

L′(j)
−1


so that

L(k) =

L′−1

L′(j)


 I

tan θI I

 =

 L′−1

tan θL′(j) L′(j)


and hence

B(k) = L(k)B =

L′−1

L′(j)


cos θA sin θA

sec θA

 =

cos θU ′ sin θU ′

sec θA(j)

 . (5.84)

(5.76) follows then by noting U ′ = A(N/2).

Recall |A| denotes the matrix with |A|ij = |Aij|. Note |A|T = |AT |.
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Proposition 5.5. Let B ∈ Bs(N) with PB = LU the factorization of B using GENP (with

P = I) or GEPP. Let η, ε ∈ R such that |η|, |ε|, |η − ε| ≤ 1. Then

|ηPB − ε(PB)(k)|k:,k: =

[
0 IN−k+1

] ∣∣ηPB − ε(PB)(k)
∣∣
 0

IN−k+1

 (5.85)

is symmetric. In particular, if PB = LU is the GEPP factorization of B, then this is also

the GERP factorization of B.

Note this depends on GERP prioritizing column pivot scans over row scans.

Proof. We can reduce to the case P = I: there exist diagonal D with diagonal entries in

{±1} and B′ ∈ Bs(N) such that PB = B′D and (PB)(k) = B′(k)D by Proposition 5.4, while

then

|ηPB − ε(PB)(k)| = |(ηB′ − εB′(k)
)D| = |ηB′ − εB′(k)|,

so the result for general P follows directly from the result for P = I.

Now note how the GEPP and GERP factorizations necessarily align: Since B = LU is the

GEPP factorization, then |B(k)
kk | ≥ |B

(k)
ik | for all i ≥ k. By (5.85) with η = 0 and ε = −1,

we have |B(k)|k:,k: is symmetric so that also |B(k)
kk | ≥ |B

(k)
ik | = |B(k)

ki | for all i ≥ k. It follows

then GERP would not yield any column swaps so that the GEPP and GERP factorizations

would align.

To prove (5.85), we will use induction on n. Note B = B(θ) satisfies

|B| =

| cos θ| | sin θ|

| sin θ| | cos θ|

 = |B(−θ)| = |B|T . (5.86)
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so that for B = B(1) we always have

|B| =

∣∣∣∣∣
n⊗
j=1

B(θn−j+1)

∣∣∣∣∣ =
n⊗
j=1

|B(θn−j+1)| =
n⊗
j=1

|B(θn−j+1)|T = |B|T . (5.87)

It suffices to consider only k ≥ 2. If n = 1, for k = 2 then |ηB− εB(2)|2:,2: = |η cos θ− ε sec θ|

is an order 1 matrix and so is trivially symmetric.

Now assume the result holds for Bs(N/2) and n ≥ 2, and let B = B(θ, A) ∈ Bs(N) with

A ∈ Bs(N/2), which also necessarily has an LU factorization using GENP. For k ≤ N/2,

then for I = IN/2−k+1 when not indicated otherwise, we have

[
0 IN−k+1

] ∣∣ηB − εB(k)
∣∣
 0

IN−k+1



=


| cos θ|

[
0 I

] ∣∣ηA− εA(k)
∣∣
0

I

 | sin θ|
[
0 I

] ∣∣ηA− εA(k)
∣∣

| sin θ|

∣∣∣∣∣∣∣ηA− ε
0

I

A(k)

∣∣∣∣∣∣∣
0

I

 | sec θ|

∣∣∣∣∣∣∣(ε− η cos2 θ)A− ε sin2 θ

0

I

A(k)

∣∣∣∣∣∣∣


using Lemma 5.2. For η′ = ε − η cos2 θ and ε′ = sin2 θε, then |ε′| = sin2 θ|ε| ≤ 1, |η′| =

|η cos2 θ − ε| ≤ 1 (since if η > 0 then −1 ≤ −ε ≤ η cos2−ε ≤ η − ε ≤ 1 and similarly if

η ≤ 0), while also |η′ − ε′| = cos2 θ|η − ε| ≤ 1, then

[
0 I

] ∣∣ηA− εA(k)
∣∣
0

I

 and

[
0 I

] ∣∣(ε− η cos2 θ)A− ε sin2 θA(k)
∣∣
0

I


are symmetric by the inductive hypothesis. Hence,

∣∣∣∣∣∣∣(ε− η cos2 θ)A− ε sin2 θ

0

I

A(k)

∣∣∣∣∣∣∣
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=


|ε− η cos2 θ||A:k−1,:k−1| |ε− η cos2 θ||A:k−1,k:|

|ε− η cos2 θ||Ak:,:k−1|
[
0 I

] ∣∣(ε− η cos2 θ)A− ε sin2 θA(k)
∣∣
0

I




is symmetric, using also the fact |A|T = |A| by (5.87). Since also

∣∣∣∣∣∣∣ηA− ε
0

I

A(k)

∣∣∣∣∣∣∣
0

I

 =

∣∣∣∣∣∣∣∣∣∣


|η||A:k−1,:k−1|[

0 I

] ∣∣ηA− εA(k)
∣∣
0

I



∣∣∣∣∣∣∣∣∣∣

=

([
0 I

]
|ηA− εA(k)|

)T

then the result follows.

For k = N/2+j and j ≥ 1 so thatN−k+1 = N/2−j+1, then writing I = IN−k+1 = IN/2−j+1,

we have

[
0 I

] ∣∣ηB − εB(k)
∣∣
0

I

 = | sec θ|
[
0 I

] ∣∣η cos2 θA− εA(j)
∣∣
0

I


is symmetric by the inductive hypothesis since η′ = η cos2 θ and ε′ = ε satisfy the hypotheses.

Now we will establish main tool to show the max norm of the intermediate GE steps is

maximized by the final U factor.

Proposition 5.6. Let B ∈ Bs(N), η, ε ∈ R such that |η|, |ε|, |η − ε| ≤ 1. Let PBQ = LU

the LU factorization of B using GENP (with P = Q = I), GEPP (with Q = I) or GERP.

Then for all k,

∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηPBQ− ε(PBQ)(k))

 0

IN−k+1


∥∥∥∥∥∥∥

max

≤ ‖U‖max. (5.88)
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In particular,

max
k
‖(PBQ)(k)‖max = ‖U‖max. (5.89)

Proof. First, note it suffices to show this result for P = Q = I: We have PBQ = B′D for

diagonal D with diagonal entries in {±1} and B′ ∈ Bs(N) with (PBQ)(k) = B′(k)D using

Proposition 5.4 if using GEPP and Proposition 5.5 if using GERP. It follows then

∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηPBQ− ε(PBQ)(k))

 0

IN−k+1


∥∥∥∥∥∥∥

max

=

∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηB′ − εB′(k)

)D

 0

IN−k+1


∥∥∥∥∥∥∥

max

=

∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηB′ − εB′(k)

)

 0

IN−k+1


∥∥∥∥∥∥∥

max

using the fact ‖ · ‖max is invariant under unit multiples of rows or columns. Hence, it suffices

to consider only the case P = Q = I, so assume this holds for the remainder of this proof.

First note how (5.89) follows: since

B(k) =


U:k−1,:k−1 U:k−1,k:

0

[
0 IN−k+1

]
B(k)

 0

IN−k+1




then ‖B(k)‖max ≤ ‖U‖max using (5.88) with η = 0 and ε = −1.

