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ABSTRACT OF THE DISSERTATION

Assessment of Prospective Controllers :

Data-based Approaches Tailor-made for Current Knowledge

by

Seunggyun Cheong

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2012

Professor Robert R. Bitmead, Chair

This dissertation is focused on assessment of prospective controllers in

the sense of their closed-loop stability and performance. We consider a variety of

circumstances depending on knowledge of a given plant and propose corresponding

strategies for the assessment. The assessment is performed based on the data from

experiments and the strategies assess not only the controller in the loop where the

experiments are taken but also the other prospective controllers out of the loop.

The first circumstance is challenging such that there is no available knowl-

edge of a plant and a disturbance signal except we can observe the input and the

output signals of the plant. Among many prospective controllers, one controller

makes a closed-loop system with the plant and the input and the output signals of

the plant are observed. Then, the controller in the loop is assessed by a data-based

cost function for the closed-loop stability and performance. The other prospective

controllers can be assessed by data-based cost functions with computed fictitious

reference signals in corresponding fictitious closed-loop systems. The experiment

is performed with a switching control scheme, in which we compare online the

cost functions of the controllers and switch the one with the smallest cost into the

loop. The stability and performance of this switching control system is shown to

be guaranteed when at least one of the controllers is feasible.

In the second circumstance, the available knowledge of the plant is that

xii



the plant is known to be a SISO LTI discrete-time system and the disturbance

signal is an i.i.d. random process with zero mean, unknown bounded variance, and

finite fourth moment. We consider only one controller and determine its ability to

yield closed-loop stability by performing an experiment on the closed-loop system

with the plant and the controller. The collection of least squares AR estimators of

various orders is shown to have the capacity to detect the instability of the closed-

loop system. The order of the system is not necessary information but, instead, an

upper bound of the number of unstable poles with the maximal magnitude outside

the unit circle is assumed to be known.

In the third circumstance, which is the best situation in this disserta-

tion, we know that the plant is a MIMO LTI discrete-time system stabilized by a

MIMO LTI controller in a closed-loop and we also know a bound on the impulse

response of the closed-loop system and a bound on a disturbance signal which is

additive to the output of the plant. With this knowledge, the closed-loop stability

and performance of another prospective controller is assessed without construct-

ing this closed-loop. This is performed through nonparametric identification of the

frequency response functions of the plant or other transfer functions, based on a

limited amount of signal data collected from experiments on the internally stable

closed-loop system excited by designed reference signals and corrupted by distur-

bances. An error analysis is provided and conditions for the reliable assessments

of the closed-loop stability and performance are characterized.

Based on the strategy developed for the third circumstance, we search

for a MIMO LTI discrete-time controller better than the currently stabilizing con-

troller in the sense of a certain performance measure. This searching procedure

is formulated in the form of an optimization problem. FRF estimates for coprime

factors of the plant are obtained with known error bounds from the experimental

data collected from the closed-loop system with the currently stabilizing controller

and the optimization problem is built in terms of these FRF estimates. In or-

der to reduce the numerical difficulty of the optimization problem, we employ a

controller parametrization and propose an algorithm that may not produce the

optimal controller but has fast computation ability.
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1 Introduction

1.1 Motivation

Given a problem with a limited amount of information, what engineers

usually do is to seek the best solution of all possible solutions. With great efforts by

engineers, the chosen solution can approach the achievable limit for the problem.

Consequently, the choice of solution becomes more and more dependent on the

given information. To a control engineer, the necessary information is about a

plant to be controlled and any unknown disturbance signal. Based on the given

information, a controller is designed for a control objective and is implemented in

a closed-loop system as in Figure 1.1.

+
r

u
P

y

s
-+

+

d

C

Figure 1.1: A feedback control system.

The more information we have about the plant P , the disturbance signal

d, and the reference signals r and s, the better controller we can design. However,

in many cases, we make assumptions on the plant and the disturbance in order

to design controllers. Thus, we can build controllers with any assumptions on

the plant and the disturbance and these controllers are guaranteed to perform

successfully under the assumptions but are not guaranteed for the plant and the

1
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disturbance. Naturally, the next thing to do is to assess the controllers for the

plant and the disturbance without these assumptions. This dissertation is about

assessing pre-designed prospective controllers with various kinds of knowledge of

the plant and the disturbance.

1.2 Outline of dissertation

In Chapter 2, we pose a challenging controller assessment problem when

there is no available knowledge of a plant and a disturbance signal except we can

observe the input and the output signals of a plant. Among many prospective

controllers, one controller makes a closed-loop system with the plant as in Figure

1.1 and the input and the output signals of the plant are observed. Then, the

controller in the loop is assessed by a cost function, e.g. a ratio of the truncated

L2-norm of the observed signals to the truncated L2-norm of the reference signals

for the purpose of checking the closed-loop stability. In order to assess the other

prospective controllers, we first design fictitious reference signals based on the

collected input-output data of the plant and, then, formulate fictitious closed-loop

systems with the plant and the prospective controllers. We assign cost functions

to the fictitious closed-loop systems for the purpose of the controller assessment.

By doing this, we can assess all the prospective controllers at the same time as

we collect the data from the current closed-loop system. Since we do not know

if the current controller is a stabilizing (or well-performing) controller, we employ

a switching control scheme, in which we compare online the cost functions of the

prospective controllers and switch the one with the smallest cost into the loop.

Then, the stability and performance of this switching control system is guaranteed

when one of the prospective controllers is feasibly stabilizing.

The switching algorithm in Chapter 2 does not lead to falsification of

the closed-loop stability for each destabilizing prospective controller. Instead, in

Chapter 3, we consider only one controller and determine its ability to achieve

closed-loop stability by performing an experiment on the closed-loop system with

the plant and the controller. If the plant is known to be a SISO LTI discrete-time

system and the disturbance signal is an i.i.d. random process with zero mean,

unknown variance, and finite fourth moment, then the closed-loop stability of a
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SISO LTI discrete-time controller is assessed by investigating the collected data

from an experiment on the closed-loop system with the plant and the controller. It

is not necessary that the system under test be finite dimensional but necessary that

the number of unstable poles of the system be finite. This assessment is carried

out in three steps. First, it is shown that unstable poles of the closed-loop system

can be detected by a least squares AR estimate with an appropriate order. Second,

it is shown that the closed-loop stability of the current controller is indicated by a

least squares AR estimate with any order. Last, we develop, combining two results

above, a method to assess the closed-loop stability of the current controller using

a sequence of least squares AR estimates.

In Chapter 4, the closed-loop stability and performance of a prospective

MIMO LTI controller is predicted in three different ways when the knowledge is

available that the plant is a MIMO LTI discrete-time system and is stabilized by

another MIMO LTI controller, a bound on the impulse response of the closed-loop

system is known, and a disturbance signal is additive to the output of the plant with

a known bound. The data is collected from experiments on the closed-loop system

with the plant and the currently stabilizing controller. We derive three divination

approaches for the closed-loop stability and performance of a prospective controller

and provide data-driven conditions under which these divination approaches are

reliable.

Based on the results in Chapter 4, we formulate, in Chapter 5, an opti-

mization problem for the purpose of designing a MIMO LTI discrete-time controller

with a better performance than the currently stabilizing MIMO LTI discrete-time

controller. FRF estimates for coprime factors of the plant are obtained with known

error bounds from the experimental data described in Chapter 4 and the optimiza-

tion problem is built in terms of the FRF estimates for coprime factors of the plant.

Then, due to the numerical difficulty of the optimization problem, we employ a

controller parametrization and propose an algorithm that may not produce the

optimal controller but has fast computation ability.
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1.3 Contribution

The main contribution of this dissertation is development of strategies to

assess the closed-loop stability and performance of prospective controllers based

on collected data. These strategies are suited to three different types of knowledge

of a plant and a disturbance signal.

(1) A controller assessment strategy is proposed for the case where there is no

available knowledge of the plant and the disturbance signal except we can observe

the input and the output signals. (Chapter 2)

• Design of fictitious reference signals based on the collected input-output

data of the plant in order to formulate fictitious closed-loop systems with the plant

and the prospective controllers.

• Design of cost functions assigned to the fictitious closed-loop systems

for the purpose of the controller assessment.

• Application of the cost functions to a switching scheme in order to con-

struct a switching control for the plant and collect the input-output data of the

plant from this switching-controlled closed-loop system. The stability and perfor-

mance of this closed-loop system is only guaranteed when one of the prospective

controllers is feasible.

(2) When the plant is known to be a SISO LTI discrete-time system and the

disturbance signal is an i.i.d. random process with zero mean, unknown bounded

variance, and finite fourth moment, the closed-loop stability of a SISO LTI discrete-

time controller is assessed by investigating the collected data from the closed-loop

system with the plant and the controller. (Chapter 3)

• Detection of unstable poles of the closed-loop system using a least

squares AR estimate with an appropriate order.

• Indication of the closed-loop stability of the current controller using a

least squares AR estimate with any order.

• Development of a method to assess the closed-loop stability of the cur-

rent controller using a series of least squares AR estimates.
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(3) The closed-loop stability and performance of a prospective MIMO LTI con-

troller is predicted in three different ways when the knowledge is available that

the plant is a MIMO LTI discrete-time system and is stabilized by another known

MIMO LTI controller, a bound on the impulse response of the closed-loop system

is known, and the disturbance signal is additive to the output of the plant with a

known bound. (Chapter 4).

• Derivation of a condition for a reliable estimate for the winding number

of a square transfer function.

• Development of three divination approaches for the closed-loop stability

and performance of a prospective controller.

• Derivation of conditions under which the divination approaches are re-

liable.

• Recommendation among the three approaches.

(4) An optimization problem is formulated for the purpose of designing a MIMO

LTI discrete-time controller with a better performance than a currently stabilizing

MIMO LTI discrete-time controller, when FRF estimates for coprime factors of

the plant are available with known bounds. (Chapter 5)

• Development of FRF estimates of the left and the right coprime factors

of the plant that satisfy the double Bezout Identity.

• Formulation of an optimization problem in terms of the FRF estimates

for coprime factors of the plant.

• Reduction of the numerical difficulty of the optimization problem by

employment of a controller parametrization and development of an algorithm.



2 Controller Assessment in the

Unfalsified Adaptive Control

2.1 Introduction

When we first encounter an uncertain system and want to control it, the

first thing to do is probably to observe the input and output signals of the system

for the purpose of identification. This observation can be performed in an open-

loop setting or in a closed-loop setting with any first-choice controller. Since we

have to deal with strong uncertainty of the system, unfalsified adaptive control

[38, 31] can be a good strategy for the experiments in the early stages of the data

collection.

Unfalsified adaptive control has been developed to achieve stabilization of

a system under a large class of uncertainty in the plant and disturbance signals.

The adaptive switching control scheme exploits the collected data in a real-time

experiment rather than employing any assumption on the plant and disturbance

signals. Based on the concept of the controller unfalsification [28], unfalsified

adaptive control stabilizes a system with an uncertain plant and uncertain dis-

turbance signals using the ε-hysteresis algorithm [19] whenever there exists a sta-

bilizing controller, which is called a feasible controller, in a candidate controller

set, provided that a plant-independent cost function of the switching algorithm is

cost-detectable.

Due to the lack of knowledge of the plant and disturbance signals, it

may be the first idea to place in a candidate controller set as many controllers

as possible that have the possibility to stabilize the plant with the disturbance

signals. We can place in a candidate controller set all the controllers that would be

6
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used in our trial-and-error strategy. However, there is a restriction on the candidate

controllers, which is called the SCLI assumption [38], i.e. each candidate controller

has to be causally left invertible and the causal left inverse has to be incrementally

stable. Fictitious signals for SCLI candidate controllers are well-defined and make

L2e-gain-related cost functions cost-detectable.

In order to expand the range of controllers that can be placed in a candi-

date controller set, the matrix fraction description method is employed in [17] and

[7]. By factorizing a non-SCLI linear controller in a matrix fraction description

form, the controller and a reference signal are reorganized into linear stable factors

and a new reference signal. This new controller, composed of the linear stable

factors, satisfies the SCLI condition. Then, fictitious reference signals for the new

controllers with respect to the new reference signal, together with L2e-gain-related

cost functions, ensure the cost-detectability. In [17], the matrix fraction descrip-

tion method is also applied to nonlinear controllers that can be factorized into

incrementally stable nonlinear matrix factors. Consequently, the SCLI assumption

still plays a key role in the matrix fraction description method.

In this chapter, another method to generate fictitious signals is proposed.

Fictitious signals obtained in this method and some cost functions are proved to

be sufficient to directly achieve the cost-detectability without imposing the SCLI

assumption on any form of candidate controllers. Since there is virtually no as-

sumption on candidate controllers, the unfalsified adaptive control with this ap-

proach can contain virtually any controller in a candidate controller set. Another

notable advantage of this approach is that the fictitious signals are generated by

mere subtraction between observed signals. A fictitious reference signal for a can-

didate controller enables us to build a fictitious closed-loop system with the plant

and the candidate controller. The cost function for the candidate controller is

designed to assess the stability and/or performance of the fictitious system. How-

ever, since a finite amount of data are not enough to falsify the stability and/or

performance of the fictitious system, we employ a switching algorithm to compare

the cost of candidate controllers and switch the one with the smallest cost into the

real closed-loop system. We show that a candidate controller whose cost is less

than a certain level will remain in the real closed-loop system in the end, provided
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that the feasibility assumption is met.

In Section 2.2, an adaptive switching control system is carefully described.

In Section 2.3, new fictitious reference signals are introduced and the unfalsified

adaptive control is built with these fictitious reference signals. Cost-detectable

cost functions using these new fictitious reference signals are introduced in Section

2.4. An example is provided in Section 2.5. Conclusion follows in Section 2.6.

2.2 Adaptive control problem formulation

The theory in this chapter is developed for continuous-time systems but

can be easily extended for discrete-time systems.

The norm ‖ · ‖ is the L2-norm and denote by Lm
2 the L2 space of m-

dimensional functions of time, i.e. Lm
2 = {x : [0,∞) 7→ Rm| ‖x‖ < ∞}. Define a

truncated version of the L2-norm

‖x‖t ,
√∫ t

0

xT (τ)x(τ)dτ

for any function of time x and denote the extended space of Lm
2 by Lm

2e = {x :

[0,∞) 7→ Rm| ‖x‖t <∞, ∀t ∈ [0,∞)}.

Definition 1. (Stability) A mapping (or a system) G : Lmi
2e 7→ Lmo

2e is said to

be stable if there exist constants αs, βs ≥ 0 such that for any given input signal

x ∈ Lmi
2e

‖Gx‖t ≤ αs‖x‖t + βs for ∀t ≥ 0.

Otherwise, G is said to be unstable.

An adaptive control system in Figure 2.1 is considered as a mapping from

two system-input signals, i.e. a reference signal w =
[
rT sT

]T
∈ L

(mu+my)
2e and a

disturbance signal d ∈ Lmd
2e , to an observed system-output signal z =

[
uT yT

]T
where u is the plant-input signal and y is the measured output signal. The reference

signal w is known and the disturbance signal d is unknown. The plant P : Lmu
2e ×

Lmd
2e 7→ L

my
2e is an uncertain mapping from u and d to y, parametrized by unknown

initial conditions at time 0, which we suppress in the notation. Then, the input-
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output relationship of P can be expressed by

ZP (d) =

{
xz =

[
xu

xy

] ∣∣∣∣∣ xu ∈ Lmu
2e , xy = P (xu, d)

}

whose element is one possible experimental datum over a time interval [0,∞) for

a given d.

+
r

u
P

y

s
-+

+

d

...

C1

...

Switching
Algorithm

C2

CJ

Figure 2.1: An adaptive switching control.

A candidate controller set C contains J number of candidate controllers.

For any given C ∈ C, the candidate controller C : L
my
2e 7→ Lmu

2e is a mapping

from a controller-input signal, denoted by yC ∈ L
my
2e , to a controller-output signal,

denoted by uC ∈ Lmu
2e . Further, denote by zC =

[
yTC uTC

]T
the input and the

output signals of C. If C has a state, we choose one initial state. Then, the

candidate controller C can be expressed by input-output relationship

ZC =

{
xzC =

[
xTyC xTuC

]T ∣∣∣∣ xyC ∈ L
my
2e , xuC = CxyC

}
.

A switching algorithm selects a candidate controller at each selecting time
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from the candidate controller set C and keeps its controller-output signal delivered

to the loop of the adaptive control system until the next selecting time. Denote

by Ĉ the sequence of controllers that are chosen and connected in the loop of the

adaptive control system by the switching algorithm and let Ĉt denote the candidate

controller that is connected in the loop of the adaptive control system at time

t ≥ 0. When a candidate controller C ∈ C is selected by the switching algorithm,

the input signal u of P is given by the sum of r and the output signal uC of C as

shown in Figure 2.2 (a) until the next selecting time. Thus, the input-output signal

of C is obtained by zC(t) =
[
yC(t)T uC(t)T

]T
=
[
s(t)T − y(t)T u(t)T − r(t)T

]T
for any time t ≥ 0 satisfying Ĉt = C.

+
r u y

s
-++

++
C

K

yCuC

(a)

+
r u y

s
-++

++
C

K

yCuC

(b)

Figure 2.2: A candidate controller and its subcontroller (a) when the candidate controller
is selected and connected in the adaptive control system (b) when it is not connected.

When a candidate controller C ∈ C is not connected in the loop of the

adaptive control system, C makes a closed-loop system with a subcontroller K as

shown in Figure 2.2 (b). The subcontroller K is designed to stabilize C in the

(C,K) closed loop. Although K in Figure 2.2 is depicted to use only the output

signal of C, actually K is allowed to use not only the output signal of C but also

every information on C with perfect knowledge of C. If C is stable itself, K can be

given as a zero subcontroller whose output signal is 0 for ∀t ≥ 0. The role of the
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subcontroller is to build a stable mapping, as in Definition 1, from s−y to a signal

anywhere in the closed-loop system of C and K while the candidate controller is

not in the loop of the adaptive control system. Thus, the output signal and state

of C do not become inordinately large while disconnected.

Figure 2.2 shows that, for any given C ∈ C and its corresponding subcon-

troller K, we have

yC(t) = s(t)− y(t)

uC(t) = u(t)− r(t)
(2.1)

for any time t ≥ 0 when C is connected in the loop of the adaptive control system.

When C is not connected in the loop of the adaptive control system, the mapping

from s− y to zC =
[
uC yC

]T
is stable as in Definition 1. Note that if C is stable

itself and, hence, K is a zero subcontroller, then yC(t) = s(t)− y(t) for ∀t ≥ 0.

2.3 Unfalsified adaptive switching control

Definition 2. (Fictitious reference signal) Given the candidate controller set C in

Section 2.2, fictitious reference signals for a candidate controller C ∈ C are defined

by

w̃(xzC , xz) ,

[
r̃(xzC , xz)

s̃(xzC , xz)

]
,

[
xu − xuC
xyC + xy

]

for ∀xzC ∈ ZC and ∀xz =
[
xTu xTy

]T
∈ L

(mu+my)
2e . Denote by w̃(xzC , xz, t) the

evaluated value of the signal w̃(xzC , xz) at time t ≥ 0.

For any given C ∈ C, xzC ∈ ZC , and xz ∈ ZP (d), the fictitious reference

signal w̃(xzC , xz) is a hypothetical signal that would have exactly reproduced the

input-output signal xzC =
[
xTyC xTuC

]T
of C and the input-output signal xz =[

xTu xTy

]T
of P had the fictitious reference signal been injected into a fictitious

system in Fig. 2.3, i.e.
[
xTr xTs

]T
= w̃(xzC , xz).

If a controller C ∈ C is stably causally left invertible (SCLI) [38], then

there exists xzC ∈ ZC such that a fictitious reference signal has r̃(xzC , xz, t) = 0 for

∀xz =
[
xTu xTy

]T
∈ L

(mu+my)
2e and ∀t ≥ 0, which is the unique fictitious reference
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+ P

-+

+

d

C

xu xy

xyCxuC

xr

xs

Figure 2.3: A candidate controller and a corresponding fictitious system.

signal in [38]. If a controller C ∈ C can be factored into incrementally stable

factors, then the fictitious reference signals for C can be represented by one signal,

which is the virtual reference signal in [17].

Note that all signals that are needed to generate the fictitious refer-

ence signal w̃(zC , z) are observed in the adaptive control system and the ficti-

tious reference signal is obtained from mere subtraction between the observed

signals. At time t ≥ 0, if a candidate controller C is connected on the loop of

the adaptive control system in Section 2.2, then it is clear from Figure 2.2 that

zC(t) =
[
y(t)T − s(t)T u(t)T − r(t)T

]T
, from which together with the definition

of the fictitious reference signal, it follows that

w̃(zC , z, t) =
[
r(t)T s(t)T

]T
= w(t).

If C is not connected on the loop of the adaptive control system, then its corre-

sponding subcontroller K makes a closed-loop system with C and stabilizes C so

that a mapping from s−y to zC is stable and, hence, a mapping from
[
sT zT

]T
to

w̃(zC , z) is stable. Therefore, a mapping from
[
wT zT

]T
to w̃(zC , z) is always sta-

ble whether or not the candidate controller is connected in the loop of the adaptive

control system.

