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One of the most challenging problems facing plasma physicists today involves the mod-

eling of plasma turbulence and transport in magnetic confinement experiments. The most

successful model to this end so far is the reduced gyrokinetic model. Such a model cannot

be solved analytically, but can be used to simulate the plasma behavior and transport with

the help of present-day supercomputers. This has lead to the development of many differ-

ent codes which simulate the plasma using the gyrokinetic model in various ways. These

models have achieved a large amount of success in describing the core of the plasma for

conventional tokamak devices. However, numerous difficulties have been encountered when

applying these models to more extreme parameter regimes, such as the edge and scrape-off

layer of the tokamak, and high plasma β devices, such as spherical tokamaks. The devel-

opment and application of the gyrokinetic model (specifically with the gyrokinetic code,

GENE) to these more extreme parameter ranges shall be the focus of this thesis.

One of the main accomplishments during this thesis project is the development of a

more advanced collision operator suitable for studying the low temperature plasma edge.

The previous collision operator implemented in the code was found to artificially create free

energy at high collisionality, leading to numerical instabilities when one attempted to model

the plasma edge. This made such an analysis infeasible. The newly implemented collision
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operator conserves particles, momentum, and energy to machine precision, and is guaranteed

to dissipate free energy, even in a nonisothermal scenario. Additional finite Larmor radius

correction terms have also been implemented in the local code, and the global code version

of the collision operator has been adapted for use with an advanced block-structured grid

scheme, allowing for more affordable collisional simulations.

The GENE code, along with the newly implemented collision operator developed in this

thesis, has been applied to study plasma turbulence and transport in the edge (ρtor = 0.9)

of an L-mode magnetic confinement discharge of ASDEX Upgrade. It has been found that

the primary microinstabilities at that radial position are electron drift waves destabilized

by collisions and electromagnetic effects. At low toroidal mode numbers, ion temperature

gradient driven modes and microtearing modes also seem to exist. In nonlinear simulations

with the nominal experimental parameters, the simulated electron heat flux was four times

higher than the experimental reconstruction, and the simulated ion heat flux was twice as

high. However, both the ion and electron simulated heat flux could be brought into agreement

with experimental values by lowering the input logarithmic electron temperature gradient

by 40%. It was also found that the cross-phases between the electrostatic potential and the

moments agreed well for the part of the binormal spectrum where the dominant transport

occurred, and was fairly poor at larger scales where minimal transport occurred.

Finally, a new scheme for evaluating the electromagnetic fields has been developed to

address the instabilities occurring in nonlinear local and global gyrokinetic simulations at

high plasma β. This new scheme is based on evaluating the electromagnetic induction

explicitly, and constructing the gyrokinetic equation based on the original distribution, rather

than the modified distribution which implicitly takes into account the induction. This new

scheme removes the artificial instability occurring in global simulations, enabling the study

of high β scenarios with GENE. The new electromagnetic scheme can also be generalized to

a full-f implementation, however, it would require updating the field matrix every time-step

to avoid the cancellation problem. The new scheme (including the parallel nonlinearity) does

not remove the local instability, suggesting that that instability (caused by magnetic field

perturbations shorting out zonal flows) is part of the physics of the local model.
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CHAPTER 1

Introduction

1.1 Nuclear fusion

Some of the most significant scientific and engineering challenges in the 21st century concern

the sustainability and scalability of humanity’s energy consumption, and the issue of climate

change caused by anthropogenic greenhouse gases from the burning of fossil fuels. Over

the last several decades, energy production, including that produced by fossil fuels, has

increased. Fig. 1.1 displays the amount of energy production by various sources in the

United States over time. In 2017, the burning of fossil fuels accounted for 77.6% of the

domestic energy produced in the United States. That includes 31.8% from natural gas, 28%

from petroleum, and 17.8% from coal. Nuclear fission energy was responsible for 9.6% of the

energy produced, while renewables made up 12.7% [1]. Nearly all of these resources are finite.

And with world-wide energy consumption expected to increase over the coming decades, it is

vital to implement a sustainable energy resource that can be scaled up to meet the increasing

demands of humanity. It is particularly important to replace fossil fuels which contribute to

climate change. The problems associated with climate change are numerous and profound.

They include widespread droughts, wildfires, flooding, hurricanes, crop failures, sea-level

rise, and mass extinction events [2, 3, 4]. To mitigate the damage from climate change, it is

essential to replace fossil fuels with a clean, sustainable energy source.

One candidate for replacement is the extension of existing renewable energy sources, such

as wind and solar. The share of energy production by renewable energy sources has been

increasing, and the costs of these sources continue to fall. According to the International

Renewable Energy Agency (IRENA), the price of solar energy has fallen by 69% between
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Figure 1.1: Energy consumption in the United States from various sources over time.

2010 and 2016, and the price of wind has fallen by 23% during the same period [5]. There is

also more than enough energy from the wind and the sun to meet humanity’s energy needs.

However, even though enormous energy could be gained from renewables, these sources do

not operate constantly, and the energy would have to be stored when the sun is not shining

and the wind is not blowing. Creating the infrastructure to store this energy and distribute

it efficiently without a supplemental energy source that operates constantly may prove to be

a significant challenge and a limitation of the scalability of such resources.

Another possibility is the extension of existing nuclear fission energy sources. Nuclear

fission could easily meet the world’s energy needs, if not indefinitely, then at least for a

very long period of time. In addition, there are no greenhouse gas emissions from fission

reactions. Nevertheless, there are problematic aspects of such an energy source. The use of

nuclear fission carries with it the risk of cataclysmic accidents. Examples include the disaster

at Chernobyl, where a catastrophic meltdown occurred after control over the nuclear chain

reactions were lost, as well as the disaster at Fukushima Daiichi, where a tsunami disabled

the generators that were used to pump water to cool the reactor vessel after the nuclear

reactor was shut down. There is also the problem of how to deal with the waste from nuclear

reactors. Such waste can last hundreds of thousands of years, and must be stored securely

and safeguarded against accidents and terrorism.
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The problems and challenges associated with fossil fuels, conventional renewable re-

sources, and nuclear fission motivate the study and consideration of nuclear fusion as an

energy source. The energy output from a nuclear fusion reaction is about an order of mag-

nitude higher than a nuclear fission reaction, and roughly a million times higher than a

combustion chemical reaction. Also, there are practically limitless supplies of materials

available for nuclear fusion (although it depends on the fusion reaction utilized), so the en-

ergy output from nuclear fusion plants could always be scaled to meet the world’s energy

needs, no matter how large those needs could grow in practical terms. Unlike solar and

wind power, prospective fusion reactors would reliably operate 24/7, so incorporating a fu-

sion reactor into an energy grid should not constitute a significant infrastructural challenge.

Such an energy source would also create no greenhouse gas emissions or long-lived nuclear

waste. Due to neutron emissions in fusion reactions, the reactor elements could become

activated. However, the materials for the reactor walls could be chosen such that the period

of activation is relatively short (decades) as opposed to nuclear waste from fission reactions

(hundreds of thousands of years). So the radioactive elements associated with nuclear fusion

could be stored for short-term periods in buildings as opposed to long-term permanent repos-

itories. Furthermore, there is no risk of uncontrolled chain reactions leading to meltdowns,

like there is in nuclear fission. For these reasons, it is worthwhile to invest significant time

and energy towards the study of potential fusion reactors, despite the substantial scientific

and engineering challenges associated with such pursuits.

The main challenge is exciting a macroscopic collection of atoms to a high enough energy

such that a large number of fusion reactions take place. The easiest fusion reaction to achieve

in this regard (because of its favorable cross-section) is the fusion of deuterium and tritium

into helium and neutron particles,

2
1D +3

1 T →4
2 He+1

0 n+ 17.6MeV.

Deuterium is a highly prolific isotope of hydrogen found in nature. It can be obtained

from ocean water in the form of HDO and D2O molecules. Tritium can be bred from lithium
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by bombardment with neutral particles,

6
3Li+1

0 n→4
2 He+3

1 T + 4.8MeV.

The tritium required for fusion reactions can therefore be regenerated by lining the reactor

walls with lithium. In this way, the tritium can then be continually recycled. In order

to achieve fusion, the system must be at such a high temperature, that it can only exist

as a plasma. In such a system, nearly all of the atoms are fully ionized, and respond

to the collective electromagnetic fields associated with the bulk motion of the particles,

and the small-angle scattering affiliated with occasional discrete particle interactions (to be

described in more detail later). The density of the plasma species, n, the temperature, T ,

and the energy confinement time, τE (the time-scale on which the energy can be maintained

in a fusion plasma), must all be large enough such that the energy output from the fusion

reactions exceeds the energy that it takes to heat the plasma to the ignition state. This

requires that the triple product of the aforementioned quantities exceeds a critical value, as

expressed by the Lawson Criterion for the deuterium-tritium reaction [6],

nTτE ≥ 3 ∗ 1021 keV ∗ s

m3
.

So to achieve meaningful energy output, a deuterium/tritium plasma with a high enough

density and temperature must be confined for a long enough period of time to satisfy the

Lawson Criterion. Some of the most popular schemes to this end are based on magnetic

confinement.

1.2 Magnetic confinement fusion

Because of the enormously high temperatures of fusion plasmas, confinement cannot be

maintained by material walls. Any such material would melt or corrode upon exposure to

such a hot plasma. This motivates the use of magnetic fields as a means of confinement.

Charged particles tend to go in helical orbits about field lines. This suggests the use of a
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toroidal magnetic field to trap the charged particles in helical orbits about closed field lines.

However, inhomogeneities in the magnetic field due to the curvature of the field lines and

the changing strength of the magnetic field lead to charge dependent drifts that separate the

ions and the electrons in the vertical direction (imagine the closed circular field lines lying

in a horizontal plane). This creates a vertical electric field, which, when combined with the

toroidal magnetic field, leads to an E×B drift of the charged particles outside of the device.

This confinement problem could be mitigated with the use of a poloidal magnetic field

component, which would help to remedy the drifts resulting in charge separation. This

can be done in different ways. One method would be to drive a rapidly changing magnetic

flux through the center of the toroidal confinement device. This changing magnetic flux

would induce a toroidal electric field via Faraday’s law, which would create a toroidal cur-

rent, which would then generate the desired poloidal magnetic field via Ampére’s law. The

class of magnetic confinement devices encompassing this philosophy are called tokamaks [6].

Alternatively, the field coils that generate the toroidal magnetic field can be twisted into

new shapes such that they generate a stabilizing poloidal component as well. The class of

magnetic confinement devices encompassing this philosophy are called stellarators [7]. The

configuration of tokamaks and stellarators are shown in Figure 1.2.

One of the main drawbacks of standard tokamaks (without external current drive) is that

they can only operate in the pulsed regime (because it is based on the transformer principle

and needs a continually increasing magnetic flux in order to operate). This is in contrast to

the stellarator, which can operate continuously. However, the design and construction of a

stellarator is a more complicated task due to the complex shape of the field coils which must

be designed and manufactured to high precision.

While power loads and complexity of design are certainly factors to be considered in

the design of a prototype fusion reactor, one of the most important considerations is the

confinement time of the plasma. The goal of enhancing the macroscopic stability of the

plasma and minimizing the transport of heat and particles outside of the device is the main

criterium used to judge the effectiveness of different confinement schemes. This is the reason

for the devotion of large amounts of time and resources toward studying different devices.
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Figure 1.2: Magnetic field configuration for a tokamak (left) and a stellarator (right). Source:
Max Planck Institute for Plasma Physics

As a first approximation, one could assume that the plasma is inherently stable and that

a charged particle in the device will travel in a helical trajectory along an orbit determined by

the drifts associated with an inhomogeneous magnetic field while occasionally experiencing

collisions that will move the particle to a different orbit. The transport of plasma would

then be a result of these collective particles moving towards orbits that progressively take

them farther to the edge of the device until eventually they reach an orbit that would result

in contact with the wall or divertor. Such a transport mechanism is known as neoclassical

transport.

While neoclassical transport can sometimes make up a significant portion of the overall

loss of confinement in some situations (particularly in transport barriers), it is found that

models based off of neoclassical predictions usually significantly under-predict the experi-

mentally observed level of particle and heat transport. This is because another important

transport mechanism has to be considered: anomalous transport. Anomalous transport

describes the transport associated with plasma turbulence arising from the small scale in-

stabilities (microinstabilities) resulting from the free-energy source of the temperature and

density gradients in the plasma discharge.

Deriving a comprehensive model for anomalous transport in magnetic confinement devices

is one of the major unsolved problems in plasma physics research. The equations that

describe the physics in a fusion reactor are nonlinear partial integro-differential equations that
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cannot be solved analytically to give the transport fluxes. One could determine confinement

quality by constructing a reactor, determining if the plasma discharges are stable, and if so,

measuring the transport fluxes of heat and particles out of the device. This is already being

done, but it requires enormous time and money. The devices of interest for future studies

will have an even larger size. Current magnetic confinement devices achieve densities of

n ∼ 1020m−3, temperatures of T ∼ 10keV, and confinement times on the order of∼ 0.1−0.3s,

where the confinement time is defined as energy contained in the plasma discharge divided

by the steady-state heating power required to maintain such a state. The densities and

temperatures required to achieve fusion have already been reached in present-day devices,

and current attempts to satisfy the Lawson criteria are based on designing devices to increase

the plasma confinement time. Both theory and experiment suggest that the confinement time

of a discharge can be increased by scaling up the size of the device, motivating the design

and construction of large scale experiments such as ITER (International Thermonuclear

Experimental Reactor), currently under construction in Cadarache, France. The largest

device until now has been the JET tokamak, with a plasma volume of 200m3. ITER will

have a volume of 800m3, and first plans for an actual demonstration power plant assume a

volume of ∼ 1200m3.

In fields such as aerodynamics and hydrodynamics, to determine if a large-scale system

(such as an airfoil or turbine) will work as expected, it is common to design a smaller scale

system operating in a different fluid, conduct tests of different aspects of the design, and

if successful, scale up the smaller system to the large-scale design originally planned. This

saves a lot of time and effort from constructing expensive large-scale experiments that could

potentially fail. The reason that this can be done is that the equations which govern fluid

flows in aerodynamics and hydrodynamics are often characterized by a single dimension-

less number. For instance, one equation used to characterize the dynamics of fluids is the

incompressible Navier-Stokes equation [8],

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u + g.

7



In the above equation, t represents time, u denotes the vector field representing the

flow at each point, p represents the pressure scalar field, ρ represents the mass density of

the incompressible fluid, ν denotes the kinematic viscosity, and g denotes the vector field

representing the acceleration that the fluid experiences at each point due to external forces

(typically gravity). A characteristic velocity and length scale (v and L respectively) can

then be defined and all of the dimensional quantities can be normalized to units based on

combinations of v, L, and ρ. The dimensionless incompressible Navier-Stokes equation can

then be derived:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u + g.

In the above equation, all quantities are in dimensionless units, and the Reynolds number

is defined as Re = Lv/ν. Since the above equation is in dimensionless units, this means that

the fluid can span a large range of flow, length, and mass density scales, and as long as the

Reynolds number is the same (and assuming the Navier-Stokes equation still describes the

fluid under consideration), the behavior of the fluid should be the same. This is an enormous

benefit to the researcher. If one wanted to study fluid flow over a hypothetical large scale

wing design, rather than constructing a large wing, one could build a smaller wing, and

study fluid flow over the wing using a fluid with a smaller viscosity than air. The behavior

of the fluid should then be the same as in the larger case.

The plasma physicist is not so lucky. The equations of plasma physics are not governed by

a single dimensionless parameter, such as a Reynolds number. Instead, there are numerous

dimensionless quantities characterizing plasma models, such as the normalized gyroradius,

the ratio of magnetic to kinetic pressure, the collisionality, etc. So one could not build a

small-scale magnetic confinement device to study the stability and transport properties of a

large-scale magnetic confinement device, because one could not reduce the scale while keeping

all dimensionless quantities constant and meeting the necessary criteria of a plasma. Some

scalings have been inferred based off of various existing experiments. However, if one wanted

to conduct definitive experiments related to large-scale magnetic confinement devices, one
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would have to build the large-scale device.

There is an alternative to solving analytical models and constructing large experimental

devices to model the stability and transport of different confinement schemes. One could

also construct numerical models of the plasma and carry out high performance computing

(HPC) simulations to determine the plasma characteristics associated with a given device.

While such simulations can be very expensive (on the order of tens of millions of CPU

hours), they are still far cheaper and can be done much more quickly than building large-

scale confinement devices. In addition to being faster and cheaper, such models can also give

great insight into the physics of the system because it is much easier and less error-prone to

construct high-resolution diagnostics of simulated data than experimental data, and there

are still many poorly understood phenomena that simulations can help elucidate.

One example is the existence of the H-mode plasma [9, 10]. It has been discovered experi-

mentally that when the external heating power of the plasma exceeds a certain critical value,

then a transport barrier forms in the edge of the plasma near the separatrix (the area where

the field lines go from closed to open), accompanied by steep density and temperature gradi-

ents, and the plasma goes from a lower confinement (L-mode) regime to a higher confinement

(H-mode) regime, as shown in figure 1.3. The H-mode plasma has a confinement time which

is about twice as high as the confinement time of an L-mode discharge. The reason why

the plasma transitions from an L-mode discharge to an H-mode discharge is still a mystery,

and it is difficult to discern the dynamics of such a transition from experimental diagnostics.

This example (and many others) provide a motivation for studying such discharges with

simulated models. However, in order to be successful with such an approach, it is important

to choose a comprehensive and tractable model of the plasma for the construction of a code.

9



Figure 1.3: The plasma pressure profiles associated with L-mode and H-mode discharges
[11]. The H-mode is associated with longer confinement times and a steep transport barrier
in the edge of the plasma. Understanding the L-H transition is one of many mysteries in
magnetic confinement plasma physics that simulations may help resolve.
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1.3 Plasma physics models

1.3.1 Plasma kinetic equation

The equation describing the evolution of the exact, microscopic distribution of all particles

(in the parameter range where quantum and relativistic effects can be neglected) is the

Klimontovich equation [12],

∂Fa
∂t

+ v · ∇Fa +
qa
ma

(E + v ×B) · ∂Fa
∂v

= 0.

In the above equation, t, x, and v parameterize time, configuration space, and velocity

space respectively. The microscopic distribution, Fp = Fp(x,v, t), provides information

about the location and velocity of particle p at a given time, t. The charge and mass

corresponding to particle p are given by qp and mp. The microscopic electric and magnetic

fields, E = E(x, t) and B = B(x, t), are evaluated from the Maxwell Equations,

∇ · E =
∑
p

ˆ
d3vqpFp(x,v, t)

∇ ·B = 0

∇× E = −1

c

∂B

∂t

∇×B =
4π

c

∑
p

ˆ
d3vqpvFp(x,v, t)−

1

c

∂E

∂t
.

While the above equations contain complete information about the plasma, they cannot

be evaluated numerically. There are too many particles in the plasma for a computer to

simulate, and the required resolution for the configuration and velocity space grid to model

the particle dynamics would be too high. Furthermore, one does not care about the micro-
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scopic particle distributions, because only the macroscopic quantities (such as the densities

or heat fluxes) are meaningful and can be compared to experimental data. To obtain a more

tractable equation, one can take an ensemble average of the Klimontovich equation over

all of the different microscopic states corresponding to a particular macroscopic system to

obtain an equation for the one-particle distribution function, f =< F >ensemble. Doing this,

one would arrive at the standard kinetic equation in plasma physics,

∂fa
∂t

+ v · ∇fa +
qa
ma

(E + v ×B) · ∂fa
∂v

= Ca.

In the above equation, fa = fa(x,v, t) represents the smooth six-dimensional macro-

scopic distribution function which represents the phase-space density of the charged particle

species, a. For this equation, a represents a collection of charged particles belonging to a

particular species such as ions or electrons. It does not correspond to individual particles.

In addition, the electric and magnetic fields, E and B, are the smooth macroscopic fields

that are determined by the bulk plasma particles, and it does not incorporate the fields that

would be observed on small microscopic distances close to a charged particle. The term on

the right-hand side is referred to as the collision operator, and its exact expression is given

by

Ca =
qa
ma

(Emacro + v ×Bmacro) · ∂fa
∂v
−
〈
qa
ma

(Emicro + v ×Bmicro) · ∂Fa
∂v

〉
ensemble

.

The collision operator acts as a correction term to the six-dimensional kinetic equation,

incorporating microscopic discrete particle effects. The extreme case in which the collision

operator is zero would correspond to the case where the large-scale electromagnetic fields are

determined by the bulk motion of many particles. This would mean that particle interactions

(through microscopic fields) are exceedingly rare and have little influence on the system as

a whole. This is a reasonable approximation in a hot and dilute plasma. When the density

is low, there are fewer particles to interact in a given volume, and when the temperature
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is higher, the cross-section for interaction is much lower, and particles tend to travel right

by each other, unless they happen to come very close. The case where collisions can be

neglected altogether is referred to as the Vlasov equation.

The necessary assumption for neglecting the collision operator (or using a simplified

form) can be expressed mathematically through the idea of the Debye length, λD, and the

distance of closest approach, λc. In a plasma near statistical equilibrium, the Debye length

corresponds to the length scale over which the electric field from a charge perturbation is

damped (or shielded). For a quasi-neutral plasma, the Debye length is given by

λD =
√
T/(4πne2).

In the above formula, e denotes the magnitude of charge associated with a proton or

electron. The distance of closest approach refers to the inter-particle spacing at which the

total energy of one particle in the electrostatic field of the other, U = 1
2
mv2 − e2/r, would

vanish. For a plasma at a temperature of T , this would correspond to

λc =
e2

T
.

λD corresponds to the length scale of the fields resulting from the collective plasma

particles. It exists independent of particle correlations. λc corresponds to the length scale of

the discrete particle interactions. If λD >> λc, then the charged particles will for the most

part undergo acceleration from the collective electromagnetic fields, and only occasionally

experience short range collisions. This is the necessary assumption for a weakly coupled

plasma, and can be encompassed by what is called the plasma parameter,

Λ =
λD
λc

=

√
T 3

4πne6
� 1.

The plasma parameter must be significantly large to justify modeling the plasma with

a six-dimensional distribution function. The plasma parameter increases with increasing

temperature and decreasing density as expected. In a tokamak, typical values of the plasma
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parameter are around Λ ∼ 108 [13], which is used as justification to model the plasma

dynamics with kinetic theory. The plasma parameter (and the criterion for a weakly coupled

plasma) is also related to the number of particles in a Debye sphere,

Λ = 4πnλ3
D � 1.

It is convenient, and in many cases justified, to neglect the collision operator modeling the

discrete particle effects in the plasma. Nevertheless, collisional effects can be important in

some regimes, such as the plasma edge and scrape-off layer in a magnetic confinement device.

Collisions act to smooth out the velocity space part of the six-dimensional distribution

function, and act as an important sink of free energy in the system (the Vlasov equation

conserves entropy). Even though it is practically impossible to model particle correlations

completely, a perturbative model acting as an operator on the six-dimensional distribution

function can be used to capture the most important collisional effects. An in-depth discussion

of the theory of collision operators and a description of the collision operator used in the

GENE code shall be given in chapter 3.

While the six-dimensional kinetic equation is far simpler than the Klimontovich equation,

it is still too expensive to use for modeling magnetic confinement devices such as tokamaks

and stellarators. The kinetic equation is used for the study of some plasma systems, such as

systems involving laser plasma interactions. But this is because the dynamics of such systems

occur on very fast time-scales. The important dynamics that occur in magnetically confined

plasmas exist over long time and space scales. The kinetic equation just derived can be used

to model very fast phenomena (on the order of the plasma frequency), and very small-scale

phenomena (on the order of the Debye length). Using such a model to study magnetic

confinement plasmas would be akin to trying to view a large photo at an extremely high

resolution. Doing so would be incredibly computationally expensive (impractically so), and

past a certain point, higher resolution provides no benefit.

In Chapter 2, a new, more computationally tractable kinetic model shall be obtained by

eliminating the fast and short-scale dynamics, in addition to one of the velocity space di-
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mensions. This is analogous to how the more computationally tractable kinetic equation was

derived from the Klimontovich equation by eliminating the extremely short-scales necessary

to model the particle interactions and the enormous number of degrees of freedom necessary

to track each particle. But first, more traditional reduced models based on treating the

plasma as a fluid shall be discussed.

1.3.2 Plasma fluid models

Plasma fluid models have no velocity space dependence and are obtained by taking moments

of the kinetic equation. To derive fluid models, one would multiply the kinetic equation by

vm, where m is a non-negative integer, and integrate over velocity space to obtain equations

for moments (such as density, flow, temperature, etc.) depending only on configuration

space. One would obtain an infinite set of equations for each m. Each equation which

solves for a given moment requires information about a higher order moment. So there is

an infinite hierarchy of equations which are all coupled. To obtain a finite set of equations

which could be solved, some closure condition must be applied to one of the higher order

moments (preferably based on a reasonable assumption applied to the plasma). Typically,

it is assumed that the distribution function is close to a local Maxwellian (which depends on

the lower order moments of density, flow, and temperature), and the higher order moments

which need to be obtained are derived by taking certain velocity space integrals of this

distribution which depends on the lower order moments. Thus, one would obtain a closed

set of equations which would be valid at high collisionality, since one used the assumption

that the distribution was close to a Maxwellian to apply the closure conditions. These

equations are called plasma fluid equations because they resemble the traditional equations

used to study fluid behavior (such as the Navier-Stokes equation). The notable distinction

is the effect of electric and magnetic fields on the fluid moments (which are still calculated

from the Maxwell equations, where the fluid moments are used for the charge and current

density).

By assuming quasi-neutrality and neglecting the electron inertia and Finite Larmor Ra-
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dius (FLR) effects, one can obtain the single fluid magnetohydrodynamic (MHD) equations.

This is a highly computationally tractable model which is commonly used to study macro-

scopic plasma stability. A given discharge can be studied to determine if it is stable according

to the MHD equations. MHD stability is a necessary but not sufficient condition for plasma

stability, meaning that if a given discharge is unstable according to the MHD model, then

the plasma is almost certainly unstable. However, if the discharge is MHD stable, then the

plasma could be unstable due to factors that are not incorporated into the MHD model. Fur-

thermore, there are phenomena that are observed both in magnetic confinement experiments

and MHD simulations such as sawteeth crashes and disruptions, and due to the relative sim-

plicity and computational tractability of the model, MHD simulations are a useful tool for

understanding the dynamics of such phenomena.

While fluid models may be a useful tool for investigating plasma stability and studying

certain plasma phenomena, they are not applicable to studying small-scale plasma turbulence

and transport, especially in the core of the discharge where the collisionality is very low. For

this, it is essential to have a model which includes important kinetic effects, such as Landau

damping, particle trapping, FLR effects, etc. Given that the standard plasma kinetic model

is too computationally expensive for this task, it is necessary to derive a new reduced kinetic

model, known as gyrokinetics.

1.4 Thesis outline

This thesis shall be devoted to the topic of collisional and electromagnetic gyrokinetic mod-

els, as well as the study of how the gyrokinetic model behaves when going from the core

(where the gyrokinetic model has been well validated in modeling the plasma turbulence and

transport) to the edge of a plasma discharge. The remainder of this thesis shall be outlined

in this subsection.

In chapter 2, a description of gyrokinetic theory and the gyrokinetic model used in the

GENE code shall be given, with the topic of collisions deferred until later. The assumptions

and ordering of gyrokinetics shall be presented, along with the full-f gyrokinetic equation.
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From there, the delta-f gyrokinetic equation shall be derived, a background Maxwellian

will be assumed, and the vector expressions shall be expanded based on the field-aligned

coordinate system. The equations used to solve for the fields shall also be derived from

the Maxwell equations using the pull-back operator and the gyrokinetic ordering. From

there, the normalization of the equations shall be detailed, the boundary conditions shall be

examined, and the numerical discretization of each coordinate in the GENE code shall be

described.

In chapter 3, a description of the linearized Sugama delta-f collision operator newly

implemented in the GENE code shall be given. The linearized Landau-Boltzmann collision

operator shall be derived starting from the full nonlinear Landau-Boltzmann operator. This

collision operator does not guarantee free energy dissipation in the nonisothermal case, and

a new operator shall be derived which satisfies this essential property. This derivation shall

follow the one outlined in ref. [14]. Following this, the FLR corrections to the collision

operator shall be derived for the local gyrokinetic model. Then the numerical implementation

of the collision operator shall be given. A set of tests shall be conducted to prove that the

collision operator conserves particles, momentum, and energy, and dissipates free energy.

Finally, benchmarks shall be performed to ensure correct implementation of the collision

operator.

In chapter 4, the local version of the GENE code shall be applied to study the edge of an

L-mode plasma discharge. First, the physical scenario under investigation shall be described.

Afterwards, the linear microinstabilities present at that radial position shall be examined.

Finally, the nonlinear turbulence simulations shall be discussed, with the focus being on the

transport levels, and the degree of nonlinearity in the system.

In chapter 5, a new implementation of the electromagnetic fields shall be described. This

implementation will then be linearly benchmarked, examined for stability in the Rosenbluth-

Hinton test, and then tested to see if such a model can mitigate the nonlinear instabilities

that occur at high plasma β.

Conclusions and an outline for potential future work shall be given in chapter 6.

17



CHAPTER 2

Fundamentals of gyrokinetic theory and simulation

The six-dimensional collisional kinetic equation described in the previous chapter should

be capable of simulating the transport in any practical magnetic confinement fusion device

owing to the hot and dilute nature of fusion plasmas. Such an equation could also simulate

the extremely fast phenomena of laser-plasma interactions, or the physics occurring in the

interstellar medium, the solar wind, or the sun. Unfortunately, a model which is so powerful

so as to be capable of describing such a diverse range of physical systems often has the

downside of being too computationally heavy to be useful in practical applications. A model

which has the capability of simulating the incredibly fast dynamics of light waves in plasmas

must also use very small time-steps in a simulation to resolve such phenomena, even if they

are irrelevant to the slower physics of the system. A model which has the capability of

simulating the small-scale dynamics along a strong magnetic field must have a high enough

resolution to capture this, even if the structures along the magnetic field tend to be very

large. This motivates the construction of a reduced model which is capable of simulating

the small-scale turbulence and transport occurring in a magnetic confinement fusion device,

and which is also computationally tractable on present-day supercomputers.

The most successful model to this end is the gyrokinetic model. The premise behind

gyrokinetics is that when a plasma is very strongly magnetized (in a magnetic confinement

device such as a tokamak or stellarator, the magnetic field strength is between 1-5 T) and

the transport and turbulent dynamics of interest are on long time-scales compared to the ion

cyclotron resonance, then the cyclotron motion can be regarded as instantaneous. In this

scenario, the particle which has six degrees of freedom (three degrees in configuration space

and three degrees in velocity space) can effectively be replaced with a ring which has five
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Figure 2.1: Depiction of gyromotion in a strong magnetic field. This figure has been taken
from ref. [15]

degrees of freedom (three degrees to specify the guiding center position of the ring, one degree

to specify the velocity along the magnetic field, and one degree to specify the perpendicular

speed or the size of the ring). Such a ring then experiences the typical drifts (E ×B, ∇B,

and curvature drifts) perpendicular to the magnetic field, and also undergoes different drifts

and acceleration forces along the magnetic field. However, the magnetic moment for the

ring is conserved as an adiabatic invariant in the collisionless limit. This is depicted with a

diagram in Fig. 2.1. This model eliminates the time scales above the ion cyclotron resonance,

the gyrophase angle dependence, and allows for a separation of scales along and across the

magnetic field. This gyrokinetic model allows for computationally tractable simulations of

plasma turbulence and transport.

Many different codes have been developed based on the gyrokinetic model to simulate

turbulence and transport. The discussion and results laid out in this thesis shall pertain to

the Eulerian gyrokinetic code, GENE (Gyrokinetic Electromagnetic Numerical Experiment)

[16, 17, 18]. GENE solves the 5D delta-f gyrokinetic equations on a fixed grid in phase space.

Only the perturbation is solved for, and all of the terms are evaluated with explicit time-

stepping schemes. GENE can operate as a local flux-tube model (which simulates a small
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radial domain of the plasma discharge using periodic boundary conditions) or as a global

model which takes into account the radial variation of the plasma profiles. Additionally,

a new version of the code which can utilize 3D boundary conditions is in development.

GENE has been highly optimized (especially relative to codes that do not rely upon field

aligned coordinates), is well benchmarked, and can efficiently scale up to tens of thousands

of processors. This makes GENE an ideal tool for the study of plasma turbulence and

transport.

This chapter is outlined in the following way: First, the underlying assumptions and

ordering of gyrokinetics shall be discussed in section 2.1. After that, the full gyrokinetic

equation shall be presented, as well as a physical interpretation of each of the terms in

section 2.2. The full derivation shall not be given, only described qualitatively. In section

2.3, the distribution function shall be split into a background and a perturbation. The

perturbation will be assumed to vary on the gyrokinetic ordering, and the original gyrokinetic

equation shall be expanded to first order to obtain the delta-f gyrokinetic equation. In

section 2.4, the background distribution shall be taken to be a Maxwellian, and the delta-f

equation shall be simplified according to this assumption. In section 2.5, the field-aligned

coordinate system shall be presented, and the vector expressions shall be expanded based

on this coordinate choice to obtain a scalar partial differential equation. In section 2.6, the

gyrokinetic field equations shall be obtained by transforming the distribution function from

gyrocenter coordinates to particle coordinates in the moments for the charge and current

density. In section 2.7, the diagnostic quantities relating to turbulent transport shall be

discussed. The normalization of the equations shall be given in section 2.8. The boundary

conditions for each dimension will be given in section 2.9, and the numerical discretization

applied to each coordinate of the 5D phase space will be given in section 2.10. This shall be

done for both the local flux-tube model and the global model. Finally, conclusions will be

drawn in section 2.11. Much of the discussion in this chapter shall be specific to the GENE

code. It must also be emphasized that this chapter does not include a discussion of collisions.

Because much of the work developed in this thesis relates to collision models, and because

collisions can be a very exhaustive topic which is treated on a different footing than the rest
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of the gyrokinetic model, chapter 3 is exclusively devoted to the topic of collision operators.

2.1 Assumptions and ordering of gyrokinetics

In order to obtain a simulation which can easily resolve the time, configuration space, and

velocity space scales of interest, one must first prescribe an ordering related to the system

under examination. One can then construct a Lagrangian based around that ordering and

discard higher order terms to build a model which is specifically tailored to the physics at

hand. In this section, the specific ordering relating to the gyrokinetic model in the GENE

code (there are several different gyrokinetic orderings leading to different model approxi-

mations) shall be discussed. It must be emphasized that the ordering used to construct

the gyrokinetic model is based upon experimental observations of plasma turbulence and

transport occurring within a magnetic confinement device. The ordering is as follows:

• The microturbulent fluctuations in the plasma are assumed to be highly anisotropic.

The correlation lengths of fluctuations across the magnetic field are about 10-100 gy-

roradii, while the correlation lengths along the magnetic field can be on the order of

several meters. This can be expressed mathematically as k‖/k⊥ ∼ ε‖ � 1. Here,

k‖ and k⊥ correspond to the typical parallel and perpendicular wavenumbers of the

turbulent fluctuations. Here, and for the remainder of the thesis, the words parallel

and perpendicular shall be used in reference to the background magnetic field unless

otherwise specified.

• The Larmor radius (ρa = v⊥/Ωa = v⊥mac/qaB) is very small compared to the length

scales corresponding to magnetic field variations (1/LB = (1/B)dB/dx) and variations

of the background equilibrium distribution (1/LF = (1/F0)dF0/dx). This can be

expressed mathematically as ρa/LB ∼ εB � 1 and ρa/LF ∼ εF � 1.

• The fluctuations of the field perturbations against the background profiles are all very

small. Additionally, it is assumed in the GENE code (and many other codes) that the

perturbations of the distribution function are very small compared to the background

21



equilibrium distribution, although this constraint can be removed for a full-f code. This

ordering is expressed mathematically as δf/F0 ∼ qδφ/Te ∼ q(v‖/c)A‖/Te ∼ δB‖/B0 ∼
εδ � 1.

• The frequency spectra of the turbulence and transport is very low compared to the ion

cyclotron frequency. This is essential if particles are going to be replaced by rings of

charge for a simulation modeling turbulence and transport. This ordering is expressed

mathematically as ω/Ωa ∼ εt � 1. Here, ω denotes the relevant frequency scale of the

plasma microturbulence and Ωa denotes the cyclotron frequency of species a.

• The time scales over which collisions alter the distribution function are very long in

comparison to the ion cyclotron gyration time. This is necessary if particles are going

to be replaced by rings of charge for the modeling of weakly collisional turbulence and

transport. This ordering is expressed mathematically as νa/Ωa ∼ εν � 1.

The above assumptions (in addition to the assumptions of the standard six dimensional ki-

netic equation) are the only ones needed to be able to apply the gyrokinetic model. While

fluctuation amplitudes have been found to be on the order of εδ ∼ 10% in the edge, and

the slow timescale assumption (εt � 1) makes a self-consistent study of the kinetics of

ion/electron cyclotron heating completely impossible, these assumptions have been found to

be broadly applicable for the study of transport in fusion plasmas. One thing that should also

be emphasized is that even though the variations of the background profiles must be large

compared to the ion/electron gyroradius, turbulent fluctuations with perpendicular correla-

tion lengths comparable to gyroradius scales can be handled by gyrokinetics. Mathematically

speaking, k⊥ρi/e ∼ 1 is allowed, as would be required to model microturbulent transport.

For the following discussion, all of the different ordering parameters (ε‖, εB, εF , εδ, εt, εν) shall

be taken to be roughly the same size, ε.
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2.2 The full-f gyrokinetic equation

To derive the gyrokinetic equation, one would start with the Lagrangian and Hamiltonian

of charged particles in electromagnetic fields. One could then derive the one-form, γ(x,v),

associated with that Lagrangian. The one-form is just the integrand of the action integral( ´
γ(x,v) =

´
L(x,v)dt

)
and is useful for facilitating coordinate transformations. One

could then transform the one-form from particle coordinates to guiding-center coordinates,

where the guiding-center is taken according a strong background magnetic field. At this

point, there is an equilibrium background part and a perturbed part associated with the

one-form. The equilibrium part is averaged over the gyroangle, and the perturbed part is

operated on by a Lie (near-identity) transformation based on the gyrokinetic ordering. The

result is a new gyrocenter one-form where the gyrophase dependence can be eliminated.

