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Abstract

Depression is a common psychiatric disorder and a leading cause of disability worldwide. 

We conducted a GWAS meta-analysis of 6 datasets including >1.3 million individuals, hereof 

371,184 with depression, and identified 243 risk loci. 64 loci were novel, including genes 

encoding glutamate and GABA receptors that are targets for antidepressant drugs. Intersection 

with functional genomics data prioritized likely causal genes and revealed novel enrichment of 
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prenatal GABAergic neurons, astrocytes and oligodendrocyte lineages. We found depression to 

be highly polygenic, with ~11,700 variants explaining 90% of the SNP-heritability, estimating 

that >95% of risk variants for other psychiatric disorders (anxiety, schizophrenia, bipolar disorder 

and ADHD) were influencing depression risk when both concordant and discordant variants 

were considered, and nearly all depression risk variants influenced educational attainment. 

Additionally, depression genetic risk was associated with impaired complex cognition domains. 

We dissected the genetic and clinical heterogeneity, revealing distinct polygenic architectures 

across subgroups of depression and demonstrating significantly increased absolute risks for 

recurrence and psychiatric comorbidity among depression cases with the highest polygenic 

burden, with considerable sex-differences. The risks were up to 5- and 32-fold higher than cases 

with the lowest polygenic burden and the background population, respectively. These results 

deepen the understanding of the biology underlying depression, its disease progression and inform 

precision medicine approaches to treatment.

INTRODUCTION

Depression is a genetic and phenotypic complex psychiatric disorder with a lifetime 

prevalence of 15-20%1-3. It is often recurrent and accompanied by considerable morbidity 

and co-morbidity, excess mortality, increased risk of suicide and substantial costs 

worldwide4-8. Individuals diagnosed with depression have an increased risk of developing 

practically all other types of mental disorders, in particular anxiety, bipolar disorder, 

schizophrenia and substance use disorder (SUD)9,10. This relationship is generally bi-

directional (i.e. a significantly increased risk of comorbidity between depression and other 

types of psychiatric disorders, regardless of whether depression is diagnosed before or after 

a comorbid psychiatric disorder).

Heritability estimates based on twin studies (h2=0.37) have indicated that familial 

aggregation of depression is influenced by additive genetic effects11, and several previous 

studies have documented a considerable genetic overlap between depression and multiple 

psychiatric as well as somatic disorders and traits12-17. Despite the substantial heritability 

of depression and other psychiatric disorders, the potential for translating genetic insights 

into precision psychiatry has yet to be fulfilled, including demonstrating clinical utility of 

polygenic risk scores (PRS)18-20.

Major advancement in understanding the genetic architecture of depression has been 

achieved primarily via genome-wide association studies (GWAS) led by the Psychiatric 

Genomics Consortium (PGC). In 2021, GWAS results from the PGC12, UK Biobank 

(UKB)14,21, FinnGen24 and 23andMe, Inc.24 were combined with data from the Million 

Veteran Program (MVP) in a large meta-analysis25, identifying 178 risk loci. The identified 

loci explain a small fraction of the overall heritability of depression12,21,25 and even larger 

GWASs are needed to further elucidate genetic factors contributing to the risk of developing 

depression and advance genetically informed patient stratification and outcome prediction 

towards clinical utility.

Here, we present a large GWAS meta-analysis of depression which included expanded 

iPSYCH26 and FinnGen23 cohorts, as well as PGC, UKB, 23andMe and MVP data25, 
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revealing numerous novel risk loci and infer pathophysiologic implications of associated 

variants by intersecting with functional genomics data. We refine the genetic architecture 

of depression and case subgroups and demonstrate the impact of depression genetic risk 

on domains of cognitive performance. Leveraging nation-wide longitudinal health data 

on the Danish iPSYCH cohort, we dissect the genetic architecture of single-episode 

and recurrent depression as well as individuals who have developed anxiety, bipolar 

disorder, schizophrenia and SUD comorbidities. Furthermore, to inform precision psychiatry 

approaches, we calculate time-dependent absolute risks and hazard rate ratios for developing 

recurrent depression, anxiety, bipolar disorder, schizophrenia and SUD depending on 

different polygenic burdens of depression

RESULTS

Genome-wide association

We analyzed data from the large population-based case-cohort of iPSYCH26,27, which 

include genotypes from all individuals born in Denmark between 1981 and 2008 who 

have received treatment for depression in hospitals and outpatient clinics (ICD-10 codes 

F32-F33 in the Danish Psychiatric Central Research Register28). Compared to the latest 

GWAS of depression (from May 2021)25, which included 18,629 cases and 17,841 controls 

from the initial iPSYCH2012 cohort12,27, data from 11,710 individuals with depression and 

18,410 controls were included from the expanded iPSYCH2015 cohort26,27, which leads to 

a total of 30,618 individuals with depression and 38,200 controls after relatedness pruning 

and removal of ancestry outliers. In addition, we included an updated dataset consisting 

of 28,098 individuals with depression and 228,817 controls from the FinnGen23 study. 

When combining these with data from previously published samples from the PGC, UKB, 

23andMe and MVP, the number of samples added up to a total of 371,184 individuals with 

depression and 978,703 controls (Supplementary Table S1).

We performed a variance weighted fixed effects meta-analysis using METAL29, testing 

the effects of 6,037,120 single nucleotide polymorphisms (SNPs) common across all 

datasets. This revealed a total of 303 genome-wide significant linkage disequilibrium (LD)-

independent (r2<0.1) lead variants located in 243 distinct loci. A conditional association 

analysis using GCTA-COJO30,31 retained 251 independent SNPs in the 243 loci. Manhattan 

plots are shown in Figure 1A,B, regional plots are provided in Supplementary Figure S1 

(X chromosome in Supplementary Figure S2) and details on lead variants are provided 

in Supplementary Table S2A, while GCTA-COJO independent variants are listed in 

Supplementary Table S2B. No statistically significant heterogeneity was observed between 

the datasets (Supplementary Figure S3). 64 of the 243 loci were novel, i.e., not overlapping 

with the two most recent depression meta-analyses14,25 (Supplementary Figure S4 and Table 

S2A). The three most significant loci were located near NEGR1, in SORCS3 and in the 

HIST1 histone cluster, respectively. Among the novel loci, the three strongest associations 

were in BPTF, LINGO1 and GRIA1 (Table 1). All three genes have been associated with 

monogenic forms of neurodevelopmental disorders32-34 and GRIA1, encoding glutamate 

ionotropic receptor AMPA type subunit 1 (GluA1), implicates a role of AMPA receptors in 

the etiology of depression. We also note that the seventh-strongest novel locus is located in 
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GABRA1, which suggests a role of GABA receptors in developing depression. Both AMPA 

and GABA receptors are targets for antidepressants35,36.

Genetic correlations and heritability

Analyzing the GWAS meta-analysis by LD score regression (LDsc)37 produced a genomic 

inflation factor (λGC) estimate of 1.89 with an intercept of 1.06 (SE=0.01) and an 

attenuation ratio of 0.047 (SE=0.012) (Supplementary Table S3), indicating that 95% of 

the observed inflation of the test statistics (Supplementary Figure S5) is due to a polygenic 

signal rather than population structure. The individual GWASs (iPSYCH2015, Howard et al. 

201914, Wray et al. 201812, Levey et al. 202025 and FinnGen23) showed significant pairwise 

genetic correlations, ranging from rG=0.77 to rG=0.95 (Supplementary Table S4 and Figure 

S6), thus supporting that the GWAS results could be combined in a meta-analysis. We 

note that the SNP-heritability estimate37 for the iPSYCH cohort (ℎSNP
2 = 0 . 167, SE=0.014, 

prevalence=0.2) was significantly higher (range of ℎSNP
2  difference: 0.057 - 0.098) compared 

to the other cohorts (Supplementary Table S3 and Figure S7). This may reflect that the 

sample from the iPSYCH cohort is more homogeneous and includes a relatively young 

population, with early onset and severe cases of depression who have been treated in 

hospitals38.

We investigated genetic correlations between depression and other phenotypes available 

at LD Hub39 and in-house, including 258 published GWASs and 597 GWAS results 

for UKB traits. Depression was significantly correlated (P<2 x 10−4) with 364 

phenotypes representing several domains and confirmed previous observations12-15,40-45 

(Supplementary Table S5A and Figure S8A). Among psychiatric disorders, depression 

showed significant correlation with e.g., ADHD (rG=0.56, SE=0.022, P=1 x 10−135), 

autism (rG=0.35, SE=0.033, P=6.5 x 10−24), bipolar disorder (rG=0.31, SE=0.033, P=3 

x 10−18), schizophrenia (rG=0.33, SE=0.021, P=4 x 10−53), anxiety (rG=0.79, SE=0.017, 

P=3.2 x 10−193), alcohol dependence (rG=0.65, SE=0.097, P=4.3 x 10−9) and cannabis use 

disorder (rG=0.44, SE=0.036, P=2.2 x 10−31). In UKB data, the three strongest genetic 

correlations were seen for the phenotypes: “Seen doctor (GP) for nerves_ anxiety_ tension 

or depression”, “Mood swings” and “Miserableness” (rG=0.96, 0.71, 0.71, respectively; 

Supplementary Table S5B and Figure S8B).

To dissect the genetic overlap observations further, we used uni- and bivariate gaussian 

mixture modeling, as implemented in MiXeR46, to quantify the actual number of variants 

that (i) explain 90% of the SNP-heritability of depression, and (ii) overlap between 

depression and depression-correlated phenotypes. For comparison, we also included two 

phenotypes showing low genetic correlations with depression (height and Alzheimer’s 

disease) and one with moderate correlation (epilepsy). 11,750 (SE=310) common variants 

were estimated to confer liability to depression, suggesting that depression is the 

most polygenic of the major psychiatric disorders evaluated, showing number of risk 

variants ranging between 7,000-10,50046,47 (Figure 2, Supplementary Figure S9-1 and 

Supplementary Table S6A). MiXeR considers all variants irrespective of the direction 

of correlation (i.e. both variants with same and opposite direction of effects, hereafter 

collectively referred to as “influencing” variants). The vast majority of variants conferring 
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risk to the other psychiatric disorders investigated were found to influence depression (range 

87-99%; Figure 2; Supplementary Table S6A), most pronounced for anxiety, schizophrenia, 

bipolar disorder and ADHD47 with 95-99% of their risk variants also influencing depression. 

The other correlated traits also showed substantial overlap with depression (range 87-97%), 

while height and Alzheimer’s disease did not. We note that nearly all (99%) of the 

depression risk variants were found to influence educational attainment. The fraction of 

variants affecting both traits in the same (concordant) direction varied considerably; lowest 

for educational attainment (42%) and highest for SUD (86%) and anxiety (89%).

Local genetic correlations in 2,495 loci analyzed using LAVA48 (Supplementary Figure S9-2 

and Table S6B) generally supported the results of the MiXeR analyses. The proportion of 

loci with positive genetic correlations was significantly correlated with the proportion of 

MiXeR-estimated influencing variants with concordant effects (Pearson’s correlation r=0.76, 

P=0.0069, supplementary figure S9-3). Although LAVA estimates generally appear to be 

more extreme than MiXeR, these findings support the validity of MiXeR estimates of mixed 

effect directions (Supplementary Figure S9-1 and Supplementary Table S6A).

Gene-wise and pathway analysis

A genome-wide gene-based association study conducted in Multi-Marker Analysis of 

GenoMic Annotation (MAGMA)49, mapped the GWAS SNPs to 17,840 protein coding 

genes and revealed 411 genes significantly associated with depression, after Bonferroni 

correction for the number of genes tested (P<2.8 x 10−6). A total of 314 significant genes 

were located in 141 of the 242 identified GWAS loci, while the remaining 97 significant 

genes were located outside these loci (Supplementary Table S7D). The most significant gene 

within each of the 141 genomic risk loci is labeled in Figure 1C.

To investigate enrichment of biological pathways, we analyzed 8,664 gene-sets derived from 

GO Biological Process (N=7,658) and GO Cellular Components (N= 1,006) ontology in 

the MSigDB database, identifying 479 significant gene-sets after correction for multiple 

testing (FDR<0.05, Supplementary Table S8), which included several gene-sets that have 

not previously shown significant enrichment in depression14,25. The majority of the top-

ranking sets were related to neuronal development and function, including the five most 

significant gene-sets (Padj<10−14): GO_SYNAPSE, GO_NEURON PART, GO_SYNAPSE 

ORGANIZATION, GO_SYNAPSE ASSEMBLY and GO_NEURON DIFFERENTIATION.