The observed signals in the adaptive control system in Section 2.2 and the

fictitious reference signal for C ∈ C can be considered the data from an experiment

on the fictitious system (P,C) for C in Figure 2.3 with the fictitious reference signal

w̃(zC , z) as an external input signal. Based on this data, the fictitious system is

assessed by a mapping V : C × L
(mu+my)
2e × L

(mu+my)
2e 7→ L1

2e, that is called a cost
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mapping. In other words, for any given C ∈ C, xzC ∈ ZC , and xz ∈ ZP (d),

the fictitious system (P,C) in Figure 2.3 is evaluated by V (C, xzC , xz). Denote

by V (C, xzC , xz, t) the evaluated value of V (C, xzC , xz) at time t ≥ 0. The cost

mapping V is designed to be causal, which means that V (C, xzC , xz, t) depends

only on C, xzC (τ), and xz(τ) for ∀τ ∈ [0, t]. An example of the cost function is

V1(C, xzC , xz, t) = max
0≤τ≤t

‖xz‖τ
‖w̃(xzC , xz)‖τ + ρ

(2.2)

for ∀t ≥ 0 where ρ is a positive constant. This cost function is bounded if, and

only if, the fictitious system (P,C) for C in Figure 2.3 is stable (Definition 1). For

the stability and the tracking performance, we can employ a cost function

V2(C, xzC , xz, t) = max
0≤τ≤t

‖xu‖τ + ‖xy − xs‖τ
‖w̃(xzC , xz)‖τ + ρ

(2.3)

for ∀t ≥ 0 where ρ is a positive constant.

Definition 3. (Feasibility) Given the plant P and the disturbance signal d in the

adaptive control system in Section 2.2, together with a cost mapping V , a controller

C is said to be a feasible controller if there exist constants αf ≥ 0 such that for

any given xzC ∈ ZC and xz ∈ ZP (d)

V (C, xzC , xz, t) ≤ αf for ∀t ≥ 0.

The adaptive control problem is said to be feasible if the candidate controller set C
contains at least one feasible controller.

Given a cost mapping V , whether a controller is a feasible controller or

not depends on the plant and the disturbance signal in the experiment conducted

from time 0 to ∞.

In an experiment, the input-output signal z of the plant and the input-

output signals zC for C ∈ C in the adaptive control system in Section 2.2 are

observed. During the experiment, for each candidate controller C, a fictitious

reference signal w̃(zC , z, t) and a fictitious system is generated, based on which a

cost mapping V (C, zC , z, t) is computed online. With these cost mappings, the

ε-Hysteresis Switching Algorithm [19] is employed.
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Algorithm 1. (ε-Hysteresis Switching Algorithm)

Ĉt = arg min
C∈C

{
V (C, zC , z, t)− εδCĈt−

}
where ε > 0 is a constant, δij is the Kronecker’s δ, and Ĉt− = limτ↑t Ĉτ .

The ε-Hysteresis Switching Algorithm compares the candidate controllers

and switches into the the closed-loop a controller whose cost function V (C, xzC , xz, t)

has the smallest value. The controller in the loop is given an advantage of an

amount of ε so that the infinitely fast switching is prevented. Convergence of the

switching algorithm in a finite number of switches is stated in the following lemma.

Lemma 1. (Convergence)[38] Consider the adaptive control system in Section 2.2,

together with a cost mapping V and Algorithm 1. Suppose that 1) V (C, xzC , xz, t)

is nondecreasing in time t and 2) the candidate controller set C contains at least

one feasible controller (Definition 3). Then, the number of switches is finite and

V (Cf , zCf , z, t) remains bounded as t increases to infinity where Cf is the final

controller in the controller sequence and zCf is the input-output signal of Cf .

The proof of Lemma 1 also guarantees that if a controller C is in the

closed-loop at time t ≥ 0, then the cost function V (C, xzC , xz, t) of C satisfies

V (C, xzC , xz, t) ≤ αf + ε where αf is an upper bound of a feasible controller (Defi-

nition 3). Thus, the final controller also satisfies V (Cf , xzCf , xz, t) ≤ αf + ε, which

means that the performance of Cf measured by the cost function V (Cf , xzCf , xz, t)

is unfalsified.

On the other hand, the adaptive control system in Section 2.2 is assessed

by a mapping V̂ : L
(mu+my)
2e × L

(mu+my)
2e 7→ L1

2e. Given the signals w and z, the

adaptive control system in Section 2.2 is evaluated by V̂ (w, z). Denote by V̂ (w, z, t)

the evaluated value of V̂ (w, z) at time t ≥ 0. The cost mapping V̂ is designed to be

causal, which means that V̂ (w, z, t) depends only on w(τ) and z(τ) for ∀τ ∈ [0, t].

An example of the cost function V̂ is

V̂1(w, z, t) = max
0≤τ≤t

‖z‖τ
‖w‖τ + ρ

(2.4)

for ∀t ≥ 0 where ρ is a positive constant. This cost function is bounded if, and only
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if, the stability of the adaptive control system in Section 2.2. Another example of

the cost function is

V̂2(w, z, t) = max
0≤τ≤t

‖u‖τ + ‖y − s‖τ
‖w‖τ + ρ

(2.5)

for ∀t ≥ 0 where ρ is a positive constant. This cost function represents the stability

and the tracking performance of the adaptive control system in Section 2.2.

Definition 4. (Cost-detectability) Given the reference signal w =
[
rT sT

]T
and

the candidate controller set C in the adaptive control system in Section 2.2, to-

gether with cost mappings V and V̂ , the pair (V, V̂ ) is said to be cost-detectable if,

for every sequence of switched controllers Ĉ with finitely many switches and the

accordingly observed system-output signal z =
[
uT yT

]T
, the following statements

are equivalent:

1) The cost function V (Cf , zCf , z, t) is bounded as t increases to infinity

where Cf is the final controller in the controller sequence Ĉ and zCf is the input-

output signal of Cf .

2) The cost function V̂ (w, z, t) is bounded as t increases to infinity.

Examples of the cost-detectable pairs are (V1, V̂1) from (2.2) and (2.4) and

(V2, V̂2) from (2.3) and (2.5). The details are explained in Section 2.4.

The main result of the unfalsified adaptive control follows.

Theorem 1. Consider the adaptive control system in Section 2.2, together with a

cost mapping V and Algorithm 1. Suppose that 1) V (C, xzC , xz, t) is nondecreasing

in t, 2) the adaptive control problem is feasible (Definition 3), and 3) the pair

(V, V̂ ) is cost-detectable (Definition 4). Then, there exist a constant αu ≥ 0 such

that V̂ (w, z, t) ≤ αu for ∀t ≥ 0.

Proof. By Lemma 1, the number of switches is finite and V (Cf , zCf , z, t)

remains bounded as t increases to infinity. The cost-detectability in Definition 4

completes the proof. �
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2.4 Cost detectable cost mappings

In this section, cost mappings are introduced that satisfy the first and the

third assumptions in Theorem 1.

Using the fictitious reference signals, consider cost mappings V and V̂

such that, for any given xw ∈ L
(mu+my)
2e , xz ∈ L

(mu+my)
2e , C ∈ C, and xzC ∈ ZC ,

V (C, xzC , xz, t) = max
0≤τ≤t

‖xz‖τ
‖w̃(xzC , xz)‖τ + f(τ)

V̂ (w, z, t) = max
0≤τ≤t

‖z‖τ
‖w‖τ + f(τ)

(2.6)

for ∀t ≥ 0 where f : [0,∞) 7→ R is a monotonically increasing function with

f(0) > 0. Then, cost-detectability as in Definition 4 is proved by the following

lemma.

Proposition 1. Given the reference signal w =
[
rT sT

]T
, the candidate con-

troller set C, the cost mappings V and V̂ in (2.6), the input-output signal zC =[
uTC yTC

]T
of C for ∀C ∈ C, and the observed input-output signal z =

[
uT yT

]T
of the plant in the adaptive control system in Section 2.2, the pair (V, V̂ ) is cost-

detectable (Definition 4).

When we choose f(t) = ρ for ∀t ≥ 0 where ρ > 0 is a constant, the

bounded property of V̂ means stability of the adaptive control system in Section

2.2 considering the disturbance signal a part of the plant. However, in this case,

the feasibility assumption becomes very restrictive. To see this, consider a nonva-

nishing disturbance signal d ∈ Lmd
2e \Lmd

2 , i.e. ‖d‖ =∞, such as a sinusoidal signal,

a step signal, or a white noise signal with nonzero variances. In a fictitious system

for a controller C in Figure 2.3 with a zero signal xw ∈ L
(mu+my)
2e , i.e. ‖xw‖ = 0,

substituted for the fictitious reference signal, we observe two signals xz ∈ ZP (d)

and xzC =
[
xTyC xTuC

]T
∈ ZC and, hence, obtain w̃(xzC , xz) = xw = 0(mu+my),

where 0(mu+my) ∈ R(mu+my)×1 is a zero vector, from Definition 2. Then, from Def-

inition 3, it follows that a necessary condition for the controller C to be a feasible

controller is that there exists a finite constant αf ≥ 0 such that ‖xz‖t ≤ αfρ for

∀t ≥ 0. On the other hand, if C is a stabilizing controller, what is guaranteed is

existence of constants αs, βs ≥ 0 satisfying ‖xz‖t ≤ αs‖d‖t + βs for ∀t ≥ 0. There-
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fore, it can be concluded that a controller that stabilizes the plant is required to

have an additional ability to attenuate the effect of the nonvanishing disturbance

signal on signals observed anywhere in the closed-loop system in order to be a

feasible controller, which means that it is highly possible that there does not exist

a feasible controller even for a plant that can be easily stabilized.

The bigger the function f is, the larger the number of feasible controllers

is according to the definition of a feasible controller in Definition 3, which makes

the feasibility assumption in Theorem 1 less restrictive. If f is big enough, any

given stabilizing controller as in Definition 1 becomes a feasible controller. The fol-

lowing proposition provides a sufficient condition imposed on f for any stabilizing

controller to be a feasible controller.

Proposition 2. Given the unknown disturbance signal d, the input-output descrip-

tion of the plant ZP (d) in the adaptive control system in Section 2.2 with the cost

mappings V and V̂ in (2.6), an arbitrarily given stabilizing controller C as in Defi-

nition 1 is a feasible controller if there exists a constant αd such that ‖d‖t ≤ αdf(t)

for ∀t ≥ 0.

When there is a known monotonically increasing function f such that

f(0) > 0 and ‖d‖t ≤ αdf(t) for ∀t ≥ 0 where αd is an unknown constant, a choice

for cost mappings can be V and V̂ in (2.6). Then, by Proposition 2 combined with

Proposition 1 and Theorem 1, it is guaranteed that there exist constants αu, βu ≥ 0

such that

‖z‖t ≤ αu (‖w‖t + f(t)) + βu

for ∀t ≥ 0 in the adaptive control system in Section 2.2, provided that the candidate

controller set contains at least one stabilizing controller. Clearly, this result is

weaker than the stability of the adaptive control system but is still acceptable

considering the limited knowledge of the disturbance signal since it is possible

that the adaptive control system is stable with ‖d‖t = αdf(t) for ∀t ≥ 0. It

is also possible that the adaptive control system is unstable, e.g. ‖d‖ = 0 and

f(t) =
√
t+ 1 for ∀t ≥ 0. Since this possibility of unstable cases comes from

discrepancy between f(t) and ‖d‖t, a tighter bound on ‖d‖t, i.e. a smaller f , is

preferable to remove more possibility of unstable cases.

In some systems disturbance signals are random signals. A bounding
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function f for a random disturbance signal d is obtained in the following. Suppose

that the disturbance signal d is given by

d(t) =


v[0] for 0 ≤ t < T

v[1] for T ≤ t < 2T
...

...

(2.7)

for ∀t ≥ 0 where T is a positive constant that may represent a sampling period of

measurement devices or process of the plant and {v[n], n = 0, 1, · · · } is a random

process generated by

v[n] =
∞∑
k=0

hn[k]e[n− k]

for n = 0, 1, · · · . The random process {e[n], n = · · · ,−1, 0, 1, · · · } is a sequence of

independent random vectors whose elements have zero mean values and bounded

forth moments and {hn[k], k = 0, 1, · · · } is impulse response of a discrete-time

system Hn for n = 0, 1, · · · , respectively. It is assumed that there exists a function

h̄ : {0, 1, · · · } 7→ R such that absolute values of elements of hn[k] is less than h̄[k]

for n, k = 0, 1, · · · and
∑∞

k=0 h̄[k] <∞.

Proposition 3. Given the random disturbance signal d in (2.7), there, almost

surely, exists a constant αd such that ‖d‖t√
t+ρd
≤ αd for ∀t ≥ 0 where ρd is a positive

constant.

With a choice of f(t) =
√
t+ ρd for ∀t ≥ 0 where ρd is a positive constant,

Proposition 3 combined with Proposition 2 confirms that any stabilizing controller

is a feasible controller with probability 1. Then, by Proposition 1 and Theorem 1,

it is guaranteed that there, almost surely, exist constants αu, βu ≥ 0 such that

‖z‖t ≤ αu
(
‖w‖t +

√
t+ ρd

)
+ βu

for ∀t ≥ 0 in the adaptive control system in Section 2.2 with the disturbance

signal d in (2.7), Algorithm 1, and the cost mappings in (2.6), provided that the

candidate controller set contains at least one stabilizing controller.
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2.5 Example

Consider the adaptive switching control system in Figure 2.1 with an

uncertain continuous-time plant P

ẋp(t) = −xp(t− 0.5) + u(t) (2.8)

whose output signal is xp(t). The dynamics of this plant P as well as the initial

condition xp(τ) for τ ∈ [−0.5, 0] are unknown. We measure the plant-output signal

with a sampling period T and this measurement is corrupted by a noise signal d,

i.e.

y[n] = xp(nT ) + d[n]

for n = 0, 1, . . .. The plant-input signal u is given by a zero-order hold method

u(t) = u[n] for nT ≤ t < (n+ 1)T

with the discrete-time signal u[n] produced as an outcome of switching of discrete-

time controllers combined with the discrete-time reference signals r[n] and s[n] as

well as the measured noisy plant-output signal y[n].

For prospective controllers, we consider two proportional controllers

C1 = −0.9 and C2 = −1.1

in the candidate controller set C. Then, the input-output signals of those con-

trollers are zC1 =
[
s− y −0.9(s− y)

]T
and zC2 =

[
s− y −1.1(s− y)

]T
, respec-

tively, and the fictitious reference signals for those controllers are

w̃(zC1 , z) =

[
u+ 0.9(s− y)

s

]
and w̃(zC2 , z) =

[
u+ 1.1(s− y)

s

]
,
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respectively, with z =
[
u y

]T
. For cost-detectable cost functions, we consider

V (C1, zC1 , z, n) = max
k∈{0,...,n}

‖z‖k
‖w̃(zC1 , z)‖k + 1

V (C2, zC2 , z, n) = max
k∈{0,...,n}

‖z‖k
‖w̃(zC2 , z)‖k + 1

V̂ (w, z, n) = max
k∈{0,...,n}

‖z‖k
‖w‖k + 1

where w =
[
r s

]T
and ‖·‖k is a truncated `2-norm, e.g. ‖z‖k ,

√∑k
τ=0 z

T [τ ]z[τ ].

The cost function V̂ (w, z, n) represents the stability of the adaptive switching

control system.

2.5.1 MATLAB simulation

In the MATLAB simulation, the sampling period is set to T = 1sec and

the reference signals are given by

r[n] = 0 and s[n] = 1

for n = 0, 1, . . .. The noise signal d[n] is generated as a realization of an iid random

process with a normal distribution. The initial condition is set to xp(τ) = 0 for

τ ∈ [−0.5, 0]. We set ε = 0.2 for the ε-hysteresis switching algorithm.

The selection of controllers in the ε-hysteresis switching algorithm is shown

in Figure 2.4. The initial controller in the ε-hysteresis switching algorithm is C1

and the switching occurs often until 100sec. After that, the switching stops and

C1 stays connected in the adaptive switching control system.

The plant-output signal y is recorded and shown in Figure 2.5. If we run

this simulation in infinite time and the input-output signal z of the plant stays

bounded, then the cost function V̂ stays bounded and, thus, the input-output

stability of the adaptive switching control system is unfalsified with the given

external signals.

Seemingly, C1 stabilizes the plant and C2 does not. If C1 stays connected

as a final controller of the switching in the infinite-duration simulation and the
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Figure 2.4: The selection of controllers in the switching algorithm.
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Figure 2.5: The plant-output signal y.

input-output signal z of the plant stays bounded, then we may consider C1 a

stabilizing controller. But we cannot make any statement about the stabilizing or

destabilizing property of C2.
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2.6 Conclusion

We assessed the stability and/or performance of a closed-loop system with

a plant and a candidate controller by assigning a cost function. Since we do

not have enough information on the plant and disturbance signals to falsify the

stability and/or performance with a finite amount of data, we compare, during

an experiment, the cost functions of candidate controllers and try to switch a

controller with the lowest cost value. In the end of the experiment, the unfalsified

adaptive control guarantees that a controller whose cost value is less than a certain

level remains in the closed-loop system, provided the feasibility assumption is met.

Future works include development of a method to improve the unfalsified adaptive

control based on a limited amount of knowledge of a plant and disturbance signals.

2.7 Appendices

2.7.1 Proof of Proposition 1

Suppose that there are finite number of switches and denote the final

controller and the final switching time by Cf and tf <∞, respectively.

From Definition 2, it follows that w̃(zCf , z, t) = w(t) for ∀t ≥ tf and,

hence, it can be obtained that

∥∥w̃(zCf , z)− w
∥∥
t
≤
∥∥w̃(zCf , z)− w

∥∥
tf
, β <∞ (2.9)

for ∀t ≥ 0 from the fact that the signals are in L2e. From the triangle inequality

and (2.9), it can be obtained that

∥∥w̃(zCf , z)
∥∥
t
≤
∥∥w̃(zCf , z)− w

∥∥
t
+ ‖w‖t ≤ ‖w‖t + β (2.10)

for ∀t ≥ 0 and

‖w‖t ≤
∥∥w − w̃(zCf , z)

∥∥
t
+
∥∥w̃(zCf , z)

∥∥
t
≤
∥∥w̃(zCf , z)

∥∥
t
+ β (2.11)

for ∀t ≥ 0.

The two statements in the definition of cost-detectability in Definition 4
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is proved to be equivalent by showing 1) the sufficiency part and 2) the necessity

part.

1) Suppose that there exists a constant α1 such that

V (Cf , zCf , z, t) = max
0≤τ≤t

‖z‖τ
‖w̃(zC , z)‖τ + f(τ)

≤ α1

for ∀t ≥ 0. Then, it is clear that ‖z‖t ≤ α1

(∥∥w̃(zCf , z)
∥∥
t
+ f(t)

)
for ∀t ≥ 0, from

which, together with (2.6) and (2.10), it follows that

V̂ (w, z, t) ≤ α1 max
0≤τ≤t

‖w‖τ + β + f(τ)

‖w‖τ + f(τ)
≤ α1

(
1 +

β

f(0)

)
for ∀t ≥ 0.

2) Suppose that there exists a constant α2 such that

V̂ (w, z, t) = max
0≤τ≤t

‖z‖τ
‖w‖τ + f(τ)

≤ α2

for ∀t ≥ 0. Then, it is clear that ‖z‖t ≤ α2 (‖w‖t + f(t)) for ∀t ≥ 0, from which,

together with (2.6) and (2.11), it follows that

V (Cf , zCf , z, t) ≤ α2 max
0≤τ≤t

∥∥w̃(zCf , z)
∥∥
τ

+ β + f(τ)∥∥w̃(zCf , z)
∥∥
τ

+ f(τ)
≤ α2

(
1 +

β

f(0)

)
for ∀t ≥ 0.

Therefore, from 1) and 2), the proof is completed.

2.7.2 Proof of Proposition 2

For any given xz ∈ ZP (d) and xzC ∈ ZC where ZC is the input-output de-

scription of C, the fictitious reference signal for C, w̃(xzC , xz), reproduces xzC and

xz in a fictitious closed-loop system in Figure 2.3. Suppose that C is a stabilizing

controller. Then, the fictitious closed-loop system is stable and, hence, there exist

positive constants αs, βs ≥ 0 such that

‖xz‖t ≤ αs (‖w̃(xzC , xz)‖t + ‖d‖t) + βs

≤ αs (‖w̃(xzC , xz)‖t + αdf(t)) + βs
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for ∀t ≥ 0, from which, together with (2.6), it follows that

V (C, xzC , xz, t) ≤ max
0≤τ≤t

αs (‖w̃(xzC , xz)‖τ + αdf(τ)) + βs
‖w̃(xzC , xz)‖τ + f(τ)

≤ αs max{1, αd}+
βs
f(0)

for ∀t ≥ 0. Since the condition in Definition 3 is satisfied, C is a feasible controller.