The gyrocenter is the same as the guiding-center, but is adjusted to account for field per-

turbations and inhomogeneities. From this one-form, the gyrokinetic Lagrangian can be

obtained. This Lagrangian can then be plugged into the Euler-Lagrange equations to obtain

the final gyrokinetic Vlasov equation. The derivation of the gyrokinetic equation shall not

be repeated here. Rather, the full equation shall simply be given and discussed. A highly

simplified derivation of the gyrokinetic equations for the reduced case of a straight, uniform

background magnetic field is given in ref. [15]. The complete derivation of modern gyroki-

netic theory is given in ref. [19, 20, 21, 22]. This theory is summarized in the review paper in

ref. [23]. A description of the mathematical perturbation theory necessary for the derivation

of gyrokinetics is given in ref. [24, 25]. A good overview of the derivation has been given in

PhD theses associated with the development of the GENE code in ref. [26, 27].

The full-f gyrokinetic Vlasov equation is given by

∂Fa
∂t

+
∂X

∂t
· ∇Fa +

∂v‖
∂t

∂Fa
∂v‖

= 0, (2.1)

where Fa = Fa(x, v‖, µ) is the full gyrocenter distribution function for species a in the full

5D phase space. A particle in the gyrokinetic framework is advected through configuration

space by the various plasma drifts, and accelerated along the magnetic field. However,
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the magnetic moment is conserved as an adiabatic invariant in the (collisionless) system.

This is reflected in the equation by the fact that there is no ((∂µ/∂t)∂Fa/∂µ) term because

(∂µ/∂t) = 0. The velocity which advects the plasma particles, ∂X/∂t, is given by

∂X

∂t
= vD =

(
v‖b̂0 +

B0

B∗0‖
(vχ + v∇B + vc)

)
,

where the new gyrokinetic potential, χ, has been introduced. The gyrokinetic potential has

the form,

χ = φ− v‖
c
A‖ +

µ

qa
B‖,

and the newly defined magnetic field, B∗0‖, has an expression given by

B∗0‖ = B0 +
mac

qa
v‖b̂0 ·

(
∇× b̂0

)
.

The over-bar on the fields denotes an average over the gyroradius,

ψ =

ˆ
dθ

2π
ψ(X + ρa), (2.2)

where X denotes the guiding center position, ρa denotes the gyroradius vector, and θ denotes

the gyroangle coordinate.

The advection term is a drift velocity which is a superposition of four different terms.

There is the standard parallel motion along the magnetic field, v‖b̂0, the E × B drift, vχ,

the drift due to the varying magnetic field strength, v∇B0 , and the drift due to the curvature

of the magnetic field lines, vc. The expressions for these drift velocities are

vχ =
c

B2
0

B0 ×∇χ

v∇B0 =
µc

qaB2
0

B0 ×∇B0
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vc =
v2
‖

Ωa

(
∇× b̂0

)
⊥.

The expression for the curvature drift velocity, vc, can be simplified using the Ampére

relation, ∇ × B = (4π/c)J, the MHD equilibrium expression, ∇p0 = (J0 × B0)/c, and the

vector identity, A× (B×C) = (A ·C)B− (A ·B)C,

vc =
v2
‖

Ωa

(
b̂0 ×

(∇B0

B0

+
β

2

∇p0

p0

))
,

where β denotes the ratio of the plasma pressure to magnetic field strength,

β =
8πp

B2
0

.

Finally, the expression for the acceleration along the magnetic field is given by

∂v‖
∂t

=
1

mav‖
vD · Fa.

The acceleration along the field lines is the most complicated term, and is given by the

dot product of a force, Fa, with the drift velocity normalized with respect to the parallel

velocity. The expression for Fa is given by

Fa = −
(
qa∇φ+

qa
c

∂A‖
∂t

b̂0 + µ∇
(
B0 +B‖

))
.

The force contributing to the parallel acceleration consists of the parallel electric field

due to both the electrostatic drive term and the induced electric field along the magnetic

field lines due to changing perpendicular magnetic fields, as well as the magnetic mirror force

that results from an inhomogeneous magnetic field.

The drifts and accelerations appearing in the gyrokinetic equation are more complex

than the drifts and accelerations appearing in the standard Vlasov equation. While the

equations are more complex, they are nevertheless easier to solve computationally. There
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is one less dimension in the system, a much larger time-step can be used to evolve the

system’s dynamics, and fewer grid points are needed to resolve the configuration space. If

one was to simulate transport using the standard 6D Vlasov model, the fast gyration and

the drifts associated with the electric field, the inhomogeneous magnetic field, and the field

line curvature would be become apparent in a simulation for which the gyrokinetic ordering

was accurate. This would be a “brute force” approach to resolving those features, and would

require an impossibly enormous amount of computational resources. One can dramatically

reduce the required resolution by working with a simulation where the drifts, magnetic

moment conservation, etc. are already explicitly part of the model. The complexity of

the model leading to drift motion and µ conservation is handled analytically to eliminate

the computational resources needed to handle such complexity. This is highly similar to

the derivation of the 6D kinetic equation from the Klimontovich equation. It is easy to

understand all of the parts of the Klimontovich equation, and deriving a 6D kinetic equation

from the Klimontovich equation results in a collision operator which can have a much more

complicated expression than any part of the Klimontovich equation. Nevertheless, such an

equation is far more suited to computational analysis.

2.3 The delta-f gyrokinetic model

While the full-f gyrokinetic equation (Eq. 2.1) can be used for modeling the plasma, there

are still several difficulties associated with such a model. The full distribution function by

definition must be a positive definite quantity. However, it has been found that the distribu-

tion function can occasionally become negative after numerical discretization is applied. It

is not trivial to come up with a computationally efficient numerical scheme which enforces

positive-definiteness on the distribution function. Furthermore, using the full distribution

function would require the implementation of a nonlinear field-solver for the field equations,

which is no trivial task. Also, the full-f Landau-Boltzmann collision operator is nonlocal in

velocity space, and would require a convolution integral, unlike the linearized model collision

operator (discussed in chapter 3). These difficulties (and several others) can be mitigated by
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separating the full distribution into a background part and a smaller perturbed part. One

can then approximately neglect higher order terms in the gyrokinetic ordering to obtain the

delta-f gyrokinetic equation,

The full-f gyrokinetic equation can be written in a more detailed form:

∂

∂t
(F0a + fa)+

(
v‖b̂0 +

B0

B∗0‖
(vχ + v∇B + vc)

)
·
(
∇(F0a + fa)−

1

mav‖

(
µ∇B0 + qa∇χ

)
∂

∂v‖
(F0a + fa)

)

− qa
mac

∂A‖
∂t

∂

∂v‖
(F0a + fa) = 0.

In the above expression, the full distribution, Fa, has been split into a background distribu-

tion, F0a, and a perturbed distribution, fa. The perturbed distribution is smaller than the

background by a factor of the gyrokinetic ordering, fa/F0a ∼ O(ε). It will be assumed that

the background distribution is stationary in time (the evolution of the background occurs on

the heating time-scale which is far slower than the turbulent transport time-scale). It will

also be assumed that the background distribution varies along and across the magnetic field

on the macroscopic length-scale (ẑ · ∇F0a) ∼ |ẑ × ∇F0a| ∼ O(F0a/LF ). The perturbation

varies along the magnetic field on the macroscopic length scale, (ẑ · ∇fa) ∼ O(fa/LF ), but

varies across the magnetic field on the scale of the gyroradius, |ẑ ×∇fa| ∼ O(fa/ρa). This

equation can be expanded to various orders in ε based on the gyrokinetic ordering discussed

in section 2.1. The full-f gyrokinetic equation to zeroth order in ε gives the equilibrium

constraint for the background distribution,

v‖b̂0 ·
(
∇F0a −

µ

mav‖

∂F0a

∂v‖
∇B0

)
= 0. (2.3)

The background distribution can in principle be anything as long as it satisfies the equi-
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librium constraint (Eq. 2.3). Expanding the equation to first order in ε gives the complete

delta-f gyrokinetic equation,

∂fa
∂t

+
B0

B∗0‖

(
vχ + v∇B + vc

)
·
(
∇(F0a + fa)−

1

mav‖

(
µ∇B0 + qa∇χ

)
∂F0a

∂v‖

)

+ v‖b̂0 ·
(
∇fa −

qa
mav‖

∂F0a

∂v‖
∇χ− µ

mav‖

∂fa
∂v‖
∇B0

)
− qa
mac

∂A‖
∂t

∂F0a

∂v‖
= 0. (2.4)

The second order terms in ε are generally neglected, but could be included in the model

relatively easily. These terms result in the parallel nonlinearity term:

(
− B0

B∗0‖

(
vχ + v∇B + vc

)
·
(

1

mav‖

(
µ∇B0 + qa∇χ

))
+

qa
ma

(
B0

B∗0‖
b̂0 · ∇χ−

1

c

∂A‖
∂t

))
∂fa
∂v‖

.

2.4 Equilibrium background distribution

Any background distribution that meets the constraint in Eq. 2.3 can be utilized in the

gyrokinetic model. This could be a Maxwellian, bi-Maxwellian, kappa distribution, bump-

on-tail distribution, or an arbitrary distribution based on experimental measurements. Non-

maxwellian background distributions have also been incorporated as a feature in the GENE

code. However, in most cases, GENE is deployed with Maxwellian background distributions

for all species in a simulation,

F0a = FMa =
n0a(x)

π3/2v3
Ta(x)

exp

(
−
mav

2
‖/2 + µB0(x)

T0a(x)

)
. (2.5)

In the above formula, n0a(x) denotes the density of species a, T0a(x) denotes the tempera-

ture and vTa(x) =
√

2T0a(x)/ma denotes the thermal velocity. The Maxwellian distribution

is commonly used because it is the solution to the gyrokinetic equations for thermalized

plasmas and because it only requires information about the density, temperature, and mag-
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netic field strength associated with the background profiles. Experimentalists can construct

profiles of the density and temperature for ions and electrons based on experimental mea-

surements. The magnetic field strength and geometry information can be reconstructed from

an MHD equilibrium either from the Grad-Shafranov equation [28] or from an MHD equi-

librium code [29, 30]. Obtaining more detailed information, and thereby constructing more

elaborate backgrounds closer to reality, is much harder. However, many different distribu-

tions are acceptable as a background distribution, as long as the delta-f approximation and

the equilibrium constraint (Eq. 2.3) still holds to a satisfactory degree. Non-Maxwellian

background distributions have recently been implemented in the GENE code and used to

study fast particle effects [31]. For the remainder of this thesis, the Maxwellian distribution

shall be taken as the background for discussions of theory and simulation. The derivatives

of the background are as follows:

∇FMa =

(∇n0a

n0a

+
∇T0a

T0a

(
mav

2
‖/2 + µB0

T0a

− 3

2

)
− ∇B0

B0

µB0

T0a

)
FMa

∂FMa

∂v‖
= −mav‖

T0a

FMa

∂FMa

∂µ
= −B0

T0a

FMa.

When these derivatives are plugged into the delta-f gyrokinetic equation, the simplified

formula for the delta-f equation is obtained,

∂fa
∂t

+
B0

B∗0‖

(
vχ + v∇B + vc

)
·
(∇n0a

n0a

+
∇T0a

T0a

(
mav

2
‖/2 + µB0

T0a

− 3

2

)
− ∇B0

B0

µB0

T0a

)
FMa

+
B0

B∗0‖

(
vχ + v∇B + vc

)
·
(
∇fa +

(
µ∇B0 + qa∇χ

)
FMa

T0a

)
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+ v‖b̂0 ·
(
∇fa + qa

FMa

T0a

∇χ− µ

mav‖

∂fa
∂v‖
∇B0

)
+
qav‖
c

∂A‖
∂t

FMa

T0a

= 0. (2.6)

2.5 Expansion of vector expressions

In order to implement the gyrokinetic equation numerically, a coordinate system must be

chosen, and the vector expressions appearing in the equation must be expanded with regards

to that coordinate system in configuration space. The following scalar partial differential

equation can then be discretized and implemented as computer code. The coordinate system

implemented in the GENE code is the field-aligned coordinate system. In an MHD equilib-

rium configuration, the magnetic field lines lie on surfaces that enclose a given amount of

magnetic flux, called flux surfaces. The radial coordinate that parameterizes the flux sur-

face in the simulation is denoted by x. The coordinate parameterizing the surface which is

perpendicular to the field lines is denoted by y, and z is taken to be the coordinate which is

parallel to the field lines. By using this more complex non-orthonormal coordinate system,

one can use fewer points in the z dimension because of the natural separation of scales oc-

curring in the highly-anisotropic plasma. Since the correlation length of structures along the

magnetic field are ∼ 1000 times larger than structures perpendicular to the magnetic field,

this coordinate system makes simulations ∼ 1000 times less expensive in terms of resolution.

The downside of this approach is that such a coordinate system becomes singular at the

separatrix (where the field lines go from closed to open) and at the very inner points in

the core of the plasma where the flux surface encloses vanishingly small flux. Nevertheless,

such a coordinate system has been highly beneficial for studying transport in the core. For

more information, ref. [32] is a highly useful source for understanding non-orthonormal flux

coordinates. The background magnetic field is regarded as being proportional to the cross

product of the gradients of the two perpendicular coordinates,

B0 = C∇x×∇y,
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where C is the constant of proportionality. The geometry of the coordinate system can be

described with the set of contravariant metric coefficients,

gij = (∇ui · ∇uj) =

( gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

)
.

In the above expression, ui can correspond to the x, y, or z coordinate. The indices which

loop over all configuration space variables are denoted by i and j. The coordinate system

also has the Jacobian, J, expressed as

1

J
= (∇x×∇y) · ∇z =

B0 · ∇z
C

.

As will become clear very soon, it is useful to group the contravariant metric tensor elements

together into certain expressions,

γ1 = gxxgyy − gyxgxy

γ2 = gxxgyz − gyxgxz

γ3 = gxygyz − gyygxz.

The magnetic field strength can be expressed as

B2
0 = B0 ·B0 = C2(gxxgyy − gxygyx) = C2γ1.

There are two types of vector expressions appearing in the gyrokinetic equation: B0 · ∇ and

(1/B2
0)(B0 ×∇ψ) · ∇. These can be expressed for the field-aligned coordinate system as
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B0 · ∇ = C
(
∇x×∇y

)
· ∇ui ∂

∂ui
=
C

J

∂

∂z
(2.7)

1

B2
0

(
B0 ×∇ψ

)
· ∇ =

C

B2
0

((
∇x×∇y

)
× ∂ψ

∂ui
∇ui

)
· ∇uj ∂

∂uj
=

1

C

gxigyj − gyigxj
γ1

∂ψ

∂ui
∂

∂uj

=
1

C

(
−
(
∂ψ

∂y
+
γ2

γ1

∂ψ

∂z

)
∂

∂x
+

(
∂ψ

∂x
− γ3

γ1

∂ψ

∂z

)
∂

∂y
+

(
γ2

γ1

∂ψ

∂x
+
γ3

γ1

∂ψ

∂y

)
∂

∂z

)
. (2.8)

Before plugging these expressions into the gyrokinetic equation, it is worth noting the fol-

lowing configuration space derivatives of the background Maxwellian distribution:

∂FMa

∂x
=

(
1

n0a

∂n0a

∂x
+

1

T0a

∂T0a

∂x

(
mav

2
‖/2 + µB0

T0a

− 3

2

)
− 1

B0

∂B0

∂x

µB0

T0a

)
FMa

∂FMa

∂y
= − 1

B0

∂B0

∂y

µB0

T0a

FMa

∂FMa

∂z
= − 1

B0

∂B0

∂z

µB0

T0a

FMa.

The density and temperature profiles do not have a y or z dependence because it is

assumed that these values are constant on a flux surface (although this would change for the

code version which allows for 3D boundary conditions). Furthermore, it is useful to define

the following variable:

Γa,i =
∂fa
∂ui

+

(
qa
∂φ

∂ui
+ µ

∂B‖
∂ui

)
FMa

T0a

. (2.9)

Using these expressions, it is now possible to write down the gyrokinetic equation, free from

vector expressions, for the field-aligned coordinate system,
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∂fa
∂t

=
c

C

B0

B∗0‖

(
1

n0a

∂n0a

∂x
+

1

T0a

∂T0a

∂x

(
mav

2
‖/2 + µB0

T0a

− 3

2

))
FMa

∂χ

∂y

+
c

C

B0

B∗0‖

µB0 +mav
2
‖

qaB0

(
∂B0

∂y
+
γ2

γ1

∂B0

∂z

)
Γa,x

− c

C

B0

B∗0‖

(∂χ
∂x

Γa,y −
∂χ

∂y
Γa,x

)
− C

JB0

v‖Γa,z +
C

JB0

µ

ma

∂B0

∂z

∂fa
∂v‖

− c

C

B0

B∗0‖

(
µB0 +mav

2
‖

qaB0

(
∂B0

∂x
− γ3

γ1

∂B0

∂z

)
+
mav

2
‖

qa

β

2

1

p0

∂p0

∂x

)
Γa,y

+
c

C

B0

B∗0‖

mav
2
‖ + µB0

qaB0

(
∂B0

∂y
+
γ2

γ1

∂B0

∂z

)(
1

n0a

∂n0a

∂x
+

1

T0a

∂T0a

∂x

(
mav

2
‖/2 + µB0

T0a

− 3

2

))
FMa.

(2.10)

2.6 Gyrokinetic field equations

In order to evaluate the gyrokinetic equation, the electromagnetic fields must also be evalu-

ated. Appropriate field equations must be derived from the original Maxwell equations for

the electrostatic potential, φ, and the magnetic vector potential, A,

−∇2φ = 4πρ(x) = 4π
∑
a

qana(x)

−∇2A =
4π

c
J(x) =

4π

c

∑
a

qana(x)ua(x).

In the equation for the magnetic vector potential, A, the Coulomb gauge is utilized (∇·A =

0). The moments that are used to evaluate the fields are obtained from integrals of the

distribution function,
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na(x) =

ˆ
d3vfa(x,v)

ua(x) =
1

na(x)

ˆ
d3vvfa(x,v)

Ta(x) =
1

na(x)

ˆ
d3v

1

2
ma(v − ua)

2fa(x,v).

These moments represent the density, flow, and temperature respectively. All that is

needed to obtain the gyrokinetic field equations is to transform the distribution function

from gyrocenter coordinates to guiding-center coordinates with the pull-back operator, T ∗,

evaluate the integrals in guiding-center coordinates rather than particle coordinates, and to

eliminate higher order terms from the equations based on the gyrokinetic ordering (see refs.

[26, 27, 23] for more details). The necessary moments can be evaluated from the distribution

in particle, guiding-center, and gyrocenter coordinates:

Mmn,a(x) =

ˆ
d3vvm‖ v

n
⊥f

(particle)
a (x,v)

Mmn,a(x) =

ˆ
d3Xdv‖dµdθδ(X− (x− ρ))f (guiding−center)

a (X,V)vm‖ v
n
⊥
B∗0‖(x,v)

ma

Mmn,a(x) =

ˆ
d3Xdv‖dµdθδ(X− (x− ρ))T ∗{f (gyrocenter)

a (X,V)}vm‖ vn⊥
B∗0‖(x,v)

ma

Mmn,a(x) =

ˆ
d3Xdv‖dµdθδ(X− (x− ρ))·
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(
fa(X,V)−

(
qaφ(x)− qaφ(X)− µB‖(X)

)FMa

T0a

)
vm‖ v

n
⊥
B∗0‖(x,v)

ma

. (2.11)

In the last expression, the pull-back operator has been applied to the distribution function,

T ∗{fa} = fa − (qaφ(x)− qaφ− µB‖)
FMa

T0a

.

The following simplification shall also be made regarding B∗0‖ in the field solver:

B∗0‖ = B0 +
mac

qa
v‖b̂0 ·

(
∇× b̂0

)
' B0.

The additional term in B∗0‖ is considered to be O(εB) compared to B0 and is neglected,

thereby simplifying the analysis. In addition to the original gyroaverage definition introduced

in Eq. 2.2, an additional gyroaveraging procedure must also be defined,

〈
ψ
〉

=

ˆ
d3X

dθ

2π
δ(X− (x− ρa))ψ(X). (2.12)

With the proper expressions for the moments and gyroaveraging procedures defined, the

field solver for φ, A‖, and B‖ can now be obtained. The gyrokinetic field equation for φ is

as follows:

∇2
⊥φ(x) = −4π

∑
a

qaM00,a(x)

∇2
⊥φ(x) = −8π2

∑
a

qa
ma

ˆ
dv‖dµ

(〈
faB0

〉
− qaB0FMa

T0a

φ(x) + qa
〈B0FMa

T0a

φ
〉

+ µ
〈B0FMa

T0a

B‖
〉)

∇2
⊥φ(x) + 8π2

∑
a

qa
ma

ˆ
dv‖dµ

(
qa
〈B0FMa

T0a

φ
〉
− qaB0FMa

T0a

φ

)
=
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−8π2
∑
a

qa
ma

ˆ
dv‖dµ

(〈
faB0

〉
+ µ
〈B0FMa

T0a

B‖
〉)
.

The parallel part of the Laplacian has been discarded based on the gyrokinetic ordering.

Additionally, it was assumed that the plasma was quasineutral (
∑

a qan0a = 0) so that only

the perturbed distribution has to be considered. The equation for the parallel magnetic

vector potential is given as follows (the parallel part of the Laplacian has once again been

excluded):

∇2
⊥A‖ = −4π

c
J‖ = −4π

c

∑
a

qaM10,a(x)

∇2
⊥A‖ = −8π2

c

∑
a

qa
ma

ˆ
dv‖dµv‖

〈
faB0

〉
.

Finally, the parallel magnetic field can also be obtained,

(
∇× δB

)
⊥ =

∂B‖
∂y

x̂− ∂B‖
∂x

ŷ =
4π

c
J⊥

=
4π2

c

∑
a

qa

(
2

ma

)3/2 ˆ
dv‖dµ

√
µ

〈
v̂⊥B

3/2
0

(
fa +

qaFMa

T0a

φ+
qaFMa

T0a

B‖

)〉
,

where the perpendicular velocity vector is defined (in local orthogonal coordinates) as

v̂⊥ = − sin(θ)x̂− cos(θ)ŷ.

These equations can be used to determine the electromagnetic fields utilized in the gy-

rokinetic equation. The only complication is that the equations for φ and B‖ are coupled

together. This problem can be remedied in the local version of the code where the derivatives

are replaced by wavenumbers and the gyroaveraging is replaced with Bessel functions. In

that case it is easy to rewrite the equations so they are decoupled. It is not as straightfor-

ward for the global version of the code where the gyroaveraging and the derivatives have a
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more complicated form. For this reason, B‖ fluctuations have been implemented in the local

version of the code, but implementing them into the global version is a work in progress.

2.7 Turbulent transport observables

A description of the gyrokinetic integro-differential equations implemented in the GENE

code has been given (with a discussion of collisions deferred until chapter 3). However, the

fundamental quantities related to plasma transport (the radial particle, heat, and momentum

fluxes) have not been expressed. These are calculated as moments of the distribution function

and then occasionally output from the code as a diagnostic (how often they are output can

be set by the user). In order to have an expression for the radial fluxes, the flux-surface

average definition must be used,

{
Φ

}
(x) =

´ ´ ´
JΦ(x′)δ(x− x′)dx′dy′dz′´ ´ ´

Jδ(x− x′)dx′dy′dz′ .

This represents the average of an arbitrary quantity, Φ, over a flux surface located at a

particular radial position. The radial transport of particles, heat, and parallel momentum

are associated with the radial drift velocity, vrD, and are defined as

Γa(x) =

{ˆ
d3vvrDfa(x,v)

}

Qa(x) =

{ˆ
d3v

ma

2
v2vrDfa(x,v)

}

Πa(x) =

{ˆ
d3vmav‖v

r
Dfa(x,v)

}
.

The total drift velocity in the gyrokinetic model is associated with three different drift

velocities: the drift due to field fluctuations (E×B drift), the drift due to the inhomogeneous

magnetic field strength (∇B drift), and the drift due to the curvature of the field lines
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(vc drift). For the case of turbulent transport, only the drift due to the field fluctuations

contributes. The other drifts exist independent of the perturbed distribution function, and

can be considered in a neoclassical code (in a neoclassical model, turbulence is not considered

and the transport is due entirely to collisions and field line curvature). While GENE can

operate as a neoclassical code, the code is mainly used to simulate the anomalous transport,

which is typically the dominant transport occurring in the plasma. The discussion here shall

be specific to turbulent transport. For more information on measurements of neoclassical

transport with GENE, see ref. [33]. The radial E × B drift velocity, vrχ, is the advection

mechanism responsible for turbulent transport,

vrχ = vχ · ∇x = − c

C

(
∂χ

∂y
+
γ2

γ1

∂χ

∂z

)
' − c

C

∂χ

∂y
≡ vrχ,y.

It has been assumed that the ∂χ/∂z term can be neglected due to the scale separation

along and across the magnetic field. The transport can also be decomposed into an electro-

static and an electromagnetic part because the same separation property exists in the drift

velocity,

vrχ,y =
1

C

(
− c∂φ

∂y
+ v‖

∂A‖
∂y

+ v⊥ ·
∂A⊥
∂y

)
.

The turbulent transport fluxes can now be expressed more specifically,

Γturbulent
a (x) =

{ˆ
d3vvrχ,yfa(x,v)

}

Qturbulent
a (x) =

{ˆ
d3v

ma

2
v2vrχ,yfa(x,v)

}

Πturbulent
a (x) =

{ˆ
d3vmav‖v

r
χ,yfa(x,v)

}
.

In the absence of B‖ fluctuations (this is not included in the global code version, for

information on the implementation in the local code version, see ref. [33]) the transport
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fluxes can be expressed in terms of the moments in Eq. 2.11,

Γturbulent
a (x) =

{
− c

C

∂φ

∂y
M00,a +

1

C

∂A‖
∂y

M10,a

}
(2.13)

Qturbulent
a (x) =

ma

2

{
− c

C

∂φ

∂y

(
M20,a +M02,a

)
+

1

C

∂A‖
∂y

(
M30,a +M12,a

)}
(2.14)

Πturbulent
a (x) = ma

{
− c

C

∂φ

∂y
M10,a +

1

C

∂A‖
∂y

M20,a

}
. (2.15)

The radial drift velocity can also be evaluated as vrχ = vχ · ∇x/|∇x| as opposed to

vrχ = vχ · ∇x which has the benefit of removing the radial dependence of the integration

element (and is the default option in GENE prerelease-1.6). This would modify the fluxes by

an additional factor of 1/
√
gxx. However, evaluating the radial drift velocity as vrχ = vχ ·∇x

leads to a more relevant definition of the flux as far as the transport equations are concerned,

and is the default option in the current version of the GENE code. This option can be

changed with the norm_flux_projection parameter.

2.8 Normalization

Now that the fundamental equations and diagnostics have been derived, the next important

step is normalization. This must be done prior to discretization because computers can only

work with unitless quantities. All quantities can be normalized with appropriate combina-

tions of 5 input terms with units that are specific to the discharge under investigation: A

reference length scale, Lref , a reference magnetic field strength, Bref , a reference temperature,

Tref , a reference mass, mref , and a reference density, nref . With these five reference quantities,

it is useful to derive the following constants:

cref =
√
Tref/mref Ωref = eBref/(cmref) ρref = cref/Ωref

39



ρ∗ref =
ρref

Lref

βref =
8πnrefTref

B2
ref

νc =
πe4nrefLref ln(Λ)

23/2T 2
ref

.

The constants cref , Ωref , and ρref define the scales for the sound speed, the cyclotron

frequency, and gyroradius in the system. In addition, ρ∗, βref , and νc are the three parameters

in the normalized gyrokinetic equation that depend on the external reference quantities.

Besides these three parameters, the reference quantities are only used for computing the

diagnostics in meaningful units. The magnetic field, density, and temperature profiles are

normalized as

B0 = BrefB̂0(x) n0a = nref n̂0a(x0)n̂pa(x) T0a = Tref T̂0a(x0)T̂pa(x).

The variables n̂0a(x0) and T̂0a(x0) are the normalized values at the center of the flux-tube,

and n̂pa(x) and T̂pa(x) contain the profile dependence and vary with radial position. The

reason the profiles are defined this way is so that GENE can more easily act as either a local

or global code. The configuration space coordinates are normalized as

x = ρref x̂ y = ρref ŷ z = ẑ

kx =
1

ρref

k̂x ky =
1

ρref

k̂y.

Since x and y parameterize the region perpendicular to the magnetic field, it makes sense

to normalize these coordinates with respect to the gyroradius. z is interpreted as a straight

field-line angle, and considered unitless (the units are carried by the Jacobian). The magnetic

field line geometry is normalized as

γ1 = γ̂1 γ2 =
1

Lref

γ̂2 γ3 =
1

Lref

γ̂3
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C = BrefĈ F = Lref Ĵ.

The normalization of the various parameters associated with the gyromotion is straightfor-

ward,

qa = eq̂a ma = mrefm̂a

ρa = ρref ρ̂a Ωa = ΩrefΩ̂a.

The velocity space is normalized with respect to the thermal velocity of a given species,

v‖ = cref

√
2T̂0a(x0)

m̂a

v̂‖ v⊥ = cref

√
2T̂0a(x0)

m̂a

v̂⊥ µ =
Tref

Bref

T̂0a(x0)µ̂.

The background distribution is normalized such that its velocity space integral provides

the density. The perturbed distribution is normalized the same way, except that there is an

additional ρref/Lref factor due to the delta-f gyrokinetic ordering,

F0a =
nref n̂0a(x0)

c3
ref v̂

3
Ta(x0)

F̂0a fa =
nref n̂0a(x0)

c3
ref v̂

3
Ta(x0)

ρref

Lref

f̂a.

Time is normalized as

t =
Lref

cref

t̂
∂fa
∂t

=
cref

Lref

nref n̂0a(x0)

c3
ref v̂

3
Ta(x0)

ρref

Lref

f̂a.

The velocity space integration elements are normalized with respect to the reference sound

velocity and the thermal velocity,

ˆ
d3v
(
...
)

=

ˆ
d3v̂c3

ref v̂
3
Ta(x0)

(
...
)

=

ˆ ∞
0

dµ̂

ˆ ∞
−∞

dv̂‖πB̂0

(
...
)
.

The fields are normalized as
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φ =
Tref

e

ρref

Lref

φ̂ A‖ = ρrefBref
ρref

Lref

Â‖ B‖ = Bref
ρref

Lref

B̂‖.

The Γa,i’s defined in Eq. 2.9 are normalized as

(
Γa,x,Γa,y,Γa,z

)
=

nref n̂0a(x0)

c3
refLref v̂3

Ta(x0)

(
Γ̂a,x, Γ̂a,y, ρref Γ̂a,z

)
.

And finally, B∗0‖ is normalized as

B̂∗0‖ = B̂0 + βref

√
m̂aT̂0a(x0)

2

ĵ0‖v̂‖

q̂aB̂0

.

Putting all of these terms together, the normalized gyrokinetic equation becomes

∂f̂a

∂t̂
= − 1

Ĉ

B̂0

B̂∗0‖

(
ω̂na + ω̂Ta

(
v̂2
‖ + µ̂B̂0

T̂pa
− 3

2

))
F̂Ma

∂χ̂

∂ŷ

− B̂0

B̂∗0‖

T̂0a

q̂a

2v̂2
‖ + µ̂B̂0

B̂0

κ̂xΓ̂a,x −
v̂‖

T̂0aT̂pa

∂Â‖

∂t̂
F̂Ma

− B̂0

B̂∗0‖

T̂0a

q̂aB̂0

((
2v̂2
‖ + µ̂B̂0

)
κ̂y − βref

v̂2
‖

Ĉ

p̂0

B̂0

ω̂pa

)
Γ̂a,y

−

√
2T̂0a

m̂a

Ĉ

ĴB̂0

(
v̂‖Γ̂a,z −

µ̂

2

∂B̂0

∂ẑ

∂f̂a
∂v̂‖

)

+
B̂0

B̂∗0‖

T̂0a

q̂a

2v̂2
‖ + µ̂B̂0

B̂0

κ̂x

(
ω̂na + ω̂Ta

(
v̂2
‖ + µ̂B̂0

T̂pa
− 3

2

))
F̂Ma

− B̂0

ĈB̂∗0‖

(
∂χ̂

∂x̂
Γ̂a,y −

∂χ̂

∂ŷ
Γ̂a,x

)
.

Where the normalized logarithmic gradients are defined as
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ω̂na = − Lref

na(x)

∂na(x)

∂x
ω̂Ta = − Lref

Ta(x)

∂Ta(x)

∂x
ω̂pa = − Lref

p0a(x)

∂p0a(x)

∂x
.

And normalized curvature terms have also been defined for convenience,

κ̂x = − 1

Ĉ

Lref

Bref

(
∂B0

∂y
+
γ2

γ1

∂B0

∂z

)
κ̂y =

1

Ĉ

Lref

Bref

(
∂B0

∂x
− γ3

γ1

∂B0

∂z

)
.

The normalized gyrokinetic Poisson equation is given by

λ̂2
D∇̂2

⊥φ̂− π
∑
a

q̂2
an̂0a

T̂0a

ˆ
dv̂‖dµ̂

(
φ̂B̂0

F̂Ma

T̂pa
−
〈
φ̂B̂0

F̂Ma

T̂pa

〉)

= −π
∑
a

q̂an̂0a

ˆ
dv̂‖dµ̂

(〈
B̂0f̂a

〉
+ µ̂

〈
B̂‖B̂0

F̂Ma

T̂pa

〉)
,

where the normalized Debye length is defined as

λ̂D =
λD
ρref

=
Bref√

4πnrefmrefc2
.

Similarly, the normalized perpendicular Ampére law is given by

∇̂2
⊥Â‖ = −πβref

2

∑
a

q̂an̂0a

√
2T̂0a

m̂a

ˆ
dv̂‖dµ̂v̂‖

〈
B̂0f̂a

〉
,

and the normalized parallel Ampére law is given by

∂B̂‖
∂ŷ

x̂− ∂B̂‖
∂x̂

ŷ =

πβref

2

∑
a

q̂an̂0a

√
2T̂0a

m̂a

ˆ
dv̂‖dµ̂

√
µ̂

(〈
v̂⊥B̂

3/2
0 f̂a

〉
+

〈
v̂⊥B̂

3/2
0

q̂aF̂Ma

T̂0aT̂pa
φ̂

〉)
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+
πβref

2

∑
a

q̂an̂0a

√
2T̂0a

m̂a

ˆ
dv̂‖dµ̂

√
µ̂

〈
v̂⊥B̂

3/2
0 µ̂B̂‖

F̂Ma

T̂pa

〉
.

Finally, the transport quantities are normalized with respect to gyrobohm units, which are

computed from the reference units,

ΓGB = nrefcref

(
ρref

Lref

)2

QGB = nrefTrefcref

(
ρref

Lref

)2

ΠGB = nrefmref

(
crefρref

Lref

)2

Γturbulent
a (x)

ΓGB
= n̂0a

{
− 1

Ĉ

∂φ̂

∂ŷ
M̂00,a +

√
2T̂0a/m̂a

Ĉ

∂Â‖
∂ŷ

M̂10,a

}

Qturbulent
a (x)

QGB

= −n̂0aT̂0a

{
1

Ĉ

∂φ̂

∂ŷ

(
M̂20,a + M̂02,a

)
−

√
2T̂0a/m̂a

Ĉ

∂Â‖
∂ŷ

(
M̂30,a + M̂12,a

)}

Πturbulent
a (x)

ΠGB

= n̂0am̂a

√
2T̂0a

m̂a

{
− 1

Ĉ

∂φ̂

∂ŷ
M̂10,a +

√
2T̂0a/m̂a

Ĉ

∂Â‖
∂ŷ

M̂20,a

}
.

2.9 Boundary conditions

With the fundamental integro-differential equations given, the only remaining step before

discretization is to provide boundary conditions in each of the five phase space dimensions.

Starting with configuration space, the flux-tube coordinates (x, y, z) can be written in terms

of the traditional toroidal coordinates (ρtor,Ψ, θ),

x = ρtor y = Cy
(
q(ρtor)θ −Ψ

)
z = θ, (2.16)

where ρtor is the flux surface label, Ψ is the toroidal angle, θ is the straight field line angle,

and Cy is a constant length given by Cy = ρ0/q0, where ρ0 is the radial position and q0
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is the safety factor at the center of the radial domain. These coordinate expressions shall

make it easier to derive the appropriate boundary conditions in flux-tube coordinates. The

boundary conditions for each coordinate shall be summarized in turn.

2.9.1 Binormal coordinate

The distribution function and the fields are periodic in the toroidal angle, Ψ. Using Eq. 2.16,

this translates to the periodicity condition,

f(ρtor,Ψ, θ) = f(ρtor,Ψ + 2π, θ)→ f(x, y, z) = f(x, y − 2πCy, z).

The velocity space coordinates in the above expression have been excluded for convenience.

While this condition enforces periodicity across the entire toroidal domain of the tokamak

(2πCy), in most cases, the turbulent correlation lengths are much smaller than the device

size. It is desirable to enforce periodicity over a smaller domain (2πCy/n0) to avoid having to

resolve small wavenumbers. Therefore, the periodicity constraint is the binormal boundary

condition,

Ly =
2πCy
n0

f(x, y, z) = f(x, y − Ly, z),

where n0 denotes the minimum integer toroidal mode number in a simulation. Because of

the periodic boundary conditions, the binormal coordinate is evaluated in Fourier space for

both the local and x-global code versions,

f(x, y, z) =
∑
ky

f(x, ky, z)e
ikyy.

The toroidal modes in a GENE simulation are all integer multiples of the minimum toroidal

wavenumber,

ky = mky,min = m
2π

Ly
=
mn0

Cy
m = 0, 1, ..., nky − 1.
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2.9.2 Radial coordinate

The boundary conditions for the radial coordinate are different depending on whether the

local or global code version is utilized. In the local code version, a thin annulus of the

plasma is simulated at a particular radial position. It is assumed that the profiles and their

gradients are constant across the radial domain, and the boundary condition is periodic with

the radial box size set by the user to resolve the turbulent structures. Since the boundary

conditions are periodic, the radial direction is resolved in Fourier space. This simplifies the

field equations and the gyroaveraging dramatically.