Transcriptome-wide association and GWAS-eQTL prioritization

To identify and prioritize putative causal genes, we performed a transcriptome-wide 

association study (TWAS), imputing the genetically regulated gene expression using 

EpiXcan50 and models trained on expression data from the PsychENCODE Consortium51,52 

for genes and isoforms detected in the dorsolateral prefrontal cortex (DLPFC). Among 

34,646 transcripts (genes and isoforms) tested, we identified 2,541 transcripts at FDR<0.05 

and, after Bonferroni correction of all transcripts tested, 324 transcripts from 201 genes 

showed significant differential imputed gene expression (Bonferroni P-value threshold 

P=1.44x10−10) in DLPFC between depression and control groups (Supplementary Table 

S9). The Bonferroni significant transcripts were located in 88 independent regions53. The 
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top gene/isoform is labeled in Figure 1D and regional TWAS/GWAS Miami-plots for each 

of the 88 regions are shown in Supplementary Figure S10, six highlights are shown in 

Extended Data Figure 1. In 38 of the 88 regions, the top transcript was >100 times more 

significant than the second-most associated gene/isoform in the region (Supplementary 

Table S9B), appointing those as plausible causal candidates.

To further prioritize likely causal genes and variants, we performed co-localization analyses 

integrating fine-mapped GWAS results, using the CAUSALdb pipeline (Methods), and 

eQTL data from a meta-analysis of three brain datasets54 applying a fixed-effect model. 

First, we adopted the Coloc method55,56, which revealed 13 genes with strong evidence 

for both GWAS-association, eQTL-association and co-localization (i.e., with a posterior 

probability of PPH4>0.8; Supplementary Table S10). The three top-ranked genes were: 

FURIN, NEGR1 and CKS2. Secondly, we conducted the eQTL and GWAS CAusal Variants 

Identification in Associated Regions (eCAVIAR) approach57, in which both eQTL and 

GWAS were fine-mapped and the product of posterior probability (CLPP) was calculated, 

prioritizing variants with at least a single variant with CLPP >= 0.01. The eCAVIAR 

approach revealed five prioritized variants located in three genes: FURIN, GPR27 and TCTA 
(Supplementary Table S11 and Figure S11).

Tissue and cell type enrichment

We next tested whether the GWAS results were enriched with respect to the transcriptomic 

profiles of human tissues. At the specific tissue level, we found significant enrichment 

exclusively in brain tissues, including all the brain tissues analyzed (Bonferroni corrected 

P-value threshold P=0.00093, with P-values ranging from P=1.17x10−4 to P=8.36x10−13 

for the brain tissues, Supplementary Figure S12). Cell-type enrichment analyses revealed 

experiment-wide significant association (across all 13 datasets tested) of primarily neuronal 

cell-types, including dopaminergic and GABAergic neurons (P-values ranging from 

P=1.3x10−4 to P=5.8x10−11 for the significant associations after Bonferroni correction 

P= 1.87x10−4, Figure 3A and Supplementary Figure S13). Both GABAergic neurons and 

oligodendrocyte progenitor cells of the human prefrontal cortex were already enriched at 

prenatal stages.

To further evaluate cell-type enrichment, we intersected the GWAS results with two 

recent epigenomic maps of cell-specific open chromatin58,59 using an LD score partitioned 

heritability approach60. Again, we observed a clear contrast between the enrichments 

in the brain and non-brain tissue (Figure 3B). Consistent with our FUMA-based 

results and prior reports12,14, the strongest enrichments were measured for neuronal 

cell types, phenotypically manifested by severe synaptic loss and deficits in functional 

connectivity61,62. Conversely, the enrichments of genetic depression risk in astrocytes 

and oligodendrocyte lineages have not been reported previously, albeit having support in 

behavioral and postmortem studies63-65.

Association with cognitive performance

Educational attainment was among the traits showing strong negative genetic correlation 

with depression (Supplementary Table S5A). To further evaluate the impact of depression 
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genetic risk on cognition, we analyzed the association of depression polygenic scores (DEP-

PRS) with 15 cognitive measures in the Philadelphia Neurodevelopmental Cohort (PNC, 

N=4,973)66,67. Cognitive performance was measured by the Computerized Neurocognitive 

Battery68, including 14 tests in 5 domains: executive-control, episodic memory, complex 

cognitive processing, social cognition, and sensorimotor speed. In addition, the Wide 

Range Achievement Test (WRAT-4)69 was used as a proxy measure for overall IQ67. 

The depression-PRS was negatively associated with abstraction and mental flexibility 

(β=−0.039, SE=0.014, FDR=0.030, Figure 4, Supplementary Table S12A). Applying a 

narrower definition of depression (see Methods, Supplementary Table S13 and Figure S14) 

yielded moderately stronger negative associations, with attention, abstraction, and mental 

flexibility in the executive-control domain, and verbal reasoning in the reasoning domain 

surpassing statistical significance (Figure 4, Supplementary Table S12B). These results 

are consistent with observational studies reporting that individuals with depression display 

lower performance in cognitive domains such as executive function, memory, language and 

attention70-72, and demonstrate that genetic depression risk is associated with attenuated 

functioning in specific cognitive domains in a community cohort of youths (aged 8-21 at 

enrollment).

Polygenic architecture and co-morbidity rates for recurrency

To dissect the polygenic architecture of single-episode and recurrent depression, we used 

dates of diagnosis in the Danish Psychiatric Central Research Register to group the total of 

30,618 individuals with depression from the iPSYCH cohort into single episode (N=24,101) 

and recurrent depression (N=6,517) case groups (see Methods and Supplementary Table 

S14 for details). We conducted three GWASs: 1) single-episode vs control groups, 2) 

recurrent depression vs. control groups and 3) recurrent vs. single-episode depression 

groups (excluding all controls). SNP-heritability estimates were similar for recurrent and 

single-episode depression and, for the case-only analysis, not significantly different from 

zero (Supplementary Table S3 and Figure S7). Likewise, the genetic correlations with 

other phenotypes showed similar patterns for single-episode and recurrent depression 

(Supplementary Figure S15 and Table S15).

We next investigated the polygenic load for depression in the recurrent and single-episode 

case groups, using a multivariate polygenic risk score (mvPRS) approach15 and the 

depression GWAS meta-analysis14,25 without iPSYCH samples for training. This analysis 

showed significant association of single-episode (β=0.36, SE=0.0081, P<10−7) and recurrent 

depression (β=0.43, SE=0.014, P<10−7) case groups with PRS for depression (DEP-

PRS), but with a significantly larger effect size for recurrent than for single-episode 

depression (P=4.8 x 10−6, Supplementary Figure S16-1A and Supplementary Table 

S16A). This observed increased polygenic load among recurrent cases reinforces previous 

observations11,12,73,74.

To further dissect the genetic architecture of the two subgroups, we investigated the PRS 

load for psychiatric disorders and traits showing strong genetic correlation with depression 

including anxiety, bipolar disorder, schizophrenia, autism, ADHD, SUD, substance use and 

neuroticism (Supplementary Figure S16-1 and Supplementary Table S16A). The results 
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showed an overall pattern of increased PRS among recurrent depression compared to single-

episode case groups (P=0.00075), primarily driven by significantly different burdens of 

depression, anxiety, bipolar disorder, and neuroticism PRS.

To complement these analyses, we compared the rates of comorbid psychiatric disorders 

between individuals with single-episode and recurrent depression, using data from the 

Danish Psychiatric Central Research Register, and found highly significant increase 

in comorbidity among those with recurrent depression (Extended Data Table 1). This 

is consistent with well-established correlations between depression symptom severity, 

recurrence, chronicity and comorbidities75,76. The most compelling differences were 

observed for anxiety (OR=1.64, P=2 x 10−53), bipolar disorder (OR=1.86, P=3.1 x 10−27), 

schizophrenia (OR=1.76, P=9.6 x 10−48) and SUD (OR=1.64, P=3.7 x 10−32).

In summary, compared to individuals with single-episode depression, those with recurrent 

depression showed significantly increased polygenic load particularly for depression, 

anxiety, bipolar disorder and neuroticism-PRS as well as higher rates of comorbid 

psychiatric disorders.

Risk prediction of recurrent depression

To investigate whether PRS can prospectively predict recurrence among individuals with 

first-onset depression, we performed Cox’s regression analyses estimating hazard rate ratio 

(HRR) and absolute risk of developing a second episode of depression over time among 

individuals having a first diagnosis of depression in a hospital. This was done for groups 

with higher polygenic load, in PRS deciles. We found that the HRR of developing a second-

episode generally increased with higher depression-PRS, most significantly for the 10th 

DEP-PRS decile with HRR10/1=1.33 (SE=0.06, P=2.5 x 10−6) when compared to the first 

decile and HRR10/middle=1.14 (SE=0.04, P=0.001) or compared with the middle (2nd-9th) 

deciles (Figure 5, Supplementary Figure S17-1 and Table S17A). Similarly, the absolute 

risk of a second diagnosis of depression increased with time since the first diagnosis for all 

depression-PRS deciles, with the trajectories for the 10th decile reaching an absolute risk of 

38% compared to 29% and 33% for lowest and middle deciles, respectively (Figure 5).

Prompted by the results of the mvPRS analysis, we performed the same analysis for 

PRSs from other psychiatric disorders, which yielded significant results only for BP-PRS 

(HRR10=1.10, SE=0.04, P=0.021, Supplementary Figure S17-1 and Table S17A). The HRR 

for developing single-episode and recurrent depression in the general population can be 

found in Supplementary Figure S18.

Polygenic architecture of psychiatric comorbidities

Individuals diagnosed with depression are at an increased risk of developing other 

psychiatric disorders as documented in Extended Data table 1 and a large body of studies 
9,10, but little is known about the genetic constitution of those that develop these conditions. 

We examined the polygenic architecture of individuals with depression who have also 

developed anxiety, bipolar disorder, schizophrenia and/or SUD, using mvPRS analyses 

and PRSs from depression and eight psychiatric phenotypes genetically correlated with 

depression (Supplementary Table S5A and Figure S8A). This analysis showed that the 

Als et al. Page 10

Nat Med. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subgroup of individuals with depression with a co-diagnosis of anxiety had a significantly 

increased PRS for 5 out of 9 psychiatric phenotypes tested compared to those with 

depression without anxiety, i.e. DEP-PRS (P=4.9 x 10−10), ANX-PRS (P=1.8 x 10−14), 

SZ-PRS (P=7.4 x 10−05), ASD-PRS (P=0.021) and Neuroticism-PRS (P=1.5 x 10−13) 

(Extended Data Figure 2, see Supplementary Table S18A for differences in effect sizes 

between depression-subtypes). Likewise, individuals with depression who had transitioned 

to bipolar disorder had a significantly increased PRS for 3 out of 9 psychiatric phenotypes 

tested compared to those with depression without a later bipolar disorder diagnosis, 

including BP-PRS (P=6.1 x 10−17), SZ-PRS (P=3.7 x 10−12) and DEP-PRS (P=8.6 x 

10−5) (Extended Data Figure 3, see Supplementary Table S18D for differences in effect 

sizes between depression subtypes). Individuals with depression and a co-diagnosis of 

schizophrenia showed increased PRS load for all 9 psychiatric phenotypes except autism 

(Extended Data Figure 4, see Supplementary Table S12G for differences in effect sizes 

between depression subtypes), most significantly for SZ-PRS (P=1.1 x 10−14), BP-PRS 

(P=3.0 x 10−8), substance use (SU) PRS (P=1.8 x 10−5) and DEP-PRS (P=1.9 x 10−5). SUD 

comorbidities showed highly increased PRS loads for 8 out of 9 psychiatric phenotypes 

(Extended Data Figure 5, see Supplementary Table S18J for differences in effect sizes 

between depression subtypes and Supplementary Figure S19 for sex-stratified analysis), 

most significantly for SU-PRS (P=7.5 x 10−86), ADHD-PRS (P=3.9 x 10−32) and SUD-PRS 

(P=1.8 x 10−30).

Overall, we demonstrated that all four comorbid case groups (depression with anxiety, 

bipolar disorder, schizophrenia or SUD) have increased polygenic burdens of common risk 

variants for several psychiatric phenotypes compared to the non-comorbid depression case 

groups (overall mvPRS p-values: PDEP-ANX=1.2 x 10−21, PDEP-BP=1.5 x 10−15, PDEP-SZ=1.7 

x 10−15, PDEP-SUD=6.4 x 10−97), revealing an overall PRS pattern that distinguishes the 

comorbid case groups from their non-comorbid counterparts. We also note that all three 

comorbid subgroups showed an increased load of DEP-PRS compared to the depression-

only case groups.

Risk prediction of comorbid psychiatric disorders

To assess the utility of PRS in prediction of developing comorbid disorders, we performed 

Cox’s regression analysis on the depression case group with and without additional 

diagnosis of anxiety, bipolar disorder, schizophrenia and/or SUD. In addition to PRSs for 

the individual disorders, we included 4 aggregate scores, one for each disorder, combining 

all PRSs into a single score weighted by their association with anxiety, bipolar disorder, 

schizophrenia, and SUD respectively (see Methods).