To prove (5.88), we will once again use induction on n. Note first the result always holds for
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k = 1 since then

‖IN(ηB − εB(1))IN‖max = |η − ε|‖B‖max ≤ ‖U‖max (5.90)

since ‖B‖max ≤ 1 ≤ ‖U‖max. So we can consider only k ≥ 2. For n = 1 for k = 2,

∥∥∥∥∥∥∥
[
0 1

]
(ηB − εB(2))

0

1


∥∥∥∥∥∥∥

max

= |η cos2 θ − ε|| sec θ| ≤ | sec θ| = ‖U‖max,

where we note |η cos2−ε| ≤ 1 as before.

Now assume the result holds for Bs(N/2) and n ≥ 2, and let B = B(θ, A) ∈ Bs(N) with

A = L′U ′ ∈ Bs(N/2). Note

‖A‖max = ‖Ae1‖∞ ≤ 1 ≤ ‖U ′‖max ≤ | sec θ|‖U ′‖max = ‖U‖max, (5.91)

using Proposition 5.4 for the last equality.

For k ≤ N/2, then for I = IN/2−k+1 when not indicated otherwise, we have

[
0 IN−k+1

]
(ηB − εB(k))

 0

IN−k+1



=


cos θ

[
0 I

]
(ηA− εA(k))

0

I

 sin θ

[
0 I

]
(ηA− εA(k))

− sin θ

ηA− ε
0

I

A(k)


0

I

 − sec θ

(ε− η cos2 θ)A− ε sin2 θ

0

I

A(k)




using Lemma 5.2. Let η′ = ε − η cos2 θ and ε′ = ε sin2 θ. As above, we have |η′| ≤ 1 while

also |ε′| = sin2 θ|ε| ≤ 1 and |η′ − ε′| = cos2 θ|η − ε| ≤ 1. By the inductive hypothesis, we
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have ∥∥∥∥∥∥∥
[
0 I

]
(ηA− εA(k))

0

I


∥∥∥∥∥∥∥

max

≤ ‖U ′‖max ≤ ‖U‖max and

| sec θ|

∥∥∥∥∥∥∥
[
0 I

] (
η′A− ε′A(k)

)0

I


∥∥∥∥∥∥∥

max

≤ | sec θ|‖U ′‖max = ‖U‖max.

Moreover, |η sin θ|‖A‖max ≤ ‖U ′‖max ≤ ‖U‖max and

| sec θ||ε− η cos2 θ|‖A‖max ≤ | sec θ|‖U ′‖max = ‖U‖max (5.92)

by (5.91). It follows

∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηB − εB(k))

 0

IN−k+1


∥∥∥∥∥∥∥

max

(5.93)

= max



|η sin θ|‖AN/2−k+1:,:k−1‖max,

|η sin θ|‖A:k−1,N/2−k+1:‖max,

max(| cos θ|, | sin θ|)

∥∥∥∥∥∥∥
[
0 I

]
(ηA− εA(k))

0

I


∥∥∥∥∥∥∥

max

,

| sec θ||ε− η cos2 θ|‖A‖max,

| sec θ|

∥∥∥∥∥∥∥
[
0 I

] (
(ε− cos2 θη)A− ε sin2 θA(k)

)0

I


∥∥∥∥∥∥∥

max



(5.94)

≤ ‖U‖max. (5.95)

For k = N/2 + j and j ≥ 1 so that N − k + 1 = N/2 − j + 1, let η′ = η cos2 θ and ε′ = ε
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then |η′|, |ε′|, |η′ − ε′| ≤ 1. Hence,

∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηB − εB(k))

 0

IN−k+1


∥∥∥∥∥∥∥

max

= | sec θ|

∥∥∥∥∥∥∥
[
0 IN/2−j+1

]
(η cos2 θA− εA(j))

 0

IN/2−j+1


∥∥∥∥∥∥∥

max

≤ | sec θ|‖U ′‖max = ‖U‖max

by the inductive hypothesis.

We apply this result to show the growth factors of Haar-butterfly matrices are multiplicative

with respect to the Kronecker product factors.

Lemma 5.3. If B = B(θ) ∈ Bs(N), then

κ∞(B) =
n∏
j=1

κ∞(B(θj)). (5.96)

Using GENP, GEPP, or GERP, then

ρ(B) =
n∏
j=1

ρ(B(θj)) (5.97)

ρ∞(B) =
n∏
j=1

ρ∞(B(θj)). (5.98)

Proof. Let PBQ = LU be the LU factorization of B using GENP, GEPP, or GERP. By

Proposition 5.6, then

ρ(B) =
‖L‖max ·max

k
‖B(k)‖max

‖B‖max

=
‖L‖max‖U‖max

‖B‖max

. (5.99)

Since B−1 =
⊗n

j=1B(θn−j+1)−1, then the result follows from Lemmas 1.6 and 1.7.
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It thus remains only to establish the case for n = 1. Let

B = B(θ) =

 cos θ sin θ

− sin θ cos θ

 ∈ Bs(2) (5.100)

then

B =

 1

− tan θ 1


cos θ sin θ

sec θ

 = L1U1 and (5.101)

PB =

 1

− cot θ 1


− sin θ cos θ

csc θ

 = L2U2 (5.102)

for P = P(1 2). It follows

‖B‖max = max(| cos θ|, | sin θ|) = | cos θ|max(1, | tan θ|)

‖L1‖max = max(1, | tan θ|)

‖U1‖max = | sec θ|

and

‖B‖∞ = ‖B−1‖∞ = | cos θ|+ | sin θ| = | cos θ|(1 + | tan θ|)

‖L1‖∞ = 1 + | tan θ|

‖U1‖∞ = max(| cos θ|+ | sin θ|, | sec θ|) = | cos θ|(1 + max(| tan θ|, tan2 θ)).

and similarly using L2, U2. It follows directly

Lemma 5.4. Let B = B(θ) ∈ Bs(2). Using GENP, then

ρ(B) = 1 + tan2 θ (5.103)
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ρ∞(B) = 1 + max(| tan θ|, tan2 θ) (5.104)

for all θ. Moreover, 1 ≤ ρ(B) ≤ ρ∞(B) with 1 = ρ(B) = ρ∞(B) for | cos θ| = 1, ρ(B) =

ρ∞(B) if | tan θ| ≥ 1, and strict inequalities otherwise.

Using GEPP, GERP or GECP, then

ρ(B) = 1 + min(tan2 θ, cot2 θ) (5.105)

ρ∞(B) = 1 + min(| tan θ|, | cot θ|) (5.106)

for all θ. Moreover, 1 ≤ ρ(B) ≤ ρ∞(B) ≤ 2 with 1 = ρ(B) = ρ∞(B) for cos θ = 0 or

sin θ = 0, ρ(B) = ρ∞(B) = 2 for | tan θ| = 1, and strict inequalities otherwise.

Proof. The GENP case is obvious using the Pythagorean identity sec2 θ = 1 + tan2 θ, where

we note ‖B‖max ≤ 1 ≤ ‖U‖max. For GE with pivoting schemes, pivoting will occur only if

| sin θ| > | cos θ|, which will result in using the factors L2, U2 instead, where we note then

ρGEPP(B(θ)) = ρGENP(B(θ′)) and similarly for ρ∞ where θ′ = θ if | tan θ| ≤ 1 and θ′ = π
2
− θ

if | tan θ| > 1.

Lemma 5.5. Let B = B(θ) ∈ Bs(2). Then

κ∞(B) = 1 + | sin(2θ)|. (5.107)

Proof. Since ‖B(θ)−1‖∞ = ‖B(−θ)‖∞ = ‖B(θ)‖∞, we can compute directly

κ∞(B) = ‖B‖∞‖B−1‖∞ = ‖B‖2
∞ = (| cos θ|+ | sin θ|)2 = 1 + | sin(2θ)|.