In the global code version, a larger radial section of the device can be simulated, and the

radial variations of the temperature, density, safety factor, and magnetic field geometry can

be taken into account. The only limitation is that the very center of the device, as well as the

separatrix cannot be simulated as the field aligned coordinate system becomes singular there.

The most commonly used boundary condition for the global code is the Dirichlet boundary

condition, where the perturbed distribution function and fields are set to zero outside of the

radial domain. There is also the option of using a Neumann boundary condition, which is the

same as the Dirichlet boundary condition, except that the flux-surface averaged distribution

function is allowed to have a finite value at the inner surface, so long as the derivative of the

flux-surface average is zero. In addition, Krook-type buffer zones exist near the boundaries,

where the distribution is damped by Krook terms in an attempt to smooth the transition of

the distribution to zero at the Dirichlet boundaries.

2.9.3 Parallel coordinate

The distribution and fields are periodic in the straight field line angle as well, which translates

to the following boundary condition in the flux-tube coordinates (from Eq. 2.16):

f(ρtor,Ψ, θ) = f(ρtor,Ψ, θ + 2π)→ f(x, y, z) = f(x, y + 2πqCy, z + 2π).
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Since the binormal direction is evaluated in Fourier space, a Fourier decomposition must be

utilized,

f(x, y, z) =
∑
ky

f(x, ky, z)e
ikyy =

∑
ky

f(x, ky, z + 2π)eiky(y+2πqCy).

So the parallel boundary condition can be expressed as

f(x, ky, z) = f(x, ky, z + 2π) exp(i2πmn0q(x)).

This shifted periodic boundary condition is utilized in the global code version. However, it

must be modified for the local code version since the full safety factor profile is not accessible

through a local simulation. This problem can be mitigated by Taylor expanding the safety

factor profile,

q(x) ' q0 +
∂q

∂x
= q0

(
1 +

x− x0

x0

ŝ

)
,

where the local shear factor is defined as

ŝ =
x0

q0

∂q

∂x
.

To derive the suitable parallel boundary condition for the local flux-tube model, the

distribution must be Fourier decomposed in the radial coordinate, and the local expansion

of the safety factor must be utilized,

f(x, ky, z) =
∑
kx

f(kx, ky, z) exp(ikxx)

=
∑
kx

f(kx, ky, z + 2π) exp(ikxx) exp(i2πmn0ŝ(x− x0)/Cy) exp(i2πmn0q0).

Assuming all modes are summed over, each kx value in the summation can be shifted:

kx → kx − 2πmn0ŝ/Cy. The boundary condition can then be obtained by matching the
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coefficients in exp(ikxx),

f(kx, ky, z) = f(kx − 2πmn0ŝ/Cy, ky, z + 2π) exp
(
i2πmn0(q0 − x0ŝ/Cy)

)
.

In addition to requiring a phase shift in the boundary condition, different kx modes must

also be accessed. In order for these modes to be accessed, the following kx modes must be

present in the simulation,

k′x = kx − 2πŝky,

where the definition of ky = mn0/Cy has been utilized. This condition can be met by

ensuring that each 2πŝky is an integer multiple of some kx present in the system. This places

the following constraint on local flux-tube simulations:

kx,min = 2π
ŝky,min

N
,

where N is some integer value greater than or equal to one. Using the definition of the

perpendicular wave numbers in terms of the size of the radial and binormal domains leads

to a constraint on the radial domain size in terms of the binormal domain size,

N = 2πŝLx/Ly.

The radial domain is always adjusted to meet this quantization condition.

2.9.4 Velocity coordinates

The velocity space of the distribution function is typically resolved on a grid which goes from

−3 to 3 in v̂‖, and from 0 to 9 in µ̂ (however, this domain is adjustable by the user). The

perturbed distribution function is assumed to go to zero outside of this domain, so Dirichlet

boundary conditions are used.
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2.10 Numerical implementation

Now that the normalized equations have been obtained, the only remaining step before code

implementation is the numerical discretization of the underlying equations. In this section,

the discussion of discretization shall be divided by the different coordinates in the equations.

The discussion of the discretization applied to the collision operator shall be deferred until

chapter 3.

2.10.1 Time

The delta-f gyrokinetic equation can be written as

∂f

∂t
= L{f}+N{f}+K0,

where in the above expression, L denotes the linear terms in the equation, N denotes the

nonlinear term, and K0 denotes the constant terms that exist independent of the perturba-

tion. GENE can be used as a nonlinear initial value solver, a linear initial value solver, a

linear eigenvalue solver, or as a neoclassical solver.

When operating as a linear solver, only a single ky mode is typically chosen at a time

(the different toroidal modes only interact with each other through the nonlinearity). This

makes the linear simulations more computationally affordable due to optimal time-stepping

and allows one to get a sense of the different microinstabilities present at different toroidal

mode numbers in the system for both the local and global code versions. The linear solver

can act as an initial value solver, or as an eigenvalue solver. When acting as an initial value

solver, the perturbation is initialized to a particular distribution (typically a Maxwellian

uniform across configuration space) and advanced in time using a fourth order Runge-Kutta

scheme (with a separate explicit time-stepping scheme applied to the collision operator, to

be discussed in chapter 3) in accordance with the linear terms. Eventually, the system

will evolve into one mode which grows exponentially in time with a particular frequency

and growth rate (the largest growth rate in the system). The configuration and velocity

49



space structure of the mode can then be examined and used to identify and characterize

the dominant mode. Since all of the terms are linear, the maximum possible time step that

can be used to evolve the system can be calculated from the spectra of the linear operator.

When operating as an eigenvalue solver, the system is not evolved in time using an explicit

time-stepping scheme. Rather, all of the linear terms are grouped together as a matrix, and

then the system is analyzed to determine the eigenvalue with the largest growth rate of the

system and its associated eigenvector. The eigenvalue corresponds to the growth rate and

frequency and the eigenvector corresponds to the mode structure of the dominant mode in

the system. However, such an approach can also be utilized to determine the subdominant

modes in the system, which is useful because sometimes subdominant instabilities can play

a large role in the nonlinear dynamics. The neoclassical solver can also act as either an

initial value or eigenvalue solver. The only difference is that for the neoclassical case, only

the zeroth toroidal mode number can be considered and an additional term proportional to

F0a is considered (which is neglected in local simulations, because it can be considered part

of the neoclassical transport). The topic of neoclassical transport is beyond the scope of this

thesis. For more information on utilizing GENE as a neoclassical code, see refs. [34, 33].

The nonlinear initial value solver operates in the same way as the linear initial value

solver, except that rather than evolving into an exponentially increasing mode, the system

saturates at a particular level of transport via the perpendicular nonlinearity (or potentially,

if activated, the parallel nonlinearity). In addition, the maximum possible time-step cannot

be directly calculated from the linear terms. Rather, the linear time-step limit is taken as

an estimate, and it is then adjusted based on an estimate from the advection velocity of the

nonlinearity to meet the Courant-Friedrichs-Lewy time-step limit. For more information, see

ref. [35].

2.10.2 Magnetic moment

In the collisionless limit, there are no derivatives of µ since it is a conserved quantity in the

gyrokinetic equation. Therefore, the only numerical error that comes from discretizing µ is
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integration error when the electromagnetic fields are computed. The best way to minimize

this type of error is to use a Gauss-Laguerre grid for the points in the µ domain. With this

discretization, the number of points in the magnetic moment can be typically be confined

to between 8 and 16 points. This situation changes when collisions are present, as will be

discussed in the next chapter.

2.10.3 Parallel configuration and parallel velocity space

The parts of the gyrokinetic equation that contain the z and v‖ derivatives are given by

(
∂fa
∂t

)
z,v‖

= −Cv‖
JB0

(
∂fa
∂z

+
eFMa

T0a

∂χ

∂z

)
+

µC

maJB0

∂B0

∂z

∂fa
∂v‖

.

These derivatives can be analyzed with a fourth order finite difference stencil. However, an

alternative discretization can be utilized by rewriting the equations using the definitions of

the non-adiabatic part of the distribution function, ha, and the unperturbed Hamiltonian,

H0,

ha = fa +
eφ

T0a

FMa +
µB‖
T0a

FMa

H0 =
1

2
mav

2
‖ + µB0.

With these definitions, the relevant part of the gyrokinetic equation can be expressed in

terms of a Poisson bracket between the Hamiltonian and non-adiabatic part of the distribu-

tion function,

(
∂fa
∂t

)
z,v‖

= − C

JB0

1

ma

∂H0

∂v‖

∂ha
∂z

+
C

maJB0

∂H0

∂z

∂ha
∂v‖

=
C

maJB0

{
H0, ha

}
z,v‖

,

where the 2D Poisson bracket is defined as
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{
H0, ha

}
z,v‖

=
∂H0

∂z

∂ha
∂v‖
− ∂H0

∂v‖

∂ha
∂z

.

The Poisson bracket has many conservation properties which can be satisfied numerically

with an Arakawa discretization scheme. One of the most desirable conservation properties

is the conservation of free energy, F , with the free energy defined as

F =

ˆ
dzdv‖

h∗a
FMa

∂fa
∂t

.

The free energy associated with this term can be conserved to machine precision by expressing

it in the following way and applying an Arakawa discretization scheme [36]:

∂fa
∂t

=
ToaCFMa

maJB0

{ 1

FMa

, ha
}
z,v‖

.

There are two different options for the parallel configuration and velocity space discretiza-

tion in GENE. One could use simple fourth order finite difference schemes or a fourth order

Arakawa scheme which conserves free energy to machine precision. The default implementa-

tion is the Arakawa scheme. This is almost always used for the local code version. However,

it has been found for the global code version that in some cases a higher resolution is needed

for the Arakawa scheme.

2.10.4 Perpendicular configuration space

The discretization of the x and y coordinates are different depending on whether the local

or global version of the GENE code is being utilized. For the linear terms in the gyrokinetic

equation, the derivatives in the y coordinate are represented in Fourier space and correspond

to multiplication by the binormal wavenumber. An analogous procedure is done for the

x coordinate in the local code version. For the global code version, the linear terms with

x-derivatives are analyzed with fourth order centered finite difference schemes. The field

equations are also evaluated differently for the local and global code versions. For the local

code version, the derivatives are replaced with a simple multiplication by the wavenumbers,
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and the gyroaverage operator simplifies to a multiplication by a Bessel function, as will be

demonstrated shortly. For the local code version, the fields can be solved for algebraically.

For the global code version, a matrix with nx ∗ nx entries must be constructed for each y

and z coordinate. This matrix is then LU-factored in the initialization phase and solved for

every timestep in the simulation.

In order to solve for the fields and the gyrokinetic equation, a numerical implementation

of the gyroaveraging procedure must be provided. This is a straightforward procedure for

the local flux-tube version of the code. To determine the local gyroaverage operator, one

must first write the distribution to be gyroaveraged in Fourier space,

ψ(x⊥, z, v‖, µ) =

ˆ
d2k⊥e

ik⊥·x⊥ψ(k⊥, z, v‖, µ).

Using this representation, the gyroaverage operator, Eq. 2.2, can be represented as

ˆ
d2k⊥e

ik⊥·x⊥ψ(k⊥, z, v‖, µ) =

ˆ
d2k⊥e

ik⊥·x⊥
1

2π

ˆ
dθeik⊥·ρaψ(k⊥, z, v‖, µ).

The following Bessel function identity (and the orthogonality property of trigonometric func-

tions) is useful for constructing the gyroaverage operator:

eiz cos(θ) = J0(z) + 2
∞∑
n=1

inJn(z) cos(nθ).

It is then easy to see that the gyroaverage operation in Fourier space simply corresponds to

multiplication by a Bessel function,

ψ(k⊥, z, v‖, µ) = J0(k⊥ρa)ψ(k⊥, z, v‖, µ).

The other gyroaverage operator, Eq. 2.12, can be derived for the local code in a similar way,

〈
ψ
〉
(k⊥, z, v‖, µ) = J0(k⊥ρa)ψ(k⊥, z, v‖, µ).

The gyroaveraging procedure for the global code version is more complicated. To facilitate
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this implementation, the distribution to be gyroaveraged is interpolated from a finite element

basis,

ψ(x) =
∑
m

ψ(xm)Λm(x) =
∑
m

ψmΛm(x). (2.17)

The ψm values form a vector with a length given by the x resolution,

ψ = (ψ(x1), ..., ψ(xn))T .

Plugging Eq. 2.17 into Eq. 2.2, the expression for the gyroaverage operator is obtained,

ψ(Xm, Y, z, v‖, µ) =
1

2π

ˆ
dθ
∑
n,ky

eiky(Y+ρy)ψnΛn(Xm + ρx).

This can be written in a matrix form,

ψ(Xm, Y, z, v‖, µ) =
∑
n

Gmnψne
ikyY

ψ =
∑
ky

eikyY
←→
G · ψ,

where the gyroaverage matrix,
←→
G , is given in index notation as

Gmn(ky, z, µ) =
1

2π

ˆ
dθeikyρyΛn(Xm + ρx).

The gyroaverage operator contains no information about the fields or perturbed distri-

bution function, so it can be constructed in the initialization phase of the simulation. The

alternative gyroaverage operator that is needed for the construction of the field solver can

be expressed as

〈
ψ
〉
(xm, y, z) =

1

2π

ˆ
d3Xdθδ(X− (xm − ρ))

∑
m,ky

eikyY ψmΛm(X),
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which can be written in a matrix form,

〈
ψ
〉

=
∑
ky

eikyy
←→
Galt · ψ

Galt
mn(ky, z, µ) =

1

2π

ˆ
dθe−ikyρyΛn(xm − ρx).

The details and properties of the finite element basis shall not be discussed here. See

ref. [27] for more information on that topic. What is worth noting, however, is that it can

be shown that the other gyroaverage matrix needed for the field solver is the adjoint of the

original gyroaverage matrix discussed,

←→
Galt =

←→
G †.

Therefore, only one gyroaverage matrix and its adjoint need be considered. The two gyroav-

eraging procedures are discretized as

ψ(X, ky, z) =
←→
G · ψ

〈
ψ
〉
(x, ky, z) =

←→
G † · ψ.

Besides the linear terms and the field solver, the perpendicular nonlinearity also deserves

special consideration. The perpendicular nonlinearity of the gyrokinetic equation is expressed

as

(
∂fa
∂t

)∣∣∣∣
nonlin

= − c

C

B0

B∗0‖

(∂χ
∂x

Γa,y −
∂χ

∂y
Γa,x

)
.

This can be written in a Poisson bracket formalism in the xy space,
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(
∂fa
∂t

)∣∣∣∣
nonlin

= − c

C

B0

B∗0‖

({
χ, fa

}
x,y

+
qaFMa

T0a

{
χ, φ

}
x,y

)
.

In the current version of the code, only a single Poisson bracket is used on the gyrokinetic

potential, χ, and a modified distribution defined as

ga = fa +
qav‖
c

FMa

T0a

A‖.

However, this method of analyzing the nonlinearity can lead to numerical difficulties in the

nonlinear electromagnetic global version of the code, as will be discussed in chapter 5. A fast

Fourier transform (FFT) is performed on the x and y coordinate to evaluate the nonlinearity

in the local code version. An FFT is performed on the y coordinate in the global version

of the code. Dealiasing accompanies each FFT procedure, and an Arakawa discretization is

utilized for evaluating the nonlinearity. This ensures conservation of free energy. For more

information on how the nonlinearity is evaluated, see ref. [26].

2.10.5 Hyperdiffusion

Due to the use of finite difference and Arakawa schemes for the numerical evaluation of

derivatives, grid-scale oscillations can be present and sometimes cause numerical instabilities.

To mitigate this problem, hyperdiffusion terms in the form of finite difference stencils of

fourth order derivatives with second order accuracy in the x, y, z, and v‖ dimensions have

been implemented [37]. Hyperdiffusion values are set to be high enough to eliminate the

grid-scale oscillations, but low enough to have minimal effects on the turbulent dynamics.

In the case where the collision operator is active, the hyperdiffusion on v‖ is excluded, since

grid scale oscillations in that coordinate would be destroyed by the collisional dissipation.

There is also an alternative model called GyroLES which is implemented in GENE and which

is designed to mimic the effect of sub-grid scales on the resolved scales and eliminate the

need for hyperdiffusion in y [38]. The choice of using hyperdiffusion for that component or

GyroLES is left up to the user.
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2.11 Chapter summary

In this chapter, the foundations of gyrokinetics have been discussed, and the set of integro-

differential equations implemented in the GENE code has been derived starting from the

full-f gyrokinetic Vlasov equations. Diagnostic quantities, boundary conditions, and dis-

cretization schemes have also been analyzed. However, one important aspect has been left

out: Collisional dissipation. This shall be the topic of the next chapter.
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CHAPTER 3

Collision operators in delta-f gyrokinetic codes

3.1 The need for including collisions

Any realistic simulation of plasma turbulence near the edge of fusion devices such as tokamaks

or stellarators must include more than just the collective motion of particles and the evolution

of the electromagnetic fields based on the Maxwell equations. To more realistically model

the plasma behavior, one must include discrete particle effects, where the ions and electrons

occasionally interact with each other, and not just the fields arising from the bulk motion of

particles. These effects act as an important sink of free energy (in the collisionless gyrokinetic

equations, free energy is conserved) and contribute to the dampening/growth of certain

plasma instabilities. In particular, collisions become more important as one arrives closer to

the edge. If particles are at a high enough temperature, then at the point when they cross

near each other they typically go by at a high enough speed that they have little time for the

interactions to play much of a role. This is not always the case when one encounters lower

temperatures and the collisional cross section is higher. For this reason, a collision operator

which models the physics of such interactions has been implemented in the GENE code to

study plasma turbulence and transport, especially in the edge.

Many different collision operators have been derived in the literature for use with gyroki-

netic models [14, 39, 40, 41, 42, 43, 44]. Different codes may use different collision opera-

tors depending on whether they are delta-f/full-f and Eulerian/Lagrangian/semi-Lagrangian

codes. A full-f code evolves the full distribution rather than a small perturbation, and a

typical form of the collision operator utilized for such a task is the nonlinear Landau colli-

sion operator. This model is utilized in the XGC code for full-f collisional simulations [45]
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with a second-order finite-volume scheme and a particle-mesh interpolator, and evolved in

time with an implicit Picard iteration scheme. While this full-f collision model is complete,

it is also highly expensive due to the nonlinear and nonlocal nature of the full Landau col-

lision operator. A linearized full-f collision model has been derived in Estéve et al. [46]

and implemented in the semi-Lagrangian GYSELA code with a numerical scheme described

in [47]. This model has the benefit of being more computationally tractable. The gyroki-

netic code, COGENT, which is used specifically for the study of plasma dynamics in the

edge, has the option of using several different collision operators, including a drag/diffusion

operator in parallel velocity space, a pitch-angle scattering operator, and a linearized Fokker-

Planck operator [48]. A fully nonlinear Fokker-Planck operator has also been implemented

in the COGENT code, where the Rosenbluth potentials are computed with a finite-difference

scheme and multipole-expansion boundary conditions [49].

In delta-f gyrokinetic models, the full distribution is split into a background part and a

perturbed part, and the perturbation is evolved in time. The collision operator must then

take a different form. The typical model used for this purpose is a linearized Fokker-Planck

collision operator to represent the perturbation scattering off of the background, as well as

a back reaction term which is used to conserve momentum and energy. A more crude model

for the back reaction term is typically utilized to avoid the more complicated convolution

integral. This type of model is implemented in the grid-based GKW [50] and GS2 [51] codes.

This type of model has also been implemented in the particle-in-cell code, ORB5 [52]. This

is done by using random kicks in velocity space to represent the diffusion process, while

altering the weights of the marker particles to preserve conservation properties. The GKV

code utilizes the collision model developed by Sugama et al. [14]. The Sugama model is

the same as the linearized Fokker-Planck model, except that the nonisothermal term in the

linearized operator is replaced with a model term which ensures that the collision operator

satisfies an appropriate H-theorem in the nonisothermal limit, whereas the linearized Fokker-

Planck operator satisfies an H-theorem only in the isothermal case. The Sugama collision

model in the GKV code is based on a sixth-order finite difference scheme for a grid-based

code [53]. The Sugama model has also been implemented as a pseudospectral operator in
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the CGYRO code [54]. In addition to modifications allowing for nonisothermal background

profiles, a linearized collision operator allowing for shifted Maxwellian backgrounds with

different parallel flows has been implemented in the LOKI code to study the dynamics of

interpenetrating plasma streams [55].

Earlier collisional models have been incorporated into GENE [33, 56] such as a Krook

model, a pitch-angle scattering operator, and most importantly, a linearized Landau-Boltzmann

operator. The standard collision operator included a linearized Landau-Boltzmann operator

and a model back-reaction term which was responsible for the conservation of momentum

and energy. However, the standard collision operator in use did not analytically satisfy an

H-theorem for nonisothermal parameters, did not numerically dissipate free energy for all

grid resolutions, did not incorporate FLR corrections into the field-particle part of the col-

lision operator, was not tested for relaxation of flow and temperature fluctuations, and was

not adequately benchmarked. The current work in this thesis makes such extensions to the

collision operator (except for the extension of FLR corrections in the global version of the

code, which is yet to be done).

GENE is a delta-f grid-based code and the collision operator implemented in GENE is

based on the model derived by Sugama et al. [14]. This model satisfies appropriate con-

servation and free energy dissipation properties, and has been adapted for both the local

and x-global gyrokinetic model (including with the block-structured grid numerical scheme).

The adaptation of the model to the 3D version of GENE shall be left for future work. Also,

while FLR corrections have been implemented in the collision operator for the local code

version, this is still a work in progress for the global code version. The model contains no

velocity-space convolution integrals, and its linear nature allows for optimized time-stepping

schemes. Furthermore, the use of the local flux-tube approximation, as well as the recently

developed block-structured velocity space grids [57, 58] for the global version of the code,

allow for the capability of collisional gyrokinetic simulations without the need for large ve-

locity space resolution. The amount of physics contained within the operator (pitch-angle

scattering, energy diffusion, FLR corrections, etc.), as well as its good numerical proper-

ties (particle, momentum, and energy conservation, as well as free energy dissipation) and
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computational tractability allow for unique, cutting-edge simulations exploring collisional

plasma turbulence in the edge.

This chapter is outlined in the following way: First, the general Landau-Boltzmann

collision operator is discussed in subsection 3.2. Then, the standard linearized collision

operator is derived from the full Landau-Boltzmann operator in subsection 3.3. Then the

problems with free energy dissipation in the nonisothermal limit is explained in section 3.4.

Afterwards, a proposed solution to the problem is given for the simplified case of ion-electron

collisions in section 3.5. Such an operator is generalized to the case of multiple species in

section 3.6. This is the same approach that was originally developed by Sugama et al. [14].

Then it is shown that such an operator analytically satisfies the H-theorem in section 3.7.

Following that are discussions of the extensions of such an operator to include Finite Larmor

Radius (FLR) corrections in section 3.8. Afterwards, the numerical implementation of the

operator in GENE is discussed in section 3.9, 3.10, and 3.11, and results are presented

demonstrating appropriate conservation and free energy dissipation properties in section

3.12. Afterwards, the effects of collisions on Geodesic Acoustic Mode (GAM) oscillations

is discussed in section 3.13. The collision operator is then benchmarked with regards to

neoclassical transport, and frequencies and growth rates of microinstabilities in section 3.14.

Finally, a summary of the work that has been completed and work that is left to be done on

collisions in gyrokinetics is given in section 3.15.

3.2 Landau-Boltzmann collision operator

Collisions are exceedingly rare events occurring in a plasma. Because of the rarity of such

events, the dominant collisional interactions are between two species, and collision events

between three or more species can safely be neglected. The two species collision operator

considered in the remainder of this thesis is expressed as

Ca =
∑
b

Cab.
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In the above formula, a and b correspond to different plasma species. In addition, because

of the long range of the shielded Coulomb interaction, collisions are mainly characterized by

small-angle scattering. Any collision process that can be described by small-angle scattering

can be represented by the Fokker-Planck collision operator, which shall now be derived.

Afterwards, a popular type of Fokker-Planck operator used in plasma physics, the Landau-

Boltzmann collision operator, shall be discussed. Much of this derivation and discussion

follows the formulation outlined in ref. [12], and the interested reader may look towards that

source for more information on generalized collision operators.

It can safely be assumed that the time-scale associated with a collisional event, tcollision,

is much shorter than the time-scales of the other processes occurring in a plasma, t. This

can be expressed as

t� tcollision.

Since the time-scale describing collisionless dynamics in a plasma is so much larger than the

time-scale of collisions, the effect of collisions in a plasma can be modeled with a probability

distribution with regard to changes in the larger time-scale, ∆t:

Fa(x,v, t) =

ˆ
d3∆vFa(x,v −∆v, t−∆t)P (v −∆v,∆v,∆t). (3.1)

In Eq. 3.1, P (v−∆v,∆v,∆t) corresponds to the probability that a particle will change

its velocity from v−∆v by ∆v within a time window, ∆t. In this formula, ∆t is a quantity

which is taken to be small with regard to the entire time trace of the plasma dynamics, but

large compared to tcollision. The above expression can now be Taylor expanded to first order

in time, and second order in velocity (because for a Fokker-Planck process, the assumption

of small-angle scattering applies):

Fa(x,v, t) =

ˆ
d3∆v

[
Fa(x,v, t)P (v,∆v,∆t)− ∂Fa

∂t
∆tP (v,∆v,∆t)
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−∆v · ∂
∂v

(
P (v,∆v,∆t)Fa(x,v, t)

)
+

1

2
∆v · ∂2

∂v∂v

(
P (v,∆v,∆t)Fa(x,v, t)

)
·∆v

]
.

This expression can be simplified in several ways. The term on the LHS cancels with the

first term on the RHS because the integral of the probability distribution by itself is 1,

ˆ
d3∆vP (v,∆v,∆t) = 1.

Also, since only collisions are being considered in this case, ∂F/∂t can be replaced by the

collision operator. So the following expression can be used for the collision operator:

Cab = − 1

ma

∂

∂v
·
(

rabFa

)
+

∂2

∂v∂v
·
(←→

DabFa

)
. (3.2)

In Eq. 3.2, rab and
←→
Dab are given by the following expressions:

rab =
ma

∆t

ˆ
d3∆vP (v,∆v,∆t)∆v

←→
Dab =

1

2∆t

ˆ
d3∆vP (v,∆v,∆t)∆v∆v.

To write the Fokker-Planck collision operator in a more traditional form, a new resistive

vector shall be defined as

rab = Rab +ma
∂

∂v
· ←→Dab.

So the Fokker-Planck collision operator can be written in the following manner:

Cab = − ∂

∂v
· Γab, (3.3)

where the collisional flux, Γab, is given by
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Γab =
1

ma

RabFa −
←→
Dab ·

∂Fa
∂v

. (3.4)

The collision operator can be expressed as the divergence of a velocity space flux, which

contains diffusive and resistive terms. The diffusive term will attempt to spread out the

velocity space distribution of particles. The resistive term will attempt to slow down particles

until they are at a single uniform velocity. The competition between these two terms will

bring the final distribution to a Maxwellian equilibrium (if only collisions are allowed to act).

The only remaining task to achieve a refined model of collisions in plasmas is to determine the

expressions for the resistive vectors and diffusion tensors, Rab and
←→
Dab respectively. There

are several different collision models that can be obtained depending on the assumptions

made when solving for these values. Deriving the models for these terms is beyond the scope

of this thesis, and the interested reader may consult other references for more information

[59, 12].

For this thesis, the Landau-Boltzmann collision operator shall be considered, where the

resistive vector and diffusion tensor are given by Eq. 3.5 and 3.6,

←→
Dab =

γab
m2
a

ˆ
d3v′
←→
UFb(v

′) (3.5)

Rab =
γab
mb

ˆ
d3v′
←→
U · ∂

∂v′
Fb(v

′) (3.6)

←→
U =

u2←→I − uu

u3

γab = 2πe2
ae

2
b ln(Λ).

The following identity is also useful:
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∂

∂v
· ←→U = − ∂

∂v′
· ←→U .

This identity, combined with integration by parts, can be used to express the resistive vector

in terms of the diffusion tensor for the Landau-Boltzmann collision operator,

Rab =
m2
a

mb

∂

∂v
· ←→Dab. (3.7)

In the next section, it will be required to analytically compute the diffusion tensor and

resistive vector associated with a Maxwellian distribution. For this purpose, it will be con-

venient to recast the collision operator in terms of Rosenbluth Potentials:

Gb(v) =

ˆ
d3v′Fb(v

′)u (3.8)

Hb(v) =

ˆ
d3v′Fb(v

′)
1

u
(3.9)

u =| v − v′ | .

The tensor
←→
U can be expressed as the second derivative of the relative speed,

Uij =
∂2u

∂ui∂uj
,

and this can be used to express the diffusion tensor in terms of Rosenbluth potentials:

←→
Dab =

γab
m2
a

∂2Gb(v)

∂v∂v
. (3.10)

The divergence of the tensor, ∂
∂u
·←→U , can be expressed as the derivative of the inverse speed,

∂

∂uj
Uij = 2

∂

∂ui

1

u
,
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and this identity (along with integration by parts) allows for the expression of the resistance

vector in terms of the Rosenbluth potentials:

Rab =
2γab
mb

∂Hb(v)

∂v
. (3.11)

The above equations for the Rosenbluth potentials have a clear analogy to the equations of

electrostatics. For instance, Eq. 3.9 suggests that the Rosenbluth potential, Hb, is analogous

to the electrostatic potential. Fb(v
′) is analogous to the charge density in configuration

space. And the distance in velocity space, u, is analogous to the configuration space distance

between a charge and a point where the potential is calculated. This suggests that Laplace’s

equation can be used to compute the Rosenbluth potentials,

∇2
vHa = −4πFa.

Plugging Eq. 3.10 and 3.11 into Eq. 3.7, the equation for Ga in terms of Ha is obtained:

∇2
vGa = 2Ha.

3.3 Linearization of operator

The delta-f splitting of the full distribution function into a background Maxwellian distribu-

tion, FMa, and a perturbed distribution function, fa, is applied. Then one can write the full

distribution function as Fa = FMa + fa and the collision operator as

Cab(Fa, Fb) = Cab(FMa, FMb) + Cab(fa, FMb) + Cab(FMa, fb) + Cab(fa, fb). (3.12)

Now if one had arbitrary distribution functions for an electron-ion plasma, and one were

to evolve these distribution functions using only the collision operator, then each distribution

function would relax to a local Maxwellian distribution,

66



FMa =
na

(
√
πvTa)3

e
−( v

vTa
)2
. (3.13)

Then each Maxwellian distribution would relax into one single Maxwellian distribution for

all species given a proper normalization. The second equilibration process would take much

longer than the first because of the much larger mass differential between different species

rather than similar species in a typical plasma. Billiard balls can exchange energy very

efficiently in collisions because they have similar mass. However, if one were to collide ping-

pong balls with bowling balls, the ping-pong balls would just bounce off of the bowling balls,

and not much energy would be exchanged in the process. A similar case occurs in a plasma,

and this allows for a natural separation of time-scales. The time it takes the ion and electron

Maxwellian distributions to equilibrate is much longer than the turbulent transport time-

scale for a plasma discharge in a magnetic confinement device (the transport timescale in

the edge of a magnetic confinement device is ∼ O(100a/cs) and the thermalization timescale

is ∼ O(10000a/cs)). As such, the equilibration process is neglected. In the gyrokinetic code,

GENE, the evolution of the perturbed distribution function, fa, is modeled. The temperature

and density profiles are regarded as fixed, which is a reflection of the fact that the evolution

of the background Maxwellian distribution is neglected.

Because the equilibration process is neglected, Cab(FMa, FMb), which can be interpreted

as the term which evolves FMa due to collisions with the background Maxwellian distribution

of species b, can be disregarded. The term should be small due to the large timescale of the

process, and it would be inconsistent to include a term which would alter the temperatures

of the different species while also keeping the temperature profiles fixed in the remainder of

the gyrokinetic equation. However, there may be situations where one must keep this term,

and a model for this has been developed [39]. The final term in Eq. 3.12 is also neglected

as it is considered to be of higher order in the delta-f ordering. Therefore, the equations

are linearized. For global gyrokinetic simulations, a source may be utilized to prevent the

perturbation from becoming too large in accordance with the delta-f ordering.

Only two terms remain in the linearized collision operator: Cab(fa, FMb) and Cab(FMa, fb).
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The first term, CT
ab(fa) = Cab(fa, FMb), represents the evolution of fa due to collisions with

a background Maxwellian distribution of species b. This term should clearly be included in

the collision operator. The other term, CF
ab(fb) = Cab(FMa, fb) represents the evolution of a

Maxwellian due to collisions with a perturbation. Again, since the background distributions

have been regarded as fixed, it is not clear how one should model the effects of such a term.

Furthermore, the computation of such a term would be expensive due to the nonlocal velocity

space integral (the analytical model for this has been done by [40]). However, if one were to

ignore such a term, then the model collision operator would be unable to satisfy the essential

conservation laws for momentum and energy in plasma simulations [12]:

ˆ
d3vmavCab = −

ˆ
d3vmbvCba (3.14)

ˆ
d3v

1

2
mav

2Cab = −
ˆ
d3v

1

2
mbv

2Cba. (3.15)

For these reasons, the second term is replaced with a model operator such that the collision

operator as a whole conserves momentum and energy,

CF
ba(fa) = −Ta

Tb

CT
ba(

FMbmbv
Tb

) ·
´
d3vmav

Ta
CT
ab(fa)´

d3v
mbv‖
Tb

CT
ba(FMbmbv‖/Tb)

− Ta
Tb

CT
ba(FMbx

2
b)
´
d3vx2

aC
T
ab(fa)´

d3vx2
bC

T
ba(FMbx2

b)
. (3.16)

The complete linearized collision operator can be written as

C linear
ab (fa, fb) = CT

ab(fa) + CF
ab(fb). (3.17)

The two component parts shall be called the test-particle operator and the field-particle

operator respectively. One can verify that the above model given for the field-particle part

enables the entire collision operator to satisfy the above conservation laws for a nearly ar-

bitrary test-particle part. The only constraint on the test-particle part is that it conserves

particles. Therefore, only the test-particle operator needs to be evaluated for the entire
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linearized collision operator to be determined. The use of the Rosenbluth potentials makes

it easier to evaluate the test-particle part of the collision operator, CT
ab(fa) = Cab(fa, FMb).

One has the following relation for HMb:

HMb =

ˆ
d3vFMb(v

′)
1

| v − v′ | .

The expansion formula which is familiar from electrostatics shall now be used to evaluate

HMb,

1

| v − v′ | =
1

v>

∑
m=0

(
v<
v>

)mPm(cos(θ)).

Where the PM ’s are the Legendre polynomials and v> is the larger of the v and v′. Since the

Legendre polynomials are orthogonal, only the zeroth order term for the calculation needs

to be kept,

HMb = 4π

ˆ ∞
0

dv′(v′)2FMb(v
′)

1

v>
= 4π

ˆ v

0

dv′(v′)2FMb(v
′)

1

v
+ 4π

ˆ ∞
v

dv′(v′)2FMb(v
′)

1

v′
.

Substituting the Maxwellian distribution into the equation yields

HMb =
4nb√
π

( ˆ v
vTb

0

dxx2e−x
2 1

v
+

ˆ ∞
v

vTb

dxx2e−x
2 1

vTbx

)

HMb =
4nb√
π

(
− 1

2

ˆ v
vTb

0

dxx
d

dx
(e−x

2

)
1

v
+

ˆ ∞
( v
vTb

)2

dw

2
e−w

1

vTb

)

HMb =
4nb√
π

(
− 1

2vTb
e
−( v

vTb
)2

+
1

2v

ˆ v
vTb

0

dxe−x
2

+
1

2vTb
e
−( v

vTb
)2
)

HMb =
nb
v

erf

(
v

vTb

)
, (3.18)
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where erf is the error function defined as

erf(x) = Φ(x) =

ˆ x

0

e−t
2

dt. (3.19)

Now GMb can be computed from HMb in a similar way to how the distribution function

is used to compute HMb,

GMb = − 1

3π

ˆ
d3vHMb(v

′)
1

| v − v′ |

GMb = −2

ˆ v

0

dv′(v′)2HMb(v
′)

1

v
− 2

ˆ ∞
v

dv′(v′)2HMb(v
′)

1

v′

GMb = −2nb

( ˆ v

0

dv′v′Φ

(
v′

vTb

)
1

v
+

ˆ ∞
v

dv′Φ

(
v′

vTb

))

GMb = −2nbvTb

( ˆ v
vTb

0

duuΦ(u)
vTb
v

+

ˆ ∞
v

vTb

duΦ(u)

)
.

The second integral in the above expression diverges. However, the singularity obtained is

irrelevant for the physical calculation of the collision operator, since the derivative of the

Rosenbluth potentials is taken in the end. Thus it is only the functional form of the Rosen-

bluth potentials that matters, not the arbitrary constant within the potentials themselves.

If one had a similar electrostatics problem with a charge density having a functional form

similar to that of HMb, then the electrostatic potential would also diverge. However, the

electric field would not. Integrating by parts (ignoring the singularity in the second integral)

and defining xb = v/vTb, the following is obtained:

GMb = −2nbvTb

(
1

2
xbΦ

(
xb
)
− 2√

π

ˆ xb

0

du
1

2
u2e−u

2 1

xb
− xbΦ

(
xb
)
− 2√

π

ˆ ∞
xb

duue−u
2

)
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GMb = −2nbvTb

(
− xb

2
Φ
(
xb
)

+
1√
π

ˆ xb

0

duu
1

2

d

du

(
e−u

2) 1

xb
− 1√

π

ˆ ∞
(xb)2

dwe−w
)

GMb = −nbvTb
(
− xbΦ

(
xb
)
− 1√

π
e−(xb)2 − 1√

π

ˆ xb

0

due−u
2 1

xb

)

GMb =
nbvTb
2xb

(
2x2

bΦ(xb) + xb
d

dxb
Φ(xb) + Φ(xb)

)
. (3.20)

Now that the Rosenbluth potentials have been computed, the test-particle part of the

collision operator can be obtained. For simplicity, the spherical velocity space coordinates

are used in the subsequent analysis,

∂GMb

∂v
=
∂GMb

∂v
v̂ =

1

v

∂GMb

∂v
v

∂2GMb

∂v∂v
= vv̂

∂

∂v

(
1

v

∂GMb

∂v

)
+

1

v

∂GMb

∂v

∂

∂v
v

∂2GMb

∂v∂v
=

1

v

∂GMb

∂v

←→
I + vv

1

v

∂

∂v

(
1

v

∂GMb

∂v

)

∂2GMb

∂v∂v
=

1

v3

∂GMb

∂v

(
v2←→I − vv

)
+

vv

v2

∂2GMb

∂v2

∂2GMb

∂v∂v
· ∂fa
∂v

=
1

v3

∂GMb

∂v

(
v2←→I − vv

)
· ∂fa
∂v

+
v

v

∂2GMb

∂v2

∂fa
∂v

.