For all 4 co-diagnoses, we found that the HRR increased with higher polygenic loads and 

was statistically significant for the 10th PRS decile compared to the middle deciles (Figure 

5 Extended Data Figure 6-9 and Supplementary Table S19-S22). This was the case for both 

the single-disorder PRSs and (more strongly) for the aggregate (SUM)PRSs. Similarly, the 

absolute risk trajectories showed significant differences across deciles for all co-diagnoses, 

most considerably for bipolar disorder and SUD with absolute risks for the 10th aggregate 
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PRS decile reaching 13% and 21%, respectively, representing a 3.25 (bipolar disorder) and 

5.25 (SUD) fold increase in risk compared to the least burdened (1st decile) case groups.

Performing sex-specific analyses revealed substantial differences in absolute risks between 

the sexes (Supplementary Figures S20-S23), most considerably for developing SUD and 

schizophrenia. For SUD, male risks reached 35%, 15% and 6% for PRS decile 10, middle 

and 1, respectively, while female risks were 15%, 7% and 3%. For schizophrenia, the risks 

for males were 25%, 13% and 13% compared to 9%, 8% and 8% for females.

The overall most differentiating absolute risks for developing a comorbid disorder were seen 

for males in the top aggregate PRS decile, reaching risks of 35% and 25% for developing 

SUD and schizophrenia, respectively, in contrast to the lowest decile case groups (both 

sexes) with risks of 4% (SUD) and 8% (schizophrenia) and the background population 

without a depression diagnosis with risks of 2% (SUD) and 1% (schizophrenia) for the 

middle deciles.

In comparison to the background population without any depression diagnoses, the absolute 

risks for the top decile case groups were between 7 and 30 times higher. Particularly for 

SUD risk, the top decile of the background population surpassed the risk of the lowest decile 

case group (Figure 5J).

DISCUSSION

We performed a depression GWAS meta-analysis of more than 1.3 million individuals, 

identifying 251 independent risk variants in 243 genomic loci, of which 64 are novel. 

We prioritized likely causal genes and revealed novel enrichments of neuro-developmental 

and functional pathways, prenatal GABAergic neurons, astrocytes and oligodendrocyte 

lineages. Dissecting the genetic and clinical heterogeneity, we identified distinct polygenic 

architectures across subgroups of depression and demonstrated increased, sex-dependent, 

risks for recurrence and psychiatric comorbidity among depression cases with the highest 

polygenic burden, informing precision psychiatry approaches.

Among the novel loci, we highlight GRIA1 and GABRA1, encoding a glutamate 

ionotropic AMPA type 1 receptor subunit (GluA1) and a GABA receptor subunit (α1), 

respectively (Supplementary Table S2). The two genes also showed significant imputed 

differential expression in the DLPFC (Supplementary Table S9) in our TWAS77-79. 

Our pathway analysis reinforced previous reports12,14,25 and extended the enrichment of 

glutamatergic and GABAergic synapses and functions, further indicating that glutamatergic 

and GABAergic dysfunctions are key etiologic components in depression. Along with the 

observed enrichment of GABAergic cell-types already present during the prenatal stage, this 

supports the accumulating multidisciplinary evidence that implicate excitatory/inhibitory 

imbalance with depression80 and other psychiatric disorders81-84.

Our TWAS found that GRIA1 expression in DLPFC was decreased in the depression case 

group compared to control. This is consistent with findings in preclinical pharmacological 

studies of mood disorders showing promising results of AMPA receptor potentiators36, 

as well as the convergent rapid and sustained increase in GluA1 and other synaptic 
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proteins associated with most fast-acting antidepressants35. Thus, our results provide human 

genetic evidence that emphasizes positive modulation of the AMPA receptor as a potential 

pharmacological approach.

In contrast to a reported decrease in GABRA1 expression in the DLFPC in individuals 

with suicidal depression85,86, our TWAS pointed to an increased expression in individuals 

with depression. GABAA receptors provide critical inhibitory control of the firing of 

glutamatergic excitatory neurons and they are the binding partner of several drugs in mood 

disorders and potential drug targets for other psychiatric disorders87-89. Antidepressant 

effects have been associated with pharmacological modulation of both synaptic90 and extra-

synaptic GABAA receptors91, and our findings support the further study of pharmacological 

modulators of these receptors in the treatment of depression.

We also highlight convergent lines of evidence for a neurodevelopmental component in 

depression, emanating from: (i) novel loci (e.g. the top three novel loci located in genes 

associated with Mendelian neurodevelopmental disorders), (ii) pathway analyses showing 

enrichment of gene-sets related to neuronal development, (iii) enrichment of prenatal cell-

types, (iv) association of depression genetic risk with attenuated cognitive performance in a 

community youth cohort and (v) MiXeR analyses showing substantial genetic overlap with 

autism, ADHD and schizophrenia. Although partly overlapping, these results implicate a 

role of neurodevelopmental processes in the etiology of depression.

The MiXeR bivariate Gaussian mixture modeling revealed compelling genetic overlap 

between depression and other traits when considering both concordant and discordant 

variants, suggesting that psychiatric disorders and correlated traits are substantially 

more intertwined than indicated by their genetic correlations. The most drastic results 

were observed for educational attainment, showing that 99% of the depression risk 

variants are also influencing educational attainment and, vice-versa, 88% of educational 

attainment variants are influencing depression. This almost complete overlap in influencing 

variants, with a majority of discordant variants (58%), is consistent with overall negative 

genetic correlation between the two traits (rG=−0.23) and refines the understanding of 

their polygenic architecture appreciably. Although generally less pronounced, a similar 

picture was observed for the other mental health and behavioral traits examined. These 

results corroborate and extend previous results on partly older and smaller GWASs92. A 

combination of (altogether) only around 10,000-15,000 variants appear to explain 90% of 

the SNP heritability of the investigated major psychiatric disorders and correlated behavioral 

and cognitive traits. This narrows the search-space for risk variants to around 1% of the 106 

quasi-independent SNPs genome-wide and indicates that it is mainly the size and directions 

of the SNP effects, rather than different SNPs/loci, that influence the development of a 

specific psychiatric disorder. Furthermore, the considerable overlap suggests that future 

fine-mapping efforts to pinpoint the causal variants could increase power by combining data 

from traits with overlapping influencing variants when accounting for the directional effects.

In the Danish iPSYCH cohort, we assessed PRS-based predictions for developing recurrent 

depression and psychiatric comorbidity over time and demonstrated statistically significant 

differences in hazard rates and absolute risks between individuals with depression in the 
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highest PRS deciles compared to other deciles for all the outcomes (developing recurrence, 

anxiety, bipolar disorder, schizophrenia or SUD).

The iPSYCH cohort includes relatively young individuals (mean age 23.37 years, SE=6.9, at 

follow-up December 31st 2016) and thus, a substantial number of those with depression will 

develop recurrent depression and/or comorbidities later in life. This indicates that observed 

risks, and likely also the differences across PRS deciles, will increase further over time. 

Moreover, risk prediction could probably be improved by including other risk factors such 

as e.g. family history93 and clinical/phenotypic variables, as it has been shown in other 

complex disorders94.

Our findings have potential clinically relevant applications. For instance, in clinical settings, 

a targeted effort could be envisaged that offers more frequent monitoring for development 

of e.g. bipolar disorder, schizophrenia or anxiety among individuals with depression or those 

who have the highest PRS (or, preferably, combined genetic and clinical risk) to obtain early 

diagnosis and initiate early treatment, which may have beneficial effects95,96. Similarly, 

identifying individuals with depression at high genetic risk for developing SUD could be an 

actionable and informative point of attention for both the physician and the patient and, with 

focused intervention measures97, possibly preventing the subsequent development of SUD 

(i.e. the primary prevention of secondary comorbidities98). Validation in clinical settings of 

such potential applications is warranted in the future18,98.

Our study has several limitations. Our analyses focused on individuals with European 

ancestry in order to avoid confounding from population substructure and admixture. We 

performed several analyses to assess the generalizability to individuals of diverse and 

admixed genetic ancestry but much larger samples are needed to address this important 

aspect. Another basic limitation is that still most of the risk loci remain to be discovered and 

scrutinized to inform on the pathophysiology. Additionally, studies in clinical settings are 

needed to assess the clinical utility of our findings.

In conclusion, we have advanced the understanding of the genetic architecture of depression, 

the genetically driven pathophysiology and the prediction of pertinent outcomes that should 

be informative for future precision psychiatry approaches in depression.

METHODS

Samples

The iPSYCH2015 sample is a nation-wide population sample extracted from a baseline 

cohort consisting of all children born in Denmark between May 1, 1981, and December 31, 

2008, who were alive and resided in Denmark on their one-year birthday, and who have 

a known mother25,26. Individuals diagnosed with one (or more) of six major psychiatric 

disorders (ADHD, autism, depression, bipolar disorder, schizophrenia, anorexia) were 

identified via the Danish Psychiatric Central Research Register27, which includes data on 

all individuals treated in Denmark at psychiatric hospitals (from 1969 onward) as well 

as at outpatient psychiatric clinics (from 1995 onward). A random sample from the same 
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birth cohort were chosen as control group. The iPSYCH2015 cohort consists of the initial 

case-cohort sample iPSYCH201226 and the recent extension iPSYCH2015i25.

Individuals with a ICD10 F32-F33 diagnosis in 2016 or earlier were considered as 

depression cases and the random population-based sample excluding individuals with a 

depression diagnosis were used as controls. All individuals diagnosed with bipolar disorder 

were excluded, except for the analyses involving co-occurrence of depression and bipolar 

disorder diagnosis. Depression cases were divided into two groups; 1) individuals diagnosed 

with a single episode of depression, and 2) those fulfilling the criteria for recurrent 

depression. The date of the first depression episode for each individual was defined as 

the start date of the first contact in the Danish Psychiatric Central Research Register with 

an ICD-10 code of F32-F33 diagnoses at an age of 10 years or older. When defining later 

depression episodes only contacts with the ICD-10 codes: F32, F33.0-F33.3, F33.8-F33.9 

were considered. Individuals with the ICD-10 code F33.4 “Major depressive disorder, 

recurrent, in remission” were omitted because these contacts are unlikely to indicate a 

new episode of depression. Only ICD-10: F32, F33.0-F33.3, F33.8-F33.9 diagnosis at 

dates later than 60 days after the end date for all previous ICD10: F32-F33 diagnosis 

were considered as new episodes of depression, thus categorizing that individual as having 

recurrent depression.

In addition to depression phenotypes, individuals with the following diagnoses were 

recorded in the iPSYCH sample: bipolar disorder (F30-F31), schizophrenia (F20), substance 

use disorders (SUD) (F10-F19, excluding F1X.0 acute intoxication), anxiety (anxiety 

disorders; F40-F43), autism (autism spectrum disorder; F84.0, F84.1, F84.5, F84.8 or F84), 

ADHD (F90.0).

In the iPSYCH2015 cohort25, we have added 11,710 depression cases and 18,410 controls 

to the iPSYCH2012 sample12,26, summarizing to a total of 34,095 cases and 45,393 controls 

prior to relatedness pruning and removal of ancestry outliers (Supplementary Table S14). 

A total of 30,618 cases and 38,200 controls were retained after relatedness pruning and 

removal of ancestry outliers. Of these, 6,517 had recurrent episodes of depression (see 

definition below), while 24,101 were classified as single-episode depression cases.

The number of cases with an additional psychiatric diagnosis (bipolar disorder, 

schizophrenia, anxiety, autism, ADHD, SUD) are shown in Extended Data Figure 2. When 

comparing these frequencies with published estimates of lifetime prevalence three main 

factors are important to keep in mind: (i) The investigated Danish iPSYCH cohort is young 

(individuals born between 1981-2008; mean age 23.37 years at follow-up), (ii) phenotypes 

are based on register-based hospital-diagnoses and (iii) people with early onset of affective 

disorders have a greater absolute risk of developing schizophrenia and related disorders, 

compared to those with later onsets9. Life-time risk of hospital-diagnosed schizophrenia 

and depression (ICD10 F32-F33) in the Danish population has been estimated to 1.75% 

(average of 1.93% in males and 1.56% in females) and 12.3% (average of 9.07% in males 

and 15.5% in females), respectively3. Extended Data Figure 2 shows that the frequencies of 

schizophrenia and depression in the young, randomly selected iPSYCH-population-sample 

are 1% and 2.7%, respectively, based on register-based hospital diagnosis. Schizophrenia 
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has relatively early onset, while depression has relatively late onset, hence the relatively 

low observed 2.7% frequency of depression in the random population-based sample of 

iPSYCH. Thus, the young iPSYCH sample is likely to capture relatively severe early-onset 

depression cases with a high risk for developing schizophrenia9. These factors explain the 

apparently high frequency of depression-cases with a schizophrenia co-diagnosis observed 

in the iPSYCH sample. As the iPSYCH cohort grows older, and more individuals develop 

depression, we will expect the frequency of schizophrenia co-diagnosis among depression 

cases to be reduced.

Whether recurrent depression was associated with increased comorbidity compared to 

single-episode depression was tested using logistic regression for each additional diagnosis 

while adjusting for age. Individuals were grouped in five-year age bins to construct dummy 

variables for the age adjustment (Extended Data Figure 2).

All analyses of the iPSYCH sample were performed at the secured national GenomeDK 

high-performance computing cluster in Denmark.

