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Abstract

Optimization-Based Mappers and Lower Bounds for Tensor Problems

By

Grace Dinh

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor James Demmel, Chair

Obtaining good performance for tensor problems requires computing an architecture-specific
mapping from the algorithm to the target hardware. Choosing a mapping requires optimizing
an objective function over a large, nonconvex space; this objective function represents a
performance metric which may be modeled, simulated, or (if possible) measured. Each such
objective function incurs different tradeoffs in terms of speed, accuracy, and the strength of
results that can be formally proven, and as a result requires its own optimization methods.
In this dissertation, we describe optimization approaches for several performance objectives.

• In a simple abstract memory hierarchy model, we derive an unconditional communica-
tion lower bound for "projective" tensor operations (which includes most dense linear
algebra) and convolutions. We show that this can always be attained (up to a con-
stant factor) by solving a mathematical optimization problem, and that these methods
provide significant benefits in practice, halving the communication volume in one case.

• We extend these lower bound techniques - and corresponding algorithms - to handle
combinations of communication and convolution for randomized matrix multiplication.

• We then describe how to incorporate support for additional mapping decisions and to
account for more architectural information by extending our optimization-based ap-
proach to support analytical performance models. While these performance models are
too complex to prove strong lower bounds for, empirical results show that optimization-
based methods can find more performant mappings using significantly less runtime and
sample complexity than pure search-based methods.
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Chapter 1

Introduction

Tensor operations play a central role in many applications, such as machine learning, signal
processing, and dense linear algebra. These tensor operations are increasing significantly
in size. The number of parameters used in popular large language models, for instance,
has ballooned from 1.5 billion (GPT-2, 2019) to 175 billion (GPT-3, 2020) to 530 billion
(Megatron-Turing, 2021)1. Furthermore, there is increasing demand to run tensor operations
efficiently on systems with significant energy and latency constraints, such as edge and
Internet of Things (IoT) devices.

As a result, many high-performance software libraries have been developed to run ten-
sor operations performantly and efficiently on CPUs and GPUs, which are ubiquitous and
capable of handling a large variety of workloads. The design of these software libraries
significantly impacts the performance that can be achieved.

This is even more the case for software targeting domain-specific accelerators, which sac-
rifice features such as branch predictors and automatically managed caches for performance.
Such accelerators offload many scheduling decisions, such as movement of data between parts
of the memory hierarchy, to the programmer; as a result, their performance is even more
affected by the exact manner in which tensor problems are targeted, or mapped, onto them.

As a result, it is increasingly important for implementors of performance software to
determine how to map an algorithm onto a given CPU, GPU, or accelerator. However, the
space of possible mappings (mapspace) is challenging to search, as the number of choices that
comprise a mapping leads to a combinatorial explosion in the number of possible mappings.
Furthermore, this space is highly nonconvex and changes significantly with the target archi-
tecture; as a result, we wish to develop general techniques that can be quickly specialized to
different target architectures.

This dissertation addresses this problem by developing both lower bounds on the cost of
different mappings (under some abstract computational models), and optimization methods
that often attain these lower bounds.

Chapter 2 introduces the necessary background for this work: a characterization of the
1https://huggingface.co/blog/large-language-models
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general types of hardware we consider, as well as a formal definition of the decisions a pro-
grammer must make when implementing a performant kernel targeting a particular piece
of hardware, which we refer to as the mapping. Mappings may be evaluated using several
different performance models, ranging from abstract models of computation to detailed ar-
chitectural simulations. Motivated by previous studies that show that loop tiling is the most
consequential decision that a programmer must make when designing a mapping, we focus
on an abstract communication model, and describe techniques from prior work that describe
how to derive theoretical lower bounds for these models.

Unfortunately, these techniques are practically limited by two main shortcomings: first,
they are computationally challenging to solve in the general case, and second, they provide
bounds that are not tight for problems that are not asymptotically large in all dimensions. We
address these challenges by focusing on special cases of particular practical interest: projective
nested loops (which encompass most dense linear algebra operations, tensor contractions,
and n-body pairwise interactions), which we cover in Chapter 3, and convolutions, which
we cover in Chapter 4. In both cases, we develop efficiently computable lower bounds that
apply to problems of all sizes - not just asymptotically large ones - and show how to attain
them through an appropriate loop tiling. For convolutions, we show that our approach
provides significant practical speedups on a real machine learning accelerator. We extend
the techniques used to prove these lower bounds and find algorithms to models incorporating
both communication and computation in Chapter 5.

We then describe how these optimization approaches can be extended to performance
models beyond the abstract communication model using Bayesian optimization in Chapter
6. While these models are sufficiently complex that proving lower bounds are not possible, we
show that optimization techniques inspired by those we use to attain communication lower
bounds provide good performance in practice on these more sophisticated lower bounds.
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Chapter 2

Background

2.1 Architectures for Tensor Computations
We will begin with a brief overview of several architectures, focusing on their implications
for the high-performance implementations of dense linear algebra and machine learning op-
erations. For our purposes, the primary distinguishing features of an architecture will be the
the manner (and amount) of parallelism it exposes, and the design of its memory hierarchy.

CPUs are equipped with several (usually three) levels of associative SRAM caches, usu-
ally set-associative, and expose parallelism to programmers in two forms: vector intrinsics
and multithreading. Unfortunately, many CPU features add complexity and overhead unnec-
essary for dense tensor algebra; these include support for both branch prediction, multiple-
instruction multiple-data (MIMD) parallelism, prefetching, and hardware-controlled caches.
For example, a two-way set-associative cache uses 2.5× as much energy as a manually con-
trolled scratchpad [33, §7.2]. Such overheads greatly limit the amount of parallelism that
can be given for a given power and area budget. As a result, the use of CPUs for programs
is generally limited to:

• applications (e.g. embedded systems) where cost or power constraints preclude the
inclusion of additional processing units

• tasks where the cost of offloading data to an external chips may be expensive, or
where the fixed costs outweigh the size-dependent cost. For example, linear algebra
operations on small matrices may be individually cheap enough that the fixed overhead
required to offload them onto an external chip would more than offset any potential
performance gains. This may be alleviated by batching many small operations into
a single, larger one, which can be efficiently offloaded onto a GPU; , but this is not
always feasible (e.g. when the outputs of some operations are required as input for
others).

• computations where data-dependent optimizations can be performed, such as tak-
ing advantage of sparsity, or performing approximations that “sparsify” inputs (e.g.
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through the use of locality-sensitive hashing [8]). These optimizations are largely be-
yond the scope of this work.

GPUs operate on similar principles to CPUs, trading off low latency for significantly higher
parallelism (and therefore throughput) and memory bandwidth. Of note, GPUs are typically
equipped with their own independent memory (VRAM), and copying data to and from
VRAM - an expensive task - is left for the programmer to manage manually. Some modern
GPUs have tensor cores, which can perform relatively small (4 × 4 × 4) tensor operations
directly in hardware in the same manner as vector instructions do in CPUs. This, combined
with built-in support for many lower precision types popular in machine learning, makes
GPUs a common tool for machine learning and other tensor operations.

However, focusing specifically on simple tensor operations such as matrix multiplications
and convolutions allows for even simpler architectures to be devised. Without the need for as
much flexibility as a CPU or GPU, tensor accelerators eschew the complex mix of vectoriza-
tion, multithreading, and out-of-order execution present in the aforementioned architectures
for two-dimensional systolic arrays comprised of synchronously operating processing ele-
ments (PEs). Furthermore, dense tensor algebra’s memory access and compute patterns are
input-independent and can be determined statically from the problem size, allowing two key
memory hierarchy optimizations. First, caches can be replaced with manually-controlled
scratchpads, obviating the need for eviction and prefetching logic (and the corresponding
area and power costs) and reducing the duplication inherent in an inclusive multi-level mem-
ory hierarchy. Furthermore, reduction operations, which are ubiquitous in tensor operations,
can be sped up through the use of an accumulator buffer whose contents can be incremented
and decremented by arbitrary values using one machine instruction. Together, these op-
timizations allow for significantly higher levels of throughput for a given power and area
budget.

Producing optimized implementations of tensor kernels requires taking into account the
target architecture, as well as hardware parameters such as the costs (in both latency and
energy) for individual memory and compute operations, as well as memory bandwidth limits.
Fortunately, as we will discuss in the following section, the process of mapping a tensor kernel
onto a particular piece of hardware can be decomposed into several constituent mapping
decisions, many of which can be analyzed - and therefore optimized over - analytically.

2.2 Mapping
As a simple motivating example, let us consider the problem of producing an optimized
implementation for the classical three-nested-loop matrix multiplication on a simple simple
vectorized CPU with a two-level memory hierarchy; we will generalize this to arbitrary nested
loop programs and hardware targets in Section 2.2.1. We start with a simple three-nested
loop implementation (Figure 1).

In order to run this matrix multiplication efficiently on a target architecture, we must
emit a sequence of hardware instructions controlling not only arithmetic operations but
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Algorithm 1: Classic three-nested loop matrix multiplication
1 for m ∈ [0,M) :
2 for k ∈ [0, K) :
3 for n ∈ [0, N) :
4 C(m,n)+ = A(m, k)×B(k, n)

also data movement - either implicitly (for caches with automatic evictions) or explicitly (on
accelerators with explicitly managed scratchpad memory). We can think of these instructions
as being generated by a series of transformations, or rewrites, performed on the nested loop,
each of which is associated with a set of choices, the final goal of which is to generate a
sequence of machine instructions.

For instance, we may wish to first tile the loops in order to increase memory reuse of
elements stored on fast memory, reducing the amount of communication required between
fast and slow memory, generating Algorithm 2.stop algorithms end of chapter latex memoir
If the tile sizes Tm,k,n are not divisors of the problem sizes M , K, and N , we must manually
handle the iterations at the end that do not perfectly fit into a tile, which we refer to as tail
iterations or as a tail case. Algorithm 2 includes tail cases for n and k axes (we omit the
tail case for the m axis for brevity). For the remainder of this section, we will assume for
the sake of simplicity that Tm,n,k perfectly divide the loop bounds M , N , and K, allowing us
to omit handling for tail iterations. Furthermore, note that the instruction to load subsets
of A, B, and C into main memory may be expressed either implicitly, if our fast memory
is a cache, or explicitly (which would require a paired eviction/flush instruction), if our fast
memory is an explicitly managed scratchpad.

In order to further improve reuse and reduce communication, we may elect to reorder the
loops. For instance, consider the current ordering of the outer three loops of Algorithm 2:
mout, kout, nout. As the outermost loops are mout and kout, the subset of A (which is indexed
by m and k) loaded into fast memory stays fixed in fast memory for each iteration of the
kout loop, while the subsets of B and C change; we call this a A-stationary dataflow. If the
costs of accessing A, B, and C are different - for instance, if C is stored in a higher precision
to improve floating point accuracy - it may be beneficial to rearrange the loops to mout, nout,
kout to create a C-stationary dataflow.

Notice that reordering loops within the inner block, i.e. swapping the positions of min,
kin, and nin loops, will not change the amount of communication between fast and slow
memory, as it only affects computations on tiles already resident in fast memory. However,
changing the order of loops is essential for parallelizing the code.

Suppose, for instance, that our target machine supports a vector length 4, and we wish to
vectorize our code using a fused-multiply add that performs a⃗ += s · b⃗, for length-4 vectors
a⃗, b⃗ and a scalar s (on Intel AVX, this is equivalent to loading in s with _mm_broadcast_ss,
loading b⃗ with _mm_load_ss, and performing the computation with _mm_fmadd_ps).

If B and C are both stored in row-major format, then the simplest solution is to vectorize
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Algorithm 2: Three-nested loop matrix multiplication after tiling
1 for mout ∈ [0, ⌊M/Tm⌋) :
2 for kout ∈ [0, ⌊K/Tk⌋) :
3 for nout ∈ [0, ⌊N/Tn⌋) :
4 Load subsets of A, B, and C associated with the indices m,n, k spanned

by the following inner loops into fast memory
5 for min ∈ [0, Tm) :
6 for kin ∈ [0, Tk) :
7 for nin ∈ [0, Tn) :
8 m = Tmmout +min

9 k = Tkkout + kin
10 n = Tnnout + nin

11 C(m,n)+ = A(m, k)×B(k, n)

12 Load subsets of A, B, and C associated with the indices m,n, k spanned by
the following inner loops into fast memory

13 for min ∈ [0, Tm) : // Tail iterations for n
14 for kin ∈ [0, Tk) :
15 for n ∈ [⌊N/Tn⌋Tn, N) :
16 m = Tmmout +min

17 k = Tkkout + kin
18 C(m,n)+ = A(m, k)×B(k, n)

19 for nout ∈ [0, ⌊N/Tn⌋) : // Tail iterations for k
20 Load subsets of A, B, and C associated with the indices m,n, k spanned by

the following inner loops into fast memory
21 for min ∈ [0, Tm) :
22 for k ∈ [⌊K/Tk⌋Tk, K) :
23 for nin ∈ [0, Tn) :
24 m = Tmmout +min

25 n = Tnnout + nin

26 C(m,n)+ = A(m, k)×B(k, n)

27 Load subsets of A, B, and C associated with the indices m,n, k spanned by the
following inner loops into fast memory

28 for min ∈ [0, Tm) : // Tail iterations for n
29 for k ∈ [⌊K/Tk⌋Tk, K) :
30 for n ∈ [⌊N/Tn⌋Tn, N) :
31 m = Tmmout +min

32 C(m,n)+ = A(m, k)×B(k, n)

among the n axis. On the other hand, if A and C are stored in column-major format, we
would wish to move min to be our innermost loop before performing vectorization along the
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m axis.
In the following pseudocode (Alg. 3), we denote the loop performed by the vector intrinsic

using a spatial-for loop, so named as each its iterations are spatially mapped to physically
separate elements of the CPU. This code transformation also induces a tail case in the above
code, as the tile size Tn may not be a multiple of 4. The tail may be executed either as
scalar code or a masked vector operation; the choice of which one to use depends on both
the number of loop iterations contained in the tail and the target hardware.
Algorithm 3: Three-nested loop matrix multiplication after tiling, vectorization
1 for mout ∈ [0,M/Tm) :
2 for kout ∈ [0, K/Tk) :
3 for nout ∈ [0, N/Tn) :
4 Load subsets of A, B, and C associated the indices m,n, k spanned by

the following inner loops into fast memory
5 for min ∈ [0, Tm) :
6 for kin ∈ [0, Tk) :
7 m = Tmmout +min

8 k = Tkkout + kin
9 for nin ∈ [0, ⌊Tn/4⌋) :

10 nreg = Tnnout + 4nin

11 spatial for n ∈ [nreg, nreg + 3] : // Run as vector op
12 C(m,n)+ = A(m, k)×B(k, n)

13 for n ∈ [4 ⌊Tn/4⌋ , Tn] : // tail case
14 C(m,n)+ = A(m, k)×B(k, n)

Each of the preceding steps is associated with different choices: the tile sizes Tm,k,n, the
order of the loops, and the choice of which axes to parallelize. These choices must be made
under constraints: for instance, the memory footprints of each inner tile may not exceed the
size of fast memory, and we are only permitted to vectorize the innermost loop.

These choices can also significantly affect performance. In Fig. 2.2.1 we plot the energy-
delay product (EDP) of 100K randomly chosen mappings for several matrix multiplications
(top) and convolutions (bottom) the choices made in mappings can significantly affect per-
formance. Only a small fraction of mappings achieves reasonable performance; the vast
majority of mappings are over an order of magnitude more expensive to execute.
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Figure 2.2.1: A histogram of energy-delay product (EDP - left is better) values for 100K
randomly sampled valid mappings for BERT (matmul-dominated kernel, left) and Resnet50
(convolution, right), simulated on Timeloop [71]. Note that the x-axis is log-scale. Only a
minuscule fraction of mappings, on the far left of each graph, provide acceptable performance
for each processor.

The mapping problem applies to many tensor algorithms beyond simple matrix multi-
plies - many other tensor problems, such as convolutions, as seen in the figure, are similarly
dependent on high-quality mappings for good performance. We can represent these pro-
grams as general nested loop programs operating on multidimensional arrays, as described
in Algorithm 4. We will assume in this work that the operations may be performed in any

Algorithm 4: General nested loops
data: number of nested loops d ∈ Z

loop bounds L1, . . . , Ld ∈ Z
multidimensional arrays A1, . . . , An, with Ai being di-dimensional
linear data access functions ϕi : Zd → Zdi , for i ∈ [n]

1 for x1 ∈ [0, L1), . . . , xd ∈ [0, Ld) :
2 perform operations on A1 [ϕ1 (x1, ..., xd)] , ..., An [ϕn (x1, ..., xd)]

order (i.e. there are no dependencies between different loops, and we are not concerned
about floating-point artifacts induced by changing the order of operations).

At each iteration x1, . . . , xd of the the nested loops, the program accesses the arrays
at addresses given by the data access functions ϕ1, ..., ϕn(x1, . . . , xd), which fully specify
the patterns the nested loop uses to access data. For instance, a classical matrix multiply
(Algorithm 1) can be represented with the data access functions:

ϕ1(x1, x2, x3) = (x1, x3)

ϕ2(x1, x2, x3) = (x1, x2)

ϕ3(x1, x2, x3) = (x2, x3)
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Adjusting the data access functions ϕ allows us to represent most dense linear algebra
and tensor kernels (including convolution), as well as many stencil kernels (especially for
image processing). We will now generalize the preceding mapping process from matrix
multiplication to general nested loops, by describing each step of the mapping process in
detail.

2.2.1 Mapping Steps

This section describes the steps involved in mapping a general nested loop onto an accelerator.
Each of these steps is associated with a set of choices, such as loop tile sizes and loop orders,
which are constrained by the target hardware in a manner we will discuss here.

2.2.1.1 Tiling

Loop tiling, also referred to as blocking - that is, partitioning the loop nest into tiles which
are executed in sequence - is a key optimization for increasing data reuse and reducing
communication complexity of an operation. Note that we will use the term tile is to denote
both the subsets of the loop nest, and subsets of the arrays used by each (loop nest) tile.

The most common form of tiling, which we refer to as rectangular tiling, breaks the
iteration space into rectangular regions, as we did for matrix multiply earlier in Algorithm 2.
More precisely, a rectangular tiling transforms a nested loop of the form given by Algorithm
4, given a set of tile sizes T1, . . . , Tn ∈ Z (such that Ti ≤ Li), into the loop nest shown in
Algorithm 5.
Algorithm 5: Rectangular tiling of nested loop
1 for xO,1 ∈ [0, L1/T1), . . . , xO,d ∈ [0, Ld/Td) : // outer loop
2 Load subsets of A1,...,n required for following nested loops into fast memory
3 for xI,1 ∈ [0, T1), . . . , xI,d ∈ [0, Td) : // inner loop
4 xi = TixO,i + xI,i ∀i ∈ [d]
5 if xi > Li for some i : // tail case handling
6 break loop i

7 perform operations on A1 [ϕ1 (x1, ..., xd)] , ..., An [ϕn (x1, ..., xd)]

8 Flush writes to slow memory
9 Evict subsets of A1,...,n not required for next tile

If Ti does not perfectly divide Li, a tail case is generated, corresponding to the final few
iterations along the xi axis. These are represented in Algorithm 5 with an if statement on
Line 5 for compactness, but in practice (as branching is expensive, and often infeasible on
many accelerator architectures) they are more commonly split off into separate loops as in
Algorithm 2.

The choice of the tile sizes Ti heavily affects the amount of data movement (and therefore
the arithmetic intensity) of the resulting mapping, which often dominates the total time
and energy cost of many tensor workloads. In fact, both prior work [90, 44] and our own
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sensitivity analysis (discussed further in Section 6.2.5) has shown that loop tiling is by far
the most important decision involved in constructing a mapping.

In order for a tiling to be executable on a system, the memory footprint of the inner
loop - that is, the total size of the tensor tiles corresponding to the inner loop - must be
at most the size of the fast memory. For instance, in Alg. 2, the memory footprint of a
tile is TnTm + TnTk + TkTm, which must be bounded above by M . In the case of multiple
buffers, with different tensors, each buffer must be able to accommodate the tiles for the
tensors assigned to it. For instance, if we have a scratchpad of size MS for the inputs and
an accumulator of size MA for the outputs, the constraints for the matrix multiply example
become

TnTm ≤MA

TnTk + TkTm ≤MS

For architectures and systems with multilevel memory hierarchies, the inner loop may be
recursively tiled to generate a multilevel tiling, where each level’s memory footprint fits inside
a level of the memory hierarchy.

Other architectural features and optimizations can also affect the constraints for a tiling.
For instance, double-buffering divides the scratchpad into two halves, with one half being
used by the processor for computation while the other is loaded with data from memory,
interleaving communication and computation in order to minimize latency. This effectively
doubles the memory footprint of tiles corresponding to tensors that are not kept stationary
in fast memory between successive tiles (see next section for more on stationarity).

Furthermore, certain axes may not be tilable. For instance, convolution accelerators are
often built with the assumption that the entire filter (being sufficiently small) will be loaded
onto purpose-built registers , and therefore will not support tiling along axes corresponding
to filter dimensions. For each of these axes, we constrain the tile size Ti to be equal to the
loop bound Li.

Rectangular tilings are the main form of tiling used in practice, both because of ease
of implementation and because they offer good performance for many common problems.
In fact, we will show in Chapter 3 that it rectangular tiles are optimal for the case where
all ϕi return subsets of their inputs (i.e. are projections). However, non-rectangular tiling
schemes may be required to attain theoretical optima; we will describe one such case - strided
convolutions - in Chapter 4. Loop nests with data dependencies between iterations may also
benefit from polyhedral transformations [28, 5, 3], but are outside the scope of this work.

2.2.1.2 Loop Permutation

In our matrix multiply example earlier, we permuted the order of the loops in order to
change which matrix would remain stationary in fast memory between successive tiles. In
general, the tensors indexed by axes spanned by outermost loops surrounding a tile (e.g.
x1, x2, ... in Algorithm 5) will be held stationary between successive tiles. Depending on the
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target hardware, different loop orderings can result in different costs (especially if different
tensors are stored in separate buffers with varying costs), and some orderings may be entirely
unsupported.