Using the identities ∇ · v
v

= 3
v

+ v ∂
∂v

( 1
v
) = 2

v
and v · (v2←→I − vv) = 0 gives

∂

∂v
·
(
∂2GMb

∂v∂v
· ∂fa
∂v

)
=

2

v3

∂GMb

∂v
Lfa +

2

v

∂2GMb

∂v2

∂fa
∂v

+
∂

∂v

(
∂2GMb

∂v2

∂fa
∂v

)
.
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Where L represents the traditional pitch-angle scattering operator,

L =
1

2

∂

∂v
·
(
v2←→I − vv

)
· ∂
∂v

=
1

2

(
1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂φ2

)
. (3.21)

The previous formula can be easily proven using the definition of the gradient and diver-

gence in spherical coordinates, and the fact that the dot product of the tensor, (v2←→I − vv)

with the gradient effectively kills the radial component of the gradient. Now the coefficient

of the pitch-angle part of the collision operator can be evaluated as

∂GMb

∂v
=
nb
2

d

dxb

[
1

xb

(
(2x2

b + 1)Φ(xb) + xb
d

dxb
Φ(xb)

)]

∂GMb

∂v
=
nb
2

[
− 2xb

d

dxb
Φ(xb) +

1

xb
(2x2

b + 1)
d

dxb
Φ(xb) + (2− 1/x2

b)Φ(xb)
]

∂GMb

∂v
=
nb
2

[
1

xb

d

dxb
Φ(xb) + (2− 1/x2

b)Φ(xb)

]

∂GMb

∂v
= nb[Φ(xb)−G(xb)]. (3.22)

Where G(x) = [Φ(x) − x d
dx

Φ(x)]/2x2 has been defined such that the notation is consistent

with that of [14]. The pitch-angle scattering frequency is defined as

νabD (v) =
4πnb
m2
av

3
e2
ae

2
b ln(Λ)(Φ(xb)−G(xb)). (3.23)

The test-particle part can be written as

CT
ab(fa) = νabD (v)Lfa+
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γab
m2
a

(
2

v

d2GMb

dv2

∂fa
∂v

+
∂

∂v

(
d2GMb

dv2

∂fa
∂v

))
− 2γab
mamb

(
(∇2

vHMb)fa +
dHMb

dv

∂fa
∂v

)
.

The terms with the Rosenbluth potentials can be evaluated and substituted into the above

equation:

∇2
vHMb = −4πFMb

dHMb

dv
= −nb

v2
Φ(xb) +

nb
vvTb

Φ′(xb) =
nb
v2

(
− Φ(xb) + xbΦ

′(xb)

)
= −2nb

v2
Tb

G(xb) (3.24)

d2GMb

dv2
=

nb
vTb

(
Φ′(xb) +

(Φ(xb)− xbΦ′(xb))
x3
b

− (−xbΦ′′(xb))
2x2

b

)
=

2nb
v
G(xb) (3.25)

CT
ab(fa) = νabD (v)Lfa +

γab
m2
a

(
4nb
v2
G(xb)

∂fa
∂v

+
∂

∂v

(
2nb
v
G(xb)

∂fa
∂v

))

+
2γab
mamb

(
4πFMbfa +

2nb
v2
Tb

G(xb)
∂fa
∂v

)
.

A new frequency is defined (again consistent with [14]) and the expression can be rewritten

as

νab‖ (v) =
4γabnb
m2
av

3
G(xb) (3.26)
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CT
ab(fa) = νabD (v)Lfa+vν

ab
‖ (v)

∂fa
∂v

+
∂

∂v

(
v2

2
νab‖ (v)

∂fa
∂v

)
+

4nbγab
mambv3

Tb

Φ′(xb)fa+
ma

mb

v3

v2
Tb

νab‖ (v)
∂fa
∂v

.

(3.27)

The derivative of the newly defined frequency term can now be evaluated and used to rewrite

the test-particle part of the collision operator:

dνab‖ (v)

dv
=

4γabnb
m2
a

(
G′(xb)

vTbv3
− 3

G(xb)

v4

)
.

Given the identity, G′(x) = Φ′(x)− 2G(x)/x, the following expressions can be obtained:

dνab‖ (v)

dv
=

4γabnb
m2
a

(
Φ′(xb)

vTbv3
− 5

G(xb)

v4

)

dνab‖ (v)

dv
=

4γabnb
m2
avTb

Φ′(xb)

v3
−

5νab‖ (v)

v
(3.28)

4γabnb
mambv3

Tb

Φ′(xb) =
ma

mb

v3

v2
Tb

(
dνab‖ (v)

dv
+

5νab‖ (v)

v

)
.

This expression can be substituted into the collision operator:

CT
ab(fa) = νabD (v)Lfa + vνab‖ (v)

∂fa
∂v

+
∂

∂v

(
v2

2
νab‖ (v)

∂fa
∂v

)

+
ma

mb

v3

v2
Tb

(
∂

∂v
(νab‖ (v)fa) + νab‖ (v)fa

1

v5

d

dv
(v5)

)

CT
ab(fa) = νabD (v)Lfa + vνab‖ (v)

∂fa
∂v

+
∂

∂v

(
v2

2
νab‖ (v)

∂fa
∂v

)
+
ma

Tb

1

v2

∂

∂v

(
νab‖ (v)

2
v5fa

)
.

The two terms in the middle can be combined into one. Using the chain rule gives
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1

v2

∂

∂v

[
(v2)(

v2

2
νab‖ (v)

∂fa
∂v

)

]
= vνab‖ (v)

∂fa
∂v

+
∂

∂v

(
v2

2
νab‖ (v)

∂fa
∂v

)
.

Thus, one obtains

CT
ab(fa) = νabD (v)Lfa +

1

v2

∂

∂v

(
v4

2
νab‖ (v)

∂fa
∂v

)
+
ma

Tb

1

v2

∂

∂v

(
νab‖ (v)

2
v5fa

)
.

The following identity is used to rewrite the collision operator:

FMa
∂

∂v

(
g

FMa

)
=
∂g

∂v
+

2v

v2
Ta

g

∂g

∂v
= FMa

∂

∂v

(
g

FMa

)
− mav

Ta
g.

The final form of the complete linearized Landau-Boltzmann test-particle part of the collision

operator is then obtained:

CT
ab(fa) = CT0

ab (fa) +
ma

Tb

(
1− Tb

Ta

)
1

v2

∂

∂v

(
νab‖ (v)

2
v5fa

)
, (3.29)

where

CT0
ab (fa) = νabD (v)Lfa +

1

v2

∂

∂v

(
v4

2
νab‖ (v)FMa

∂

∂v

(
fa
FMa

))
. (3.30)

The test-particle part has been written in this form such that there is a nonisothermal

part and a part which obeys a certain self-adjointness symmetry (to be explained in more

detail later). This operator conserves particles since the integral of the entire collision term

is equal to zero. And a field-particle term is constructed such that the collision operator

as a whole conserves particles, momentum, and energy. However, the collision operator

must also dissipate free energy and drive different perturbations toward a common localized

distribution function. This is essentially the main feature of the collision operator.
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3.4 Problems with free energy dissipation

It is required that the free energy change for each species be negative. Since the Vlasov

equation conserves entropy, the free energy change from the collisional term must be negative,

∑
a

−Ta
(
∂Sa
∂t

)
coll

≤ 0. (3.31)

The definition for the entropy associated with a given distribution function is given by [12],

Sa = −
ˆ
d3vFa ln(Fa). (3.32)

Plugging this into the above expression and using the chain rule, one obtains

∑
a

Ta

ˆ
d3v

(
ln(Fa)Ca + Ca

)
≤ 0.

Because the collision operator conserves particles,

∑
a

Ta

ˆ
d3v ln(Fa)Ca ≤ 0.

Since the distribution function being considered is linearized (Fa = FMa + fa), a Taylor

expansion can be performed:

∑
a

Ta

ˆ
d3vCa

[
ln

(
na

(
√
πvTa)3

)
−
(

v

vTa

)2

+ ln

(
1 +

fa
FMa

)]
≤ 0.

Due to particle and energy conservation, the first two terms inside of the brackets vanish.

Taylor expanding the last term in the bracket gives

∑
a

Ta

ˆ
d3v

fa
FMa

Ca ≤ 0

∑
a

Ta

ˆ
d3v

fa
FMa

∑
b

(CT
ab(fa) + CF

ab(fb)) ≤ 0.
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Since the collision operator is binary between particles, this relation must hold between any

pair of species, so the H-theorem can be written more succinctly as

Ta

ˆ
d3v

fa
FMa

(CT
ab(fa) + CF

ab(fb)) + Tb

ˆ
d3v

fb
FMb

(CT
ba(fb) + CF

ba(fa)) ≤ 0. (3.33)

Given an isothermal case in which all of the background distributions are at a common

temperature, this property is analytically satisfied. However, the nonisothermal part of the

test-particle operator breaks a particular symmetry which is contained in CT0
ab (fa) such that

the operator is no longer guaranteed to dissipate free energy. This is an unfortunate side

effect of the attempt to linearize the collision operator. To more clearly explain how the

nonisothermal part breaks the free energy dissipation property, it shall be proven that the

other part of the collision operator (CT0
ab and the associated field-particle part) satisfies the

free energy dissipation property for the isothermal case, and then it shall be explained how

the nonisothermal part breaks it.

Self-adjointness relations for the test-particle and field-particle operators can be derived:

ˆ
d3v

fa
FMa

CT0
ab (ga) =

1

2

ˆ
dvdθdφ

fa
FMa

v2νabD (v)
∂

∂θ

(
sin(θ)

∂

∂θ
ga

)

+
1

2

ˆ
dvdθdφ

fa
FMa

v2νabD (v)
1

sin(θ)

∂2

∂φ2
ga

+

ˆ
dvdθdφ

fa
FMa

sin(θ)
∂

∂v

[
νab‖ (v)

2
v4FMa

∂

∂v

(
ga
FMa

)]
.

Integrating by parts for each of these integrals (and using the fact that the distribution

functions go to zero infinitely far away):

ˆ
d3v

fa
FMa

CT0
ab (ga) = −1

2

ˆ
dvdθdφ

1

FMa

v2νabD (v) sin(θ)

(
∂fa
∂θ

)(
∂ga
∂θ

)
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−1

2

ˆ
dvdθdφ

1

FMa

v2νabD (v)
1

sin(θ)

∂fa
∂φ

∂ga
∂φ

−
ˆ
dvdθdφ sin(θ)

νab‖ (v)

2
v4FMa

∂

∂v

(
fa
FMa

)
∂

∂v

(
ga
FMa

)
.

Since this expression is symmetric in fa and ga, a self-adjointness relation for the test particle

operator can be written as

ˆ
d3v

fa
FMa

CT0
ab (ga) =

ˆ
d3v

ga
FMa

CT0
ab (fa). (3.34)

The previous relation gives an important property:

ˆ
d3v

fa
FMa

CT0
ab (fa) = −1

2

ˆ
dvdθdφ

1

FMa

v2νabD (v) sin(θ)

(
∂fa
∂θ

)2

−1

2

ˆ
dvdθdφ

1

FMa

v2νabD (v)
1

sin(θ)

(
∂fa
∂φ

)2

−
ˆ
dvdθdφ sin(θ)

νab‖ (v)

2
v4FMa

[
∂

∂v

(
fa
FMa

)]2

.

Both νabD (v) and νab‖ (v) are positive definite, as well as all other quantities under the integrals,

so that the following is evident:

ˆ
d3v

fa
FMa

CT0
ab (fa) ≤ 0. (3.35)

This property is essential for satisfying the H-theorem for arbitrary distributions. In

fact, if one of the distributions in the H-theorem is set to zero, the H-theorem and the above

expression become exactly the same. So this condition must hold. However, this condition

is not ensured when the nonisothermal part in CT
ab is included. The integral of that part is

not guaranteed to be negative definite for an arbitrary distribution. This is because when

the collision operator was linearized, the background was regarded as fixed compared to the

perturbations, and that leads to a complication. In the isothermal case, free energy would
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always flow from the perturbation to the Maxwellian background distribution, otherwise the

second law of thermodynamics would be violated. However, if the background distributions

are at different temperatures, then free energy can flow from the background distribution of

one species to the perturbation of another species. For a situation where the background is

kept fixed, this can result in free energy flowing into the system.

It is highly desirable to have a collision operator which acts as a pure sink of free en-

ergy and satisfies an H-theorem. Otherwise, one may observe artificial instabilities in any

simulation which uses collisions. For this reason, the test-particle operator is replaced with

a model term which satisfies an H-theorem and has a collisional asymptotic limit which is

a generalization of the isothermal one. This is the same model term derived and detailed

in ref. [14]. A model collision operator is sought whereby when only collisions act on the

system and all perturbations are driven to an asymptotic distribution of the form

fa → FMa

(
δna
na

+
ma

Ta
u‖v‖ +

δT

T

(
v2

v2
Ta

− 3

2

))
. (3.36)

Where u‖ and δT/T is the same between all species in the relaxed state. This property

holds in the isothermal case, and a collisional model is sought whereby this holds also in the

nonisothermal case. In creating such a model, the above formula is regarded as the collisional

equilibrium for simulations where the background distributions are fixed, even though it is

not a true thermal equilibrium. The starting point for the construction of such a model is

the modification of the test-particle operator to ensure that the self-adjointness condition

holds.

The derivation of the self-adjointness relation suggests a method for modifying the test-

particle operator (same method described in ref. [14]). Suppose a self-adjoint operator, Qab,

is given by

ˆ
d3v

fa
FMa

Qabga =

ˆ
d3v

ga
FMa

Qabfa (3.37)

If a new collision operator, CTS
ab (fa) = QabC

T0
ab Qab(fa), is defined, then the following expres-
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sion can be derived:

ˆ
d3v

fa
FMa

CTS
ab (fa) = −1

2

ˆ
dv

FMa

dθdφv2νabD (v) sin(θ)

(
∂(Qabfa)

∂θ

)2

−1

2

ˆ
dv

FMa

dθdφv2νabD (v)
1

sin(θ)

(
∂(Qabfa)

∂φ

)2

−
ˆ
dvdθdφ sin(θ)

νab‖ (v)

2
v4FMa

[
∂

∂v

(
Qabfa
FMa

)]2

≤ 0.

This new operator will be guaranteed to dissipate free energy. All that is needed is

some way of modeling the nonisothermal part of the test-particle operator such that the new

operator has the form of CTS
ab (fa). To do this, it will be helpful to first look at a simplified case.

In typical simulations that are run using GENE, if the species are at different temperatures,

they are also at dramatically different mass. If there is an additional impurity ion species, it

is often assumed that the impurity species is at the same temperature as the other ion species.

This is because there is a lack of measurements that would allow for distinguishing impurity

and bulk ion temperatures. Therefore, the ion-electron and electron-ion collision operators

shall be examined in the limit of extreme mass ratio for inspiration on how to modify the

nonisothermal test-particle part of the collision operator. This will give a derivation for the

same operator outlined in Sugama et al. [14] which is incorporated into GENE.

3.5 Ion-electron and electron-ion collision operators

The test-particle part of the ion-electron and electron-ion collision operators shall be exam-

ined by Taylor expanding in the limit of small
√
me/mi to provide inspiration for how to

construct a model collision operator to ensure the self-adjointness property. Starting with

the Fokker-Plank form for the electron-ion collision operator, the collision operator can be

written as
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Cei = − ∂

∂v
· Γei

Γei = −←→D ei ·
∂fe
∂v

+
1

me

Reife.

Now, for the Landau-Boltzmann operator, the following identity is used:

Rab =
m2
a

mb

∂

∂v
· ←→D ab.

To see where the above identity comes from, the definition of the resistance vector and

diffusion tensor from the Landau-Boltzmann collision operator are utilized,

←→
Dab =

γab
m2
a

ˆ
d3v′
←→
UFb(v

′)

Rab =
γab
mb

ˆ
d3v′
←→
U · ∂Fb(v

′)

∂v′

←→
U =

u2←→I − uu

u3
.

The previous identity can be proven with these expressions, integration by parts, and the

following formula:

∂

∂v
· ←→U = − ∂

∂v′
· ←→U .

Using the previous form of the resistance vector gives

Γei = −←→D ei ·
∂fe
∂v

+
me

mi

∂

∂v
· ←→D eife.

Assuming that me � mi and that the perturbed distributions vary smoothly in velocity

space on scales of the ion thermal velocity, the resistive term can be ignored,
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Cei =
∂

∂v
· ←→D ei ·

∂fe
∂v

.

The diffusion tensor is given by

←→
D ei =

2πe2
ee

2
i ln(Λ)

m2
e

ˆ
d3v′
←→
U fi(v

′).

Consider the case in which the ion distribution is a Maxwellian distribution at rest. In

that case, assuming that the electron distribution varies on the scale of the electron thermal

velocity and that the temperatures are roughly comparable, the ion Maxwellian distribution

should seem very narrow to the electrons. When compared to the normalized electron

thermal velocity, the width of the electron distribution should be of order ∼ vTi

vTe
∼
√

meTi
miTe

.

Assuming that the mass ratio is sufficiently small, the width of the distribution can be

neglected and replaced with a delta function: fi(v′) = niδ(v
′). The diffusion tensor then

becomes

←→
D ei =

2πnie
2
ee

2
i ln(Λ)

m2
e

v2←→I − vv

v3
.

Placing this tensor within the expression for the collision operator, the test-particle part

of the electron-ion collision operator is obtained,

CT
ei =

2πnie
2
ee

2
i ln(Λ)

vm2
e

(
∇2
v −

1

v2

∂

∂v
v2 ∂

∂v

)
fe

CT
ei =

2ni
vm2

e

Lfe. (3.38)

This is a pitch-angle scattering operator, and should obey the self-adjointness relation de-

scribed previously. It was assumed earlier that the ion distribution was at rest. If it was

not, then the collision operator would contain a moment of the ion distribution function.

However, this correction would be part of the field-particle part of the linearized operator.

In whatever way the test-particle operator is constructed, it must be done in such a way
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as to match the electron-ion test-particle operator in the small mass ratio limit. So the term

which breaks the self-adjointness symmetry must be replaced with a self-adjoint model term

which nearly vanishes for electron-ion collisions (but not ion-electron collisions). Now the

ion-electron test-particle part of the collision operator must be derived in the limit of small

mass ratio. The flux used in the operator can be expressed as

Γie = −←→D ie ·
∂fi
∂v

+
1

mi

Riefi.

Now the expression for the diffusion tensor shall be obtained from the definition based on

the Rosenbluth potentials:

←→
D ie =

γie
m2
i

∂2GMe

∂v∂v
.

Since GMe depends only on the magnitude of the velocity, this expression can be simplified,

←→
D ie =

γie
m2
i

∂

∂v

(
∂GMe

∂v
v̂

)
=
γie
m2
i

(
∂2GMe

∂v2
v̂v̂ +

∂GMe

∂v

∂

∂v
v̂

)
,

and Einstein summation notation can be used to evaluate the last term,

∂

∂v
v̂ = ei∂i

vjej
v

=
δij
v

eiej −
vivj
v3

eiej =
1

v

(←→
I − vv

v2

)
giving

←→
D ie =

γie
m2
i

((
∂2GMe

∂v2
− 1

v

∂GMe

∂v

)
v̂v̂ +

1

v

∂GMe

∂v

←→
I

)
.

Earlier, the derivatives of this Rosenbluth potential were calculated in Eq. 3.22 and 3.25.

Substituting those expressions into the one above gives

←→
D ie =

γie
m2
i

ne
v

[(
3G(xe)− Φ(xe)

)
v̂v̂ +

(
Φ(xe)−G(xe)

)←→
I

]
.

The structures vary on the ion-thermal velocity scale, which means that a Taylor ex-
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pansion based on the small mass ratio can be performed on the coefficients of the tensor

elements (xe = vT iv̂/vTe ∼ O(
√
me/mi)). The lowest order term in front of the first tensor

is proportional to x3
e, and the lowest order term in front of the second tensor is proportional

to xe. As such, the first tensor is ignored since it is smaller than the second by a factor of

the mass ratio. Taylor expanding the coefficient in front of the second term gives

Φ(xe)−G(xe) '
4

3
√
π
xe,

and

←→
D ie ·

∂fi
∂v

=
4

3
√
π

γie
m2
i

ne
vTe

∂fi
∂v

.

Now an expression for the resistance vector must be obtained from the Rosenbluth po-

tentials:

Rie =
2γie
me

∂HMe

∂v
=

2γie
me

∂HMe

∂v
v̂.

Substituting the expression obtained earlier for the derivative (Eq. 3.24) gives

Rie = −4γiene
mev2

Te

G(xe)v̂.

The expression, G(xe), can also be Taylor expanded,

G(xe) '
2

3
√
π
xe,

and the expression for the resistance vector is obtained:

Rie = − 8γiene
3
√
πmev3

Te

v.

Substituting this into the expression for the flux gives
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Γie = − 4

3
√
π

γiene
m2
i vTe

∂fi
∂v
− 8

3
√
π

γiene
mimev3

Te

vfi = − 4

3
√
π

γiene
mivTeTe

[
vfi +

Te
mi

∂fi
∂v

]
.

From this expression, the ion-electron test-particle collision operator in the small mass ratio

limit can be obtained,

CT
ie(fi) =

4

3
√
π

γiene
mivTeTe

∂

∂v
·
[
vfi +

Te
mi

∂fi
∂v

]
.

Using the identity,

FMi
∂

∂v

(
fi
FMi

)
=
∂fi
∂v

+
2v

v2
T i

fi,

this expression can be rewritten in a way which clearly separates out the nonisothermal part

which breaks self-adjointness,

CT
ie(fi) =

4γiene
3
√
πmivTeTe

∂

∂v
·
[
Te
mi

FMi
∂

∂v

(
fi
FMi

)
+

(
1− Te

Ti

)
vfi

]
. (3.39)

One could achieve a self-adjoint operator by simply neglecting this term. However, for

practical purposes, this is too crude of an approximation. It is expected that the linearized

collision operator will drive the perturbed distribution, fi, close to a perturbed Maxwellian

(not to a complete Maxwellian, since there are the constraints that the collision operator

must conserve momentum and energy). This would not be the case if the nonisothermal

term were completely ignored. The momentum and free energy transfer corresponding to

that term must be retained.

A better approximation can be obtained by replacing this term with a model term which

gives the same momentum and energy transfer as the original term, but also satisfies the

self-adjointness relation. It is also required that the new term vanishes when acting on a

Maxwellian. One approach to doing this is to replace the divergence term with a quadratic

polynomial in v multiplying a simple distribution such as a Maxwellian, and then determining
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the coefficients such that one can reproduce the same energy and momentum transfer (one

can then verify if this term is self-adjoint):

∂

∂v
· (vfi)→

(
a(fi) + b(fi) · v + c(fi)x

2
i

)
FMi.

The integral of this term over velocity space is zero since the distribution function ap-

proaches zero as v →∞ and since the middle term is odd in v. This gives the constraint:

ˆ
d3v(a+ cx2

i )e
−x2i = 0

ˆ ∞
0

dxx2(a+ cx2)e−x
2

= 0.

The values of these integrals can be found in any standard table of integrals. Evaluating

them and solving for a in terms of c gives a = −3c/2. The earlier expression can thus be

simplified to

∂

∂v
·
(
vfi
)
→
(
a(fi)(x

2
i −

3

2
) + b(fi) · v

)
FMi.

The vector, b, can be determined by matching the momentum transfer of the two terms.

The momentum transfer of the original term is given by

ˆ
d3vmiv

∂

∂v
·
(
vfi
)

= −miniui(fi).

Where ui(fi) = (1/ni)
´
d3vvfi has been defined so as to use the same notation as Sugama

et al. [14]. Now the analogous term on the right hand side is evaluated in cylindrical velocity

space coordinates as

ˆ
d3vb · vfMimiv =

ˆ
dv⊥v⊥dφdvzbvzmiFMi(v⊥v̂⊥ + vzv̂z).

The expression in front of the first vector vanishes because it is odd in vz. The other part
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becomes

ˆ
d3vb · vfMimiv =

2πnibmi

π3/2v3
T i

ˆ ∞
0

dv⊥v⊥e
−(v⊥/vTi)

2

ˆ ∞
−∞

dvzv
2
ze
−(vz/vTi)

2

v̂z.

The expression for the integrals can again be looked up in a table:

ˆ
d3vb · vFMimiv =

πnibmiv
2
T i

π3/2

√
π

2
= nibTiv̂z = niTib.

From this equation, one can see

b(fi) = −mi

Ti
ui(fi).

And the earlier expression further simplifies as

∂

∂v
·
(
vfi
)
→
(
a(fi)(x

2
i −

3

2
)− mi

Ti
ui(fi) · v

)
FMi.

Now the energy transfer of the final term is examined to determine the final coefficient:

ˆ
d3v

1

2
miv

2 ∂

∂v
·
(
vfi
)

= −
ˆ
d3vmiv

2fi.

Evaluating the analogous term on the other side of the equation gives

ˆ
d3v

1

2
miv

2a

(
x2
i −

3

2

)
FMi = aTi

ni
π3/2v3

T i

4π

ˆ ∞
0

dvv2x2
i

(
x2
i −

3

2

)
e−x

2
i

=
4aTini√

π

ˆ ∞
0

dxx4

(
x2 − 3

2

)
e−x

2

.

Again, evaluating the expression using a table of integrals gives

ˆ
d3v

1

2
miv

2a

(
x2
i −

3

2

)
fMi =

4aTini√
π

(
15

16

√
π − 9

16

√
π

)
=

3

2
aTini,

therefore
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a(fi) = − 2

3niTi

ˆ
d3vmiv

2fi

∂

∂v
·
(
vfi
)
→ − 2

3niTi

( ˆ
d3vmiv

2fi

)(
x2
i −

3

2

)
FMi −

mi

Ti
ui(fi) · vFMi.

There is a problem with the above expression. It does not vanish for a Maxwellian

distribution, whereas the previous term did. This is an essential property of the collision

operator, so the model for the term must be further modified. The energy carried by a

Maxwellian distribution with arbitrary amplitude in this term should clearly be zero, so

a reasonable guess would be to simply add 2
3niTi

´
d3vfi
ni

(
´
d3vmiv

2FMi)(x
2
i − 3

2
)FMi to the

above expression so that it vanishes for a Maxwellian with arbitrary amplitude. So the new

expression becomes

∂

∂v
· (vfi)→ −

4

3niTi

( ˆ
d3v

1

2
miv

2fi −
3

2
Ti

ˆ
d3vfi

)(
x2
i −

3

2

)
FMi −

mi

Ti
ui(fi) · vFMi.

The divergent term breaking self-adjointness has been replaced by a model operator which

replicates the same momentum and free energy transfer as the original term. By replicating

the same free energy transfer, but not the same total energy transfer, the nonisothermal

system is essentially regarded as an equilibrium. While this is not a reasonable assumption

for systems where thermalization plays an important role, it should be reasonable for delta-f

gyrokinetic simulations where the background profiles are regarded as fixed, and the only

concern is replicating gyrokinetic turbulence and transport for a given plasma discharge (the

evolution of the background profiles are negligible compared to the perturbed distribution

for turbulent time scales). The validity of the final linearized model collision operator shall

be discussed in more detail in the next section. For now, it is assumed that the divergent

term can be written in the following way:
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∂

∂v
·
(
vfi
)
→ −2

δTi(fi)

Ti

(
x2
i −

3

2

)
FMi −

mi

Ti
ui(fi) · vFMi. (3.40)

Where the following integral moment has been introduced to follow the notation used in [14]:

δTi(fi)

Ti
=

1

ni

ˆ
d3vfi

(
miv

2

3Ti
− 1

)
. (3.41)

Substituting this term for the term which breaks self-adjointness, the following ion-

electron collision operator is obtained:

CTS
ie (fi) =

4γiene
3
√
πmiTevTe

(
∂

∂v
·
(
Te
mi

FMi
∂

∂v

(
fi
FMi

))

−
(

1− Te
Ti

)
FMi

(
mi

Ti
ui(fi) · v + 2

δTi(fi)

Ti

(
x2
i −

3

2

)))
.

This can be written in operator notation (same as the Sugama et al.) as

CTS
ie (fi) = CT0

ie (fi)−
4γiene

3
√
πmiTevTe

(
1− Te

Ti

)(
P1i + 2P2i

)
fi. (3.42)

Where P1i and P2i can be viewed as projection operators,

P1i(f) = FMi
mi

Ti
v · ui(f) (3.43)

P2i(f) = FMi
δTi(f)

Ti

(
x2
i −

3

2

)
. (3.44)

And the self-adjoint part of the ion-electron collision operator, CT0
ie (fi), is given by

CT0
ie (fi) =

4γiene
3
√
πmiTevTe

∂

∂v
·
(
Te
mi

FMi
∂

∂v

(
fi
FMi

))
. (3.45)

One can verify that P1i and P2i satisfy the self-adjointness relation,
´
d3v h

FMi
Pi(g) =

´
d3v g

FMi
Pi(h)

as well as (P1i)
2 = P1i, (P2i)

2 = P2i, and P1iP2i = P2iP1i. Since the operator is now self-
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adjoint, it is desirable to rewrite the collision operator as CTS
ie = QieC

T0
ie Qie, so that the free

energy dissipation property can be more clearly expressed. The assumption will be made

that Qie takes the following form:

Qie(f) = f + AP1i(f) +BP2i(f).

Now QieC
T0
ie Qie is evaluated, and A and B are solved for by matching the coefficients of

the projection operators in the equation CTS
ie = QieC

T0
ie Qie:

∂

∂v

(
Qief

FMi

)
=

∂

∂v

(
f

FMi

)
+ A

mi

Ti
ui(f) +B

δTi(f)

Ti

2v

v2
T i

∂

∂v
·
[
FMi

∂

∂v

(
Qief

FMi

)]
=

∂

∂v
·
[
FMi

∂

∂v

(
f

FMi

)]

−Ami

Ti
ui(f) ·

(
2v

v2
T i

)
FMi +B

δTi(f)

Ti

2

v2
T i

FMi

(
3− 2v2

v2
T i

)

Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
Qief

FMi

)]
=
Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
f

FMi

)]
− Te
Ti
AP1i(f)− 2B

Te
Ti
P2i(f).

Using

ui

(
Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
f

FMi

)])

= − Te
mini

ˆ
d3vFMi

∂

∂v

(
f

FMi

)
= − Te

mini

ˆ
d3v

2v

v2
T i

f = −Te
Ti

ui(f)

P1i

(
Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
f

FMi

)])
= −Te

Ti
P1i(f)

and
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δTi
Ti

(
Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
Qief

FMi

)])
=

Te
mini

ˆ
d3v

(
miv

2

3Ti
− 1

)
∂

∂v
·
[
FMi

∂

∂v

(
f

FMi

)]

= − 2Te
3mini

ˆ
d3v

mi

Ti
v ·
[
FMi

∂

∂v

(
f

FMi

)]

=
2Te

3niTi

ˆ
d3v

f

FMi

∂

∂v
·
(
vFMi

)

= − 2Te
niTi

ˆ
d3v

(
miv

2

3Ti
− 1

)
f = −2

Te
Ti

δTi
Ti

(f)

P2i

(
Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
Qief

FMi

)])
= −2Te

Ti
P2i(f),

the final expression for QieC
T0
ie Qie is given by

Qie

(
Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
Qief

FMi

)])
=

Te
mi

∂

∂v
·
[
FMi

∂

∂v

(
f

FMi

)]
− Te
Ti
A(2 + A)P1i(f)− 2B(2 +B)

Te
Ti
P2i(f).

Matching the coefficients of the projection operators so that the above expression agrees

with CTS
ie , the following is obtained:

A = B

−Te
Ti
A(2 + A) = −

(
1− Te

Ti

)
.

Solving this quadratic gives
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A = ±
√
Ti
Te
− 1.

The positive root is chosen so that the new term vanishes in the isothermal case, as it

should. This gives the final form of the self-adjoint model ion-electron and electron-ion

collision operators,

CTS
ie (fi) = QieC

T0
ie Qie(fi) (3.46)

Qie(f) = f +

(√
Ti
Te
− 1

)
Pi(f) (3.47)

Pi(f) = FMi
mi

niTi
v ·
ˆ
d3vvf + FMi

(
x2
i −

3

2

)
1

ni

ˆ
d3v

(
miv

2

3Ti
− 1

)
f (3.48)

CTS
ei (fe) = CT0

ei (fe). (3.49)

3.6 Generalization of self-adjoint collision operator to multiple species

A self-adjoint two species test-particle collision operator has been derived. It is useful to

write the collision operator in a generalized form that could be applied to multiple species.

This generalized model shall have the same form as in ref. [14],

CTS
ab (fa) = QabC

T0
ab Qab(fa) (3.50)

Qab(f) = f + (θab − 1)Pa(f) (3.51)

Pa(f) = FMa
ma

Ta
v · ua(f) + FMa

(
x2
a −

3

2

)
δTa(f)

Ta
(3.52)
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ua(fa) =
1

na

ˆ
d3vvfa (3.53)

δTa(fa)

Ta
=

1

na

ˆ
d3vfa

(
mav

2

3Ta
− 1

)
. (3.54)

θab should approach unity if ma � mb and
√

Ta
Tb

if ma � mb. That way, the new self-

adjoint collision operator should agree with the one obtained for collisions between ions and

electrons. The following form for θab shall be chosen, consistent with Sugama et al.:

θab =

√
Ta(ma +mb)

(Tamb + Tbma)
. (3.55)

This provides a self-adjoint operator that can be applied to any number of species. Fur-

thermore, since Qab satisfies the self-adjointness property, the following integral moment can

be written as

ˆ
d3v

fa
FMa

CTS
ab (fa) = −1

2

ˆ
dv

FMa

dθdφv2νabD (v)sin(θ)

(
∂(Qabfa)

∂θ

)2

−1

2

ˆ
dv

FMa

dθdφv2νabD (v)
1

sin(θ)

(
∂(Qabfa)

∂φ

)2

−
ˆ
dvdθdφsin(θ)

νab‖ (v)

2
v4FMa

[
∂

∂v

(
Qabfa
FMa

)]2

.

The derivation of this equation is very similar to the one used previously. One simply has

to use the self-adjointness relation for Qab. From this one can see

ˆ
d3v

fa
FMa

CTS
ab (fa) ≤ 0.

Equality will hold in the above formula only if the quantities ∂(Qabfa)
∂θ

, ∂(Qabfa)
∂φ

, and ∂
∂v

(
Qabfa
FMa

)
are all zero everywhere in velocity space (all of the other quantities are positive definite inside

of the integral). This will only be true if Qabfa ∝ FMa. Since QabFMa = FMa, this implies
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that the free energy dissipation from the test-particle part vanishes only if the distribution

is proportional to a Maxwellian,

ˆ
d3v

fa
FMa

CTS
ab (fa) = 0⇔ fa = FMa

δna
na

(3.56)

δna =

ˆ
d3vfa. (3.57)

So the new test-particle part of the collision operator should dissipate free energy for

an arbitrary distribution function. The test-particle part of the collision operator can be

written more explicitly,

CTS
ab (fa) = CT0

ab (fa) + (θab − 1)(PaC
T0
ab (fa) + CT0

ab Pa(fa)) + (θab − 1)2PaC
T0
ab Pa(fa) (3.58)

PaC
T0
ab (fa) = FMa

ma

naTa
v ·
ˆ
d3vvCT0

ab (fa) + FMa
1

na

(
x2
a −

3

2

) ˆ
d3v

(
mav

2

3Ta
− 1

)
CT0
ab (fa).

The self-adjointness relation and the fact that the collision operator conserves particles can

be used to write this expression as

PaC
T0
ab (fa) = FMa

ma

naTa
v ·
ˆ
d3v

fa
FMa

CT0
ab (FMav)+FMa

2

3na

(
x2
a−

3

2

) ˆ
d3v

fa
FMa

CT0
ab (FMax

2
a).

(3.59)

In addition,

CT0
ab Pa(fa) =

ma

Ta
ua(fa) · CT0

ab (FMav) +
δTa(fa)

Ta
CT0
ab (FMax

2
a). (3.60)

Where the fact that the collision operator vanishes when acting on a Maxwellian has been
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utilized. The expression for PaCT0
ab Pa can be written as

PaC
T0
ab Pa(fa) = FMa

[
ma

naTa
v ·
ˆ
d3v

ma

Ta
u(fa) · CT0

ab (FMav)v

+
1

na

(
x2
a −

3

2

) ˆ
d3v

δTa(fa)

Ta
CT0
ab (FMax

2
a)

(
mav

2

3Ta
− 1

)]
. (3.61)

Using the fact that only the component along ua(fa) survives in the first integral, and the

fact that the integral over only the collision operator is zero in the second integral,

PaC
T0
ab Pa(fa) = FMa

[
ma

Ta
ua(fa) · v

1

na

ˆ
d3v

mav

3Ta
· CT0

ab (FMav)

+
δTa(fa)

Ta

(
x2
a −

3

2

)
1

na

ˆ
d3v

2

3
x2
aC

T0
ab (FMax

2
a)

]
. (3.62)

The field-particle part of the collision operator can also be generalized from Eq. 3.16:

CF
ba(fa) = −

TaC
TS
ba

(
FMbmbv

Tb

)
·
´
d3vmav

Ta
CTS
ab (fa)

γba
− TaC

TS
ba (FMbx

2
b)
´
d3vx2

aC
TS
ab (fa)

ηba
. (3.63)

Where γab and ηab have been defined as

γab = Ta

ˆ
d3v

mav‖
Ta

CTS
ab

(
FMa

mav‖
Ta

)
(3.64)

ηab = Ta

ˆ
d3vx2

aC
TS
ab (FMax

2
a). (3.65)

Eq. 3.64 and 3.65 can be written in a more simplified way using the representation CTS
ab =

QabC
T0
ab Qab, the fact that Qab is a self-adjoint operator, QabFMa

mav‖
Ta

= θabFMa
mav‖
Ta

, and

QabFMax
2
a = θabFMax

2
a − 3

2
(θab − 1)FMa:
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γab = θ2
abTa

ˆ
d3v

mav‖
Ta

CT0
ab

(
FMa

mav‖
Ta

)

ηab = θ2
abTa

ˆ
d3vx2

aC
T0
ab (FMax

2
a).