2.7.3 Proof of Proposition 3

From (2.7), it follows that

‖d‖t ≤
(
T
N−1∑
n=0

v[n]Tv[n]

)1/2

≤
√
t+ T

(
1

N

N−1∑
n=0

v[n]Tv[n]

)1/2

≤ αd
√
t+ T

where N is a positive integer satisfying (N − 1)T ≤ t < NT and

αd , sup
k∈{1,2,··· }

(
1

k

k−1∑
n=0

v[n]Tv[n]

)1/2

and, hence, ‖d‖t√
t+ρd
≤ αd

√
t+T√

t+ρd
≤ αd max

{
1,
√

T
ρd

}
for ∀t ≥ 0.

Since, by Theorem 2.3 in [15], 1
k

∑k−1
n=0 v[n]2 almost surely converges to a

finite constant as k →∞, we have

αd <∞ (2.12)

with probability 1.

Much of the material in Chapter 2 appears in S. Cheong, “Safe adaptive

switching control with no SCLI assumption” as it appears in American Control

Conference, 2010. The dissertation author was the primary author of this paper.



3 Instability Detection of ARMA

Systems Based on AR System

Identification

3.1 Introduction

The unfalsified adaptive control, exploited in the previous chapter, can

find a controller with the best stabilizing ability among the candidate controllers

while the stabilizing ability is measured by a cost function, which is a ratio of the

truncated L2-norm of the input-output signal of the plant to the truncated L2-

norm of the external reference signals. But the controller with the best stabilizing

ability is not necessarily a stabilizing controller since the stability of the closed-loop

system with the plant and the controller is only unfalsified. To see this clearly, let

us consider the unfalsified adaptive control with only one candidate controller that

actually is destabilizing. This controller is the best in the candidate controller set

and no switching occurs. As time goes by, a ratio of the truncated L2-norm of the

input-output signal of the plant to the truncated L2-norm of the external reference

signals increases. In order to be able to show that the stability of the closed-loop

system is falsified, we need to show that the ratio has no limit. Although the

ratio increases with no limit, it is not clear if we can declare the falsification of the

stability of the closed-loop system even with sufficiently large amount of collected

data. However, when we have some information on the plant and the controller,

we can falsify stability of the closed-loop system, which means that we can detect

the instability of the system.

25
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In this chapter, we consider the detection of instability in Autoregressive-

Moving Average (ARMA) linear systems driven by noise. We develop an approach

using techniques from System Identification and Time Series Analysis to deter-

mine asymptotically the stability of the system. The methodology uses parameter

estimation with reduced-order Auto-Regressive(AR)-only models and relies on the

consistent estimation of a subset of AR parameters in the unstable or explosive

case to provide detection of the instability of the underlying ARMA system. For

data from stable ARMA systems, the estimators asymptotically produce only sta-

ble AR estimates. There is no requirement to have the correctly characterized

system type or order.

Time series parameter estimation in the unstable case has a long history

([16], [25], [1], [35], and [14]). However, its use in instability detection and with

deliberately incorrect model type – AR instead of ARMA – and model orders below

that of the original system has been studied only by Tiao and Tsay [35], and here

only in the case where the unstable poles of the ARMA system lie on the unit

circle and with the correct model order assumed for this marginally stable part in

the AR model. They establish in-probability consistency of the associated Least

Squares AR estimator applied to data from the ARMA system. The work of Lai

and Wei [14] establishes almost sure consistency of the full-order Least Squares

AR estimator when applied to data from a truly AR system, no matter where the

poles of the system lie. Our objective is to merge and extend the results from

Tiao and Tsay in the direction of (and using tools derived from) Lai and Wei,

and to extend the approach to deliberate undermodeling. That is, we establish

that Least Squares nth-order AR modeling using data from an unstable ARMA

system will almost surely consistently estimate an nth-order unstable factor of the

AR polynomial of the ARMA system, if that system has n poles of magnitude

greater than one and strictly greater than all the remaining system poles, stable

or otherwise. Thus for example, for an ARMA system with an isolated maximal-

magnitude unstable pole, an AR(1) estimator will consistently estimate that pole

and hence determine the ARMA system instability, regardless of the presence of

other stable, unstable or marginally stable poles.

We commence by considering the asymptotic behavior of AR parameter
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estimators of various orders when applied to fixed stable and unstable ARMA

linear systems. The techniques that we apply are largely based on the historical

AR analysis, suitably extended to accommodate ARMA systems. The main result

of this paper is to show that for an ARMA system with precisely n poles lying

outside of a circle of radius ρ > 1, an nth-order Least Squares AR estimator will

almost surely yield consistent estimates of these poles. Accordingly, a collection

of n AR estimators of all orders up to n will detect the instability in at least

one of the estimators. Likewise, if the ARMA system is stable, then all the AR

estimators will asymptotically almost surely return stable estimates. In this way,

the AR estimator can be used to detect ARMA instability using only knowledge

of an upper bound on the number of unstable roots having the same maximal

modulus.

The novelty of this chapter lies in its recognition that the known AR con-

sistency results of Lai and Wei [14] may be combined with their application in

reduced order to ARMA systems. Consistently identifying subsets of the unstable

AR part and of establishing almost sure consistency for AR modeling of ARMA

systems is new, as is the development of a sequence of estimators to test for in-

stability. A limitation of our approach is that it is inconclusive when the most

unstable poles are on the unit circle, when we must appeal to Tiao and Tsay as

providing the current best result of in-probability consistency provided the cor-

rect order is chosen for the unstable part, since all unstable poles share the same

magnitude.

From the statistical literature, if the model structure coincides with that

of the system, not only is the stability of the system clearly revealed but also the

exact parameters of the system are asymptotically detected. The consistency of

the least squares autoregressive estimator is proven under various assumptions. A

brief summary of the consistency results is provided below with two newly-defined

terms. An autoregressive moving average system is said to be strictly stable if its

poles are strictly inside the unit circle and is said to be strictly unstable if at least

one pole lies strictly outside the unit circle.

• H. B. Mann and A. Wald [16] showed that the least squares AR estimator

converges in probability to the true parameters of a strictly stable AR system
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when the AR model of the estimator has the same order as the system.

• Theorem III and Remarks on Theorem III in [25] showed that the least

squares AR estimator converges in probability to the true parameters of a

strictly unstable AR system when exactly one pole of the system is strictly

unstable, the other poles are strictly stable and the model of the estimator

has the same order as the system.

• J. Bellach [1] reports that T. J. Muench [20] proved that the least squares AR

estimator converges in probability to the true parameters of an AR system

when the system has no pole on the unit circle and the model of the estimator

has the same order as the system.

• G. C. Tiao and R. S. Tsay [35] studied the case where AR modeling is applied

to data from an ARMA system with d poles on the unit circle and all other

poles stable. They showed that the dth-order Least Squares AR estimator is

consistent in probability for the coefficients of the polynomial comprised of

the unit circle factors. They also show that higher-order AR estimators yield

asymptotically biased estimates of the ARMA denominator polynomial if the

ARMA system also has zeros and/or stable poles.

• When the model order is correct, T. L. Lai and C. Z. Wei [14] proved that the

least squares AR estimator is almost surely consistent. This is the strongest

available result; strongest in terms of mode of convergence and in terms of

fewest restrictions on the stability of the true system. It is limited, however,

to AR models of AR systems.

These results generally require knowledge of the order of the AR system or at least

of its unstable part, with the least squares AR estimator having the same order.

To our knowledge, M. M. Rao [25] and G. C. Tiao and R. S. Tsay [35] were the first

to deal with AR modeling of less than full order being applied to unstable systems.

These avenues are pursued further in this paper using the analytical techniques

of [14] but with an emphasis on instability detection rather than on asymptotic

consistency and augmentation to the AR modeling of ARMA data which, although

technically straightforward, is an important and necessary extension.
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The AR-modeling of an ARMA process normally leads to bias in the

estimation of the denominator polynomial. A consistency property is established

for certain low-order least squares AR estimators applied to a strictly unstable

ARMA system, whereby the estimator is able to identify consistently a subset of

the strictly unstable part of the system. Also, the least squares AR estimates

of various orders indicate that the system is strictly stable when they fit to data

from a strictly stable AR system. These two properties are combined to develop an

instability detection method for an ARMA system. An advantage of the instability

detection method is that the necessary a priori information is not an upper bound

on the order of the system but an upper bound on the possible number of the most

unstable poles of the system. Thus, this method can be applied to a system of the

infinite order with finite number of unstable poles and an example is provided to

show this.

This chapter is organized as follows. In Section 3.2, an ARMA system

driven by a random process is described and, for the purpose of estimating the

autoregressive part of the ARMA system, the least squares AR estimate is em-

ployed. In Section 3.3, the least squares AR estimator is proven to be able to

detect the strict instability of a noisy ARMA system and this ability is illustrated

in an example in Section 3.4. Conclusions follow in Section 3.5.

3.2 Problem formulation

Consider an ARMA linear system described by the linear difference equa-

tion

yt = P (q)ut (3.1)

for t = 0, 1, · · · where q is the forward shift operator and the transfer function of

the ARMA system P is described, in the z-transform, by

P (z) =
B(z)

A(z)
=
b0 + b1z

−1 + · · ·+ bnbz
−nb

1 + a1z−1 + · · ·+ anaz
−na

with unknown initial conditions where na and nb are the unknown orders of the

denominator and the numerator of the ARMA system P (z), respectively, and the
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parameters a =
[
a1 · · · ana

]T
and b =

[
b0 · · · bnb

]T
are also unknown but sat-

isfy ana 6= 0. The order of the ARMA system P (z) is denoted by nP = max{na, nb}.
It is assumed that A(z) and B(z) have no common zeros. The driving noise

{ut, t = 0, 1, · · · } is an i.i.d. random process with zero mean, unknown variance

0 < σ2
u < ∞, and finite fourth moment. The driving noise {ut, t = 0, 1, · · · } and

the initial condition of P (z) are independent of each other.

Necessary notations are introduced in the following.

• deg : degree of a polynomial, e.g. degA(z) = na.

• nZ : the number of distinct zeros of A(z). Thus, nZ ≤ na.

• zi for i = 1, · · · , nZ : distinct zeros of A(z).

• mi for i = 1, · · · , nZ : multiplicity of zi inA(z) for i = 1, · · · , nZ , respectively.

For a vector g ∈ Rm and a square matrix G ∈ Rm×m, the norm of g, ‖g‖,
is the Euclidean norm and the norm of G, ‖G‖, is the corresponding induced norm

‖G‖ = sup‖g‖=1 ‖Gg‖. Denote the i× i identity matrix by Ii. Also denote the i× j
zero matrix by 0i×j. E[·] denotes expectation.

Definition 5. An ARMA system is said to be strictly stable if all poles of the

system have magnitudes less than 1 and is said to be strictly unstable if at least

one pole of the system has magnitude greater than 1.

Since we do not consider the case where the largest magnitude of poles of

an ARMA system is 1, Definition 5 does not contain this case.

The stability of the ARMA system in (3.1) is investigated by fitting an

AR model to the measured output signal {yt, t = 0, 1, · · · } using the well-known

least squares AR estimator. Suppose that N output data {yt, t = 0, · · · , N−1} are

collected from the ARMA system in (3.1). Then, the least squares AR estimator

of order n ∈ {1, 2, · · · , N − 1} is defined by

â(n,N) = −R(n,N)−1r(n,N) (3.2)
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where

R(n,N) =
N−2∑
t=n−1

φy(n, t)φy(n, t)
T

r(n,N) =
N−2∑
t=n−1

φy(n, t)yt+1

(3.3)

where φy(n, t) =
[
yt yt−1 · · · yt−n+1

]T
for t = n − 1, n, · · · . We note that if

{ut, t = 0, 1, · · · } has a continuous distribution, then R(n,N) will be almost surely

positive definite for N ≥ 2n.

3.3 Instability detection

3.3.1 Pole detection of purely unstable ARMA systems

Consider the ARMA system P (z) in (3.1). T. L. Lai and C. Z. Wei

[14] prove that, when P (z) is AR, the na-th order least squares AR estimate has

strong consistency to the parameter a, regardless of pole location of P (z). In this

section, the proof in [14] is extended to show that when P (z) is ARMA and the

denominator polynomial of P (z), A(z), has all zeros outside the unit circle, the

strong consistency of the na-th order least squares AR estimate to the parameters

of A(z), a, is preserved, i.e. the na-th order least squares AR estimate almost

surely converges to the parameters of the autoregressive part of P (z).

Theorem 2. Suppose that all the zeros of the denominator polynomial A(z) of

the ARMA system P (z) in (3.1) have magnitudes greater than 1. Then, the na-th

order least squares AR estimate almost surely converges to the parameters of the

autoregressive part of P (z), i.e.

lim
N→∞

â(na, N) = a a.s.
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3.3.2 Instability detection of strictly unstable ARMA systems

Suppose that the the ARMA system P (z) in (3.1) is strictly unstable.

Then, the denominator of P (z), A(z), can be factored to

A(z) = AE(z)ÃE(z)

where AE(z) contains all poles of P (z) outside the unit circle and ÃE(z) contains

all poles of P (z) on or inside the unit circle. Necessary notations are introduced

in the following.

• nρ: the number of distinct magnitudes of (strictly unstable) zeros of AE(z).

• {ρi, i = 1, · · · , nρ} : a sequence of distinct magnitudes of zeros of AE(z) in

decreasing order, i.e. ρ1 > · · · > ρnρ > 1.

Since P (z) has at least one pole outside the unit circle, it is clear that nρ ≥ 1.

Further, a sequence of polynomials {Ai(z), i = 1, · · · , nρ} is defined by

Ai(z) =

nZ∏
j=1
|zj |≥ρi

(z − zj)mj , (3.4)

which means that for any given i ∈ {1, · · · , nρ} the polynomial Ai(z) consists of

all the poles of P (z) whose magnitudes are greater than ρi. Thus, for a given

i ∈ {1, · · · , nρ}, the ni zeros of Ai(z) are the ni most unstable poles of P (z). Note

that Anρ(z) = AE(z).

In addition, degrees of Ai(z) for i = 1, · · · , nρ are denoted by

ni = deg Ai(z) (3.5)

for i = 1, · · · , nρ. It is clear that ni−1 ≤ ni for i = 2, · · · , nρ when nρ ≥ 2.

The definition of {Ai(z), i = 1, · · · , nρ} may not be clear at a glance so a

simple example is provided in the following. If A(z) = (z − 6)2(z + 5)2(z − 3 +

j4)(z − 3 + j4)(z + 2)3(z − 1)3(z − 0.5)3, we have AE(z) = (z − 6)2(z + 5)2(z −
3 + j4)(z − 3 + j4)(z + 2)3, deg AE(z) = 9, nρ = 3, and ρ1 = 6 > ρ2 = 5 > ρ3 = 2.
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The algorithm produces

A1(z) = (z − 6)2

A2(z) = (z − 6)2(z + 5)2(z − 3 + j4)(z − 3 + j4)

A3(z) = (z − 6)2(z + 5)2(z − 3 + j4)(z − 3 + j4)(z + 2)3 = AE(z)

with n1 = 2 < n2 = 6 < n3 = 9.

The following theorem shows that the poles of P (z) outside the unit circle

can be consistently estimated with probability 1.

Theorem 3. Suppose that the ARMA system P (z) in (3.1) is strictly unstable,

i.e. one of the poles of P (z) is outside the unit circle. Then, for any given

i ∈ {1, · · · , nρ}, the ni-th order least squares AR estimate in (3.2) almost surely

converges to parameters of Ai(z) in (3.4). That is, the most unstable ni poles are

consistently estimated with probability 1.

Note that this theorem ensures that only strictly unstable poles in the

system (3.1) are detected.

The proof of Theorem 3 provides a notion that as the most unstable pole

becomes dominant in the ARMA system output, it emerges in the corresponding

low-order least squares AR estimate. If the system transfer function is written as a

partial fraction, the signal that is produced by the subsystem which has the most

unstable poles, dominates signals from the other subsystems. Our thesis is that

the appropriate order AR estimator will detect the system instability through its

coefficients well before the locations of the individual poles can be resolved.

3.3.3 Stability detection of strictly stable ARMA systems

Suppose that the ARMA system P (z) in (3.1) is strictly stable, i.e. P (z)

has all its poles inside the unit circle. Then, regardless of the order of P (z),

the least squares AR estimate of any order is proven in the following theorem

to converge to a limit that represents a stable system. The theorem is based on

the well-known fact that for a stationary process the least squares estimate is

asymptotically equivalent to the autocorrelation method of the same order (e.g.

[26]) and extends it to a quasi-stationary process. We omit the proof since it is
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straightforward.

Theorem 4. Suppose that the ARMA system P (z) in (3.1) is strictly stable, i.e.

P (z) has all its poles inside the unit circle. Then with probability one, for any given

positive integer n, the n-th order least squares AR estimate in (3.2) asymptotically

converges to a limit that delivers only stable poles.

Note that the limit estimate in Theorem 4 is usually different from the

parameters of the denominator of P (z) in (3.1). That is, the least squares AR

estimator of any order for measured data from the ARMA system in (3.1) is not

consistent with the parameters of the denominator of P (z).

3.3.4 Instability detection method

In this and the final section, combining the results in Section 3.3, an

instability detection method for the ARMA system P (z) in (3.1) is introduced.

Again, the order of P (z) is unknown and the measured output signal {yt, t =

0, 1, · · · } is available from which stability of P (z) is investigated using a collection

of least squares AR estimators.

Suppose that a positive integer nmax is known to satisfy

n1 ≤ nmax (3.6)

where n1 is the number of maximal-magnitude unstable poles of P (z), which is

given in (3.5) in Section 3.3.2, when P (z) is strictly unstable and is set to 0 when

P (z) is strictly stable. Note that n1 is less than or equal to the number of the

poles of P (z) outside the unit circle which is less than or equal to na. Then, the

following statement is asserted by Theorem 3 and Theorem 4.

Theorem 5. Suppose we have an upper bound nmax satisfying (3.6) and consider

a sequence of least squares AR estimators of orders from 1 to nmax in (3.2) for the

output signal {yt, t = 0, 1, · · · } collected from the ARMA system in (3.1).

1. If asymptotically the set of all least squares AR estimators delivers only stable

polynomial estimates, then the ARMA system P (z) in (3.1) is strictly stable

or marginally stable.
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2. If asymptotically any member of set of all least squares AR estimators con-

tains a strictly unstable polynomial estimate, then P (z) is strictly unstable.

Remark 1. If there is no possibility that the most unstable pole of the ARMA

system P (z) in (3.1) is on the unit circle, then the instability detection method

reduces to the following statement.

The ARMA system P (z) in (3.1) is strictly stable if, and only if, for every

n ∈ {1, · · · , nmax} the n-th order least squares AR estimate asymptotically delivers

only strictly stable poles.

In practice, the instability detection method relies on asymptotic prop-

erties, which is a significant weakness. For finite number N of data, in principle

one would like to resort to hypothesis testing for the stability of the underlying

system. However, there are two impediments here. For strictly stable systems, one

might appeal to asymptotic normality results as described in, say, Theorem 9.1

of [15]. These state that, for sufficiently large N , the distribution of the least

squares parameter estimate, â(n,N), is asymptotically normally distributed about

its limiting value, which exhibits the instability detection property, with a certain

covariance. This result relies on the parameter estimate arriving into the neigh-

borhood of its limit and on being able to characterize the covariance of the error

between the best AR prediction and the ARMA system. Both of these issues are

difficult and, in the end, would yield a guarantee against strict instability only. For

the case of a strictly unstable system, appeal to the usual asymptotic normality

results is not valid, since the system is non-stationary. The only available result, to

our knowledge, is [39] where the limiting distribution of the first-order least squares

AR estimate is the Cauchy distribution assuming that the underlying system is a

first-order AR system. Further, while the appropriately scaled systems used in the

proofs of the theorems are asymptotically stationary, the distribution of the esti-

mated parameter is dependent entirely on a few initial signal values, which is the

basis for the proofs of convergence. Once again, it is not apparent how this might

be transcribed into an hypothesis test for quantifying the probability of detection

of instability using finite data. The asymptotic detection of instability is, after all,

a relatively simple matter of considering signal norms. The point of the results in

this paper is that we have established the guarantee of instability detection even
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with model structure mismatch using a new algorithm involving multiple parallel

AR estimators.

3.4 Example

Consider the uncertain continuous-time plant P in (2.8) in Section 2.5

ẋp(t) = −xp(t− 0.5) + u(t)

whose output signal is xp(t). This plant is an LTI system with time delay in the

state, called internal time delay, and can be described by a transfer function

P (s) =
1

s+ e−0.5s
.

The dynamics of this plant P as well as the initial condition xp(τ) for τ ∈ [−0.5, 0]

are unknown. However, we know that the plant is LTI.

We measure the plant-output signal with a sampling period T and this

measurement is corrupted by a noise signal d, i.e.

y[n] = xp(nT ) + d[n]

for n = 0, 1, . . .. The plant-input signal u is given by a zero-order hold method

u(t) = u[n] for nT ≤ t < (n+ 1)T

with the discrete-time signal u[n] produced as an outcome of switching of discrete-

time controllers combined with the discrete-time reference signals r[n] and s[n] as

well as the measured noisy plant-output signal y[n].