Consider, for instance, an accelerator that performs accumulation in 32-bit precision
but then writes the output to main memory in 16-bit precision. Consider the tiled matrix
multiplication loop nest in Algorithm 2. Notice, that this loop ordering requires us to write
partial sums of C (which is indexed by m and n) to main memory between successive tiles,
as the innermost loop surrounding the tile is nout, meaning that two consecutive tiles would
correspond to different columns of C. However, writing out partial sums to main memory
would require us to first round the 32-bit values present in fast memory to a 16-bit value,
leading to loss of precision and possible numerical instability. As a result, this accelerator
demands an output-stationary dataflow that keeps partial sums of C on-chip between tiles,
requiring that mout and nout be the outermost loops outside the tile. We therefore can only
choose between two loop orderings for the outer loops: mout, nout, kout, or nout,mout, kout.

2.2.1.3 Parallelization and Hardware Instruction Mapping

Our previous matrix multiply example obtained parallelism through one-dimensional vector-
ization: Algorithm 3 was obtained by first splitting the innermost loop into two loops, with
the inner loop having four iterations (equal to the vector length on our target architecture),
and replacing this inner loop with an equivalent vector instruction.

However, different architectures have dramatically diffrent forms of parallelism available
to them, ranging from vectorization to systolic parallelism to CPU-style multithreading.
A common abstraction that can be used to describe many of these forms is spatio-temporal
mapping : each for loop will be mapped onto hardware temporally, with all its iterations being
run in sequence (which we denote as a standard for loop), or spatially, with its iterations
being mapped to separate physical resources on a chip (which we denote with the keyword
spatial-for).

As a spatial-for loop maps each iteration to a separate processing element on the chip,
the product of the sizes of loops mapped spatially must be bounded by the total amount of
parallelism available on the chip. Beyond that, however, the interpretation of a spatial-for
depends on both the axis and the target architecture. Along a non-reduction axis (e.g. m,n
in our matrix multiply example), data required by separate iterations in a for loop may be
either directly broadcasted to each processing element through dedicated wiring, as is done
on the NVDLA [23] and ShiDianNao [21] accelerators, or be transferred systolically, as in
TPU [42] and Gemmini [26]. Reduction axes, such as k, may be mapped to reduction trees,
as in NVDLA and DianNao [10] or to systolic reductions as in TPU and Gemmini.

2.2.1.4 Graph-Level Optimizations

Most tensor workloads, especially in machine learning, consist of large graphs of operations,
not just single operations, and are somewhat robust to perturbation. This opens up several
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avenues of optimization, which are beyond the scope of this work:

• Layer fusion or operator fusion combines multiple layers (e.g., a matmul followed by
a normalization or activation layer) into a single tensor operation to be scheduled and
run at once, sometimes through the use of dedicated on-chip hardware to compute
activations on the output. This reduces interlayer communication, as the results of
one layer can remain on the chip as input without being written to and later read from
main memory, at the cost of intralayer communication. The performance gains from
such optimizations can vary widely depending on the kernel being run and the amount
of hardware available.

• Taking advantage of sparsity in the inputs can provide significant speedups. Such
optimizations are heavily data-dependent (even more so when sparsity is introduced
during runtime - for instance, using locality-sensitive hashing to zero out dot products
likely to be small [8]) and, as a result, cannot always be estimated a priori [44]. Sparsity-
aware architectures and mappings are a topic of active research.

2.2.2 Representing, Evaluating, and Optimizing Mappings

We refer to the set of choices - tile sizes, loop permutations, and tiling factors, e.g. as
depicted in Figure 2.2.2 - introduced by the aforementioned rewrites as a mapping, and the
set of all possible mappings as a mapspace. We will refer to each of the above choices as an
axis .

As the computations involved in a dense tensor computation do not change with input -
there is no branching - finding a mapping can be done entirely at compile time. Furthermore,
the simplicity and regularity of the program structure obviates the need for many forms of
static analysis, such as dependency analysis. However, constructing mappings that result in
good performance on accelerators is challenging. The significant number of choices involved
in mappings leads to a combinatorial explosion in the number of possible mappings, giving
rise to a mapspace with over 1020 points [72]. As Figure 2.2.1 illustrates, only a small fraction
of mappings generates good results.

The goal of a mapper or mapping algorithm is to search this large, high-dimensional
space to find a mapping that satisfies all hardware constraints and minimizes some objective
- usually some combination of energy or latency on a target hardware architecture. Mappers
can be evaluated not only on the performance of the mappings they return, but also on
their speed of execution, sample complexity, and generalizability to different hardware and
software targets.

2.2.2.1 Evaluating Mappings

In order to find a performant mapping, we must first define an objective function to optimize.
If the target architecture exists and can be instrumented, actual measured performance -
usually latency, energy consumption, or a combined figure such as energy-delay product
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Figure 2.2.2: Mapping representations for matrix multiplication and convolutions. Originally
published in [50]
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(EDP) - can be used. However, this is not often not desirable or even possible for a variety
of reasons:

• Hardware availability may change rapidly. For instance, for a multi-tenancy setup, the
amount of available memory for a given task may be affected by the number and size
of other tasks currently running on the same machine.

• The hardware itself may not exist. For instance, design space exploration during
the process of developing an accelerator requires performance evaluation of workloads
(and therefore mappings) on target hardware that may be be described only by a few
parameters, with the full design unrealized.

• Simpler performance models (e.g. communication volume on an idealized memory
model) allow us to develop provable bounds on performance that are infeasible to find
for more complex models, and can be used to evaluate actual performance data (e.g.
by comparing benchmark results to a roofline [87] model).

Different performance objectives offer different levels of fidelity, runtime cost, target workload
scopes, compatibility for various mapping algorithms, and ability to prove theoretical results.
We enumerate several here, in roughly increasing order of fidelity.

Abstract computational models, such as communication volume on a simple two-level
memory hierarchy, are simple to define and can be easily adapted to a large variety of target
hardware. They allow the development of theoretical lower bounds on performance, which
we will cover in detail in the next section. However, their simplicity and generalizability
comes at a cost - as they incorporate almost no assumptions on the target hardware, they
can only serve as loose proxies for performance.

Adding architectural assumptions (e.g. on the structure of a memory hierarchy and
parallelism available) and incorporating parameters such as memory bandwidth, systolic
array size, and energy consumption per operation leads to more sophisticated domain-
specific analytical performance models such as Timeloop and Maestro [71, 53, 57, 62,
38, 35]. These models leverage known iteration space bounds in tensor algebra workloads, as
well as statically analyzable data access patterns, to estimate performance extremely quickly.
Many of these models are expressed as closed-form mathematical expressions which can also
be used directly as the objectives in optimization-based mappers, although their complexity
generally precludes the derivation of theoretical lower bounds.

Another class of popular performance models are data-driven ML models [9, 32, 48].
Instead of building the performance model analytically to express known relations between
mapping decisions and performance, these models use statistical techniques to iteratively fit
a model to the mapping performance data collected over time, and often optimize over these
models to produce performant mappings. They typically require large amounts of data and
training time in order to learn and provide accurate predictions, but are fast to run once
trained.
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The major drawback of prior models is that the generated mappings might not perform
optimally (or even well) on the actual accelerator since the models can fail to capture the
implementation differences in the hardware accurately. Cycle-exact software models
based on real hardware implementation can achieve higher fidelity [86, 77], as can FPGA
emulation using platforms such as Firesim [46], which can be used to model hardware in
development. However, these tools are several orders of magnitude more resource-intensive
to run than analytical and trained ML models.

Turning Mappings into Code

Both cycle-accurate simulators and emulators and real hardware such platforms require more
than a set of problem dimensions and a description of mappings - they require a stream of
explicit instructions.

Generating this stream of instructions requires that one account for a large number of
edge cases. For example, a simple tiling operation for a matmul - representable as a single
line of tile sizes in a DNN accelerator modeling platform such as Timeloop [71] - requires
both the insertion of instructions specifying memory movement between different levels of
the memory hierarchy as well as the generation code for edge cases that appear when matrix
dimensions are not evenly divisible by the tile size (as we did in Algorithm 2). Furthermore,
many mapspace optimization methods rely on iterative search, which requires the evaluation
of a large number of mappings; this in turn requires that mappings be translatable to code
automatically.

As a result, code generation tools are used to actually implement mappings onto hardware
(or simulators). Many of these tools integrate not only a specification of the target hardware
but also mapping decision algorithms, often tuned for that hardware target. Because of
this integration, evaluating the performance of mappings not generated by their internal
framework and working on alternative hardware targets is challenging.

In order to address this problem, user-schedulable languages such as Halide [73], TVM [9],
Rise/Elevate [30], and Exo [91] have been developed. These tools take as input a description
of the computation to be performed and a point in the mapspace. They are generally
defined by a set of rewrite rules on representing code transformations such as splitting
and rearranging loops, replacing appropriate loops with ISA instructions, and fusing loops.
These languages also allow the user to specify and customize the hardware instruction set
and seamlessly convert mappings into executable code by representing them as a sequence
of rewrite rules [64, 93].

2.2.2.2 Searching For Mappings

Given a performance objective, a variety of methods exist to optimize it over the mapspace.
We can cluster them into three general categories:

• Brute-force search methods [15, 71, 90] randomly sample and enumerate large num-
ber of points in the mapspace. However, the size of the mapspace and the rarity
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of mappings that result in good performance require an extremely large number of
points (typically thousands, if not tens of thousands) to be searched and evaluated to
determine the mapping for a single kernel. As a result, these methods rely on fast
analytical performance models and are generally unsuited for higher-fidelity simulated
or emulated models.

• Feedback-driven methods address the sample inefficiency of brute-force search methods
using use statistical or machine learning models. These approaches include black-box
optimization techniques such as genetic algorithms [45, 43], reinforcement learning [89],
and Bayesian optimization [76, 80], which aim to require fewer samples than brute-force
methods. Alternatively gradient-based methods [32, 35] build differentiable surrogate
functions that estimate performance based on input parameters. However, training
gradient-based methods require millions of samples to build surrogate models, and the
resulting surrogates cannot easily be used for hardware architectures not yet seen even
after fine-tuning, and must be fully retrained from scratch at nontrivial expense [44].

• Heuristics perform one-shot analytic optimizations over a performance model (either
defined explicitly to be used as an optimization target, or embedded implicitly in
the heuristic). Such methods include polyhedral models [28, 51, 1]and constrained-
optimization based approaches [38, 92]. Heuristics are efficient and generalize easily
across hardware parameters and problem sizes, although often limited to optimizing
certain axes of the mapspace (e.g. tilings, as we focus on in Chapters 2.3, 3, 4, or tilings
and reorderings as in [68, 69], which build off our work). This makes them suited for
guiding brute-force and feedback-driven methods, either by providing cheap, rapidly
calculable features to them, or by eliminating several axes from the mapspace.

As a result, we will begin by examining heuristic tiling algorithms which can be used as
building blocks to construct more general mappers, and corresponding lower bounds which
can be proven in a simple abstract communication model.

2.3 Provably Optimal Tilings in the Two-Layer Memory
Model

In order to develop tilings that are provably optimal, we must first specify a model of com-
putation that allows us to derive lower bounds to prove optimality. As communication is
the dominant cost in both time and energy for most accelerators, , and tiling largely affects
communication, we use the two-level memory hierarchy model has a slow memory of infinite
size connected to a processor with an onboard fast memory of size M ; all inputs and outputs
must be read from and written to fast memory. In this model, the cost is the amount of data
transferred in both directions between slow and fast memory. We will largely measure this
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Figure 2.3.1: A CDAG for a dot product

in words, with one word corresponding to a single numeric value; however, problems with
multiple datatypes (with different sizes), will require more detailed analysis.

Communication lower bounds derived for the two-level memory model can be used to
describe a variety of computations, including multilevel memory hierarchies (by applying
the model to bound communication on multiple levels) and distributed-memory systems.

Several methods have been proposed to bound communication in memory hierarchy mod-
els, for various models of computation. We establish the fundamentals of these methods in
this chapter, and discuss how the derivation of communication lower bounds suggests ways
to find tilings that attain them.

2.3.1 Computational DAGs and Pebble Games

A straight-line computation (i.e. one without branching) can be described as a computational
directed acyclic graph (CDAG) (V,E) with vertices corresponding to computations and edges
corresponding to data dependencies. Specifically, the computation represented by vertex v
can only be executed after all computations represented by vertices ui such that (ui, v) ∈ E
have completed. We refer to a schedule of execution of the program represented by a CDAG
D as an ordered traversal (v1, v2, ..., vn) of the vertices of the DAG that respects dependencies;
specifically, all ancestors of vi must occur before vi in the schedule.

Pebble games were first proposed by Sethi [79] to bound the communication complexity
of a CDAG in the context of register allocation. Given a CDAG G = (V,E), a player may, at
each step, perform one of several operations with pebbles. In the original variant, sometimes
referred to as the black pebble game , each pebble corresponds to a register, and the following
operations are permitted:

• place a pebble on a source vertex of G (initialize a register)
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• place a pebble on a vertex v, provided that all vertices u such that (u, v) ∈ E have
pebbles on them (perform a computation whose inputs are all in registers, and write
the output to another register)

• remove a pebble from any vertex in G (free a register)

The game completes when all sink vertices of G have pebbles on them. From this formulation,
it is clear if a CDAG can be black-pebbled with r pebbles, it can be executed on a machine
with r registers.

In order to model communication for a memory hierarchy model, this game must be
augmented with an operation corresponding to communicating a value between fast memory
and slow memory. The resulting red-blue pebble game, proposed by Hong and Kung [36],
involves two pebble colors: red, corresponding to fast memory, and blue, corresponding to
slow memory. At the beginning of the program, all source nodes in G have blue pebbles on
them, as the inputs to the program are presumed to initially reside in slow memory. Each
turn involves one of the following operations:

• (L) place a red pebble on any vertex with a blue pebble on it (load a value from slow
memory to fast memory)

• (S) place a blue pebble on any vertex with a red pebble on it (store a value from fast
memory to slow memory)

• (C) place a red pebble on a vertex v, provide that all vertices u such that (u, v) ∈ E
have red pebbles on them (perform a computation whose inputs are all in fast memory,
and write the output to fast memory)

• (D) delete a pebble of any color from a vertex (remove a value from slow or fast
memory)

The game concludes when all sink vertices of G have blue pebbles on them, indicating that
the result has been computed and written to slow memory.

Given an instance of the red-blue pebble game, the maximum number of red pebbles on
the graph at any time is the amount of fast memory required to execute the corresponding
schedule, with the communication cost being the the number of (L) and (S) steps that occur.
As a result, finding the communication cost of a CDAG in the two-level memory hierarchy
model equivalent to determining the minimum number of (L) and (S) steps required to
pebble the CDAG given M red pebbles.

Unfortunately, determining the exact minimum cost required to pebble an arbitrary
CDAG is intractable. Determining the optimal pebbling scheme (and corresponding cost)
for black-pebbling (register allocation) and “base” red-blue pebbling are both known to be
PSPACE-complete [27, 17], and optimal pebbling for variants of red-blue pebble game that
forbid or penalize recomputation have been shown to be NP-complete [70] in the general
case.
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However, pebbling bounds have been effectively derived, and tight pebbling based bounds
have been efficiently derived for certain classes of computations.

The main approach is to partition the graph into subgraphs, each corresponding to a
subset of computations.

Theorem 1 (Th. 3.1 from [36]). Let an S-partition of a CDAG G = (V,E) be defined as a
partition of V into disjoint subsets V1, ..., Vh such that each subset Vi satisfies the following
criteria

• Vi must have a dominator set (a set of vertices such that each path from a source vertex
of G to a vertex in Vi must contain at least one vertex in the dominator set) of size at
most S. Intuitively, Vi must depend on at most S values.

• The minimum set (set of vertices in Vi with no children in Vi) must be of size most S.
Intuitively, the size of the output of Vi must be at most S

• Every path between two vertices in Vi consist entirely of vertices in Vi. Intuitively, this
means the set of tasks represented by Vi can be executed as a single block, or equivalently,
that there are no cyclic dependencies between different subsets.

Suppose there exists a schedule for a CDAG G that, on a machine with M words of fast
memory, with communication cost q. Then there exists a 2M-partition of G into h subsets
of vertices such that M(h− 1) ≤ q ≤Mh .

Proof. (from [52]) divide the schedule into h contiguous, consecutive segments S1, ..., Sh each
of which communicates exactly M words 1 (i.e. uses exactly M (L) and (S) steps). We will
use Vi to denote the set of values computed during segment i. By construction, there can be
no cyclic dependencies between segments.

We define the following sets of vertices:

• DR,i is set of vertices whose values are already in fast memory at the beginning of Si,
i.e. each of its vertices have red pebbles at the start of Si . Since fast memory may
have no more than M words in it at the beginning of each segment, and in fact at any
time, |DR,i| ≤M

• DB,i is the set of vertices whose values are loaded into fast memory during Si, i.e. each
of its vertices starts segment i with blue pebbles and gain red pebbles during Si. By
definition of segments, |DB,i| ≤M .

• WR,i is the set of vertices whose values remain in fast memory at the end of Si, i.e.
each of its vertices have red pebbles at the end of Si. By the constraint on the size of
fast memory (as with DR,i), |WR,i| ≤M

1The last segment may communicate less than M words, since we are not guaranteed that the total
communication is divisible by M . For simplicity, we will assume the last segment communicates exactly M
words of.
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• WB,i is the set of vertices whose values are written to slow memory during Si, i.e. each
of its vertices have blue pebbles placed on them during Si. By definition of segments,
|WB,i| ≤M .

Notice that DR,i ∪DB,i consist of all inputs to Vi and therefore forms a dominator set of Vi,
and its size is at most |DR,i|+ |DB,i| ≤ 2M.

Furthermore, if a vertex v ∈ Vi has no children in Vi, its value must either remain in fast
memory and the end of Si (to be used by a later segment), giving v ∈ WR,i; or be written to
slow memory during Si (either to be read in and used by a later segment, or as part of the
final output of the program), giving v ∈ WB,i. Otherwise v would not be performing any
useful work and could be deleted without changing the computation. As a result, WR,i,∪WB,i

must contain the minimum set of Vi , giving an upper bound of |WR,i|+ |WB,i| ≤ 2M on the
size of the minimum set.

As a result, V1, ..., Vh is a 2M -partition. As each segment communicates exactly M words,
and there are h segments, the total communication q is Mh.

We note that the key step of the proof is to divide the schedule into h segments, each
of which communicates exactly M words. Determining the minimum number of segments
required in such a construction will be key to our approach in the next section.

2.3.2 The Segment-Based Approach

Many straight-line computations of interest, including dense linear algebra, n-body problems,
convolutions, can be expressed as a collection of nested loops, where each iteration accesses
elements from several multidimensional arrays, indexed by some affine functions ϕ : Zd → Zdn

(for some dn ≤ d) of the current loop iteration function:

for x1 ∈ [L1] , ..., for xd ∈ [Ld] :

perform operations on A1 [ϕ1 (x1, ..., xd)] , ..., An [ϕn (x1, ..., xd)]
. (2.3.1)

Let us assume that there are no dependencies between loop nests (i.e. any schedule
is valid) and that we forbid recomputation. For operations such as matrix multiplication,
tensor contraction, and convolution, these tend to be reasonably good assumptions - the
accumulation is an associative and commutative operation, and there is no reason to perform
recomputations since there is no reuse in the outputs.

For such problems, we apply the segmenting approach from the preceding section as
follows; given an arbitrary schedule, divide the schedule into h segments S1, ..., Sh, each
corresponding to exactly2 M words of communication. Our goal will be to establish a lower
bound on h. We do so by establishing an upper bound U on the number of loop iterations

2Again, for simplicity, we assume the last segment uses exactly M words of communication, although it
may be lower.
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that can be performed in each segment. As the total number of operations is
∏

i∈[d] Li, it
follows that

h ≥
∏

i∈[d] Li

U
.

Notice that any computation performed in segment Si may use (by reading from, or
writing to) at most 2M words of data: the M words already present in fast memory at
the beginning of the computation, and M words that may be read or written during the
execution of the segment. As a result, the total communication cost must be at least

q ≥ 2Mh = 2M

∏
i∈[d] Li

U
. (2.3.2)

The crux of finding such lower bounds, as a result, is determining the upper bound U ,
the number of loop iterations that may be performed with access to at most 2M words of
memory. Irony, Toledo, and Tiskin [39, 84] apply a geometric approach to this problem to
develop such a bound for the classical three-nested loop matrix multiplication problem:

for x1 ∈ [L1] , x2 ∈ [L2] , x3 ∈ [L3] :

A3 [x1, x2] + = A1 [x1, x3]A2 [x3, x2]
. (2.3.3)

In the above notation, the data access functions are:

ϕ1(x1, x2, x3) = (x1, x3)

ϕ2(x1, x2, x3) = (x3, x2)

ϕ3(x1, x2, x3) = (x1, x2) .

Each iteration x⃗ = (x1, x2, x3) may be represented as an point in a parallelepiped in Z3, and
the array addresses required to execute that iteration are given by its projections ϕ1, ϕ2, and
ϕ3. It follows that the array addresses required for a segment S ⊆ [L1] × [L2] × [L3] ⊆ Z3

- which can be thought of as a set of iteration points - are projections of S, specifically
{[ϕi(x⃗)] : x⃗ ∈ S} for i ∈ [3]; we will denote these ϕi(S) for convenience. Therefore, the
amount of data required to execute Si is |ϕ1(Si)|+ |ϕ2(Si)|+ |ϕ3(Si)|, which (by definition)
must be bounded above by 2M ; this constraint can be relaxed to |ϕi(S)| ≤ 2M .