These integrals can be evaluated in a straightforward manner, and this is done in section

3.8. The result is shown in Eq. 3.84 and 3.85. Using these expressions, γab and ηab can be

written in very simplified expressions,

γab = −16
√
π

3

nanbq
2
aq

2
b ln(Λ)

(v2
Ta + v2

Tb)
3/2

(
1

ma

+
1

mb

)

ηab = −8
√
π ln(Λ)

nanbq
2
aq

2
bv

2
Tav

2
Tb

(v2
Ta + v2

Tb)
5/2

(
1

ma

+
1

mb

)
.

It can be seen from the above expressions that γab = γba and ηab = ηba. When evaluating the

integral moment, Tb
´
d3v fb

FMb
CF
ab(fa), it is clear (when using the self-adjointness relations

corresponding to the test-particle part) that the expression is symmetric in the indices a and

b. This gives a self-adjointness relation for the field-particle part,

Ta

ˆ
d3v

fa
FMa

CF
ab(fb) = Tb

ˆ
d3v

fb
FMb

CF
ba(fa). (3.66)

This completes the derivation of the linearized model collision operator in the drift-kinetic

limit. The proof that this operator satisfies the H-theorem and acts to drive distributions

toward a simple perturbed Maxwellian is given in the following section. The reader may

wonder after this derivation whether the construction of such a model operator is truly

justified. They may wonder whether any important physics has been lost in the replacement

of the field-particle part or the nonisothermal test-particle part with models designed to

enforce conservation and symmetry properties.

A key fact in this regard is that more advanced collision models cannot be used in the

GENE code because the background profiles must be regarded as fixed. It is furthermore
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not clear how one would devise a gyrokinetic model which evolves both the perturbed distri-

bution on the fast turbulence timescale and the background distribution on the slow heating

timescale in one simulation with no numerical difficulties. Creating a code or upgrading

GENE to a code which does this would be a difficult task.

One could devise a collision operator for a full-f model, and there are plans for creating a

version of GENE that would simulate gyrokinetic turbulence in the scrape-off layer of a mag-

netic confinement device with such a model. However, there are also difficulties in this area.

For full-f simulations with a nonlinear Landau-Boltzmann operator, one would be faced with

the nonlocal nature of the collisions, and a convolution integral would have to be performed

which would be computationally expensive. There are also numerical difficulties that have

been encountered in such endeavors, such as the distribution function becoming negative

from application of the collision operator. Additionally, incorporating FLR corrections into

such an operator would be difficult.

It is not clear that model operators truncate significant physics. It could be that as long as

pitch-angle scattering and energy diffusion are retained in the operator, then the other terms,

as well as the exact size of the free energy sink are not as important, so long as appropriate

conservation and symmetry properties are retained to prevent strange numerical features.

To truly determine the validity of the collision model, however, requires a comparison with

a more complete collision model. This has already been done for a neoclassical scenario in

ref. [60] for an isothermal parameter set.

3.7 Proof of H-theorem

It has been shown that the test-particle part of the collision operator dissipates free energy,

but it remains to be shown that the complete operator dissipates free energy. It also remains

to be determined what distributions the collisions will drive the system towards. This shall

be investigated in this section in the same way it has been investigated in Appendix A of

ref. [14]. Consider the following operator acting on pairs of distribution functions:
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[fa, fb|ga, gb] = −Ta
ˆ
d3v

fa
FMa

CTS
ab (ga)− Tb

ˆ
d3v

fb
FMb

CTS
ba (gb).

From Eq. 3.56 it is clear that this expression is positive definite for certain distributions,

[fa, fb|fa, fb] ≥ 0.

One can then evaluate [λfa−ga, λfa−ga|λfa−ga, λfa−ga] (which must be greater than zero)

as a quadratic polynomial in λ, aλ2 + bλ+ c. Since [λfa− ga, λfa− ga|λfa− ga, λfa− ga] ≥ 0

for arbitrary λ, this requires that the discriminant be less than or equal to zero: b2−4ac ≤ 0.

Equating the coefficients with the proper terms gives an essential inequality,

[fa, fb|fa, fb][ga, gb|ga, gb] ≥ [fa, fb|ga, gb]2. (3.67)

For the derivation of the H-theorem, it is convenient to decompose the distribution func-

tion into spherical harmonics,

f(v) =
∞∑
l=0

l∑
m=−l

Fl,m(v)Y m
l (θ, φ) = f odd(v) + f even(v).

First the odd components (odd values of l) shall be considered. Setting ga = FMamav‖/Ta

and gb = FMbmbv‖/Tb (where ‖ denotes an arbitrary direction in this case, although it shall

be taken to parameterize the velocity component along the magnetic field later), Eq. 3.67

gives

(γab + γba)

(
Ta

ˆ
d3v

f odd
a

FMa

CTS
ab (f odd

a ) + Tb

ˆ
d3v

f odd
b

FMb

CTS
ba (f odd

b )

)

≥
(
Ta

ˆ
d3v

f odd
a

FMa

CTS
ab

(
FMa

mav‖
Ta

)
+ Tb

ˆ
d3v

f odd
b

FMb

CTS
ba

(
FMb

mbv‖
Tb

))2

.

The following relation is also useful:
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(
Ta

ˆ
d3v

f odd
a

FMa

CTS
ab

(
FMa

mav‖
Ta

)
− Tb

ˆ
d3v

f odd
b

FMb

CTS
ba

(
FMb

mbv‖
Tb

))2

≥ 0.

Furthermore

(
Ta

ˆ
d3v

f odd
a

FMa

CTS
ab

(
FMa

mav‖
Ta

))2

+

(
Tb

ˆ
d3v

f odd
b

FMb

CTS
ba

(
FMb

mbv‖
Tb

))2

≥ 2

(
Ta

ˆ
d3v

f odd
a

FMa

CTS
ab

(
FMa

mav‖
Ta

))(
Tb

ˆ
d3v

f odd
b

FMb

CTS
ba

(
FMb

mbv‖
Tb

))
,

and using the fact that γab = γba, the previous relation can be rewritten as

2γab

(
Ta

ˆ
d3v

f odd
a

FMa

CTS
ab (f odd

a ) + Tb

ˆ
d3v

f odd
b

FMb

CTS
ba (f odd

b )

)

≥ 4

(
Ta

ˆ
d3v

f odd
a

FMa

CTS
ab

(
FMa

mav‖
Ta

))(
Tb

ˆ
d3v

f odd
b

FMb

CTS
ba

(
FMb

mbv‖
Tb

))
.

Using the definition of the field-particle part of the collision operator, as well as γab < 0, the

H-theorem for the odd spherical harmonic components of the distribution function can be

proven,

Ta

ˆ
d3v

f odd
a

FMa

(
CTS
ab (f odd

a )+CF
ab(f

odd
b )

)
+Tb

ˆ
d3v

f odd
b

FMb

(
CTS
ba (f odd

b )+CF
ba(f

odd
a )

)
≤ 0. (3.68)

Now that the H-theorem has been proven, the equilibrium solution for which the left-

hand side equates to zero remains to be found. Given that CTS
ab

(
FMa

mav
Ta

)
‖ v, and that the

spherical harmonics are orthogonal functions, the field-particle part of the collision operator

acting on all odd components of the distribution function with l > 1 vanishes. So the

inequality for the higher order odd spherical harmonics can be written as

Ta

ˆ
d3v

f odd,l>1
a

FMa

CTS
ab (f odd,l>1

a ) + Tb

ˆ
d3v

f odd,l>1
b

FMb

CTS
ba (f odd,l>1

b ) ≤ 0.
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All of the above integrals will vanish unless the distributions are proportional to a Maxwellian

distribution, which by definition, they never will be. So these higher order spherical harmon-

ics are continuously damped. So the equilibrium distribution for this case will correspond

to l = 1 and be proportional to v‖. One can assume solutions of the following form:

f l=1
a = A(v)FMa

mav‖
Ta

f l=1
b = B(v)FMb

mbv‖
Tb

.

Plugging these formulas into the H-theorem and imposing equality gives the following equa-

tion:

γabTa

ˆ
d3vA(v)

mav‖
Ta

CTS
ab

(
A(v)FMa

mav‖
Ta

)
+ γabTb

ˆ
d3vB(v)

mbv‖
Tb

CTS
ba

(
B(v)FMb

mbv‖
Tb

)

−2TaTb

( ˆ
d3vA(v)

mav‖
Ta

CTS
ab

(
FMa

mav‖
Ta

))(ˆ
d3vB(v)

mbv‖
Tb

CTS
ba

(
FMb

mbv‖
Tb

))
= 0.

The solution to the above equation is A(v) = B(v) = constant. The physical interpretation

of this constant would be the equilibrium flow of the system,

fa → u‖FMa

mav‖
Ta

fb → u‖FMb

mbv‖
Tb

.

Since the parallel direction was chosen arbitrarily, the above two formulas can be generalized,
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fa → u · vFMa
ma

Ta
(3.69)

fb → u · vFMb
mb

Tb
. (3.70)

Now the even components of the spherical harmonics shall be considered. Setting ga =

FMax
2
a and gb = FMbx

2
b in Eq. 3.67 and following the same procedure as for the odd compo-

nents gives the H-theorem for the even part of the distribution function:

Ta

ˆ
d3v

f even
a

FMa

(
CTS
ab (f even

a ) + CF
ab(f

even
b )

)
+ Tb

ˆ
d3v

f even
b

FMb

(
CTS
ba (f even

b ) + CF
ba(f

even
a )

)
≤ 0.

(3.71)

All of the even spherical harmonics with l > 0 have a field-particle part which vanishes

by the same logic used for the odd components. So only the even components have to be

considered. An equilibrium solution of the following form shall be considered:

f l=0
a = A(v)FMa

f l=0
b = B(v)FMb.

The equation for equilibrium is then given by

ηabTa

( ˆ
d3vA(v)CTS

ab

(
A(v)FMa

))
+ ηabTb

(ˆ
d3vB(v)CTS

ab

(
B(v)FMb

))

−2TaTb

( ˆ
d3vA(v)CTS

ab

(
FMax

2
a

))( ˆ
d3vB(v)CTS

ba

(
FMbx

2
b

))
= 0.

The above set of equations can be solved to give the following solutions:
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A(v) = α + βx2
a

B(v) = γ + βx2
a.

Where α, β, and γ could be any arbitrary value. However, it is convenient to rewrite the

above expressions in a way which separates out the density and temperature fluctuations,

fa →
(
δna
na

+
δT

T

(
x2
a −

3

2

))
(3.72)

fb →
(
δnb
nb

+
δT

T

(
x2
b −

3

2

))
. (3.73)

Putting Eq. 3.68 and 3.71 together, the H-theorem associated with the collision operator

is obtained,

Ta

ˆ
d3v

fa
FMa

(
CTS
ab (fa) + CF

ab(fb)

)
+ Tb

ˆ
d3v

fb
FMb

(
CTS
ba (fb) + CF

ba(fa)

)
≤ 0. (3.74)

This inequality becomes an equality when the equilibrium state is reached. For the delta-f

gyrokinetic simulation model, the equilibrium state is a perturbed Maxwellian (as seen by

putting Eq. 3.69, 3.70, 3.72, and 3.73 together) of the following form:

fa → FMa

(
δna(fa)

na
+
ma

Ta
u · v +

δT

T

(
x2
a −

3

2

))
. (3.75)

In the above formula, a could correspond to any species. Collisions will tend to drive

all of them to a distribution of the same form. And u and δT
T

will be the same for all

species. The effect of the field-particle part of the collision operator can be seen more

clearly from this derivation. If the field-particle part is excluded, then collisions would

drive all species towards a Maxwellian distribution, and all of the flow and temperature
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perturbations would be destroyed by the collision operator, as seen in Eq. 3.56. However, if

the field-particle part is included, then the constraints of momentum and energy conservation

are imposed, and the asymptotic state of the collision operator is altered to account for these

constraints. The asymptotic state represented by Eq. 3.75 is a highly desirable property of

the collision operator. The collisions drive arbitrary perturbations to a localized structure in

velocity space which is as close to a Maxwellian as possible, while also meeting the essential

momentum and energy conservation constraints.

3.8 Gyrokinetic form of the model collision operator

The gyrokinetic form of the new collision operator shall now be derived, as has been in

ref. [14]. The gyrokinetic distribution function to first order is given by [15],

fa(r, v‖, µ, t) = −FMa
qa
Ta
〈φ(r, t)〉+ ha(Ra, v‖, µ, t) +O(ε2). (3.76)

Here, the distribution function has been separated into an adiabatic part and a nonadiabatic

part. The vector, r, denotes the particle coordinates of the distribution function and Ra

denotes the guiding center coordinates of the particle in the magnetic field. In a gyrokinetic

simulation, there is no information about the full six dimensional distribution, only the gy-

rophase averaged five dimensional distribution. The collision operator also vanishes when

acting on a Maxwellian distribution. So the adiabatic part of the distribution need not be

included in the collision operator. Since collisions occur in particle space, it will be necessary

to transform the nonadiabatic part to particle coordinates, operate with the collision opera-

tor, transform back to guiding center coordinates, and then perform the gyrophase-average

operation,

CGK
ab =

˛
dφ

2π
Tp→gcC

linear
ab

(
Tgc→pha, Tgc→phb

)
.

For simplicity, this derivation will be done for the local version of gyrokinetics. However, the

derivation for the global case would be very similar. But since only local FLR corrections
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are implemented in the code, the description of global FLR corrections do not provide any

insight into the collision operator in GENE, and is left to future work.

The procedure starts with transforming the distribution into Fourier space,

a(r) =
1

(2π)3/2

ˆ
d3ka(k)eik·r.

Using R = r − ρa, the perturbed distribution function can be written to first order in the

gyrokinetic ordering in Fourier space,

1

(2π)3/2

ˆ
d3kfke

ik·r = −FMa
qa
Ta

1

(2π)3/2

ˆ
d3kφke

ik·r +
1

(2π)3/2

ˆ
d3khke

ik·(r−ρa)

fak = − qa
Ta
φkFMa + hake

−ik·ρa .

Since the gyroradius vector, ρa, is perpendicular to the magnetic field, the Fourier transform

can be limited to the part of configuration space perpendicular to the magnetic field,

fak⊥ = − qa
Ta
φk⊥FMa + hak⊥e

−ik⊥·ρa .

Since the collision operator vanishes when acting on a Maxwellian, and since it is necessary to

transform the collision operator back from particle coordinates to guiding center coordinates

and then gyroaverage, the form for the gyrokinetic test-particle operator can be given as

C
(GK)
ab =

˛
dφ

2π
eik⊥·ρa

[
CTS
ab (e−ik⊥·ρahak⊥) + CF

ab(e
−k⊥·ρbhbk⊥)

]
.

The gyrokinetic test-particle part of the collision operator can be written more explicitly

as

˛
dφ

2π
eik⊥·ρaCTS

ab (e−ik⊥·ρahak⊥) =

˛
dφ

2π
eik⊥·ρaCT0

ab (e−ik⊥·ρahak⊥)
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+(θab − 1)

˛
dφ

2π
eik⊥·ρaPaC

T0
ab (e−ik⊥·ρahak⊥)

+(θab − 1)

˛
dφ

2π
eik⊥·ρaCT0

ab Pa(e
−ik⊥·ρahak⊥)

+(θab − 1)2

˛
dφ

2π
eik⊥·ρaPaC

T0
ab Pa(e

−ik⊥·ρahak⊥).

The first integral term shall be explicitly evaluated using spherical coordinates so that k⊥ ·
ρa = k⊥v

Ωa
sin(θ) cos(φ). The azimuthal part of the pitch-angle scattering operator (Eq. 3.21)

shall be evaluated first,

∂

∂φ
(e−ik⊥·ρahak⊥) =

ik⊥v

Ωa

sin(θ) sin(φ)e−ik⊥·ρahak⊥

∂2

∂φ2
(e−ik⊥·ρahak⊥) =

ik⊥v

Ωa

sin(θ)e−ik⊥·ρahak⊥

(
cos(φ) + i

k⊥v

Ωa

sin(θ) sin2(φ)

)

˛
dφ

2π
eik⊥·ρa νabD (v)

2 sin2(θ)

∂2

∂φ2

(
e−ik⊥·ρahak⊥

)
= −k

2
⊥v

2

4Ω2
a

νabD (v)hak⊥ .

Now the inclination part of the gyroaveraged pitch-angle scattering operator shall be exam-

ined,

∂

∂θ
(e−ik⊥·ρahak⊥) = e−ik⊥·ρa ∂

∂θ
hak⊥ −

ik⊥v

Ωa

cos(θ) cos(φ)e−ik⊥·ρahak⊥

∂

∂θ

(
sin(θ)

∂

∂θ
(e−ik⊥·ρahak⊥)

)

= e−ik⊥·ρa ∂

∂θ

(
sin(θ)

∂

∂θ
hak⊥

)
− 2ik⊥v

Ωa

cos(θ) cos(φ)e−ik⊥·ρa sin(θ)
∂hak⊥

∂θ
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−ik⊥v
Ωa

(cos2(θ)− sin2(θ)) cos(φ)e−ik⊥·ρahak⊥ −
(
k⊥v

Ωa

cos(θ) cos(φ)

)2

sin(θ)e−ik⊥·ρahak⊥ .

Multiplying by eik⊥·ρa and gyroaveraging, all of the terms proportional to cos(φ) to the first

power will vanish,

˛
dφ

2π
eik⊥·ρ ν

ab
D (v)

2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
(e−ik⊥·ρahak⊥)

)

=
νabD (v)

2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
hak⊥

)
−
k2
⊥v

2
‖

4Ω2
a

νabD (v)hak⊥ .

Now the FLR corrections to the energy diffusion part of the test-particle operator (Eq. 3.30)

shall be examined,

∂

∂v

(
hak⊥

FMa

e−ik⊥·ρa
)

= e−ik⊥·ρa ∂

∂v

(
hak⊥

FMa

)
− ik⊥

Ωa

sin(θ) cos(φ)e−ik⊥·ρa hak⊥

FMa

∂

∂v

(
νab‖ (v)

2
v4FMa

∂

∂v

(
hak⊥

FMa

e−ik⊥·ρa
))

= e−ik⊥·ρa ∂

∂v

(
νab‖ (v)

2
v4FMa

∂

∂v

(
hak⊥

FMa

))

−
(
k⊥
Ωa

sin(θ) cos(φ)

)2

e−ik⊥·ρa
νab‖ (v)

2
v4hak⊥ + ...

Where the remaining terms are proportional to cos(φ) and would vanish under the gyroav-

eraging operation. So now the following expression is obtained:

˛
dφ

2π
eik⊥·ρa 1

v2

∂

∂v

(
νab‖ (v)

2
v4FMa

∂

∂v

(
hak⊥

FMa

e−ik⊥·ρa
))

=
1

v2

∂

∂v

(
νab‖ (v)

2
v4FMa

∂

∂v

(
hak⊥

FMa

))
− k2

⊥v
2
⊥

4Ω2
a

νab‖ (v)hak⊥ .
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Putting these three expressions together gives

˛
dφ

2π
eik⊥·ρaCT0

ab (hak⊥e
−ik⊥·ρa) = CT0

ab (hak⊥)− k2
⊥hak⊥

4Ω2
a

(νabD (v)(2v2
‖ + v2

⊥) + νab‖ (v)v2
⊥). (3.77)

The gyrokinetic form of the pitch-angle scattering and energy diffusion parts of the col-

lision operator are exactly the same except for the addition of a spatial diffusion operator.

This term will tend to dampen small-scale configuration space structures perpendicular to

the magnetic field. This matches the intuition of what one would expect collisions to do.

Another potentially nice feature of this term is that it may reduce the need for ad hoc nu-

merical hyperdiffusion terms in x and y (numerical hyperdiffusion is needed for these terms

to prevent grid scale oscillations in those dimensions, although there is also a risk that it may

dampen physical structures if set too high). One problematic aspect of this term, however,

is that it can dramatically reduce the timestep if high perpendicular wavenumbers are incor-

porated into a gyrokinetic simulation at high collisionality. For instance, when performing

gyrokinetic simulations in the edge, it has been found that for high values of kyρs (∼ 10),

the spatial diffusion can shrink the timestep by about an order of magnitude, making studies

of high kyρs gyrokinetic turbulence in the edge impractical until alternative time-stepping

schemes can be utilized.

Now the gyroaveraged form of the other parts of the collision operator must be evaluated.

Starting with PaCT0
ab (Eq. 3.59),

˛
dφ

2π
eik⊥·ρaPaC

T0
ab (hak⊥e

−ik⊥·ρa) =

˛
dφ

2π
eik⊥·ρaFMa

[
ma

Ta
v · 1

na

ˆ
d3v

hak⊥e
−ik⊥·ρa

FMa

CT0
ab (FMav)

+
2

3na

(
x2
a −

3

2

) ˆ
d3v

hak⊥e
−ik⊥·ρa

FMa

CT0
ab (FMax

2
a)

]
,
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k⊥ · ρa ∝ cos(φ), the Bessel function expansion,

eizcos(φ) = J0(z) + 2
∞∑
n=1

inJ1(z) cos(nφ),

and the orthogonality of trigonometric functions, an expansion of the coefficients in spherical

coordinates can be utilized,

˛
dφ

2π
eik⊥·ρaPaC

T0
ab (hak⊥e

−ik⊥·ρa) = J0(k⊥ρa)FMa

mav‖
naTa

ˆ
d3v

hak⊥e
−ik⊥·ρa

FMa

CT0
ab (FMav‖)

+iJ1(k⊥ρa)FMa
mav⊥
naTa

ˆ
d3v

hak⊥e
−ik⊥·ρa

FMa

CT0
ab (FMavx)

+J0(k⊥ρa)FMa

(
x2
a −

3

2

)
1

na

ˆ
d3v

hak⊥e
−ik⊥·ρa

FMa

2

3
CT0
ab (FMax

2
a).

One can easily verify that L(v) ‖ v and the energy diffusion part of the test-particle operator

does not depend on any coordinate other than the magnitude of the velocity. So it can be

stated that CT0
ab (FMav) = A(v)v. Also, CT0

ab (FMax
2
a) does not depend on the angle coordinates

at all. So the Bessel function expansion can be reused,

˛
dφ

2π
eik⊥·ρaPaC

T0
ab (hak⊥e

−ik⊥·ρa) = J0(k⊥ρa)FMa

mav‖
naTa

ˆ
d3v

hak⊥J0(k⊥ρa)

FMa

A(v)v‖

+J1(k⊥ρa)FMa
mav⊥
naTa

ˆ
d3v

hak⊥J1(k⊥ρa)

FMa

A(v)v⊥

+J0(k⊥ρa)FMa(x
2
a −

3

2
)

2

3na

ˆ
d3v

hak⊥J0(k⊥ρa)

FMa

CT0
ab (FMax

2
a).

Now since the orientation of v̂‖ does not depend on the angular coordinates, CT0
ab (FMav‖) =
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A(v)v‖. But the same cannot be said of the integral involving v⊥ since the orientation of v̂⊥

does depend on the azimuthal angle. As such, the terms in the second integral are multiplied

by v‖
v‖
,

˛
dφ

2π
eik⊥·ρaPaC

T0
ab (hak⊥e

−ik⊥·ρa)

= J0(k⊥ρa)FMa

v‖
na

ˆ
d3v

hak⊥J0(k⊥ρa)

FMa

CT0
ab (FMamav‖/Ta)

+J1(k⊥ρa)FMa
v⊥
na

ˆ
d3v

hak⊥J1(k⊥ρa)

FMa

v⊥
v‖
CT0
ab (FMamav‖/Ta)

+ J0(k⊥ρa)FMa(x
2
a −

3

2
)

2

3na

ˆ
d3v

hak⊥J0(k⊥ρa)

FMa

CT0
ab (FMax

2
a). (3.78)

The same exercise can be done with CT0
ab Pa (Eq. 3.60),

˛
dφ

2π
eik⊥·ρaCT0

ab Pa(hak⊥e
−ik⊥·ρa)

= J0(k⊥ρa)C
T0
ab (FMamav‖/Ta)

1

na

ˆ
d3vJ0(k⊥ρa)hak⊥v‖

+J1(k⊥ρa)
v⊥
v‖
CT0
ab (FMamav‖/Ta)

1

na

ˆ
d3vJ1(k⊥ρa)hak⊥v⊥

+ J0(k⊥ρa)C
T0
ab (FMax

2
a)

2

3na

ˆ
d3vJ0(k⊥ρa)hak⊥(x2

a −
3

2
), (3.79)

as well as for the field-particle operator CF
ab (Eq. 3.63),

˛
dφ

2π
eik⊥·ρaCF

ab(hbk⊥e
−ik⊥·ρb) =
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− Tb
γab

CTS
ab (FMamav‖/Ta)J0(k⊥ρa)

ˆ
d3vJ0(k⊥ρb)

hbk⊥

FMb

CTS
ba (FMbmbv‖/Tb)

− Tb
γab

v⊥
v‖
CTS
ab (FMamav‖/Ta)J1(k⊥ρa)

ˆ
d3vJ1(k⊥ρb)

v⊥
v‖

hbk⊥

FMb

CTS
ba (FMbmbv‖/Tb)

− Tb
ηab

CTS
ab (FMax

2
a)J0(k⊥ρa)

ˆ
d3vJ0(k⊥ρb)

hbk⊥

FMb

CTS
ba (FMbx

2
b). (3.80)

The gyroaveraged expression for the final part of the test-particle operator, PaCT0
ab Pa, is

more complicated. First, CT0
ab (FMamav‖/Ta) and CT0

ab (FMax
2
a) must be evaluated. For the

purpose of clarity, the same notation as Sugama et al. will be used,

3
√
π

4τab
=

2γabnb
m2
av

3
Ta

=
4πnbe

2
ae

2
b ln(Λ)

m2
av

3
Ta

. (3.81)

The pitch-angle scattering operator clearly vanishes when acting on a spherically symmetric

distribution, so the following is obtained:

CT0
ab (FMax

2
a) =

1

v2

∂

∂v

(
νab‖ (v)

v4

2
FMa

∂

∂v
(x2

a)

)
=

4γabnb
m2
av

2

∂

∂v

(
G(xb)x

2
aFMa

)

CT0
ab (FMax

2
a) =

3
√
π

4τab

v3
Ta

α2
abv

2

∂

∂v

(
(Φ(xb)− xbΦ′(xb))FMa

)
,

where αab = vTa/vTb. It is straightforward to evaluate the derivative of the above expression.

When this is done, one obtains:

CT0
ab (FMax

2
a) = −3

√
π

2τab

FMa

αabxb
[Φ(xb)− xb(1 + α2

ab)Φ
′(xb)].

Now CT0
ab (FMamav‖/Ta) must be considered. Since the pitch angle scattering operator only

depends on the angular coordinates, and
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1

2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

(
cos(θ)

))
= − cos(θ),

it follows that

νabD (v)L

(
FMa

mav‖
Ta

)
= −νabD (v)FMa

mav‖
Ta

.

Furthermore

1

v2

∂

∂v

[
νab‖ (v)

2
v4FMa

∂

∂v

(
mav‖
Ta

)]
=

1

v3

∂

∂v

[
νab‖ (v)

2
v4FMa

]
mav‖
Ta

,

therefore

CT0
ab

(
FMa

mav‖
Ta

)
=

[
1

v3

(
∂

∂v

(
νab‖ (v)

2
v4

)
−
v5νab‖ (v)

v2
Ta

)
− νabD (v)

]
FMa

mav‖
Ta

.

From the chain rule,

∂

∂v

(
νab‖ (v)

2
v4

)
= 2v3νab‖ (v) +

1

2
v4 ∂

∂v

(
νab‖ (v)

)
.

It was previously determined that the derivative of νab‖ (v) is (Eq. 3.28)

dνab‖ (v)

dv
=

4γabnb
m2
avTb

Φ′(xb)

v3
−

5νab‖ (v)

v
.

So

1

v3

∂

∂v

(
νab‖ (v)

2
v4

)
= −1

2
νab‖ (v) +

2γabnb
m2
av

3
xbΦ

′(xb).

Using this and the definition for νabD (v) (Eq. 3.23), it follows that

CT0
ab

(
FMa

mav‖
Ta

)
= −FMa

mav‖
Ta

[(
1

2
+x2

a

)
νab‖ (v)+

2γabnb
m2
av

3
(Φ(xb)−xbΦ′(xb)−G(xb))

]
(3.82)
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CT0
ab

(
FMa

mav‖
Ta

)
= −FMa

mav‖
Ta

[
x2
aν

ab
‖ (v) +

4γabnb
m2
av

3
x2
bG(xb)

]

CT0
ab (FMa

mav‖
Ta

) = −FMa

mav‖
Ta

(1 + α2
ab)x

2
aν

ab
‖ (v) = −FMa

mav‖
Ta

(1 + α2
ab)

3
√
π

2τab

G(xb)

xa
. (3.83)

Now the moments of these quantities,
´
d3v(mav‖/Ta)CT0

ab (FMav‖)/na and 2
´
d3vx2

aC
T0
ab (FMax

2
a)/(3na)

must be evaluated to obtain an appropriate expression for the gyroaveraged form of PaCT0
ab Pa,

1

na

ˆ
d3v

mav‖
Ta

CT0
ab (FMav‖) =

1

na

ˆ
d3v

mav‖
Ta

(
− 3
√
π

2τab

)
(1 + α2

ab)FMav‖
G(xb)

xa
.

This integral can be evaluated using spherical coordinates and the evaluation of the angular

parts of the integrand (cos(θ)) is straightforward. Furthermore, the prefactors from the

Maxwellian term are removed and the u-substitution for the radial component of the velocity

space integral x = v/vTa is used:

1

na

ˆ
d3v

mav‖
Ta

CT0
ab (FMav‖) = −2ma

Ta
(1 + α2

ab)
v2
Ta

τab

ˆ ∞
0

dxx3e−x
2

G(αabx)

= −4
(1 + α2

ab)

α2
abτab

ˆ ∞
0

dx
1

2
xe−x

2

(Φ(αabx)− αabxΦ(αabx))

=
(1 + α2

ab)

α2
abτab

ˆ ∞
0

dx

(
d

dx
e−x

2

)
(Φ(αabx)− αabxΦ′(αabx))

=
(1 + α2

ab)

α2
abτab

ˆ ∞
0

dxe−x
2

αabxΦ′′(αabx)αab

= − 4√
π
αab

(1 + α2
ab)

τab

ˆ ∞
0

dxx2e−(1+α2
ab)x2 .
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Using another u-substitution:

1

na

ˆ
d3v

mav‖
Ta

CT0
ab (FMav‖) = − 4αab

τab
√
π(1 + α2

ab)

ˆ ∞
0

dxx2e−x
2

.

One can look up the value of this integral from a table,

1

na

ˆ
d3v

mav‖
Ta

CT0
ab (FMav‖) = − αab

τab
√

1 + α2
ab

. (3.84)

Now the other integral is evaluated,

2

3na

ˆ
d3vx2

aC
T0
ab (FMax

2
a) = −

√
π

naτab

ˆ
d3vxa

FMa

α2
ab

[
Φ(αabxa)− αabxa(1 + α2

ab)Φ
′(αabxa)

]
.

Once again, the prefactors from the Maxwellian term can be removed and the angular inte-

gration is trivial,

2

3na

ˆ
d3vx2

aC
T0
ab (FMax

2
a) = − 4

τab

ˆ ∞
0

dxx3 e
−x2

α2
ab

[
Φ(αabx)− αab(1 + α2

ab)xΦ′(αabxa)

]

2

3na

ˆ
d3vx2

aC
T0
ab (FMax

2
a) =

2

τabα2
ab

ˆ ∞
0

dx
d

dx

(
(x2+1)e−x

2

)[
Φ(αabx)−(1+α2

ab)αabxΦ′(αabx)

]

2

3na

ˆ
d3vx2

aC
T0
ab (FMax

2
a) =

2αab
τab

2√
π

ˆ ∞
0

dx(x2 + 1)e−(1+α2
ab)x2(1− 2x2(1 + α2

ab)).

Using the change of variables y = x
√

1 + α2
ab ,
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2

3na

ˆ
d3vx2

aC
T0
ab (FMax

2
a) =

4αab
τab
√
π(1 + α2

ab)
3/2

ˆ ∞
0

dy(y2 + 1 + α2
ab)(1− 2y2)e−y

2

.

This leads to an integral of a quartic polynomial multiplying an exponential function. The

integral for each term in the polynomial can be evaluated using a table of integrals,

2

3na

ˆ
d3vx2

aC
T0
ab (FMax

2
a) = − 2αab

τab(1 + α2
ab)

3/2
. (3.85)

Using these two expressions for the integrals, the expression for PaCT0
ab Pa (Eq. 3.62) can be

simplified,

PaC
T0
ab Pa(fa) = − FMaαab

τab
√

1 + α2
ab

[
ma

Ta
v · ua(fa) +

2
(
x2
a − 3

2

)
1 + α2

ab

δTa(fa)

Ta

]
The gyroaveraged form of PaCT0

ab Pa can now be examined in a way which is very similar to

the evaluation of CT0
ab Pa and PaCT0

ab :

˛
dφ

2π
eik⊥·ρaPaC

T0
ab Pa(hak⊥e

−ik⊥·ρa) = − maFMaαab

naTaτab
√

1 + α2
ab

[
J0(k⊥ρa)v‖

ˆ
d3vv‖J0(k⊥ρa)hak⊥

+ J1(k⊥ρa)v⊥

ˆ
d3vv⊥J1(k⊥ρa)hak⊥ +

2
(
x2
a − 3

2

)
1 + α2

ab

J0(k⊥ρa)

ˆ
d3vJ0(k⊥ρa)hak⊥

2

3

(
x2
a −

3

2

)]
.

(3.86)

The complete analytical form for the linearized self-adjoint gyrokinetic collision operator

is given by

C
(Gyrokinetic)
ab (hak⊥ , hbk⊥) = CT0

ab (hak⊥)− k2
⊥hak⊥

4Ω2
a

(νabD (v)(2v2
‖ + v2

⊥) + νab‖ (v)v2
⊥)
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+(θab − 1)

( ˛
dφ

2π
eik⊥·ρaPaC

T0
ab (hak⊥e

−ik⊥·ρa) +

˛
dφ

2π
eik⊥·ρaCT0

ab Pa(hak⊥e
−ik⊥·ρa)

)

+(θab − 1)2

˛
dφ

2π
eik⊥·ρaPaC

T0
ab Pa(hak⊥e

−ik⊥·ρa)

+

˛
dφ

2π
eik⊥·ρaCF

ab(hbk⊥e
−ik⊥·ρb), (3.87)

where the gyroaveraged expressions were given earlier in Eqs. 3.78, 3.79, 3.86, and 3.80.

This expression is correct, however, it is not in a form which is convenient for numerical

discretization and normalization. From the test-particle part of the collision operator, there

are only six moments to calculate. Since the field-particle part is based on the test-particle

part, there are only the same 6 moments in that part as well. The moments will simply

be transposed in the field-particle part. The six coefficients multiplying the moments in the

test-particle part shall be derived in a way which is similar to [53]. The six moments in the

test-particle part are

Mab
1k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (J0(k⊥ρa)hak⊥) (3.88)

Mab
2k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (J1(k⊥ρa)hak⊥v⊥/v‖) (3.89)

Mab
3k⊥

=

ˆ
d3vx2

aC
T0
ab (J0(k⊥ρa)hak⊥) (3.90)

Mab
4k⊥

=

ˆ
d3vv‖J0(k⊥ρa)hak⊥ (3.91)
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Mab
5k⊥

=

ˆ
d3vv⊥J1(k⊥ρa)hak⊥ (3.92)

Mab
6k⊥

=

ˆ
d3vJ0(k⊥ρa)hak⊥

(
x2
a −

3

2

)
. (3.93)

The gyrokinetic collision operator shall be rewritten as

C
(Gyrokinetic)
ab (hak⊥ , hbk⊥) = CT0

ab (hak⊥)− k2
⊥hak⊥

4Ω2
a

(νabD (v)(2v2
‖ + v2

⊥) + νab‖ (v)v2
⊥)

+
6∑

n=1

(Xab
nk⊥

Mab
nk⊥

+ Y ab
nk⊥

M ba
nk⊥

). (3.94)

Where Xab
nk⊥

represents the coefficients for the test-particle part and Y ab
nk⊥

represents the

coefficients for the field-particle part. Matching the appropriate coefficients with Eq. 3.87

gives

Xab
1k⊥

= (θab − 1)J0(k⊥ρa)FMa

v‖
na

(3.95)

Xab
2k⊥

= (θab − 1)J1(k⊥ρa)FMa
v⊥
na

(3.96)

Xab
3k⊥

= (θab − 1)J0(k⊥ρa)FMa(x
2
a −

3

2
)

2

3na
(3.97)

Xab
4k⊥

= (θab − 1)J0(k⊥ρa)
1

na

[
CT0
ab

(
FMamav‖

Ta

)
− (θab − 1)

αab

τab
√

1 + α2
ab

mav‖
Ta

FMa

]
(3.98)

116



Xab
5k⊥

=
J1(k⊥ρa)v⊥
J0(k⊥ρa)v‖

Xab
4k⊥

(3.99)

Xab
6k⊥

= (θab − 1)J0(k⊥ρa)
2

3na

[
CT0
ab (FMax

2
a)− (θab − 1)

2αabFMa

τab(1 + α2
ab)

3/2

(
x2
a −

3

2

)]
. (3.100)

Now the terms for the field-particle operator must be evaluated. To do this, CTS
ab (FMamav‖/Ta)

and CTS
ab (FMax

2
a) must be evaluated. Starting with the first term,

ua

(
FMa

mav‖
Ta

)
=

2π

na

ˆ
dv‖dv⊥v⊥

mav
2
‖

Ta

na
π3/2v3

Ta

e−(v/vTa)2v̂‖,

and using two u-substitutions,

ua

(
FMa

mav‖
Ta

)
=

4√
π

ˆ ∞
−∞

dyy2e−y
2

ˆ ∞
0

dxxe−x
2

v̂‖ = v̂‖,

the following expression is obtained:

P1a

(
FMa

mav‖
Ta

)
= FMa

mav‖
Ta

.