The zero-order hold, the continuous-time plant P (s), and the measure-

ment block in Figure 3.1 can be considered an equivalent discrete-time system

denoted by P (z). However, the order of this discrete-time system is infinite since

the continuous-time plant P (s) has internal time delay. To show this, let us con-
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+

-
+

d[n]

u(t)u(t) = u[n]
nT ≤ t < (n + 1)T

Zero-Order-Hold Measurement atContinuous-time

t = 0, T, 2T, · · ·

u[n]r[n]

C(z)

Discrete-time

s[n]

+
P (s)

y[n]
y[n] = xp(nT ) + d[n]

xp(t)

Figure 3.1: A system with a continuous-time plant P (s) and a discrete-time controller
C(z)

sider the state xp(nT ) of the continuous-time plant P (s). From (2.8), we have

xp(nT ) = xp((n− 1)T ) +

∫ nT

(n−1)T

−xp(τ − 0.5) dτ +

∫ nT

(n−1)T

u(τ) dτ

= xp((n− 1)T ) +

∫ nT

(n−1)T+0.5

−xp(τ − 0.5) dτ + u((n− 1)T )T

+

∫ (n−1)T+0.5

(n−1)T

−xp(τ − 0.5) dτ

for any integer n and the fourth term in the right-hand side indicates that, in order

to determine xp(nT ), we need to know xp(τ) for τ ∈ [(n− 1)T − 0.5, (n− 1)T ] in

addition to xp((n−1)T ) and u((n−1)T ). Similarly, it can be shown that, in order

to determine xp(τ) for τ ∈ [(n−1)T −0.5, (n−1)T ], we need to know xp((n−2)T ),

u((n−2)T ), and xp(τ) for τ ∈ [(n−2)T −0.5, (n−2)T ]. Then inductively, we can

show that xp(nT ) cannot be determined in terms of a finite number of past states,

x((n− 1)T ), x((n− 2)T ), . . ., and past input sequences, u((n− 1)T ), u((n− 2)T ),

. . ., which means that the order of the equivalent discrete-time system P (z) is

infinite.

Since the order of P (z) is infinite, it has infinite number of poles and,

thus, the number of poles of the closed-loop system (P,C) is also infinite. However,

the number of unstable poles is finite and our instability detection methods can
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determine the stability of (P,C).

In the example in Section 2.5, the stabilizing property of the controller C1

is unfalsified but we cannot make any statement about the stabilizing or destabi-

lizing property of C2. On the other hand, we investigate this property of C2 in this

section by putting it in the closed-loop system in Figure 3.1 with zero reference

signals.

If C2 is destabilizing, the measured plant-output signal y will grow un-

bounded while we collect data for the instability detection method in Section 3.3.4.

To prevent this from happening, we employ a simple switching scheme. If the ab-

solute value of y is greater than some pre-decided value, we stop collecting data

for the instability detection method and switch C1 into the closed-loop system.

This is called the first data segment. If the absolute value of y becomes lower

than some pre-decided value with C1 in the loop and stays below that value for

pre-determined number of consecutive samples, then we switch C2 back into the

loop and start collecting data again. This is the second data segment. We continue

collecting the data segments and apply the instability detection method for each

data segment. This switching scheme is solely based on our unproved stabilizing

property of C1. If C1 turns out to be destabilizing and the signal y does not become

lower than the chosen value, then we only use the data segments collected up to

that point.

3.4.1 MATLAB simulation

In the MATLAB simulation, the sampling period is set to T = 1sec and

the reference signals are set to r[n] = s[n] = 0 for n = 0, 1, . . .. The noise signal d[n]

is generated as a realization of an iid random process with a normal distribution.

The initial condition is set to xp(τ) = 0 for τ ∈ [−0.5, 0].

If the absolute value of y becomes greater than 100, we stop collecting

data and switch C1 into the closed-loop system. If the absolute value of y becomes

lower than 1 with C1 in the loop and stays below 1 for 5 consecutive samples,

then we switch C2 back into the loop and start collecting data again. With this

switching scheme, we collect seven data segments in this MATLAB simulation.

The seventh data segment of y is shown in the upper part of Figure 3.2.
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In this data segment, as we collect data, we accumulate those data and use them
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One segment of the observed output signal y with C
2

Time (sec)
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0
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2
The corresponding estimated absolute value of an unstable pole

Time (sec)

Figure 3.2: The seventh data segment of y and the corresponding sequence of the first
order AR least-squares estimates.

to compute the first order AR least-squares estimate. For example, we compute

the first order AR least-squares estimate at 940sec using the data of y collected

from 898sec to 940sec. Similarly, we compute the estimate at each sampling time

point. The sequence of the estimates is shown in the lower part of Figure 3.2. The

last value of the first order AR least-squares estimate corresponding to each data

segment is shown in Figure 3.3. For example, the circle at the seventh segment in

Figure 3.3 comes from the estimated value computed at time 954sec, which is the

last estimated value in the seventh data segment.

As the measured signal y gets larger in the upper part of Figure 3.2, we get

more confident that C2 is destabilizing. However, the first order AR least-squares

estimates in the lower part of Figure 3.2 makes us suspect this instability even at

around 25sec, which means 25 measured samples in this example, before the signal

y gets very large. In Figure 3.3, the sequence of the last values of the estimates for

the seven data segments indicates that the closed-loop system (P,C2) has a pole

slightly outside the unit circle.

Later in Section 4.9, it is confirmed that C2 destabilizes P and the closed-

loop system (P,C2) has a single unstable pole. This shows that the instability
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Figure 3.3: The last value of the estimates from the each data segment.

detection method in Section 3.3.4 performs correctly for (P,C2) with the first

order AR least-squares estimate.

3.5 Conclusion

We investigated the performance of the least squares AR estimators in

identifying the strictly unstable parts of ARMA systems as well as indicating

stability of strictly stable ARMA systems. We also provide the development of

a new approach to the successive determination of instability using a suite of the

least squares AR estimators. Our motivating problem is the detection of instability

from operating data, for which we have broached some early questions focused

on asymptotic consistency. It remains to use these ideas in the development and

quantification of statistical methods for the detection of instability with finite data

sets.
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3.6 Appendices

3.6.1 Proof of Theorem 2

The proof of Theorem 2 follows, in principle, [14] and makes use of auxil-

iary lemmas stated in 3.6.3.

The ARMA system P (z) in (3.1) can be rewritten as

yt = −φy(na, t− 1)Ta+ bTφu(nb, t) (3.7)

for t = nP , nP + 1, · · · where φu(n, t) =
[
ut ut−1 · · · ut−n

]T
for n = 1, 2, · · · ,

t = n, n+ 1, · · · , from which, together with (3.3), it follows that

r(na, N) =

nP−2∑
t=na−1

φy(na, t)yt+1 +
N−2∑

t=nP−1

φy(na, t)yt+1

=

nP−2∑
t=na−1

φy(na, t)yt+1 −
N−2∑

t=nP−1

φy(na, t)φy(na, t)
Ta+

N−2∑
t=nP−1

φy(na, t)b
Tφu(nb, t+ 1)

= −R(na, N)a+

nP−2∑
t=na−1

φy(na, t)
(
yt+1 + φy(na, t)

Ta
)

+
N−2∑

t=nP−1

φy(na, t)b
Tφu(nb, t+ 1).

Thus, it follows, using (3.2), that

â(na, N)− a = −R(na, N)−1

(
nP−2∑
t=na−1

φy(na, t)
(
yt+1 + φy(na, t)

Ta
)

+
N−2∑

t=nP−1

φy(na, t)b
Tφu(nb, t+ 1)

)

= −N 1
2

(
A−N

)T {
A−NR(na, N)

(
A−N

)T}−1

(
N−

1
2A−N

nP−2∑
t=na−1

φy(na, t)
(
yt+1 + φy(na, t)

Ta
)

+N−
1
2A−N

N−2∑
t=nP−1

φy(na, t)b
Tφu(nb, t+ 1)

)
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where

A =

[
−a1 · · · −ana−1 −ana

Ina−1 0(na−1)×1

]
. (3.8)

Clearly, eigenvalues of A are zeros, zi, of A(z) in (3.1) and, hence, have mag-

nitudes greater than 1. Choose any constant ζ1 satisfying |zi|−1 < ζ1 < 1 for

∀i ∈ {1, · · · , nZ}. Then, Theorem 2.9 in [33] shows that there exists a finite

constant c1 > 0 such that ∥∥A−t∥∥ ≤ c1ζ
−t
1 (3.9)

for t = 0, 1, · · · .
From (3.9), it follows that limN→∞

∥∥∥N 1
2

(
A−N

)T∥∥∥ ≤ limN→∞ c1N
1
2 ζ−N1 =

0 which implies that

lim
N→∞

N
1
2

(
A−N

)T
= 0na×na . (3.10)

Lemmas 3 and 4 in 3.6.3 show that the matrix

lim
N→∞

A−NR(na, N)
(
A−N

)T
(3.11)

is positive definite with probability 1 and, therefore, has almost surely finite inverse.

Lemma 5 shows that

lim
N→∞

N−
1
2A−N

N−2∑
t=nP−1

φy(na, t)b
Tφu(nb, t+ 1) = 0na×1 a.s. (3.12)

Since it is clear, from (3.9), that

lim
N→∞

N−
1
2A−N

nP−2∑
t=na−1

φy(na, t)
(
yt+1 + φy(na, t)

Ta
)

= 0na×1 a.s.,

it follows from (3.10), (3.11), and (3.12), that limN→∞ â(na, N)− a = 0na×1 a.s.

3.6.2 Proof of Theorem 3

Since the plant P (z) has at least one pole outside the unit circle, it follows

that nρ ≥ 1 and ρ1 > · · · > ρnρ > 1.

Choose any constant i ∈ {1, · · · , nρ}. The denominator of P (z), A(z),
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can be factored to A(z) = Ai(z)Ãi(z) where Ãi(z) is comprised of all the poles of

P (z) whose magnitudes are less than ρi. By the partial fraction description, the

output signal of the ARMA system in (3.1) can be described by

yt = st + s̃t, (3.13)

for t = 0, 1, · · · where

st =
Bi(q)

Ai(q)
ut

s̃t =
B̃i(q)

Ãi(q)
ut

(3.14)

for t = 0, 1, · · · with appropriate Bi(z), B̃i(z), and initial conditions.

Since s̃t
ρti

a.s.−→
t→∞

0 by Lemma 6 in 3.6.4, it follows from (3.13) that

yt
ρti
− st
ρti

a.s.−→
t→∞

0.

and, hence,

1

ρ2N
i

N−2∑
t=ni−1

y2
t −

1

ρ2N
i

N−2∑
t=ni−1

s2
t =

N−2∑
t=ni−1

1

ρ
2(N−t)
i

(
yt
ρti

)2

−
N−2∑
t=ni−1

1

ρ
2(N−t)
i

(
st
ρti

)2
a.s.−→

N→∞
0.

Similarly, it can be shown that all elements of a matrix 1
ρ2Ni

Ry(ni, N)− 1
ρ2Ni

Rs(ni, N)

and a vector 1
ρ2Ni

ry(ni, N) − 1
ρ2Ni

rs(ni, N) almost surely converge to zero, where

Ry(ni, N) and ry(ni, N) are defined in (3.3) and

Rs(ni, N) =
N−2∑
t=ni−1

φs(ni, t)φs(ni, t)
T

rs(ni, N) =
N−2∑
t=ni−1

φs(ni, t)st+1

where φs(ni, t) =
[
st st−1 · · · st−ni+1

]T
for t = ni − 1, ni, · · · . Therefore, con-
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vergence of the ni-th order least squares AR estimate is obtained as

â(ni, N) +Rs(ni, N)−1rs(ni, N) = −Ry(ni, N)−1ry(ni, N) +Rs(ni, N)−1rs(ni, N)

−→
N−→∞

0 a.s.

Finally, from (3.14), Theorem 2 guarantees that the ni-th order least

squares AR estimate for {st, t = 0, 1, · · · }, âs(ni, N) , −Rs(ni, N)−1rs(ni, N),

converges to the parameters of Ai(z) with probability 1.

3.6.3 Auxiliary lemmas for Theorem 2

The lemmas that are needed to prove Theorem 2, are stated and proved

in this section.

From (3.7) and (3.8), it is clear that

φy(na, t) = Aφy(na, t− 1) + bTφu(nb, t)e1

for t = nP , nP + 1, · · · where nP = max{na, nb} and e1 =
[
1 0 · · · 0

]T
∈ Rna ,

from which it follows that

φy(na, t) = At−nP+1φy(na, nP − 1) +
t∑

i=nP

At−ibTφu(nb, i)e1

for t = nP , nP + 1, · · · .
Define ξnP−1 , A−(nP−1)φy(na, nP − 1) and

ξt , A−tφy(na, t)

= ξnP−1 +
t∑

i=nP

A−ibTφu(nb, i)e1

(3.15)

for t = nP , nP + 1, · · · .

Lemma 2. The sequence of random vectors {ξt, t = nP − 1, nP , · · · } defined in

(3.15) almost surely converges to a random vector denoted by ξ̄. Moreover, for any

f ∈ Rna \ {0na×1}, fT ξ̄ has a continuous distribution.
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Proof. From (3.15), it is clear that

ξt = ξnP−1 +

nb∑
j=0

bj

t∑
i=nP

ui−jA
−ie1

for t = nP , nP + 1, · · · . By (3.9) and Kolmogorov’s convergence theorem [27], it

can be shown that for any given j ∈ {0, · · · , nb} there exists a random vector ηj

such that
∑t

i=nP
ui−jA

−ie1
a.s.−→ ηj and it follows that

ξt
a.s−→

t−→∞
ξnP−1 +

nb∑
j=0

bjηj , ξ̄. (3.16)

For any given f ∈ Rna \ {0na×1} it can be shown using (3.9) that

∞∑
i=nP

(
fTA−ie1

)2
<∞. (3.17)

The matrix
[
e1 Ae1 · · · Ana−1e1

]
is upper triangular with diagonal elements

all equal to 1 and is, thus, nonsingular. Since A is nonsingular, it follows that

for every i = 0, 1, · · · , the vectors A−ie1, A−iAe1, · · · , A−iAna−1e1 are linearly

independent. Hence, there exists k ∈ {0, · · · , na− 1} such that fTA−iAke1 6= 0 for

every i = 0, 1, · · · and it follows that

fTA−ie1 6= 0 for infinitely many i (3.18)

The fact that {ut, t = 0, 1, · · · } is an iid random process with zero mean, unknown

variance 0 < σ2
u < ∞, and finite fourth moment, together with (3.17) and (3.18),

satisfies the assumptions in Lemma 1 in [14], which leads us to conclude that

fTηj has a continuous distribution for ∀j ∈ {0, · · · , nb}. It follows that fT ξ̄ =

fT ξnP−1 +
∑nb

j=0 bjf
Tηj has a continuous distribution. �

Lemma 3. The sequence of random matrices{
N−2∑

t=na−1

A−Nφy(na, t)φy(na, t)
T
(
A−N

)T
, N = na + 1, na + 2, · · ·

}
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which appears in (3.11), almost surely converges to a random matrix

F ,
∞∑
t=2

A−tξ̄ξ̄T
(
A−t
)T

where the random vector ξ̄ is obtained in Lemma 2.

Proof. From (3.15), we have

N−2∑
t=na−1

A−Nφy(na, t)φy(na, t)
T
(
A−N

)T
=

nP−2∑
t=na−1

A−Nφy(na, t)φy(na, t)
T
(
A−N

)T
+

N−2∑
t=nP−1

A−(N−t)ξtξ
T
t

(
A−(N−t))T .

(3.19)

It follows from (3.9) and (3.19) that∥∥∥∥∥
nP−2∑
t=na−1

A−Nφy(na, t)φy(na, t)
T
(
A−N

)T∥∥∥∥∥ a.s−→
N−→∞

0

and∥∥∥∥∥
N−2∑

t=nP−1

A−(N−t)ξtξ
T
t

(
A−(N−t))T − F∥∥∥∥∥ =

∥∥∥∥∥
N−nP+1∑

t=2

A−tξN−tξ
T
N−t

(
A−t
)T − F∥∥∥∥∥

≤ c2
1

N−nP+1∑
t=2

ζ−2t
1

∥∥ξN−tξTN−t − ξ̄ξ̄T∥∥+ c2
1ζ
−2N
1

∥∥ξ̄ξ̄T∥∥ ∞∑
t=−nP+2

ζ−2t
1

a.s−→
N−→∞

0. �

Lemma 4. The random matrix F =
∑∞

t=2A
−tξ̄ξ̄T (A−t)

T
in Lemma 3, where the

random vector ξ̄ is obtained in Lemma 2, is positive definite with probability 1.

Proof. F satisfies the following discrete Lyapunov equation

F − A−1F
(
A−1

)T
=
{
ZT
(
A−1

)T}T {
ZT
(
A−1

)T}
.

Since all eigenvalues of (A−1)
T

have magnitudes less than 1, if
(

(A−1)
T
, ξ̄T (A−1)

T
)

is observable, i.e.
(
A−1, A−1ξ̄

)
is controllable, then the Lyapunov equation has a
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unique, symmetric, and positive definite solution by Theorem 5.D5 in [4]. Further,

Theorem 6.1 in [4] shows that
(
A−1, A−1ξ̄

)
is controllable if, and only if, na×(na+1)

matrix
[
A−1 − λIna A−1ξ̄

]
has full row rank na for every eigenvalue, λ, of A−1,

i.e. there exists no nonzero vector f satisfying fT
[
A−1 − λIna A−1ξ̄

]
= 01×(na+1).

For any given nonzero vector f such that fT (A−1 − λIna) = 01×na , we

have P
[
fTA−1ξ̄ = 0

]
= 0 by Lemma 2. Hence,

(
A−1, A−1ξ̄

)
is controllable with

probability 1. Therefore, F is almost surely positive definite. �

Lemma 5. The sequence of random vectors{
N−

1
2A−N

N−2∑
t=nP−1

φy(na, t)b
Tφu(nb, t+ 1), N = nP + 1, · · ·

}

which appears in (3.12) almost surely converges to a zero vector.

Proof. From (3.9) and (3.15), we have

N−2∑
t=nP−1

∥∥A−Nφy(na, t)∥∥ =
N−2∑

t=nP−1

∥∥A−(N−t)ξt
∥∥ ≤ N−2∑

t=nP−1

∥∥A−(N−t)∥∥ ‖ξt‖
≤ c1

N−2∑
t=nP−1

ζ
−(N−t)
1 ‖ξt‖

and, hence, it can be obtained, using Lemma 2, that

lim
N→∞

N−2∑
t=nP−1

∥∥A−Nφy(na, t)∥∥ <∞ a.s. (3.20)

Since {ut, t = 0, 1, · · · } has a finite variance, it is clear that

lim
N→∞

N−
1
2

∣∣bTφu(nb, t+ 1)
∣∣ = 0 a.s. (3.21)

for any t ∈ {nb − 1, nb, · · · }.
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Therefore, from (3.20) and (3.21), it follows that∥∥∥∥∥N− 1
2A−N

N−2∑
t=nP−1

φy(na, t)b
Tφu(nb, t+ 1)

∥∥∥∥∥
≤
(
N−

1
2 max
nP−1≤i≤N−2

∣∣bTφu(nb, t+ 1)
∣∣) N−2∑

t=nP−1

∥∥A−Nφy(na, t)∥∥
a.s−→

N−→∞
0

which completes the proof. �

3.6.4 An auxiliary lemma for Theorem 3

The lemma that is needed to prove Theorem 3, is stated and proved in

this section.

Lemma 6. Consider an ARMA system

ỹt = P̃ (q)ut (3.22)

where {ut, t = 0, 1, · · · } is an i.i.d. random process with zero mean, unknown

variance 0 < σ2
u <∞, and finite fourth moment. For any given integer ρ > 1 such

that magnitudes of poles of P̃ (z) are less than ρ. Then, ỹt
ρt

almost surely converges

to zero, i.e.
ỹt
ρt

a.s.−→
t→∞

0

Proof. Denote an irreducible realization of the LTI discrete-time system

in (3.22) by

x̃t+1 = Aỹx̃t +Bỹut

ỹt = Cỹx̃t +Dỹut

for t = 0, 1, · · · with an unknown initial condition x̃0 where Aỹ, Bỹ, Cỹ, and Dỹ

are constant matrices. Then, the signal {ỹt, t = 0, 1, · · · } can be described by
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ỹ0 = Cỹx0 +Dỹu0 and

ỹt = CỹA
t
ỹx̃0 +

t−1∑
j=0

CỹA
t−j−1
ỹ Bỹu0 +Dỹut

for t = 1, 2, · · · , from which it follows that

E
[(
ρ−tỹt

)2
]

= ρ−2t

{(
CỹA

t
ỹx̃0

)2
+

t−1∑
j=0

(
CỹA

t−j−1
ỹ Bỹ

)2
σ2
u +D2

ỹσ
2
u

}

≤ ρ−2t

{
‖Cỹ‖2

∥∥Atỹ∥∥2 ‖x̃0‖2 + ‖Cỹ‖2 ‖Bỹ‖2 σ2
u

t−1∑
j=0

∥∥At−j−1
ỹ

∥∥2
+D2

ỹσ
2
u

} (3.23)

for t = 1, 2, · · · .
Using the argument leading to (3.8), for any given ζ2 satisfying 1 < ζ2 < ρ,

there exists a finite constant c2 > 1 such that

∥∥Atỹ∥∥ ≤ c2ζ
t
2

for t = 0, 1, · · · , from which, together with (3.23), it follows that

E
[(
ρ−tỹt

)2
]
≤ c2

2 ‖Cỹ‖2 ‖x̃0‖2 (ρ−1ζ2

)2t
+ c2

2 ‖Cỹ‖2 ‖Bỹ‖2 σ2
uρ
−2t

t−1∑
j=0

ζ2j
2 +ρ−2tD2

ỹσ
2
u

for t = 1, 2, · · · . Therefore, E
[
(ρ−tỹt)

2
]
−→
t→∞

0, which completes the proof. �

Chapter 3 is a reprint of S. Cheong, R. R. Bitmead, “Instability detection

of ARMA systems based on AR system identification” as it appears in Systems

& Control Letters, 2011. The dissertation author was the primary author of this

paper.