As a result, the problem may be reduced geometrically to determining an upper bound
on the size of a set S ⊆ Z3 subject to constraints on the sizes of its projections ϕi. This is
immediately given by a classic inequality of Loomis and Whitney:

Theorem 2 ((Discrete Loomis-Whitney inequality, Theorem 2 from [56])). Let S be a set of
points in Zd, and ϕi(S) be the set of projections of S onto the d− 1-dimensional hyperplane
formed by fixing the ith coordinate. Then

|S|d−1 ≤
∏
i

|ϕi(s)| .
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It immediately follows from Theorem 2 that the size of the matrix multiply segment is
bounded above by |S|2 ≤ (2M)3; plugging into (2.3.2) gives a communication lower bound
of

qmatmul =
2ML1L2L3

(2M)3/2
=

L1L2L3√
2M

(2.3.4)

It is also instructive to attempt to attain this lower bound. Let us assume as a ansatz
that the rectangular tiling of Algorithm 2 is appropriate for this problem. Our goal will be
to find the largest possible (in terms of number of operations) tiles whose memory footprint
can fit inside fast memory. This results in the optimization program:

maxT1T2T3

s.t. T1T2 + T2T3 + T1T3 ≤M

This optimization program may be directly solved using signomial optimization techniques
[65]. However, simpler methods suffice to prove the (asymptotic) optimality of this lower
bound. Let us relax the memory footprint constraints as we did above during the proof of
the lower bound:

maxT1T2T3

s.t. T1T2 ≤M

T2T3 ≤M

T1T3 ≤M

This relaxation changes the constraints by at most a factor of 3, which we will ignore as we
are operating asymptotically (we will deal with constant factors more precisely in Chapter
4). Taking logs base M , and letting λi = logM Ti, we have:

maxλ1 + λ2 + λ3

s.t. λ1 + λ2 ≤ 1

λ2 + λ3 ≤ 1

λ1 + λ3 ≤ 1

The solution to this linear program is λ1 = λ2 = λ3 = 1/2, which suggests a tile size of√
M ×

√
M ×

√
M , which implies that each tile consists of M3/2 operations with a memory

footprint of (ignoring constant factors) M . As a result, the number of tiles is L1L2L3/M
3/2,

leading to asymptotic communication cost of L1L2L3/
√
M , which matches the lower bound

(2.3.4).
We note that the preceding derivation gives no guarantee that a tile of size

√
M ×

√
M ×√

M will fit in the bounds of the problem. For example, if L3 = 1 (i.e. a matrix-vector
multiply), almost every such tiling would be larger than the problem itself. We address this
issue in Chapter 3.
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2.3.3 The Discrete Brascamp-Lieb Inequalities

In order to develop lower bounds and optimal tilings beyond matrix multiplication, we must
generalize beyond the Loomis-Whitney inequality (Th. 2). Our main tool will be the discrete
Brascamp-Lieb inequalities (often abbreviated as “BL” or “HBL”, with the H being a reference
to Hölder) first introduced in [14].

Definition 3. Given a finitely generated group G, let rank(G) denote the size of the smallest
generating set of G.

Theorem 4 (discrete Brascamp-Lieb inequality). Let G and Gj (for j ∈ [n]) be finitely
generated Abelian group, and G be torsion-free. Let ϕj : G→ Gj be group homomorphisms.
If the rank inequalities

rank(H) ≤
∑
j∈[n]

sjrank(ϕj(H)) ∀ subgroups H ≤ G (2.3.5)

hold for some nonnegative numbers sj, then so does the following functional inequality:∑
x∈G

∏
j∈[n]

fj(ϕj(x)) ≤
∏
j∈[n]

∥fj∥1/sj (2.3.6)

for all nonnegative functions fj with a defined ℓ1/sj norm over Gj.

We can apply this theorem to generate a Loomis-Whitney style cardinality inequality as
follows: let S ⊆ Zd be a segment. Let fj : Zdj → Z be defined to be the following indicator
function:

fj(x) =

{
1 x ∈ ϕj(S)

0 otherwise
.

It immediately follows from the definition of fj that

∥fj∥1/sj = |ϕj(S)|sj . (2.3.7)

Furthermore, notice that if x ∈ S, then ϕj(x) ∈ ϕj(S) for all j, which implies
∏

j∈[m] fj(ϕj(x)) =
1. As a result, the cardinality of S is bounded by the left hand side of 2.3.6:

|S| ≤
∑
x∈Zd

∏
j∈[n]

fj(ϕj(x))

≤
∏
j∈[n]

∥fj∥1/sj applying (2.3.6)

=
∏
j∈[n]

|ϕj(S)|sj applying (2.3.7)

which gives us the following generalization of the Loomis-Whitney inequality
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Corollary 5. Let ϕj : Zd → Zdj be linear functions, and S be a subset of Zd. Then for all
sj ≥ 0 satisfying

rank(H) ≤
∑
j∈[n]

sjrank(ϕj(H)) ∀ subgroups H ≤ Zd (2.3.8)

it follows that
|S| ≤

∏
j∈[n]

|ϕj(S)|sj . (2.3.9)

One can immediately apply the same argument from 2.3.2 to derive the following com-
munication lower bound:

Theorem 6. Let ϕj : Zd → Zdj be linear functions, and suppose we have the following loop
nest:

for x1 ∈ [L1] , ..., for xd ∈ [Ld] :

perform operations on A1 [ϕ1 (x1, ..., xd)] , ..., An [ϕn (x1, ..., xd)]
. (2.3.10)

The communication q required to execute this loop nest in the two-level memory hierarchy
model with fast memory size M is bounded below by

q ≥ Ω

( ∏
i∈[d] Li

M
∑

j∈[n] sj−1

)
for any sj satisfying

rank(H) ≤
∑
j∈[n]

sjrank(ϕj(H)) ∀ subgroups H ≤ Zd . (2.3.11)

In order to find the strongest lower bound (which is also the only one possibly attainable
by a tiling), we must minimize

∑
j∈[m] sj subject to the linear rank constraints (2.3.11) (which

form a polytope that we will refer to as the discrete Brascamp-Lieb polytope); this is a simple
linear programming problem, provided we can enumerate the rank constraints.

Simple enumeration of the subgroups H does not suffice to determine the rank constraints,
as there are infinitely many possible subgroups H of Zd. Note that the number of possible
rank constraints is bounded - in particular, there are only d possible values for rank(H), and
only dj possible values for each of the rank(ϕj(H)), so any valid rank constraint would be of
the form

a ≤
∑
j∈[m]

sjaj

for a ≤ d, aj ≤ dj . Therefore, the most straightforward method to enumerate all the
constraints of the Brascamp-Lieb polyhedron would be to enumerate all such possible a, aj
and pass them to the following decision problem:
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Problem 7. Given positive integers a ≤ d, aj ≤ dj, does there exist some subgroup H ≤ Zd

such that rank(H) = a and rank(ϕj(H)) = dj for all j?

Unfortunately, [14] showed that deciding Problem 7 would also decide Hilbert’s tenth
problem in the rationals: that is, deciding whether a finite set of multivariate polynomials
with rational coefficients has a common rational root. The decidability of Hilbert’s tenth
problem in the rationals has been unknown for many decades, although the equivalent prob-
lem for the integers is well known to be undecidable [60].

Note that this does not preclude a complete description of the BL polytope. In particular,
solving Problem 7 requires checking the validity of every possible rank inequality, including
those implied - and therefore made redundant - by other valid rank inequalities. It is in fact
possible to enumerate a set of constraints that completely defines the BL polytope - i.e. one
that implies all the rank inequalities - through an algorithm given in [13]. Unfortunately,
this algorithm has no bounds on runtime (other than a guarantee that it terminates), and
as a result we are forced to rely on alternative means to do this.

The following theorem, a straightforward extension of the main result of [85] to to our dis-
crete setting, can simplify the process of enumerating the constraints forming the Brascamp-
Lieb polytope.

Definition 8. Let {Hi} := {H1, . . . , Hk} be groups. The lattice of {Hi}, denoted L{Hi}, is
defined as the smallest set of subspaces containing {Hi} closed under intersection and direct
sum: that is, if V1, V2 ∈ L{Hi}, then so are V1 ∩ V2 and V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}.

In this lattice, the intersection serves as the meet operation, while the sum serves as the
join.

Theorem 9. Theorems 4 and 6 and Corollary 5 still hold if they are rewritten so the rank
conditions (2.3.5), (2.3.8), and (2.3.11) are required only to apply for H ∈ L{ker(ϕi):i∈[n]}.

Proof. Let Φj : Qd → Qdj extend ϕj to a Q-linear map. In Section 2.2 of [13], it is proved
that the polytope of (sj) satisfying the rank conditions (2.3.5), (2.3.8), and (2.3.11) is exactly
equal to the polytope of (sj) satisfying, for each subspace V ≤ Qd,

dimV ≤
m∑
j=1

sj dimϕj(V ).

In [85], Theorem 8 states that it suffices to check only these inequalities from subspaces in
L{kerΦj}. To check these, it suffices to check the original rank conditions (2.3.5), (2.3.8), and
(2.3.11) on the subgroups in L{kerϕj} and then to take Q-linear spans of these subgroups.
This completes the proof.

We will use Theorem 9 to find lower bounds for convolutions in Chapter (4).
Furthermore, we can also examine subsets of the discrete Brascamp-Lieb polytope, which

lead to (potentially weaker, but guaranteed correct) lower bounds. One such subset is given
by the real counterpart to Theorem 4 .
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Theorem 10 (Real Brascamp-Lieb inequality, from [4]). Let Bj : Rd → Rdj be linear
functions for j ∈ [n], and sj be nonnegative reals3. If the rank constraints

dim(V ) ≤
∑
j

sj dim(BjV ) ∀subspaces V ≤ Rd (2.3.12)

and the scaling constraint
d =

∑
j

sjdj (2.3.13)

hold as well, then there exists a nonnegative, finite constant C∫
x∈Rd

∏
j∈[n]

(fj(Bjx))
sj dx ≤ C

∏
j∈[n]

(∫
xj∈Rdj

fj(xj)dxj

)sj

for all nonnegative functions f .

This inequality is very similar to the discrete Brascamp-Lieb inequality, with the excep-
tion of the value C, which is referred to as the capacity of the inequality. In the discrete
formulation, C is always 1 when the inequality is valid; the same does not hold in the real
case.

We will refer to the polytope described by (2.3.12) and (2.3.13) as the real Brascamp-
Lieb polytope. Notice that the rank constraints are very similar to the ones for the discrete
case, except that they span over subspaces of Rd rather than a finitely generated group. In
fact, as these subspaces include those with integer bases, the rank constraints (2.3.12) are
a superset of the discrete rank constraints (2.3.8). As a result, the real BL polytope is a
subset of the discrete BL polytope, implying that every (B, s) that satisfies the real rank
and scaling constraints generates a valid discrete BL inequality and therefore communication
lower bound. Although there is no guarantee that a stronger bound - one whose exponents
satisfy the discrete scaling rank constraints but not the real ones - does not exist, optimizing
over the real BL polytope produces tight inequalities in many practical cases, such as the
Loomis-Whitney inequality (Theorem 2).

The advantage of considering real BL polytope is that a bounded time separation oracle
[25] exists for it, which allows for the optimization of linear objectives (such as

∑
j sj) over

the polytope. Furthermore, as the number of possible inequalities is finite, this leads to a
bounded time algorithm for enumerating the constraints of the real BL polytope. However,
as the cost of optimizing a linear function over the real BL polytope is exponential (as
the separation oracle runs in time polynomial to the greatest common divisor of the sjs,
which increases as we approach an optimum), such results are of less practical interest than
methods that allow us to analyze special cases of the Brascamp-Lieb polytope that typically
arise from real code.

3Most papers on real BL inequalities, e.g. [4, 85, 25] use p instead of s, but we use s here for consistency
with the discrete case.
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Chapter 3

Tilings and Lower Bounds for Projective
Nested Loops

For many loop nests of interest - matrix multiplication, tensor contraction, n-body pairwise
interaction, among others - the data access functions ϕi are projections returning subsets of
their inputs - that is, for all j, ϕj(x1, ..., xn) = (xj1 , ..., xjk) for some integers j1, ..., jk ∈ [d].
We refer to both the set {xj1 , ..., xjk} and the set {j1, ..., jk} (depending on context) as the
support of ϕj, which we denote supp(ϕj). The following theorem from [14] provides a simple
description the Brascamp-Lieb polytope for in this case.

Theorem 11 (Th. 6.6 from [14]). Let ei be the subgroup of Zd generated by the vector
[0, . . . , 0, 1, 0, . . . 0]T with zero entries at all indices except for i. If ϕj are projections for all
j, then the rank conditions

rank(H) ≤
∑
j∈[n]

sjrank(ϕj(H))

are satisfied for all subgroups H ≤ Zd if and only if they are satisfied for e1, . . . , ed - that is,
if

1 ≤
∑

j s.t. supp(ϕj)∋i

sj (3.0.1)

for all i ∈ [d].

Proof. The “only if” direction is obvious, since e1, . . . , ed are subgroups of Zd.
Conversely, suppose (3.0.1) holds. Let H be some subgroup of Zd with rank h. Then H

can be represented as the integer span of columns of some d×h matrix H. Since H has rank
h, we can extract a full-rank h× h submatrix HR by extracting a subset of its rows; denote
this subset R.

Notice that all ϕj does is extract a subset some of H’s rows, including
∑

i∈R 1i∈supp(ϕj)

rows from HR, where we use the notation 1x to denote an indicator function that has value
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1 when x is true and 0 otherwise.. As the rows extracted from HR are guaranteed by
construction to be linearly independent, we get the following lower bound on the rank of
ϕj(H):

rank (ϕj(H)) ≥
∑
i∈R

1i∈supp(ϕj) (3.0.2)

which means that∑
j∈[n]

sjrank(ϕj(H)) ≥
∑
j∈[n]

sj
∑
i∈R

1i∈supp(ϕj) substituting (3.0.2)

=
∑
j∈[n]

∑
i∈R

sj1i∈supp(ϕj)

=
∑
i∈R

∑
j∈[n]

sj1i∈supp(ϕj)

=
∑
i∈R

∑
j s.t. supp(ϕj)∋i

sj

≥
∑
i∈R

1 substituting (3.0.1)

= h

as desired.

As a result, (3.0.1) provides a description of the Brascamp-Lieb polytope in the projective
case. In this case, Theorem 5 is equivalent to the AGM bound [2]which provides the following
intuition for the constraints 3.0.1: define a hypergraph H whose vertices are the set of loop
indices i ∈ [d], and whose hyperedges are the supports of the ϕj. If assigning weights sj to
each hyperedge corresponding to ϕj forms a fractional edge cover for H (that is, the sum of
the weights of the hyperedges touching every vertex is at least 1), the rank constraints are
satisfied, and the inequality holds.

Combining Theorems and 6 and 11 gives us the following communication lower bound

Ω

( ∏
i∈[d] Li

M
∑

j∈[n] sj−1

)
where sj ≥ 0 are the solution to the linear program:

min
∑

sj subject to 1 ≤
∑

j s.t. supp(ϕj)∋i

sj ∀i ∈ [1..d] (3.0.3)

Thinking of the ϕi as 0-1 vectors with 1s in the indices contained in its support, and letting
s⃗ denote the vector [s1, ..., sn]

T , we can rewrite the linear program (omitting nonnegativity
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constraints) as follows: minimize 1⃗
T
s⃗ subject to: | |
ϕ1 · · · ϕn

| |

 s⃗ ≥ 1⃗ . (3.0.4)

Now that we have a lower bound, we would like to find an actual tiling that attains
it in order to show that it is tight. Given that this problem is a generalization of matrix
multiplication, we will assume as an ansatz that a rectangular tiling is optimal: that is, the
that the optimal tile is a hyperrectangle of dimensions b1× ...×bd, where the bi are constants
which we wish to determine.

We wish to select a tile whose volume (that is,
∏

i∈{1..d} bi) is as large as possible, but we
are subject to memory limitations: the subsets of each array that are used must fit in cache.
Since the subsets of array Ai required to complete the operations in this hyperrectangle are of
size

∏
j∈supp(ϕi)

bj, we obtain the constraint (again, ignoring constant factors)
∏

j∈supp(ϕi)
bj ≤

M . Taking logs base M and letting λi denote logM bi, we obtain the following linear program:
maximize 1⃗

T
[λ1, ..., λd] subject to:− ϕ1 −

...
− ϕn −


λ1

...
λd

 ≤ 1⃗ . (3.0.5)

Taking the dual gives us (3.0.4), which implies that this tiling obtains the lower bound.
It is easy to imagine this is completes the task: we both have a lower bound, and a tiling

that obtains the lower bound. Unfortunately, the lower bound is not always attainable.
Consider, for instance, the matrix multiplication example. Solving the LP (3.0.3) gives

the Loomis-Whitney bound (2.3.4): multiplying an m× k and k×n matrix requires at least
Ω(mnk/

√
M) communication on a two-level memory hierarchy model with fast memory size

M . In the case of matrix-vector multiply, however, n = 1, so the lower bound becomes
Ω(mk/

√
M), which is clearly not attainable since it is smaller than the size of one of the

input matrices.
In order to account for this, we can encode the constraint bi ≤ Li in the LP (3.0.5), but

it is not clear whether or not this is optimal. This chapter will show that it is. Specifically,
our contributions in this chapter are:

• a family of lower bounds for projective loop nests allowing for small loop indices, and

• a proof that that the tiling generated by the LP (3.0.5), augmented with constraints
bi ≤ Li, always attains a communication lower bound for projective ϕj.

The results in this chapter were previously published as [19].
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3.1 The Lower Bound

3.1.1 One Small Index

We will start our approach to small loop bounds by considering the case when all loop
indices but one are assumed to be bounded by arbitrarily large values. Our approach will be
to (a) find an upper bound for a tile restricted to single “slice” of the iteration space formed
by fixing the loop index with a small bound, (b) calculate an upper bound for the entire
tile by summing individual slice bounds together over all possible values of the same index,
and (c) divide the total number of operations by the aforementioned quantity to achieve a
communication lower bound.

Let us first consider the case where a single loop bound - say, L1, the upper bound on x1

- is small, and the others are large. We may assume without loss of generality that L1 ≤M ;
if the opposite is true, then L1 would be large enough for the analysis from the introduction
to this chapter to apply, as any tile whose memory footprint is at most M would fit in the L1

dimension. Furthermore, suppose without loss of generality that ϕ1, ..., ϕp (for some integer
p) all contain x1 and ϕp+1, ..., ϕn do not. We will now find a communication lower bound for
the subset of instructions whose x1 index is fixed (since the loop bounds are constant and
therefore independent of x1, the result is the same for all possible values of x1).

Let ϕ′
1, ..., ϕ

′
p be the functions with x1 removed. For instance, if ϕ1 = (x1, x2, x3), then

ϕ′
1 = (x2, x3). A communication lower bound for a single “slice” of operations with x1 fixed

can be found by using LP 3.0.3, with the ϕ replaced with ϕ′, to compute an upper bound
for the max tile size:

min
∑

ŝj subject to 1 ≤
∑

j s.t. supp(ϕ′
j)∋i

ŝj ∀i ∈ [1..d]

This amounts to removing the first row in the constraint matrix of the LP (3.0.4).
To find a upper bound for the size of a tile, we sum over the upper bounds for the size

each of its slices, each of which corresponds to a single value of x1. Let ϕ1 |x1=k, ..., ϕn |x1=k be
the functions with x1 fixed to k. Then, the maximum tile size is found by maximizing the
following quantity (with V representing the tile):∑

i∈[L1]

∏
j∈[n]

|ϕj |x1=i(V )|ŝj = M
∑

i∈[p+1,n] ŝi
∑
i∈[L1]

∏
j∈[p]

|ϕj |x1=i(V )|ŝj (3.1.1)

subject to: ∑
i∈[L1]

|ϕj |x1=i(V )| ≤M ∀j ∈ [p] . (3.1.2)

We maximize (3.1.1) subject to the constraints (3.1.2), and compute the maximum tile
size, as follows:
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Lemma 12. The maximum tile size for a tile V , subject to the constraints that (a) that
ϕi(V ) ≤M for all i and (b) the set of all distinct x1-coordinates of elements of V is at most
L1 in cardinality (i.e. the tile fits inside the loop bounds), is bounded above by Mκ, where

κ = max

{
n∑

i=1

ŝi + β1

(
1−

p∑
i=1

ŝi

)
,

n∑
i=1

ŝi

}
.

Proof. There are three cases:

1. If
∑

i∈[p] ŝi < 1, the maximum of the quantity (3.1.1) is achieved when we distribute
the weight across terms in the sum, i.e. for all j ∈ [1..p], let |ϕj |x1=i(V )| = M/L1 for
all i ∈ [1..L1], which leads to a tile size of Mκ where

κ :=
n∑

i=1

ŝi + β1

(
1−

p∑
i=1

ŝi

)
(3.1.3)

and β1 = logM L1.

a) If
∑

i∈[p] ŝi > 1,the maximum is achieved when we concentrate the entire weight
into one term of the sum (i.e. for all j ∈ [1..p], let |ϕj |x1=i′(V )| = M for some i′

and let |ϕj |x1=i(V )| = 0 for i ̸= i′), which leads to a tile size of Mκ where

κ :=
n∑

i=1

ŝi . (3.1.4)

b) If
∑

i∈[p] ŝi = 1, then both (3.1.3) and (3.1.4) are equal. Furthermore, since the
only difference between ŝ and s is that the latter must satisfy the additional
constraint

∑
i∈{1..p} si ≥ 1 in the constraint (which is satisfied in this case by ŝ as

well), we get an upper bound of M
∑n

i=1 ŝi = M
∑n

i=1 si immediately from (3.0.3).

Proof. For convenience, denote |ϕi |x1=x′
i
(V )|, the slice of V corresponding to x′

1, as yi,x′
1
. We

want to maximize
L1∑

x1=1

yŝ11,x1
. . . yŝpp,x1

subject to
L1∑

x1=1

yi,x1 −M ≤ 0 ∀i ∈ [p] .

Without loss of generality, assume all the ŝi are positive; if ŝi = 0, then we can remove
yi,x1 from both the statement of the maximization problem (e.g. by setting it to 1 for all xi)
and from the quantities (3.1.3) and (3.1.4) without affecting the rest of the proof.
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Since any slack in any one of the above inequalities can be removed by increasing one of
the yi,xi

, and doing so will only increase the quantity we’re trying to maximize, we can take
these inequalities to be equalities. The Lagrange multipliers for this problem are:

L =

L1∑
x1=1

yŝ11,x1
. . . yŝpp,x1

−λ1

(
L1∑

x1=1

y1,x1 −M

)
...

−λp

(
L1∑

x1=1

yp,x1 −M

)
.

Setting the gradient (with respect to both yi,j and λi) to 0, and looking at the derivative
with respect to yi,j, we get:

ŝiy
ŝ1
1,j...y

ŝi−1

i−1,jy
ŝi−1
i,j y

ŝi+1

i+1,j...y
ŝp
p,j = λi . (3.1.5)

These equations are invariant in j: that is, no matter which value j we fix x1 to, the
set of equations that yi,j must satisfy are identical (this intuitively follows from symmetry
across the xi).

As a result, we may assume λi ̸= 0; if it is in fact zero, then the quantity we’re trying
to maximize would be zero, which clearly cannot be the case since we can construct a tile
containing only one element (i.e. with our objective being 1) that satisfies all the constraints
of the maximization problem.