It follows:
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Lemma 5.6. Let B ∼ Bs(2,ΣS) and X ∼ Cauchy(1). Using GENP, then

ρ(B) ∼ 1 + |X|2 (5.108)

ρ∞(B) ∼ 1 + max(|X|, |X|2). (5.109)

Using GEPP, GERP or GECP,

ρ(B) ∼ 1 + |X|2 | |X| ≤ 1 (5.110)

ρ∞(B) ∼ 1 + |X| | |X| ≤ 1. (5.111)

Proof. This follows directly from Lemmas 1.10, 1.11 and 5.4

Corollary 5.6. Let B ∼ Bs(2,ΣS). Using GEPP, GERP or GECP, then

Eρ(B) =
4

π
(5.112)

Eρ∞(B) = 1 +
log 4

π
. (5.113)

Proof. We compute

Eρ(B) =
1

2π

∫ 2π

0

(1 + min(tan2 θ, cot2 θ)) dθ =
4

π

∫ π/4

0

sec2 θ dθ =
4

π

and

Eρ∞(B) = 1 + Emin(| tan θ|, | cot θ|) = 1 +
1

2π

∫ 2π

0

min(| tan θ|, | cot θ|) dθ

= 1 +
4

π

∫ π/4

0

tan θ dθ = 1 +
log 4

π
.

Additionally, we can say more directly about the ∞-condition numbers of random butterfly
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matrices.

Lemma 5.7. Let B ∼ Bs(2,ΣS) and Y ∼ Arcsine(0, 1), then

κ∞(B) ∼ 1 +
√
Y .

Proof. Use Lemmas 1.9 and 5.5.

In particular, we can explicitly compute averages for the condition numbers as well as, in

light of (5.24) and (5.25), κ∞(B)ρ(B) and κ∞(B)ρ∞(B) in the GE with pivoting scheme

cases. (The GENP cases have no moments of any order k ≥ 1 again since κ∞(B) ≥ 1.)

Corollary 5.7. Let B ∼ Bs(2,ΣS). Then

Eκ∞(B) = 1 +
2

π
. (5.114)

Using GEPP, GERP or GECP, we have

Eκ∞(B)ρ(B) =
4

π
(1 + log 2) (5.115)

Eκ∞(B)ρ∞(B) = 2 +
log 4

π
(5.116)

Proof. Using Lemma 5.5, we can compute

Eκ∞(B) = 1 +
1

2π

∫ 2π

0

| sin(2θ)| dθ = 1 +
2

π

∫ π/2

0

sin(2θ) dθ = 1 +
2

π
. (5.117)

Using Lemmas 5.4 and 5.5, then

κ∞(B)ρ(B) = 1 + | sin(2θ)|+ min(tan2 θ, cot2 θ) + | sin 2θ|min(tan2 θ, cot2 θ)

= κ∞(B) + ρ(B)− 1 + 2 min(| sin3 θ sec θ|, | cos3 θ csc θ|)
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κ∞(B)ρ∞(B) = 1 + | sin(2θ)|+ min(| tan θ|, | cot θ|) + | sin 2θ|min(| tan θ|, | cot θ|)

= κ∞(B) + ρ∞(B)− 1 + min(|2 sin2 θ|, |2 cos2 θ|)

= κ∞(B) + ρ∞(B)− 1 + min(1− cos θ, 1 + cos θ)

= κ∞(B) + ρ∞(B)− | cos θ|

Note

Emin(| sin3 θ sec θ|, | cos3 θ csc θ|)

=
1

2π

∫ 2π

0

min(| sin3 θ sec θ|, | cos3 θ csc θ|) dθ

=
4

π

∫ π/4

0

sin3 θ sec θ dθ =
4

π

∫ π/4

0

(tan θ − 1

2
sin(2θ)) dθ

=
log 4− 1

π

and

E| cos θ| = E| sin θ| = 1

2π

∫ 2π

0

| sin θ| dθ =
1

π

∫ π

0

sin θ dθ =
2

π
.

The results for Eκ∞(B)ρ(B) and Eκ∞(B)ρ∞(B) follow then by combining these with Corol-

laries 5.6 and 5.7.

Now we can sum up these results to establish the main statements from Section 5.3.2.

Proof of Theorem 5.3. Use Lemmas 5.3, 5.4 and 5.6 with the uniqueness results in the ran-

dom models following from Theorems 1.7 and 1.10.

Proof of Corollary 5.2. Use Theorem 5.3 and corollary 5.6.

Proof of Proposition 5.3. Use Lemmas 5.3 and 5.7
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Proof of Corollary 5.4. Use Lemma 5.3 and corollary 5.7.

5.3.5 GECP Growth Factor

Some additional results relating to the GECP growth factor can be established for butterfly

matrices. These results are explicit weaker than for the previously visited pivoting schemes.

Future work can revisit methods to strengthen these results.

First, we will establish this straightforward building block.

Lemma 5.8. Let α, β, θ, η, ε ∈ R such that |ε| ≤ |η − ε|. Then

|ηα cos2 θ − εβ| ≤ cos2 θ|ηα− εβ|+ sin2 θ|η − ε||β| (5.118)

Proof. Since ηα cos2 θ− εβ = cos2 θ(ηα− εβ)− sin2 θεβ, this follows directly by the triangle

inequality and |ε| ≤ |η − ε|.

Now we can introduce a weaker result using GECP.

Proposition 5.7. Let B = B(θ) ∈ Bs(N) such that | cos θi+1| ≥ | cos θi| > | sin θ1| for

all i, and let B = LU be the LU factorization of B using GENP. Let η, ε ∈ R such that

|ε| ≤ |η − ε|. Then for all k

∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηB − εB(k))

 0

IN−k+1


∥∥∥∥∥∥∥

max

≤ |η − ε||Ukk|. (5.119)

In particular, then B = LU is also the LU factorization of B using GECP.
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Proof. First, note the last implication follows since then

|B(k)
kk | ≤

∥∥∥∥∥∥∥
[
0 IN−k+1

]
B(k)

 0

IN−k+1


∥∥∥∥∥∥∥

max

≤ |Ukk| = |B(k)
kk |

for all k using (5.119) with η = 0 and ε = −1, so that no row or column swaps would be

needed at any intermediate step using GECP.

To prove (5.119), we will again use induction on n. Note first the result is immediate for

k = 1 since then

‖IN(ηB − εB(1))IN‖max = |η − ε|‖B‖max = |η − ε||U11|.

So it suffices to assume k ≥ 2. If n = 1, then using (5.77) with B(2) = U = Uθ, we see for

k = 2 then∥∥∥∥∥∥∥
[
0 1

]
(ηB − εB(2))

0

1


∥∥∥∥∥∥∥

max

= |η cos θ − ε sec θ| = |η cos2 θ − ε||U22| ≤ |η − ε||U22|

using Lemma 5.8 with α = β = 1.