P2a

(
FMa

mav‖
Ta

)
= 0 because it involves the integral of an odd function over the entire domain.

Since Qab(f) = f + (θab − 1)Paf ,

Qab(FMa

mav‖
Ta

) = θabFMa

mav‖
Ta

CT0
ab

(
Qab

(
FMa

mav‖
Ta

))
= θabC

T0
ab

(
FMa

mav‖
Ta

)

CTS
ab

(
FMa

mav‖
Ta

)
= Qab

(
CT0
ab

(
Qab

(
FMa

mav‖
Ta

)))
=

117



θabC
T0
ab

(
FMa

mav‖
Ta

)
+ θab(θab − 1)Pa

(
CT0
ab

(
FMa

mav‖
Ta

))
.

Using Eq. 3.84:

CTS
ab

(
FMa

mav‖
Ta

)
= θab

(
CT0
ab

(
FMa

mav‖
Ta

)
− FMamaαabv‖(θab − 1)

τabTa
√

1 + α2
ab

)
. (3.101)

Now CTS
ab (FMax

2
a) must be examined,

δTa
Ta

(FMax
2
a) =

1

na

ˆ
d3v

(
2

3
x2
a − 1

)
xaFMa = 1

Pa(FMax
2
a) = FMa

(
x2
a −

3

2

)

Qab(FMax
2
a) = FMa

(
x2
a +

(
θab − 1

)(
x2
a −

3

2

))
.

Since CT0
ab vanishes when acting on a Maxwellian distribution,

CT0
ab (Qab(FMax

2
a)) = θabC

T0
ab (FMax

2
a).

Now, based on the earlier integral that was evaluated in Eq. 3.85,

δTa
Ta

(CT0
ab (FMax

2
a)) =

1

na

ˆ
d3v

2

3
x2
aC

T0
ab (FMax

2
a) = − 2αab

τab(1 + α2
ab)

3/2

P2a(C
T0
ab (FMax

2
a)) = − 2FMaαab

τab
(
1 + α2

ab

)3/2

(
x2
a −

3

2

)
.

Finally:

118



CTS
ab (FMax

2
a) = θab

[
CT0
ab (FMax

2
a)−

2FMaαab(θab − 1)

τab(1 + α2
ab)

3/2

(
x2
a −

3

2

)]
.

One can substitute these expressions into the expression for the gyroaveraged field-particle

operator (Eq. 3.80), and obtain

˛
dφ

2π
eik⊥·ρaCF

ab(hbk⊥e
−ik⊥·ρb) =

6∑
n=1

Ynk⊥M
ba
nk⊥

(3.102)

Y ab
1k⊥

= −Tbθba
γab

CTS
ab (FMa

mav‖
Ta

)J0(k⊥ρa) (3.103)

Y ab
2k⊥

=
J1(k⊥ρa)v⊥
J0(k⊥ρa)v‖

Y ab
1k⊥

(3.104)

Y ab
3k⊥

= −Tbθba
ηab

CTS
ab (FMax

2
a)J0(k⊥ρa) (3.105)

Y ab
4k⊥

= − mbαbaθba

τbaTb
√

1 + α2
ba

Y ab
1k⊥

(3.106)

Y ab
5k⊥

= − mbαbaθba

τbaTb
√

1 + α2
ba

Y ab
2k⊥

(3.107)

Y ab
6k⊥

= − 2αbaθba
τba(1 + α2

ba)
3/2
Y ab

3k⊥
. (3.108)

Thus, the final form for the analytical linearized model gyrokinetic collision operator is

derived,

C
(Gyrokinetic)
ab (hak⊥ , hbk⊥) = CT0

ab (hak⊥)− k2
⊥hak⊥

4Ω2
a

(νabD (v)(2v2
‖ + v2

⊥) + νab‖ (v)v2
⊥)
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+
6∑

n=1

(Xab
nk⊥

Mab
nk⊥

+ Y ab
nk⊥

M ba
nk⊥

). (3.109)

The gyrokinetic form of the model collision operator is exactly the same as the drift-kinetic

version except for the addition of a spatial diffusion term and the modulation of the integral

parts by Bessel functions. The effect of the FLR corrections will be to dampen structures at

high perpendicular wavenumber and structures far from the origin in velocity space.

3.9 Numerical implementation of gyrokinetic collision operator

An analytical form for the gyrokinetic collision operator has been obtained. Now the numer-

ical form for the operator must be derived such that it conserves particles, momentum, and

energy as well as satisfying the self-adjointness relations to guarantee free energy dissipation.

The collision operator shall be discretized such that particles, momentum, and energy are

conserved to machine precision in the drift-kinetic limit (k⊥ → 0) where it is simple to write

down the appropriate conservation laws. In the gyrokinetic case when FLR corrections are

included, the conservation law can be expressed as a divergence of a flux in configuration

space as shown in ref. [42]. In order for that property to be satisfied, the operator must be

discretized such that the local conservation laws are satisfied numerically in the drift-kinetic

limit. It is also important to point out that the numerical form of the collision operator is

designed to act on the nonadiabatic part of the distribution function divided by a background

Maxwellian. The division by the background Maxwellian is done to numerically ensure the

following self-adjointness relation:

ˆ
d3v

fa
FMa

CTS
ab (ga) =

ˆ
d3v

ga
FMa

CTS
ab (fa).

The nonadiabatic part of the distribution is used because the rate of change of free energy

by collisions, dF/dt|coll, is defined from the nonadiabatic part of the distribution [61],
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dF

dt

∣∣∣∣
coll

=
∑
j

njTj

ˆ
d3v

hj
FMj

Cj. (3.110)

So to numerically enforce the negative-definite nature of Eq. 3.110, the collision operator

must be defined as an operator acting on the nonadiabatic part of the distribution divided

by a background Maxwellian.

One other point worth mentioning is that the form of the Sugama collision operator

currently implemented in the GENE code utilizes a µ grid which is equidistant in the per-

pendicular velocity, not the standard Gauss-Laguerre grid. This is because derivatives in

µ are taken as part of the evaluation of this term. In the collisionless case, there are no

µ derivatives, and the main numerical error pertaining to the magnetic moment dimension

is integration error. It then makes to use a discretization scheme that minimizes that type

of error to better resolve modes such as trapped electron modes. When the collisionality is

higher however, then dissipation of small scale structures in µ can occur, and the main nu-

merical error is associated with the numerical differentiation which smooths out the magnetic

moment component of the distribution function. If one were to use a grid which minimized

the integration error for this case, then one would run the risk of optimizing for the wrong

scenario. So it would make sense to use a µ grid which is equidistant in the perpendicular

velocity. As of this writing, the Sugama collision operator has not been implemented with

the µ Gauss-Laguerre grids because it was assumed that such a grid was no longer optimal

for the case where collisions were active. However, it might make sense to implement the

new grids in the collision model, and see if the model has the same necessary numerical free

energy dissipation properties. One could then look at how the growth rates and frequencies

of the various microinstabilities converge with different collisionalities and different grids. It

may make sense for instance to use a Gauss-Laguerre grid for a weakly collisional system

with TEMs, and an equidistant perpendicular velocity grid for the highly collisional edge

(the Gauss-Laguerre grid may under-resolve the smoothing of the distribution function in

certain regions of velocity space).
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3.9.1 Numerical implementation of differential test-particle part

The differential part of the collision operator, CT0
ab (ha), is evaluated with a second-order finite

volume scheme on a grid which is equidistant in parallel and perpendicular velocity (this is

very similar to the discretization applied to the full Landau-Boltzmann collision operator

described in ref. [45]). The collisional fluxes are evaluated on a staggered velocity space grid

from the nonadiabatic part of the distribution function divided by a background Maxwellian

distribution. This scheme is used to allow for improved self-adjointness properties. To do

this, CT0
ab (Eq. 3.30) shall be written in a form more amenable to a finite volume discretization,

CT0
ab (ha) = ∇v · Jab. (3.111)

Where the collisional velocity space flux, Jab, can be split into a pitch-angle scattering part

and an energy diffusion part,

Jab = Jab,pa + Jab,ed

Jab,pa =
νD(v)

2

(
v2←→I − vv

)
FMa ·

∂

∂v

(
ha
FMa

)

Jab,ed =
v

2
νab‖ (v)FMa

∂

∂v

(
ha
FMa

)
v.

From the above expression it is straightforward to split the collisional flux into a parallel

and a perpendicular part,

J
‖
ab =

1

2

(
v2
‖ν

ab
‖ (v) + v2

⊥ν
ab
D (v)

)
FMa

∂

∂v‖

(
ha
FMa

)
+

1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥FMa

∂

∂v⊥

(
ha
FMa

)
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J⊥ab =
1

2

(
νab‖ (v)− νabD (v)

)
v‖v⊥FMa

∂

∂v‖

(
ha
FMa

)
+

1

2

(
v2
⊥ν

ab
‖ (v) + v2

‖ν
ab
D (v)

)
FMa

∂

∂v⊥

(
ha
FMa

)
.

All of the frequencies and the background distribution are evaluated on the staggered grid

(if the standard velocity space coordinates are evaluated from the indices 0, 1, 2, etc., then

the staggered velocity space coordinates are evaluated from the indices 0.5, 1.5, 2.5, etc.)

and the derivatives are interpolated to the staggered grid,

∂g

∂v‖

∣∣∣∣
(l+1/2),(m+1/2)

=
1

2∆v‖

(
g(l + 1,m)− g(l,m)

)
+

1

2∆v‖

(
g(l + 1,m+ 1)− g(l,m+ 1)

)
.

The use of the staggered grid is part of the second-order finite volume implementation. In

the above expression, v‖ is indexed by l and v⊥ is indexed by m. The derivatives with respect

to v⊥ are defined in an analogous manner. The collision operator on the standard grid is

then evaluated numerically from the staggered fluxes as

CT0
ab (ha) =

(
J
‖
ab(l+1/2,m)−J‖ab(l−1/2,m)

)
/∆v‖+

(
J⊥ab(l,m+1/2)−J⊥ab(l,m−1/2)

)
/∆v⊥.

Where the parallel and perpendicular flux elements in the above equation are calculated

from the velocity space integration weights and the flux on the staggered grid via

J⊥ab(l,m± 1/2) =
∆Va(m± 1/2)

2∆Va(m)
J⊥ab(l− 1/2,m± 1/2) +

∆Va(m± 1/2)

∆Va(m)
J⊥ab(l+ 1/2,m± 1/2)

J
‖
ab(l± 1/2,m) =

∆Va(m+ 1/2)

∆Va(m)
J
‖
ab(l± 1/2,m+ 1/2) +

∆Va(m− 1/2)

∆Va(m)
J
‖
ab(l± 1/2,m− 1/2).
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All of the fluxes on the staggered grid that fall outside of the simulated velocity space box

are set to zero. This enforces the conservation of particles for the differential part of the

collision operator.

3.9.2 Numerical implementation of the moment parts of the collision operator

All of the moments are evaluated with the same numerical integration in velocity space that

is used in the rest of the code,

Mab
1k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (hak⊥J0(k⊥ρa)) =

∑
l

∑
m

J∆v‖∆v⊥
mav‖
Ta

CT0
ab (hak⊥J0(k⊥ρa))

Mab
2k⊥

=

ˆ
d3v

mav‖
Ta

CT0
ab (hak⊥J1(k⊥ρa)

v⊥
v‖

) =
∑
l

∑
m

J∆v‖∆v⊥
mav‖
Ta

CT0
ab (hak⊥J1(k⊥ρa)v⊥/v‖)

Mab
3k⊥

=

ˆ
d3vx2

aC
T0
ab (hak⊥J0(k⊥ρa)) =

∑
l

∑
m

J∆v‖∆v⊥x
2
aC

T0
ab (hak⊥J0(k⊥ρa))

Mab
4k⊥

=

ˆ
d3vv‖J0(k⊥ρa)hak⊥ =

∑
l

∑
m

J∆v‖∆v⊥v‖J0(k⊥ρa)hak⊥

Mab
5k⊥

=

ˆ
d3vv⊥J1(k⊥ρa)hak⊥ =

∑
l

∑
m

J∆v‖∆v⊥v⊥J1(k⊥ρa)hak⊥

Mab
6k⊥

=

ˆ
d3v

(
x2
a −

3

2

)
J0(k⊥ρa)hak⊥ =

∑
l

∑
m

J∆v‖∆v⊥

(
x2
a −

3

2

)
J0(k⊥ρa)hak⊥ .
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Here, J represents the Jacobian of the gyrophase-integrated 2D velocity space integration

(J = 2πdv‖v⊥dv⊥). The indices which denote the discrete grid in v‖ and µ are denoted by l

and m. To evaluate these moments, the numerical implementation of CT0
ab defined earlier is

utilized. This allows for the conservation of momentum and energy to machine precision. In

order to more effectively evaluate these moments at every time step, all of the terms which

multiply the distribution and Bessel functions shall be grouped into one set of coefficients.

So in the end, in order to evaluate the moments, one simply multiplies the distribution

functions, the Bessel functions, and the coefficients, and sums over velocity space.

Now the coefficients of the moments must be considered. To begin with, the coefficients

responsible for maintaining conservation of parallel momentum shall be examined,

Xab
1 =

(θab − 1)

na
FMaJ0(k⊥ρa)v‖

Xab
4 =

(θab − 1)

naθab
J0(k⊥ρa)C

TS
ab (FMamav‖/Ta)

Y ab
1 = −J0(k⊥ρa)

Tb
Ta
θba

CTS
ab (FMamav‖/Ta)´

d3vCTS
ab (FMamav‖/Ta)mav‖/Ta

Y ab
4 = − mb

Tbτba

αba√
1 + α2

ba

(θba − 1)Y ba
1 .

The coefficients must be discretized such that momentum is conserved to machine precision,

ˆ
d3vmav‖C

T
ab(fa) +

ˆ
d3vmbv‖C

F
ba(fa) = 0. (3.112)

To do this, the following identities are utilized:

1

na
=

Ta
ma

´
d3vFMav2

‖
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1

θabna
= − θabαab

τab
√

1 + α2
ab

´
d3vv‖CTS

ab (FMamav‖/Ta)
.

The above identities can be shown from the definition of the Maxwellian distribution (Eq. 3.13),

the definition of CTS
ab (FMamav‖/Ta) (Eq. 3.101), the expression for the integral moment of

CT0
ab (FMamav‖/Ta) (Eq. 3.84), and a table of exponential integral identities. The following

discretization is then obtained for Xab
1 , Xab

4 , Y ab
1 , and Y ab

4 :

Xab
1 = (θab − 1)J0(k⊥ρa)

TaFMav‖
ma

´
d3vFMav2

‖
(3.113)

Xab
4 = −(θab − 1)

θabαab

τab
√

1 + α2
ab

J0(k⊥ρa)CTS
ab (FMamav‖/Ta)´

d3vv‖CTS
ab (FMamav‖/Ta)

(3.114)

Y ab
1 = −J0(k⊥ρa)

Tb
Ta
θba

CTS
ab (FMamav‖/Ta)´

d3vCTS
ab (FMamav‖/Ta)mav‖/Ta

(3.115)

Y ab
4 = − mb

Tbτba

αba√
1 + α2

ba

(θba − 1)Y ab
1 . (3.116)

Provided that the integrations in the above expressions are carried out numerically, and

the numerical form of CT0
ab is used, momentum will be conserved to machine precision in the

drift-kinetic limit. This can be verified by noting that the coefficients ofMab
1 andMab

4 cancel

when plugged into Eq. 3.112 (the integral of the differential test-particle part must also be

considered when the examining the coefficients of Mab
1 ). Particles and energy are conserved

to machine precision by virtue of the fact that the integration of any term which is odd in v‖

is zero. The coefficients responsible for perpendicular momentum conservation are obtained

from the parallel momentum coefficients by replacing the J0(k⊥ρa) Bessel function terms

with J1(k⊥ρa)v⊥/v‖,

Xab
2 = (θab − 1)J1(k⊥ρa)

TaFMav⊥
ma

´
d3vFMav2

‖
(3.117)
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Xab
5 = −(θab − 1)

θabαab

τab
√

1 + α2
ab

J1(k⊥ρa)v⊥CTS
ab (FMamav‖/Ta)

v‖
´
d3vv‖CTS

ab (FMamav‖/Ta)
(3.118)

Y ab
2 = −J1(k⊥ρa)

Tb
Ta
θba

v⊥CTS
ab (FMamav‖/Ta)

v‖
´
d3vCTS

ab (FMamav‖/Ta)mav‖/Ta
(3.119)

Y ab
5 = − mb

Tbτba

αba√
1 + α2

ba

(θba − 1)Y ab
2 . (3.120)

Finally, the coefficients responsible for energy conservation must be discretized,

Xab
3 =

2

3na
(θab − 1)FMaJ0(k⊥ρa)

(
x2
a −

3

2

)

Xab
6 =

2

3na

(θab − 1)

θab
CTS
ab (FMax

2
a)J0(k⊥ρa)

Y ab
3 = −J0(k⊥ρa)

Tb
Ta
θba

CTS
ab (FMax

2
a)´

d3vx2
aC

TS
ab (FMax2

a)

Y ab
6 = − 2αba

τba(1 + α2
ba)

3/2
(θba − 1)Y ab

3 .

Where the energy conservation relation for collisions is given by

ˆ
1

2
mav

2CT
ab(fa) +

ˆ
d3v

1

2
mbv

2CF
ba(fb) = 0. (3.121)

The following identities are utilized for the discretization:

2

3na
=

1´
d3vFMax2

a(x
2
a − 3/2)

2

3naθab
=

−2θabαab
τab(1 + α2

ab)
3/2
´
d3vx2

aC
TS
ab (FMax2

a)
.
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The four coefficients needed for energy conservation can be written as

Xab
3 = (θab − 1)

FMa(x
2
a − 3/2)J0(k⊥ρa)´

d3vFMax2
a(x

2
a − 3/2)

Xab
6 = −(θab − 1)

2θabαabC
TS
ab (FMax

2
a)J0(k⊥ρa)

τab(1 + α2
ab)

3/2
´
d3vx2

aC
TS
ab (FMax2

a)

Y ab
3 = −J0(k⊥ρa)

Tb
Ta
θba

CTS
ab (FMax

2
a)´

d3vx2
aC

TS
ab (FMax2

a)

Y ab
6 = − 2αba

τba(1 + α2
ba)

3/2
(θba − 1)Y ab

3 .

To make sure particles are conserved to machine precision, the following numerical replace-

ments are made:

FMa(x
2
a − 3/2)→ ˜FMa(x2

a − 3/2) =

(
FMa(x

2
a − 3/2)− FMa´

d3vFMa

ˆ
d3vFMa(x

2
a − 3/2)

)
(3.122)

CTS
ab (FMax

2
a)→ ˜CTS

ab (FMax2
a) =

(
CTS
ab (FMax

2
a)−

FMa´
d3vFMa

ˆ
d3vCTS

ab (FMax
2
a)

)
. (3.123)

The following form is then obtained for the energy conservation coefficients:

Xab
3 = (θab − 1)

˜FMa(x2
a − 3/2)J0(k⊥ρa)´

d3vx2
a

˜FMa(x2
a − 3/2)

(3.124)

Xab
6 = −(θab − 1)

2θabαab ˜CTS
ab (FMax2

a)J0(k⊥ρa)

τab(1 + α2
ab)

3/2
´
d3vx2

a
˜CTS

ab (FMax2
a)

(3.125)
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Y ab
3 = −J0(k⊥ρa)

Tb
Ta
θba

˜CTS
ab (FMax2

a)´
d3vx2

a
˜CTS

ab (FMax2
a)

(3.126)

Y ab
6 = − 2αba

τba(1 + α2
ba)

3/2
(θba − 1)Y ab

3 . (3.127)

It is straightforward to show that when the same numerical integration scheme is consis-

tently used, then the above choice of coefficients will conserve energy and particles to machine

precision (The proof that energy conservation is numerically satisfied is similar to the proof

of momentum conservation). Momentum will be conserved to machine precision, because all

terms are even in v‖. In the above formulas, the following form for CTS
ab (FMamav‖/Ta) and

CTS
ab (FMax

2
a) are used:

CTS
ab (FMamav‖/Ta) = θab

(
CT0
ab (FMamav‖/Ta)−

FMamaαabv‖(θab − 1)

τabTa
√

1 + α2
ab

)

CTS
ab (FMax

2
a) = θab

(
CT0
ab (FMax

2
a)−

2FMaαab(θab − 1)

τab(1 + α2
ab)

3/2
(x2

a − 3/2)

)
.

In the above formulas, CT0
ab (FMamav‖/Ta) and CT0

ab (FMax
2
a) are evaluated numerically us-

ing the scheme outlined in subsection 3.9.1 in order to have improved self-adjointness and

conservation properties.

3.9.3 Normalization and summary of collision operator incorporated into GENE

Now that the numerical form of the collision operator in GENE has been obtained, the only

thing left to be done is normalization. The collision operator shall be normalized according

to the same protocol of the Vlasov gyrokinetic equation. For this, the following collisionality

parameter has been defined based on other GENE parameters:

νc =
πe4nrefLref ln(Λ)

23/2T 2
ref

. (3.128)
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νc is a term which is labeled as “coll”, and specified in the general namelist for a GENE

simulation. It is also convenient to define the following normalized collision frequencies

(based on Eq. 3.23, 3.26, and 3.81),

ν̂abD (v) =
Lref

cref

νabD (v) =
4νcn̂0bn̂pbê

2
aê

2
b√

23m̂aT̂ 3
0av̂

3

(Φ(xb)−G(xb)) (3.129)

ν̂ab‖ (v) =
Lref

cref

νab‖ (v) =
8νcn̂0bn̂pbê

2
aê

2
b√

23m̂aT̂ 3
0av̂

3

G(xb) (3.130)

xb = v̂

√
m̂bT̂0a

m̂aT̂0bT̂pb

1

τ̂ab
=

Lref

crefτab
=

8

3
√
π

n̂0bn̂pbê
2
aê

2
b√

2m̂aT̂ 3
0aT̂

3
pa

. (3.131)

The final normalized collision operator can then be written in the following form:

C
(Gyrokinetic)
ab (hak⊥ , hbk⊥) = CT0

ab (hak⊥) +CSD
ab (hak⊥) +

6∑
n=1

(Xab
nk⊥

Mab
nk⊥

+ Y ab
nk⊥

Mab
nk⊥

). (3.132)

CT0
ab (hak⊥) is computed from the staggered velocity space grid,

CT0
ab (ha) =

(
J
‖
ab(l+1/2,m)−J‖ab(l−1/2,m)

)
/∆v̂‖+

(
J⊥ab(l,m+1/2)−J⊥ab(l,m−1/2)

)
/∆v̂⊥

J⊥ab(l,m± 1/2) =
∆Va(m± 1/2)

2∆Va(m)
J⊥ab(l− 1/2,m± 1/2) +

∆Va(m± 1/2)

∆Va(m)
J⊥ab(l+ 1/2,m± 1/2)
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J
‖
ab(l± 1/2,m) =

∆Va(m+ 1/2)

∆Va(m)
J
‖
ab(l± 1/2,m+ 1/2) +

∆Va(m− 1/2)

∆Va(m)
J
‖
ab(l± 1/2,m− 1/2).

Where the collisional flux components are normalized as

J
‖
ab =

1

2

(
v̂2
‖ ν̂

ab
‖ (v) + v̂2

⊥ν̂
ab
D (v)

)
F̂Ma

∂

∂v̂‖

(
ĥak⊥

F̂Ma

)
+

1

2

(
ν̂ab‖ (v)− ν̂abD (v)

)
v̂‖v̂⊥F̂Ma

∂

∂v̂⊥

(
ĥak⊥

F̂Ma

)

J⊥ab =
1

2

(
ν̂ab‖ (v)− ν̂abD (v)

)
v̂‖v̂⊥F̂Ma

∂

∂v̂‖

(
ĥak⊥

F̂Ma

)
+

1

2

(
v̂2
⊥ν̂

ab
‖ (v) + v̂2

‖ ν̂
ab
D (v)

)
F̂Ma

∂

∂v̂⊥

(
ĥak⊥

F̂Ma

)
.

The spatial diffusion operator is normalized as

CSD
ab (hak⊥) = − k̂

2
⊥ĥak⊥m̂aT̂0a

2ê2
aB̂

2
0

(ν̂abD (v)(2v̂2
‖ + v̂2

⊥) + ν̂ab‖ (v)v̂2
⊥). (3.133)

The moments for the nonisothermal test-particle part and field-particle part are written in

normalized form as

Mab
1k⊥

=

ˆ
d3v̂n̂0a

√
2T̂0a

m̂a

m̂av̂‖

T̂0aT̂pa
CT0
ab (ĥak⊥J0(k⊥ρa))

Mab
2k⊥

=

ˆ
d3v̂n̂0a

√
2T̂0a

m̂a

m̂av̂‖

T̂0aT̂pa
CT0
ab (ĥak⊥J1(k⊥ρa)v̂⊥/v̂‖)

Mab
3k⊥

=

ˆ
d3v̂n̂0a

v̂2

T̂pa
CT0
ab (ĥak⊥J0(k⊥ρa))

Mab
4k⊥

=

ˆ
d3v̂n̂0a

√
2T̂0a

m̂a

v̂‖ĥak⊥J0(k⊥ρa)
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Mab
5k⊥

=

ˆ
d3v̂n̂0a

√
2T̂0a

m̂a

v̂⊥ĥak⊥J1(k⊥ρa)

Mab
6k⊥

=

ˆ
d3v̂n̂0a

(
v̂2

T̂pa
− 3

2

)
ĥak⊥J0(k⊥ρa).

The coefficients for the nonisothermal test-particle part are written in normalized form as

Xab
1k⊥

= (θab − 1)J0(k⊥ρa)
T̂0aT̂paF̂Mav̂‖

n̂0a

√
2m̂aT̂0a

´
d3v̂F̂Mav̂2

‖

Xab
2k⊥

= (θab − 1)J1(k⊥ρa)
T̂0aT̂paF̂Mav̂⊥

n̂0a

√
2m̂aT̂0a

´
d3v̂F̂Mav̂2

‖

Xab
3k⊥

= (θab − 1)
J0(k⊥ρa)

˜F̂Ma(v̂2/T̂pa − 3/2)

n̂0a

´
d3v̂(v̂2/T̂pa)

˜F̂Ma(v̂2/T̂pa − 3/2)

Xab
4k⊥

= −(θab − 1)
θabαab

τ̂ab
√

1 + α2
ab

J0(k⊥ρa) ̂CTS
ab (FMamav‖/Ta)

n̂0a

√
2T̂0a/m̂a

´
d3v̂v̂‖ ̂CTS

ab (FMamav‖/Ta)

Xab
5k⊥

= −(θab − 1)
θabαab

τ̂ab
√

1 + α2
ab

v̂⊥J1(k⊥ρa) ̂CTS
ab (FMamav‖/Ta)

n̂0av̂‖

√
2T̂0a/m̂a

´
d3v̂v̂‖ ̂CTS

ab (FMamav‖/Ta)

Xab
6k⊥

= −(θab − 1)
2θabαab

τ̂ab(1 + α2
ab)

3/2

˜̂
CTS
ab (FMax2

a)

n̂0a

´
d3v̂(v̂2/T̂pa)

˜̂
CTS
ab (FMax2

a)

.

The coefficients for the field-particle part are written in normalized form as

Y ab
1k⊥

= −θbaT̂0bT̂pb
J0(k⊥ρa) ̂CTS

ab (FMamav‖/Ta)

n̂0a

√
2m̂aT̂0a

´
d3v̂ ̂CTS

ab (FMamav‖/Ta)

Y ab
2k⊥

= −θbaT̂0bT̂pb
v̂⊥J1(k⊥ρa) ̂CTS

ab (FMamav‖/Ta)

n̂0av̂‖
√

2m̂aT̂0a

´
d3v̂ ̂CTS

ab (FMamav‖/Ta)
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Y ab
3k⊥

= −J0(k⊥ρa)
T̂0bT̂pb

n̂0aT̂0a

θba

˜̂
CTS
ab (FMax2

a)

´
d3v̂v̂2

˜̂
CTS
ab (FMax2

a)

Y ab
4k⊥

= − m̂b

T̂0bT̂pbτ̂ba

αba(θba − 1)√
1 + α2

ba

Y ab
1k⊥

Y ab
5k⊥

= − m̂b

T̂0bT̂pbτ̂ba

αba(θba − 1)√
1 + α2

ba

Y ab
2k⊥

Y ab
6k⊥

= − 2αba(θba − 1)

τ̂ba(1 + α2
ba)

3/2
(θba − 1)Y ab

3k⊥
.

For the above coefficients, ̂CTS
ab (FMamav‖/Ta) and ̂CTS

ab (FMax2
a) are given by

̂CTS
ab (FMamav‖/Ta) = θab

(
CT0
ab

(√
2m̂aT̂0aF̂Mam̂av̂‖/

(
T̂0aT̂pa

))

− F̂Ma

√
2m̂aT̂0aαabv̂‖(θab − 1)

τ̂abT̂0aT̂pa
√

1 + α2
ab

)

̂CTS
ab (FMax2

a) = θab

(
CT0
ab (F̂Mav̂

2/T̂pa)−
2F̂Maαab(θab − 1)

τ̂ab(1 + α2
ab)

3/2

(
v̂2

T̂pa
− 3

2

))
.

And the tilde is used to designate the following scheme to ensure conservation of particles:

ã(v) = a(v)− F̂Ma´
d3v̂F̂Ma

ˆ
d3v̂a(v).

3.10 Collision spectra and time-stepping

Since it is computationally expensive to evaluate the collision operator term, and since the

collisionality can dramatically limit the timestep in gyrokinetic simulations (especially in the

edge), it is desirable to optimize the code by evolving the collision operator with a separate
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numerical time scheme than the other terms in the gyrokinetic equation. Currently a first

order Runge-Kutta-Chebyshev (RKC) method is employed to evolve the collision operator

as opposed to the default 4th order Runge-Kutta schemes used with the other terms [62].

There are four different RKC schemes available in GENE to use with the collision operator,

each with a different number of stages (RKC1, RKC2, RKC3, and RKC4). The higher stage

schemes require more evaluations and are more expensive to employ. However, they allow

for a larger timestep. The lower stage schemes require fewer evaluations. However, they

require a smaller timestep. By default, each collisional time-stepping scheme is tested in the

initialization phase, and the least computationally expensive scheme is chosen (this method

is employed by setting coll_split_scheme = ’RKCa’ in the general namelist, which is done

by default).

Since the collision operator is linear, the eigenvalue spectra of the collision operator

can be precomputed and used to determine the maximum possible time step for a given

scheme. All of the eigenvalues of the operator must fit within the stability contour for the

corresponding time-stepping scheme. Fig. 3.1 shows a plot of the stability contours for the

various time-stepping schemes associated with the collision operator (in the drift-kinetic

limit).

Since the contours scale with the timestep, one can optimize the timestep value by en-

suring that all of the eigenvalues just barely fit within the stability contours. In all cases,

it is the most negative real eigenvalue which determines the timestep. So for a given stage

scheme, the most negative real eigenvalue is determined with SLEPC, then the stability

contour is adjusted (by adjusting the timestep) such that that eigenvalue barely falls within.

The corresponding timestep is the optimized one. There is then a comparison of the com-

putational effort associated with an RKC1, RKC2, RKC3, and RKC4 scheme, and the more

optimal choice is used. While this splitting scheme can speed up the code by a factor of

∼ 3, future time-stepping schemes may have to be developed to further speed up the code

because collisions can dramatically limit the value of the time-step in the edge of a device,

especially the spatial diffusion from the FLR corrections. For more information on alterna-

tive time-stepping schemes, see ref. [51, 63] for details on the time-stepping schemes utilized
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Figure 3.1: Shapes of stability contours for different stage schemes for a given timestep.
The eigenvalues of the collision operator (in the drift-kinetic limit) are shown by the red
crosses. They lie purely along the negative real axis. The stability contours are shown by the
curves, and they represent the RKC1 (red), RKC2 (black), RKC3 (blue), and RKC4 (green)
time-stepping schemes. As one goes to higher stage schemes, the number of evaluations of
the collision operator is increased, and the timestep is also increased. The computational
effort associated with all schemes is then evaluated, and the optimal choice is taken [62].
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in the GS2 and GKV gyrokinetic codes respectively.

3.11 Implementation of collisions with block-structured grids in ve-

locity space

In addition to the timestep optimization scheme, the collision operator has been adapted to

be compatible with the block-structured grid numerical scheme in GENE [57, 58]. Block-

structured grids are used to optimize global gyrokinetic simulations (particularly nonlinear

simulations) with steep temperature gradients. In turbulent simulations, the perturbed

distribution function typically varies on scales of the thermal velocity, vT =
√

2T/m in

velocity space. So for standard grids, one would need a large velocity-space domain to

capture all of the physics in the core, and one would also need a fine velocity space grid to

resolve the physics in the edge. This would lead to very expensive high-resolution simulations.

One could get around this problem by having a velocity space grid which continuously varied

with the radial position as the temperature varied, but this would severely complicate the

gyrokinetic equations and numerical model. To get around this problem, the velocity space

domain is made to discretely vary with radial position. A typical simulation setup with

block-structured grids is shown in Fig. 3.2.

Block-structured grids are a convenient tool to use with collisions. With block-structured

grids, global simulations can be run with fewer velocity space points, which is very convenient

for collisional runs, because the computational time to evaluate the collisions increases and

the value of the timestep in collisional runs decreases as the number of velocity space points

is increased. Furthermore, collisions also help to enforce the assumptions that are made in

using the block-structured grid model. The block-structured grid model is predicated on

the assumption that the turbulent perturbed distribution function is localized to a structure

that varies on the thermal velocity scale (when the background distribution is taken to be

a Maxwellian structure, as is always the case when collisions are active). The collisional

dissipation function actively drives the perturbation to that sort of structure, providing

more confidence that the underlying assumption behind block-structured grids is satisfied.
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Figure 3.2: Block-structured grid setup for a typical global simulation with varying temper-
ature profile. The upper-left graph depicts the variation of temperature with radial position.
The lower-right plot shows the variation of block sizes with radial position. The larger ve-
locity space boxes are near the core where the thermal velocity is higher, and the smaller
velocity space boxes are near the edge where the thermal velocity is lower. The lower left
plot depicts the variation of the parallel velocity space domain with radial position, and the
upper right plot depicts the variation of the magnetic moment velocity space domain with
radial position. The above plots used 30 points in the radial position, 24 points in the paral-
lel velocity, and 12 points in the magnetic moment. Typical simulations would require much
higher resolution, but the above setup was presented with lower resolution for purposes of
clarity. This same figure is also shown in ref. [?].

In this way, the two numerical models work to complement each other. It should also be

pointed out that adapting global FLR corrections to the global gyrokinetic model, as well

as the block-structured grid numerical scheme, shall be left for future work.

3.12 Relaxation and conservation tests

One of the fundamental consequences of the derived collision operator is the relaxation of

an arbitrary distribution function towards a perturbed Maxwellian structure of the following

form:
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Species Mass Temperature Density Charge
Deuterium 1 1 1 1
Boron 5 0.5 0.2 5

Electrons 0.0002778 2 2 -1

Table 3.1: Parameter set for the relaxation tests. All values in the table are normalized with
respect to Deuterium values.

fa → FMa

(
δna
na

+
ma

Ta
u‖v‖ +

δT

T

(
x2
a −

3

2

))
.

Where u‖ and δT/T are the same between all species after a sufficiently long time. This

suggests convenient tests for verifying the correct implementation of the collision operator.

One could initialize different species to distributions of the form, fa = AaFMav‖, evolve the

species using only the collision operator, and see if all species are driven towards a smooth

distribution with the same final flow while verifying that momentum is conserved and the

change in free energy is negative definite. Similarly, one could initialize different species to

distributions of the form, fa = AaFMa(x
2
a − 3/2), evolve the species using only the collision

operator, and see if all species are driven towards a smooth distribution with the same

final perturbed temperature while verifying that particles and energy are conserved and

the change in free energy is negative definite. Finally, one can also initialize distributions

to arbitrary structures, and verify that the collisions relax such structures to perturbed

Maxwellians while maintaining negative definite changes in free energy. These tasks have

been done in subsections 3.12.1, 3.12.2, and 3.12.3 respectively. These tests have also been

done for nonisothermal parameter sets to verify the correct implementation of the Sugama

operator. The standard linear Landau-Boltzmann collision operator will not pass these tests

in the nonisothermal case. The parameters for these three tests are shown in Table 3.1.

For the following tests, the rate of change of free energy at a point in configuration space

is defined as follows:

dF

dt

∣∣∣∣
coll

=
∑
j

n̂0jT̂0j

ˆ
d3v̂

ĥj

F̂Ma

Cj.
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3.12.1 Relaxation of flow fluctuations

The derived collision model should act to drive flow perturbations of the form ua‖ =´
d3vv‖fa/na towards the same value. To test this property, deuterium, boron, and elec-

tron species were initialized to distributions of the form, fa = FMamaua‖v‖/Ta (where ua‖

is different for different species), and evolved using only the collision operator in the drift-

kinetic limit (k⊥ → 0). The time trace of the flow velocities, free energy dissipation, and

momentum conservation error were then examined to verify correct behavior of the collision

operator.

The results of the test are shown in Fig. 3.3, 3.4, and 3.5. Fig. 3.3 shows that the

flows for different species all relax to the same value and that the free energy change is

negative definite. It can also be seen that the electron flow relaxes much quicker than the

ion flows, which is consistent with physical intuition for flow relaxation. Fig. 3.4 shows

that the collision operator drives the species towards a smooth final state consistent with

the perturbed Maxwellian shape expected. Fig. 3.5 shows that the momentum conservation

error remains bounded within reasonable values for a realistic mass ratio system (< 10−10).