In particular, λiyi,j/ŝi = yŝ11,j...y
ŝp
p,j must remain invariant as i varies (with a fixed j),

which implies that for any i1, i2, j,

λi1yi1,j
ŝi1

=
λi2yi2,j
ŝi2

implying that the ratio between yi,j for two different values of i is independent of the j (i.e.
slice) we choose, remaining fixed at

yi1,j
yi2,j

=
λi2 ŝi1
λi1 ŝi2

Therefore, the point we’re trying to solve for satisfies this relationship:

yi,j =
λ1ŝi
λiŝ1

y1,j (3.1.6)

For any given j, one of two cases must hold: either yi,j = 0 for all i (in which case the tile
does not intersect at all with the slice x1 = j) or all yi,j are nonzero, and we can substitute
(3.1.6) into (3.1.5) to get:
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λi

ŝi
= yŝ11,j...y

ŝi−1

i−1,jy
ŝi−1
i,j y

ŝi+1

i+1,j...y
ŝp
p,j

=

∏p
k=1 y

ŝk
k,j

yi,j

=

∏p
k=1

(
λ1ŝk
λk ŝ1

y1,j

)ŝk
λ1ŝi
λiŝ1

y1,j

= y
−1+

∑
k ŝk

1,j

λiŝ1
λ1ŝi

p∏
k=1

(
λ1ŝk
λkŝ1

)ŝk

= y
−1+

∑
k ŝk

1,j

λiŝ1
λ1ŝi

(
λ1

ŝ1

)∑
k ŝk p∏

k=1

(
ŝk
λk

)ŝk

Canceling λi

ŝi
from both sides, and moving the first term in the last expression over to the

left, we get

y
1−

∑
k ŝk

1,j =

(
λ1

ŝ1

)∑
k ŝk−1 p∏

k=1

(
ŝk
λk

)ŝk

.

We may assume that 1 −
∑p

k=1 ŝk is nonzero, as the case when it is zero is covered by
case (3) above. Therefore, since the right hand side is independent of j, it follows that all
nonzero values of y1,j are equal. Since y1,j determines the value of yi,j for all i via (3.1.6), it
follows that each yi,j must either be (a) equal to some nonzero constant independent of j or
(b) be equal to zero, if and only if all yi′,j for the same j must also be zero.

Let the number of j such that y1,j ̸= 0 be ϑ, which must fall between 1 and L1 inclusive
(since the number of slices is at most equal to the loop bound corresponding to the dimension
we’re summing over). Therefore, in order to satisfy (a), the remaining yi,j must be equal to

yi,j =
M

ϑ
.

Substituting this into (3.1.1), we get that the max tile size is:

M
∑

i∈[p+1,n] ŝiϑ

p∏
i=1

(
M

ϑ

)ŝi

= M
∑n

i=1 ŝiϑ1−
∑p

i=1 ŝi

so the log (base M) of tile size is:

n∑
i=1

ŝi + (logM ϑ)

(
1−

p∑
i=1

ŝi

)
.
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Therefore, either 1−
∑p

i=1 ŝi is positive, in which case the maximum occurs when we set ϑ
to L1, giving (recall that β1 = logM L1):

n∑
i=1

ŝi + β1

(
1−

p∑
i=1

ŝi

)
,

or 1−
∑p

i=1 ŝi is negative, in which case the maximum occurs at ϑ = 1, in which case we get

n∑
i=1

ŝi .

as desired.

3.1.2 Multiple Small Bounds

We now generalize the results from Section 3.1.1 to the case where multiple loop bounds are
taken to be small. Suppose that the loops indexed by xi have bounds Li. Let Rj ⊆ {1..n}
denote the set of indices i such that supp(ϕi) contains xj.

As before, our approach considers the communication lower bound for a “slice” - that is,
a subset of the iteration polytope formed by restricting certain loop indices to fixed values
- and summing these slice lower bounds over all possible values of the fixed indices. This
time, however, each slice will be formed by simultaneously fixing multiple indices, which
we assume without loss of generality are x1 through xq (the following argument holds for
any q, and is independent of the actual value of q). As was the case in the single-variable
case, an upper bound on max tile size for a single slice is given by M

∑
j∈{1..n} ŝj ,where ŝj are

any nonnegative numbers that satisfy 1 ≤
∑

j s.t. supp(ϕ′
j)∋xi

ŝj, where ϕ′
j now corresponds to

removing x1, ..., xq from ϕj (or, alternatively, chopping off the first q rows of the HBL LP
constraint matrix (3.0.4)).We now develop an analog to Lemma 12 in order to maximize the
sum of the slices over {x1, ..., xq} ∈ {1..L1} × ...× {1..Lq}. Our main result is as follows:

Theorem 13. Let q ∈ [1..d], and ŝi be any nonnegative numbers such that 1 ≤
∑

j s.t. supp(ϕ′
j)∋xi

ŝj,
where ϕ′

j is obtained by removing x1, ..., xq from ϕj. Then Mk, where

k =
n∑

i=1

ŝi +
∑

j∈[q] s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝi


represents an upper bound on the tile size.

Notice that this theorem holds for all possible q, as well as reorderings of the variables.
As a result, this lemma in fact generates 2d separate upper bounds for tile size (one for each
subset Q of indices that we hold to be small). Therefore, the smallest upper bound on tile
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size (which corresponds to the largest lower bound on communication) we can achieve in this
manner is M k̂ for

k̂ = min
Q⊆[d]

n∑
i=1

ŝQ,i +
∑

j∈Q s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝQ,i


where ŝQ,i is the solution to the HBL LP (3.0.4) with the rows indexed by elements of Q
removed.

Notice that this theorem holds for all possible q, as well as reorderings of the variables.
As a result, this lemma in fact generates 2d separate upper bounds for tile size (one for each
subset Q of indices that we hold to be small). Therefore, the smallest upper bound on tile
size (which corresponds to the largest lower bound on communication) we can achieve in this
manner is M k̂ for

k̂ = min
Q⊆[d]

n∑
i=1

ŝQ,i +
∑

j∈Q s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝQ,i


where ŝQ,i is the solution to the HBL LP (3.0.4) with the rows indexed by elements of Q
removed.

Proof. By induction on q. The base case, for q = 1, is simply Lemma 12.
Let ŝ′i be defined as ŝ[q−1],i. Suppose for induction that Mk, for

k =
n∑

i=1

ŝ′i +
∑

j∈[q−1] s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝ′i


represents an upper bound on the tile size.

We start by finding an upper bound on the tile size, as before, by summing over several
“slices”, each being defined as the subset of the elements where x1 through xq are set to fixed
values.

We begin by generalizing the notion of slices to the case where multiple indices may be
small. As before, let ϕi |{x̂1,...,x̂q} denote ϕi with xj fixed to x̂j for all j ∈ [q]. By definition, as
ϕi only depends on indices in its support, ϕi |{x1,...,xq} must be identical to ϕi |{x1,...,xq}∩supp(ϕi).

We wish to maximize the size of the entire tile - that is, the sum of all the sizes of the
slices: ∑

x1∈[1..L1],...,xq∈[1..Lq ]

|ϕ1 |{x1,...,xq}(V )|ŝ1 . . . |ϕn |{x1,...,xq}(V )|ŝn

subject to the memory constraints∑
xk∈[1..Lk] for k∈[1..q]∩supp(ϕi)

|ϕi |{x1,...,xq}(V )| ≤M ∀i ∈
⋃

j∈[1..q]

Rj .
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As before, we will simplify our notation by defining yj,{x1,...,xq} := |ϕj |{x1,...,xq}(V )|. Our
optimization problem therefore can be rewritten as maximizing:∑

x1∈[1..L1],...,xq∈[1..Lq ]

yŝ11,{x1,...,xq} . . . y
ŝn
n,{x1,...,xq} (3.1.7)

subject to the constraints:

1 ≤
∑

xk∈[1..Lk] for k∈[q]∩supp(ϕi)

yi,{x1,...,xq} ≤M ∀i ∈
⋃
j∈[q]

Rj . (3.1.8)

The definition of ϕi |{x̂1,...,x̂q} (and therefore of yj,{x1,...,xq}) requires us to further impose
an additional constraint on the solution: for all i, the value of yi,{x1,...,xq} must remain
independent of indices not in the support of ϕi. Formally, if xk /∈ supp(ϕi), then

yi,{x1,...xk−1,a,xk+1,...,xq} = yi,{x1,...xk−1,,b,xk+1,....,xq} (3.1.9)

for any a, b. Our approach will be to find a candidate solution which ignores this constraint,
and then to show that this candidate solution actually does satisfy (3.1.9) (i.e. that this
constraint is redundant).

Furthermore, in order to make it easier to reason about the constraints (3.1.8), we will
multiply them all by the appropriate values in order to ensure that the sum is over the same
set of variables: x1 through xq:

∏
j∈[q]\supp(ϕi)

Lj ≤
∑

x1∈[1..L1],...,xq∈[1..Lq ]

yi,{x1,...,xq} ≤M
∏

j∈[q]\supp(ϕi)

Lj ∀i ∈
⋃
j∈[q]

Rj . (3.1.10)

Since our goal is to find an upper bound on the tile size, which is the result of this
constrained maximization problem, we can remove the lower bound constraints on∑

x1∈[1..L1],...,xq∈[1..Lq ]

yi,{x1,...,xq}

(i.e. the leftmost inequality in (3.1.10)) without affecting correctness.
The resulting problem is almost identical to that of Lemma 12, except with different

limits (one may think of this ’flattening’ the q-dimensional tensor x1, ..., xq into a single
vector in order to get a single sum as we did in the previous section). Recall that none of
the steps we used to compute the maximum in our proof of Lemma 12 actually used the
value of the right sides of the constraints, since all those constants were all differentiated
away as a constant factor when taking gradients; as a result, the same result applies here.
Specifically, the maximum is obtained at a point specified as follows: select some subset
S ⊆ {1..L1} × ...× {1..Lq} of integer tuples, which represent xi-indices for which yi,{x1,..,xq}
will be nonzero. For each {x1, .., xq} in S , yi,{x1,..,xq} must be equal to a constant value
independent of {x1, ..., xq}. In order to maximize (3.1.7), we set constraint (3.1.8) to obtain:
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yi,{x1,...,xq} =
M

|Si|
∀i (3.1.11)

where Si is ϕi (restricted to x1...xq) applied to S .
For indices not in S , set yi,{x1,...,xq} to zero for all i. The resulting upper bound for tile

size is therefore:

∑
x1,...,xq∈S

∏
i

(
M

|Si|

)ŝi

= |S |
∏
i

(
M

|Si|

)ŝi

=
|S |∏
i |Si|ŝi

M
∑

i ŝi (3.1.12)

where the first equality is a result of the independence of the summand with x, with the
number of nonzero terms in the sum being |S |.

Claim: without loss of generality, we can assume that S is a rectangle; that is, it can
be written as set C1 × · · · × Cq for some sets Ci ⊆ [Li]

Proof of claim: Suppose not. Then there exist points x′, x′′ ∈ S such there exists some
point x∗ /∈ S , where each x∗

j is equal to x′
j for all j except a single value j∗, at which it takes

on the value of x′′
j . To see why this is true, take any two distinct x′, x′′ ∈ S , and repeatedly

change one component of x′ to match the corresponding component of x′′, stopping when
either x′ = x′′, or x′ /∈ S . In the latter case, set x∗ = x′, and let x′ denote its immediate
predecessor in this process. If we never end up with an x∗ for any distinct pairs of x′ and x′′

in S , then S must be a rectangle.
Our goal will be to show that this configuration is suboptimal. Consider the set of

functions ϕi for i ∈ Rj∗ , that is, the set of functions containing xj∗ .
Let us consider the following categories, distinguished by how ϕi maps x′, x′′, and x∗.

1. ϕi(x
′) = ϕi(x

∗) ̸= ϕi(x
′′). Notice that replacing x′′ with x∗ in S either reduces |Si|

by one (if there is no other x† such that ϕi(x
†) = ϕi(x

′′)) or keeps it the same (if such
an x† exists); notice that in the latter case, adding x∗ to S keeps |Si| constant. We
denote these cases (1a) and (1b) respectively.

a) ϕi(x
′′) = ϕi(x

∗) ̸= ϕi(x
′). Analogously to case (1), replacing x′ with x∗ either

reduces Si (case (2a)) or keeps it the same (case (2b)).

b) ϕi maps x′, x′′, and x∗ to three distinct points.

c) ϕi(x
′) = ϕi(x

′′) = ϕi(x
∗).

d) ϕi(x
′) = ϕi(x

′′) ̸= ϕi(x
∗). Notice that this category must be empty: If x′′

j = x′
j,

then by definition this quantity is also x∗; therefore, going to ∗ from ′′ can only
make the number of agreements better under any projection.
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Proof. In the above categories, i satisfying (1) and (4) implies that i /∈ Rj∗ , while i satisfying
(2) and (3) implies that i ∈ Rj∗ . We will show that S is suboptimal by providing strict
improvements on it.

1. If there are any i in category (1a), we replace x′′ with x∗ in S , reducing |Si|. In order
to see how this change affects the values of Si for other i, we first note that for other
i /∈ Rj∗ , ϕi(x

′) = ϕi(x
∗), so this change can only keep constant or decrease |Si| for

such i. For all i in any of the other categories - (1b), (2ab), (3), or (4) - |Si| remains
the same. Therefore, as the value of |Si| either remains the same or decreases (with
at least one strict decrease), and |S | remains constant, we obtain a strict increase in
the value of (3.1.12).

a) If some i falling into category (3): Denote the set of i such that ϕi maps x′, x′′,
and x∗ onto different values as Q. We will split into two cases, based on the values
of
∑

i∈Rj∗
ŝi:

i. Suppose
∑

i∈Rj∗
ŝi ≥ 1. Consider the assignment to the yi,x given by S ; its

objective (3.1.12) is:

∑
x1∈[L1],...,xj∗−1∈[Lj∗−1],xj∗+1∈[Lj∗+1],...,xq∈[Lq ]

 ∑
xj∗∈[Lj∗ ]

yŝ11,{x1,...,xq} . . . y
ŝn
n,{x1,...,xq}


Factoring the innermost term into terms that are constant w.r.t. xj∗ and
those that are not, we can rewrite this as:∑
x1∈[L1],...,xj∗−1∈[Lj∗−1],xj∗+1∈[Lj∗+1],...,xq∈[Lq ]

 ∏
i∈[n]\R∗

j

yŝii,{x1,...,xq}

∑
xj∗∈[Lj∗ ]

∏
i∈R∗

j

yŝii,{x1,...,xq}

 .

Let us restrict our attention a single “slice”: that is, an instance of the term∑
xj∗∈[Lj∗ ]

∏
i∈Rj∗

yŝii,{x1,...,xq} (3.1.13)

with fixed values for x1 through xq, excluding xj∗ . By equality constraints,
we get that all the nonzero values of yŝii,{x1,...,xq} must be equal to a constant
independent of x1, ..., xq (but dependent on i). Let mi =

∑
x∗
i∈[Lj∗ ]

yi,{x1,...,xq},
and σ denote the number of xj∗ such that (x1, ..., xq), with all coordinates
except xj∗ set to our fixed values, are in S (and therefore, nonzero terms
in the above sum (3.1.13)); this restricts the nonzero values of yi,{x1,...,xq} to
mi/σ. Therefore, we may rewrite the above sum as:∑

xj∗∈[Lj∗ ]

∏
i∈Rj∗

yŝii,{x1,...,xq} = σ
∏
i∈Rj∗

(mi

σ

)ŝi
= σ

1−
∑

i∈Rj∗
ŝi
∏
i∈Rj∗

mŝi
i
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As
∑

i∈Rj∗
ŝi ≥ 1, the exponent of σ in the above expression is nonpositive;

therefore, this term is bounded above by∏
i∈Rj∗

mŝi
i

which we get when we set σ to 1. As this upper bound holds individually for
each “slice”, the value of the objective (3.1.12) is upper bounded by setting
σ to 1 for every slice, i.e. adding an additional constraint forcing Lj∗ to 1,
which is equivalent to removing xj∗ from the problem entirely. Applying our
inductive hypothesis, we get that an upper bound is Mk′ where

k′ =
n∑

i=1

ŝ′i +
∑

j∈[1..q]\{j∗} s.t.
∑

i∈Rj
ŝ′i≤1

βj

1−
∑
i∈Rj

ŝ′i

 .

Since
∑

i∈Rj∗
ŝi ≥ 1, there is no difference between ŝ′i and ŝi for all i, as the

only constraint that the former must satisfy that the latter is not required
to is

∑
i∈Rj∗

ŝi ≥ 1, which holds regardless in this case. Therefore, we can
replace ŝ′i with ŝi in order to completing the induction for the entire proof of
Lemma 13 in this particular case.

ii. Now suppose
∑

i∈Rj∗
ŝi < 1. As Q ⊆ Rj∗ , it immediately follows that∑

i∈Q ŝi ≤
∑

i∈Rj∗
ŝi < 1. Consider the values of yi,x′ , yi,x′′ , and yi,x∗ ; we

will show that a reassignment of these three values strictly increases the ob-
jective.
Without loss of generality, we will assume

∏
i/∈Q yŝii,x∗ may be taken as nonzero.

Why? Given some i′ is not in Q, then by definition ϕi′ must map x′, x∗ to
the same point, or x′′, x∗ to the same point. In the former case, we can set
yi′,x∗ = yi′,x′ without violating any constraint, as we can substitute the two
terms freely in any constraint-sum involving them; in the latter case, the
same applies if we set yi′,x∗ = yi′,x′′ . As x′, x′′ ∈ S , both yi′,x′ and yi′,x′′ must
be nonzero, so yi′,x∗ must be nonzero as well. As nonzero values of yi,x are
independent of x for all i, we must have

yi′,x∗ = yi′,x′′ = yi′,x′ (3.1.14)

For all i, let the value of yi,x′ + yi,x′′ + yi,x∗ be denoted µi, and define k′, k′′, k∗

such that yi,x′ = k′µi (and likewise for k′′, k∗); our starting configuration,
with S containing x′, x′′ but not x∗, is k′ = k′′ = 1/2, k∗ = 0. So as not to
break any constraints, we will require that the value of yi,x′ + yi,x′′ + yi,x∗ stay
constant, so we will enforce k′ + k′′ + k∗ = 1. The contribution of these three
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tiles to the objective (3.1.7) is:∏
i∈Q

yŝii,x′

∏
i/∈Q

yŝii,x′ +
∏
i∈Q

yŝii,x′′

∏
i/∈Q

yŝii,x′′ +
∏
i∈Q

yŝii,x∗

∏
i/∈Q

yŝii,x∗

=

(∏
i∈Q

yŝii,x′ +
∏
i∈Q

yŝii,x′′ +
∏
i∈Q

yŝii,x∗

)∏
i/∈Q

yŝii,x′

with equality following from (3.1.14). We substitute yi,x′ = k′µi and the
corresponding definitions for yi,x′′ , yi,x∗ to rewrite the above expression as:(∏

i∈Q

(k′µi)
ŝi +

∏
i∈Q

(k′′µi)
ŝi +

∏
i∈Q

(k∗µi)
ŝi

)∏
i/∈Q

yŝii,x′

=

(
k′

∑
i∈Q ŝi

∏
i∈Q

µŝi
i + k′′

∑
i∈Q ŝi

∏
i∈Q

µŝi
i + k∗

∑
i∈Q ŝi

∏
i∈Q

µŝi
i

)∏
i/∈Q

yŝii,x′

=
(
k′

∑
i∈Q ŝi + k′′

∑
i∈Q ŝi + k∗

∑
i∈Q ŝi

)∏
i/∈Q

yŝii,x′

∏
i∈Q

µŝi
i

We will leave yi,x′ constant for all i /∈ Q, and we will not vary µi, the sum of
yi,x′ , yi,x′′ , and yi,x∗ , so it suffices to maximize

k′
∑

i∈Q ŝi + k′′
∑

i∈Q ŝi + k∗
∑

i∈Q ŝi

subject to
k′ + k′′ + k∗ = 1.

As
∑

i∈Q ŝi < 1, the solution to this maximization problem is obtained by
setting k′ = k′′ = k∗ = 1/3; all other assignments (including the current one)
are suboptimal. As we do not vary any yi,x for i /∈ Q and any x, this change
does not affect the constraints corresponding to any other ϕi than those in
Q, which all must be still satisfied as we do not vary µi; therefore, both these
assignments satisfy the constraints (3.1.8). Therefore the current assignment
under S , with k∗ set to 0 and k′, k′′ set to 1/2, must be suboptimal, providing
us with our contradiction in this case.

b) If there exists i in category (2a), but none in (1a) and (3), we will replace x′ with
x∗ in S , decreasing |Si| by one. The values of |Si| for other i, in this case, either
also decrease (for other is falling in case (2a)), remain the same (for is falling
in cases (1b), (2b), (4)), therefore corresponding to a strict improvement in the
value of (3.1.12).

c) If we have i in categories (1b), (2b), or (4) (but none in categories (1a), (2a), or
(3), all of which were dealt with in earlier cases) add x∗ to S ; this does not change
any value of Si, but increases S by 1, leading to a strictly improved solution.
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Proof. Each of these cases (except case (3a), which uses the inductive hypothesis), presents
a strict improvement to the value of (3.1.12). Therefore, S must not be optimum, providing
a contradiction. We can therefore conclude that optimum value of S must have no triple
x′, x′′ ∈ S , x∗ /∈ S such that x∗ agrees with x′ everywhere except one coordinate where it
agrees with x′′, and therefore S must be a rectangle, as desired. ■

Now that we’ve shown that S is a rectangle, let us assume that its dimensions are
ρ1, ..., ρq. Then S has cardinality

∏
i∈[q] ρi, and Si has cardinality

∏
j∈[q]∩supp(ϕi)

ρj. Substi-
tuting into (3.1.12), we get:

|S |∏
i |Si|ŝi

M
∑

i ŝi =

∏
i∈[q] ρi∏

i∈[d]

(∏
j∈[q]∩supp(ϕi)

ρj

)ŝiM∑
i ŝi

=

∏
i∈[q] ρi∏

j∈[q]

(∏
i∈Rj

ρŝij

)M∑
i ŝi

=
∏
j∈[q]

ρ
1−

∑
i∈Rj

ŝi

j M
∑

i ŝi

Since we have full control over the value of ρi, we can maximize the value of this expression
by setting the ρi to their maximum possible value, Li if 1 −

∑
i∈Rj

ŝi ≥ 0, and to their
minimum possible value, 1, if 1−

∑
i∈Rj

ŝi ≤ 0.
Therefore, the maximum value of our objective (3.1.7) is obtained at:

M
∑

i ŝi
∏

j∈[q] s.t.
∑

i∈Rj
ŝi≤1

L
1−

∑
i∈Rj

ŝi

j

or equivalently, Mk where

k =
n∑

i=1

ŝi +
∑

j∈[q] s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝi

 . (3.1.15)

as desired.
Finally, we need to modify our solution to satisfy (3.1.9) with no change to the objective

value.
Let y′i,{x1,...,xq} be maxxj s.t. j∈supp(ϕi) yi,{x1,...,xq}, which takes on the value M

|Si| if there is
some nonzero element of S that matches (x1, ..., xq) at the indices in the support of ϕi,
and is zero otherwise. In order to show that this modification does not change the value of
objective (3.1.7), it suffices to show that

yŝ11,{x1,...,xq} . . . y
ŝn
n,{x1,...,xq} =

(
y′1,{x1,...,xq}

)ŝ1
. . .
(
y′n,{x1,...,xq}

)ŝn
(3.1.16)
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Suppose (x1, ..., xq) ∈ S . Both sides are nonzero, and by equality constraint it is obvious
that they must be the same.