Now assume the result holds for Bs(N/2) and n ≥ 2, and let B = B(θ, A) ∈ Bs(N) for

A = B(θ′) ∈ Bs(N/2) such that θ = (θ′, θ) with θ = θn, where we note also θ′ still satisfies

the condition | cos θ′i+1| ≥ | cos θ′i| > | sin θ′1| for all i. Since B has an LU factorization using

GENP, then necessarily A does also. Let A = L′U ′ be this factorization, where we further

note by Proposition 5.4 then

Ukk =

 cos θU ′kk if k ≤ N/2

sec θU ′jj if k = N/2 + j for j ≥ 1.
(5.120)

196



For 1 < k ≤ N/2, then for I = IN/2−k+1 when not indicated otherwise, we have

[
0 IN−k+1

]
(ηB − εB(k))

 0

IN−k+1



=


cos θ

[
0 I

]
(ηA− εA(k))

0

I

 sin θ

[
0 I

]
(ηA− εA(k))

− sin θ

ηA− ε
0

I

A(k)


0

I

 − sec θ

(ε− η cos2 θ)A− ε sin2 θ

0

I

A(k)




(5.121)

using Lemma 5.2. Let η′ = ε− η cos2 θ and ε′ = ε sin2 θ where we note

|ε′| = sin2 θ|ε| ≤ cos2 θ|η − ε| = |η′ − ε′|

since sin2 θ ≤ cos2 θ and |ε| ≤ |η − ε|. By the inductive hypothesis, we have

∥∥∥∥∥∥∥
[
0 I

]
(η′A− ε′A(k))

0

I


∥∥∥∥∥∥∥

max

≤ |η′ − ε′||U ′kk| = | cos θ||η − ε||Ukk| and

∥∥∥∥∥∥∥
[
0 I

]
(ηA− εA(k))

0

I


∥∥∥∥∥∥∥

max

≤ |η − ε||U ′kk| = | sec θ||η − ε||Ukk|

using (5.120). Also, since | cos θi+1| ≥ | cos θi| for all i, then

| sec θ|‖A‖max = | sec θn||U ′11| =
∏n−1

j=1 | cos θj|
| cos θn|

≤
∏

j∈Jk | cos θj|∏
j∈[n]\Jk | cos θj|

= |Ukk|

for some ∅ 6= Jk ⊂ [n] when k > 1 by Proposition 5.4. Next, we see

|η sin θ|‖A‖max ≤ |η − ε||2 sin θ|‖A‖max ≤ |η − ε|| sec θ|‖A‖max ≤ |η − ε||Ukk|
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using |η| ≤ |η− ε|+ |ε| ≤ 2|η− ε| and |2 sin θ| ≤ | sec θ| (since |2 sin θ cos θ| = | sin(2θ)| ≤ 1).

It follows∥∥∥∥∥∥∥
[
0 IN−k+1

]
(ηB − εB(k))

 0

IN−k+1


∥∥∥∥∥∥∥

max

(5.122)

= max



|η sin θ|‖AN/2−k+1:,:k−1‖max,

|η sin θ|‖A:k−1,N/2−k+1:‖max,

| cos θ|

∥∥∥∥∥∥∥
[
0 I

]
(ηA− εA(k))

0

I


∥∥∥∥∥∥∥

max

,

| sec θ||ε− η cos2 θ|‖A‖max,

| sec θ|

∥∥∥∥∥∥∥
[
0 I

] (
(ε− η cos2 θ)A− ε sin2 θA(k)

)0

I


∥∥∥∥∥∥∥

max



(5.123)

≤ |η − ε||Ukk| (5.124)

using again Lemma 5.8 so that |ε− η cos2 θ| ≤ |η − ε|.

For k = N/2+j and j ≥ 1 so that N−k+1 = N/2−j+1, writing now I = IN−k+1 = IN/2−j+1,

we have∥∥∥∥∥∥∥
[
0 I

]
(ηB − εB(k))

0

I


∥∥∥∥∥∥∥

max

= | sec θ|

∥∥∥∥∥∥∥
[
0 I

]
(η cos2 θA− εA(j))

0

I


∥∥∥∥∥∥∥

max

= | sec θ|

∥∥∥∥∥∥∥
[
0 I

] ∣∣η cos2 θA− εA(j)
∣∣
0

I


∥∥∥∥∥∥∥

max

≤ | sec θ|

cos2 θ

∥∥∥∥∥∥∥
[
0 I

] ∣∣ηA− εA(j)
∣∣
0

I


∥∥∥∥∥∥∥

max

+ sin2 θ|η − ε|

∥∥∥∥∥∥∥
[
0 I

]
|A(j)|

0

I


∥∥∥∥∥∥∥

max


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= | sec θ|

cos2 θ

∥∥∥∥∥∥∥
[
0 I

]
(ηA− εA(j))

0

I


∥∥∥∥∥∥∥

max

+ sin2 θ|η − ε|

∥∥∥∥∥∥∥
[
0 I

]
A(j)

0

I


∥∥∥∥∥∥∥

max


≤ | sec θ||η − ε||U ′jj| = |η − ε||Ukk|

using Lemma 5.2 for the first equality, Lemma 5.8 for the first inequality (applied com-

ponentwise with α = Ai′j′ and β = A
(j)
i′j′), the inductive hypothesis for the last inequality

(with η = 0 and ε = 1 for the second term), (5.120) for the last equality, and the fact

‖A‖max = ‖|A|‖max for the remaining steps.

This does not give the full picture in terms of the GECP growth factor of Haar-butterfly

matrices. Empirical results indicate the distribution of the GECP max-norm growth factor ρ

matches that on the GENP, GEPP and GERP max-norm growth factors. However, ρ∞ does

differ: experiments indicate ρGECP
∞ (B) < ρGEPP

∞ (B) for B ∼ Bs(N,ΣS). The LU factorization

of Haar-butterfly matrices can prove to be sensitive to multiplication on the right by a

permutation matrix, which is true starting for N ≥ 8, as seen in the following example.

Example 5.8. Let

B =



−0.02 0.03 −0.41 0.64 0.02 −0.03 0.35 −0.55

−0.03 −0.02 −0.64 −0.41 0.03 0.02 0.55 0.35

0.41 −0.64 −0.02 0.03 −0.35 0.55 0.02 −0.03

0.64 0.41 −0.03 −0.02 −0.55 −0.35 0.03 0.02

−0.02 0.03 −0.35 0.55 −0.02 0.03 −0.41 0.64

−0.03 −0.02 −0.55 −0.35 −0.03 −0.02 −0.64 −0.41

0.35 −0.55 −0.02 0.03 0.41 −0.64 −0.02 0.03

0.55 0.35 −0.03 −0.02 0.64 0.41 −0.03 −0.02



(5.125)
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with B ∈ Bs(8). Then using GECP, we have PBQT = LU where, in particular,

U =



0.64 −0.55 −0.35 0.41 −0.03 0.03 −0.02 0.02

1.12 0.71 −0.05 −0.04

−0.89 −0.78 0.04 0.04

−1.57 0.08

−0.64 0.55 −0.41 0.35

−1.12 −0.71

0.90 −0.78

1.57



. (5.126)

U does not have a Kronecker product form any more as a result of introducing column pivots.

For instance,

U1:2,3:4 =

−0.35 0.41

0.71

 (5.127)

is no longer upper triangular.

Future work can work on determining whether a full distribution on the max-norm growth

factor for Haar-butterfly matrices using GECP can be attained.

Growth factors of Hadamard matrices

As evidenced in Section 5.3.2, the butterfly Hadamard matrices maximized ρ and ρ∞ when

using GENP, GEPP, or GERP. Empirically, this holds even when using GECP. The question

about the growth factors of Hadamard matrices when using GECP remains an open question.

All evidence continues to point to:

Conjecture 5. Let H be an order N Hadamard matrix. Using GE with any row or column

200



pivoting scheme, then ρ(H) = N .