4 Divination of Closed-loop

Stability and Performance

via Frequency Response Function

Estimates

4.1 Introduction

In Chapter 3, we introduced a method detecting the stability and instabil-

ity of a system and, using this method, we can determine if a controller stabilizes

a plant by building a closed-loop system and measuring the input or the output

signal of the plant. In Chapter 2, we introduced a method that can assesses the

stability and performance of candidate controllers even when the controllers are

not on the closed-loop system. But the limitation is that the closed-loop stability

and performance are only unfalsified and never falsified with a finite amount of

collected data in an experiment. In this chapter, we will show that, with addi-

tional assumptions, we can determine the closed-loop stability and performance

of a controller without really building a closed-loop system. This leads us to the

word “divine.”

OED : divine, v.i., 9. To conjecture (as to the unknown or obscure); to

make an inference by conjecture, insight, intuition, or other means than

actual information.

Given an internally stabilizing multiple-input/multiple-output (MIMO),

linear time-invariant (LTI) plant-controller pair, (P,C1), with P uncertain and C1

50
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known, determine the closed-loop stability and performance of the candidate pair

(P,C2), for given, known controller C2, from deliberately designed experimental

data obtained from the stable (P,C1) closed loop with impinging disturbances, as

illustrated in Figure 4.1. The starting point for our analysis is the experiment and

+
r

u
P

++ y

s
-+

+

d

C1

Figure 4.1: An internally stable closed-loop system (P,C1)

resulting data set {r, s, u, y} consisting of the measurable physical signals applied to

and recorded from the closed loop together with knowledge of the linear controllers

C1 and C2. The problem addressed is to design and then use these signals plus

knowledge or assumption about the disturbance process d to divine the stability

and the performance of the closed-loop system (P,C2) without constructing this

closed loop. Our approach will be via the estimation of certain frequency response

functions (FRFs) from the data set. The analysis proceeds using nonparametric

identification of the FRFs as opposed to parametric system identification, since

this avoids issues of model structure selection, and includes consideration of the

choice of external reference signals r and s and the experimental conditions.

The novelty in this chapter is that we provide a unifying view of a number

of approaches to the divination of the properties of the (P,C2) loop and quantify the

reliability and viability in terms of the properties required of the experiment and

assumed of the plant system and disturbance. These approaches commence from

data safely collected from experiments on an internally stable closed-loop system

(P,C1) with additive output disturbances. The data lead us to; identification of an

estimate of the FRF of P in the frequency domain, computation of approximate

FRFs of the plant right coprime factors, construction of FRFs of transfer functions

in (P,C2), and a fictitious reference signal [31] whose properties reflect those of



52

the (P,C2) loop. Cognate approaches of others are situated within the analysis.

The internal stability of (P,C2) is assessed using the MIMO Nyquist Sta-

bility Theorem [37], which applies to FRFs. For the divination of performance,

an estimate of the FRF of the generalized sensitivity function [37] of (P,C2) is

obtained from the data set. From the FRF of this sensitivity function, many per-

formance measures can be computed such as the generalized stability margin [37]

and the stacked H∞ specifications [30].

The divination problem has been considered under a number of guises by

different research teams. Part of the contribution in this chapter is to provide

a simplification, unification and overview of these techniques and to explore and

quantify the methods when the signals necessarily are corrupted by disturbances

entering the system. Further, by focusing on experiment design and assumptions,

we are able to refine qualitative statements from unpremeditated or adventitious

experiments.

This chapter is organized as follows. In Section 4.2, preliminaries and a

description of the experiments on (P,C1) are given. Stability criteria for the divina-

tion are presented in Section 4.3 and, then in Section 4.4 the divination methods

are stated. In Section 4.5, the general FRF estimation problem for a discrete-

time system is studied; first in single-input/single-output (SISO) case with single

frequency excitation, and then generalized to multi-frequency MIMO. In Section

4.6, an estimate of the winding number of a transfer function is introduced and a

sufficient condition for accurate winding number estimation is provided. Reliabil-

ity of each divination method is studied in the Section 4.7 and recommendations

are provided. Section 4.8 describes the relationship between divination and other

methods. An example is provided in Section 4.9. Conclusion follows in Section

4.10.

4.2 Preliminaries

Consider an internally stable closed-loop MIMO LTI discrete-time system

(P,C1) in Figure 4.1 with an uncertain ` ×m plant P , a known m × ` controller

C1, known external input signals r and s, measured plant-input and plant-output

signals u and y, and an unknown disturbance or noise signal d.
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The closed-loop system (P,C1) in Figure 4.1 can be described by[
y

u

]
=

[
Gyr Gys

Gur Gus

][
r

s

]
+

[
Gyd

Gud

]
d

where

TP,C1,

[
Gyr Gys

Gur Gus

]
=

[
P

I

]
(I + C1P )−1

[
I C1

]
(4.1)

and

[
Gyd

Gud

]
=

[
−Gys + I

−Gus

]
. From experiments on this (P,C1) loop, we collect data,

i.e. the external input signals r and s and the observed signals u and y.

Stable transfer functions M̃C1 , ÑC1 , M̃C2 , and ÑC2 are left coprime factors

of C1 and C2, i.e. C1 = M̃−1
C1
ÑC1 and C2 = M̃−1

C2
ÑC2 . These are used to generate

an intermediate signal,

v , M̃C1r + ÑC1s, (4.2)

= M̃C1u+ ÑC1y. (4.3)

The experimental closed-loop (P,C1) of Figure 4.1 may then be redrawn as in

Figure 4.2 and can be described by[
y

u

]
=

[
Gyv

Guv

]
v +

[
Gyd

Gud

]
d (4.4)

where

[
Gyv

Guv

]
=

[
P

I

]
(I + C1P )−1 M̃−1

C1
and

[
Gyd

Gud

]
=

[
−GyvÑC1 + I

−GuvÑC1

]
.

An additional new signal ṽ is generated as

ṽ , ÑC2y + M̃C2u. (4.5)

As depicted in Figure 4.2, ṽ results from a stable filtering of the plant input and

output signals u and y. We may also write

ṽ = Gṽvv +Gṽdd (4.6)



54

-+

r

u
P

++ y

s

d

v

M̃−1
C1

ÑC1

+ ÑC1

+

+M̃C1

+

ṽ

ÑC2M̃C2

Figure 4.2: An equivalent system (P,C1) using left coprime factors of the controller C1

and filtering for a signal ṽ

where

Gṽv = NC2Gyv +MC2Guv

= (ÑC2NP + M̃C2MP )(ÑC1NP + M̃C1MP )−1
(4.7)

and Gṽd = −GṽvÑC1 + ÑC2 with MP and NP , right coprime factors of P .

The signal ṽ is called a fictitious reference signal for the controller C2 [17],

since it would have exactly reproduced the collected plant data u and y had the

controller C2 been in the closed-loop system with the plant P as in Figure 4.3 with

P possessing the same initial conditions and the same external disturbance signal

d as in Figure 4.1. These signals, v and ṽ, are also introduced in [9] and [36]. Note

that the signal ṽ becomes the same as the signal v in (4.2) if C2 = C1 from (4.3).

The closed-loop system (P,C2) in Figure 4.3 can be described by[
y

u

]
=

[
Gyṽ

Guṽ

]
ṽ +

[
Gyd̃

Gud̃

]
d (4.8)
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-+

u
P

++ y

ṽ

M̃−1
C2 ÑC2

d

Figure 4.3: The closed-loop system (P,C2) with the fictitious reference signal ṽ

where [
Gyṽ

Guṽ

]
=

[
NP

MP

]
(ÑC2NP + M̃C2MP )−1 (4.9)

and

[
Gyd̃

Gud̃

]
=

[
−GyṽÑC2 + I

−GuṽÑC2

]
.

Necessary notations follow. Let G(z) be a transfer function matrix in z-

transform.

• G(ω) is short for G(ejω).

• The winding number, wno detG, is the number of encirclements around the

origin made by detG(z) as z follows the Nyquist contour with indentations into

the exterior of the unit circle around any pole or zero of detG(z) on the unit circle.

• η (G(z)) is the number of poles of G(z) outside the unit circle.

• σ (·) and σ (·) are the maximum and minimum singular values, respectively.

4.3 Nyquist stability theorem

Divination methods introduced in this paper are based on the following

version of the Nyquist Stability Theorem, which consists of discrete-time versions

of Theorem 1.10 (ii) and Proposition 1.9 (c) in [37].

Lemma 7. Given a plant P = NPM
−1
P in right coprime factor form and a con-

troller C = M̃−1
C ÑC in left coprime factor form, either of the following is a nec-

essary and sufficient condition for the internal stability of the closed-loop system

(P,C).
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(1) TP,C =

[
P

I

]
(I + CP )−1

[
I C

]
has no pole on the unit circle and

wno det (I + CP ) + η (P ) + η (C) = 0.

(2) det(ÑC(ω)NP (ω) + M̃C(ω)MP (ω)) 6= 0 ∀ω ∈ [0, 2π) and

wno det(ÑCNP + M̃CMP ) = 0.

In investigation of internal stability of the closed-loop system (P,C2),

Lemma 7 requires knowledge of either (1) the number of poles of the plant P

on or outside the unit circle or (2) MP and NP , neither of which is available a

priori. This requirement can be circumvented using the internally stable closed-

loop system (P,C1) as follows.

Theorem 6. Given; plant P , internally-stabilizing controller C1 = M̃−1
C1
NC1, can-

didate controller C2 = M̃−1
C2
NC2, transfer functions Gṽv in (4.6) and Gyṽ and Guṽ

in (4.9), each of the following is a necessary and sufficient condition for internal

stability of the closed-loop system (P,C2).

(1) TP,C2 has no pole on the unit circle and

wno det(I + C2P ) = wno det(I + C1P ) + η(C1)− η(C2).

(2) detGṽv(ω) 6= 0 ∀ω ∈ [0, 2π) and wno detGṽv = 0.

(3) det(ÑC1(ω)Gyṽ(ω) + M̃C1(ω)Guṽ(ω))−1 6= 0 ∀ω ∈ [0, 2π) and

wno det(ÑC1Gyṽ + M̃C1Guṽ)
−1 = 0.

4.4 Approaches

We consider three approaches to the stability and performance divination

problems on the basis of the data from experiments on the closed-loop system

(P,C1).

Approach 1. Obtain an estimate, P̂ (ω), of the FRF of the plant. Test stability

of (P,C2) using Theorem 6 (1). The FRF of the generalized sensitivity function

TP,C2 is estimated by

T̂P,C2(ω) =

[
P̂ (ω)

I

]
(I + C2(ω)P̂ (ω))−1

[
I C2(ω)

]
.
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Approach 2. Obtain estimates, Ĝyv(ω) and Ĝuv(ω), of the FRFs of Guv and

Gyv, right coprime factors of P , and compute Ĝṽv(ω) from (4.7). Test stability of

(P,C2) using Theorem 6 (2). The FRF of the generalized sensitivity function TP,C2

is estimated by

T̂P,C2(ω) =

[
Ĝyv(ω)

Ĝuv(ω)

]
Ĝṽv(ω)−1

[
M̃C2(ω) ÑC2(ω)

]
.

Approach 3. Obtain estimates, Ĝyṽ(ω) and Ĝuṽ(ω), of the FRFs of Guṽ and

Gyṽ. Test stability of (P,C2) using Theorem 6 (3). The FRF of the generalized

sensitivity function TP,C2 is estimated by

T̂P,C2(ω) =

[
Ĝyṽ(ω)

Ĝuṽ(ω)

] [
M̃C2(ω) ÑC2(ω)

]
.

Remark 2. The stability test in Approach 2 gives the same result in discrete-time

systems as Theorem 6 in [8] in continuous-time systems. Approach 2 estimates

the FRFs of right coprime factors of P , while Theorem 6 in [8] does not explicitly

identify P in any form.

4.5 Frequency response function estimation

In this section, we consider the general FRF estimation problem for a

discrete-time system. The material of this section relies strongly on the material

contained in the treatise [23], to which we refer the reader for further detail and

analysis.

Consider a system

z = Gq +Hd (4.10)

where G and H are β × α and β × β MIMO systems, q is an input signal, z is an

output signal, and d is an unknown disturbance signal. Consider an N -periodic

scalar signal e. Conduct α distinct experiments with

qj(t) = λje(t) (4.11)
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Figure 4.4: Broadband scalar experimental excitation signal e(t) with; pre-experiment
length Np = 75, period N = 50, repetition L = 4. Two hundred experimental data are
retained from time t = 0.

for j = 1, · · · , α and t = −Np, · · · ,−1, 0, 1, · · · , LN − 1 where λjs are column

vectors of a nonsingular matrix Λ =
[
λ1 · · · λα

]
∈ Rα×α and Np and L are

nonnegative integers representing the pre-experiment length and the repetition

number of the experiment. The data set for FRF estimation is {(qj(t), zj(t)), t =

0, · · · , LN − 1, j = 1, · · · , α}. The pre-experiment data [10] for t = −Np, · · · ,−1

is ignored. This is illustrated in Figure 4.4.

The importance of the N -periodic property of the signal qj is that one

avoids the Fourier analysis problem known as leakage. This is well developed

in [23]. Since leakage is avoided by this strategy, the usual approaches, such as

windowing, to minimizing its deleterious effects are obviated.

Assumption 1. The systems G and H are LTI systems and can be described by

transfer functions, G(z) =
∑∞

τ=0 g(τ)z−τ and H(z) =
∑∞

τ=0 h(τ)z−τ , with impulse

response matrices g(τ) of G and h(τ) of H, which satisfy, respectively,

σ̄(g(τ)) ≤ Kgτ
µ−1ρτ and σ̄(h(τ)) ≤ Khτ

µ−1ρτ

for τ = 0, 1, · · · with known constants Kg, Kh ∈ [0,∞), µ ∈ {1, 2, · · · }, and ρ ∈
[0, 1).
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Assumption 1 yields a further but lesser-known property that the FRF of

G possesses a level of smoothness.

Lemma 8. If G satisfies Assumption 1, then the FRF of G satisfies the following

smoothness condition.

σ̄

(
d

dω
G(ω)

)
≤ KgSµ(ρ)

for ∀ω ∈ [0, 2π) where the function S is given in Proposition 6 in Appendix 4.11.

Assumption 2. The pre-experiment length, Np, is chosen sufficiently large so that
1
NL

∑NL−1
τ=0 ‖x(τ)‖2 ≤ Kx(L) where the signal xj is the non-period-N response in

Gqj and Kx(L) is a known decreasing function of L.

Without such an assumption and the preceding stability assumption, there

is no realistic manner to estimate the FRF of G reliably from experimental data.

Assumption 3. A function Kf (L) is known such that
∥∥∥ 1
L

∑L−1
τ=0 f(t+ τN)

∥∥∥
2
≤

Kf (L) for t = 0, 1, · · · , N − 1 where f = Hd.

This assumption captures a bound on the disturbance signal and also

attempts to accommodate possible reduction of this bound when the disturbance

is averaged over L repetitions.

4.5.1 Single-frequency SISO cases

Suppose that the systemG in (4.10) is scalar, Λ = 1, and e(t) = A cos(ω1t+

φ) for t = −Np, · · · ,−1, 0, 1, · · · , LN − 1 with ω1 = 2πk1
N

for some integer k1 in

0 ≤ k1 <
N
2

. The phase is set at φ = π
3

when ω1 = 0, otherwise arbitrarily chosen.

Then the output signal z is comprised of three components;

z(t) = B cos(ω1t+ φ+ ψ) + x(t) + f(t)

for t = −Np, · · · ,−1, 0, 1, · · · , LN−1, where the three constituent parts are the si-

nusoidal steady-state response, the transient response x(t) =
∑∞

τ=t+Np+1 g(τ)q(t−
τ) due to the initial state value, and the additive disturbance signal f(t) =∑∞

τ=0 h(τ)d(t − τ) which is not necessarily periodic. Here B/A = |G(ω1)| and

ψ = ∠G(ω1).
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The FRF estimate may be computed by

Ĝ(ω1) =
2

ALN

LN−1∑
t=0

z(t)e−jω1t. (4.12)

This is called the empirical transfer function estimation (ETFE) [15] and leads to

Ĝ(ω1) = G(ω1) +
2

ALN

LN−1∑
t=0

x(t)e−jω1t +
2

ALN

LN−1∑
t=0

f(t)e−jω1t.

An upper bound on the magnitude of the error for the FRF estimates is obtained

in the following proposition.

Proposition 4. Suppose that Assumptions 1-3 hold. Then, the FRF estimate in

(4.12) satisfies

|Ĝ(ω1)−G(ω1)| ≤ 2(Kx +Kf )

Aσ(Λ)
.

4.5.2 Multiple-frequency SISO cases

Suppose that the system G in (4.10) is scalar, Λ = 1, and

e(t) =
M∑
i=1

Ai cos(ωit+ φi) (4.13)

for t = −Np, · · · ,−1, 0, 1, · · · , LN − 1 with ωi = 2πki
N

for some integers 0 ≤ k1 <

· · · < kM < N
2

. The phases φis are set at φi = π
3

when ωi = 0, otherwise arbitrarily

chosen. Then the output signal z is comprised of three components.

z(t) =
M∑
i=1

Bi cos(ωit+ φi + ψi) + x(t) + f(t).

The FRF of G at each frequency may be computed by

Ĝ(ωi) =
2

AiLN

LN−1∑
t=0

z(t)e−jωit
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and this FRF estimate satisfies

Ĝ(ωi) = G(ωi) +
2

AiLN

LN−1∑
t=0

x(t)e−jωit +
2

AiLN

LN−1∑
t=0

f(t)e−jωit.

If Assumptions 1-3 are satisfied, the linearity of G allows us to indepen-

dently analyze the FRF estimate at each frequency and Proposition 4 provides the

error analysis for the FRF estimate at each frequency.

4.5.3 MIMO Cases

If the signal e is given by (4.13), then the output signals, zj for j =

1, · · · , α, are described by

zj(t) =
M∑
i=1


Bij1 cos(ωit+ φi + ψij1)

...

Bijβ cos(ωit+ φi + ψijβ)

+ xj(t) + fj(t)

for j = 1, · · · , α where Bijks and ψijks are scalar and xj(t) and fj(t) are β × 1

vectors.

The FRF of G at each frequency may be computed by

Ĝ(ωi) =
2

AiLN

LN−1∑
t=0

Z(t)e−jωitΛ−1 (4.14)

where Z(t) =
[
z1(t) · · · zα(t)

]
and this FRF estimate statisfies

Ĝ(ωi) = G(ωi) +
2

AiLN

LN−1∑
t=0

X(t)e−jωitΛ−1 +
2

AiLN

LN−1∑
t=0

F (t)e−jωitΛ−1

where X(t) =
[
x1(t) · · · xα(t)

]
and F (t) =

[
f1(t) · · · fα(t)

]
.

Proposition 5. Suppose that Assumptions 1-3 hold. Then, the FRF estimate in

(4.14) satisfies

σ̄(Ĝ(ωi)−G(ωi)) ≤
2
√
α(Kx +Kf )

Aiσ(Λ)

for i = 1, · · · ,M .
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We note that the calculations of Ĝ(ωi) in (4.14) are traditionally conducted

using the discrete/fast Fourier transforms (DFT/FFT) of the signals.

4.6 Winding number estimation

Let W (z) be a square transfer function, which is analytic and non-zero on

the unit circle. The winding number of the determinant of W (z) can be obtained

from the unwrapped phase of the determinant of the frequency response function,

unwarg detW (ω). See [18] and [32].

We obtained in Section 4.5.3 the M FRF estimates Ŵ (ωi) at select fre-

quencies {ωi, i = 1, · · · ,M} and will use a linear interpolant to estimate the wind-

ing number of detW (z). Define the complex conjugate frequencies

ωi =

{
2π − ω2M+1−i for i = M + 1, · · · , 2M
2π + ω1 for i = 2M + 1

and, then, extend the estimate set to the full 2M + 1 points on the unit circle,

Ŵ (ωi) =

{
Ŵ (ω2M+1−i) for i = M + 1, · · · , 2M
Ŵ (ω1) for i = 2M + 1.