Suppose (x1, ..., xq) /∈ S . Clearly the left is zero. Recall that S is a rectangle; that is,
it can be written as set {(x1, ..., xn) : xi ∈ Ci∀i} for some sets Ci ⊆ [Li]. By definition, there
must exist some k such that xk /∈ Ck. There must be some some j′ such that ϕj′ contains
xk; by definition, y′j′,{x1,...,xk,...,xj} - and therefore, the entire right-hand-side of (3.1.16) - must
be zero as well.

Furthermore, in order to show that this solution does not violate any of the constraints,
consider ∑

xk∈[1..Lk] for k∈[q]∩supp(ϕi)

y′i,{x1,...,xq}

By definition, at most Si of these terms may be nonzero, and each since must have value
M/|Si|, this term must be at most M , as desired.

Notice that this proof works if we fix any subset of 1..q rather than the entire set. In
other words, we can freely replace the sum from 1 to q with a sum over any subset of 1 to
q and still get a valid upper bound (by changing the sum from j ∈ [q] to summing over a
subset of [q] in equation (3.1.15)).

3.2 Tiling construction
In this section, we describe an explicit construction of a tiling that achieves the upper bound
on tile size (and therefore achieves the lower bound on computation) from section 3.1.

Consider the LP that gives us the tiling in this case. We start with the linear program
(3.0.5) and add constraints requiring that the blocks be no larger than the loop bounds (in
log-space, λi ≤ βi):

max
∑
i∈d

λi s.t.
∑

i s.t. xi∈supp(ϕj)

λi ≤ 1 ∀j ∈ [n], λi ≤ βi ∀i ∈ [q], λi ≥ 0 ∀i ∈ [d]. (3.2.1)

Theorem 14. The rectangular tile with dimensions given by the solution to (3.2.1) has
cardinality equal to one of the upper bounds for tile size from Section 3.1 for a loop program
defined by the ϕj; in other words, the solution to (3.2.1) equals

n∑
i=1

ŝQ,i +
∑

j∈Q s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝQ,i

 (3.2.2)

for some Q ⊆ [q], where ŝQ,i satisfies the constraints of the HBL LP (3.0.4) with the rows
indexed by elements of Q removed:

remove rows not in Q
| |
ϕ1 · · · ϕn

| |


ŝ1...
ŝn

 ≥
1...
1

 (3.2.3)
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Let us write the constraints of (3.2.1) in the following fashion:

q





− ϕ1 −
...

− ϕn −
1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · ·︸ ︷︷ ︸
q

1 0 · · · 0



λ1
...
λd

 ≤


1
...
1
β1
...
βq


(3.2.4)

The dual of this linear program, with variables ζ1, ..., ζq, s1, ..., sn is to minimize∑
i∈[q]

βiζi +
n∑

j=1

sj (3.2.5)

subject to

q



1 · · · 0
... . . . ... | |
0 · · · 1 ϕ1 · · · ϕn
...

... | |
0 · · · 0





ζ1
...
ζq
s1
...
sn


≥

1...
1

 (3.2.6)

(as well as nonnegativity constraints ζi ≥ 0 for all i ∈ [q], si ≥ 0 for all i ∈ [n], which we
omit from the matrix for brevity)

We now show that the optimal value of (3.2.5) is equivalent to (3.2.2) for some ŝi satisfying
(3.2.3).

Proof. By induction on q.
For the base case, suppose q = 0. This is just the case in introduction to this chapter.
Suppose for induction that the solution to

max
∑
i

λi s.t. (3.2.7)∑
i s.t. xi∈supp(ϕj)

λi ≤ 1 ∀j ∈ [n]

λi ≤ βi ∀i ∈ [q − 1]

takes the form
n∑

i=1

ŝQ,i +
∑

j∈Q s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝQ,i
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for some Q ⊆ [q − 1] and ŝi satisfying (3.2.3).
Consider the LP: minimize (3.2.5) subject to (3.2.6). Denote its solution by ζ ′i, s′i; we

wish to discover the minimum value of the objective (3.2.5).
We will rewrite the LP (3.2.6) in such a way that preserves the optimal value of the

objective. First, we remove one variable - say, ζq - from it. Since there is no benefit to
setting ζq any larger than necessary (it increases the objective (3.2.5), and does not come
into play in any other constraints) we can fix its value as necessary to ensure that either the
qth constraint or the nonnegativity constraint ζq ≥ 0 is tight. We have two cases:

Case 1:
∑

i∈Rq
s′i ≥ 1. In this case, the qth constraint is satisfied at the optimal point

regardless of the value of ζ ′q, so we may set ζq to 0. Now, the objective (3.2.5) becomes:

q−1∑
i=1

βiζi +
n∑

j=1

sj

Since the qth constraint is the only one containing ζq, we can delete the qth column on the
left block of the constraint matrix (3.2.6) and remove ζq from the LP entirely. Therefore,
the resulting LP is therefore exactly the dual of (3.2.7), which, by inductive hypothesis, has
optimal objective value of the form:

n∑
i=1

ŝQ,i +
∑

j∈Q s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

ŝQ,i


for Q ⊆ [q − 1] ⊂ [q], and ŝQ,i satisfying (3.2.3) as desired.

Case 2:
∑

i∈Rq
s′i < 1. Without loss of generality, assume this holds for R1 through Rq−1

as well (if not, find j such that
∑

x∈Rj
s′i ≥ 1, permute the LP to swap the positions of ζj

and ζq, and proceed to case 1).
Therefore, we may modify the LP by setting ζ1 to 1−

∑
i∈R1

si to keep it tight, and do
the same with ζ2 through ζq; this does not change the optimal objective value. Removing
those constraints (since they’ve all been encoded into the objective), we get a new objective
to replace (3.2.5) in our linear program:

min
n∑

i=1

si +

q∑
j=1

βj

1−
∑
i∈Rj

si


Furthermore, since

∑
i∈Rj

s′i < 1 for all j ∈ [q] this objective at its optimizer, s′1, ..., s′q, is
precisely equal to

n∑
i=1

s′i +
∑

j∈[q] s.t.
∑

i∈Rj
ŝi≤1

βj

1−
∑
i∈Rj

s′i


which is of the same form as (3.2.2).
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Furthermore, we may remove the first q constraints from (3.2.6), since our choices for
values of ζ1, ..., ζq guarantee that they will be satisfied. The resulting constraint matrix is
identical to (3.2.3).

Therefore, the tile whose dimensions are given by 3.2.1 attains the lower bound given by
Lemma 13 with Q = [q], as desired.

3.3 Examples and Applications
We demonstrate several applications of our theory below.

3.3.1 Matrix-Matrix and Matrix-Vector Multiplication

We start by re-deriving the classical lower bound (2.3.4) for the triply-nested-loop matrix
multiplication

for {x1, x2, x3} ∈ [L1]× [L2]× [Ld]

A1(x1, x3)+ = A2(x1, x2)× A3(x2, x3)

Our memory accesses are given by the functions:

ϕ1(x1, x2, x3) = (x1, x3)

ϕ2(x1, x2, x3) = (x1, x2)

ϕ3(x1, x2, x3) = (x2, x3)

Therefore, the HBL LP is to minimize s1 + s2 + s3 subject to1 1 0
0 1 1
1 0 1

s1s2
s2

 ≥
11
1

 . (3.3.1)

The optimal value of this LP is obtained when all the si are 1/2, giving a tile size upper
bound of M1/2+1/2+1/2 = M3/2, which provides the standard L1L2L3/M

1l2 lower bound.
Now let us consider the case where L3 may be small, which corresponds to problem sizes

approaching matrix-vector multiplications (which occurs L3 = 1). In this case, our tile,
which has length M1/2 in the L3 dimension, cannot fit in our iteration space.s

We first find a lower bound. Removing the row corresponding to x3 from (3.3.1), we get
that given any ŝi satisfying [

1 1 0
0 1 1

]ŝ1ŝ2
ŝ3

 ≥
11
1

 (3.3.2)

raising M to the power

max {ŝ1 + ŝ2 + ŝ3, ŝ1 + ŝ2 + ŝ3 + (logM L3)(1− ŝ1 − ŝ3)}
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represents a valid upper bound on the tile size.
Since (3.3.2) is satisfied when ŝ2 = 1 and ŝ1, ŝ3 = 0, this term becomes

max {1, 1 + logM L3}

giving an upper bound of max {M,ML3} = ML3 (as L3 is always positive); therefore the
communication lower bound is given by

L1L2L3

ML3

M = L1L2 .

This is as expected, since we need to read at least L1L2, the size of A2, into fast memory to
perform the operation.

Now let us consider the question of finding the tile. Instantiating LP (3.2.1) with the
relevant values of ϕ1,2,3, we get:

maxλ1 + λ2 + λ3 s.t.
λ1 + λ3 ≤ 1

λ1 + λ2 ≤ 1

λ2 + λ3 ≤ 1

λ3 ≤ β3 = logM L3

(3.3.3)

There are two cases here: if β3 ≥ 1, then the last constraint is of no relevance, so the
solution becomes 3/2, as in the case above .

On the other hand, if β3 ≤ 1, then adding the second and fourth inequalities gives

λ1 + λ2 + λ3 ≤ 1 + λ3 ≤ 1 + β3 . (3.3.4)

We again split based on whether or not β3 ≥ 1/2; intuitively, we may consider this a question
of whether the L3 is sufficiently large (at least

√
M) to fit the

√
M ×

√
M ×

√
M tile derived

above, or whether we must modify the tile’s shape to get it to fit in the L3 dimension.
If β3 ≥ 1/2, then the optimum for the LP without the fourth constraint, λ1 = λ2 =

λ3 = 1/2, satisfies the fourth constraint and is therefore optimal, leading to the same
√
M ×√

M ×
√
M as in the “large loop bound” cases discussed above.

If β3 ≤ 1/2, then we can set λ3 = β3 to make the fourth inequality tight, and then set
λ1 = 1−β3 and λ2 = β3 to tighten 3.3.4 in addition to the first inequality in the LP; as three
irredundant inequalities are tight and we only have three variables, this solution must be
optimal as well. This obtains a tile size of M/L3 × L3 × L3 = ML3 (with a communication
cost of L1L2, a quantity that is equal to the size of A2 and therefore must be optimal) as
expected.

Alternatively, we could achieve the same tile size with a tile of size
√
M ×

√
M × L3

(corresponding to λ = λ2 = 1/2, λ3 = β3). In fact, the LP is optimized by any point



47

between the two solutions we found previously; specifically, for any α ≤ 1,

λ1 = α/2 + (1− α)(1− β3)

λ2 = α/2 + (1− α)β3

λ3 = β3

optimizes LP (3.3.3); this corresponds to a tile size of:

M1−α/2

L1−α
3

×Mα/2L1−α
3 × L3 .

When attempting to optimize this matrix multiplication on a real-world system, we may
select any tiling from the above α-parameterized family of optimal tilings in order to find
one that runs well in practice (e.g. inner loops being multiples of cache line lengths or vector
units).

As the communication cost’s derivation is symmetrical (i.e. it continues to be valid
when we swap the subscripts) and the tile for the small-L3 case above remains be a legal
tiling if L3 is the smallest loop index, we obtain the following tight lower bound for matrix
multiplication’s communication cost:

max(L1L2L3/
√
M,L1L2, L2L3, L1L3)

3.3.2 Tensor Contraction

Let 1 ≤ j < k − 1 < d. Let us consider a tensor contraction of the form

for {x1, ..., xd} ∈ [L1]× ...× [Ld]

A1(x1, ..., xj, xk, ..., xd)+ = A2(i1, ..., ik−1)× A3(xj+1, xd)

This nested-loop model encapsulates several machine learning applications. For instance,
pointwise convolutions - convolutions with 1 × 1 filters, often used along depth-separable
convolutions [37] to mimic the effect of standard machine learning convolutions with less
memory usage, may be represented as tensor contractions:

for {b, c, k, w, h} = 0 : {B,C,K,W,H} − 1

Out(k, h, w, b)+ = Image(w, h, c, b)× Filter(k, c) (3.3.5)

The same holds for fully connected convolutional layers.
Optimizing over the BL polytope provides a communication lower bound for the large-

loop bound case of L1...Ld/
√
M [14].

We instantiate the LP 3.2.1 to get:

maxλ1 + ...+ λd
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subject to

λ1 + ...+ λj + λk + ....+ λd ≤ 1

λ1 + ...+ λk−1 ≤ 1

λj+1 + ...+ λd ≤ 1

λ1 ≤ β1 = logM L1

...
λd ≤ βd = logM Ld

The structure of this linear program is much like that of matrix multiplication, and it can
be transformed into one identical to that for matrix multiplication. Let γ1 =

∑
i∈[j] λi,

γ2 =
∑

i∈[j+1,k−1] λi, and γ3 =
∑

i∈[k,d] λi. Then we can rewrite the linear program as
maximizing γ1 + γ2 + γ3 subject to:

γ1 + γ3 ≤ 1

γ1 + γ2 ≤ 1

γ2 + γ3 ≤ 1

γ1 ≤
∑
i∈[j]

βi

γ2 ≤
∑

i∈[j+1,k−1]

βi

γ3 ≤
∑
i∈[k,d]

βi

As this linear program is identical to that for matrix multiplication, it immediately follows
that its optimum is either 3/2 or 1+min

{∑
i∈[j] βi,

∑
i∈[j+1,k−1] βi,

∑
i∈[k,d] βi

}
, whichever is

smaller for the given program.

3.3.3 n-body Pairwise Interactions

Suppose we have a list of n objects, and each object interacts with every other object. This
comes up frequently in many scientific computing applications (e.g. particle simulations), as
well as database joins.

The nested loops for this problem are (for some arbitrary function f):

for {x1, x2} ∈ [L1]× [L2]

A1[x1] = f(A2[x1], A3[x3])
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Instantiating 3.2.1, we get:

maxλ1 + λ2 s.t.
λ1 ≤ 1

λ2 ≤ 1

λ1 ≤ β1 = logM L1

λ2 ≤ β2 = logM L2

which gives us a maximum tile size of min {M2, L1M,L2M,L1L2} and a maximum commu-
nication cost of min {L1L2/M,L2, L1,M}. The last term, M , is a result of the assumption
in our model that each tile carries M words of memory into cache. Therefore, it is important
to note that if total amount of memory required to execute the program without going back to
main memory is less than M , the output of the program will still be M , when in the actual
cost is in fact the sum of the sizes of the matrices.
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Chapter 4

Tilings and Communication Lower
Bounds for Convolutions

In many cases, such as the projective case explored in Chapter 3, rectangular tilings are
provably optimal and can be easily calculated. Unfortunately, not all tensor algorithms
of interest have projective data access functions, and for some of these algorithms, a non-
rectangular tiling is required to obtain a lower bound. This chapter explores one such
common case, that of convolutions. A common 2D convolution is given in Algorithm 6.
Dealing with the non-projective structure of data accesses to Input requires techniques we

Algorithm 6: 7-nested loop 2D convolution
input : stride sizes σw, σh

Lb batches of input images of size σwLw + Lr × σhLh + Ls, each with C
channels
Lr × Ls filters, mapping each of Lc input channels to Lk output channels
datatype sizes pO, pI , and pF , specifying number of words required to
store elements of the output, input, and filter respectively

output: Lb batches of output images of size Lw × Lh, each with Lk channels

1 for xb ∈ [0, Lb), xc ∈ [0, Lc), xk ∈ [0, Lk), xw ∈ [0, Lw), xh ∈ [0, Lh), xr ∈ [0, Lr), xs ∈
[0, Ls) :

2 Out(xk, xh, xw, xb)+ = Input(xr + σwxw, xs + σhxh, xc, xb)× Filter(xk, xr, xs, xc)

will develop in this chapter. Our main results are as follows:

• A communication lower bound for convolutions. While we focus on 2D convolutions,
which are the most common in machine learning applications, our techniques are
straightforwardly generalize to higher dimensions.

• An optimal, non-rectangular tiling for attaining these lower bounds.
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• Performance measurements of applying our tiling on the GEMMINI [26] accelerator.

The work in this chapter has been previously published in [18, 7].

4.1 The Lower Bound
Our main theorem in this section will be the following lower bound on the communication
complexity of Algorithm 6 on a two-level memory hierarchy model. Notice that we allow
the three tensors to be datatypes of different sizes: the Input tensor has entries which are pI
words in length, the Filter tensor’s elements are of size pF , and the Output tensor’s elements
are of size pO.

Theorem 15. If qconv is the number of words communicated by a seven-nested loop 2D
convolution within a single-processor memory model with M words of fast memory, where
Input, Filter, and Output are non-overlapping tensors and G := LbLcLkLwLhLrLs is the
total number of multiply-add operations performed during the computation, we have

qconv ≥ max


pI |Input|+ pF |Filter|+ pO|Output|,
CpG

M
−M,

2(pIpFpO)
1/2(σwσh)

1/2G

(LrLsM)1/2
− 2M

 (4.1.1)

where the value of Cp = Cp(pI , pF , pO) depends on the precisions satisfying a triangle condi-
tion:

Cp =

{
1
4
(pI + pF + pO)

2 pj ≤ pk + pℓ for all distinct j, k, ℓ
pj(pk + pℓ) pj > pk + pℓ for some distinct j, k, ℓ

In the “standard” case when all three tensors contain elements of the same datatype
(which we can assume without loss of generality to have size 1), Cp = 9/4. The first bound
corresponds to accessing each entry of the input, output, and filter at least once. The second
bound dominates when individual wF × hF filters are large relative to the memory size M ,
and the third bound dominates when filters are small relative to M . In all practical cases,
the precisions satisfy the triangle condition, so the first expression for Cp is more relevant.

For example, in the standard precision case pI = pF = pO = 1, the bound becomes

qconv ≥ max


|Input|+ |Filter|+ |Output|,
9G

4M
−M,

2G(σwσh)
1/2

(LrLsM)1/2
− 2M


The first bound is simply the size of the input, filter, and output tensors, and is independent
of the memory size M . The second bound exhibits Ω(1/M) decay, while the third bound
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exhibits Ω(1/M1/2) decay. However, it is important to note that the third bound only
exceeds the second bound when wFhF < 64Mσwσh

81
, i.e. when the filters are small relative to

the memory size.

4.1.1 Derivation of the Trivial Bound

The first part of the lower bound (4.1.1) is trivial.

Lemma 16. With the setup in Theorem 15, the number of words communicated X satisfies

X ≥ pI |I|+ pF |F |+ pO|O|

Proof. Every entry of Input and Filter must be accessed at least once, and every entry in
Output must be filled by the computation. All three arrays reside in slow memory, so at
minimum pj words must be communicated for every entry in the jth array, for j ∈ {I, F,O}.
So the number of words communicated X satisfies

X ≥ pI |I|+ pF |F |+ pO |O|

4.1.2 Derivation of the “Large Loop Bound” Lower Bound

In order to prove the second lower bound in (4.1.1), we will first enumerate the constraints
of the associated Brascamp-Lieb polytope. By Theorem 9, it suffices generate one rank
constraint for each subgroup in the lattice of subgroups generated by the kernels of ϕO, ϕI

and ϕF , which are:

ϕI(xb, xc, xk, xw, xh, xr, xs) = (xb, xc, xr + σwxw, xs + σhxh) (input)
ϕF (xb, xc, xk, xw, xh, xr, xs) = (xc, xk, xr, xs) (filter) (4.1.2)
ϕO(xb, xc, xk, xw, xh, xr, xs) = (xb, xk, xw, xh) (output)

Their kernels are (letting xi represent free variables):

ker (ϕI) = (0, 0, xk, xw, xh,−σwxw,−σhxh)

ker (ϕF ) = (xb, 0, 0, xw, xh, 0, 0) (4.1.3)
ker (ϕO) = (0, xc, 0, 0, 0, xr, xs)

In order to enumerate the elements generated by the lattice of subgroups of these kernels,
we must first develop some machinery. For convenience, we will always include {0} in
our lattices, since this does not change other members of the lattice, and simplifies some
expressions below.



53

Suppose A = {A1, ..., An} and B = {B1, ..., Bm} are finite sets of subgroups of an abelian
group. We will call them independent if∑

i

Ai ∩
∑
j

Bj = {0}

Let LA denote the lattice generated by the subgroups in A, and similarly for LB; we will add
{0} to these lattices if they do not already contain it. Then from the definition of a lattice
it is easy to see that LA and LB are independent if A and B are independent.

Lemma 17. Suppose A and B are independent. Then

LA∪B = LA + LB ≡ {C +D : C ∈ LA, D ∈ LB}

Proof. Since both lattices include {0},

A ∪B ⊂ LA + LB.

It suffices to show that if A1 + B1 and A2 + B2 are both in LA + LB ⊆ LA∪B, then so are
their sum and intersection. The sum

(A1 +B1) + (A2 +B2) = (A1 + A2) + (B1 +B2) ∈ LA + LB

follows from being abelian, and a lattice being closed under addition.
The intersection

(A1 +B1) ∩ (A2 +B2) = (A1 ∩ A2) + (B1 ∩B2) ∈ LA + LB

follows from independence, and a lattice being closed under intersection.