Genotyping, QC and imputation

iPSYCH2015 samples were linked via the unique national personal identification number 

to the Danish Neonatal Screening Biobank (DNSB) at Statens Serum Institute (SSI), where 

DNA was extracted from Guthrie cards, and whole-genome amplification was performed in 

triplicate, as described previously99,100.

Genotyping in iPSYCH2012 was performed using the PsychArray V1.0 (Illumina, San 

Diego, California), while genotyping of iPSYCH2015i was done using the Global Screening 

Array v2 (Illumina, San Diego, California). Since the two samples were genotyped on 

different platforms, they were QCed and imputed separately.

Genotyping of the iPSYCH2012 sample was performed at the Broad Institute of Harvard 

and MIT (Cambridge, MA, USA) with PsychChip arrays from Illumina according to the 

manufacturer’s instructions. Genotype calling of markers with MAF≥0.01 was performed 

by merging call sets from GenCall 1.6.2.2101 and Birdseed 1.6102, and less frequent 

variants (MAF<0.01) were called with zCall 1103. Genotyping and data processing were 

carried out in 23 waves. Genotyping of the iPSYCH2015i sample was performed at Statens 

Serum Institut (SSI, Copenhagen, Denmark) using the Global Screening Array v2 with a 

multi disease drop in (Illumina, San Diego, California) according to the manufacturer’s 

instructions. Genotype calling of markers was performed using GenTrain V3. Preimputation 

quality control was performed separately for each genotyping wave using the Ricopili104 

pipeline with the specified parameters in the following order. Initially SNPs with a call 

rate<0.95 were removed, and subsequently all individuals with a call rate in cases or controls 

of<0.95 or an autosomal heterozygosity deviation FHET outside the interval [−0.2;0.2] 

were removed. Individuals where stated sex was not consistent with sex derived from 

genotypes were flagged. Subsequently QC was conducted at the marker level, keeping 

markers with call rate ≥0.98, missing difference ≤0.02 between cases and controls, with 

MAF≥0.01, Hardy-Weinberg equilibrium (HWE) in controls P-value ≥1x10−06 and Hardy-
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Weinberg equilibrium (HWE) in cases P-value ≥1x10−10 (See https://sites.google.com/a/

broadinstitute.org/ricopili/preimputation-qc for further details).

The effects of three batch variables on marker genotypes were tested in iPSYCH2012 

(ArrayPlate.ID, PreProc.Plate and wave) and iPSYCH2015i separately (Array.Batch, 

ArrayPlate.ID and PreProc.Plate). This was done using relatedness-pruned dataset with 

ancestry outliers removed to avoid removal of markers where batch effects were caused by 

population structure or cryptic relatedness rather than genotype artefacts.

Pairwise relatedness coefficients π  were estimated with plink using a LD pruned and MAF 

filtered set of SNPs (snps-only, window size=5,000, step size=300, r2<0.05, MAF>0.05). 

Principal Component Analysis was conducted using the same set of LD pruned and MAF 

filtered SNPs, with random removal of one member of each pair with a relatedness 

coefficient π  higher than 0.2. Eigenvectors were inferred using EIGENSOFT version 

6.1.4105 on the relatedness-pruned set of individuals, and subsequently projecting all 

individuals onto those eigenvectors based on their genotypes. Individuals with all four 

grandparents born in Denmark were used as a reference for constructing a 3-dimensional 

ellipsoid using principal components 1, 2 and 3 with a radius of 5 standard deviations 

from the mean. Individuals located outside this ellipsoid were removed prior to the testing 

for batch effects. For each of the batch variables, each genotyped marker was tested for 

association with each batch versus the remaining batches pooled, using plink v1.90b4.

The exclusion of SNPs strongly associated with any of the batch-variables were based 

on their minimum P-value across all associations per variable. The cut-off for the wave 

and Array.Batch was min(P) <2x10−10 and for PreProc. Plate and ArrayPlate.ID min(P) 

<2x10−12, based on a Bonferroni correction for the number of markers tested and the 

number of associations done per batch-variable taking into account that batch variables are 

nested.

After removing SNPs falling for any of the above cut-off the remaining distribution was 

evaluated using QQ-plots. The expected minimum P-distribution was calculated using the 

inverse cumulative distribution of N independent distributions as suggested in supplementary 

of Schork et al.106, N being the number batch-variable values.

iPSYCH2012 and iPSYCH2015i were imputed separately using the Ricopili pipeline104. All 

23 genotyping waves of iPSYCH2012 were imputed together. Prephasing was done using 

Eagle v2.3.5107 and the subsequent imputation was conducted using Minimac3108, using the 

downloadable version of the Haplotype Reference Consortium (HRC) (accession number: 

EGAD00001002729)109 as reference.

Relatedness pruning and removal of ancestry outliers

Best guess genotypes from iPSYCH2012 and iPSYCH2015i were merged, filtered and 

LD-pruned down to a set of roughly 30K markers, with imputation INFO score >0.8, 

r2<0.075, located outside regions of long-range LD as defined by Price et al.110, minor 

allele frequency >0.05 and no deviation from Hardy-Weinberg proportions (P>1x10−4). 

Relatedness coefficients, based on “identity-by-state”, were estimated using plink v1.9, to 
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identify related (and duplicated samples), with π > 0 . 2 and removing related individuals 

at random, but preferring cases over controls. PCA was carried out using the same set of 

filtered and LD-pruned SNPs as implemented in the Ricopili-pipeline104. A subsample of 

European ancestry was selected as an ellipsoid in the space of PC1-3 centered and scaled 

using the mean and 8 standard deviation of the subsample whose grandparents were all 

known to be born in Denmark.

All the analyses described below were conducted using the relatedness and ancestry pruned 

dataset, but some analyses were in addition also performed among ancestry outliers (see 

below, Supplementary Figures S24-S28 and Supplementary Tables S23-S28). A second 

PCA was performed on the sample excluding ancestry outliers, using EIGENSOFT105 as 

implemented in the Ricopili-pipeline104, which was used for adjusting for any remaining 

population substructure in downstream analyses.

FinnGen

The FinnGen22 (https://www.finngen.fi/en) study combines genotype data with longitudinal 

health register data of Finland, including the causes of death, inpatient, outpatient, and 

drug reimbursement registers. Subjects were genotyped with Illumina and Affymetrix 

arrays (Illumina Inc., San Diego, and Thermo Fisher Scientific, Santa Clara, CA, USA) 

as described (https://www.finngen.fi/en/researchers/genotyping). Genotyping and imputation 

with the Finnish population-specific SISu v3 reference panel were conducted, as described 

(https://www.protocols.io/view/genotype-imputation-workflow-v3-0-xbgfijw). SNPs were 

pruned for minor allele frequency (MAF) ≥0.01 and imputation info score >0.6. GWAS 

was performed using the Scalable and Accurate Implementation of GEneralized mixed 

model (SAIGE) v0.20111 with a kinship matrix as a random effect and age, sex, the first 10 

principal components (PCs), and genotyping batch as fixed effects.

A GWAS for depression was conducted in FinnGen22 release 6 samples containing 28098 

cases (ICD-10/9: F32 or F33) and 228817 controls without manic episodes (ICD10 F30), 

bipolar affective disorder (ICD-10: F31, ICD-9: 296[2-7], ICD8: 296), persistent mood 

disorders (ICD10: F34) or other or unspecified mood disorder (ICD10: F38, F39, ICD-8: 

29699). Mood (affective) disorders (ICD-10 F30-F39) from FinnGen release 2 was included 

in the latest depression GWAS meta-analysis by Levey et al. 24, but the current study 

includes depression cases (ICD-10 F32-F33) from FinnGen release 6 for the first time.

A GWAS for anxiety disorders was conducted in the FinnGen22 release 6 sample consisting 

of 7,671 cases with a generalized anxiety disorder (ICD-10: F41.1, ICD-9: 3000C, ICD-8: 

300,00), panic disorder (ICD-10: F41.0; ICD-9: 3000B, 3002B) or phobic anxiety (ICD-10: 

F40, ICD-9: 3002C, 3002D, 3002X) diagnoses and 161,438 controls without a history 

of any psychiatric diagnoses (ICD-10: F00-F99, ICD-9: 290-319, ICD-8: 290-315). With 

ICD-9 codes the first three digits signify numerical value (e.g., the code 3002B is included 

in the code range 290-319). Cases with psychotic disorders (ICD-10: F2; ICD-9: 295, 

297, 298; ICD-8: 295, 297, 298), autism spectrum disorders (ICD-10: F84.0, F84.1, F84.5; 

ICD-9: 2990; ICD-8: 299,99) or intellectual disability (ICD-10: F7, ICD-9: 317-319; ICD-8: 

311-315) were excluded. Additionally, the age range of controls was adjusted to match 

to that of cases and a more stringent filtering on imputation info score was used for the 
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anxiety GWAS (INFO>0.8). This GWAS of core anxiety in the FinnGen22 cohort was 

meta-analyzed with a GWAS of self-report of physician diagnosis of anxiety in the MVP112, 

with the purpose of generating weights for an ANX-PRS (see below).

Million Veteran Program

Research involving MVP24,112 in general is approved by the VA Central IRB (MVP025 

19-02); the project was also approved by IRBs in Boston, San Diego, and West Haven.

Statistical analysis

GWAS analyses—Genome-wide-association analyses within iPSYCH were conducted 

using the Ricopili pipline104, applying a logistic regression model using dosages of the 

imputed genotypes. Analyses were adjusted for PC 1-10 from the second PCA using the 

remaining subsample after removal of ancestry outliers and pruning for relatedness. In 

addition, individuals with a diagnosis of bipolar disorder were excluded.

Summary statistics from iPSYCH2015 and the following external samples were included in 

a fixed-effects variance-weighted meta-analysis in METAL28: 1) 230,118 broadly defined 

depression cases and 545,339 controls from Howard et al. 201914, including self-reported 

depression of 23andMe23 and the broadly defined depression phenotype of UKB, 35,077 

narrowly defined depression cases and 95,406 controls from Wray et al. 201812, excluding 

23andMe23; 2) depression phenotypes from the Million Veteran Program (MVP)24 based on 

ICD codes derived from electronic health records (83,810 cases and 166,405 controls); 3) 

28,098 cases with ICD-10 F32 and/or F33 diagnoses and 228,817 controls from FinnGen22. 

For comparison, we also conducted a GWAS and several downstream analyses using a 

narrower definition of depression that excluded self-reported depression of 23andMe12,23 

and the broadly defined depression phenotype of UKB14,21 (Supplementary Figure S14, 

Table S13). The results of the downstream analyses were very similar to the primary 

analyses without noteworthy differences, except for the DEP-PRS analysis of cognitive 

performance in the PNC cohort, which is mentioned in the results section.

SNP-heritability, genetic correlations and overlap with other phenotypes—We 

estimated SNP-heritability (h2
SNP) for iPSYCH2015 cases with depression, single-episode 

and recurrent depression and for the external GWAS summary statistics outlined above 

using LD score regression36. Genetic correlations within iPSYCH and between iPSYCH 

and external GWAS summary statistics was estimated using LD score regression36. In 

addition, the genetic correlations of depression meta-analysis, single-episode and recurrent 

depression with other phenotypes were, evaluated using LD score regression113 at the LD 

Hub38 website. We used all available phenotypes on LD Hub, but we performed analyses 

for the UKB traits (N=597) and the remaining individual phenotypes (N=258) separately. 

To make our analyses more comparable to previous publications, and to avoid overly 

conservative correction of the many highly correlated traits, levels of experiment-wide 

significance (Bonferroni correction for number of tests applied) were also established 

separately within the two groups, i.e. in the UKB traits (P<8.38 x 10-5) and the remaining 

individual phenotypes (P<0.00019), respectively. LD Hub traits were supplemented with LD 

score regression36 analyses performed locally using updated or in-house GWAS summary 
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statistics for traits not available at LD-hub. These include ADHD, autism15, cannabis use 

disorder39, cannabis use114, alcohol dependence115, drinks per week, smoking ever116, age 

of initiation as a regular smoker, current versus a former smoker (smoking cessation), 

number of cigarettes per day, smoking initiation117

We applied MiXeR45 on our depression GWAS summary statistics and a selection of 

additional traits (Supplementary Table S6A, Figure 2 and Supplementary Figure 9-1) to 

estimate (i) the number of variants explaining 90% of the SNP heritability of each trait and 

(ii) the genetic overlap between depression and each trait. The additional traits included in 

the analyses are ADHD46, anxiety (FinnGen22 + MVP112), autism15, bipolar disorder118, 

educational attainment119, Neuroticism120, schizophrenia121, Smoking Initiation117 and 

substance use disorder (SUD)39,115. For comparison we included non-psychiatric traits, i.e. 