The expression for the momentum conservation error is given in Eq. 3.134,

∆M =

∑
ama

´
d3vv‖fa −

(∑
ama

´
d3vv‖fa

)∣∣∣∣
t=tstart(∑

a

´
d3vv‖fa

)∣∣∣∣
t=tstart

. (3.134)

These tests confirm that the collision operator behaves as it should.

3.12.2 Relaxation of thermal fluctuations

The derived collision model should act to drive temperature perturbations of the form

δTa/Ta =
´
d3vmav

2fa/2na towards the same value. To test this property, deuterium, boron,

and electron species were initialized to distributions of the form shown in Eq. 3.135,
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Figure 3.3: The graph on the left depicts flow equilibration for the relaxation test. Collisions
drive all species towards the same parallel flow velocity. The graph on the right depicts
free energy dissipation vs. time for the flow relaxation test. The change in free energy by
collisions is negative definite, consistent with the second law of thermodynamics.
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Figure 3.4: Electron velocity distribution function for the flow relaxation test. Collisions
drive all species towards a smooth velocity space distribution resembling the one shown
above. The distribution for Deuterium and Boron look similar .

Figure 3.5: Momentum conservation error vs. time for the flow relaxation test. Collisions
conserve momentum to nearly machine precision.
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fn =
δTn
Tn

FMn

(
mnv

2

2Tn
− 3

2

)
. (3.135)

In this test, δTn/Tn is different for different species. The system was then evolved using only

the collision operator in the drift-kinetic limit (k⊥ → 0). The time trace of the temperature

fluctuation amplitudes, free energy dissipation, particle conservation error, and energy con-

servation error were then examined to verify correct behavior of the collision operator. The

results of the test are shown in Fig. 3.6, 3.7, and 3.8.

Fig. 3.6 shows that the temperature fluctuations for different species all relax to the same

value and that the free energy change is negative definite. Also, the ions equilibrate much

faster than the electrons due to the much higher mass ratio between the electrons and ions,

which is consistent with analytical estimates. The time has been normalized with respect

to the ion-ion collision frequency defined by νii = 8πq4ni ln(Λ)/
√

8miT 3
i . It can be seen

that the ions equilibrate on the order of the inverse ion-ion collision frequency, whereas the

electrons equilibrate with the ions on time scales about two orders of magnitude longer.

Typical transport time scales are O(ν−1
ii ), so on the scale of the ion equilibration time-scale.

The electron equilibration time is roughly 100 times larger than the transport time-scales,

which is important if the ion and electron temperatures are regarded as separate and fixed

throughout a simulation.

Fig. 3.8 shows that the collision operator drives the species towards a smooth final state

consistent with the perturbed Maxwellian shape expected. Fig. 3.7 shows that the particle

and energy conservation error remain bounded within reasonable values for a realistic mass

ratio system (< 10−10) over very long time scales. The expressions for the particle conser-

vation error, ∆P , energy conservation error, ∆E, and temperature fluctuation amplitude,

δTa/Ta, are given in Eq. 3.136, 3.137, and 3.138 respectively,

∆P =

´
d3vfa −

( ´
d3vfa

)∣∣∣∣
t=tstart( ´

d3vfa

)∣∣∣∣
t=tstart

(3.136)

141



Figure 3.6: The graph on the left depicts relaxation of temperature fluctuations. The graph
on the right depicts free energy dissipation during the relaxation test. The change in free
energy due to collisions is negative definite, consistent with the H-theorem.

Figure 3.7: Particle and energy conservation error during the relaxation test. Particles and
energy are conserved to nearly machine precision over very long simulation times.

∆E =

∑
a

1
2
ma

´
d3vv2fa −

(∑
a

1
2
ma

´
d3vv2fa

)∣∣∣∣
t=tstart(∑

a
1
2
ma

´
d3vv2fa

)∣∣∣∣
t=tstart

(3.137)

δTa
Ta

=
ma

2na0

ˆ
d3vv2fa/T0a. (3.138)

These tests confirm that the collision operator behaves as it should.

3.12.3 Relaxation from an arbitrary distribution

In addition to satisfying the simplistic relaxation tests from simple perturbed Maxwellian

structures, a relaxation test has been performed where the velocity space profiles for different

species have been initialized to shifted Maxwellian structures and it has been observed that
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Figure 3.8: Electron velocity space profile for temperature fluctuation relaxation test. A
similar distribution is obtained for all species.

the H-theorem remains satisfied for this more general scenario, and that the profiles relax to

more simple perturbed Maxwellians. Fig. 3.9 and 3.10 show the velocity space distributions

and the free energy dissipation vs. time for this test.

3.13 Effect of collisions on geodesic acoustic mode (GAM) oscilla-

tions

An essential test for the correct implementation of the collision operator is the Rosenbluth-

Hinton test. The zeroth toroidal mode number (ky = 0) must not be linearly unstable, and it

must be damped by collisions. The mode that exists at ky = 0 is called the geodesic acoustic

mode (GAM) and there is a well established theory of how these modes are dampened by

collisions [64]. According to the Rosenbluth-Hinton theory, the short-time behavior of the

residual potential in the collisional limit is given by the following formula:

φk(t)

φk(0)
∼= Ak(t) +Bk(t)

Ak(t) =

(
1− Λ

)
exp

(
− exp(−q2)t/(τiiR)

)
cos(t/(τiiR))
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Figure 3.9: Velocity space distribution at the beginning and end of the relaxation test. The
graphs at the top are of the initialized distribution, and the graphs at the bottom are of
the corresponding final distribution. The graphs on the left, middle, and right correspond
to deuterium, boron, and electrons respectively. Collisions relax the distributions to a more
localized perturbed Maxwellian.

Figure 3.10: Free energy dissipation for the relaxation test. Free energy dissipation is once
again negative definite.
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Figure 3.11: Simulations of collisional GAM oscillations are performed and compared to the
short-term decay of the non-oscillatory part of the mode. The above plot shows fairly good
agreement between GENE simulations and the theory of Rosenbluth and Hinton [65]. The
data for the above graph was taken from a one species simulation with 48 points in z, 100
points in µ, and 200 points in the parallel velocity at kx = 0.01. The size of the velocity
space box was 4 and 16 in the parallel velocity and µ. The mass, temperature, and density
were all set to 1.0 in GENE units. The magnetic geometry was circular with a safety factor
of 1.4, an inverse aspect ratio of 0.18, and a major radius of 1.0. The collisionality for the
simulation was 0.001 in GENE units.

Bk(t) = Λ exp(Λ2β)erfc(Λ
√
β)

β =
9π2q40.61

ε2 ln(16ετii/(0.61t))

t

τii
.

In the above formulas, Λ is the residual value of the potential in the collisionless limit, q is

the safety factor, R is the major radius of the tokamak, ε is the inverse aspect ratio for the

magnetic geometry, t is time, and τii is the ion-ion collision time [65],

τii =
3
√
miT 3

i

4ne4
√
π ln(Λ)

.

In the above formula, mi is the ion mass, Ti is the ion temperature, n is the plasma density,

e is the magnitude of the electron charge, and ln(Λ) is the Coulomb logarithm. A collisional

simulation of GAM oscillations has been performed and the averaged value of the electrostatic

potential has been plotted vs. time and compared to Bk(t) to see if the short term collisional

decay resembles the prediction by Rosenbluth and Hinton. The results are shown in Fig. 3.11.
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r/a=0.5 R/a=3 ŝ=1.0 α=0 q=2.0
a/LTe = 3 a/LT i = 3 a/Ln = 1 Ti/Te = 1 me/mi = 0.0002732

Table 3.2: General Atomics standard case parameter set for neoclassical benchmark in ŝ−α
geometry for 2 species case

3.14 Collision operator benchmarks

3.14.1 Local neoclassical benchmark

In an effort to further verify the collision operator, local neoclassical simulations have been

performed, and the results have been benchmarked with another neoclassical code, NEO

[60, 66]. This code evaluates the neoclassical transport fluxes with the option of using either

the full linearized Landau-Boltzmann collision operator (so it does not use approximate

model terms in the field-particle part of the operator), or the linearized Landau-Boltzmann

collision operator with the ad-hoc model field-particle part (Eq. 3.16). A comparison between

these two collision models has already been performed in [60]. For this benchmark, the

difference in the transport between the GENE collision model and the NEO model with the

full linearized collision operator has been compared to the difference in transport between

the model collision operator in NEO and the full collision operator in NEO. These differences

should be approximately the same, and this enables a verification test across a large range of

collisionalities. The analysis is performed on the same General Atomics parameter set with

ŝ−α geometry outlined in [60, 33] and displayed in Table 3.2. The original results from the

NEO code have been published in [60].

For the following simulations, the neoclassical energy and particle flux, as well as the

bootstrap current were evaluated with a neoclassical solver that makes use of a PETSC

library [67] that is available in GENE. The collisionality was scanned logarithmically. The

comparison could not be extended to higher collisionality (νc ∼ 0.3) due to the computational

expense of the neoclassical solver at higher collision frequencies. In practice however, the

collision frequency rarely goes to much higher values before the separatrix of the device is

encountered. The results of the simulations are displayed in Fig. 3.12 and 3.13. Both GENE

and the ad-hoc Fokker Planck model give close agreement, which again suggests that the
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collision operator in GENE has been implemented correctly. In addition, the ad-hoc model

gives relatively close agreement with the full model (the heat and particle fluxes are within

∼ 20%). A 20% discrepancy in neoclassical heat transport is relatively small compared

to the normal level of turbulent transport, and neoclassical transport is highly sensitive

to collisions, which suggests that the ad-hoc collision model could be justifiably used for

studies of collisional plasma turbulence and transport. However, to truly justify the use

of such models, a comparison of the microinstabilities and the nonlinear transport between

different collision models should be done.

By examining the neoclassical equilibrium velocity space distribution at the outboard

midplane, one can see the effects of higher collisionality on the ions and electrons. The dis-

tributions are displayed in Fig. 3.14. At low collisionality, the contours of the trapped/passing

particle boundary are clearly visible. As the collisionality is raised, the contours are extin-

guished, which is what is to be expected from intuition, as collisions tend to drive pertur-

bations down towards a perturbed Maxwellian distribution. The collisionality used in the

plots is defined in Eq. 3.139,

νc =
πe4nia ln(Λ)

23/2T 2
i

. (3.139)

3.14.2 Global neoclassical benchmark

In addition to the local neoclassical test, a global one-species neoclassical benchmark be-

tween GENE and ORB5 [52] has been performed to ensure correct implementation of the

collision operator for the global version of the code. The benchmark was performed for a

one-species case using a magnetic geometry consisting of concentric circular flux surfaces.

The safety factor profile, temperature gradient profile, and density gradient profile are given

by Eq. 3.140, 3.141, and 3.142 respectively,

q(r) =

[
0.845 + 2.184(r/a)2

]/√
1− (r/R)2 (3.140)
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Figure 3.12: Comparison of neoclassical bootstrap current and heat flux between GENE,
ad-hoc Fokker-Planck model in NEO, and full Fokker-Planck model in NEO [60]. The
bottom plots show the difference of the bootstrap current and heat flux between the model
operators and the full operator. GENE predicts a slightly smaller heat flux for ions and
electrons, but the agreement is still fairly good. The bootstrap current between the two
codes also agree fairly well. Qgb is the gyrobohm heat flux.
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Figure 3.14: Neoclassical Equilibrium Ion and Electron velocity space distribution at the
outboard midplane for νc=0.00001 (left), νc=0.001 (middle), and νc=0.1 (right). The graphs
on the top correspond to ions, and the graphs on the bottom correspond to electrons. For
low collisionality, one can clearly see the complex velocity space contours associated with the
trapped-passing boundary. As collisionality is increased, one can see these structures fade
as collisions inhibit the trapped particle resonance. At very large collisionality, the contours
resemble a simple perturbed Maxwellian structure.
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d ln(T )

d(r/a)
= −2.49

(
cosh(5(r/a− 0.5))

)−2

(3.141)

d ln(n)

d(r/a)
= −0.79

(
cosh(5(r/a− 0.5))

)−2

. (3.142)

This benchmark was run with ν∗i = 0.5 and ρ∗ = 1/180 with identical analytical collision

models, but different numerical implementations. This benchmark was already performed

in [33], but since that time, the collision operator has been refactored, and better agreement

has been obtained. The results are shown in Fig. 3.15. There is fairly good agreement

between GENE and ORB5 for both neoclassical moments, suggesting the collisions were

implemented correctly in both codes, at least for the one-species case. The ORB5 collision

model is documented in [52]. Future benchmarks testing the implementation of collisions

between multiple species for nonisothermal parameters shall be left for future work.

In addition to the benchmark between GENE and ORB5, a two species neoclassical

benchmark has been performed between the version of GENE with the standard velocity

space grids, and the version of GENE with the block-structured grids. The setup for this

case is the same as the previous one, except that an additional electron species is considered

in the simulation. The heat flux and bootstrap current output is displayed in Fig. 3.16

and 3.17 respectively. The neoclassical time traces and profiles agree fairly well between

both versions of the code, suggesting that the block-structured grids have been implemented

correctly, and provide no significant numerical challenges.

3.14.3 Local microinstability benchmark

In addition to studying the effects of collisions on the damping of zonal flows, the colli-

sion operator has also been benchmarked in a local microinstability analysis against the

operator in another gyrokinetic code, CGYRO [54]. The kyρs scan displayed in Fig. 5 of

ref. [68] depicting a trapped electron mode (TEM) has been repeated in GENE. The colli-

sionality scan displayed in Fig. 1 of ref. [68] depicting an ion temperature gradient driven
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Figure 3.15: Global Neoclassic Benchmark between GENE and ORB5 [52]. The graphs
on the left depict the heat flux, and the graphs on the right depict the ion contribution
to the bootstrap current (the electron contribution cannot be included in the one species
scenario). The middle radial position was taken for the time trace (r/a=0.5) and the profile
measurements were taken at t = 2τii.
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Figure 3.16: Neoclassical heat flux time trace and profiles for regular and block-structured
grids. The graphs on the top and bottom depict the ion and electron species respectively.
The time trace depicts the flux-surface averaged heat flux at r/a=0.5, and the profiles were
observed at the end of the time trace (t = 500a/cs).
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Figure 3.17: Neoclassical bootstrap current time trace and profiles for regular and block-
-structured grids. The graphs on the top and bottom depict the ion and electron species
respectively. The time trace depicts the flux-surface averaged bootstrap current at r/a=0.5,
and the profiles were observed at the end of the time trace (t = 500a/cs).
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Figure 3.18: Comparison between GENE and CGYRO of frequencies and growth rates for
a TEM microinstability.

mode (ITG) has also been repeated. This scenario was based on the General Atomics

standard test case, and was run with two species (deuterium and electrons) with no tem-

perature gradients, a/Lni = a/Lne = 3, R/a = 3, r/a = 0.5, q = 2, ŝ = 1, Ti = Te, and

ν̄e =
√

2πe4ane ln(Λ)/(cs
√
meT 3

e ) = 0.2. The geometry for this scenario is an unshifted

miller equilibrium [69, 70]. The results are displayed in Fig. 3.18 and Fig. 3.19. Very good

agreement was obtained between the codes. This benchmark in particular, validates the

implementation of the FLR correction terms. The CGYRO results are publicly available in

ref. [54].

3.15 Chapter summary

A linearized model collision operator which incorporates robust conservation and free energy

dissipation properties (even in the nonisothermal scenario) and finite Larmor radius effects

(for the local model) has been implemented in the gyrokinetic code, GENE. The conserva-

tion and dissipation properties have been ensured through extensive relaxation tests. The

collision operator has also been adapted for the use of block-structured grids, allowing for

affordable, global, collisional simulations. The implementation has been well benchmarked

with neoclassical models as well.

Despite these accomplishments, there are also numerous possibilities for future work to
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Figure 3.19: Comparison between GENE and CGYRO of frequencies and growth rates for an
ITG microinstability. Comparisons were made between the Lorentz operators, the Sugama
operators with no FLR correction terms, and the Sugama operators with FLR correction
terms. The results from the original drift-kinetic form of the Landau collision operator that
was utilized in GENE has also been shown for reference.

be done with collision models. Some of these are listed below:

• Developing an implicit time-stepping scheme which is more optimized for the GENE

collision model.

• Implementation of the spatial diffusion and finite Larmor radius effects (incorporated

as Bessel functions for the local code) for the global code.

• Implementation of a collision model which includes collisions with neutral species (such

as charge exchange or ionization).

• Implementation of a full nonlinear collision operator for use with full-f simulations in

the Scrape-Off Layer version of GENE.

• Porting of the collision operator to the 3D global version of GENE.

These extensions will allow many new opportunities for the study of plasma turbulence and

transport at high collisionality.
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CHAPTER 4

Characterization of the L-mode plasma edge

Gyrokinetic models have achieved good success at simulating the plasma turbulence and

transport within the core of magnetic confinement fusion devices [71, 72]. However, it is still

a subject of some debate as to whether or not those models can be extrapolated to study

the plasma edge of those same devices, as well as whether or not one can reproduce the

same experimental fluxes and fluctuation amplitudes. Furthermore, it is an open question

as to which features of gyrokinetic turbulence in the core persist out to the edge (such as

the correlation between linear and nonlinear cross-phases, and ballooning mode structure)

[73, 74, 75, 76].

One of the most commonly used gyrokinetic simulation models is the delta-f localized

flux-tube model, and that shall be the model used for the work discussed in this chapter.

It is commonly argued that a delta-f flux-tube model has limited use for the study of edge

plasma turbulence due to the larger ρ∗ values there. However, given the success of the

model for the study of physics in the core, it makes sense to see how such a model would

behave when taken to a more extreme parameter range. It is meaningful to see if the

predictions made by the local model still hold. And if such predictions break down, then it

is worthwhile to understand when and how they break down. It is important to understand

the limitations and capabilities of the flux-tube gyrokinetic model. Such an investigation

can provide confidence in the use of this model, or provide motivation for the use of the

global, or full-f model, or additional terms. Such an investigation can also provide insight

into what mechanisms are important in the edge, what problems are encountered, and also

what solutions could work to mitigate such problems. Understanding the challenges one

would face in the study of the edge is crucial before attempting far more complicated global
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or full-f studies. For this reason, an L-mode discharge that was previously analyzed in [73]

with a large degree of success has been selected for the study of how gyrokinetics fares as

one probes deeper into the edge.

Conducting a flux-tube simulation in the plasma edge seems like a deceptively simple

problem. Carrying out simulations in the edge is far more difficult than in the core of a

discharge. The collisional and electromagnetic models which are relatively well behaved or

considered negligible in the core, can cause serious difficulties if not properly handled in the

modeling of the edge.

In previous simulations, when the self-adjointness symmetry of the collision operator

was not properly numerically handled, the collision term could artificially create free energy

which would drive numerical instabilities at low toroidal mode numbers. If one ran a nonlin-

ear simulation with such a model, the heat fluxes could appear to be stable for long periods of

simulation time and then blow up, rendering very long and expensive simulations useless. If

one used a collision model with FLR correction terms, but no implicit time-stepping scheme,

the time-step would shrink by orders of magnitude when studying large toroidal mode num-

bers, making even linear simulations of large toroidal mode numbers in the edge impossible.

Even if collisions are handled correctly and only relatively low toroidal mode numbers are

considered, using collisional models would still make simulations far more expensive due to

limitations in the time-step and an inability to completely parallelize along the magnetic

moment in simulations.

If one attempted to incorporate electromagnetic effects into a nonlinear simulation in

the edge, one would notice that the simulation would probably blow up unless very low

toroidal mode numbers were included in the simulation, and very large box sizes (perhaps

even going outside of the separatrix) were utilized. This would require higher resolution

in kx and ky, which would make the edge simulation even more expensive. Furthermore,

the existence of large A‖ structures creates some questions concerning the use of the local

flux-tube approximation.

Finally, the shaping of the flux-surface in the edge is far more complicated than in the core.

157



This would necessitate the use of either a very large resolution in the poloidal dimension,

or the use of a grid where the poloidal points are more clustered at the outboard midplane,

where the dominant microinstabilities generally (but not always) peak, and where the main

plasma transport occurs.

This chapter is outlined as follows: First, a description of the plasma discharge and

a summary of the physical parameters at the radial positions of interest shall be given in

section 4.1. Following that, an analysis of the linear microinstabilities which exist at those

same radial positions shall be given in sections 4.2 and 4.3. Section 4.2 shall describe the

setup to the linear investigations while the results are detailed in section 4.3. Afterwards,

the results from the nonlinear simulation at ρtor = 0.9 shall be discussed in section 4.4. That

section contains a description of the numerical setup of the simulation in subsection 4.4.1,

a comparison of the experimental and simulated transport in subsection 4.4.2, an analysis

of the heat flux spectra in subsection 4.4.3, a description of the contours of the fields and

moments in subsection 4.4.4, and an analysis of the linear and nonlinear cross-phases in

subsection 4.4.5. Finally, conclusions are drawn in section 4.6.

4.1 Physical scenario under investigation

An important scenario which deserves study is the edge of the L-mode plasma discharge.

While it is generally desired to have the tokamak operate in the H-mode regime, analyz-

ing the L-mode discharge is still important. Characterizing the L-mode is necessary for

understanding the L-H transition and simulating an L-mode plasma discharge is important

for validation of the gyrokinetic model (additionally, fluctuation measurements are more

accessible for an L-mode discharge).

For the work conducted in this chapter, the ASDEX Upgrade discharge 28132 was ana-

lyzed. This discharge was an L-mode plasma with a magnetic field on axis of 2.221 T and a

plasma current of 400 kA. The heating of the plasma was predominantly electron cyclotron

heating with additional ohmic heating. During the high power phase of the discharge (the

phase during which the following simulations seek to model), the electron cyclotron heating
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Figure 4.1: Density, temperature, and safety factor profiles for ASDEX Upgrade L-mode
discharge being investigated. The black vertical in the graphs indicate where the nonlinear
flux-tube simulation took place in the discharge.

had a magnitude of 1.16 MW. The density, temperature, and safety factor profiles for all

of the different species, measured during the phase of interest, are displayed in Fig. 4.1.

Because of the relatively high density of boron impurities, a three species model was used for

accurate modeling of the edge. It can also be seen that the safety factor goes to very high

values in the edge, so one could expect strong electromagnetic effects in that region even for

relatively low values of the plasma β.

Two radial positions were considered for this discharge, ρtor = 0.90, and ρtor = 0.96,

where ρtor is related to the magnetic flux-surface label, x, as in Eq. 4.1:

x =

√
Φ

πBref

=

√
Φ

Φedge

√
Φedge

πBref

= ρtorLref (4.1)

Here, Φ is the toroidal magnetic flux divided by 2π, Bref is the reference magnetic field

on axis, and Lref is the reference scale length. These two radial positions were chosen in
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ρtor 0.90 0.96
Ip/kA 400 400
Bref/T 2.221 2.221
Lref/m 0.662 0.662
Raxis/m 1.710 1.710
a/m 0.501 0.501
ρ∗ 0.144% 0.104%

ne/1019m−3 1.947 1.858
Te/keV 0.212 0.111
Ti/Te 1.276 2.037
Zeff 2.550 2.672

β/10−4 3.373 1.679
ŝ 3.112 4.439
ωT i 2.775 3.346
ωTe 7.684 15.67
ωn 0.780 0.776
q 8.479 10.92

Table 4.1: Physical parameters for the two simulated ASDEX Upgrade L-mode cases

the far edge so as to study how local flux-tube based gyrokinetic simulations fared as one

approached the separatrix in an L-mode discharge. This experimental discharge has been

well diagnosed and previous GENE simulations were able to match the experimental ion

and electron heat flux at two other radial positions within the error bars [73]. One can be

confident in the validation of the model for the core of the plasma discharge as observations

are made regarding the behavior of the model when extrapolated farther to the edge of the

discharge. The other details associated with the two radial positions studied in this paper,

such as the density and temperature, are listed in table 4.1.

In this table, Raxis is the major radius of the tokamak and a is the minor radius. Ti and

Te represent the ion and electron temperatures respectively, ne denotes the electron density,

and q is the safety factor. Zeff represents the effective ion charge due to impurities, and is

defined in Eq. 4.2,

Zeff =

∑
j Z

2
j nj

ne
. (4.2)

Here the summation is over all ion species. The magnetic shear ŝ is defined in Eq. 4.3,
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ŝ =
ρtor

q

dq

dρtor

. (4.3)

The logarithmic gradients, ωa (with a corresponding to the temperature or density of a given

species) are defined in Eq. 4.4,

ωa = −1

a

da

dρtor

. (4.4)

And the electron β is defined in Eq. 4.5,

β = 2µ0neTe/B
2
ref . (4.5)

For the following linear and nonlinear simulations, the flux-tube geometry representing the

magnetic equilibrium has been extracted via a TRACER-EFIT interface (the development

of which is described in [77, 29], and a first application of which is described in [78]) from a

SPIDER equilibrium [79, 80]. For further information about this discharge, see ref. [73].

4.2 Setup of linear investigation of plasma microinstabilities

Before investigating the nonlinear dynamics of the plasma discharge, it is worthwhile to

examine the linear microinstabilities that are present at the radial positions of interest. These

are often the dominant microinstabilities which drive transport in a nonlinear simulation.

Furthermore, it is important to ensure that simulations are fully resolved in terms of the

number of grid points in each dimension, and it is much less computationally expensive to

run convergence tests and parameter scans for linear simulations than it is for nonlinear

simulations. It is also often the case in the core of a plasma discharge that features of the

plasma turbulence (such as cross-phases and frequencies) closely follow those of the dominant

linear microinstabilities. It is worthwhile to investigate if these features are retained as

one goes farther into the edge. There is a large effort underway to develop quasilinear

models to simulate transport in magnetic confinement devices [81, 82, 83]. Such models
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require complete information about the linear physics and an empirical nonlinear saturation

rule as inputs to the model. The advantage of such models is that they are much faster

than nonlinear simulations, and unlike linear models, they can provide transport values.

Such models utilize the cross-phases between the electrostatic potential and the perturbed

temperature and density fluctuations to replicate the transport of heat and particles. It is

worthwhile to see if these features are retained in nonlinear edge physics, because if so, then

quasilinear modeling may be applicable to the edge.

Many different microinstabilities have been considered as potentially significant for the

transport in the edge. Ref. [84] has suggested that Ion Temperature Gradient Modes

(ITGs), Trapped Electron Modes (TEMs), and Kinetic Ballooning Modes (KBMs) could

be significant in this regime. Ref. [78, 84, 85] has suggested that ETGs and Microtear-

ing Modes (MTMs) could be significant contributors to the plasma turbulence in the edge.

Ref. [75, 86, 87, 88] have suggested that Resistive Ballooning Modes (RBMs) can become

significant in this area. Electron drift waves have been considered as significant to the edge

turbulence by ref. [89, 75, 90, 86].

In the following linear simulations, different ky values were scanned from around kyρs =

0.028 to kyρs = 0.1 in increments of the integer toroidal mode number (∆kyρs = 0.014). A

scan was also performed over ky values from a range of kyρs = 0.1 to kyρs = 1.0. These two

scans effectively resolve the variation of large scale and moderate scale microinstabilities. The

scan could not be extended much farther to greater toroidal mode numbers due to limited

computational resources. At higher toroidal mode numbers (small scale microinstabilities)

the spatial diffusion part from the FLR corrections in the collision operator can limit the

time-step by nearly two orders of magnitude. The nonlinear simulations that follow only go

up to about kyρs = 1.35, and higher toroidal mode numbers can certainly not be included in

nonlinear simulations (even single-scale nonlinear simulations are extremely expensive), so

there is little motivation to study higher toroidal mode numbers. One could also run without

FLR corrections in the collision operator. However, it can be reasonably expected that such

effects are very important for electron-scale dynamics in the edge. It has been found that

at large collisionality, the growth rates of Electron Temperature Gradient Modes (ETGs)
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are heavily damped [68], which could be expected to influence the electron scale transport

in the edge. If one wishes to study higher toroidal mode numbers in the edge, either in

electron-scale or multi-scale simulations, then it is necessary to develop an improved implicit

time-stepping scheme for the collision operator. Until then, linear and nonlinear studies in

the edge must be limited to a single-scale analysis.

After identifying the dominant linear microinstabilites at the radial position of interest, a

convergence test was performed to ensure each mode was adequately resolved. It was found

that a resolution of (nkx, nz, nv, nµ) = (32, 32, 32, 20) was sufficient with the standard velocity

space domain (see chapter 2). However, a specialized poloidal grid was required to resolve

the modes. Because of the complex shaping of the flux-tube geometry in the edge of the

plasma, a higher number of points in the poloidal direction would traditionally be needed to

resolve the turbulence in the edge. However, since the dominant microinstabilities typically

peak at the outboard midplane of the flux-surface, the poloidal grid points can be discretized

such that the points are more clustered in that region, and at points where the curvature

of the device is very high, rather than being equally spaced from −π to π. This can allow

one to simulate the edge with a lower number of poloidal grid points, saving computational

resources. The option can be selected in the GENE code by setting edge_opt=2 in the

parameter file (first implemented in ref. [26]). The placement of the grid points using this

option is displayed in Fig. 4.2. It should be noted that this option is not appropriate when

there are modes that peak far away from the outboard midplane. However, that has not

been found for the system under review.

4.3 Results of linear investigation of plasma microinstabilities

The dominant plasma microinstabilities at ρtor = 0.90 (r/a = 0.93) for this discharge are

MTMs at low toroidal mode numbers (kyρs < 0.1) and electron drift waves destabilized by

collisions at moderate toroidal mode numbers (at least up to kyρs ∼ 1). Very weak ITGs

also seem to exist at very low toroidal mode numbers. A plot of the growth rates and fre-

quencies at various toroidal mode numbers are displayed in Fig. 4.3. The microinstabilities
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Figure 4.2: Spacing of poloidal grid points on the flux-surface in the corresponding simula-
tions

in the absence of collisions are also displayed in Fig. 4.3. It can clearly be seen that col-

lisions have a dramatic effect on the microinstabilities in the simulation. Collisions act to

strongly stabilize the modes at low toroidal mode number, and act to destabilize the modes

at moderate toroidal mode number. The linear analysis suggests any accurate description of

edge transport must have an appropriately defined collision operator. A comparison between

the linear modes for the electrostatic and electromagnetic case has also been displayed in

Fig. 4.4. It can be seen that electromagnetic effects result in microtearing modes at low

toroidal mode number, mildly destabilize the electron drift waves, and have no discernible

effect on the ITGs (which are extremely weak in any case).

The ITGs have been identified by the fact that they drift in the positive direction, have

an even parity in the ballooning mode representation, and are stabilized by collisions and β.

The MTMs have been identified by the odd parity in the ballooning mode representation and

the fact that they drift in the negative (electron diamagnetic drift) direction. The electron

drift waves have been identified by the fact that they drift in the negative direction, are

destabilized by collisions, and have a cross-phase which is less than π/2, unlike interchange
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Figure 4.3: Growth rates and frequencies of dominant microinstabilities at ρtor = 0.90
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Figure 4.4: Growth rate and frequency spectra of dominant microinstabilities at ρtor = 0.9
for the electromagnetic and electrostatic case
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Figure 4.5: Mode structure of φ for the dominant microinstabilities at ρtor = 0.90 and
ρtor = 0.96. The ITG mode structure was evaluated for kyρs = 0.055 and the microtearing
mode structure was evaluated for kyρs = 0.082. The electron drift wave mode structure
at ρtor = 0.9 was evaluated at kyρs = 0.219. The electron drift wave mode structure at
ρtor = 0.96 was evaluated at kyρs = 0.203.

instabilities. The ballooning mode structure of the various microinstabilities are displayed

in Fig. 4.5. It is worth noting that the ballooning structure at ρtor = 0.96 is slightly shifted

from the outboard mid-plane. This is most likely due to the more extreme geometry of the

magnetic field as one goes farther out to the edge of the tokamak.

Table 4.2 illustrates how varying the different plasma parameters in the simulation

changes the frequency and growth rate of the dominant electron drift wave mode at kyρs =

0.3. The heat flux in the nonlinear simulations studied at this radial position also seemed

to peak near this value of ky, and electron drift waves end up playing a large role in the

nonlinear simulations, as seen in the next section. So understanding how varying the differ-

ent plasma parameters for this toroidal mode number changes the frequencies and growth

rates of the mode of interest is useful information. The parameter which has the biggest

effect on the growth rate and frequency is the electron temperature gradient. This is no

surprise since that is the driving force behind the mode. After that, the mode seems to be
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∆ω(%) ∆γ(%)
ωTe × 0.8 -11.59 -21.29
ωTe × 1.2 +9.64 +18.82
ωT i × 0.8 +4.44 -0.41
ωT i × 1.2 -4.48 +0.55
Ti/Te × 0.8 +3.63 -4.95
Ti/Te × 1.2 -3.27 +4.46
νcoll × 0.8 -2.89 -4.40
νcoll × 1.2 +1.83 +3.98
Zeff × 0.8 -2.77 +1.59
Zeff × 1.2 +2.75 -1.58
ωn × 0.8 +2.33 -1.95
ωn × 1.2 -2.28 +1.92
β × 0.8 +2.42 -0.71
β × 1.2 -2.72 +0.69

Table 4.2: Sensitivity tests for kyρs = 0.30 mode at ρtor = 0.90

primarily sensitive to the ion/electron temperature ratio and the collisionality. The growth

rates and frequencies of the dominant modes at ρtor = 0.96 are shown in Fig. 4.6. At this

radial position, the dominant microinstability appears to be electron drift waves, and the

growth rates appear to be much larger than the growth rates at ρtor = 0.90.

4.4 Nonlinear gyrokinetic simulations

Nonlinear flux-tube simulations at ρtor = 0.9 (r/a = 0.93) were conducted. Previous nonlin-

ear simulations conducted at more inner points in the discharge were documented in ref. [73].

In that analysis, local GENE simulations were able to match the experimental heat flux

within the error bars, and it was found that properties of the nonlinear system maintained

close correlation with properties of the linear system, such as cross-phases and frequencies.

It was also concluded in that analysis that there was no significant difficulty for quasilinear

analysis in L-mode discharges, at least out to the radial position of r/a = 0.9. While that

analysis was very thorough and expertly conducted, such an analysis was also constrained

to more inner radial positions, due to a numerical deficiency in the earlier collision model

which caused it to artificially create free energy, leading to numerical instabilities at low
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Figure 4.6: Growth rates and frequencies of dominant microinstabilities at ρtor = 0.96

toroidal mode numbers. This is very important because the linear and nonlinear dynamics

of the edge are strongly influenced by the collisional dissipation term. This reinforces the

importance of making sure that the collision operator in use conserves particles, momentum,

and energy, and numerically dissipates free energy and relaxes perturbations to a smooth

localized final state. Neoclassical benchmarking is also important to make sure that there

are no bugs in the collision operator.

The present analysis looks at the same discharge at ρtor = 0.9 (r/a = 0.93), to see how

the gyrokinetic model behaves when extrapolated to the edge. For this radial position, the

ion and electron heat flux can be matched by lowering the electron temperature gradient

by 40%. This suggests that there may be a slight error on the electron temperature profile

(or some other input) in the simulation, or that global, full-f, or neutral particle effects are

significant to the discharge, and should be taken into account. It does also signify however,

that gyrokinetics can closely reproduce the experimental transport quantities, even in the

edge. It is also found at this radial position that there is a large electromagnetic effect in the

simulation which causes the heat flux to flare up and shift to lower toroidal mode numbers.

168



The heat flux is still nearly entirely electrostatic. Earlier results from ref. [75, 76, 91] reported

a strong nonlinear electromagnetic effect which couples drift wave and MHD turbulence in

the edge. For this case, it is found that the cross-phases between electrostatic potential

and temperature fluctuations no longer agree at small scales (kyρs ? 0.5) or large scales

(kyρs > 0.1), however, they still agree in the regime for which the main plasma transport

occurs (0.1 . kyρs . 0.5). Also, it is found that the increase in heat flux could potentially

be attributed to an increase in the electron drift wave growth rates with higher β in linear

simulations. However, this result is particular to the case under review. Higher β values have

not been investigated, as the focus for this work has been on the experimental parameters.

Farther radial positions (where electron drift waves become linearly dominant at kyρs . 0.1)

have also not been looked at because of the computational expense of nonlinear simulations

in the far edge for realistic parameters. A detailed description of the findings from the

nonlinear simulations is presented in this section.

4.4.1 Numerical setup

Three types of nonlinear flux-tube gyrokinetic simulations were run at the radial position of

interest: An electromagnetic collisional simulation with the nominal input parameters taken

from the experiment, an electrostatic version of the same simulation, and an electromagnetic

collisional simulation with the experimentally obtained logarithmic electron temperature

gradient lowered by 40% (with the aim of matching the experimentally measured heat trans-

port). A couple of things are worth clarifying in the following description. Electrostatic

simulations correspond to simulations where the plasma β has been set to zero. So this

would also mitigate one of the electrostatic drive terms in addition to deleting the electro-

magnetic corrections. Also, electromagnetic/electrostatic can refer to simulations that were

run with and without β respectively. However, electromagnetic simulations also contain

electrostatic and electromagnetic heat flux components. This is important to keep in mind

to avoid confusion with what is meant by electrostatic.

For the following nonlinear simulations, a resolution of (nz, nv, nµ) = (32× 32× 20) was
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used for the poloidal and velocity space grids (the poloidal direction was discretized with the

scheme described earlier). This was enough to resolve the linear modes at low and moderate

toroidal mode numbers. The nonlinear simulations use the same resolution in z, v‖, and µ

as the linear simulations. This is justified by the fact that the only nonlinear term in the

system is the perpendicular nonlinearity, which only contains derivatives in the radial and

binormal direction. So it is not expected that the nonlinear simulations would require higher

resolution in any dimension besides the radial and binormal directions. The collisionless

terms were handled via Arakawa discretization schemes for the linear terms with z and v‖

derivatives, and for the nonlinear term with x and y derivatives, as in any standard GENE

flux-tube simulation.

A resolution of (nkx, nky) = (1024, 48) was used to simulate the radial and binormal

directions. For the binormal discretization, the second integer toroidal mode number has

been chosen as the minimum nonzero mode number in the simulation (ky,minρs = 0.028).