Cryer made this conjecture in 1968 when reviewing Wilkinson’s work on the GEPP max-norm

growth factor [5]. Only information on particular equivalence classes of Hadamard matrices

have been attained as of now. In particular, this has been proven already for Sylvester

Hadamard matrices, which includes the butterfly Hadamard matrices by Proposition 2.14.

In general, the growing complexity on total number of Hadamard matrices for a given order

prevents direct approaches from being computationally feasible. As of now, the highest order

where it has been proven that the GECP max-norm growth factors of Hadamard matrices

matches its order is 16 [23]. The most recent progress focused on studying specifically the

possible patterns in pivots one can encounter.

Butterfly matrices can potentially be used to give an alternative proof of the GECP growth

factors of Sylvester Hadamard matrices.
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Appendix A

Divisibility of random integers

This is a straightforward result using basic results in probability, which can be used to

produce previous results regarding divisibility of integer valued random variables with a

different approach. This has applications to questions at the intersection of probability and

number theory.

Proposition A.1. For X a discrete random variable with support on Z, then

P(d | X) =
1

d

d∑
k=1

ϕX

(
2πk

d

)
. (A.1)

Proof. Since supp(X) ⊂ Z then

ϕX(t) = EeitX =
∑
j∈Z

eitjP(X = j).

A straightforward computation shows

1

d

d∑
k=1

ϕX

(
2πk

d

)
=

1

d

d∑
k=1

∑
j∈Z

ei2πkj/dP(X = j)
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=
∑
j∈Z

P(X = j)

(
1

d

d∑
k=1

ei2πkj/d

)

=
∑
d|j

P(X = j)

= P(d | X)

using (1.9) for the penultimate equality.

Corollary A.1. For X a discrete random variable with support on Z, then for a ∈ [d],

P(X ≡ a (mod d)) =
1

d

d∑
k=1

ϕX

(
2πk

d

)
e−i2πka/d. (A.2)

Proof. Since P(X ≡ a (mod d)) = P(d | X − a) and ϕX−a(t) = e−itaϕX(t), this follows

immediately from Proposition A.1.

This can be used to give a different proof of some known results:

Proposition A.2. For X ∼ Binomial(n, q) and q ∈ (0, 1), then P(X ≡ a (mod d)) =

1
d

+O(e−cn) for some c > 0 depending only on q, d.

Proof. Recall

ϕX(t) = (eitq + 1− q)n.

If d = 1, then P(1 | X) = 1, so we can take c = 1. For d ≥ 2, using Proposition A.1, we have

P(X ≡ a (mod d)) =
1

d

d∑
k=1

(ei2πk/dq + 1− q)ne−2πka/d

=
1

d
+

1

d

d−1∑
k=1

(ei2πk/dq + 1− q)ne−2πka/d.

Since zk := ei2πk/dq+ (1− q) is a convex combination of ei2πk/d and 1, which are both on the

boundary of the unit circle, then zk is strictly within the unit circle if k = 1, 2, . . . , d − 1,
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and closest to the boundary when k = 1, i.e.,

|zk|2 ≤ |z1|2 = q2 + 2q(1− q) cos

(
2π

d

)
+ (1− q)2 = 1− 2q(1− q)

(
1− cos

(
2π

d

))
.

If d = 2, then |z1|2 = (1 − 2q)2 < 1. We see z1 = 0 if and only if q = 1
2
, which then shows

P(2 | X) = P(2 - X) = 1
2
. Hence, we can take c = 1 if d = 2 and q = 1

2
. For d > 2 or q 6= 1

2
,

then |z1|2 < 1. Since

0 ≤ 1

d

∣∣∣∣∣
d−1∑
k=1

znk e
−2πka/d

∣∣∣∣∣ < |z1|n,

the result follows for

c = −1

2
ln

(
1− 2q(1− q)

(
1− cos

(
2π

d

)))
> 0.

Lemma A.1. If X ∼ Uniform(Z/nZ) and Y is independent of X with support in Z, then

X + Y (mod n) ∼ Uniform(Z/nZ). For d ≤ n, then for a = 0, . . . , d− 1,

P(X + Y ≡ a (mod d)) =
1

d
+
1a<r − r/d

n
(A.3)

for 0 ≤ r < d such that n ≡ r (mod d). In particular, if d | n then X + Y (mod d) ∼

Uniform(Z/dZ)

Proof. Note

ϕX(t) =
1

n

n−1∑
j=]

eitj while ϕX+Y (t) = ϕX(t)ϕY (t).

By (1.9), we have ϕX(2πk
n

) = δkn. It follows

P(X + Y ≡ a (mod n)) =
1

n

n∑
k=1

ϕX+Y

(
2πk

n

)
e−i2πka/n =

1

n
.
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Hence, X + Y (mod n) ∼ Uniform(Z/nZ). (Another quick argument can follow by condi-

tioning on Y .) If d < n, then the residue class of {0, 1, . . . , n} modulo d are of size bn/dc+ 1

the smallest element in the class is smaller than r and of size bn/dc if the smallest element

is at least r.

Proposition A.3. Let Wj be iid Uniform(Fq) for q = pk for some prime p and W =
∑n

j=1Wj

and suppose d > q. Then for some c > 0 depending only on q, d, we have

P(W ≡ a (mod d)) =
1

d
+O(e−cn).

Proof. Note for each j we have

ϕWj
(t) = ϕW1(t) =

1

p

q−1∑
`=0

eit` while ϕW (t) =
n∏
j=1

ϕWj
(t) = ϕW1(t)

n.

It follows ϕW1(
2πk
d

) is a convex combination of p points ei2πk`/d on the boundary of the unit

circle, so |ϕW1(
2πk
d

)| ≤ 1. Moreover, since 1 is included among these points (for ` = 0), then

we have |ϕWj
(t)| = 1 if and only if ϕWj

(t) = 1 if and only if eit = 1 if and only if t
2π
∈ Z.

Hence, we have |ϕW1(
2πk
d

)| < 1 for each k = 1, . . . , d− 1. Moreover, we have |ϕW1(
2πk
d

)| > 0

since the uniform average is the center of the convex hull containing the points, which is

never 0 since q < d. (For instance, the uniform average of the imaginary parts of these points

is strictly positive since q < d.) Hence

0 < max

{∣∣∣∣ϕW1

(
2πk

d

)∣∣∣∣ : k = 1, . . . , d− 1

}
< 1.

It follows

P(W ≡ a (mod d)) =
1

d
+

1

d

d−1∑
k=1

ϕW1

(
2πk

d

)n
e−i2πka/d =

1

d
+O(e−cn)
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where

c = − ln

(
max

{∣∣∣∣ϕW1

(
2πk

d

)∣∣∣∣ : k = 1, . . . , d− 1

})
> 0.

209



Appendix B

RMT statistics in ocean wave spacings

RMT statistics have recently been highlighted in transportation systems. Of particular

interest is the bus system in Cuernavaca, Mexico [25]. Since the bus system is privatized,

drivers implemented a notification system to prevent small bus arrival gaps. This resulted in

a natural repulsion between arrival times that has been shown to be sufficiently modeled by

the (β = 2) Wigner surmise. Jagganath and Trogdon showed arrival times at certain stops

in the NYC subway system also follow the Wigner surmise [20]. Building off of these results,

we were interested in exploring other physical systems that exhibit RMT statistics.

The most recent focus has been on the spacings between normalized ocean wave peaks. An

early ad hoc study I carried out, that involved me sitting at Little Corona del Mar beach

15 minutes away from campus for a few hours recording wave arrival times on my phone,

indicated wave spacings were a good candidate to focus on for RMT modeling.