Alzheimer122, epilepsy123 and height124 not necessarily expected to show strong genetic 

correlations with depression. MiXeR analysis were conducted with default settings (https://

github.com/precimed/mixer) in a two-step process: 1) a univariate model for each trait to 

produce estimates of the proportion of variants with non-zero additive genetic effect on 

the trait (i.e. “polygenicity”) and the variance of effect sizes of these non-zero variants 

(i.e. “discoverability”’). 2) the variance estimates obtained in the univariate analysis were 

applied in the bivariate model (i.e. depression vs. each of the additional traits) to obtain 

four estimates representing (i) zero-effect SNPs in both traits; (ii) SNPs with a specific 

non-zero effect on trait 1; (iii) SNPs with a specific non-zero effect on trait 2; and (iv) SNPs 

with a non-zero effect on both traits. Estimates of polygenic overlap and genetic correlation 

between pairs of traits were obtained by combining these four components.

As a complementary to MiXeR we estimated local genetic correlations (rg) of depression 

and the additional traits listed above using LAVA47. LAVA estimates local rg across 2,495 

semi-independent genetic loci of approximately equal size (~1 Mb) in a two-step process: 

1) univariate analysis: the observed h2
SNP is estimated for each locus for each trait. 2) 

bivariate analysis: the local genetic covariance is estimated for each locus using the method 

of moments. Genetic loci included in the bivariate analysis were filtered according to their 

local h2
SNP using a significance threshold of P<10−4, consistent with previous usage of 

LAVA47,91. Sample overlap was controlled using linkage disequilibrium score regression36. 

Significance testing was performed using simulation-based P-values and we used the false 

discovery rate (FDR) to adjust for multiple testing, reporting loci with FDR<0.05.

While the genetic correlation analysis provides a summary measure of the genomewide 

correlation of SNP effect sizes, the bivariate MiXeR analysis estimates the number of 

overlapping SNPs/loci between the two traitsregardless of the direction of effects (i.e. both 

concordant and discordant effects) and calculates the fraction of concordant variants. For 

instance, a genetic correlation of zero can be seen for traits that have no overlapping 

risk SNPs as well as for traits that have completely overlapping risk SNPs with 50% 

concordant and 50%discordant effect directions. So, as the huge overlap observed between 

depression and educational attainment (Supplementary TableS6A and Figure S9-1) is based 

on a majority of discordant variants (58%) (and fewer concordant variants (42%)), it is 

consistent with the overall negative correlation observed between the two traits.
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As additional validation of MiXeR results, we tested the hypothesis that MiXeR- and LAVA-

derived measures of mixed effect directions were correlated, we calculated the Pearson 

correlation coefficient for 1) the proportion of shared “causal” variants with concordant 

effects (i.e causal variants affecting both traits in the same direction) estimated using 

MiXeR and 2) the proportion of significantly correlated genetic loci with positive correlation 

estimated using LAVA91(see Supplementary Figure S9-3).

Conditional analysis and finemapping—We identified potential independent genome-

wide significant lead variants for each of the broadly defined genome-wide-significant loci 

of our GWAS meta-analysis results104 using the following approach: For each genome-wide 

significant SNP we defined the associated LD-region by recording the left and rightmost 

variant with r2 ≥ 0 . 1, assigning the SNP with the lowest P-value within each LD-clump 

as the index SNP. Index SNPs were considered independent when r2 < 0 . 1 within 3 Mb 

windows. To define GWAS loci, a 50kb window was added on each side of the LD-region 

and overlapping LD-regions were combined into a single locus, assigning the index SNP 

with the lowest P-value as lead SNP. Only a single SNP was kept from within the MHC 

region, due to extended linkage disequilibrium and a strong association signal of the MHC 

region (chr 6:25-35 Mb).

To identify additional independent index variants, we performed a stepwise model 

selection procedure to select independently associated SNPs implemented in GCTA-

COJO29,30. We assigned posterior probabilities (PP) of being causal to SNPs and 

constructed credible sets of SNPs that cumulatively capture 95% of the regional 

posterior probability125 using PAINTOR126-128, CAVIARBF and FINEMAP129, using the 

CAUSALdb-finemapping-pipeline (https://github.com/mulinlab/CAUSALdb-finemapping-

pip). We applied a conservative approach and assumed one causal variant for each locus.

Co-localization analyses were performed to evaluate the extent of overlap between eQTL 

and GWAS signatures in depression and to identify putative causal genes from GWAS 

associations. Considering only the 95% credible SNPs from the fine-mapped depression-

meta-analysis, we integrated GWAS results and eQTL data from a previous meta-analysis 

integrating signals among three brain datasets53 applying a fixed-effect model. The eQTL 

data originates from eQTL meta-analysis on RNA-sequenced gene expression data from the 

dorsolateral prefrontal cortex from PsychENCODE50 and ROSMAP130, and from 13 brain 

regions from GTEx131.

Using the Coloc method54,55, we extracted eQTL signals of genes within 200 kb distance 

to significant GWAS variants (P<5 x 10−8) using effect sizes (β-values) and standard errors 

from eQTL and GWAS as input. Four partially hierarchical hypotheses55 were tested: H0, 

no association; H1, GWAS association only; H2, eQTL association only; H3, both GWAS 

and eQTL association but no co-localization; H4, both GWAS and eQTL association and 

co-localization, considering posterior probability for H4 (PPH4) >0.8 as strong evidence 

from both GWAS, eQTL and co-localization. In addition, we conducted the eQTL and 

GWAS CAusal Variants Identification in Associated Regions (eCAVIAR) approach56, in 

which, both eQTL and GWAS were fine-mapped, and the product of posterior probability 

(CLPP) was calculated, prioritizing genes with at least a single variant with CLPP>=0.01.
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Gene-wise and pathway analysis—We used a number of different approaches and 

data including those available via the FUMA v1.3.6a48 website (http://fuma.ctglab.nl) for 

downstream annotation and functional characterization of significant loci.

We performed a genome-wide gene-based association analysis using the Multi-Marker 

Analysis of GenoMic Annotation (MAGMA) tool, as implemented in FUMA version 

1.3.6a48. Using this we mapped SNPs from the depression GWAS meta-analysis to 17,840 

protein coding genes, and performed Bonferroni correction for the total number of protein-

coding genes (P<2.8 x 10−6, Supplementary Table S7D).

Protein coding genes were mapped if they were located within 10Kb up- or downstream 

from index variants or if a credible variant was annotated to the gene based on eQTL data 

or chromatin interaction data from human brain (data sets used in the mapping can be 

found in Supplementary Table S7A). No additional variant filtering by functional annotation 

was applied in the eQTL and chromatin interaction mapping. This analysis identified 

411 depression risk genes, which were used in a gene-set enrichment analysis within the 

GENE2FUNC module of FUMA, where we analyzed 8,664 gene-sets derived from GO 

Biological Process (N=7,658; 393 gene-sets) and GO Cellular Components (N=1,006; 86 

gene-sets) ontology in the MSigDB database.

Tissue and cell type enrichment—We also used FUMA to perform tissue expression 

analyses on data available through their website, by testing whether the identified genetic 

associations for both the primary and narrow depression phenotype definitions were 

enriched regarding transcriptome profiles of human tissues using summary statistics based 

on all SNPs. Finally, we used FUMA to perform cell-type enrichment analyses48 based the 

depression GWAS summary statistics. We use MAGMA gene-property analysis to test cell 

type specificity of the depression phenotype using GWAS summary statistics. MAGMA 

gene-property analysis with scRNA-seq: The gene-property analysis aims to test for 

relationships between cell specific gene expression profiles and disease-gene associations. In 

all the above-mentioned analyses implemented in FUMA default settings were applied.

To further evaluate whether the genomic loci implicated in depression are enriched 

in any particular cell type, we intersected common depression risk variants with two 

recent epigenomic maps of cell-specific open chromatin57,58 using a LD score partitioned 

heritability approach59 (Figure 3B).

Transcriptome-wide association study—In addition, we performed a transcriptome-

wide association study (TWAS), imputing the genetically regulated gene expression 

using EpiXcan49 and using models trained on PsychENCODE Consortium (PEC)50,51 

expression data for genes and transcripts detected in the dorsolateral prefrontal cortex 

(DLPFC), with the aim of identifying and prioritizing putative causal loci for the 

broad depression phenotype definition. A total of 34,646 genes/transcripts were tested 

(transcripts with prediction performance R2>0.01 and prediction performance q-value 

<0.05 with the Benjamini-Hochberg method were retained), and applying a significance 

threshold of P<1.44x10−6 (corresponding to Bonferroni correction of all genes and isoforms 

tested; Figure 1D, Extended Data Figure 1, Supplementary Figure S10 and Table S9), 
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using information on approximately independent linkage disequilibrium blocks in human 

populations52 to identify independent genomic regions with genes/transcripts showing 

significant differential gene expression between depression cases and controls.

Polygenic risk scores—Using available summary statistics form published GWAS 

as training datasets, we calculated polygenic risk scores (PRS) for individuals in the 

iPSYCH2015 sample using LDpred2132. Summary statistics were filtered for an imputation 

info score INFO≥0.9 if available. When using external summary stats not processed using 

Ricopili or imputed using different imputation references, we excluded all ambiguous 

markers to avoid potential strand conflicts. To improve performance of the scores and avoid 

including artefacts from batch effects, we restricted the summary stats to include only SNPs 

known to be present in both the iPSYCH2012 and iPSYCH2015i data at a reasonable quality 

(info score 0.6 and MAF 0.05). This step also checked for allele flips.

To derive a PRS for depression within the iPSYCH2015 sample we used the depression 

meta-analysis12,14,23,24 excluding all iPSYCH samples as training. We also calculated PRS 

based on GWAS summary statistics from bipolar disorder118, schizophrenia121, ADHD13 

and autism15. The PRS for ADHD was based on a combination of “external” GWAS 

sumstats (without iPSYCH data) and “internal” training in the iPSYCH sample. The 

iPSYCH sample was split into 10 groups, and in 10 iterations of leave-one-out, the 

PRS was calculated for individuals in each of the 10 groups using a GWAS performed 

on the remaining 9 groups as training. A fixed-effect variance-weighted meta-analysis, 

implemented in METAL28, of two GWAS for anxiety, one based on self-report of physician 

diagnosis of anxiety in the MVP112 and the other being core anxiety in the FinnGen cohort22 

(see above), served as weights for generating an ANX-PRS summarizing genetic risk of 

anxiety. To derive a PRS for neuroticism we used GWAS summary stats of a weighted 

neuroticism sum-score, constructed by adding up ten individual item responses (Fed-up, 

Guilt, Irr, Miss, Mood, Tense, Nerv feel, Suf Nerv, worry emb and worry) by Nagel et al.120. 

In addition, we calculated PRSs using the following GWAS summary stats for traits related 

to substance-use and substance-use-disorder as training datasets. These include cannabis use 
disorder39(excluding iPSYCH samples, i.e., training only based on data from PGC and data 

from decode genetics), cannabis use114, alcohol dependence115, drinks per week, smoking 
ever116, age of initiation as a regular smoker, current versus a former smoker (smoking 
cessation), number of cigarettes per day, smoking initiation117. All summary statistics 

were combined in a pseudo-meta-analysis, using the a fixed-effects variance-weighted meta-

analysis implemented in METAL28, to generate a SUD-PRS summarizing genetic liability of 

substance use disorder.

With the aim at improving the PRS prediction we attempted to exploit the genetic overlap 

of depression with other phenotypes. We therefore combined all the above PRSs into a 

single score as a weighted sum15. We chose here to use the log(OR) for the logistic 

regression of sub-phenotype of interest on each score as a continuous factor as a measure of 

‘importance’ in context of the sub-phenotype of interest (either recurrent vs. single-episode 

or depression with additional diagnosis of bipolar disorder, schizophrenia or SUD). The 

logistic regressions were adjusted for the first 10 PCs of the second PCA mentioned above. 

We added each standardized PRS weighted by its log(OR) one PRS at the time to the 
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aggregated score. We started with the phenotype with highest abs(log(OR)) and ended with 

the lowest. This way we ended up with a sequence of scores starting with S0 and continuing 

with:

Sk =
∑i = 1

k log ORPi SPi − μ ∑i = 1
k log ORPi SPi

σ ∑i = 1
k log ORPi SPi

Where SPi is the score for phenotype Pi, ORPi the odds ratio from the logistic regression of 

sub-phenotype of interest on SPi as a continuous factor while adjusting for 10 PCs, and μ is 

the mean and σ the standard deviation.

To examine potential polygenic heterogeneity across depression sub-phenotypes, we 

investigated how PRS trained on the different phenotypes described above were distributed 

across depression sub-phenotypes in iPSYCH using a multivariate PRS approach both in a 

sex-stratified and in an unstratified analysis. The method is described in detail in Grove et 

al.15, and is a regression of multiple outcome variables, and in principle a linear regression 

for each PRS on the depression sub-phenotypes allowing for comparisons on the average 

PRS across sub-phenotypes for PRS from a number of phenotypes adjusting for necessary 

covariates. Since the variance-covariance matrix is fitted jointly and accounting for the 

covariance the inherent correlation between scores is adjusted for when estimating variance 

and in the hypothesis testing. We performed four mvPRS analyses testing for differences 

among depression-subtypes; depression cases who have developed (1) anxiety, (2) bipolar 

disorder, (3) schizophrenia or (4) SUD. Each of the four multiple regression analyses tests 

for individual and distinct hypotheses, one for each PRS, and the reported P-values are not 

corrected for multiple testing. Bipolar disorder cases were excluded from the analyses not 

involving bipolar disorder.