Next a continuous function Ŵ (ω) is defined, using linear interpolation, by

Ŵ (ω) , (1− θ)Ŵ (ωi) + θŴ (ωi+1) (4.15)

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M where θ = ω−ωi
∆ωi

with ∆ωi = ωi+1 − ωi. We have

the following.

Theorem 7. Given the M FRF estimates {Ŵ (ωi), i = 1, · · · ,M} of W (ω) and

the linear interpolant Ŵ (ω) in (4.15), if

σ(Ŵ (ω)) > max
j∈{i,i+1}

σ̄
(
Ŵ (ωj)−W (ωj)

)
+ max

ξ∈[ωi,ωi+1]
σ̄

(
d

dω
W (ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi)

(4.16)
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for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M , then detW (ω) 6= 0 for ∀ω ∈ [0, 2π) and

wno detW (ω) = wno det Ŵ (ω).

The following corollary follows directly from Lemma 8.

Corollary 1. If Assumption 1 holds for the system W with constant Kw, then the

second term in the right-hand side of (4.16) can be replaced by a more conservative

term KwSµ(ρ)(ωi+1−ωi) where the function S is given in Proposition 6 in Appendix

4.11.

4.7 Assessment of divination

4.7.1 Quality of divination using Approach 1

Perfect knowledge of P (ω) would deliver perfect divination. However, this

knowledge is unavailable and the reliability of Approach 1 in Section 4.4 is affected

by the accuracy of the estimate of the FRF of the plant.

Estimators for P (ω) can be obtained by the joint input-output approach,

which uses FRF estimates Ĝyr(ω), Ĝur(ω), Ĝys(ω), Ĝus(ω), Ĝyv(ω), and Ĝuv(ω)

for the transfer functions Gyr, Gur, Gys, Gus, Gyv, and Guv in Section 4.2. The

possible choices for an estimator for the FRF of P are

P̂1(ω) , Ĝyr(ω)Ĝur(ω)−1,

P̂2(ω) , Ĝys(ω)Ĝus(ω)+,

P̂3(ω) ,
[
Ĝyr(ω) Ĝys(ω)

] [
Ĝur(ω) Ĝus(ω)

]+

,

P̂4(ω) , Ĝyv(ω)Ĝuv(ω)−1,

where + means the Moore-Penrose pseudoinverse. The underlying purpose of these

FRF estimates is to select that which ultimately yields the most reliable winding

number calculation. Of the four plant estimators, P̂3(ω) outperforms P̂1(ω) and

P̂2(ω) in noise handling and P̂4(ω) is similar to P̂3(ω). See [5] for unreliable prop-

erties of P̂1(ω) and P̂2(ω), due to poles and zeros of C1 on the unit circle. For
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brevity, we study just the behavior of P̂3(ω) and denominate it P̂ (ω), i.e.

P̂ (ω) =
[
Ĝyr(ω) Ĝys(ω)

] [
Ĝur(ω) Ĝus(ω)

]+

, ĜY (ω)ĜU(ω)+.
(4.17)

To obtain ĜY (ω) and ĜU(ω), consider the closed-loop system (P,C1) in

Figure 4.1,

y = GY

[
r

s

]
+Gydd and u = GU

[
r

s

]
+Gudd (4.18)

where GY =
[
Gyr Gys

]
and GU =

[
Gur Gus

]
, each of which corresponds to the

system in (4.10) in Section 4.5. Suppose that the input signals rj and sj are chosen

in the same way as qj in (4.11) with e in (4.13);[
rj(t)

sj(t)

]
= λje(t).

The output signals, yj and uj for j = 1, · · · ,m+ `, are recorded until t = LN − 1.

Then, the FRF estimates are computed in the same way as in (4.14), i.e.[
ĜY (wi)

ĜU(wi)

]
=

2

AiLN

LN−1∑
t=0

[
Y (t)

U(t)

]
e−jωitΛ−1

for i = 1, · · · ,M where

Y (t) =
[
y1(t) · · · ym+`(t)

]
U(t) =

[
u1(t) · · · um+`(t)

]
.

The error of these FRF estimates is described by[
∆GY (ωi)

∆GU(ωi)

]
,

[
ĜY (wi)

ĜU(ωi)

]
−
[
GY (wi)

GU(wi)

]
(4.19)

for i = 1, · · · ,M .
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We are interested in estimating the winding numbers of determinants of

Ξk(ω) , I + Ck(ω)P (ω)

for k = 1, 2 and Section 4.6 provides an estimation method for the winding

numbers using a finite number of estimated values. According to Section 4.6,

given a finite number of estimated values, {(ĜY (ωi), ĜU(ωi)), i = 1, · · · ,M} and

{P̂ (ωi) , ĜY (ωi)ĜU(ωi)
+, i = 1, · · · ,M}, we define continuous functions, ĜU(ω),

Ξ̂1(ω), and Ξ̂2(ω), using the linear interpolation method in Section 4.6, by

ĜU(ω) , (1− θ)ĜU(ωi) + θĜU(ωi+1)

Ξ̂k(ω) , (1− θ)(I + Ck(ωi)P̂ (ωi)) + θ(I + Ck(ωi+1)P̂ (ωi+1))

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M , k = 1, 2 where θ = ω−ωi
∆ωi

with ∆ωi = ωi+1 − ωi,
so that the winding number of det Ξ(ω) is estimated by the winding number of

det Ξ̂(ω).

Theorem 8. Suppose that Assumptions 1-3 hold for each system in (4.18). Then

provided

(1) the controller C2 has no pole on the unit circle and

(2) ĜU(ω) and Ξ̂k(ω) satisfy

σ(ĜU(ω)) > max
j∈{i,i+1}

2
√
α(Kx +Kf )

Ajσ(Λ)
+ max

ξ∈[ωi,ωi+1]
σ̄

(
d

dω
GU(ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi)

σ(Ξ̂k(ω)) > max
j∈{i,i+1}

2
√
α(Kx +Kf )

Ajσ(Λ)σ(ĜU(ωj))
σ̄(Ck(ωj))

{
1 + σ̄(P (ωj))

}
+ max

ξ∈[ωi,ωi+1]
σ̄

(
d

dω
Ξk(ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi)

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M , k = 1, 2, the controller C2 stabilizes the plant

P if, and only if,

wno det Ξ̂2(ω) = wno det Ξ̂1(ω) + η(C1)− η(C2). (4.20)

Condition (2) in Theorem 8 ensures that σ(GU(ω)) 6= 0 and σ(Ξ2(ω)) 6= 0

for ∀ω ∈ [0, 2π). Condition σ(GU(ω)) 6= 0 requires that the plant P has no pole
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on the unit circle since GU = MP (NC1NP + MC1MP )−1
[
MC1 NC1

]
. Condition

σ(Ξ2(ω)) 6= 0 requires that the transfer function (I + C2P )−1 has no pole on the

unit circle. Thus, combined with Condition (1) in Theorem 8, it is guaranteed that

C2, P , and (I + C2P )−1 have no pole on the unit circle, which implies the first

condition in Theorem 6 (1), i.e. TP,C2 has no pole on the unit circle.

Condition (2) ensures that wno det Ξ1 = wno det Ξ̂1(ω) and wno det Ξ2 =

wno det Ξ̂2(ω), also. Hence, (4.20) becomes equivalent to the second condition

in Theorem 6 (1). Note that C1, under these conditions, cannot have a pole on

the unit circle. Otherwise, maxξ∈[0,2π) σ̄
(

d
dω

Ξ1(ω)
∣∣
ω=ξ

)
is unbounded and, hence,

Condition (2) is violated. Therefore, this approach can, reliably, be applied only

when each of C1, C2, and P has no pole on the unit circle.

The right-hand side of the ĜU inequality above contains a term represent-

ing the disturbance-to-reference ratio of d(t) versus
[
r(t)T s(t)T

]T
appearing in

the signal u(t). Approach 1 fails, even with good signal ratios, when the second

inequality requires multiplication by large numbers due to poles on the unit circle.

4.7.2 Quality of divination using Approach 2

The reliability of Approach 2 in Section 4.4 is affected by the accuracy

of the FRF estimates, Ĝyv(ω) and Ĝuv(ω), of the transfer functions Gyv(z) and

Guv(z) in Section 4.2.

In order to obtain Ĝyv(ω) and Ĝuv(ω), consider the closed-loop system

(P,C1) [
y

u

]
=

[
Gyv

Guv

]
v +

[
Gyd

Gud

]
d, (4.21)

described in (4.4), which corresponds to the system in (4.10) in Section 4.5.

Suppose that the input signals rj and sj are chosen such that the vj is deter-

mined in the same way as qj in (4.11) with e in (4.13). The output signals,

zj(t) =
[
yj(t)

T uj(t)
T
]T

for j = 1, · · · ,m, are recorded until t = LN − 1. Then,

the FRF estimates are computed in the same way as in (4.14), i.e.[
Ĝyv(wi)

Ĝuv(wi)

]
=

2

AiLN

LN−1∑
t=0

Z(t)e−jωitΛ−1 (4.22)
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for i = 1, · · · ,M where Z(t) =
[
z1(t) · · · zm(t)

]
. The error of these FRF

estimates is described by[
∆Gyv(ωi)

∆Guv(ωi)

]
,

[
Ĝyv(wi)

Ĝuv(ωi)

]
−
[
Gyv(wi)

Guv(wi)

]
(4.23)

for i = 1, · · · ,M .

We are interested in estimating the winding number of the determinant of

the transfer function Gṽv in (4.7) and Section 4.6 provides an estimation method

for the winding numbers using a finite number of estimated values. According to

Section 4.6, given a finite number of estimated values

Ĝṽv(ωi) = ÑC2(ωi)Ĝyv (ωi) + M̃C2(ωi)Ĝuv (ωi) (4.24)

for i = 1, · · · ,M , we define a continuous function Ĝṽv(ω), using the linear inter-

polation method in Section 4.6, by

Ĝṽv(ω) , (1− θ)Ĝṽv(ωi) + θĜṽv(ωi+1)

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M where θ = ω−ωi
∆ωi

with ∆ωi = ωi+1−ωi, so that the

winding number of detGṽv(ω) is estimated by the winding number of det Ĝṽv(ω).

Theorem 9. Suppose that Assumptions 1-3 hold for the system in (4.21). Then

provided

σ(Ĝṽv(ω)) > max
j∈{i,i+1}

2
√
α(Kx +Kf )W̃2(ωj)

Ajσ(Λ)

+ max
ξ∈[ωi,ωi+1]

σ̄

(
d

dω
Gṽv(ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi)

(4.25)

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M where W̃2(ωj) = σ̄
([
ÑC2(ωj) M̃C2(ωj)

])
, the

controller C2 stabilizes the plant P if, and only if,

wno det Ĝṽv(ω) = 0. (4.26)

The first term in the right-hand side of (4.25) contains again a disturbance-
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to-reference ratio for the signals d(t) versus v(t) in the signal
[
y(t)T u(t)T

]T
. The

second term can be replaced, using Lemma 8, by a more conservative (but more

likely known or assumed) bound KΓSµ(ρ)(ωi+1 − ωi) where KΓ corresponds to Kg

in Lemma 8 and the function S is given in Proposition 6 in Appendix 4.11.

This approach can, reliably, be applied, regardless of the locations of poles

of C1, C2, and P , subject to satisfaction of (4.25) and (4.26). The generalized

sensitivity function is estimated, using (4.22) and (4.24), by

T̂P,C2(ωi) =

[
Ĝyv(ωi)

Ĝuv(ωi)

]
Ĝṽv(ωi)

−1
[
M̃C2(ωi) ÑC2(ωi)

]
for i = 1, · · · ,M .

If σ(Ĝṽv(ω)) passes far enough from the origin to satisfy the condition

(4.25), the condition in (4.26) is a precise indicator for the stability or instability

of the closed-loop system (P,C2). Otherwise, Theorem 9 cannot be applied and,

thus, the condition in (4.26) becomes an unreliable indicator for internal stability

of the (P,C2) loop. Moreover, if σ(Ĝṽv(ω)) passes close to the origin, the (P,C2)

loop is close to instability or unstable.

4.7.3 Quality of divination using Approach 3

The quality of Approach 3 is analyzed by showing that Approach 3 and

Approach 2 are very similar.

In order to obtain Ĝyṽ(ω) and Ĝuṽ(ω), consider the system in (4.21) with

the input signal vj and the recorded output signals zj(t) =
[
yj(t)

T uj(t)
T
]T

and

ṽj(t) for j = 1, · · · ,m, t = 0, · · · , LN − 1 in Section 4.7.2. Also, recall the closed-

loop system (P,C2) in Figure 4.3 described in (4.8);[
y

u

]
=

[
Gyṽ

Guṽ

]
ṽ +

[
Gyd̃

Gud̃

]
d.

Then, the FRF estimates are computed by[
Ĝyṽ(wi)

Ĝuṽ(wi)

]
=

1√
LN

LN−1∑
t=0

Z(t)e−jωit

(
1√
LN

LN−1∑
t=0

Ṽ (t)e−jωit

)−1

(4.27)
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for i = 1, · · · ,M where Z(t) =
[
z1(t) · · · zm(t)

]
and Ṽ (t) =

[
ṽ1(t) · · · ṽm(t)

]
and we can calculate ÑC1(ωi)Ĝyṽ(wi) + M̃C1(ωi)Ĝuṽ(wi) for i = 1, · · · ,M .

On the other hand, the FRF of

Γ−1 , ÑC1Gyṽ + M̃C1Guṽ

may be directly estimated by

Γ̂(wi)
−1 =

1√
LN

LN−1∑
t=0

V (t)e−jωit

(
1√
LN

LN−1∑
t=0

Ṽ (t)e−jωit

)−1

(4.28)

for i = 1, · · · ,M where V (t) =
[
v1(t) · · · vm(t)

]
, using the filtered signal v =[

ÑC1 M̃C1

] [y
u

]
, which comes from (4.3). Then, since

1√
LN

LN−1∑
t=0

V (t)e−jωitΛ−1 =
Ai
√
LN

2
I

for i = 1, · · · ,M , we have

Γ̂(wi) =
2

AiLN

LN−1∑
t=0

Ṽ (t)e−jωitΛ−1, (4.29)

which can be viewed as an estimate of the FRF of Gṽv. This estimate uses the

DFT of ṽ = ÑC2y + M̃C2u while the Approach 2 estimate (4.24) uses the DFT

of
[
yT uT

]T
, which is multiplied by

[
ÑC2(ωi) M̃C2(ωi)

]
. The difference be-

tween these estimates is guaranteed, by Theorem 2.1 in [15], to satisfiy σ̄(Γ̂(wi)−
Ĝṽv(ωi)) ≤ Kṽ

AiLN
for i = 1, · · · ,M for some constant Kṽ.

Analogously to earlier, we define

Γ̂(ω) , (1− θ)Γ̂(ωi) + θΓ̂(ωi+1).

Similarly to Theorem 9, we can develop the following theorem.

Theorem 10. Suppose that Assumptions 1-3 hold for the system in (4.6). Then
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provided

σ(Γ̂(ω)) > max
j∈{i,i+1}

2
√
α(Kx +Kf )

Ajσ(Λ)
+ max

ξ∈[ωi,ωi+1]
σ̄

(
d

dω
Gṽv(ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi)

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M , the controller C2 stabilizes the plant P if, and

only if,

wno det Γ̂(ω) = 0.

The generalized sensitivity functions is estimated, using (4.27) and (4.29),

by

T̂P,C2(ωi) =

[
Ĝyṽ(ωi)

Ĝuṽ(ωi)

] [
M̃C2(ωi) ÑC2(ωi)

]
=

[
Ĝyv(ωi)

Ĝuv(ωi)

]
Γ̂(ωi)

−1
[
M̃C2(ωi) ÑC2(ωi)

]
for i = 1, · · · ,M , which is the same as the estimate obtained in Approach 2 with

replacement of Ĝṽv(ωi) by Γ̂(ωi).

4.7.4 Divination recommendations

Since all three approaches commence with the same experiment and data

set, we can test all three divination approaches at the same time and check whether

any of them provides a clear solution. However, as mentioned earlier, the conditions

in Approach 1 are only satisfied when C1, C2, and P have no pole on the unit circle.

Approaches 2 and 3 are similar and work without restriction on pole locations.

Each approach has corresponding error terms for the estimate of transfer functions

and these error terms should be sufficiently small to satisfy the conditions in their

respective theorems. These error terms depend on the initial condition of (P,C1)

loop (ameliorated by the pre-experiment length Np), the disturbance effect, the

FRFs of C1, C2, and P , and the selected frequency points.

If the data from the experiment do not satisfy the conditions for any

approach, one remedy is to increase Np in order to decrease the initial condition

effect, or to increase L in the case of random disturbances which average to zero,
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or to increase N to diminish the interpolation errors. With a simple bound on the

disturbance, there is no guarantee that this will work without a concomitant effort

to increase SNR. As we collect the data from the experiment, we can freely assign

Np and L and continue the experiment until the conditions for any approach are

satisfied or the time is exhausted.

When it is possible to perform multiple experiments, the regions of the

frequency axis where divination is guaranteed to be reliable, i.e. the closed loop

FRF is bounded away from zero, can be augmented by new experiments with

different frequency content or SNR at the frequency.

When we have more than one candidate controller, the stability and per-

formance of the candidate controllers can be divined concurrently.

4.8 Relationship with other methods

Controller validation: as explored by Dehghani et al. [6, 8, 9], is the closest in

principle approach to our own of direct divination of the stability of (P,C2)

through the analysis of experimentally derived FRFs. Their approach is

largely qualitative and concentrates on continuous-time systems, but explores

much of the same territory as here without the explicit error analysis or

experiment design. Thus, the controller validation problem can be interpreted

as two-step validation which is identification of FRFs of coprime factors,

Gyv and Guv, of the plant and then determination of the stability of (P,C2)

using the identified information as in Approach 2. Our work develops the

computational discrete-time approach in order to treat the estimation and

divination confidence, including the performance analysis side.

Controller certification: as treated by [22] deals with the application of the

Vinnicombe ν-gap metric, δν(C1, C2), and the generalized stability margin,

bP,C1 , to certify from FRFs that new controllers will stabilize the plant P .

Their approach uses the (P,C1) FRF as the starting point for the analysis

of the certification/divination, which proceeds via the Vinnicombe stability

inference, bP,C2 ≥ bP,C1−δν(C1, C2). While [21] does consider both the exper-

iment design and the ETFE calculation, the error analysis with disturbances
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is carried much further here, including the development of approaches less

susceptible to corruption by FRF errors.

Controller unfalsification: as presented by [3, 28] covers the problem of using

input-output, {u, y}, data from the plant P to falsify the stabilization of P

by C2. They introduce the idea of an associated fictitious reference signal,

ṽ, which is also part of Approach 3. There is a required intellectual leap to

presume validation of the controller. For our work here, this leap is accom-

plished via experiment design and explicit assumptions about systems and

disturbance to yield a corresponding capacity of the computed FRFs with

errors to provide guarantees.

Model unfalsification: commencing with the data from an adventitious exper-

iment and a model, model unfalsification [13, 24] proceeds to find a pair –

model uncertainty bound and disturbance signal – that could have produced

the data from the specific underlying plant model. The approach uses a lin-

ear matrix inequality approach based on Toeplitz matrices composed of time-

domain signals. In this framework, controller C1 is not explicitly present, nor

is the data necessarily derived from a stable closed loop. The estimated trio

of model, model uncertainty bound and disturbance signal can invalidate or

falsify a candidate trio. The approach does not seek to validate models. By

comparison, the approach in this paper is to extract an empirical model FRF,

P̂ (ω), from the designed experimental data and to validate its performance

in closed loop with C1 and C2. Additional assumptions are used, such as the

linearity of the plant, the internal stability of (P,C1) and knowledge of the

controllers. We do not validate this model P̂ but only the closed loops.

Model validation: as developed by [11, 12] approaches the identification of a

parametric model for the plant together with an associated model error de-

scription derived from the asymptotic normality properties of prediction error

system identification methods. This provides both a nominal parametrized

model and an estimation set, which (it is asserted) contains the true plant

with a prescribed probability. They consider tuning this full-order model er-

ror description to the requirements of the subsequent controller design. In the
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context of controller divination, this could proceed via the robust stabilization

and performance for the entire set containing the true plant. Our analysis

might commence from the same data set, although we require no sense of

model order, since our methods use nonparametric FRF descriptions. The

techniques are developed for FRFs estimated at a finite number of frequencies

with a concomitant stability/smoothness assumption, but without a concept

of plant system order.

4.9 Example

In this example, we consider the uncertain continuous-time plant P in

(2.8) in Section 2.5

ẋp(t) = −xp(t− 0.5) + u(t)

whose output signal is xp(t). This plant is an LTI system with time delay in the

state, called internal time delay, and can be described by a transfer function

P (s) =
1

s+ e−0.5s
.

The dynamics of this plant P as well as the initial condition xp(τ) for τ ∈ [−NpT−
0.5,−NpT ] are unknown. However, in this example, we assume that the plant P

is known to be LTI and the controller C1 in Section 2.5 is known to stabilize the

plant.