As a result, then it is easy to describe LA∪B if we have simple, finite descriptions of LA

and LB, for independent A and B.
Furthermore, note that independence also implies that

rank(Ai +Bj) = rank(Ai) + rank(Bj) ∀i, j (4.1.4)

and
rank(ϕj(Ai +Bk)) = rank(ϕj(Ai)) + rank(ϕj(Bk)) . (4.1.5)

As a result, our strategy will be to decompose the kernels (4.1.3) into independent sub-
groups.

We can identify the following independent families of indices: {xb}, {xc}, {xk}, {xw, xr},
and {xh, xs}. We call these independent because they give rise to the following pairwise
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independent collections of subgroups which generate the kernels - and hence the lattice -
that we want:

C1 = {(xb, 0, 0, 0, 0, 0, 0)} = {C1,1}
C2 = {(0, xc, 0, 0, 0, 0, 0)} = {C2,1}
C3 = {(0, 0, xk, 0, 0, 0, 0)} = {C3,1}
C4 = {(0, 0, 0, xw, 0, 0, 0), (0, 0, 0, 0, 0, xr, 0), (0, 0, 0, xw, 0,−σwxw, 0)}

= {C4,1, C4,2, C4,3}
C5 = {(0, 0, 0, 0, xh, 0, 0), (0, 0, 0, 0, 0, 0, xs), (0, 0, 0, 0, xh, 0,−σhxh)}

= {C5,1, C5,2, C5,3}

These subgroups give the following breakdown of the kernels:

ker (ϕI) = C3,1 + C4,3 + C5,3

ker (ϕF ) = C1,1 + C4,1 + C5,1

ker (ϕO) = C2,1 + C4,2 + C5,2

By (4.1.4) and (4.1.5) it suffices to check the rank constraints only on subgroups in the five
lattices, L(Cj). Fortunately, L(Cj) = Cj for j = 1, 2, 3. For C4 and C5 we have:

L(C4) = C4 ∪ {(0, 0, 0, i4, 0, i6, 0)} = C4 ∪ {C4,4}
L(C5) = C5 ∪ {(0, 0, 0, 0, i5, 0, i7)} = C5 ∪ {C5,4}

Now suppose sI , sF , sO ∈ [0, 1]. Applying Theorem 9, the Brascamp-Lieb polytope is defined
by the following inequality for each H in some L(Cj):

rank(H) ≤ sI rank(ϕI(H)) + sF rank(ϕF (H)) + sO rank(ϕO(H)).

We enumerate these inequalities in the table below:

H rank(H) rank(ϕI(H)) rank(ϕF (H)) rank(ϕO(H)) Constraint
C1,1 1 1 0 1 1 ≤ sI + sO
C2,1 1 1 1 0 1 ≤ sI + sF
C3,1 1 0 1 1 1 ≤ sF + sO
C4,1 1 1 0 1 1 ≤ sI + sO
C4,2 1 1 1 0 1 ≤ sI + sF
C4,3 1 0 1 1 1 ≤ sF + sO
C4,4 2 1 1 1 2 ≤ sI + sF + sO
C5,1 1 1 0 1 1 ≤ sI + sO
C5,2 1 1 1 0 1 ≤ sI + sF
C5,3 1 0 1 1 1 ≤ sF + sO
C5,4 2 1 1 1 2 ≤ sI + sF + sO
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Removing repeated inequalities the Brascamp-Lieb polytope generated by ϕI , ϕF , ϕO is
given by:

1 ≤ sI + sF

1 ≤ sI + sO (4.1.6)
1 ≤ sF + sO

2 ≤ sI + sF + sO

Maximizing sI +sF +sO over these constraints gives us 2, which, by Theorem 6, provides
a communication lower bound of Ω(G/M). However, we can achieve a more precise lower
bound that takes constant factors into account with a more careful analysis, which follows.

First, we handle the case when the triangle condition is met.

Lemma 18. With the setup in Theorem 15, as long as pI ≤ pF + pO, pF ≤ pI + pO, and
pO ≤ pI + pF , the number of words communicated X satisfies

X ≥ (pI + pF + pO)
2G

4M
−M

Proof. We split the execution of the convolution into L segments of contiguous updates. In
each segment, we allow exactly T words to be loaded/stored, except for possibly the last
segment which may have ≤ T words; T is a parameter we will optimize.

We fix our attention to a single segment. Let V be the set of indices of updates computed
during the current segment. V contains tuples (xj) ∈ Z7. Then ϕI(V ) is the set of indices of
Input whose data must be accessed during the segment, ϕF (V ) the set of indices of Filter,
and ϕO(V ) the set of indices of Output. We have at most M words of data in fast memory
before the segment begins, and may load at most T more during the segment. The number
of words we access from the jth array during the segment is pj|ϕj(V )|. Then the number of
words we access during this segment is

pI |ϕI(V )|+ pF |ϕF (V )|+ pO|ϕO(V )| ≤M + T.

Let sI , sF , and sO satisfy the Brascamp-Lieb rank constraints 4.1.6; we know the strongest
asymptotic lower bound is obtained at sI + sF + sO = 2. Theorem 4 states that for every
set V ⊂ Z7,

|V | ≤ |ϕI(V )|sI |ϕF (V )|sF |ϕO(V )|sO .
Let vj := 2pj|ϕj(V )|/(M + T ). The inequality becomes

|V | ≤ (M + T )2

4
(vI/pI)

sI (vF/pF )
sF (vO/pO)

sO .

Denote f(vI , vF , vO) = vsII vsFF vsOO . Then the maximum number of updates |V | possible during
this segment is bounded by

(M + T )2

4
max f(vI , vF , vO)
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subject to the constraint v1 + v2 + v3 ≤ 2.
We assume vI + vF + vO = 2 and apply the technique of Lagrange multipliers:

vI + vF + vO = 2

sIv
sI−1
I vsFF vsOO = sFv

sF−1
F vsII vsOO = sOv

sO−1
O vsII vsFF

= λ

Taking an inner product with (vI , vF , vO) we find:

(sI + sF + sO)v
sI
I vsFF vsOO = λ(vI + vF + vO) =⇒ vsII vsFF vsOO = λ

since sI + sF + sO = 2 = vI + vF + vO. Substituting into each equation and dividing, we
find sI = vI , sF = vF , sO = vO. Then we have shown that the maximum number of updates
during the current segment is

|V | ≤ 1

4
(M + T )2(sI/pI)

sI (sF/pF )
sF (sO/pO)

sO

This holds for all triples (sj) with sI + sF + sO = 2 and sI , sF , sO ≤ 1. In particular, it
holds for the triple (sj) which minimize the right hand side. We apply Lagrange multipliers
again ignoring the last three constraints on the sj:

sI + sF + sO = 2

(1 + log(sI/pI))(sI/pI)
sI (sF/pF )

sF (sO/pO)
sO = λ

(1 + log(sF/pF ))(sI/pI)
sI (sF/pF )

sF (sO/pO)
sO = λ

(1 + log(sO/pO))(sI/pI)
sI (sF/pF )

sF (sO/pO)
sO = λ

Equating and dividing by (sI/pI)
sI (sF/pF )

sF (sO/pO)
sO we find sI/pI = sF/pF = sO/pO.

This leads to sj = 2pj/(pI + pF + pO). Note that these minimizers always satisfy sj ≤ 1 for
all j. Indeed, the triangle condition guarantees 2pj ≤ pI + pF + pO for all j. Then we have
shown that the maximum number of computations during any segment is

|V | ≤ 1

4
(M + T )2(sI/pI)

sI (sF/pF )
sF (sO/pO)

sO

=
1

4
(M + T )2

(
2

pI + pF + pO

)2

=
(M + T )2

(pI + pF + pO)2

Since we must do G updates in total, the total number of segments is bounded below:

L ≥
⌊
G

|V |

⌋
≥ (pI + pF + pO)

2G

(M + T )2
− 1
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Each segment besides the last has T loads/stores, so the total number of words moved
is:

X ≥ T

(
(pI + pF + pO)

2G

(M + T )2
− 1

)
=

(pI + pF + pO)
2TG

(M + T )2
− T

To choose optimal segment length, we note that T/(M + T )2 is maximized when T = M
and we find the following lower bound on the communication cost:

X ≥ (pI + pF + pO)
2G

4M
−M

Should the triangle condition fail, we slightly modify the last proof by finding a valid set
of minimizers. Note that only one of the three constraints may fail at once: if pj > pk + pℓ,
then pk + pj > pℓ.

Lemma 19. With the setup in Theorem 15, if pj > pk + pℓ for some distinct j, k, ℓ ∈
{I, F,O}, the number of words communicated X satisfies

X ≥ pj(pk + pℓ)G

M
−M

Proof. The proof is the same as the proof of Lemma 18, except now we prescribe sj = 1
and sk + sℓ = 1. This guarantees that all conditions for HBL are met. We maximize
(sk/pk)

sk(sℓ/pℓ)
sℓ with respect to sk and sℓ as before, and find sk/pk = sℓ/pℓ. This leads to

sk = pk/(pk + pℓ) and sℓ = pℓ/(pk + pℓ). All constraints are satisfied. Then we have shown
that the maximum number of computations during any segment is

|V | ≤ 1

4
(M + T )2(sj/pj)

sj(sk/pk)
sk(sℓ/pℓ)

sℓ

=
1

4
(M + T )2

1

pj

(
1

pk + pℓ

)sj+sk

=
(M + T )2

4pj(pk + pℓ)

Since we must do G updates in total, the total number of segments is bounded below:

L ≥
⌊
G

|V |

⌋
≥ 4pj(pk + pℓ)G

(M + T )2
− 1

Each segment besides the last has T loads/stores, and we choose T = M , so the total number
of words moved is:

X ≥ pj(pk + pℓ)G

M
−M
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4.1.3 Derivation of the “Small Filter” Lower Bound

When M > (CpG)1/2, the previous bounds become trivial. When the filter size LrLs is small
relative to M , we are able to reduce the decay in our bounds from 1/M to 1/M1/2 and
extend them to larger memory sizes. To show this third “small filter” bound, we rewrite the
problem and exploit new array access homomorphisms. In particular, we rewrite the loops
over xr and xs as loops over x′

r, x
′′
r , x

′
s, x

′′
s . We have xr = σwx

′
r + x′′

r for x′′
r ∈ [0, σw − 1] and

x′
r ∈ [0, Lr/σw − 1], and we similarly divide xs by σh for x′

s and x′′
s . This has the effect of

lifting Input and Filter to higher dimensional arrays, with 6 indices instead of 4. Under the
lift, our new data access functions are:

Input(xb, xc, xw + x′
r, x

′′
r , xh + x′

s, x
′′
s)

Filter(xc, xk, x
′
r, x

′′
r , x

′
s, x

′′
s)

Output(xb, xk, xw, xh)

In our proof, we will find it valuable to fix the indices x′
r and x′

s, so we opt to introduce a new
collection of array access homomorphisms which ignore these. With an implicit translation
by q⃗ = (x′

r, x
′
s), we define the homomorphisms ϕ′

I , ϕ
′
O : Z7 → Z4, ϕ′

F : Z7 → Z6:

ϕ′
I(xb, xc, xk, xw, xh, x

′′
r , x

′′
s) = (xb, xc, xw, x

′′
r , xh, x

′′
s)

ϕ′
F (xb, xc, xk, xw, xh, x

′′
r , x

′′
s) = (xc, xk, x

′′
r , x

′′
s)

ϕ′
O(xb, xc, xk, xw, xh, x

′′
r , x

′′
s) = (xb, xk, xw, xh)

These data access functions are projective, and in fact are an instance of the tensor contrac-
tion case discussed in Section 3.3.2. Following the discussion there, we set sI = sF = SO =
1/2, which provides the following an BL inequality for finite subsets V of Z7:

|V | ≤ |ϕ′
I(V )|1/2|ϕ′

F (V )|1/2|ϕ′
O(V )|1/2.

We can now begin the proof of the third bound.

Lemma 20. The number of words communicated X satisfies

X ≥ 2(pIpFpO)
1/2(σwσh)

1/2G

(LrLsM)1/2
− 2M

Proof. We split the our into L segments with T loads/stores as before. Let V be the set of
updates computed during a given segment. For fixed indices q⃗ = (x′

r, x
′
s), let V (q⃗) be the

slice of V with those two coordinates held constant: V (q⃗) = π−1(q⃗) where π is the projection
of Z9 onto the q⃗ coordinates. Then to compute every update in V (q⃗) we must access the
entries of Input corresponding to indices ϕ′

I(V (q⃗)), and similarly for Filter and Output. This
is an abuse of notation: technically speaking, V (q⃗) is not a subset of the domain of ϕ′

I , but it
is in bijection with one if we ignore the constant q⃗ coordinates. We apply our HBL inequality
to the set V (q⃗),

|V (q⃗)| ≤ |ϕ′
I(V (q⃗))|1/2|ϕ′

F (V (q⃗))|1/2|ϕ′
O(V (q⃗))|1/2
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Note that V is the disjoint union of the V (q⃗)’s. Also, the set of indices of Filter accessed
is the disjoint union of the ϕ′

F (V (q⃗))’s. Let u be the number of indices of Input accessed
during the segment, v the number of indices of Output accessed during the segment, and
w(q⃗) = |ϕ′

F (V (q⃗))| the number of indices of Filter accessed by each slice. We have:

|ϕ′
I(V (q⃗))| ≤ u, |ϕ′

O(V (q⃗))| ≤ v ∀q⃗∣∣∣⋃
q⃗

V (q⃗)}
∣∣∣ =∑

q⃗

w(q⃗)

We have at most M words in memory before the segment begins, and may load at most
T more:

pIu+ pOv + pF
∑
q⃗

w(q⃗) ≤M + T

Using our HBL inequality,

|V | =
∑
q⃗

|V (q⃗)| ≤ u1/2v1/2
∑
q⃗

w(q⃗)1/2 .

Denote
f(u, v, w(q⃗)) = u1/2v1/2

∑
q⃗

w(q⃗)1/2 .

The maximum number of updates during this segment is bounded by max f(u, v, w(q⃗)),
subject to

pIu+ pOv + pF
∑
q⃗

w(q⃗) ≤M + T .

We assume equality and apply Lagrange multipliers:

pIu+ pOv + pF
∑
q⃗

w(q⃗) = M + T (4.1.7)

1

2

v1/2

u1/2

∑
q⃗

w(q⃗)1/2 = pIλ (4.1.8)

1

2

u1/2

v1/2

∑
q⃗

w(q⃗)1/2 = pOλ (4.1.9)

1

2

u1/2v1/2

w(q⃗)1/2
= pFλ ∀q⃗ (4.1.10)

Then by dividing (4.1.8) and (4.1.9), pIu = pOv, and by equating instances of (4.1.10), all
the w(q⃗) =: w are equal. Using the fact that there are LrLs

σwσh
pairs of (q⃗) and equating (4.1.8)
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and (4.1.10),

1

pI

∑
q⃗

w(q⃗)1/2 =
1

pI

LrLs

σwσh

w1/2

=
u

pFw1/2

so that pFw = σwσh

LrLs
pIu. Therefore, the maximizing values are

u =
M + T

3pI

v =
M + T

3pO

w(q⃗) =
σwσh

LrLs

M + T

3pF

for all q⃗. Using these values, the maximum number of updates during the current segment
is

|V | ≤ f(u, v, w(q⃗))

≤ M + T

3p
1/2
I p

1/2
O

LrLs

σwσh

(
σwσh

LrLs

M + T

3pF

)1/2

=
(M + T )3/2

33/2(pIpFpO)1/2
(LrLs)

1/2

(σwσh)1/2

and the number of segments L is bounded below by

L ≥
⌊
G

|V |

⌋
≥ 33/2(pIpFpO)

1/2(σwσh)
1/2G

(LrLs)1/2(M + T )3/2
− 1

Each segment besides the last has at most T loads/stores, so the communication cost is

X ≥ 33/2(pIpFpO)
1/2(σwσh)

1/2TG

(LrLs)1/2(M + T )3/2
− T

To choose optimal segment length, we note that T/(M + T )3/2 is maximized when T = 2M
and we find the communication cost

X ≥ 2(pIpFpO)
1/2(σwσh)

1/2G

(LrLsM)1/2
− 2M

Taken together, Lemmas 16, 18, 19, and 20 complete the proof of Theorem 15.
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4.2 A Tiling that Obtains the Lower Bound
This chapter describes a tiling that attains (up to a constant factor) the lower bound found
in Section 4.1. For simplicity, we focus on asymptotics and ignore boundary conditions and
other constant factors.

As in Section 4.1.3, we will first lift the tensors into higher dimensions, rewriting xr into
σwx

′
r + x′′

r for x′′
r ∈ [0, σw − 1], x′

r ∈ [0, Lr/σw − 1] and xs similarly in order to allows us
to align them with the σwxw and σhxh terms. We will then apply a rectangular tiling to
the lifted array structure, generating Algorithm 7, where we use forx = α : β : γ to denote
iterating from α to γ with a step size of β. To minimize the communication cost, it suffices

Algorithm 7: Tiled 7-nested loop 2D convolution
input : stride sizes σw, σh

Lb batches of input images of size σwLw + Lr × σhLh + Ls, each with C
channels
Lr × Ls filters, mapping each of Lc input channels to Lk output channels
datatype sizes pO, pI , and pF , specifying number of words required to
store elements of the output, input, and filter respectively

output: B batches of output images of size Lw × Lh, each with Lk channels
data : tile sizes bb, bc, bk, bw, bh, br′ , br′′ , bs′ , bs′′

1 for y{b,c,k,w,h} = 0 : b{b,c,k,w,h} : L{b,c,k,w,h} − b{b,c,k,w,h} :
2 for yr′ = 0 : br′ : Lr/σw − br′ :
3 for yr′′ = 0 : br′′ : σw − br′′ :
4 for ys′ = 0 : bs′ : Ls/σh − bs′ :
5 for ys′′ = 0 : bs′′ : σh − bs′′ :

// inner loop
6 for z{b,c,k,w,h,r′,r′′,s′,s′′} ∈ [0, b{b,c,k,w,h,r′,r′′,s′,s′′}) :
7 x{b,c,k,w,h,r′,r′′,s′,s′′} = y{b,c,k,w,h,r′,r′′,s′,s′′} + z{b,c,k,w,h,r′,r′′,s′,s′′}
8 Out(xk, xh, xw, xb)+ = Input(xr′′ + σw(xr′ + xw), xs′′ + σh(xs′ +

xh), xc, xb)× Filter(xk, σwxr′ + xr′′ , σhxs′ + xs′ , xc)

to maximize the size of each block (that is, bbbcbkbwbhbr′br′′bs′bs′′) subject to the following
constraints:

1. Each block size must be positive:

b{b,c,k,w,h,r′,r′′,s′,s′′} ≥ 1

2. The block size in each dimension is smaller than the loop bound for that dimension.
For the first five indices, we have:

b{b,c,k,w,h} ≤ L{b,c,k,w,h}
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The loop bounds on r′′ and s′′ (given by their definitions) give the following two con-
straints:

br′′ ≤ σw

bs′′ ≤ σh

To ensure that the blocks for r′ and s′ are of appropriate size, recall that r = σwr
′+ r′′

and s = σhs
′ + s′′, which gives

σwbr′ + br′′ ≤ R

σhbs′ + bs′′ ≤ S

Since br′′ ≤ σw and bs′′ ≤ σh, we can safely omit those from the inequality (since their
effect on left-hand side is at most equivalent to adding 1 to br′ and bs′ , and we are only
interested in asymptotics) to get

σwbr′ ≤ R

σhbs′ ≤ S

3. The size of each block does not exceed the size of fast memory M . This is straightfor-
ward for Out:

pObbbkbwbh ≤M

as well as Filter:
pF bcbkbr′br′′bs′bs′′ ≤M .

For Input, notice that if a block for xr′ is [r′start, r′end], a block of xr′′ is [r′′start, r′′end] and a
block for xw is [wstart, wend], then the indices of Input in the w-dimension accessed will
be of the form i+ σwj, where i ∈ [r′′start, r

′′
end] and j ∈ [wstart + r′start, wend + r′end]. As a

result, the number of indices in the w-dimension accessed is (bw + br′)br′′ ; similarly for
the xh-dimension. Therefore, the total number of elements accessed from Input must
be:

pIbbbc(bw + br′)(bh + bs′)br′′bs′′ ≤M .

As we will see shortly, it is convenient to recast our maximization problem as a linear
program by taking logs; for this to happen, we only want products in the inequality.
Multiplying out the left-hand side of the above gives a sum of four terms; bounding
each of them by M is sufficient for an asymptotic analysis. Therefore, we get:

pIbbbcbwbhbr′′bs′′ ≤ M

pIbbbcbwbs′br′′bs′′ ≤ M

pIbbbcbr′bhbr′′bs′′ ≤ M

pIbbbcbr′bs′br′′bs′′ ≤ M
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Taking the log base M of the objective and all the constraints, we get the following linear
program, defining λ{b,...,s′′} = logM b{b,...,s′′}:

maxλb + λc + λk + λw + λh + λr′ + λr′′ + λs′ + λs′′ s.t.

λ{b,c,k,w,h,r′,r′′,s′,s′′} ≥ 0

λ{b,c,k,w,h} ≤ logM L{b,c,k,w,h}

λr′′ ≤ logM σw

λs′′ ≤ logM σh

logM σw + λr′ ≤ logM Lr

logM σh + λs′ ≤ logM Ls

λb + λk + λw + λh ≤ 1− logM pO

λc + λk + λr′ + λr′′ + λs′ + λs′′ ≤ 1− logM pF

λb + λc + λw + λh + λr′′ + λs′′ ≤ 1− logM pI

λb + λc + λw + λs′ + λr′′ + λs′′ ≤ 1− logM pI

λb + λc + λr′ + λh + λr′′ + λs′′ ≤ 1− logM pI

λb + λc + λr′ + λs′ + λr′′ + λs′′ ≤ 1− logM pI (4.2.1)

In order to find the optimal tile size for a single problem, we simply solve the above
linear program after substituting in the appropriate values for the loop bounds. However,
we wish to find a closed-form solution in order to both allow the tiling parameters to be
calculated using a basic lookup table of inequalities and arithmetic operations rather than
a more complex linear program and to give us the ability to formally prove optimality by
showing that every tiling that this algorithm generates matches one of the lower bounds
4.1.1.

Algorithms for determining a closed-form solution to the parameterized linear programs
in the form of a piecewise linear function have been studied extensively in the context of
control theory [24, 6, 83, 41]. We adapt the geometric algorithm from [6] into Algorithm 8.