In addition, we applied a Cox’s proportional hazard model to estimate hazard rate ratios and 

absolute risk of developing 1) a second episode of depression, 2) anxiety, 3) bipolar disorder, 

4) schizophrenia and 5) SUD, among individuals already being diagnosed with their first 

episode of depression. Analyses were stratified by PRS deciles of the phenotypes described 

above and using functions from the R-packages survival (https://CRAN.R-proiect.org/

package=survival)133,134. while correcting for batch (iPSYCH2012 and iPSYCH2015i) and 

PCs. The Cox’s proportional hazard models were stratified into three groups based on 1st, 

2nd-9th and 10th decile. The middle 2nd–9th decile group, i.e. the 80% prediction interval 

of the PRS, was used as reference. Two-sided 95% confidence intervals were obtained 

for the stratified absolute risk trajectories using Cox’s proportional hazards model with 

covariates135, taking the mean of each covariate (PC 1-5 and iPSYCH sample) and using 

the survfit.coxph function implemented in the survival R-package. All Cox’s analyses were 

conducted for both sexes combined and for females and males separately. In addition, HRR 

and absolute risk of developing 1) anxiety, 2) bipolar disorder, 3) schizophrenia, and 4) SUD 

were estimated in the iPSYCH subcohort excluding all depression cases, to obtain estimates 

in the general Danish population for comparison with the iPSYCH depression-cohort.
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Depression-PRS in the Philadelphia Neurodevelopmental Cohort (PNC)

Depression-PRS (DEP-PRS) were calculated for 4,973 individuals of European ancestry 

from the Philadelphia Neurodevelopmental Cohort (PNC)65,66 using the primary depression 

GWAS meta-analysis (and narrowly defined depression GWAS meta-analysis) of the current 

study as training. Genotypes from the first PNC release (dbGaP phs000607.v1.p1) and 

neurocognitive phenotypes from the third release (dbGaP phs000607.v3.p2) were utilized. 

Individuals whose genotypically inferred and phenotypically reported sex did not match, 

those who did not meet the identity by descent (IBD) filter (π > 0 . 185), those who did not 

meet the individual-level missingness filter of 0.05, and those with heterozygosity rates +/− 

three standard deviations from the mean were removed. SNPs that failed to meet the Hardy-

Weinberg proportions (HWP), minor allele frequency (MAF), and SNP-level missingness 

filters of 0.00001, 0.01, and 0.05, respectively, were also removed. Genotype imputation was 

performed using the reference panel HRC r1.1 2016 on the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html#!). selecting the “Mixed population” 

option. Imputed SNPs with an imputation R2<0.03 and those who failed to meet the 

missingness, MAF, and HWP thresholds stated above were removed. The first two Multi-

Dimensional Scaling (MDS) dimensions were plotted to identify and remove outlier 

genotypes. The GemTools package in R136,137 and Ward’s hierarchical clustering methods 

were used to identify individuals of European ancestry.

PRS-CS138 was used to apply continuous shrinkage priors to the effect sizes from depression 

GWAS summary statistics. A European LD reference panel provided by the developers 

of PRS-CS was utilized (https://github.com/getian107/PRScs), which draws from the 1000 

Genomes Project data. The following PRS-CS default settings were used: parameter a in the 

γ-γ prior=1, parameter b in the γ-γ prior=0.5, MCMC iterations=1,000, number of bum-in 

iterations=500, and thinning of the Markov chain factor=5. The global shrinkage parameter 

phi was set using a fully Bayesian determination method. Individual-level DEP-PRS were 

calculated using Plink v2.0139. The associations between scaled (mean=0, SD=1) DEP-PRS 

and 15 scaled (mean=0, SD=1) neurocognitive phenotypes in the PNC were assessed using 

linear regression of phenotypes on DEP-PRS.

The neurocognitive phenotypes included performance on the Computerized Neurocognitive 

Battery (CNB)67, as well as results from the Wide Range Achievement Test (WRAT-4). 

A k − x transformation (where k is a constant) was performed on CNB measures of 

age differentiation, emotion differentiation, spatial memory, and verbal reasoning, as their 

distributions were left-skewed. A log10(k - x) transformation was performed on CNB 

measures of abstraction and mental flexibility, attention, verbal memory, and working 

memory, as their distributions were left-skewed. A log10 x  transformation was performed 

on the WRAT-4 measure while a 1/x transformation was performed on the CNB measure 

of sensorimotor processing, as their distributions were right-skewed. For the CNB measure 

of emotion identification, a k − x transformation was performed on the PEIT-AB form 

of the task and a log10 k − x  transformation was performed on the PEIT-C, PEIT-D, and 

PEIT-E forms of the task, each due to their left-skew. For the CNB measure of nonverbal 

reasoning, a k − x transformation was performed on the PMAT-18B form of the task due 

to its left-skew, while a x transformation was performed on the PMAT-24A form of the 
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task due to its right-skew. No transformations were performed on CNB measures of facial 

memory, finger tapping speed, and spatial reasoning. Neurocognitive phenotype scores were 

multiplied by −1, following data transformation and scaling, when needed so that higher 

scores always indicate better performance across the assessed tasks.

Covariates included in the analysis were age at neurocognitive testing, age squared, the first 

10 MDS dimensions, sex, and genotyping batch. R2 was used to report the total variance 

explained by DEP-PRS and model covariates for the 15 tested neurocognitive phenotypes. 

Additionally, a variance partitioning tool140 (https://github.com/GabrielHoffman/misc_vp/

blob/master/calcVarPart.R) was used to determine the variance explained by DEP-PRS and 

each covariate individually. FDR-adjusted p-values were reported.

Ancestry outliers

Ancestry outliers (10%) were removed to avoid confounding from population substructure 

and admixture. To assess generalizability of our main results, we conducted depression-

GWAS of the ancestry-outliers using the Ricopili and adjusting for the first 10 principal 

components (Supplementary Figure S24A and S24B). This GWAS showed a high genetic 

correlation (rG=0.95, SE=0.24, P=1x10–4) with our primary depression meta-analysis as 

shown in Supplementary Table S23. Sign-tests of overall replication of the direction of 

effects for various GWAS P-value thresholds using our primary meta-analysis as discovery 

sample and the iPSYCH2015 ancestry outliers as replication sample, showed an overall 

replication ratio of 0.59-0.64 (Supplementary Table S24). This suggests that many more 

findings would likely replicate, provided a much larger and more powerful sample, in 

other non-European ancestries. Previous GWAS of depression using trans-ancestral meta-

analysis24 generally supports the transferability of GWAS results across ancestries.

In addition, we performed the multivariate PRS and the Cox’s proportional hazard analyses 

of recurrent depression using the ancestry outlier sample (Supplementary Figure S25-S28 

and Supplementary Table S25-S28D), adjusting all analyses for the first 10 principal 

components and iPSYCH2012/iPSYCH2015i. The ancestry outlier mvPRS analyses 

(Supplementary Figure S25) showed similar directions of differences in DEP-PRS and 

Neuroticism-PRS for single vs. recurrent depression as in the corresponding analysis of 

the sample with European ancestry (see Supplementary Figure S16-1, Supplementary Table 

S16A), although none of the differences appeared to be significant (Supplementary Table 

S25). For ANX-PRS and BP-PRS, however, the observed differences in the European 

sample were not reproduced for the ancestry outliers. Likewise, for the Cox’s regression 

analyses, the observed differences in HRR and absolute risk of developing a second 

episode of depression between10th and middle DEP-PRS and DEP-SUM-PRS deciles 

in the European ancestry sample (Supplementary Figure S17-1) were not reproduced 

in the ancestry outliers (Supplementary Figure S26). Regarding psychiatric comorbidity 

among depression cases a similar pattern of increased load of ANX-PRS, SZ-PRS and 

Neuroticism-PRS among depression cases with comorbidity for anxiety was observed in the 

European ancestry (Extended Data Figure 2, Supplementary Table S18A) sample and in the 

ancestry outlier sample, although non-significant in the latter except for Neuroticism-PRS 

(Supplementary Figure S27A and Table S27A). For depression cases with/without bipolar 

Als et al. Page 26

Nat Med. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/GabrielHoffman/misc_vp/blob/master/calcVarPart.R
https://github.com/GabrielHoffman/misc_vp/blob/master/calcVarPart.R


disorder, the same direction of differences observed significantly in the European sample 

(Extended Data Figure 3, Supplementary TableS18D), was observed for BP-PRS and SZ-

PRS in the sample of ancestry outliers, but only significantly so for the BP-PRS (P=0.013, 

Supplementary Figure S27B and Table S27B). The direction of differences was not 

reproduced for the DEP-PRS and ASD-PRS. Regarding comorbidity with schizophrenia, the 

same direction of differences in DEP-PRS, SZ-PRS, ADHD-PRS, ASD-PRS, Neuroticism-

PRS, SU-PRS and SUD-PRS, among depression cases with / without schizophrenia, as 

significantly observed in the European sample (Extended Data Figure 4, Supplementary 

Table S18G), was also observed in the sample of ancestry outliers, while the difference 

appeared to be opposite for the BP-PRS (Supplementary Figure S27C and Table S27C). 

The direction of differences significantly observed in the European sample, with increased 

PRS among depression cases with SUD compared to cases without (Extended Data Figure 

5, Supplementary Table S18J), was reproduced in the ancestry outlier sample except for the 

Neuroticism-PRS (Supplementary Figure S27D and Table S27D).

The general pattern of differences in HRR and absolute risk of developing comorbidity 

for schizophrenia and SUD in the 10th compared to the middle deciles, that was observed 

in the European sample (Extended Data Figure 8-9 and Supplementary Tables S21A and 

S22A) was also reflected in SZ-SUM-PRS and SUD-SUM-PRS of the ancestry outliers 

(See Supplementary Figure S28-3 and S28-4, and Supplementary Tables S28C and S28D). 

Notably, there was a tendency for a higher risk of developing SUD among depression cases 

inlOth decile compared to the middle deciles of the BP-PRS, SU-PRS and SUD-PRS, and 

less clear for the DEP-PRS, ANX-PRS and SZ-PRS (Supplementary Figure S28-4 and Table 

S28D). Regarding risk of comorbidity for anxiety and transitioning into bipolar disorder, the 

differences between 10th and middle deciles observed in the European sample (Extended 

Data Figure 6-7 and Supplementary Table S19A and S20A) was, however, not clearly 

reflected in the ancestry outliers (Supplementary Figure S28-1 – S28-2 and Supplementary 

Table S28A and S28B).
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Extended Data

Extended Display Figure 1: 
Highlighted Regional Miami plots of GWAS and TWAS results, corresponding to the 

genomic region of (A) GABRA1, (B) CYP7B1, (C) DCC, (D) CTTNBP2, (E) FURIN 

and (F) GIGYF2 genes/transcripts (1Mbp window from start site). Top panels: GWAS 

results (black dots): The x-axis shows genomic position, and the y-axis shows significance 

as −log10(P) of z statistics (two-sided nominal P-values); blue line corresponds to P=1×10–

5, orange line to P=5×10–8 (genome-wide significance). Bottom panels: TWAS results: 

The x-axis shows genomic position. The y-axis shows significance as −log10(P) of z 

statistics (two-sided nominal P-values) for genes represented by both gene expression and 

isoform expression. Green triangles facing upwards or downwards for a positive or negative 

association z-score (Wald test; two-sided P-values) respectively (up- or down-regulation); 
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transcripts with Bonferroni-adjusted (for all reliably imputed transcripts) P-value<0.1 

are labelled; orange line corresponds to Bonferroni-adjusted P=0.05. Each Bonferroni-

significant transcript is connected with lines to the SNPs contributing to its transcriptomic 

imputation model; lines are grey when the SNPs have a P>1×10–5, blue when P<1×10–5 

but orange when P<5×10–8. The SNPs that are above the blue line and contribute to the 

transcriptomic imputation models of significant transcripts are labelled. See Supplementary 

Figure S19-1 to S19-88 and Table S19.
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Extended Display Figure 2: 
MvPRS analyses of depression cases with/without anxiety (ANX). Depression-

subphenotype is shown on the x-axis (NDEPwoANX=22114, NDEPwoANX=7044 and 

Nctrls=38142). The slope (β) of the linear regression (95% CI) for each depression 

subphenotype is shown on the y-axis. Significant difference between β for depression 

without/with an additional diagnosis is indicated with horizontal line with nominal two-

sided P-value above, i.e. the Wald test of equal group effect (see Supplementary Table 

12A). Overall two-sided P-value=1.2e-21. Cases with bipolar disorder were excluded. The 

polygenic risk scores analyzed are (A) PRS for depression (DEP-PRS), (B) PRS for anxiety 

(ANX-PRS), (C) PRS for bipolar disorder (BP-PRS), (D) PRS for schizophrenia (SZ-PRS), 

(E) PRS for ADHD (ADHD-PRS), (F) PRS for autism (ASD-PRS), (G) PRS for neuroticism 

(Neuroticism-PRS), (H) PRS for substance use (SU-PRS), and (I) PRS for substance use 

disorder (SUD-PRS). See Supplementary Table S12B, S12C, Supplementary Figure S14-1 

and S14-2 for sex-stratified analyses.
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Extended Display Figure 3: 
MvPRS analyses of depression cases with/without bipolar disorder (BP). Depression-

subphenotype is shown on the x-axis (NDEPwoBP=29158, DEPwBP, N=1460 and 

Nctrls=38200). The slope (β) of the linear regression (95% CI) for each depression 

subphenotype is shown on the y-axis. Significant difference between β for depression 

without/with an additional diagnosis is indicated with horizontal line with nominal two-

sided P-value above, i.e. the Wald test of equal group effect (See Supplementary Table 12D). 