We measure the plant-output signal with a sampling period T and this

measurement is corrupted by a noise signal d, i.e.

y[n] = xp(nT ) + d[n]

for n = 0, 1, . . .. The plant-input signal u is given by a zero-order hold method

u(t) = u[n] for nT ≤ t < (n+ 1)T

with the discrete-time signal u[n] produced as an outcome of the discrete-time

controller C1(z) combined with the discrete-time reference signals r[n] and s[n] as

well as the measured noisy plant-output signal y[n].
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The zero-order hold, the continuous-time plant P (s), and the measure-

ment block in Figure 4.5 can be considered an equivalent discrete-time system

denoted by P (z). And, as shown in Section 3.4, the order of this discrete-time sys-

+

-
+

d[n]

u(t)u(t) = u[n]
nT ≤ t < (n + 1)T

Zero-Order-Hold Measurement atContinuous-time

t = 0, T, 2T, · · ·

u[n]r[n]

Discrete-time

s[n]

+
P (s)

y[n]
y[n] = xp(nT ) + d[n]

xp(t)

C1(z)

Figure 4.5: A system with a continuous-time plant P (s) and a discrete-time controller
C1(z)

tem is infinite since the continuous-time plant P (s) has internal time delay. Since

C1 is known to stabilize the plant, we perform experiments on the closed-loop

system (P,C1).

We apply reference signals

r[n] = s[n] =
M∑
i=1

Ai cos(ωiTn+ φi)

for n = −Np,−Np+ 1, · · · , LN −1 to the closed-loop system (P,C1). The positive

integer N is the period of r and s and the constant L is the repetition number of the

period. The positive integer M < N
2

is the number of the sinusoidal functions, the

constants Ais are the amplitudes of the sinusoidal functions, and the frequencies of

the sinusoidal functions are given by ωi = 2πki
N

with integers 0 ≤ k1 < · · · < kM <
N
2

. The phases φis are set at φi = π
3

when ωi = 0, otherwise arbitrarily chosen.

Then from the experiment, we collect the data {(u[n], y[n]), n = −Np,−Np +

1, · · · , LN − 1} from the closed-loop system (P,C1).

Using a left coprime factorization C1(z) = M̃C1(z)−1ÑC1(z) with M̃C1(z) =
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1 and ÑC1(z) = −0.9, we compute the intermediate signal v in (4.2) as

v[n] = r[n]− 0.9s[n] = 0.1
M∑
i=1

Ai cos(ωiTn+ φi)

for n = −Np,−Np + 1, · · · , LN − 1.

A controller designer tries to build a new controller based on a plant model

ẋm(t) = −xm(t) + u(t)

whose output signal is xm(t). This plant is an LTI system with no time delay. Com-

bining this continuous-time model with the zero-order hold and the measurement

block in Figure 4.5, the designer develops a discrete-time model

xm[n+ 1] = 0.3679 xm[n] + 0.6321 u[n] + w[n]

ym[n] = xm[n] + d[n]
(4.30)

where each of w and d is an iid gaussian random process with variances σ2
w = 1

and σ2
d = 1. Then, an LQG controller is designed as

C3(z) =
0.02005

z − 0.1427
.

Since C3 is stable, two systems ÑC3(z) = C3(z) and M̃C3(z) = 1 are a pair of left

coprime factors.

Using the data from the experiment and this new prospective controller

C3 as well as the controller C2 in Section 2.5 and Section 3.4, we obtain the FRF

estimates of Gṽv for C2 and C3.

4.9.1 MATLAB simulation

In the MATLAB simulation, the sampling period is set to T = 1sec and

the number of samples in one repetition of the reference signals is set to N = 200.

The frequencies in the reference signals are ωi = 2πki
N

for i = 1, . . . ,M with ki =

2(i− 1) for i = 1, . . . ,M and M = 51, which results in ω1 = 2π×0
N

, ω2 = 2π×2
N

, . . .,

and ωM = 2π×100
N

= π. Set φ1 = 1
3
, φM = 1

3
, and select {φi, i = 2, . . . ,M − 1} as
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a realization of a random process which is independent and uniformly distributed

over [0, 2π]. Then, we apply reference signals

r[n] = s[n] =
M∑
i=1

Ai cos(ωiTn+ φi)

with Ai = 1 for i = 1, . . . ,M to the closed-loop system (P,C1). The number of

samples in the pre-experiment is set to Np = 75. As we perform the experiment,

the repetition number L increases. We will look at the effect of L later.

The noise signal d[n] is generated as a realization of a random process

which is independent and uniformly distributed over [−1, 1]. Initial condition of

the plant is set to xp(τ) = 0 for τ ∈ [−NpT − 0.5,−NpT ].

Using a left coprime factorization C1(z) = M̃C1(z)−1ÑC1(z) with M̃C1(z) =

1 and ÑC1(z) = −0.9, we compute the intermediate signal v in (4.2) as

v[n] = r[n]− 0.9s[n] = 0.1
M∑
i=1

Ai cos(ωiTn+ φi)

for n = −Np,−Np + 1, · · · , LN − 1.

Using the data from the experiment and the prospective controller C2,

we compute the FRF estimate of Gṽv with L = 10, which is shown as blue dots

in Figure 4.6. The smooth red line is the true FRF of Gṽv for C2, which can be

obtained in a different simulation with a long pre-experiment and no noise signal.

The FRF estimate indicates that wno det Ĝṽv(ω) 6= 0 and, thus, the controller

C2 does not stabilize the plant P . The lower part in Figure 4.6 is a zoomed-in

plot around (1.1, 0). Also, the FRF estimates of Gṽv for C2 with L = 50 and

L = 200 are shown as blue dots in Figure 4.7 and Figure 4.8, respectively. As L

increases, the error of the the FRF estimate diminishes. This is because both Kx

in Assumption 2 and Kf in Assumption 3 decrease. For large L, the FRF estimate

becomes reliable with small error and the diminishing noise influence is shown in

the zoomed-in plots around (1.1, 0).

Similarly, we compute the FRF estimate of Gṽv for the prospective con-

troller C3 with L = 10, which is shown as blue dots in Figure 4.9. The smooth red

line is the true FRF of Gṽv for C3. The lower part in Figure 4.9 is a zoomed-in plot



77

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

���������	��
���	�������������������� �	����������	
� "!$#&%('

Real Axis

Im
a

g
in

a
ry

 A
xi

s

1 1.05 1.1 1.15 1.2
−0.2

−0.1

0

0.1

0.2

)+* �����&,�-�.	�	/"���������	�0
1���	�����0���2���3�4���� �	�����5���1�	
0 "!$#&%�'

Real Axis

Im
a

g
in

a
ry

 A
xi

s

Figure 4.6: The FRF estimate (blue dots) and the true FRF (smooth red line) of Gṽv
for C2 with L = 10 and a zoomed-in plot around (1.1, 0)
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Figure 4.7: The FRF estimate (blue dots) and the true FRF (smooth red line) of Gṽv
for C2 with L = 50 and a zoomed-in plot around (1.1, 0)

around (0.5, 0). Also, the FRF estimates of Gṽv for C3 with L = 50 and L = 200

are shown as blue dots in Figure 4.10 and Figure 4.11, respectively. Again, as

L increases, the error of the the FRF estimate diminishes. For large L, the FRF

estimate becomes reliable and its indication of wno det Ĝṽv(ω) = 0 with small error
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Figure 4.8: The FRF estimate (blue dots) and the true FRF (smooth red line) of Gṽv
for C2 with L = 200 and a zoomed-in plot around (1.1, 0)
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Figure 4.9: The FRF estimate (blue dots) and the true FRF (smooth red line) of Gṽv
for C3 with L = 10 and a zoomed-in plot around (0.5, 0)

leads to the conclusion that the controller C3 stabilizes the plant P .
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Figure 4.10: The FRF estimate (blue dots) and the true FRF (smooth red line) of Gṽv
for C3 with L = 50 and a zoomed-in plot around (0.5, 0)
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Figure 4.11: The FRF estimate (blue dots) and the true FRF (smooth red line) of Gṽv
for C3 with L = 200 and a zoomed-in plot around (0.5, 0)

4.10 Conclusion

The stability and performance of a closed-loop system (P,C2) with an

uncertain MIMO LTI plant P and a known MIMO LTI candidate controller C2

are divined by three approaches presented in this paper without constructing the
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closed loop, provided that P is known to be stabilized by another known MIMO LTI

controller C1. These approaches commence with data set {r, s, u, y} collected from

designed experiments on the internally stable (P,C1) loop in Figure 4.1. Then,

the FRFs of the plant or other transfer functions, depending on the approaches,

are estimated using the data set. The divination approaches are performed with

the estimates for the FRFs and we provide a thorough comparison with a number

of other related methods and focus our attention on the capacity of the data to

provide a divination solution reliably. Also, we provide an error analysis for the

estimates for the FRFs and link this to (assumptions about) the SNR pertaining

at the time when the data set was recorded.

4.11 Appendices

Proof of Theorem 6. (1) Since the closed-loop system (P,C1) is inter-

nally stable, Lemma 7 (1) guarantees that

η(P ) = −wno det(I + C1P )− η(C1). (4.31)

Then, Lemma 7 (1) applied to (P,C2) with (4.31) completes the proof.

(2) Since the closed-loop system (P,C1) is internally stable, Gyv and Guv

are stable. In addition, from (4.4), it follows that P = GyvG
−1
uv and ÑC1Gyv +

M̃C1Guv = I. Thus, the transfer functions Gyv and Guv are right coprime factors

of P . Then, Lemma 7 (2) applied to (P,C2) with Gṽv in (4.6) completes the proof.

(3) From (4.7) and (4.9), it is clear that

(ÑC1Gyṽ + M̃C1Guṽ)
−1 = (ÑC2NP + M̃C2MP )(ÑC1NP + M̃C1MP )−1 = Gṽv,

and, hence, Theorem 6 (2) completes the proof.

Proposition 6. For any given ν ∈ {0, 1, · · · },

∞∑
τ=0

τ νζτ = Sν(ζ)

for ∀ζ ∈ (−1, 1) where the function S is defined, inductively, by S0(ζ) = 1
1−ζ ,
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S1(ζ) = ζ d
dζ
S0(ζ), S2(ζ) = ζ d

dζ
S1(ζ), · · · .

Proof. (1) For ν = 0,
∑∞

τ=0 ζ
τ = 1

1−ζ = S0(ζ) for ∀ζ ∈ (−1, 1). (2) For

any given n ∈ {0, 1, · · · }, if
∑∞

τ=0 τ
nζτ = Sn(ζ) for ∀ζ ∈ (−1, 1), then we have∑∞

τ=0 τ
n+1ζτ = ζ d

dζ

∑∞
τ=0 τ

nζτ = ζ d
dζ
Sn(ζ) = Sn+1(ζ) for ∀ζ ∈ (−1, 1). Therefore,

the proof is completed by the induction.

Proof of Lemma 8. It is clear that, for ∀ω ∈ [0, 2π),

σ̄

(
d

dω
G(ω)

)
= σ̄

(
∞∑
τ=0

(−jτ)g(τ)e−jωτ

)
≤ Kg

∞∑
τ=0

τµρτ = KgSµ(ρ).

Proof of Proposition 4. This is a special case of Proposition 5.

Proof of Proposition 5. Denote by ‖ · ‖F the Frobenius matrix norm.

Then, we have σ̄(X(t)) ≤ ‖X(t)‖F =
√∑α

j=1 ‖xj(t)‖2
2 ≤
√
αmaxj∈{1,...,α} ‖xj(t)‖2

for t = 0, · · · , LN − 1, from which, together with Assumption 2, it follows that

σ̄
(

1
LN

∑LN−1
t=0 X(t)e−jωitΛ−1

)
≤ 1

LN

∑LN−1
t=0 σ̄ (X(t)) σ̄ (Λ−1) ≤

√
αKx
σ(Λ)

. Similarly, it

follows, from the fact that 1
LN

∑LN−1
t=0 F (t)e−jωit = 1

N

∑N−1
t=0

1
L

∑L−1
τ=0 F (t+τN)e−jωit

and Assumption 3, that σ̄
(

1
LN

∑LN−1
t=0 F (t)e−jωitΛ−1

)
≤
√
αKf
σ(Λ)

.

Proof of Theorem 7. Choose any ω ∈ [ω1, ω2M+1) and define the true

system linear interpolant

W̄ (ω) , (1− θ)W (ωi) + θW (ωi+1) (4.32)

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M where θ = ω−ωi
∆ωi

with ∆ωi = ωi+1 − ωi. Using

this and (4.15), we have

σ̄(Ŵ (ω)−W (ω)) = σ̄(Ŵ (ω)− W̄ (ω) + W̄ (ω)−W (ω))

≤ σ̄(Ŵ (ω)− W̄ (ω)) + σ̄(W̄ (ω)−W (ω)).
(4.33)

An upper bound of the first term in the right-hand side of the inequality

in (4.33) can be obtained, using (4.32) and (4.15), by

σ̄(Ŵ (ω)− W̄ (ω) ≤ (1− θ)σ̄(Ŵ (ωi)−W (ωi)) + θσ̄(Ŵ (ωi+1)−W (ωi+1))

≤ max{σ̄(Ŵ (ωi)−W (ωi)), σ̄(Ŵ (ωi+1)−W (ωi+1))}.
(4.34)

To obtain an upper bound on the second term in the right-hand side of the
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inequality in (4.33), two cases are considered. If ωi ≤ ω ≤ ωi+ωi+1

2
, i.e. 0 ≤ θ ≤ 1

2
,

then we have, using (4.32),

σ̄(W̄ (ω)−W (ω)) ≤ θσ̄ (W (ωi+1)−W (ωi)) + σ̄ (W (ωi)−W (ω))

≤ 1

2
max

ξ∈[ωi,ωi+1]
σ̄

(
d

dω
W (ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi)

+ max
ξ∈[ωi,ωi+1]

σ̄

(
d

dω
W (ω)

∣∣∣∣
ω=ξ

)
1

2
(ωi+1 − ωi)

= max
ξ∈[ωi,ωi+1]

σ̄

(
d

dω
W (ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi).

(4.35)

Similarly, if ωi+ωi+1

2
< ω ≤ ωi+1, i.e. 1

2
< θ ≤ 1, we have

σ̄(W̄ (ω)−W (ω)) ≤ (1− θ)σ̄ (W (ωi)−W (ωi+1)) + σ̄ (W (ωi+1)−W (ω))

≤ max
ξ∈[ωi,ωi+1]

σ̄

(
d

dω
W (ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi).

(4.36)

From (4.35) and (4.36), it follows that

σ̄(W̄ (ω)−W (ω)) ≤ max
ξ∈[ωi,ωi+1]

σ̄

(
d

dω
W (ω)

∣∣∣∣
ω=ξ

)
∆ωi,

from which, together with (4.33), (4.34), and the fact that det Ŵ (ω) ∀ω ∈ [0, 2π),

we have

σ̄{(W (ω)− Ŵ (ω))Ŵ (ω)−1}
≤ σ̄(W (ω)− Ŵ (ω))σ̄(Ŵ (ω)−1)

≤ 1

σ(Ŵ (ω))

{
max

j∈{i,i+1}
σ̄
(
Ŵ (ωj)−W (ωj)

)
+ max

ξ∈[ωi,ωi+1]
σ̄

(
d

dω
W (ω)

∣∣∣∣
ω=ξ

)
∆ωi

}
< 1.

Since ω is arbitrarily chosen in [ω1, ω2M+1), we have

σ̄{(W (ω)− Ŵ (ω))Ŵ (ω)−1} < 1 (4.37)
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for ∀ω ∈ [ω1, ω2M+1). Note that ω2M+1 = ω1 + 2π.

It is clear that

W (ω) = Ŵ (ω) + (W (ω)− Ŵ (ω))

= {I + (W (ω)− Ŵ (ω))Ŵ (ω)−1}Ŵ (ω),
(4.38)

from which, together with (4.37), it follows that

σ(W (ω)) ≥ [1− σ̄{(W (ω)− Ŵ (ω))Ŵ (ω)−1}]σ(Ŵ (ω))

> 0

and, hence, detW (ω) 6= 0 for ∀ω ∈ [0, 2π).

Using Lemma 17.5 in [40], it follows, from (4.37) and (4.38), that

wno detW (ω) = wno det Ŵ (ω).

Proof of Theorem 8. Proposition 5 guarantees that

σ̄(∆GY (ωi)), σ̄(∆GU(ωi)) ≤
2
√
α(Kx +Kf )

Aiσ(Λ)
(4.39)

for i = 1, · · · ,M , from which, together with Condition (1) in Theorem 8, it follows

that

σ(ĜU(ω))

> max
j∈{i,i+1}

σ̄
(
ĜU(ωj)−GU(ωj)

)
+ max

ξ∈[ωi,ωi+1]
σ̄

(
d

dω
GU(ω)

∣∣∣∣
ω=ξ

)
(ωi+1 − ωi)

for ∀ω ∈ [ωi, ωi+1), i = 1, · · · , 2M . With this condition, following the proof of

Theorem 7, it can be obtained that σ(GU(ω)) 6= 0 for ∀ω ∈ [0, 2π). This implies

that the plant P has no pole on the unit circle. Since C2 also has no pole on the

unit circle, there is no pole-zero cancellation on the unit circle between C2 and P .

Thus, in order to satisfy the first condition in Theorem 6 (1), we need to show

that Ξ2 = I +C2P has no zero on the unit circle, which is proved in the following.

From (4.19) and the fact that GY (ω) = P (ω)GU(ω) for ∀ω ∈ [0, 2π), it
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follows that

ĜY (ωi) = P (ωi)GU(ωi) + ∆GY (ωi)

= P (ωi)(ĜU(ωi)−∆GU(ωi)) + ∆GY (ωi)

i = 1, · · · ,M , from which, together with (4.17), it is clear that

∆P (ωi) , ĜY (ωi)ĜU(ωi)
+ − P (ωi)

= (∆GY (ωi)− P (ωi)∆GU(ωi))ĜU(ωi)
+

(4.40)

i = 1, · · · ,M since ĜU(ωi) has a full row rank. Then, it follows, from (4.40) and

(4.39), that

σ̄(Ξ̂k(ωi)− Ξk(ωi)) = σ̄(Ck(ωi)∆P (ωi))

≤ σ̄(Ck(ωi))
{
σ̄(∆GY (ωi)) + σ̄(P (ωi))σ̄(∆GU(ωi))

}
σ(ĜU(ωi))

≤ 2
√
α(Kx +Kf )σ̄(Ck(ωi))

{
1 + σ̄(P (ωi))

}
Aiσ(Λ)σ(ĜU(ωi))

for i = 1, · · · ,M , k = 1, 2. This inequality, combined with Condition (2) in The-

orem 8, ensures that the condition in Theorem 7 is satisfied and, hence, Theorem

7 guarantees that det Ξk(ω) 6= 0 for ∀ω ∈ [0, 2π) and

wno det Ξk(ω) = wno det Ξ̂k(ω) (4.41)

for k = 1, 2. Since det Ξ2(ω) does not go through the origin, the system Ξ2 =

I + C2P has no zero on the unit circle. Therefore, the first condition in Theorem

6 is satisfied.

By Theorem 6 (1) with (4.41), the condition (4.20) becomes a necessary

and sufficient condition for the internal stability of the closed-loop system (P,C2).

Proof of Theorem 9. Proposition 5 guarantees that

σ̄

([
∆Gyv(ωi)

∆Guv(ωi)

])
≤ 2
√
α(Kx +Kf )

Aiσ(Λ)
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for i = 1, · · · ,M , from which it follows that

σ̄(Ĝṽv(ωi)−Gṽv(ωi)) = σ̄

([
ÑC2(ωi) M̃C2(ωi)

] [∆Gyv(ωi)

∆Guv(ωi)

])

≤ 2
√
α(Kx +Kf )W̃2(ωi)

Aiσ(Λ)

(4.42)

for i = 1, · · · ,M where W̃2(ωi) = σ̄
([
ÑC2(ωi) M̃C2(ωi)

])
.

The inequalities in (4.25) and (4.42) ensure that the condition in Theorem

7 is satisfied and, hence, Theorem 7 guarantees that detGṽv(ω) 6= 0 for ∀ω ∈ [0, 2π)

and

wno detGṽv(ω) = wno det Ĝṽv(ω). (4.43)

Therefore, by Theorem 6 (2), the condition (4.26) becomes a necessary and suffi-

cient condition for the internal stability of the closed-loop system (P,C2).

Chapter 4 is a reprint of S. Cheong, R. R. Bitmead, “Divination of closed-

loop stability and performance via frequency response function estimates” as it

appears in Automatica, 2012. The dissertation author was the primary author of

this paper.



5 Controller Improvement via

Frequency Response Function

Estimates

5.1 Introduction

In the previous chapter, we proposed controller divination methods with

which we can, given an LTI prospective controller, investigate the closed-loop sta-

bility and performance without building the closed-loop with the controller. In

general, one may design prospective controllers in terms of parameters and inves-

tigate grid-points in the parameter space of prospective controllers. The number

of prospective controllers is large when the resolution of the grid is high. How-

ever, as long as the number of prospective controllers is finite, we can perform the

controller divination methods using computers.