Question 1. Do normalized spacings between ocean waves satisfy the Wigner surmise?

In early 2020, we identified a potential dataset from SWIFT buoy data from a project on

extreme wave statistics in deep sea waters [34]. Multiple buoys were dropped off the Oregon

coast from a helicopter and then were allowed to drift naturally with the current. Buoy
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Figure B.1: Sample wave heights in meters during a 10 minute burst at 25 Hz

motion data was recorded in 10 minute bursts at 25 Hz during December 2015, and would

repeat until the buoy was recovered on the coast line. With 516 total bursts of wave data,

with each including over 10,000 wave height recordings, this is a rich dataset for our analysis.

Figure B.1 shows a sample burst output of wave heights during a 10 minute interval.

Our analysis focused on recorded height data statistics to test the Wigner surmise against.

We first considered the raw zero-crossing wave period data, which recorded the distance

between two successive upcrossings across the zero plane. The second focus, with which we

are able to give a positive answer to Question 1, used the distance between two successive

peaks of zero-crossing waves.

Let the Kolmogorov-Smirnov (KS) distance between two measures be the maximal distance

between the associated cumulative distribution functions. For our analysis, we compared

µWS from (1.75) against the normalized empirical measure τ = T/〈T 〉 with T the set of wave

spacings. We then used this to compute the scaled KS distance α-test statistic, which also
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Wave Peak Spacings
Wigner Surmise ( =2)

Figure B.2: Normalized Peak Wave Spacings compared to the β = 2 Wigner surmise

accounts for the test sample size, given by

√
# KS(µWS, τ)

Standard cut-offs for statistical significance tests are at scaled KS values less than 1.63, 1.36,

and 1.225, respectively, which model low, medium and high significance.

In following with the work on transportation statistics, we find RMT statistics if we, after

thresholding appropriately, look at the spacings between wave peaks. Figure B.2 shows the

best fit model from time domain filtering, with a scaled KS statistic of 1.1397 using waves

with a minimal peak to trough height of 1 meter with a 1.2 second time shift to account

for minimal time to move a large body of water a fixed height. To connect this with other

filters in the literature, we can roughly construct the same (in a statistical sense) histogram

by using filters on the frequency side. When small waves are removed by whichever means,

a universal histogram emerges. It just turns out that filtering in the time domain produces

212



a remarkable fit.

An interesting inverse question can be posed:

Question 2. Can random matrices be used to simulate ocean wave data?

Using our results, one can potentially sample random wave data by sampling the eigenvalues

for a GUE(n) matrix to generate wave spacings, and sample the components of an eigenvector

to generate the associated amplitudes.
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Appendix C

Other Group properties of butterfly

matrices

Consider the group generated by B(N):

Definition C.1. Let BG(N) denote the subgroup 〈B(N)〉 = 〈BR(N)〉 of SO(N). Equiva-

lently,

BG(N) = 〈D2j(N) : j = 0, . . . , n− 1〉, (C.1)

or, alternatively, BG(N) is generated by the scalar rotation matrices and block diagonal

matrices with N/2 order diagonal entries belonging to BG(N/2), with BG(1) = {1}.

C.1 Orbit stabilizer

Now recall the following standard definitions from group theory:

Definition C.2. Let G be a group with identity e and X a set. We say X is a left G-set
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if G acts on X, i.e., we have a map G ·X → X, such that for all g, h ∈ G and x ∈ X, we

have g · x ∈ X and

(i) e · x = x and

(ii) g · (h · x) = (gh) · x.

An analogous definition works for a right G-set.

For a left G-set X and x ∈ X, the stabilizer of x is the subset of G that fixes x under the

G-action, that is,

Gx = StabG(x) = {g ∈ G : g · x = x},

and the orbit of x is the subset of X that G sends x to under its action, that is,

G · x = OrbG(x) = {g · x ∈ X : g ∈ G}.

We say the group action of G on X is transitive if there is exactly one orbit, that is,

G · x = X for all x ∈ X, or equivalently, for any x, y ∈ X there exists a g ∈ G such that

g · x = y.

If G is both a left and right G-set, then we can define the centralizer of X to be the subgroup

of G that commutes with every element of X, that is,

CG(X) = {g ∈ G : g · x = x · g for all x ∈ X}.

For G a group, the center of the set G, which is itself naturally a G-set, is Z(G) = CG(G).

Note a group G always acts transitively on itself (for any g, h ∈ G, then gh−1·h = gh−1h = g).

Also, any subgroup of G acts on G. A simple exercise follows:

Lemma C.1. If X is a G-set, then the power set of X, 2X , is also a G-set.
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Proof. For Y ⊂ X, define g · Y = {g · y : y ∈ Y } ⊂ X. Clearly, this now defines a map

G× 2X → 2X , and it follows directly e · Y = Y and g · (h · Y ) = gh · Y .

Also, recall the following result with accompanying standard proof (for completeness sake),

also from any standard introduction to group theory:

Theorem C.1 (Orbit Stabilizer). If X is a G-set, then for any x ∈ X we have Gx is a

subgroup of G and [G : Gx] = |G|/|Gx| = |G · x|.

Proof. Note e ∈ Gx. For any g, h ∈ Gx, we have h−1 · x = h−1 · (h · x) = h−1h · x = e · x = x,

and so gh−1 · x = g · (h−1 · x) = g · x = x, showing gh−1 ∈ Gx. It follows Gx is a subgroup

of G, so that g · x 7→ gGx is a well-defined one-to-one correspondence between G · x and the

set of left cosets of Gx in G.

C.2 Stabilizer and centralizer in BG(N)

Since a group acts on itself, then BG(N) acts naturally on BG(N), while Lemma C.1 then

shows BG(N) acts naturally on the subsets of BG(N), and hence so does Bs(N). In particular,

these act on B(N) and Bs(N). So now one might ask what else we can say about these

objects.

Proposition C.1. Let StabLn := StabBG(N)(B(N)) ∩ B(N) when viewing the power set of

BG(N) as a left BG(N)-set, and StabRn := StabBG(N)(B(N))∩B(N) when viewing the power

set as a right BG(N)-set. Let Cn := CBG(N)(Bs(N)). For n ≤ 1, we have Bs(N) = B(N) =

BG(N) = StabLn = StabRn , while for n ≥ 2, we have

Bs(N) ⊂ StabLn ∩B(N) = {R(A⊕ (±A)) : R ∈ RN , A ∈ StabLn−1} (C.2)

216



and

Bs(N) 6⊂ StabRn ∩B(N) =

R(A1 ⊕ A2) : ±R ∈

I,

 I

−I


 , A1, A2 ∈ StabRn−1

 .

(C.3)

In particular, the last form allows butterfly matrices formed starting with SO(2) blocks fol-

lowed exclusively with rotations of the form

±I,±

 I

−I

 .
Also,

Bs(N) = Cn ∩ B(N) (C.4)

for all n, but Bs(N) 6= Cn for n ≥ 2.

Note first an immediate consequence of this proposition, and in particular the result B(N)2 6⊂

B(N), which shows B(N) is not multiplicatively closed. So this gives an alternative proof

that B(N) is not a group.

It also follows Bs(N) B(N) = B(N) and B(N) Bs(N) 6⊂ B(N), while the only butterfly ma-

trices that commute with simple butterfly matrices are themselves simple butterfly matrices.

Proof of Proposition C.1. Note the statement for n ≤ 1 is trivial since Bs(N) = B(N) =

SO(N).
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First, we prove (C.2). Write

SL := {R(A⊕ (±A)) : R ∈ RN , A ∈ StabLn−1}.