Overall two-sided P-value=1.5e-15. The polygenic risk scores analyzed are (A) PRS for 
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depression (DEP-PRS), (B) PRS for anxiety (ANX-PRS), (C) PRS for bipolar disorder (BP-

PRS), (D) PRS for schizophrenia (SZ-PRS), (E) PRS for ADHD (ADHD-PRS), (F) PRS for 

autism (ASD-PRS), (G) PRS for neuroticism (Neuroticism-PRS), (H) PRS for substance use 

(SU-PRS), and (I) PRS for substance use disorder (SUD-PRS). See Supplementary Table 

S12E, S12F, Supplementary Figure S14–1 and S14-2 for sex-stratified analyses.

Extended Display Figure 4: 
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MvPRS analyses of depression cases with/without schizophrenia (SZ). Depression-

subphenotype is shown on the x-axis (NDEPwoSZ=25253, NDEPwSZ=3905 and Nctrls=38142). 

The slope (β) of the linear regression (95% CI) for each depression subphenotype is shown 

on the y-axis. Significant difference between β for depression without/with an additional 

diagnosis is indicated with horizontal line with nominal two-sided P-value above, i.e. 

the Wald test of equal group effect (see Supplementary Table 12G). Overall two-sided 

P-value=1.7e-15. Cases with bipolar disorder were excluded. The polygenic risk scores 

analyzed are (A) PRS for depression (DEP-PRS), (B) PRS for anxiety (ANX-PRS), (C) PRS 

for bipolar disorder (BP-PRS), (D) PRS for schizophrenia (SZ-PRS), (E) PRS for ADHD 

(ADHD-PRS), (F) PRS for autism (ASD-PRS), (G) PRS for neuroticism (Neuroticism-

PRS), (H) PRS for substance use (SU-PRS), and (I) PRS for substance use disorder (SUD-

PRS). See Supplementary Table S12H, S12I, Supplementary Figure S14-1 and S14-2 for 

sex-stratified analyses.

Als et al. Page 33

Nat Med. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Display Figure 5: 
MvPRS analyses of depression cases with/without substance use disorder (SUD). 

Depression-subphenotype is shown on the x-axis (NDEPwoSUD=25620, NDEPwSUD=3538 

and Nctrls=38142). The slope (β) of the linear regression (95% CI) for each depression 

subphenotype is shown on the y-axis. Significant difference between β for depression 

without/with an additional diagnosis is indicated with horizontal line with nominal two-

sided P-value above, i.e. the Wald test of equal group effect (see Supplementary Table 

12J). Overall two-sided P-value=6.4e-97. Cases with bipolar disorder were excluded. The 
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polygenic risk scores analyzed are (A) PRS for depression (DEP-PRS), (B) PRS for anxiety 

(ANX-PRS), (C) PRS for bipolar disorder (BP-PRS), (D) PRS for schizophrenia (SZ-PRS), 

(E) PRS for ADHD (ADHD-PRS), (F) PRS for autism (ASD-PRS), (G) PRS for neuroticism 

(Neuroticism-PRS), (H) PRS for substance use (SU-PRS), and (I) PRS for substance use 

disorder (SUD-PRS). See Supplementary Table S12K, S12L, Supplementary Figure S14-1 

and S14-2 for sex-stratified analyses.

Extended Display Figure 6: 
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Left subpanels: Absolute risk (95%-CI) of developing anxiety since first depression episode 

for three groups of PRS deciles (1st, 2nd-to-9th and 10th) among 25124 depression cases 

with/without (NDEPwANX=3010, NDEPwoANX=221 14) anxiety. The absolute risk (95%-CI) 

of anxiety in light blue for the iPSYCH2015 subcohort (random population sample) 

excluding all depression cases, aligned to match the endpoint for the depression-cohort. 

Right subpanels: HRRs (95%) for 1st and 10th decile using 2nd-to-9th decile as reference 

(see Supplementary Table S13A) in colors matching the absolute risks curves. For deciles 

of (A) Depression DEP-PRS, (B) Anxiety ANX-PRS, (C) Bipolar disorder BP-PRS, (D) 

Schizophrenia SZ-PRS, (E) ADHD-PRS, (F) Autism ASD-PRS, (G) Neuroticism-PRS, (H) 

Substance Use SU-PRS, (I) Substance Use Disorder SUD-PRS and (J) sum of PRSs. The 

SUM-PRS was calculated by adding PRSs for multiple phenotypes weighted by log(OR) 

with the aim of optimizing prediction (see methods for details). See Supplementary Figure 

S15-1 – S15-2 and Supplementary Table S13B - S13C for sex-stratified analyses.
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Extended Display Figure 7: 
Left subpanels: Absolute risk (95%-CI) of transitioning into bipolar disorder since first 

depression episode for three groups of PRS deciles (1st, 2nd-to-9th and 10th) among 30300 

depression cases with/without (NDEPwBP=1142, NDEPwoBP=29158) anxiety. The absolute 

risk (95%-CI) of anxiety in light blue for the iPSYCH2015 subcohort (random population 

sample) excluding all depression cases, aligned to match the endpoint for the depression-

cohort. Right subpanels: HRRs (95%) for 1st and 10th decile using 2nd-to-9th decile as 

reference (see Supplementary Table S14A) in colors matching the absolute risks curves. 
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For deciles of (A) Depression DEP-PRS, (B) Anxiety ANX-PRS, (C) Bipolar disorder BP-

PRS, (D) Schizophrenia SZ-PRS, (E) ADHD-PRS, (F) Autism ASD-PRS, (G) Neuroticism-

PRS, (H) Substance Use SU-PRS, (I) Substance Use Disorder SUD-PRS and (J) sum of 

PRSs. The SUM-PRS was calculated by adding PRSs for multiple phenotypes weighted by 

log(OR) with the aim of optimizing prediction (see methods for details). See Supplementary 

Figure S16-1 – S16-2 Supplementary Tables S14B – S14C for sex-stratified analyses.

Extended Display Figure 8: 
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Left subpanels: Absolute risk (95%-CI) of developing schizophrenia since first depression 

episode for three groups of PRS deciles (1st, 2nd-to-9th and 10th) among 28714 depression 

cases with/without (NDEPwSZ=1606, NDEPwoSZ=27108) anxiety. The absolute risk (95%-

CI) of anxiety in light blue for the iPSYCH2015 subcohort (random population sample) 

excluding all depression cases, aligned to match the endpoint for the depression-cohort. 

Right subpanels: HRRs (95%) for 1st and 10th decile using 2nd-to- 9th decile as reference 

(see Supplementary Table S15A) in colors matching the absolute risks curves. For deciles 

of (A) Depression DEP-PRS, (B) Anxiety ANX-PRS, (C) Bipolar disorder BP-PRS, (D) 

Schizophrenia SZ-PRS, (E) ADHD-PRS, (F) Autism ASD-PRS, (G) Neuroticism-PRS, (H) 

Substance Use SU-PRS, (I) Substance Use Disorder SUD-PRS and (J) sum of PRSs. The 

SUM-PRS was calculated by adding PRSs for multiple phenotypes weighted by log(OR) 

with the aim of optimizing prediction (see methods for details). See Supplementary Figure 

S17-1 – S17-2 and Supplementary Tables S15B – S15C for sex-stratified analyses.
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Extended Display Figure 9: 
Left subpanels: Absolute risk (95%-CI) of developing SUD since first depression episode 

for three groups of PRS deciles (1st, 2nd-to-9th and 10th) among 27249 depression cases 

with/without (NDEPwSUD=1629, NDEPwoSUD=25620) anxiety. The absolute risk (95%-CI) 

of anxiety in light blue for the iPSYCH2015 subcohort (random population sample) 

excluding all depression cases, aligned to match the endpoint for the depression-cohort. 

Right subpanels: HRRs (95%) for 1st and 10th decile using 2nd-to-9th decile as reference 

(see Supplementary Table S16A) in colors matching the absolute risks curves. For deciles 
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of (A) Depression DEP-PRS, (B) Anxiety ANX-PRS, (C) Bipolar disorder BP-PRS, (D) 

Schizophrenia SZ-PRS, (E) ADHD-PRS, (F) Autism ASD-PRS, (G) Neuroticism-PRS, (H) 

Substance Use SU-PRS, (I) Substance Use Disorder SUD-PRS and (J) sum of PRSs. The 

SUM-PRS was calculated by adding PRSs for multiple phenotypes weighted by log(OR) 

with the aim of optimizing prediction (see methods for details). See Supplementary Figure 

S18-1 – S18-2 and Supplementary Tables S16B – S16C for sex-stratified analyses.

Extended Display Table 1:

Number of comorbid diagnoses among depression subtypes: single-episode and recurrent 

depression. Numbers are after relatedness pruning / removal of ancestry outliers. Number in 

brackets are fraction of depression cases being comorbid with bipolar disorder (BP), 

schizophrenia (SZ), anxiety (ANX), autism (ASD), ADHD, substance use disorder (SUD) or 

having depression as the only diagnosis or being the fraction of depression cases that do not 

have bipolar disorder. Except for population-sample where numbers in brackets indicate 

phenotype fractions in the population-based iPSYCH2015 sample. All numbers are without 

bipolar disorder except for the BP column. Whether recurrent depression was associated 

with increased comorbidity compared to single-episode depression was tested using logistic 

regression for each additional diagnosis while adjusting for age. Since the age-distribution 

for cases was skewed compared to controls individuals were grouped in age bins in five-year 

intervals to construct dummy variables for the age adjustment. Odds-Ratios (OR=log(β)) 

and nominal two-sided P-values based on logistic regression z statistics are shown.

Phenotype BP SZ ANX ASD ADHD SUD DEP 
only

DEP 
wo BP

DEP 
total

Depression

 No. samples 1460 3905 7044 2255 2571 3538 15226 29158 30618

 F (subtype|
DEP)

(0.0501) (0.134) (0.242) (0.0773) (0.0882) (0.121) (0.522) (0.95) -

Single-episode

 No. samples 961 2773 5104 1758 1933 2545 12765 23140 24101

 F(subtype|
single)

(0.0415) (0.12) (0.221) (0.076) (0.0835) (0.11) (0.552) (0.96) -

Recurrent

 No. samples 499 1132 1940 497 638 993 2461 6018 6517

 F(subtype|
recurrent)

(0.0829) (0.188) (0.322) (0.0826) (0.106) (0.165) (0.409) (0.92) -

Population-
sample

 No. samples 106 401 888 636 774 502 556 1019 1067

 F(subtype|
pop)

(0.0027) (0.01) (0.023) (0.016) (0.02) (0.013) (0.014) (0.026) (0.027)

Test for difference in comorbidity between singel-episode and 
recurrent

 OR 1.86 1.76 1.64 1.48 1.39 1.64 0.53 - -

 p – value 3.1e-27 9.6e-48 2e-53 4.2e-12 1.3e-11 3.7e-32 5.8e-102 - -
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Supplementary Figures S1 – S15 and S24 – S28 are available at https://doi.org/10.6084/

m9.figshare.22139849.

The GWAS meta-analysis summary statistics from this publication, not including 23andMe, 

are available at https://ipsych.dk/en/research/downloads/. To access the summary statistics 

from the meta-analysis of all cohorts, including 23andMe, a data transfer agreement is 

required from 23andMe (dataset-request@23andMe.com) before a request is made to the 

corresponding authors. See https://research.23andme.com/collaborate/#dataset-access/ for 

more information and to apply for access to the data.

All relevant iPSYCH data are available from the authors after approval by the iPSYCH Data 

Access Committee and can only be accessed on the secured Danish server (GenomeDK, 

https://genome.au.dk) as the data are protected by Danish legislation. For data access please 

contact: Anders D. Børglum (anders@biomed.au.dk).