In this chapter, given an internally stable multiple-input/multiple-output

(MIMO), linear time-invariant (LTI) plant-controller pair, (P,C1), with P uncer-

tain and C1 known, we seek a better controller in the sense of a given cost function

from deliberately designed experimental data obtained from the stable (P,C1)

closed loop with impinging disturbances. Our analysis starts with the experiment

and collected data consisting of the measurable physical signals applied to and

recorded from the closed loop, together with knowledge of the linear controller

C1. The problem addressed is to design and then use these applied signals plus

knowledge or assumptions about the plant and the disturbance signal to design a

controller with better performance, if possible.

86
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We formulate the controller design problem in the form of an optimization

based on the estimates of the frequency response functions (FRFs) of coprime fac-

tors of the plant. The cost function that we pursue in this optimization problem

is the weighted H∞-norm of the generalized sensitivity function of the closed-loop

system with the plant and a prospective controller. The stabilizing property of a

newly-designed controller, which is a necessary condition in our controller design,

can be confirmed by controller divination approaches in Chapter 4 without con-

structing the closed loop. This condition is included in the optimization problem

as a constraint and, hence, makes the optimization problem nonconvex. Thus, we

propose an algorithm where we solve the optimization problem without imposing

the constraint and, then, search over the controllers between the found controller

and the currently stabilizing controller. These approaches are via the estimation

of certain FRFs from the data set. The analysis proceeds using nonparametric

identification of the FRFs as opposed to parametric system identification, since

this avoids issues of model structure selection, and includes consideration of the

choice of applied signals and the experimental conditions. Thus, the controller

design procedure is based on quantitative system identification when the signals

necessarily are corrupted by disturbances entering the system.

In Section 5.2, given the collected data in Chapter 4, we introduce FRF

estimates of left and right coprime factors of the plant that satisfy the double

Bezout Identity. These estimates are employed in an optimal controller design

problem in Section 5.3.

5.2 Estimation of FRFs of coprime factors of a plant

5.2.1 Experiments and data collection

Consider an internally stable closed-loop MIMO LTI discrete-time system

(P,C1) in Figure 4.1. The `×m plant P is uncertain and the m× ` controller C1

is known. The signals in the closed-loop system consist of known external input

signals r and s, measured plant-input and plant-output signals u and y, and an

unknown disturbance or noise signal d.

In total, m+ ` distinct experiments are conducted and, in the j-th exper-
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iment, we apply N -periodic input signal[
rj(t)

sj(t)

]
= λj

M∑
i=1

Ai cos(ωit+ φi) (5.1)

for t = −Npre, · · · ,−1, 0, 1, · · · , LN − 1 where λj is the j-th column vector of

some (m+ `)× (m+ `) nonsingular matrix Λ, an integer M < N
2

is the number of

frequency components, and the frequencies are chosen as ωi = 2πki
N

for some integers

0 ≤ k1 < · · · < kM < N/2. The phases φis are arbitrarily chosen except φ1 = π/3

if ω1 = 0. Nonnegative integers Npre and L represent the pre-experiment length

and the repetition number of the periods. The data set from the experiments is

{(rj(t), sj(t), uj(t), yj(t)), t = 0, · · · , LN−1, j = 1, · · · ,m+`}. The pre-experiment

data (see [10]) for t = −Npre, · · · ,−1 is ignored. Then, the DFT of the input signals

is given by

Q(ω) ,
1√
LN

LN−1∑
t=0

[
r1(t) · · · rm+`(t)

s1(t) · · · sm+`(t)

]
e−jωt

for ω = 0, 2π
N
, . . . , 2π(N−1)

N
. From (5.1), It is clear that Q(ωi) = Ai

√
LN

2
ejφiΛ for

ωi 6= 0 and Q(ωi) = Ai
√
LN

2
Λ for ωi = 0.

Necessary notations follow. Let G(z) be a transfer function matrix in z-

transform.

• G(ω) is short for G(ejω) for ∀ω ∈ [0, 2π).

• σ (·) is the maximum singular values.

• ‖ · ‖2 is the induced 2-norm.

• ‖ · ‖∞ is the H∞-norm.

5.2.2 FRF estimates of coprime factors of the plant that satisfy the

double Bezout Identity

In this section, given the collected data rj(t), sj(t), uj(t), yj(t) for t =

0, · · · , LN − 1, j = 1, · · · ,m + `, we introduce FRF estimates of the left and the

right coprime factors of the plant that satisfy the double Bezout Identity.

Consider any prospective controller C2. Stable transfer functions M̃C1 ,

ÑC1 , M̃C2 , and ÑC2 are left coprime factors of C1 and C2, i.e. C1 = M̃−1
C1
ÑC1 and

C2 = M̃−1
C2
ÑC2 . These are used to generate an intermediate signal in (4.2) and the
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fictitious reference signal ṽ in (4.5).

From (4.4), we have

GyvG
−1
uv =

{
P (I + C1P )−1M̃−1

C1

}{
(I + C1P )−1M̃−1

C1

}−1

= P,

from which, together with the fact that Gyv and Guv are stable, it follows that Gyv

and Guv are right coprime factors of the plant. Furthermore, Gyv and Guv satisfy

ÑC1Gyv + M̃C1Guv = M̃C1 (C1Gyv +Guv) = I. (5.2)

For any given right coprime factors MC1 and NC1 of C1, i.e. C1 = NC1M
−1
C1

,

the closed-loop (P,C1) in Figure 4.1 can be redrawn as in Figure 5.1 and the signal

u
P

y

s
-
+

d

+
r

+

z
NC1 M−1

C1

++

Figure 5.1: A discrete-time closed-loop system equivalent to (P,C1)

z in Figure 5.1 can be described by

z =
[
Gzr Gzs

] [r
s

]
+Gzdd (5.3)

where [
Gzr Gzs

]
=
[
−M−1

C1
Gyr M−1

C1
(I −Gys)

]
=
[
−M−1

C1
(I + PC1)−1P M−1

C1
(I + PC1)−1

]
and Gzd = −M−1

C1
Gyd. From (5.3), we have

G−1
zs (−Gzr) =

{
M−1

C1
(I + PC1)−1

}−1 {
M−1

C1
(I + PC1)−1P

}
= P,

from which, together with the fact that Gzs and Gzr are stable, it follows that Gzs
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and −Gzr are left coprime factors of the plant. Furthermore, Gzs and −Gzr satisfy

(−Gzr)NC1 +GzsMC1 = (−GzrC1 +Gzs)MC1 = I. (5.4)

Denote (NP ,MP , ÑP , M̃P ) , (Gyv, Guv,−Gzr, Gzs). Then, from (5.2) and

(5.4), these coprime factors satisfy the double Bezout identity[
M̃C1 −ÑC1

ÑP M̃P

][
MP NC1

−NP MC1

]
=

[
MP NC1

−NP MC1

][
M̃C1 −ÑC1

ÑP M̃P

]
= I. (5.5)

The DFT of the intermediate signals {vj(t), t = 0, · · · , LN − 1, j =

1, · · · ,m+`} is V(ω) , 1√
LN

∑LN−1
t=0

[
v1(t) · · · vm(t)

]
e−jωt and satisfies V(ωi) =[

M̃C1(ωi) ÑC1(ωi)
]

Qm(ωi) for i = 1, · · · ,M where Qm(ωi) is composed of first

m columns of Q(ωi), provided that the initial conditions of C1 are appropriately

chosen or the effect of the initial conditions is negligible by a sufficiently long

pre-experiment.

The signals {zj(t), t = 0, · · · , LN − 1, j = 1, · · · ,m + `} are observed in

Figure 5.1 or computed from M−1
C1

and the input signals of C1. Their DFT is

Z(ω) , 1√
LN

∑LN−1
t=0

[
z1(t) · · · zm+`(t)

]
e−jωt.

The observed signal
[
uTj yTj

]T
in the j-th experiment is the sum of (i) the

sinusoidal steady-state response, (ii) the transient response, denoted by xj, due to

the initial state value, and (iii) the signal due to the disturbance dj.

The FRFs of Gyv, Guv, Gzr, and Gzs are estimated by[
Ĝyv(ωi)

Ĝuv(ωi)

]
,

[
Ym(ωi)

Um(ωi)

]
V(ωi)

−1

[
Ĝzr(ωi) Ĝzs(ωi)

]
, Z(ωi)Q(ωi)

−1

(5.6)

for i = 1, · · · ,M where Y(ωi) and U(ωi) are the DFTs of
[
y1(t) · · · ym+`(t)

]
and

[
u1(t) · · · um+`(t)

]
, respectively, and Ym(ωi) and Um(ωi) are composed of

first m columns of Y(ωi) and U(ωi), respectively.

Remark 3. Since we know the coprime factors satisfy the the double Bezout iden-

tity in (5.5), we can employ, as alternative estimates, solutions of optimization
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problems [
Ĝyv(ωi)

Ĝuv(ωi)

]
, arg min

G

∥∥∥∥∥
[
Ym(ωi)

Um(ωi)

]
V(ωi)

−1 −G
∥∥∥∥∥

2

subject to
[
ÑC1(ωi) M̃C1(ωi)

]
G = I

and [
Ĝzr(ωi) Ĝzs(ωi)

]
, arg min

G

∥∥Z(ωi)Q(ωi)
−1 −G

∥∥
2

subject to G

[
−NC1(ωi)

MC1(ωi)

]
= I.

5.2.3 Choice of coprime factors of C1 and the FRF estimation error

due to the disturbance signal

From (4.4) and V(ωi) =
[
M̃C1(ωi) ÑC1(ωi)

]
Q(ωi), we have

[
Y(ωi)

U(ωi)

]
=

[
Gyv(ωi)

Guv(ωi)

] [
M̃C1(ωi) ÑC1(ωi)

]
Q(ωi) + X(ωi) + F(ωi)

=

[
Gyv(ωi)

Guv(ωi)

]
V(ωi) + X(ωi) + F(ωi)

where X(ωi) is the DFT of the transient response and F(ωi) is the DFT of the

response to the disturbance signal. Since
[
M̃C1(ωi) ÑC1(ωi)

]
has full row rank,

if Q(ωi) has full column rank, then V(ωi) is nonsingular, which means that we do

not lose any frequency components in V(ωi).

Meanwhile, we have[
Ĝyv(ωi)

Ĝuv(ωi)

]
=

[
Y(ωi)

U(ωi)

]
V(ωi)

−1

=

[
Gyv(ωi)

Guv(ωi)

]
+ X(ωi)V(ωi)

−1 + F(ωi)V(ωi)
−1

=

[
Gyv(ωi)

Guv(ωi)

]
+ X(ωi)V(ωi)

−1 + F(ωi)
([
M̃C1(ωi) ÑC1(ωi)

]
Q(ωi)

)−1

.
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If
[
M̃C1(ωi) ÑC1(ωi)

]
is small, then the disturbance-error term might become

large. However, in this case

[
Gyv(ωi)

Guv(ωi)

]
would become large, too, since

[
M̃C1(ωi) ÑC1(ωi)

] [Gyv(ωi)

Guv(ωi)

]
= I,

which means roughly that the choice of coprime factors of C1 has little effect on

the signal-to-noise ratio of the FRF estimation of the transfer function. Similarly,

this property applies to the estimates
[
Gzr(ωi) Gzs(ωi)

]
.

5.3 Optimal controller design problem

Given a weighting function W (z) and a controller C = NCM
−1
C , we pursue

a performance measure

‖WTP,C‖∞ =

∥∥∥∥∥W
[
NP

MP

](
M̃CMP + ÑCNP

)−1 [
M̃C ÑC

]∥∥∥∥∥
∞

,

which is a weighted H∞ specification (see [30]). This measure can only be cal-

culated at ωi, i = 1, · · · ,M using the estimated values N̂P (ωi) and M̂P (ωi) for

i = 1, · · · ,M . Thus, a new controller is designed as a solution of an optimization

problem

min
C

max
i=1,··· ,M

σ̄

(
W (ωi)

[
N̂P (ωi)

M̂P (ωi)

](
M̃C(ωi)M̂P (ωi) + ÑC(ωi)N̂P (ωi)

)−1

×
[
M̃C(ωi) ÑC(ωi)

])
subject to (P,C) is stable,

where the stability of the closed-loop system (P,C) is investigated by the div-

ination methods in Section 4.4. This optimization problem is hard to solve both
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analytically and numerically. Thus, we employ a controller parameterization[
MC NC

]
=
[
MC1 NC1

]
+
[
QM QN

]
(5.7)

where

[
QM(z) QN(z)

]
= CQ(zI − AQ)−1BQ +DQ =

[
CQ DQ

] [(zI − AQ)−1BQ

I

]

with some fixed matrices AQ, stable, and BQ. This parameterization is based on

the Youla-Kučera parameterization and also addresses the fixed-order controller

design problem.

The optimization problem above is harder to solve than the high perfor-

mance design problem in [34], where a controller is designed based on information

on the frequency response functions over the entire frequency region.

The variables CQ and DQ are the new parameters determining the con-

troller C and the optimization problem becomes

min
CQ,DQ

max
i=1,··· ,M

σ̄

(
W (ωi)

[
N̂P (ωi)

M̂P (ωi)

]

×
([
M̃C1(ωi) +QM(ωi) ÑC1(ωi) +QN(ωi)

][M̂P (ωi)

N̂P (ωi)

])−1

×
[
M̃C1(ωi) +QM(ωi) ÑC1(ωi) +QN(ωi)

])
subject to (P,C) is stable.

In order to simplify this optimization problem, define new variables Πi for i =

1, · · · ,M in the optimization problem with additional constraints([
M̃C1(ωi) ÑC1(ωi)

]
+
[
CQ DQ

] [(ejωiI − AQ)−1

I

])([
M̂P (ωi)

N̂P (ωi)

]
Πi − I

)
= 0

(5.8)
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for i = 1, · · · ,M . Then, the optimization problem becomes

min
CQ,DQ,Π1,··· ,ΠM

max
i=1,··· ,M

σ̄

(
W (ωi)

[
N̂P (ωi)

M̂P (ωi)

]
Πi

)
subject to (P,C) is stable and (5.8).

Even with the parameterization of C in (5.7) and the introduction of Πi,

this optimization problem is still hard to solve. Thus, we propose an algorithm in

the following.

Algorithm 2.

Step 1. Find a solution,
[
C#
Q D#

Q

]
, of the bilinear matrix inequality problem

min
CQ,DQ,Π1,··· ,ΠM

max
i=1,··· ,M

σ̄

(
W (ωi)

[
N̂P (ωi)

M̂P (ωi)

]
Πi

)
subject to (5.8).

Step 2. Find the largest constant ε ∈ [0, 1] such that the closed-loop system (P,C)

with
[
CQ DQ

]
= ε

[
C#
Q D#

Q

]
is determined to be stable by the divination methods

in Section 4.4. The new controller comprises this
[
CQ DQ

]
.

The optimization problem in Step 1 in Algorithm 2 has a bilinear con-

straint and, to solve this problem, we can apply the XY-centering optimization

algorithm in [29] where the cost value of the optimization problem decreases and

for each cost value a feasibility problem is solved. Alternatively, this step can be

replaced with many optimization methods such as gradient methods in [2].

The controller designed by Algorithm 2 is not guaranteed to be the opti-

mal controller. This is not surprising since the optimal controller design problem

with the FRF estimates at a finite number of frequency values is much harder

than the design problem with the FRF estimates over the entire frequency range.

Specifically, the fixed-order optimal controller design problem involves the bilinear

constraint and, hence, it is even harder to find the optimal controller with a given

order. To compound matters, the final controller is chosen as one which uses a

proper fraction of the minimizing adjustment parameter but which is guaranteed

stabilizing. These are the rigors imposed by using solely the specific data sets and
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their corresponding FRF estimates.

In general, one may design prospective controllers in terms of parameters

and investigate grid-points in the parameter space of prospective controllers. The

number of prospective controllers is large when the resolution of the grid is high.

However, as long as the number of prospective controllers is finite, we can numer-

ically find a controller better than the current controller using computers. The

newly-designed controller may not be the optimal controller but this may be an

efficient way to find a controller better than the current controller.

5.4 Conclusion

A controller design method is introduced whose outcome is a new con-

troller that stabilizes an uncertain MIMO LTI plant P , provided that P is known

to be stabilized by a known MIMO LTI controller C1. This design process com-

mences with signal data collected from deliberately designed experiments on the

internally stable (P,C1) system. Based on collected signal data in a closed-loop

system, the FRFs of the plant or other transfer functions in (P,C1) are estimated.

The controller design method is formulated as an optimization problem and con-

troller improvement is performed by solving an optimization problem. The cost

function of this optimization problem is the H∞-norm of a weighted generalized

sensitivity function of a closed-loop system with the plant and a prospective con-

troller. In order to confirm that a new controller stabilizes the plant, controller

divination methods are employed as a constraint in the optimization problem and

this constraint makes the optimization problem nonconvex. To formulate a numer-

ically solvable optimization problem, we introduced an algorithm where we solve

the optimization problem without imposing the constraint and, then, search over

the controllers between the new controller and the currently stabilizing controller.

The final product of this algorithm is not guaranteed to be the optimal controller

and this is caused by the limitation of the nonconvex optimization problem.

Chapter 5 has been accepted for publication of S. Cheong, R. R. Bitmead,

“Controller improvement via frequency response function estimates” as it will ap-

pear in 16th IFAC Symposium on System Identification. The dissertation author

was the primary author of this paper.



6 Conclusions and Future

Research

6.1 Conclusions

The main contribution of this dissertation is development of data-based

assessment strategies for prospective controllers in the sense of the closed-loop

stability and performance. These strategies are tailor-made for our knowledge of a

plant and a disturbance signal and three different types of knowledge are considered

in this dissertation.

The most challenging circumstance studied in Chapter 2 is that we can

only observe the input and output signals of the plant and we have no other

knowledge of the plant and the disturbance signal. In this case, we first design

fictitious reference signals using the collected input-output data of the plant in

order to formulate fictitious closed-loop systems with the plant and the prospective

controllers. Then, we assign cost functions to these fictitious closed-loop systems

for the purpose of the controller assessment, e.g. a ratio of the truncated L2-norm

of the observed signals to the truncated L2-norm of the fictitious reference signals

for the purpose of checking the closed-loop stability. For the input-output data

collection from the plant, we design an experiment using the unfalsified adaptive

control where we assess all the prospective controllers at the same time as we collect

the data from the current closed-loop system. Since we do not know if the current

controller is a stabilizing (or well-performing) controller, we employ a switching

control scheme, in which we compare online the cost functions of the prospective

controllers and switch the one with the smallest cost into the loop. The stability

and performance of this closed-loop system is only guaranteed when one of the

96
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prospective controllers is feasible.

A better circumstance is considered in Chapter 3 where the plant is known

to be a SISO LTI discrete-time system and the disturbance signal is an i.i.d. ran-

dom process with zero mean, unknown bounded variance, and finite fourth mo-

ment. The closed-loop stability of a SISO LTI discrete-time controller is assessed

by performing a closed-loop experiment with the plant and the controller. Based

on the collected data, we employ least squares AR estimates with various orders.

Then, unstable poles of the closed-loop system, if they exist, are detected by a

least squares AR estimate with an appropriate order and, otherwise, the closed-

loop stability of the controller is indicated by a least squares AR estimate with

any order. Combining those two properties of the least squares AR estimates, we

propose an instability detection method to assess the closed-loop stability of the

current controller using a series of least squares AR estimates.

The circumstance considered in Chapter 4 is that the plant is a MIMO

LTI discrete-time system and is stabilized by a MIMO LTI controller and the

disturbance signal is additive to the output of the plant with a known bound.

From the internally stable closed-loop system, we collect signal data to obtain

FRF estimates of some transfer functions in the loop. Using these estimates, we

propose three divination approaches for the closed-loop stability and performance

of a prospective controller. These divination approaches are mainly based on the

Nyquist stability theorem combined with a reliable counting method for winding

numbers of some transfer functions. We also provide conditions under which the

divination approaches are reliable and suggest recommendations among the three

approaches.

Naturally, the divination ideas in Chapter 4 lead us to seek a new con-

troller with better performance than a currently stabilizing MIMO LTI discrete-

time controller, instead of just testing a given prospective controller. In Chapter

5, an optimization problem is formulated for the purpose of designing a MIMO

LTI discrete-time controller with the optimal performance. We, first, develop FRF

estimates of left and right coprime factors of the plant that satisfy the double

Bezout Identity. Then, the optimization problem is formulated in terms of the

FRF estimates for the coprime factors of the plant. In order to reduce the numer-
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ical difficulty of the optimization problem, we employ a controller parametrization

and propose an algorithm, although this algorithm may not produce the optimal

controller.

6.2 Future research

• Controller assessment approaches for nonlinear plants and/or controllers,

e.g. model predictive controllers.

• Application of unfalsified adaptive control to ARMA systems in Chapter

3 with cost functions built based on the least squares AR estimates of various

orders.

• Modification of the controller assessment approaches for the cases where

the data collection is interrupted or the operation is interspersed with experiments.

• Controller design and assessment at the same time as the data are col-

lected.
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