Note the first inclusion follows from the second equality in (C.2), using induction on n, since

simple scalar butterfly matrices satisfy this form (when A ∈ Bs(N/2) ⊂ StabLn−1). Also, the

inclusion SL ⊂ StabLn is immediate, using the relation

 I

−I


 C S

−S C

 =

 C −S

S C


 I

−I

 =

 C S

−S C


T  I

−I

 (C.5)

along with Lemma 2.1. (Note (C.5) can be used to show SL is a group.) It now remains to

show StabLn ⊂ SL.

Fix B1 ∈ B(N) and B2 ∈ StabLn . Suppose Ri is a scalar rotation matrix and Di a block

diagonal scalar butterfly matrix, such that Bi = RiDi is a scalar butterfly matrix. We see

B2B1 ∈ B(N) only when

B2B1 = (R2D2)(R1D1) = R2(D2R1D1) = R2(RT
3D3) = (R2R

T
3 )D3, (C.6)

for some scalar rotation matrix R3 and some block diagonal scalar butterfly matrix D3,

depending on R1, D1, D2. In particular, it follows D2R1D1 = RT
3D3 and hence R3D2R1D1 =

D3 is a block diagonal scalar butterfly matrix. Using now

(Ci, Si) = (cos θi, sin θi) ∈ S1 (C.7)

for the corresponding generators of the scalar rotation matrix Ri, and writing D1 = A1⊕A2,
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D2 = A3 ⊕ A4 for Ai ∈ B(N/2), we see

D3 = R3D2R1D1 =

 C3 S3

−S3 C3


 A3

A4


 C1 S1

−S1 C1


 A1

A2


=

 (C1C3A3 − S1S3A4)A1 (S1C3A3 + C1S3A4)A2

−(C1S3A3 + S1C3A4)A1 (−S1S3A3 + C1C3A4)A2

 (C.8)

is a block diagonal matrix with diagonal entries in B(N/2). It follows

C1C3A3 − S1S3A4, C1C3A3 − S1S3A4 ∈ StabLBG(N/2)(B(N/2)) (C.9)

since A1, A2 ∈ B(N/2) are arbitrary, and

C1S3A4 = −S1C3A3, C1S3A3 = −S1C3A4. (C.10)

Since (C1, S1) is arbitrary, then we can choose C1S1 6= 0, with (C.10) then yielding necessarily

C3S3 6= 0 since Ai ∈ SO(N/2), and hence also

−S1C3

C1S3

= ±1

so that A3 = ±A4. Next, we can choose C1S1 = 0, so that (C.10) yields

(C1C3, S1S2) ∈ {(±1, 0), (0,±1)},

with then (C.9) yielding A3 = ±A4 ∈ StabLn−1. It follows then B2 ∈ SL and hence StabLn =

SL.
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Next, we will prove (C.3). Write

SR =

R(A1 ⊕ A2) : ±R ∈

I,

 I

−I


 ;A1, A2 ∈ StabRn−1 .


As noted in the statement, these consists of butterfly matrices formed by SO(2) blocks

followed exclusively by rotations using angles θj ≡ 0 (mod π
2
).

Note the statement Bs(N) 6⊂ SR is immediate since not every simple scalar butterfly matrix

is of this form. Also, the inclusion SR ⊂ StabRn is immediate after noting the relation

 I

−I


 A1

A2

 =

 A2

A1


 I

−I

 .
So now it remains to show StabRn ⊂ SR.

Now let us start from (C.6), where we are now using B1 ∈ StabRn ∩B(N) and B2 ∈ B(N) is

arbitrary — in particular, D2 = A3 ⊕ A4 is arbitrary. Our goal is now to show B1 ∈ SR.

From (C.8), we have

(C1C3A3 − S1S3A4)A1, (C1C3A4 − S1S3A3)A2 ∈ B(N/2). (C.11)

Since A3, A4 ∈ B(N/2) are arbitrary, we can choose A3 = A4 so that (C.11) yields

A1, A2 ∈ StabRn−1 . (C.12)

It follows then from (C.6) that now it suffices to find R4, D4 (defined as before) depending

only on D2, R1 such that

D2R1 = R4D4.
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This is possible since (C.12) yields then D4D1 is still a block diagonal butterfly matrix, with

then

B2B1 = R2(D2R1)D1 = R2(R4D4)D1 = (R2R4)(D4D1) ∈ B(N).

Now writing D4 = A5 ⊕ A6 for Ai ∈ B(N/2), we compute

 C1A3 S1A3

−S1A4 C1A4

 = D2R1 = R4D4 =

 C4A5 S4A6

−S4A5 C4A6


so that

C1A3 = C4A5, S1A3 = S4A6, S1A4 = S4A5, and C1A4 = C4A6. (C.13)

Since Ai ∈ SO(N/2), then (C.13) implies (C1, S1) = (±C4,±S4). Also, from (C.13) we have

if C1 6= 0, then A3 = ±A5, A4 = ±A6, while if S1 6= 0, then A3 = ±A6, A4 = ±A5. Hence,

if both C1 6= 0 and S1 6= 0, then we must have A3 = ±A4, but we are free to choose A3, A4

arbitrarily in B(N/2). It follows then necessarily (C1, S1) ∈ {(±1, 0), (0,±1)} so that

±R1 ∈

I,

 I

−I


 , (C.14)

and hence B1 = R1D1 ∈ SR by (C.12), and (C.14), showing now StabRn ∩B(N) = SR.

And last, we will prove (C.4). Using the fact BG(N) inherits a ring structure, we can write

Cn = {M ∈ BG(N) : [B,M ] = 0 for all B ∈ Bs(N)}.

The first inclusion Bs(N) ⊂ Cn is trivial since Bs(N) is abelian. So it remains to establish

the reverse inclusion, Cn ∩ B(N) ⊂ Bs(N). We will again use induction on n. The result is

trivial for n ≤ 1, since BG(2) = B(2) = Bs(2) = SO(2). Assume Bs(N/2) = Cn−1 ∩ B(N/2).
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Suppose first M ∈ Cn ∩ B(N), and fix B = B(θ) ⊗ A ∈ Bs(N) for A ∈ Bs(N/2). First, let

square P,Q, U, V be such that

M =

 P Q

U V

 .
Now it follows

0 = [B,M ] =

 cos θ[A,P ] + sin θ(AU +QA) cos θ[A,Q] + sin θ(AV − PA)

cos θ[A,U ] + sin θ(V A− AP ) cos θ[A, V ]− sin θ(AQ+ UA)

 .
Since θ is arbitrary, choosing θ = 0 yields [A,P ] = [A,Q] = [A,U ] = [A, V ] = 0, and then

choosing θ = π
2

yields also AU = −QA = −AQ and AV = PA = AP (using [A,P ] =

[A,Q] = 0), and hence U = −Q and V = P , so that now

M =

 P Q

−Q P

 =

 cosϕA1 sinϕA2

− sinϕA1 cosϕA2

 ,
using now also the fact M ∈ B(N). It follows

cosϕ(A1 − A2) = 0 = sinϕ(A1 − A2),

and hence A1 = A2. Also, since then

[A,P ] = cosϕ[A,A1] = 0 = sinϕ[A,A1] = [A,Q]

so that [A,A1] = 0 while A is arbitrary, we have also A1 ∈ Cn−1 ∩B(N/2) = Bs(N/2), using

the inductive hypothesis, establishing M ∈ Bs(N) and hence Cn ∩ B(N) = Bs(N), showing

(C.4) holds.