The intuition for the algorithm is as follows: start with a (possibly open) region in
parameter space; during the first iteration of the algorithm, this is the set of all possible
valid loop bounds and strides. Pick a random point inside that region, and, setting the
parameters to the coordinates of that point, numerically solve the resulting LP. Note which
constraints are made tight; if the number is not equal the number of variables, resample the
parameters again. The optimizer in the region containing the point is equal to the symbolic
solution to the system of linear equations defined by the tight constraints. The region itself
is defined as the polytope within which the slack constraints at the point we sampled remain
slack at the optimizer. We remove this polytope from our original region and recursively
repeat on the remainder until the entire region is partitioned.

Running the algorithm on the above linear program with precisions equal to 1 (as the
precisions are very small compared to M in all cases of interest) gives us a partitioning
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Algorithm 8: Multiparametric linear program
Data: An initial region R = Aθ ≤ b to explore
Result: A set {(Ri, λ̂

i(θ))}, where Ri form a partition of R and λ̂i(θ) are logs
(base M) of the optimal tile sizes for θ ∈ Ri

1 if R is lower dimension or empty :
2 return ∅
3 Randomly sample element θ0 ∈ R
4 λ∗

0 ← optimizer for min cTλ s.t. Gλ ≤ w + Fθ0 (solve using simplex)
5 A(θ0)← indices of zeros of Gλ∗

0 − Fθ
6 (Gt, wt, Ft)← rows A(θ0) of (G,w, F )
7 (Gs, ws, Fs)← rows {1, ..., |w|}\A(θ0) of (G,w, F )
8 if |A| = dimension of λ :
9 λ̂1(θ)← G−1

t Ftθ +G−1
t wt

10 else:

11 Row-reduce the linear system
[
Gt −Ft

] [ λ∗(θ)
θ

]
= wt to[

U P
0 D

] [
λ∗(θ)
θ

]
=

[
q
r

]
12 if D, r ̸= 0 :

// This occurs w.p. 0
13 Resample θ0 and restart.
14 λ̂1(θ)← −U−1p+ U−1q

15 R1 ← {θ : Gsλ
∗(θ) ≤ ws + Fsθ}

16 Si ← polytope consisting of points that violates the ith of R1 and satisfies
constraints 1 through i− 1

17 Recursively partition each Si to get set of regions, optimizers Ti.
18 return {(R1, λ̂

1(θ))} ∪ T1 ∪ T2...

of the parameter space defined by the loop bounds L list of two hundred disjoint poly-
topes. Programmatically examining this tiling scheme shows that the communication cost
takes on one of five values, depending on the input parameters: LbLcLkLwLhLrLs/M ,
LbLcLkLwLh(LrLsσWσH/M)1/2, or the size of Input, Output, or Filter ; these are exactly
(up to a constant factor) the communication lower bounds (4.1.1).
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4.3 Performance Analysis

4.3.1 Comparison of Convolution Algorithms

Now that we know that the lower bound (4.1.1) is attainable, we wish to compare it to other
approaches to performing convolutions. For instance, (2.3.4) states that it is impossible
for any matmul-based convolution algorithm, such as im2col, to communicate less than
(#flops)/M1/2 words. As a result, asymptotically speaking, direct convolution using our
tiling uses min(M1/2, (LrLs/σhσw)

1/2) times less communication than any possible matrix-
multiply based convolution approach.

In practice, however, convolution sizes do not grow uniformly in every dimension; as a
result, we are interested in non-asymptotic behavior. We will compare the communication
cost of direct convolution using our tiling to four algorithms - im2col [78], Winograd [63],
FFT [94], and a naive, untiled implementation - by symbolically calculating the amount
of communication each one requires. We use the FFT communication bound provided in
[22] and the matrix multiplication communication bound provided in [52] to compute the
relevant communication volumes for the first two layers of Resnet50 [31], comparing them
with our communication lower bound (4.1.1) The results are presented in Figure 4.3.1.

We observe several trends. Blocking and im2col scale better than FFT and Winograd
in the memory size, and the relative performance of blocking and im2col is dependent on
the ratio σwσh

LrLs
. This is expected because of how the small filter blocking is used. We note

that in all cases, the communication bound is not attained precisely. Work remains to either
strengthen the communication bound or devise better algorithms to meet the bound.

4.3.2 Benchmarks on accelerators

To show real-world applicability of this tiling, we benchmark our results on a GEMMINI [26]
machine learning accelerator running on Firesim [46], a cycle-accurate hardware simulator.

GEMMINI’s memory architecture consists of two separate memory buffers: a scratchpad,
which holds the input and the filter, and an accumulator buffer, which holds the output at
a higher precision (to prevent floating-point rounding issues) and performs additions to it.
At each tile, the input and the filter are reloaded from off-chip memory, but the partially
summed output is held in the accumulator until it is fully summed (the loop ordering is fixed
to ensure that the innermost loop axes in the outer loops correspond to reduction axes), at
which point it is rounded and written off-chip in low precision.

We use the default GEMMINI chip configuration, in which, the scratchpad is 256KiB,
holding 8-bit words, while the accumulator is 64KiB and holds 32-bit words. However,
memory accesses are interleaved with computation using double-buffering, in which only half
of the scratchpad and the accumulator are accessible to the processor at any one time (with
the other half pulling in data from main memory). As a result, for tiling calculations, our
memory sizes are halved: the scratchpad can hold 128K words, while the accumulator can
hold 8K words.
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Figure 4.3.1: Theoretically computed communication volumes for mixed precision ResNet50
layers 1 and 2, relative to the communication bound. We take σI = σF = 1 and σO = 2. The
communication bound is in black, im2col is in blue, blocking is in purple, green is FFT, yellow
is Winograd, and red is naive. Solid lines are for layer conv1 and dashed lines are for the
convolution of layer conv2_x as specified in [31]. We use a batch size of 1000. We see that
in general, communication volumes are a constant multiple of the communication bound.
However, we do see scaling in our tiled direct convolution, and for conv2_x, the strides of
1 are more favorable to our tiling, and it beats im2col for sufficiently large memory sizes.
ResNet50 also has convolutional layers conv3_x, conv4_x, and conv5_x (not depicted),
resemble conv2_x. Our tiling also has a sharp drop in performance towards the right of the
graph for conv2, when the memory size grows sufficiently large to fit in memory; that drop
occurs further to the right for other algorithms.
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Figure 4.3.2: Experimentally measured Resnet50 layer performance (both total clock cycles
and communication) on GEMMINI accelerator. Our optimization-generated tiling consis-
tently uses less communication than the GEMMINI’s default tiling (“vendor”), which leads
to performance increases for layers where the default tiling has poor scratchpad utilization
(convs 1 through 3).

As a result, we modify the optimization problem from 4.2 to account for buffer shar-
ing between the input and the filter and to enforce integral tile sizes. Although this in-
troduces nonlinearity (and an integrality constraint), the built-in numerical optimization
routine NMaximize on Mathematica is still able to find a tile in around 400 iterations, or
about five seconds on our test laptop.

We compare the performance of the five standard ResNet convolution sizes [31] evaluated
on GEMMINI using both our tiling and the default tiler included with GEMMINI, which
greedily expands the tile size, one dimension at a time, until the memory limit is exceeded.
We measure both the estimated communication complexity (the number of scratchpad and
accumulator rows allocated by chip’s memory controller per tile, multiplied by the total
number of operations divided by the size of a tile) and the counted number of clock cycles
taken by each computation.

As shown in Figure 4.3.2, our system consistently uses between 45% and 85% as much
estimated communication (a good proxy for energy[90]) compared to the default tiling on
all ResNet layers. Furthermore, for convs 1, 2, and 3, where the default tiling was unable
to take full advantage of the buffer (indicated by low scratchpad utilization per-tile), our
tiling reduces clock cycle count (i.e. runtime) by 2.5× for conv1 and 13% for conv2 and
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conv3. However, for layers 4 and 5, where the default tiling already achieves scratchpad
utilizations of 99% and 93% respectively, there is little room for improvement; in these
cases, our tiling, which does not take into account non-memory related, hardware-specific
factors such as optimal microkernel size and memory coalescing, performs worse with respect
to clock cycles. In such cases, additional constraints may be added to encode these factors, as
we discuss in the following chapter. For instance, for conv5, simply adding a single constraint
forbidding the 7× 7 image from being tiled (as an entire row will fit in a line of scratchpad)
reduces cycles count from 124% to 104% of the default figure.
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Chapter 5

Communication-Computation
Combinations for Randomized Matrix
Multiply

Our first step in examining models beyond pure communication will be to examine communication-
computation tradeoffs in abstract models where

This chapter considers a simple example that exhibits a communication-computation
tradeoff, from randomized linear algebra [66]. Specifically, we will consider the problem of
multiplying a matrix A by a random matrix S. This kernel is often used for dimension
reduction [40, 54]; A can be thought of as a collection of random vectors which we wish to
map onto a lower-dimensional space using random projections S.

To be precise, our goal is to compute Â = SA, where:

• Â ∈ Rd×n

• S ∈ Rd×m is a random matrix, generated at runtime using a pseudorandom number
generator (PRNG).

• A ∈ Rm×n is present in memory at the beginning of the program.

One straightforward approach to this problem is to compute S in its entirety, then perform
a tiled matrix multiply (Algorithm 2). However, as S is the output of a PRNG, we can
generate elements of S on the fly from a single stored seed (which is of negligible size),
allowing us to use the entirety of fast memory to store A and Â. This exposes a tradeoff
between communication cost, which is dependent on the size of fast memory available to
store A, and the computational cost of possibly recomputing elements of S, which we will
refer to as rematerialization.

To model this problem, we extend of the two-level memory hierarchy model in 2.3 to
encompass computation as well. Each word communicated between fast and slow memory
will incur a cost of 1, as before, but we now have the ability to generate an element of S
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(and place it in fast memory) for a cost h. We will not count the number of operations
incurred in actually performing the computations, since this is always 2dmn. We will divide
this cost into a load cost, which encompasses the number of reads from memory and h times
the number of rematerializations, and a store cost, which describes the number of stores onto
main memory.

In this chapter, we will derive a lower bound in this computational model for randomized
matrix multiplication, and a tiling that attains it.

5.1 The Lower Bound
To find a lower bound for the randomized matrix multiplication problem, we will divide our
program into segments similar to that from previous sections. However, instead of defining
segments as being bounded by communication, we will define segments as being bounded by
total cost M+x, where cost is defined as the sum of communication and h times the number
of elements of S rematerialized. We will then optimize over these parameter x as we did in
the proof of Lemma 18.

Lemma 21. The load cost of computing Â = SA in the two-level memory model where each
element of S can be rematerialized for cost h is

2dmn

√
min(h, 1)

M

Proof. Define the following notation: let â, a, and s be the number of elements of Â, A, and
S, respectively, available to compute during a segment. Let â = âb + âm, a = ab + am, and
s = sb + sm + sr, where

• âb, ab, and sb are the number of elements preexisting in fast memory at the beginning
of a segment

• âm, am, sm are the number of elements read from and written to slow memory during
the execution of a segment

• sr is the number of elements of S rematerialized during the execution of a segment.

By the Loomis-Whitney inequality (Theorem 2), the number of multiply-add operations per
segment is bounded above by √

âas (5.1.1)

which we wish to maximize subject to constraints on the number of words available at the
beginning of a segment:

âb + ab + sb ≤M (5.1.2)
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and the number of words that can be either read from main memory or rematerialized during
a segment:

âm + am + sm + hsr ≤M + x . (5.1.3)

Let us first consider the case of maximizing (5.1.1) for a fixed value of s. We have:

â+ a = âb + âm + ab + am by definition
≤M + x− sb +M − sm − hsr substituting from (5.1.2), (5.1.3)
= 2M + x− sb − sm − hsr (5.1.4)

To maximize âa (and therefore
√
âas) under (5.1.4), we set

â = a =
2M + x− sb − sm − hsr

2
.

As a result, for any s = sb + sm + sr, the maximum of
√
âas is:

2M − sb − sm − hsr
2

√
s =

2M + x− (s− sr)− hsr
2

√
s

=
2M + x+ (1− h)sr − s

2

√
s (5.1.5)

We now determine the optimal value of sr. In the case where h ≤ 1, the coefficient of sr
in (5.1.5) is positive, so we set sr to its maximal legal value, sr = s, giving us an objective of

2M + x− hs

2

√
s . (5.1.6)

On the other hand, if h > 1, the coefficient of sr in (5.1.5) is negative, so we set sr = 0,
giving us an objective of

2M + x− s

2

√
s

which is identical to (5.1.6) with h = 1; as a result, both objectives are equal to (5.1.6) with
h replaced with h′ = min(h, 1).

We now maximize this quantity with respect to s by differentiating with respect to s and
setting to zero, which returns the optimal value of s as:

s =
2M + x

3h′

which (substituting into 5.1.6) gives the following upper bound on the number of multiply-
add operations per segment

2M + x− h′s

2

√
s =

2M + x− h′ 2M+x
3h′

2

√
2M + x

3h′

=

√
(2M + x)3

27h
.
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We now find a cost lower bound. The total number of arithmetic instructions is dmn.
Therefore, the minimum number of segments required in the operation is

dmn

√
27h

(2M + x)3

and as each segment incurs cost M + x, the minimum cost is

dmn(M + x)

√
27h

(2M + x)3
. (5.1.7)

As this lower bound holds for any x, we wish to maximize (5.1.7) with respect to x to find the
strongest lower bound. Differentiating with respect to x tells us that (5.1.7) is maximized
at x = M , which gives a lower bound of

2dmn

√
h′

M

as desired.

This lower bound is not always tight; for instance, if h = 0 (i.e. we can rematerialize
elements of S for free), it provides a lower bound of 0 on the total load cost, which is clearly
impossible. This suggests an approach for another lower bound: ignoring the costs (either
memory or rematerialization) associated with S entirely - in other words, treat multiplication
by the the appropriate value of S as as an arithmetic operation without any associated data
or rematerialization cost, as in Algorithm 9. We now can perform a standard communication

Algorithm 9: Randomized matrix multiply, ignoring S

1 for xd ∈ [0, d) :
2 for xm ∈ [0,m) :
3 for xn ∈ [0, n) :
4 Â(xd, xn)+ = fd,m(A(xm, xn))

analysis for the projective data access functions

ϕÂ(xd, xm, xn) = (xd, xn)

ϕA(xd, xm, xn) = (xm, xn)

using Theorem 11, resulting in a communication (and therefore cost) lower bound of ρdmn/M .
Combining this lower bound with with Lemma 21 gives:

Theorem 22. The load cost of multiplying Â = S · A, where Â ∈ Rd×n, A ∈ Rm×n, and
S ∈ Rd×m, where S is a random matrix whose elements can be rematerialized at cost h, is
at least

Ω

(
dmn ·max(

√
min(h, 1)

M
,
1

M
)

)
.
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5.2 Algorithms for Attaining the Lower Bound
In this section, we will develop algorithms that attain the lower bound in Theorem 22.

We will assume in this section that h ≤ 1. To see why this assumption incurs no loss
of generality, suppose we are given an algorithm A that computes S × A which is optimal
for h ≤ 1. Then, in the setting where h > 1, we simply perform A , storing each S(i, j)
into slow memory the first time it is used loading them from slow memory upon subsequent
uses. If some of these subsequent uses involve rematerializing S(i, j), modify A so that they
load S(i, j) from slow memory instead, which reduces the total cost. The resulting algorithm
costs at most dm more than the original algorithm (the maximum number of stores required),
which is a lower order term since dm is the size of its input S and therefore a lower bound
on the cost of A .

As we have done in the rest of this dissertation, will denote the indices of the elements
of Â, A, and S with indices xd,xn, xm in parentheses; i.e. elements of Â will be denoted
Â(xd, xn), elements of A will be denoted A(xm, xn), and elements of S will be denoted
S(xd, xm). We will denote the indices of the tiles with indices td, tn, tm in square brackets;
i.e. tiles of Â will be denoted Â[td, tn], tiles of A will be denoted A[tm, tn], and tiles of S
will be denoted S[td, tm]. We will denote indices of elements of tiles using square brackets
followed by parentheses, e.g. S[td, xm](id).

We first attempt a simple tiling in Algorithm 10. As an initial attempt, let us tile Â

into tiles of size
(√

M/h− 1
)
×
√
Mh, and have each inner loop consist of a rank-1 update

to this Â-tile using a
(√

M/h− 1
)
× 1 tile taken from S and a 1 ×

√
Mh taken from A.

Note that as the tile size corresponding to the dimension m is 1, tm and xm are identical in
Algorithm 10; we will use xm. First, we check that this algorithm is executable. The total
memory footprint of the Â tile is

(√
M/h− 1

)√
Mh = M −

√
Mh, and the total memory

footprint of the A tile is
√
Mh, leading to a total memory footprint of M (as S is never

stored on fast memory, it does not count towards memory footprint), which is legal. Our
only constraint, therefore, is that

√
Mh ≥ 1; that is, h ≥ 1/M . We first examine the case

when it holds.
Let us analyze the cost of this algorithm. The number of loads from A is simply the size

of a tile of A (
√
Mh) multiplied by product of the bounds of the loops surrounding Line 4

in Algorithm 10:

d√
M/h− 1

n√
Mh

m
√
Mh =

dmn√
M/h− 1

=
dmn
√
h√

M −
√
h

As we assume that h ≤ 1, this is roughly equal to

dmn

√
h

M
.



74

Algorithm 10: Tiled random matrix multiplication, with rank-1 updates
input : input matrix A ∈ Rm×n

random matrix S ∈ Rd×m, each of whose elements can be (re)materialized
with cost h

output: output matrix Â = S × A ∈ Rd×n

1 for td ∈ [1, d√
M/h−1

) :

2 for tn ∈ [1, n√
Mh

) :
3 Initialize Â[td, tn] = 0 in fast memory for xm ∈ [1,m) :

// perform outer product S[td, xm]× A[xm, tn] and add it to
Â[td, tn] (rank-1 update)

4 Load A[xm, tn] into fast memory for id ∈ [1,
√

M/h− 1) :
5 Materialize s = S[td, xm](id) Increment idth row of Â[td, tn] by

s× A[xm, tn]

6 Store Â[td, tn] to main memory.

Similarly, we can count the number of materializations of elements in S: a single element of
S is rematerialized in Line 5 of Algorithm 10, so we just multiply the product of the bounds
of the loops surrounding it to get

d√
M/h− 1

n√
Mh

m

(√
M

h
− 1

)
=

dmn√
Mh

.

Therefore, the total load cost of Algorithm 10 is roughly

dmn

√
h

M
+ h

dmn√
Mh

= 2dmn

√
h

M

which matches Theorem 22.
Furthermore, since each element of Â is stored exactly once in Algorithm 10, it attains

the trivial store cost lower bound of dn.
In the case where h < 1/M , we will (much like we did in Section 3.3.1) attempt to round

the (illegal) tile dimension
√
Mh to the nearest legal value, which is 1. This leads to a tile

size of (M − 1)× 1 for Â and S and a 1× 1 tile size for A. Following the same approach as
above, the number of loads from A is

d

M − 1

n

1
m · 1 =

dmn

M − 1
≈ dmn

M

and the number of materializations of elements in S is

d

M − 1

n

1
m (M − 1) = dnm
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for a total cost of approximately

dmn

M
+ hdmn =

(
1

M
+ h

)
dmn ≤ 2dmn

M

which again matches Theorem 22.
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Chapter 6

Optimizing More Realistic Performance
Models and Simulated Performance

In the previous chapters, we have worked with abstract computational models in which we
can prove strong lower bounds on cost, as well as describing mappings to attain these lower
bounds. However, these models make many simplifying assumptions; for instance, we have
ignored the cost of tail cases in previous chapters as lower-order terms. However, in practice,
these simplifications, combined with the lack of accounting for architecture-specific factors
such as memory alignment and interconnect topology, can cause abstract model performance
to be an imperfect proxy for actual performance, as we saw in Section 4.3.2.

Analytical performance models for accelerators, such as Timeloop [71] and Maestro [53]
incorporate significantly more information about target hardware than the simple models
we have used so far, giving performance figures that can be far closer to actual performance
than more abstract models such as communication volume. This hardware-specific also
allows them to directly handle more axes in the mapspace than our previous analyses; for
instance, Timeloop supports multilevel tiling, spatio-temporal mapping, and loop ordering.

Unfortunately, analytical performance models are sufficiently complex that proving non-
trivial lower bounds under them are infeasible. However, optimization methods for these
analytical models can provide excellent performance in practice on real hardware, even if
it is infeasible to prove optimality over them. As most analytical performance models lack
closed-form descriptions, we cannot directly solve for an optimal mapping as we have done
in previous chapters; we will discuss methods to work around this limitation in this chapter.

However, analytical performance models are not perfect. Despite their significant ad-
vantages with respect to accuracy over abstract computational models, analytic models can
still diverge from actual performance significantly [88]. To see the significance of this differ-
ence, we generated 2000 randomly chosen mappings for a variety of convolution and matrix
multiplication problems. We then evaluated the cost of these mappings, first by executing
the code corresponding to these mappings on the GEMMINI [26] DNN accelerator running
on the cycle-accurate Firesim [46] RTL emulation platform, then by using an inexpensive
analytic performance model, Timeloop. Hardware parameters (memory bandwidth/sizes,
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systolic array dimensions, etc.) were identical for both targets. Figure 6.0.1 shows a log-log
scatter plot of the ratios of the cycle counts generated by Timeloop and Firesim, which can
differ by up to two orders of magnitude.

However, using measured performance data comes with its own caveats, especially during
the hardware design process, when the target hardware has not been taped out yet. In this
setting, cycle-accurate simulation or emulation can be used, but at a cost several orders
of magnitude more expensive than running an analytical model. As a result, optimization
methods targeting measured performance data must be sample-efficient to be feasible.

Timeloop = 10×Firesim

Timeloop = Firesim

Timeloop = 0.1×Firesim

Timeloop = 0.01×Firesim
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Figure 6.0.1: Comparison of EDP of various mappings from the Firesim emulator and the
Timeloop analytical performance model.

This chapter describes two optimization techniques suited to these performance objec-
tives:

• First, in Section 6.1, we will describe how a manually written closed-form surrogate
model can be used to obtain good performance on an analytical performance model.
As the surrogate model is of closed form, it can be directly optimized using commercial
optimization tools.

• We will then describe in Section 6.2 how Bayesian optimization, with a domain-specific
parameter encoding, can be used to iteratively optimize mappings in a sample-efficient
manner. Furthermore, Bayesian optimization produces a surrogate closed-form per-
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formance model which can be used for transfer learning to increase the efficiency of
mapspace search for unseen hardware.