The downloadable data of The Haplotype Reference Consortium was used for 

imputation:http://www.haplotype-reference-consortium.org/

Data used for brain transcriptome model generation are available from PsychENCODE 

(http://resource.psychencode.org/); genotypes are controlled data and access instructions are 

provided at https://www.synapse.org/#!Synapse:syn4921369/wiki/477467.
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Resaources for the co-localization analysis are available at PsychENCODE (http://

resource.psychencode.org/), ROSMAP

Note that some datasets have been indirectly accessed at the FUMA website. In 

general PsychENCODE (http://resource.psychencode.org/) was used for SNP annotations 

(enhancer, H3K27ac markers), eQTLs and HiC based enhancer-promoter interactions. 

GTEx v6/v7/v8 eQTLs and gene expression used in the pipeline were obtained from 

GTEx (http://www.gtexportal.org/home/). The following eQTL datasets in FUMA were 

used for gene mapping: BrainSeq (http://eqtl.brainseq.org/), PsychENCODE eQTLs 

(http://resource.psychencode.org/), Common Mind Consortium (https://www.synapse.org//

#!Synapse:syn5585484), BRAINEAC (http://www.braineac.org/), GTEx/V8/Brain (https://

www.gtexportal.org/home/datasets/). Chromatin interaction datasets in FUMA used 

for gene mapping: PsychENCODE eQTLs and HiC based enhancer-promoter 

interactions (http://resource.psychencode.org/), HiC (https://doi.org/10.1101/406330, https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87112) and Roadmap – brain (https://

egg2.wustl.edu/roadmap/web_portal/DNase_reg.html). The following single cell RNA-

sequencing data sets were used in the cell-type specific analyses in FUMA 

(https://fuma.ctglab.nl/tutorial#datasets): PsychENCODE Human developmental and 

adult brain samples (http://resource.psychencode.org/), Allen Brain Atlas Cell 

Type (http://celltypes.brain-map.org/api/v2/well_known_file_download/694416667), DroNc 

Human brain samples (hippocampus) (https://portals.broadinstitute.org/single_cell#study-

dronc-seq-single-nucleus-rna-seq-on-human-archived-brain, https://www.gtexportal.org/), 

GSE104276 Human Prefrontal cortes brain samples (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE104276), GSE67835 Human Cortex brain samples 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835), Linarsson GSE101601 

Human temporal cortex brain samples (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE101601) and GSE76381 Human midbrain samples (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76381).

Gene ontology of Biological Process and Cellular Components data sets of MsigDB v7.0 

(https://www.gsea-msigdb.org/gsea/msigdb) were used for the gene-set enrichment analysis 

in FUMA’s GENE2FUNC module. Please refer to https://fuma.ctglab.nl/links and https://

fuma.ctglab.nl/tutorial#datasets for additional information on availability of datasets.
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Figure 1: 
The x-axes show genomic position, and the y-axes shows statistical significance as 

−log10(P). (A) Manhattan plot of the primary meta-analysis (371184 cases and 978703 

controls) using an inverse variance-weighted fixed-effects model, the y-axis shows statistical 

significance as −log10(P) of z statistics (two-sided nominal P-values). The red horizontal 

line represents the threshold for genome-wide significant association (P=5×10−8), QQ-

plot in Supplementary figure S5. Data on chromosome X were only available for 

iPSYCH and FinnGen, see Supplementary Figure S2). (B) Manhattan plot of the primary 
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meta-analysis from A, the y-axis shows −log10(P) of z statistics (two-sided nominal 

P-values), with highlighted joint p-values from GCTA-COJO plotted on top. The red 

horizontal line represents the threshold for genome-wide significant association (P=5×10−8). 

(C) Gene-based analysis: y-axis shows −log10(P) of F statistics (two-sided nominal P-

values) implemented in MAGMA. A red line indicates Bonferroni corrected genome-wide 

significance; P<2.8×10–6 (testing 17,840 protein coding genes). A total 411 significant 

genes of which 268 were in 93 of the 243 genomic risk loci (Supplementary Table S6). 

The most significant gene, overlapping with a top gene in the TWAS D, within each 

of the 93 genomic loci are highlighted. (D) TWAS: The y-axis shows significance as 

−log10(P) of association z statistics (Wald test; two-sided P-values). Genes are represented 

by both gene and isoform expression. A red line indicates Bonferroni corrected genome-

wide significance; P<1.44×10–6 (34,646 tests for all reliably imputed genes and isoforms). 

The top transcript is labelled and the corresponding −log10(P) is highlighted for each 

independent linkage disequilibrium block.
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Figure 2: 
Venn diagrams showing MiXeR results of the estimated number of variants shared between 

depression (N=1349887) and psychiatric disorders (anxiety (N= 361365), bipolar disorder 

(N= 405771), schizophrenia (N=153808), ADHD (N=225534), autism (N=46350, SUD 

(N=46568), neuroticism (N=380506)) and genetically correlated phenotypes (smoking 

initiation (N=632803), educational attainment (N=3037499)) and other phenotypes (height 

(N=1597374), Alzheimer’s (N=788989), epilepsy (N=44889)) not expected to show high 

genetic correlation with depression. Circles represent loci unique to depression and unique 
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to the phenotype of interest and corresponding overlapping shared loci. The number of 

shared variants +/− SE are shown in thousands. The size of the circles reflects the 

polygenicity of each phenotype, with larger circles corresponding to greater polygenicity. 

Point estimates of genetic correlation (rG) and 95% CI between depression and each 

phenotype is shown at the bottom with an accompanying scale (−1 to +1) (see also 

Supplementary Table S6A and Figure S9-1).
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Figure 3: 
(A) Significant cell types across datasets in MAGMA analysis implemented in FUMA. 

The y-axis shows −log10 of one-sided nominal P-values based on z statistics for cell- 

types significant across datasets (x-axis), i.e. after experiment wide Bonferroni correction. 

The primary depression GWAS (Ncases=371184 and Nctrls=978703) was used as input for 

this analysis. (B) Enrichment of depression risk variants with cell-specific open chromatin 

regions. Dots represents the LD score coefficients and horizontal bars reflect standard error 

(x-axis) for various cell-types (y-axis). A positive LD score coefficient signifies enrichment 

in heritability. Dot size reflects two-sided P-value of LD score z statistics, and color code 

indicate test-wide significance (BH-corrected P-value<0.05). The primary depression GWAS 

(Ncases = 371184 and Nctrls = 978703) was used as input for this analysis.
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Figure 4: 
Association of DEP-PRS (broadly and narrowly defined) with measures of cognitive 

abilities in the PNC cohort (N=4,973). Regression coefficients (β) and 95% confidence 

interval) from linear regression testing for the association of DEP-PRS with the 15 

neurocognitive measures listed on the y-axis. Significance is based on two-sided FDR 

adjusted P-values from linear regression t statistics. Colors indicate FDR-adjusted (to 

account for 30 total tests) P-value intervals (See supplementary table S12 for details) 

and ** corresponds to FDR-adjusted P-value (q-value) <0.01, * corresponds to 0.01<=q-

value<0.05. The primary DEP-PRS was significantly associated with Abstraction and mental 

flexibility (q-value=0.03). The narrow DEP-PRS was significantly associated with Verbal 

reasoning (q-value=0.009), Attention (q-value=0.011) and Abstraction and mental flexibility 

(q-value=0.012). The neurocognitive phenotypes included performance on the Computerized 

Neurocognitive Battery (CNB: age differentiation, emotion identification, facial memory, 

sensorimotor processing, finger tapping speed, emotion differentiation, spatial reasoning, 

verbal memory, nonverbal reasoning, working memory, verbal reasoning, spatial memory, 

attention, abstraction and mental flexibility)68, as well as results from the Wide Range 

Achievement Test (WRAT-4)69.

Als et al. Page 56

Nat Med. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Absolute risk (95% CI) over time since first depression episode and HRR (95% CI) of (A,B) 

a second episode of depression stratified by three groups of DEP-PRS and DEP-SUM-PRS 

deciles (N=29158); (C,D) developing anxiety stratified by ANX-PRS and ANX-SUM-PRS 

(N=25124); (E,F) transitioning into bipolar disorder stratified by BP-PRS and BP- SUM-

PRS (N=30300); (G,H) developing schizophrenia stratified by SZ-PRS and SZ-SUM-PRS 

(N=28714); (I,J) developing substance-use-disorder stratified by SU-PRS and SUD- SUM-

PRS (N=18856). SUM-PRSs were calculated by adding PRSs for multiple phenotypes 
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weighted by log(OR) aiming to optimize prediction. HRR (95% CI) for 1st, 2nd-to-9th and 

10th decile are shown as large dots in different colors, using the middle (80% prediction 

interval) of the PRS as reference. Absolute risk (95% CI) of anxiety (C,D), bipolar disorder 

(E,F), schizophrenia (G,H) and SUD (I,J) is shown for the iPSYCH2015 random population 

(sub-cohort) in less bright colors.
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Table 1:

Top 5 index SNPs for previous and top 15 index SNPs for novel depression GWAS loci. Results for the top 5 

among previously identified loci and top 15 novel genome-wide significant index variants identified in the 

GWAS meta-analysis of 371,184 cases with depression and 978,703 controls. Locus number (in bold for novel 

loci) The location (chromosome (Chr) base position (BP)), alleles (A1/A2), frequency of A1-allele (f(A1)) in 

cases and controls, odds ratio (OR) of the effect with respect to A1, standard error (SE) and two-sided 

unadjusted association P-values (P) of z statistics from a inverse-variance weighted fixed effects model of the 

index variants are given. Gene names (in italic) of genes located within 50 kb from index variants are listed 

(See supplementary table S2 for details on all 303 index SNPs).

Locus Chr SNP BP A1/A2 f(A1) OR SE P Nearby genes

cases ctrls

8 1 rs7531118 72837239 T/C 0.473 0.461 0.97 0.0029 1.50E-27 NEGR1

9 1 rs10890020 73668836 A/G 0.508 0.51 0.97 0.0029 1.70E-21 LINC01360

38 2 rs1320138 144158287 T/C 0.428 0.435 1.02 0.0028 4.80E-09 ARHGAP15

45 2 rs6715105 198445601 T/C 0.326 0.341 1.02 0.003 1.30E-09 ANKRD44, ANKRD44-IT1, SF3B1, 
COQ10B, HSPD1, SNORA105A, 
SNORA105B, HSPE1, HSPE1-MOB4, 
MOB4, RFTN2, MARS2, BOLL, 
PLCL1

53 3 rs56029819 43478295 T/C 0.853 0.849 0.98 0.004 2.50E-09 SNRK, SNRK-AS1, ANO10

80 5 rs4262121 31078958 G/C 0.528 0.546 0.98 0.0029 4.30E-09 -

89 5 rs62379847 120109119 A/C 0.655 0.652 0.98 0.003 1.80E-09 PRR16

93 5 rs2964003 153216733 A/G 0.829 0.82 1.02 0.0038 8.10E-10 GRIA1, LINC01861

94 5 rs4596421 161269895 C/T 0.708 0.693 0.98 0.0031 2.40E-09 GABRA

98 6 rs35883476 28368508 G/C 0.91 0.918 1.05 0.0052 1.30E-21 HIST1 histone cluster, 
BTN3A2, BTN2A2, BTN3A1, 
BTN2A3P,BTN3A3, BTN2A1, 
LOC285819,BTN1A1, HCG11, 
HMGN4,LOC105374988, ABT1, 
ZNF322, GUSBP2, LINC00240, 
LOC100270746, MIR3143, PRSS16, 
POM121L2, VN1R10P,ZNF204P, 
ZNF391, ZNF184, LINC01012, 
LOC100131289, OR2B2, OR2B6, 
ZNF165, ZSCAN12P1, ZSCAN16-
AS1, ZSCAN16,ZKSCAN8, 
ZNF192P1, TOB2P1,ZSCAN9, 
ZKSCAN4, NKAPL,ZSCAN26, 
PGBD1, ZSCAN31,ZKSCAN3, 
ZSCAN12, ZSCAN23

99 6 rs10947690 37631768 A/G 0.751 0.756 0.98 0.0033 6.30E-09 MDGA1

114 7 rs957360 3660918 C/G 0.714 0.702 1.02 0.0031 1.30E-09 SDK1

124 7 rs1986692 133743393 A/G 0.612 0.61 1.02 0.0029 2.80E-09 EXOC4

156 10 rs1909696 77582203 G/T 0.337 0.328 0.98 0.003 3.30E-09 LRMDA, LOC105378367

158 10 rs1021363 106610839 A/G 0.349 0.335 1.03 0.0029 5.30E-25 SORCS3

191 13 rs9561331 94017476 G/A 0.869 0.873 0.98 0.0042 3.70E-09 GPC6

199 14 rs7141014 98667928 T/C 0.796 0.806 0.98 0.0035 3.30E-09 -

210 15 rs4886915 78075023 A/G 0.421 0.423 0.98 0.0028 6.10E-10 LINGO1

225 17 rs60856912 65892343 G/T 0.825 0.817 0.97 0.0038 1.80E-11 BPTF, C17orf58, KPNA2

233 18 rs12967143 53099012 G/C 0.301 0.292 1.03 0.0031 2.00E-21 TCF4, TCF4-AS1, MIR4529
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