222



Note the previous proposition is useful in establishing that B(N) is not a subgroup of SO(N).

The next question is whether BG(N) = SO(N). This is trivially true for n ≤ 1 since then

SO(N) = B(N) ⊂ BG(N) ⊂ SO(N). I will show that this is false for n ≥ 2, but we get

equality if we add conjugation by permutation matrices.

Also, note the Orbit Stabilizer Theorem (C.1) doesn’t say anything too substantial here.

Since BG(N) · B(N) = 2BG(N) = B(N) · BG(N) isn’t finite (in fact, it has cardinality

strictly greater than the continuum — also, recall we are viewing these group actions on

the powerset of BG(N)), then StabLn and StabRn have infinite index in BG(N). However,

since Bs(N) · B(N) = {B(N)} (the singleton consisting only of the element B(N)), then

StabLBs(N)(B(N)) = Bs(N) since this has index 1 in Bs(N). Note though

H := StabRBs(N)(B(N)) = StabRn ∩Bs(N)

has infinite index in Bs(N): we see B(θ)H = B(ϕ)H if and only if B(ϕ)TB(θ)H = B(θ −

ϕ)H = H if and only if B(θ − ϕ) ∈ H if and only if θj ≡ ϕj (mod π
2
) for all j, so that the

cosets of H are in a one-to-one correspondence with [0, π
2
]N .
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Appendix D

Butterfly sectors

This will outline some specific properties that distinguish butterfly matrices from Haar or-

thogonal matrices.

Definition D.1. Let EN
1 = {−1, 1}N and for 2 ≤ j ≤ n,

EN
j = EN

j−1 ∩ {(x1,x2,y) ∈ {−1, 1}N : x1,x2 ∈ {−1, 1}N21−j ,x1 = ±x2}.

Note the construction of EN
n is such that the signs of the first 2m components are determined

by the signs of the first m components, and so on for m = 1, . . . , N/2. I will refer to such

x ∈ {−1, 1}N as a sector of SN−1 by implicitly referring to the associated open region in

SN−1 with that particular sign combination of its components, that is,

sgn−1(x) ∩ SN−1 = {y ∈ SN−1 : sgn(y) = x}

is the sector associated with x ∈ {−1, 1}N .
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Proposition D.1. For any x ∈ {−1, 1}N , B ∼ B(N,ΣS), and j ∈ [N ], we have

P(sgn(Bej) = x) =
1

2N
1ENn (x). (D.1)

In particular, the columns of B ∼ B(N,ΣS) have signs of its components distributed uni-

formly on EN
n .

Since Haar orthogonal or Haar simple orthogonal matrices have columns uniformly dis-

tributed on SN−1, then this result shows a clear distinction between random butterfly ma-

trices and Haar orthogonal matrices for n ≥ 2, since only 2N = 2n+1 of the 2N sectors are

covered by the columns of B(N).

Proof. I first claim the result is independent of j. This follows from noting the columns of

B ∼ B(N,ΣS) are equal in distribution. For example, to see the first two columns are equal

in distribution, we first note B(θ1, ϕ)e1 = B(θ1 + π
2

(mod 2π), ϕ)e2, since the transformation

that sends

 cos θ1

− sin θ1

 to

sin θ1

cos θ1

 involves first the maps θ1 7→ −θ1 followed by a reflection

about θ1 = π
4
, which is achieved by θ1 7→ θ1 − 2(θ1 − π

4
) = π

2
− θ1. The result then follows

since B(θ1, ϕ) ∼ B(θ1 + π
2

(mod 2π), ϕ), using also Lemma 1.8.

For general n and j, first note B ∼ Haar(Dj(N)) are invariant under permutation of the

underlying block diagonal rotation matrices. This follows since if σ ∈ SN is a permutation

matrix that corresponds to a permutation of two block diagonal entries, then σ ∈ AN since

there need be N/2j transpositions in σ. Hence, for

B = D1D2 · · ·Dn ∈ B(n),
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then there exist σi such that

B′ = D′1D
′
2 · · ·D′n ∈ B(n)

with D′i = Pσifi(Di)P
T
σi

for fi ∈ Aut(Di(N)) that yields the map on each block of θ 7→ θ+ π
2

(mod 2π) depending on the parity of j. This combines to yield Bej = B′e1.

A similar argument, making use of (2.10), involves another transformation to construct

another B′ ∼ B(N,ΣS) such that Bej = B′e1, along with the result B(θ1, . . . , θαn) ∼

B(θπ(1), . . . , θπ(αn)) for any π ∈ Sαn .

Now it suffices to show the result for j = 1, and we can assume almost surely Be1 has

nonzero components. I will use induction on n = log2N . Let n = 1 and fix x ∈ {−1, 1}2.

Then E2
1 = {−1, 1}2 has |E2

1 | = 4, while for

B =

 cos θ sin θ

− sin θ cos θ

 ∼ B(2,ΣS),

we have Be1 is uniformly distributed on S1, and hence

P(sgn(Be1) = x) =
1

4
=

1

4
1E1(x).

Now assume the result holds for k ≤ n. Now for B ∼ B(2N,ΣS), let independent A1, A2 ∼

B(N,ΣS) and θ ∼ Uniform[0, 2π) be such that

B =

 cos θA1 sin θA2

− sin θA1 cos θA2

 .
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Let x = (x1,x2) for xi ∈ {−1, 1}N . In particular, the inductive hypothesis yields

P(sgn(A1e1) = x1) = P(sgn(A1e1) = −x1) =
1

2n+1
1ENn (x1). (D.2)

Also, for reference, note by definition

1E2N
n+1

(x) = 1E2N
n

(x)1[x1=±x2](x) = 1ENn (x1)1[x1=±x2](x). (D.3)

We now calculate

P(sgn(Be1 = x) = P(sgn(cos θA1e1) = x1, sgn(sin θA2e1) = x2))

= P(sgn(cos θA1e1) = x1, sgn(sin θA1e1) = x2 | θ ∈ [0, π/2))P(θ ∈ [0, π/2))

+ P(sgn(cos θA1e1) = x1, sgn(sin θA1e1) = x2 | θ ∈ [π/2, π))P(θ ∈ [π/2, π))

+ P(sgn(cos θA1e1) = x1, sgn(sin θA1e1) = x2 | θ ∈ [π, 3π/2))P(θ ∈ [π, 3π/2))

+ P(sgn(cos θA1e1) = x1, sgn(sin θA1e1) = x2 | θ ∈ [3π/2, 2π))P(θ ∈ [3π/2, 2π))

=
1

4
P(sgn(A1e1) = x1)1[x1=x2](x) +

1

4
P(sgn(A1e1) = −x1)1[x1=−x2](x)

+
1

4
P(sgn(A1e1) = −x1)1[x1=x2](x) +

1

4
P(sgn(A1e1) = x1)1[x1=−x2](x)

=
1

4
P(sgn(A1e1) = x1)1[x1=±x2](x) +

1

4
P(sgn(A1e1) = −x1)1[x1=±x2](x)

=
1

2

1

2n+1
1ENn (x1)1[x1=±x2](x)) (by (D.2))

=
1

2n+2
1E2N

n+1
(x), (by (D.3))

so the result follows.

To see the columns of B ∼ B(N,ΣS) have signs distributed uniformly on EN
n , it is enough

to note |EN
n | = 2n+1. This follows from induction and (D.3), which gives |EN

n | = 2|EN/2
n−1|,

while |E2
1 | = 4. (Note (D.1) only yields |EN

n | ≥ 2n+1 since summing this probability over all

sign combinations must add up to 1.)
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