Work in this chapter was previously published as [38, 20].

6.1 Directly Optimizing Proxy Models
As both analytical performance models and measured performance models do not have
closed-form mathematical expressions, our first approach will be to manually construct a
surrogate model for performance which we can mathematically optimize. Our approach in
this section will be to augment the optimization programs we used to construct optimal
tilings in Chapters 3 and 4 to incorporate spatio-temporal mapping and loop permutation.

In this and the next section, we will focus on convolutions and matrix multiplications,
and only consider rectangular tilings. While non-rectangular tilings of the filter were shown
to be necessary for optimality for some convolutions in Chapter 4, most filter dimensions run
in practice (e.g. Resnet’s [31]) are very small, ranging from 3 × 3 to 7 × 7, and as a result
most hardware and software platforms do not support tiling along the filter dimension and
are therefore limited to rectangular tilings.

6.1.1 Representing mappings

We must first describe a unified mathematical representation of a mapping - tile sizes, loop
orderings, and spatio-temporal mappings - graphically described in Figure 2.2.2. We will do
so by representing mapping as an allocation problem. Each loop will be split into subloops,
one for each prime factor of the original loop bound.

Each of these subloops will then be assigned to a level of the memory hierarchy, providing
a tiling. Within each level of the memory hierarchy, each subloop will be assigned a rank,
specifying loop permutation, and an indication of whether the subloop is to be mapped
spatially or temporally. Formally, we represent a mapping as a four-dimensional tensor X,
whose values are either 0 (represented by a blank space) or 1 (represented by a checkmark).
X is indexed by four indices:

• j, representing the loop axis,

• n, representing subloops (each corresponding to a prime factor of the the loop bound
corresponding to loop axis j)

• k, representing whether a subloop is mapped spatially (index 0) or temporally (index
1)

• i, which represents the level of the memory hierarchy and loop permutation ordering.
Specifically, each level of the memory hierarchy has Z ’slots’. For each level of the
memory hierarchy, subloops assigned to that level will be permuted in the order of
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Index Permutation Schedule
j Loop axis R = 3 ... K = 4 N = 3
n Prime Factors 3 ... 2 2 3
k Spatio-temporal Mapping s t s t s t s t

i

M
em

or
y

Le
ve

ls

Register ...
...

Input Buffer ... ✓

Global Buffer

O0

O1 ✓
O2 ✓
...
OZ ✓

Figure 6.1.1: Allocation-based mapping encoding

rank, with the lowest-ranked factor being innermost, and the highest-ranked factor
outermost. The number of permutation ranks Z is the number of total subloops (i.e.
the total number of prime factors of all the loop bounds).

X(j,n),i,k being 1 denotes that subloop n of loop j is assigned to the memory level/order i,
and the subloop is mapped either spatially or temporally depending on the value of k. All
other values of X are zero.

A concrete example of such a tensor is given in Figure 6.1.1, denotes a mapping for a
nested loop with loop bounds R = 3, K = 4, and N = 3 onto an accelerator with three levels
of the memory hierarchy: a global buffer, an input buffer, and a register. Here, dimension
K is split into two tiles, where the inner tile of size 2 is allocated to the input buffer, and
the outer tile of size 2 is allocated in the global buffer. Each level of the memory hierarchy
in X is further divided into permutation ranks O0, O1, ..., OZ where

Whether a subloop is executed spatially or temporally is indicated by whether the factor
is mapped to a spatial column s or a temporal column t in the table. In this example, both
prime factors for K are spatially mapped.

We note that this factorization-based representation restricts our tilings to those that
perfectly divide the loop bounds; i.e. no tiling with a tail case can be generated. However, in
practice, this is not a significant concern: problem sizes for most machine learning workloads
tend to have small prime factors (many are powers of 2, in fact), and the few that are not
can be zero-padded to a size that factors into small subloops.

6.1.2 Mapping Constraints

We now consider what constraints a mapping must satisfy in order to be valid. First, we
have memory (buffer capacity) constraints. As in the analysis of Algorithm 10, the memory
footprint of a tile is simply the product of the loop bounds of all subloops within it. Let
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Aj,v = 1 if tensor v is indexed by index j and 0 otherwise; this generalizes the constraint
matrix of (3.0.4).

We will also account (as we did in Section 4.3.2) for the fact that some tensors have
dedicated buffers, e.g. the accumulator buffer for the output tensors. To formalize this, let
BI,v = 1 if tensor v may be stored in buffer I and zero otherwise.

Then the memory footprint of tensor v at level I is

∏
i∈[0,I−1]

∏
j,n,k

{
prime_factorj,n, X(j,n),i,kAj,vBI,v = 1

1, otherwise
(6.1.1)

which we restrict to a maximum value of MI,v, the space allocated to tensor v at memory
buffer I. Taking logs∑

i∈[0,I−1]

∑
j,n,k

log(prime_factorj,n)X(j,n),i,kAj,vBI,v ≤ log(MI,v) ∀I . (6.1.2)

We have a similar constraint for parallelism: the amount of parallelism exposed by
spatially-mapped X must not exceed the amount of parallelism available. Let buffer I ex-
pose Si parallelism (for instance, if I corresponds to shared memory in a multicore system,
Si would be the number of cores connected to shared memory). Then the amount of paral-
lelism exposed at level I is product of the subloop bounds corresponding to subloops mapped
spatially is ∏

j,n

{
prime_factorj,n, X(j,n),I,0 = 1

1, otherwise

which leads to the following constraint:∑
j,n

log(prime_factorj,n)X(j,n),I,0 ≤ log(SI) ∀I . (6.1.3)

As no loop may be simultaneously mapped both spatially and temporally, we must also
have ∑

k∈{0,1}

X(j,n),i,k = 1 ∀j, n, i .

6.1.3 Optimization

With the constraints defined, we can an objective function - that is, a surrogate model that
can be numerically optimized over the constraints described above. We describe several pos-
sible objective functions in this section, which can be optimized for individually or combined
into a weighted sum.
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The (normalized) logs of the memory footprint (6.1.2) and compute utilization (6.1.3) are
both possible objectives, as maximizing utilization of hardware resources is generally corre-
lated with higher performance. Furthermore, as linear functions in the mapping variables
X, they are easy for optimization libraries to tackle.

We also wish to determine the communication cost of a mapping for each tensor v. We
will decompose this as the product of three terms, or equivalently, we will decompose the
log of the communication cost as the sum of three terms:

• The data size per tile is simply the total memory footprint (across all buffers), i.e.
(6.1.1) without the BI,v factors. Its log is therefore

Dv :=
∑

i∈[0,I−1]

∑
j,n,k

log(prime_factorj,n)Aj,vX(j,n),i,k

• The amount of spatial communication incurred on a spatial mapping. When
a subloop is spatially mapped, the tensors are either unicasted or multicasted (or
accumulated) to all processing elements. To determine which is the case, notice that
tensor v is unicasted or accumulated if the index j being spatially mapped does not
index the tensor (i.e. Aj,v = 0), as in this case, all processing elements access the same
elements of the tensor. Otherwise, different parts of tensor v must be distributed to
each processing element; this multicast incurs additional memory traffic by a factor of
the number of parallel targets. Taking logs:

Lv :=

6, Nj∑
j=0,n=0

log(prime_factorj,n)X(j,n),I,0Aj,v

• A temporal iteration multiplier. If a subloop n of loop j is temporally mapped, the
tensors indexed by loop indices nested inside this subloop are accessed prime_factorj,n
times. To determine if a tensor v has an indexed in loop j using arithmetic functions
(to avoid branching), we introduce an additional zero-one indicator variable Yv,z, con-
strained as follows

Yv,z ≥
∑
j,n

X(j,n),z,1Aj,vBI,v ∀z, v

Yv,z ≥ Yv,z−1 ∀z > 0,∀v
(6.1.4)

The log of the temporal iteration multiplier can therefore be expressed as

Tv =
Z−1∑
z=0

6,Nj∑
j=0,n=0

log(prime_factorj,n)Yv,zX(j,n),z,1 (6.1.5)

which is quadratic in variables Y and X.
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Figure 6.1.2: Runtime of optimization-generated schedule (CoSA) relative to schedules found
by random search and Timeloop’s hybrid search. All runtimes are normalized to that off
random search.

The log of the total traffic for tensor v is simply Dv + Lv + Tv.
In practice, it is often useful to minimize a weighted sum of these different objectives,

with the weights determined by microbenchmarks describing the costs of communication and
computation on a specific target architecture. This quadratic optimization problem can be
directly solved by commercial mixed integer linear program solvers such as Gurobi [29], and as
seen in Figure 6.1.2, provides mappings for Resnet50 layers that on average outperform both
those given by brute-force search and Timeloop’s hybrid search [67] mapper, which prunes
then linearly explores mappings around randomly chosen loop factorizations. As solving this
optimization program does not rely on sampling points, it determines a mapping roughly 90
times faster than Timeloop’s hybrid search.

6.2 Bayesian Optimization
As a result, we wish to develop feedback-driven methods for finding performant methods
with high sample efficiency, allowing their use on expensive but accurate performance mod-
els. Furthermore, we would like our approach to generalize inexpensively to new hardware
configurations. Our approach is to to use Bayesian optimization, which has been shown to
be effective for optimizing complex functions with a limited number of evaluations due to
its faster convergence and ability to handle multiple parameters. One of its key strengths is
its ability to automatically construct closed-form surrogate models using Gaussian processes,
which are powerful tools for modeling complex interactions and potentially noisy functions;
these can be directly optimized over or incorporated into other performance models.

Bayesian approaches have been used to perform black-box optimization in domains where
sample efficiency is paramount, including algorithm optimizations on supercomputers [58,
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11] and optimizing hardware parameters for accelerators [74, 61, 89]. We apply similar
techniques to optimize over software mapspaces for accelerators, improving on previous at-
tempts to do so [80] by using an efficient encoding scheme to embed mapping parameters
into a mathematical space that can be more easily searched.

This section considers mapspaces consisting of tile sizes and loop orderings (dataflows)
for multilevel memory hierarchies. Our techniques directly generalize to mapspaces including
spatio-temporal mappings as well; we leave benchmarking those to future work.

6.2.1 Mapspace Encoders

Bayesian optimization assumes an objective function (in this case, a performance metric such
as latency, cycle count, or energy) that takes as input a set of numerical, usually continuous,
variables. However, decisions that comprise a point in the mapspace, such as loop orderings,
are discrete. These discrete variables fall into one out of two categories.

Discrete numerical variables, such as tile sizes, are mostly integral. However, depending
on the hardware target, their discreteness may take the form of a requirement to be a multiple
(e.g. of the size of a vector unit) or factor (e.g. of the problem size, to allow for perfectly
nested loops without tail cases) of some integer. We represent such variables as continuous
variables in the optimization program and round them in order to find the actual mapping
parameters; such rounding approaches have experimentally been shown to match or exceed
discrete surrogate based approaches [47].

Categorical variables, such as loop orderings, are members of a finite, unordered set.
These variables can be dealt with in one of two ways:

• By directly applying surrogate-based optimization approaches to them. Handling cat-
egorical variables in optimization, especially in Bayesian optimization, poses unique
challenges due to their discrete and unordered nature, especially in domains comprised
of both continuous and categorical variables. Several approaches for integrating the
continuous and categorical optimization methods have been studied, including one-hot
encoding [81], bandit models [75], and hybrid Monte Carlo tree search [58]. However,
the combinatorial complexity of the mapping problem complicates such approaches;
for instance, a batched convolution with seven nested loops has 7! = 5040 possible
loop orderings per memory level, and general categorical optimization methods are
unable to take problem-specific information that could guide search over this space
into account (for instance, that performance is likely to be changed less by swapping
the order of two loops than reversing the entire loop nest).

• By creating a mapspace-specific encoding from continuous variables. For example, for
loop orderings, we optimize over scores for each axis and order the axes from lowest to
highest score. A similar approach, as in [55], can be used for spatio-temporal mappings.

Dealing with hardware constraints. The set of valid mappings is bound by a set of
constraints, which we will address in this section by developing a mapping from an uncon-
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strained feature space f = (0, 1]d (for some integer d), which can be easily optimized over,
to the set of valid mappings. We will denote axes of this feature spaces as fi.

Many constraints are simple constant bounds on the numeric variables (for instance,
ensuring that tile sizes must be smaller than the sizes of the data tensors) and can be dealt
with by scaling the variables appropriately. For instance, instead of optimizing a loop tile
size t under the constraint that it is bounded above by the size s of the input problem, we
can instead optimize a value f ∈ (0, 1] and set t = sf .

However, other constraints may result in more complicated inequalities. For example,
consider a 2D convolution with b batches, c input channels, k output channels, and windows
of size r× s, outputs of size w× h. If we wish to tile these axes in such a way that the tiled
inputs and weights can fit into a scratchpad of size M , the tile sizes tb, tc, ... must satisfy the
following constraint:

tctktrts + tbtc(tw + tr)(th + ts) ≤M (6.2.1)

Rejection sampling is often used to handle such constraints, but has two drawbacks. First,
setting an objective value to assign to invalid mappings is a nontrivial hyperparameter opti-
mization problem; an overly high value can cause unwanted behavior in a learned surrogate
function (leading to unpredictable behavior when, for instance, doing transfer learning),
while an overly low value may not be enough to discourage the optimizer from considering
invalid maps. Furthermore, the rejection probability can be high - increasingly so as the
dimensionality increases - significantly driving up the number of iterations required. In fact,
prior work [80] requires sampling 22K points in order to produce 150 valid mappings, which
drastically increases the cost of this approach.

As a result, our goal is to develop a mapping from every point of f to a valid point in
the mapspace. Since all nontrivial constraints in the mapspace take the form of capacity
constraints similar to that of (6.2.1) over the tile sizes [38], we instead optimize the aspect
ratio of the tiles, and then scale all the tile sizes by the same factor to maximize memory
utilization. We believe this approach also improves the ability of the learned model to
generalize across problem sizes, as communication-optimal tiles for many problems such as
matrix multiplication retain the same aspect ratio (square tiles) as long as problem sizes are
sufficiently large.

More concretely, consider the memory constraint given in (6.2.1). Instead of directly
optimizing over the tile sizes tb,c,..., we optimize the variables fb,c,... ∈ (0, 1], which we scale
by a common multiplier α to obtain

tb,c,... ≈ αfb,c,... (6.2.2)

In order to determine the value of α, notice that substituting (6.2.2) into (6.2.1) gives the
following inequality:

α4 [fcfkfrfs + fbfc(fw + fr)(fh + fs)] ≤M (6.2.3)
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As there is no reason not to maximize memory utilization, we replace the inequality with
equality, which therefore provides the value of α:

α =

(
M

fcfkfrfs + fbfc(fw + fr)(fh + fs)

)1/4

We can then round the resulting values of αfb,c,... down to the nearest valid value (to satisfy
discreteness and maximum tile size constraints) of tb,c,..., ensuring that each point f⃗ ∈ (0, 1]d

corresponds to a valid mapping.

6.2.2 Evaluation

For our experiments, we optimize for energy cost on a hardware model based on GEM-
MINI[26] with a four-level memory hierarchy: a register, an accumulator for the outputs, a
scratchpad for the inputs and weights, and DRAM. We test our mappings on Timeloop[71],
which takes as input an algorithm and a hardware configuration and provides (1) an analytic
performance model for energy and latency and (2) a pruned random search based mapper.
While our approach is designed to target hardware models with far higher per-sample cost
than than Timeloop’s model, we use Timeloop in order to allow for the use of its random-
search mappers (which would be infeasibly expensive if run with a cycle-accurate simulator)
as a comparison target. We leave benchmarking on an (expensive) cycle-accurate simulator
and comparing performance to model-based (brute-force and heuristic) mappers to future
work.

To perform Bayesian optimization, we use GPTune [12], an autotuning suite designed
for optimizing applications by utilizing Bayesian approaches. GPTune incorporates multi-
task learning and transfer learning algorithms to share knowledge of obtained performance
samples among multiple tasks, improving tuning results. It enables quick prediction of opti-
mal tuning parameters for new tasks using data from existing tasks. Additionally, GPTune
supports multi-objective tuning, hybrid models [58] for mixed categorical and continuous
variables, and non-smooth objective tuning [59].

In order to reduce statistical variance, all experiments were averaged over three indepen-
dent runs.

6.2.3 Convergence

Figure 6.2.1 shows the energy consumption of the best mapping found so far at each iteration,
comparing Timeloop and GPTune (we run 100 iterations for GPTune).

For GPTune, we show results for both approaches to optimizing over categorical variables
(in this case, loop orderings) described in Subsection 6.2.1. We note that directly embedding
loop orderings into the problem produces superior results to the score-based approach for
matrix multiplication but inferior results for convolutions, likely because of the higher di-
mensionality of convolutions compared to matmuls: a 3-nested loop matmul leads to roughly
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Figure 6.2.1: Energy (lower is better) attained by Timeloop’s brute-force mapper and GP-
Tune for matrix multiplication (left) and 2D convolution (right). GPTune was run for 100
iterations; the best value found is indicated with dotted line extending to the right.

(3!)4 = 1296 choices for loop orderings over the four levels of the memory hierarchy, while the
7-nested loop convolution results in roughly (7!)4 ≈ 6e14 choices. This suggests using cat-
egorical encodings works well for relatively low-dimensional problems, whereas score-based
encodings are better for higher-dimensional problems.

For matrix multiplication, GPTune converges in roughly 20 runs to 2.98 pJ/compute, a
value 16% better than the 3.56 pJ/compute that Timeloop achieves after 4000 runs (note
that Timeloop plateaus after an average of 420 iterations).

For 2D convolutions, GPTune converges in (on average) 50 iterations to a minimum of
5.26 pJ/compute, a value that it took an average of 627 iterations for Timeloop to beat.
Furthermore, after 4000 iterations, Timeloop’s best value was 4.32 pJ/J, roughly 17% better
than GPTune’s.

6.2.4 Transfer Learning

In many settings, such as hardware DSE, the ability to leverage data collected on one or
more hardware configurations to guide search on a hitherto unseen hardware configuration
can prove useful. However, support for transfer learning across hardware configurations has
proven limited so far. Random search and many black-box optimization algorithms, such
as genetic algorithms (e.g. GAMMA[43]) do not support transfer learning and must be
run from scratch for every hardware target and algorithm. Attempts to apply the differen-
tiable surrogate models found by Mind Mappings[32] to hardware architectures not in the
training set resulted in performance one to two orders of magnitude worse than running
Timeloop’s random mapper and GAMMA from scratch. Previous Bayesian optimization
based approaches to mapspace search [80] have not considered transfer learning.
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Figure 6.2.2: Transfer learning to a new (not in training set) hardware configuration for
matrix multiplication, compared to GPTune with no prior knowledge and Timeloop.

The Gaussian process surrogate models produced by GPTune possess the capability to
facilitate transfer learning. We first train a surrogate model taking into consideration both
task parameters (i.e., tensor dimensions) and hardware parameters (i.e., memory hierarchy
specifications), utilizing GPTune’s multitask learning algorithm for four distinct memory
hierarchy configurations. Subsequently, we refine this model for 20 iterations, employing the
target hardware configuration that was absent from the initial training set.

Figure 6.2.2 shows the transfer learning, which converges to a mapping providing 3.81
pJ/compute (on par with an uninitialized GPTune) in 10 iterations (roughly half that of an
uninitialized GPTune). This figure requires Timeloop an average of 1600 iterations to beat.

6.2.5 Sensitivity Analysis

The surrogate models can be used for sensitivity analysis as well, by applying Sobol anal-
ysis[82] to attribute the part of the variance of the output can be attributed to each of
the inputs. We leverage GPTune’s sensitivity analysis interface, which internally invokes
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SALib[34] for computing Sobol indices from the trained surrogate model. For matrix multi-
plication, the most important axes were the tilings of the 64×512×128 matrix multiplication
example shown in Figure 6.2.1, the most important axes were the tilings of k at the register
and accumulator levels, and the tiling of j at the register level; the surrogate model was
several orders of magnitude more sensitive to the tiling parameters than the loop ordering
ones, which lines up with previous work[90, 44] showing that tilings are the most important
mapping parameter.

For high-dimensional problems such as convolutions, we believe this surrogate model may
be used to perform automated dimension reduction - perhaps even during the optimization
process itself; we leave this to future work.
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Chapter 7

Conclusion and Future Work

In this dissertation, we have attacked the problem of finding performant mappings for various
tensor problems by expressing them as optimization problems targeting various performance
objectives. For certain performance models, we have derived lower bounds on the cost of
computation.

Perhaps the most straightforward application of our work is to the design of high-
performance tensor libraries and compilers, especially those targeting domain-specific ac-
celerators. We leave implementing our work as compiler optimizations and integrating them
into existing compilers (either as fully automated rewrite passes, or as guides to program-
mers writing optimizations in user-schedulable languages such as Halide, Exo, and TVM) as
future work, pointing to [69, 68] as an initial step towards this goal.

Furthermore, the work in this dissertation can also be applied to hardware design-space
exploration (DSE), in which different hardware configurations and parameters are explored
to optimize the performance of a set of target workloads over power, performance, and area
(PPA) budgets. Accurately evaluating performance of a workload on a candidate hardware
design requires the computation of a performant mapping from the workload. As the hard-
ware target is often defined by only a few parameters, and changes often during the search
process, it is most straightforward to target an abstract computational model or analytical
performance model. In [35], we combine a differentiable analytical performance model sim-
ilar to that described in Section 6.1 with measured performance figures in order to provide
an objective used by a gradient-descent optimizer to perform DSE, targeting a multilayer
neural network. This is also an example of multi-fidelity optimization - combining multiple
multiple performance models with different execution times and fidelities; exploring it more
generally is something we leave to future work.

Sparse tensor algorithms (and accelerators for them) have also seen significant recent
interest. Extending our lower bound techniques to support sparse computations is a natural
progression from our work. One promising direction is to adapt tools from database theory.
As we briefly discussed in Chapter 3, the discrete Brascamp-Lieb inequality in the projective
case (Theorem 11) is in fact equivalent to the AGM bound of Asterias et al. [2], a powerful
tool for bounding the cardinality of a join query based on the cardinalities of its individual
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relations. However, there are cardinality bounds based on database statistics beyond simple
cardinality, such as degree sequences [16, 49] which may provide a way to find new data-
dependent lower bounds and algorithms for families of sparse matrices.
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