This is also the spacing between the different ky modes in the simulation. This corresponds

to a binormal box size of 224.4 gyroradii (Ly = 224.4ρref). For the radial direction, a box

size of 459 gyroradii was used (Lx = 459ρref). This high resolution was used to resolve the

electromagnetic fields in the edge, as will be discussed in more detail in the following sections.

For the electrostatic simulations, a lower resolution (nkx, nky) = (256, 48) and radial domain

size (Lx = 114.75ρref) were utilized. Also, an external E × B shearing rate of γE×B = 0.04

was used in an attempt to break up large scale structures. This can be justified because

the E × B shearing rate is an external physical parameter in the delta-f gyrokinetic model

which is ascertained from the radial derivative of the zonal flows. However, the experimental

measurements for such quantities are extremely noisy, and it is very difficult to ascertain the

correct value for the shearing rate. A value of γE×B = 0.04cref/Lref was considered to be

reasonable for the upper bound of the shearing rate, and hence, was chosen as the value in

nonlinear simulations. The collision model in use was a linearized Sugama collision operator

of the type described in Chapter 3.
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4.4.2 Comparison of simulated heat transport with experimental measurements

The heat flux measurements for the nonlinear simulations are displayed in Fig. 4.7. They

are based on the time traces shown in Fig. 4.8. The simulations with nominal parameters

overestimate the experimentally obtained heat fluxes by a factor of about 4 for the electrons

and 2 for the ions. The heat fluxes obtained for the parameter set where the electron

temperature gradient was lowered by 40% agree very well with the experimentally measured

transport levels. This suggests that perhaps the electron temperature profiles constructed

from experimental data happened to give values of the electron temperature gradient at the

given radial position that overestimated the true value at ρtor = 0.9 (r/a = 0.93). The

experimental electron temperature values reconstructed from experimental measurements,

as well as the electron temperature profiles taken for the simulations are displayed in Fig. 4.9.

By comparing the profiles used for the simulation with the experimental measurements, it

can be seen that it is plausible that the electron temperature gradient could be off by 40%,

justifying the use of the altered simulation. It is also possible that there are some other effects

in the plasma, such as global effects, full-f effects, and/or collisions with neutral particles

which are not being taken into account which would lower the ion and electron heat fluxes.

Nevertheless, gyrokinetic simulations still seem to provide very good agreement with

experimental transport levels despite being highly sensitive to the error bars on numerous

input parameters. In the electrostatic case, the nominal heat fluxes align very well with the

experimental value. This indicates that there is a very strong electromagnetic effect which

raises the heat fluxes.

4.4.3 Heat flux spectra

The heat flux spectra of the simulations for the binormal and radial dimension are displayed

in Fig. 4.10 and Fig. 4.11 respectively. The electrostatic heat flux seems to peak at the

12th toroidal mode number (kyρs = 0.168) for the simulations with the nominal parameter

set, and the 16th toroidal mode number (kyρs = 0.224) for the simulation with the electron

temperature gradient lowered by 40% and the electrostatic simulation. The electromagnetic
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Figure 4.7: Experimental and simulated heat transport for ASDEX Upgrade Discharge
28132. The blue line with the square data points indicate the experimentally measured
heat fluxes obtained from the ASTRA code. The shaded area around the line indicates
the uncertainty for the ASTRA fitting of the experimental measurements. The flux-tube
simulations attempted to model the plasma turbulence in the far edge region indicated by
the black vertical line around r/a = 0.93. The values obtained for the heat fluxes with the
nominal experimental input parameters are indicated by the pink crosses. The values for
the heat fluxes associated with the nonlinear simulations where the electron temperature
gradient was lowered by 40% are indicated by the red circles. The values obtained for this
parameter set agree very well with the experimentally measured transport levels. The heat
fluxes for the electrostatic case are displayed by the green circles. These are also close to the
experimental values.

Figure 4.8: Ion and electron heat flux time-traces. The ion heat fluxes are displayed on the
left and the electron heat fluxes are displayed on the right. The heat fluxes for the simulation
with the nominal input parameters are displayed by the blue lines, and have higher values
for both the ions and electrons than the other simulations. The heat fluxes for the simulation
with the electron temperature gradient lowered by 40% are displayed by the red lines. The
heat fluxes for the electrostatic simulation are displayed by the yellow lines and extend to
longer times than the other time-traces. The electromagnetic heat fluxes are negligible and
have not been shown. The ion heat fluxes include the deuterium species, but not the boron
species (the boron heat flux is small compared to the deuterium heat flux). The heat fluxes
are in gyrobohm units.
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Figure 4.9: Display of experimental and simulated electron temperature values at the radial
position of interest. The purple data points indicate nominal electron temperature values
reconstructed through Thompson scattering measurements. The thin purple lines indicate
the error bars associated with the experimental measurements. The two thicker lines are
meant to represent the electron temperature profile taken for the local simulations centered
at ρtor = 0.9. The temperature was taken to be 212 eV throughout all simulations, and the
electron temperature gradients (which are assumed to be constant, and are a completely
separate entity from the electron temperature value in a localized flux-tube simulation) are
represented by the slopes of the lines. The steeper blue line indicates the simulation based
on the nominal experimental values, and the flatter black line indicates the simulation with
the electron temperature gradient lowered by 40%.
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contribution appears at very low toroidal mode number. The electromagnetic heat flux

peaks at the 6th toroidal mode number (kyρs = 0.084) for the nominal parameter set and

the 10th toroidal mode number (kyρs = 0.14) for the parameter set with the lower electron

temperature gradient. Although the electromagnetic heat flux makes a very small contri-

bution compared to the electrostatic heat flux. The flux spectra for the nominal, lowered

electron temperature gradient, and electrostatic cases were averaged over the time windows

t = 61.5− 94.0a/cs, t = 77.4− 107.9a/cs, and t = 100− 180.1a/cs respectively.

When conducting nonlinear simulations in the edge, it is necessary to go to very low

toroidal mode number to ensure that the electromagnetic electron heat flux is stable. It has

been found that if a higher toroidal mode number is chosen for the minimum nonzero value

in the simulation, the electromagnetic heat flux will peak at that value, and continually

increase. It makes sense that this would be the case because A‖ is derived from a 2D Laplace

equation, A‖ = 4πJ/(ck2
⊥). Because of the k2

⊥ in the denominator, it makes sense that the

electromagnetic contribution, when present, would appear at low toroidal mode number and

with large structures in the radial domain. For these simulations, the 2nd toroidal mode

number (ky,minρs = 0.028) has been chosen. This is also the spacing between the different ky

modes in the simulation.

What is interesting to note when comparing the heat fluxes for the electrostatic and

electromagnetic simulations is that while even though the electromagnetic heat flux makes

minimal contribution to the total heat flux, there is a large surge in the electrostatic heat

flux at lower toroidal mode number. This is consistent with what has been reported in ref.

[75, 76, 91]. It has been found in these references that as the plasma β is increased, the heat

flux increases dramatically, and the increase is associated with the nonlinear coupling of the

electron drift wave turbulence with MHD interchange instabilities at scales of kyρs < 0.1. At

these higher values of plasma β, it has been found that the system is highly nonlinear, and

that the underlying linear instabilities are no longer useful for characterizing the nonlinear

system. It shall be seen in subsection 4.4.5 that the physics at scales of kyρs < 0.1 is indeed

highly nonlinear when electromagnetic effects are taken into account. However, it is not

clear that the large surge in heat flux can be attributed to a coupling between the electron
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Figure 4.10: Time-averaged heat flux spectra in the binormal coordinate. The graphs on
the left and right present the same data, but the graphs on the left have a linear scaling
in kyρs and the graphs on the right have a logarithmic scaling in kyρs. The spectra for the
nonlinear simulations with nominal electron temperature gradient are shown, along with the
spectra for nonlinear simulations with reduced electron temperature gradient where the heat
fluxes match the experimental values, as well as the spectra for the electrostatic nonlinear
simulation. The deuterium electrostatic heat flux spectra are shown on the top. The boron
heat flux, as well as the electromagnetic ion heat flux, made negligible contributions to the
total ion heat flux. The electrostatic electron heat flux spectra are displayed in the center.
This is the bulk of the contribution to the heat flux. The electromagnetic electron heat flux
spectra are displayed on the bottom.
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Figure 4.11: Time-averaged heat flux spectra in the radial coordinate. The graphs on the
top left, top right, and bottom center represent the electrostatic deuterium, electrostatic
electron, and electromagnetic electron radial heat flux spectra respectively. The spectra for
the nonlinear simulations with nominal electron temperature gradient are shown, along with
the spectra for nonlinear simulations with reduced electron temperature gradient where the
heat fluxes match the experimental values.
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Figure 4.12: Renormalized growth rate spectra in the binormal direction for the electromag-
netic and electrostatic case.

drift wave turbulence and highly nonlinear MHD at scales of kyρs < 0.1 for the system with

the nominal plasma β value under consideration. Electromagnetic effects also destabilize the

linear drift wave physics at the lower end of the ky spectrum to a significant degree, as shown

in Fig. 4.12. In this figure, the growth rates have been weighted by a factor of 1/(kyρs)
2

to better mimic the effect that the mode should have in a nonlinear simulation, assuming

that the linear physics is a good indication for how the nonlinear system will behave. Lower

toroidal mode numbers play a more significant role in the simulation for a given growth rate

because they are less strongly affected by the perpendicular nonlinearity than higher mode

numbers. While nonlinear coupling to large-scale MHD is a reasonable theory to explain the

large surge in the heat flux and the shift in the peak to lower toroidal mode numbers, this

could potentially also be explained to some degree by the increase in the growth rate of the

electron drift wave instabilities for the radial position under review.

4.4.4 Contour plots at outboard midplane

Contour plots of the electromagnetic fields and the density and flow fluctuations which

drive the field perturbations at the outboard midplane are shown in Fig. 4.13 and Fig. 4.14

respectively. It can be seen that the fields and moments are well resolved at the outboard

midplane in the simulation. The domain is 459 gyroradii in the radial dimension, and 224.4
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Figure 4.13: Contour plots of electrostatic (left) and parallel magnetic vector (right) potential
at the outboard midplane of the simulation domain. The data shown was taken from the
simulation with the nominal input parameters at time, t = 106Lref/cref .

gyroradii in the binormal dimension. Such a box size is very large in the radial domain, and

if centered at the position of interest (ρtor = 0.9), would extend beyond the separatrix into

the scrape-off layer. The large box size was used to prevent streamers of A‖ in the radial

domain, and ensure that the fields were well-resolved in the simulation. Some may wonder

about the validity of the flux-tube approximation when it is necessary to construct a radial

domain extending into a regime where the flux-tube approximation is clearly not valid. But

it is important to point out that it is not the size of the radial domain in the flux-tube

simulation that is physically significant (in principle, such domains could extend to infinitely

large ranges while giving converged results, since the boundary conditions are periodic).

What is truly important is the size of the physical structures. The size of the density and

flow fluctuations compared to the gradient length scales are meaningful, not the size of the

radial domain needed to resolve the larger scale electrostatic potential and magnetic vector

potential fluctuations. For flux-tube simulations, A‖ is proportional to the charge current

density divided by k2
⊥, so the charge current density structures map to larger structures

in the xy-plane for A‖. When these large A‖ structures are used to evolve the perturbed

distribution function, the density and flow moments should still retain their standard size

in the xy-plane for a saturated nonlinear simulation. So a large radial domain was utilized

only to mitigate concerns about A‖ streamers, and the use of a large radial domain is not

necessarily a cause for concern.

When the problem related to A‖ streamers has been encountered in previous simulations
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Figure 4.14: Contour plots of deuterium (top), boron (center), and electron (bottom) density
(left) and flow (right) fluctuation amplitudes at the outboard midplane of the simulation
domain. The data shown was taken from the simulation with the nominal input parameters
at time, t = 106Lref/cref .
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of the edge, the typical approach has been to use the LILO version of GENE. The LILO

version of GENE is the same as the global version of the code, but uses constant profiles.

So the equations being solved are the same as in the flux-tube version of the code, except

that the radial coordinate is evaluated in real space, as opposed to Fourier space. Dirichlet

boundary conditions can then be applied and are used to kill elongated structures, rather

than periodic boundary conditions. The motivation for such an approach was that one

could confine the length of the box and reduce the resolution requirements for gyrokinetic

simulations. However, since smaller structures in the density and flow perturbations map to

larger structures in the parallel magnetic vector potential, killing A‖ structures artificially

alters the self-consistent electromagnetic interactions in the plasma. It may be equally

suitable, or even preferable, to resolve the electromagnetic fields in the simulation, rather

than to artificially truncate them out of computational convenience and reluctance to justify

the use of a large radial domain in the edge. Also, in future investigations of the edge,

one should examine contour plots of the magnetic field components rather than the parallel

magnetic vector potential to gauge if a simulation is resolved. The magnetic field components

are the ones which are actually Fourier transformed and evaluated in the perpendicular

nonlinearity. Furthermore, since the magnetic field components are related to the derivatives

of the vector potential, they are less likely to resemble streamers at the outboard midplane.

It is not necessary to prevent streamers in A‖ if the magnetic field perturbations are localized

within the simulation domain and the transport is stable. Keeping this in mind could save

on resolution in the radial dimension in future investigations.

The poloidal cross-sections of the electrostatic potential for the electrostatic and electro-

magnetic nonlinear simulations are displayed in Fig. 4.15. The larger width of the flux-surface

for the electromagnetic simulation is due to the larger box size utilized to handle the stream-

ers in the A‖ structures. The strange deformations occurring on the top and bottom of the

inner radius of the electromagnetic flux-surface can be attributed to a breakdown of the local

limit assumed for the metric coefficients in the course of the mapping of a box extending

beyond the separatrix onto a closed surface, and thus, are not a cause for concern. Both

figures show turbulence that is primarily localized at the outboard midplane of the device.
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Figure 4.15: Poloidal cross-section of the electrostatic potential for the electrostatic (left)
and electromagnetic (right) nonlinear simulations.

This coincides with intuition, and is a desirable feature considering that the poloidal grid

points are more concentrated at the outboard midplane, and thus, better suited to resolve

turbulence focused around that area. It should be noted however, that as one goes farther

into the edge, the ballooning structure of the modes can peak at areas other than the out-

board midplane, and the poloidal resolution and discretization of the grid points should be

adjusted for such a scenario.

4.4.5 Cross-phase analysis

In addition to the saturation amplitudes of the fields and moments, one of the major deter-

minants of the heat and particle fluxes is the cross-phases between those fields and moments.

The transport fluxes are products of fields and moments, as shown in Eqs. 2.13, 2.14, and

2.15. When the fields and moments are in phase, the transport is at a maximum, and when
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they are out of phase, the transport is at a minimum. If one had complete information about

the saturation amplitudes and cross-phases, one could replicate the transport. In the core

of a plasma discharge, the nonlinear cross-phases between the electrostatic potential and

the density and temperature fluctuations are strongly correlated to the linear cross-phases.

This strong correlation has been used to justify the construction of fast quasilinear models

[81, 82, 83] which rely on this correlation to predict plasma transport more quickly than full

nonlinear gyrokinetic simulations. These fast quasilinear transport prediction models would

be especially useful in the edge, where gyrokinetic simulations are more expensive. There is

therefore a strong motivation to understand if the linear and nonlinear cross-phases exhibit

strong correlation in the plasma edge. Here, the cross-phase for each ky mode is defined as

in Eq. 4.6,

αA,B(ky) =

[∑
kx,z

arg

(
A(kx, ky, z)/B(kx, ky, z)

)
W (kx, ky, z)

]
/
∑
kx,z

W (kx, ky, z). (4.6)

In the above expression, A and B are the quantities of interest, such as the fields and

moments. W is a weighting factor designed to emphasized high amplitude fluctuations, and

is defined as

W (kx, ky, z) =
| A(kx, ky, z) | ∗ | B(kx, ky, z) |

<| A(kx, ky, z) |>kx,z<| B(kx, ky, z) |>kx,z

.

In the above expression, the angle brackets and subscript denotes an average over all kx

modes and poloidal grid points. The function arg is defined in Eq. 4.7,

arg(x) = tan−1(Im(x)/Re(x)). (4.7)

The cross-phases between the electrostatic potential and the perpendicular temperature

fluctuations at the outboard midplane are displayed in Fig. 4.16. Results are displayed for

the nominal and electrostatic scenario, and data has been time-averaged over the intervals,

t = 76.6 − 93.9a/cs and t = 100 − 180.1a/cs for the two scenarios respectively. If the
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weighting factors, W , were set equal to one, then the amplitudes in the contour plots could

be interpreted as the probability that a particular cross-phase was observed for a given

binormal wave number. Because of the weighting factors, the amplitudes in the contour

plot are shifted to dramatically lower values then would be expected from a probability

distribution.

It can be seen that there is generally good agreement between the linear and nonlinear

phases in the range 0.1 . kyρs . 0.5, which is the range of the spectrum for which the bulk

of the heat transport occurs. For small scales (kyρs & 0.5) and large scales (kyρs . 0.1) there

is very little agreement between the linear and nonlinear phases. The electromagnetic and

electrostatic cases have also been shown side-by-side to allow for comparison. It has been

found previously in ref. [75, 91] that increasing the plasma β leads to a greater contribution

from low toroidal mode numbers, and cross-phases that are closer to π/2. This would

suggest that MHD-like instabilities become relevant to the system, and result in the elevated

heat fluxes in electromagnetic nonlinear simulations. The cross-phases do not match the

dominant linear microinstabilities for both the electrostatic and electromagnetic scenario in

this regime (however, the transport is also weaker here). Nevertheless it can clearly be seen

that electromagnetic effects result in a spreading out of the cross-phases for the part of the

binormal spectrom, kyρs . 0.1. Movement of the cross-phases towards π/2 have not been

observed for the nominal parameters, however higher β values have not been investigated.

A shift in the heat flux towards lower mode numbers has been observed, but not far into the

kyρs . 0.1 regime, and this could also be potentially explained by the electromagnetic effect

on the linear microinstabilities (see Fig. 4.12).

The cross-phases between electrostatic potential and density fluctuations for the nominal

parameter set are displayed in Fig. 4.17. These are the relevant data for assessing whether or

not particle transport is quasilinear (the electromagnetic particle transport was found to be

negligible in the simulation). The cross-phases seem to give very good agreement for the ions.

There are two different cross–phase branches around kyρs ∼ 0.2 and kyρs ∼ −π, and the

nonlinear physics switches branches in accordance with the linear physics. For the electrons,

there is very good agreement in the regime where the transport occurs, 0.1 . kyρs . 0.5,
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Figure 4.16: Time-averaged cross-phases between electrostatic potential and perpendicular
temperature fluctuations for each toroidal mode number in the simulation. The cross-phases
for electrons are shown on the top and the cross-phases for the ions are shown on the bottom.
The cross-phases for the nominal parameters are displayed on the left, and the cross-phases
for the electrostatic parameters are displayed on the right. The contour plots display the
cross-phases for the nonlinear simulations, and the green markers indicate the dominant
cross-phases for each toroidal mode number in the linear simulations. The cross-phases
between the electrostatic potential and parallel temperature fluctuations are highly similar
to the data displayed here. The data for the parameters where the electron temperature
gradient was lowered also qualitatively resemble the data for the nominal electromagnetic
parameters.
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Figure 4.17: Cross-phases between electrostatic potential and density fluctuations. The plots
for the electrons are shown on the left, and the plots for the ions are shown on the right. The
contour plots display the cross-phases for the nonlinear simulations, and the green markers
indicate the dominant cross-phases for each toroidal mode number in the linear simulations.

although the agreement is slightly worse at smaller scales, and very poor at large scales,

kyρs . 0.1.

4.5 Extrapolation of the model farther in the edge

A statement of caution is worth mentioning. The findings presented here are specific to the

scenario and radial position under study. These findings cannot necessarily be extrapolated

farther into the edge. As one goes closer to the separatrix, the electron drift wave microin-

stabilities begin to become dominant at very low toroidal mode number (kyρs . 0.1). The

renormalized growth rate spectra would then indicate a massive surge in the heat flux in

that region, as shown in Fig. 4.18. It was already found at ρtor = 0.9 that the physics of the

region kyρs . 0.1 is highly nonlinear, and this region exhibits little resemblance to the modes

located there. This didn’t seem to impact the transport levels observed for ρtor = 0.9 because

the transport was dominated by higher binormal wavenumbers. However, if this region re-

tains its nonlinear nature as one goes farther to the edge where electron drift waves become

much stronger at lower binormal wavenumbers, then one would expect the transport in that

region to be highly nonlinear, and for the cross-phases to exhibit little correspondence, as

found in [75, 76].

An attempt was made to model the transport at the radial position ρtor = 0.96. Unfortu-
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Figure 4.18: Renormalized growth rate spectra in the binormal direction for the linear mi-
croinstabilities at ρtor = 0.96.

nately, such an attempt was unsuccessful due to the enormously computationally expensive

nature of such simulations. In this region, the collisionality places severe restrictions on the

timestep, especially for a simulation with Boron impurities, which should be included in this

discharge to realistically model the physics. Additionally, a higher resolution in the binormal

dimension is needed to resolve the modes in the region kyρs . 0.1, and a higher z resolution

is needed to resolve the low toroidal mode numbers, which increases the time per timestep

and decreases the timestep in the simulation.

An implicit collisional time-stepping scheme should be developed to allow for more com-

putationally tractable simulations of the plasma edge. Also, nonlinear simulations at farther

radial positions where the electron drift waves become unstable in the kyρs > 0.1 region

should be investigated to see if the transport remains attached to the underlying linear

instabilities or if the transport becomes highly nonlinear. If the transport becomes highly

nonlinear, then there seems to be a natural point at which the nonlinear physics departs from

the linear physics: when the electron drift waves in the edge become unstable in kyρs . 0.1

region. If the transport remains quasilinear, then it would prove that the underlying mi-

croinstabilities remain a useful guide for characterizing transport in gyrokinetic simulations

even in the extreme parameter regime of the edge.
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4.6 Chapter summary

After conducting a thorough linear and nonlinear examination with the delta-f flux-tube

gyrokinetic model at ρtor = 0.9 (r/a = 0.93), it can be seen that the transport in this region

is dominated by electron drift wave turbulence. The transport is nearly entirely electrostatic

heat and particle flux. For the nominal parameters, the simulated heat flux is higher than

the experimental measurements by a factor of ∼ 4 for the electrons and ∼ 2 for the ions.

This discrepancy can be mitigated by lowering the electron temperature gradient by 40%.

It is not clear that this parameter was incorrectly provided by the experimentalists, but

it’s possible, and matching the heat fluxes by lowering the electron temperature gradient

by 40% demonstrates that the delta-f gyrokinetic model can reproduce the transport in the

edge by varying the input parameters within their error bars. It was also found at this radial

position that the cross-phases between electrostatic potential and temperature and density

fluctuations remain highly correlated between linear and nonlinear simulations in the regime

for which the transport dominates (0.1 > kyρs > 0.5). Outside of this regime, there is little

correlation (although, there is also minimal transport).

It has also been found that there is a large electromagnetic effect on transport in the

edge. The electrostatic parameter set gives heat transport which very closely agrees with

the experimental measurements. When electromagnetic effects are included, the electrostatic

heat flux roughly doubles for the ions and quadruples for the electrons. This boost is nearly

entirely at low toroidal mode number, and could also potentially be attributed to the linear

physics, as shown in Fig. 4.12. It was also found that electromagnetic effects lead to a large

spreading out of the cross-phases at large scales (kyρs . 0.1). Nevertheless, the transport in

the regime (0.1 > kyρs > 0.5) appears to be mostly quasilinear, suggesting that such models

should be able to replicate the transport found here reasonably well.
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CHAPTER 5

Electromagnetic gyrokinetic models

The plasma β is considered to be one of the most fundamental dimensionless parameters in

plasma physics,

β =
8πp

B2
0

=
8πnrefTref

B2
ref

.

This parameter is traditionally used as an indicator for the confinement quality of a given

device. The logic behind this philosophy is the idea that the background magnetic field is

to a large extent determined independently of the plasma (for instance, by the amount of

current being driven through the external coils) and a higher plasma pressure is obviously

one of the desired outcomes of a fusion device. Furthermore, the fusion reaction rates are

proportional to β2 and the bootstrap fraction (fraction of plasma current driven by trapped

plasma particles) is proportional to β. The plasma β is also an important parameter for the

consideration as to whether or not a system is MHD stable or not. While β is certainly not

the only relevant plasma parameter (the confinement time, τE, is also an extremely important

parameter for the confinement quality of the system), it has a certain relevance in gyrokinetic

models as well. In gyrokinetic models, the plasma β is an indicator for the relevance of

electromagnetic effects in the system (It can be seen in the normalized gyrokinetic equations

that the electromagnetic fields vanish in the limit β → 0). This is similar to how νc and

ρ∗ represent the relevance of collisional effects and finite size effects respectively (although

there is also a pressure drive term independent of electromagnetic effects, but proportional

to β). And in various cases, these electromagnetic effects are important.

Many investigations using gyrokinetics must include not only electrostatic fluctuations
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against a strong background magnetic field, but also perturbed electromagnetic fields to fa-

cilitate an accurate and comprehensive description of plasma microturbulence and transport.

Under certain circumstances, electromagnetic effects such as stochastic magnetic fields and

plasma induction, can give rise to diverse and important transport mechanisms. Many im-

portant microinstabilities such as the Microtearing Mode (MTM), Kinetic Ballooning Mode

(KBM), and Toroidal Alfvén Eigenmode (TAE) exist only in the presence of finite β (which

would mean non-negligible electromagnetic effects). Other microinstabilities such as Ion

Temperature Gradient (ITG) instabilities can be strongly damped by these effects.

However, previous attempts at conducting electromagnetic gyrokinetic simulations have

encountered severe difficulties. For local gyrokinetic simulations, it has been found that at

high enough plasma β, the heat fluxes saturate at an exceptionally high level of transport

not found in realistic experiments, and this is a result of magnetic perturbations shorting

out flux surfaces and destroying zonal flows. This phenomena has been termed the nonzonal

transition (NZT), and sets an upper bound to the value of the plasma β that can be studied

with flux-tube gyrokinetic simulations (which is generally lower than the critical β value for

MHD stability) [92, 93, 94, 95, 96].

Global gyrokinetic simulations have also suffered from numerical problems, primarily,

the cancellation problem [97], first observed in particle-in-cell codes in ref. [98]. This prob-

lem limited electromagnetic gyrokinetic investigations to extremely low β parameter sets

[99]. The cancellation problem has been examined with particle-in-cell methods in refs.

[100, 101, 102] and with Eulerian methods in ref. [103]. A recent approach to solving the

cancellation problem has been published in ref. [104] using a new mixed variable formulation

of gyrokinetics [105, 106]. A good review of the cancellation problem and it’s mitigation can

be found in ref. [107]. For global gyrokinetic GENE simulations, the electromagnetic model

could also become outright numerically unstable for certain scenarios, even at relatively low

values of β. This problem shall be investigated in this chapter.

Also, in addition to delta-f gyrokinetic simulations for core and edge plasma turbulence,

there is a desire to develop a full-f version of GENE to study scrape-off layer turbulence, and it

is not immediately clear how to analyze the nonlinear plasma induction term. An alternative
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scheme for evaluating the electromagnetic fields has been developed within this thesis with

the hope of mitigating these problems. This scheme is discussed in this chapter, as well as

tests of the implementation of this scheme. For more information on the implementation of

electromagnetic fields in GENE, see refs. [108, 27, 35].

This chapter is outlined in the following way. First, a discussion of the original and

alternative implementation of the electromagnetic fields in the GENE code is discussed in

section 5.1. This includes a linear benchmark for local and global microinstabilities at finite

β. Following this, the Rosenbluth-Hinton test is applied to examine the numerical stability

of the magnetic induction of these different implementations in section 5.2. Afterwards, the

numerical instability for the global electromagnetic version of GENE is analyzed in section

5.3. Conclusions are drawn in section 5.4.

5.1 Implementation of electromagnetic fields in GENE code

The collisionless gyrokinetic equation is given as

∂Fa
∂t

=
qa
mac

∂A‖
∂t

∂Fa
∂v‖

−
[
cb̂

qB∗‖
×∇(µB + qχ̄) + v‖b̂ +

B

B∗‖
vc

]
· ∇Fa

+
1

mav‖

[
cb̂

qB∗‖
×∇(µB + qχ̄) + v‖b̂ +

B

B∗‖
vc

]
· (µ∇B + q∇ψ)

∂Fa
∂v‖

. (5.1)

The first term in Eq. 5.1 proportional to ∂A‖/∂t representing the plasma induction poses a

numerical difficulty. It is not immediately clear how one could evaluate this equation using a

simple fourth-order Runge-Kutta time-stepping scheme because of the two time derivatives.

If the higher order parallel nonlinearities are neglected (which can be justified in a delta-f

framework), then ∂Fa/∂v‖ becomes ∂F0a/∂v‖ which is constant in time. So one could define

a new distribution, ga,
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ga = fa −
qa
mac

∂F0a

∂v‖
A‖. (5.2)

One could then numerically evaluate the delta-f gyrokinetic equation by using a fourth-

order Runge-Kutta time-stepping scheme to evolve ga as opposed to fa. The Ampére’s law

field equation would then also have to be modified from a Poisson equation to a Helmholtz

equation so that A‖ could be evaluated from ga as opposed to fa, but this is a trivial

task. However, this scheme could not be extrapolated to the full-f case, because ∂Fa/∂v‖ is

not constant in the full-f model. In the remainder of this section, an alternative scheme for

numerically evaluating the electromagnetic fields is devised with the hope of creating a model

which could be extended to full-f electromagnetic gyrokinetic simulations. This scheme has

similarities to the one outlined in [109].

The original equations for the A‖ fluctuations and the plasma induction are given by

∇2
⊥A‖ = −4π

c
j = −4π

c

∑
b

qb

ˆ
d3vG†{v‖Fb} (5.3)

∂Fa
∂t
− qa
mac

∂

∂t
(G{A‖})

∂Fa
∂v‖

= Ra. (5.4)

In Eq. 5.4, Ra represents the entire right hand side of the gyrokinetic equation that excludes

the plasma induction. Now the following formalism will be used:

Eind
‖ = −1

c

∂A‖
∂t

. (5.5)

And the gyrokinetic equation shall be rewritten as

∂Fa
∂t

= Ra −
qa
ma

G{Eind
‖ }

∂Fa
∂v‖

. (5.6)

Taking the time derivative of Eq. 5.3, and using the definition of Eind
‖ in Eq. 5.5, the following

is obtained:
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∇2
⊥E

ind
‖ −

4π

c2

∑
b

qb

ˆ
d3vG†

{
v‖
∂Fb
∂t

}
= 0. (5.7)

Plugging Eq. 5.6 into Eq. 5.7, one can arrive at an equation for the induced electric field,

(
∇2
⊥ +

4π

c2

∑
b

q2
b

mb

ˆ
d3vG†v‖

∂Fb
∂v‖
G
)
Eind
‖ =

4π

c2

∑
b

qb

ˆ
d3vG†{v‖Rb} =

4π

c2

∂j

∂t
. (5.8)

In principle, since the right-hand side of the gyrokinetic equation is stored in an array in

a GENE simulation, one could use Eq. 5.8 to solve for the induced electric field, and then use

this together with Eq. 5.6 to evolve the gyrokinetic equation with induction without changing

the explicit time scheme used by the code. One could furthermore adapt this scheme to a

delta-f model by modifying the full distribution, Fa, to include only the background effects

from F0a, and not the lower order terms. In this case, one could also avoid taking numerical

derivatives if the background distribution is a Maxwellian,

∂fa
∂t

= Ra +
qa
Ta
G{Eind

‖ }v‖FMa (5.9)

(
∇2
⊥ −

4π

c2

∑
b

q2
b

Tb

ˆ
d3vG†v2

‖FMbG
)
Eind
‖ =

4π

c2

∂j

∂t
=

4π

c2

∑
b

qb

ˆ
d3vG†{v‖Rb}. (5.10)

By comparing the delta-f (Eq. 5.6 and 5.8) and full-f (Eq. 5.9 and 5.10) equations, it can

be seen that there are two nonlinearities associated with the induction. There is the nonlinear

contribution to the plasma induction, which can be incorporated into a gyrokinetic model by

modifying the matrix for the Eind
‖ solver continuously with time. There is also the nonlinear

response to the induced electric field, which could be incorporated into a gyrokinetic model

by simply modifying the term on the right hand side so that the derivative of the full

distribution is used, as opposed to the derivative of the background distribution.
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If one was to use a more advanced form of the 2D full-f Ampére equation where the flow

moment was calculated using the full-f pull back operator, then the equation for the induced

electric field would be more complex. Such an equation, however, could be found and would

still be linear. One could derive a linear equation for Eind
‖ by taking the time derivative of the

Ampére equation. Because of the chain rule, the time derivative of any nonlinear quantity

is linear in time derivatives. One could then substitute Eq. 5.9 for ∂fa/∂t and Eq. 5.5 for

∂A‖/∂t. This equation would be linear in Eind
‖ and ∂φ/∂t. One could then take the time

derivative of the Poisson equation to obtain two coupled linear equations for Eind
‖ and ∂φ/∂t,

which could be solved. This technique for evaluating the parallel nonlinearity can therefore

be generalized to a full-f gyrokinetic model.

One could simplify the equation for the determination of the induced electric field using

integration by parts for the integral on the left hand side. In the drift-kinetic limit, such an

integral can be interpreted as the squared plasma frequency,

(
∇2
⊥ −

(
ωp
c

)2)
Eind
‖ =

4π

c2

∂j

∂t
.

However, it has been found that applying integration by parts before numerical integration

results in worse convergence properties for the study of electromagnetic microinstabilities.

This makes sense, because consistent numerical schemes should be used throughout to ensure

good conservation and symmetry properties. While integrating by parts results in a more

appealing looking formula, maintaining the consistency and symmetry of the equations is

more important. This is related to the cancellation problem observed in earlier particle-in-

cell codes, where numerically evaluating the derivatives in the field matrix is a more difficult

task.

A natural choice of normalization for the induced electric field is

Eind
‖ =

Tref

eLref

ρref

Lref

ˆEind
‖ .

The normalized field equation for the plasma induction then becomes
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(
∇2
⊥ +

β

2

∑
b

n0b
q2
b

mb

ˆ
d3vG†v‖

∂

∂v‖

(
F0b +

ρref

Lref

fb

)
G
)
Eind
‖ (5.11)

=
β

2

∑
b

qbn0b

√
2T0b

mb

ˆ
d3vG†(v‖Rb),

and the normalized gyrokinetic equation then becomes

∂Fa
∂t

= Ra −
qa√

2maT0a

G{Eind
‖ }

∂

∂v‖

(
F0a +

ρref

Lref

fa

)
.

The delta-f approximation can be applied by taking ρref/Lref → 0. The normalized Ampére’s

law can also be written as

∇2
⊥A‖ = −β

2

∑
b

qbn0b

√
2T0b

mb

ˆ
d3vG†{v‖fb}.

As can be seen above, the magnetic field perturbations and the plasma induction vanish in

the limit β → 0, as discussed earlier.

There is one important aspect of the global delta-f gyrokinetic model that should be

discussed. To reiterate, the delta-f gyrokinetic model is given by

∂fa
∂t

=
c

Cxy

B0

B∗0‖

[
∂xn0a

n0a

+
∂xT0a

T0a

(
mav

2

2T0a

− 3

2

)]
F0a

∂χ̄

∂y

+
c

Cxy

B0

B∗0‖

µB0 +mav
2
‖

qaB0

(
∂yB0 +

gxxgyz − gyxgxz
gxxgyy − gxygyx∂zB0

)
Γa,x

− c

Cxy

B0

B∗0‖

[
µB0 +mav

2
‖

qaB0

(
∂xB0 −

gxygyz − gyygxz
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+
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T0a

(
mav
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‖

2T0a

− 3

2

)]
F0a

+
qa
Ta
Eind
‖ v‖F0a. (5.12)

In Eq. 5.12, Γa,i (where i can represent x, y, or z) is given by (as of this writing, B‖

fluctuations are neglected in the global version of the code)

Γa,i = ∂ifa + qa
F0a

T0a

∂iφ.

In the previous gyrokinetic model, since ga was evolved explicitly in time, and since χ =

φ− v‖A‖/c was a commonly used parameter, it was natural to rewrite the expression for Γa,i

as

Γa,i = ∂iga + qa
F0a

T0a

∂iχ−
qav‖
cT0a

A‖∂iF0a. (5.13)

In Eq. 5.13 the last term was regarded as insignificant and neglected, so that the following

expression for Γa,i was used:

Γa,i ' ∂iga + qa
F0a

T0a

∂iχ.

While this is a convenient approximation, it also introduces electromagnetic dependence into

a term which generally has none in the global version of the code. This can create problems,

as will be seen later in this chapter.

To help verify that the alternative schemes to be used for electromagnetic gyrokinetic

simulations have been implemented correctly, linear benchmarks have been performed with
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both the local and the global versions of the GENE code. The results of the local benchmark

are shown in Fig. 5.1. The standard version of the GENE code has been benchmarked

against the GS2 code for this case, with very good agreement being shown in [94]. Two

different alternative schemes are compared against the standard version of GENE. These

schemes are described in the present section, with the only difference between the schemes

being the numerical implementation of the field matrix. In alternative scheme 1, Eq. 5.1

has been used to solve for the induced electric field. Numerical differentiation is used in

the field matrix, similar to how it is used in the calculation of the parallel nonlinearity. In

alternative scheme 2, integration by parts is utilized to prevent having to use numerical

differentiation in the field matrix. So the analytical form for the field matrix is simpler. All

versions of the codes give very good agreement for the frequencies. However, alternative

scheme 2 (the scheme which uses integration by parts) results in lower growth rates for the

KBM branch. Since the standard version of GENE has been well benchmarked with GS2,

this suggests that the integration by parts trick (which is tempting by virtue of the fact

that it makes the underlying field equation is simpler) results in an error in the growth

rates relating to the cancellation problem (since the consistency of the field matrix has been

altered). This means that alternative scheme 1 should be utilized to maintain the consistency

of the numerical schemes, and that is the scheme which shall be used in the rest of the

discussion of electromagnetic simulations. The results of the global benchmark are shown in

Fig. 5.2. The standard version of the GENE code has been benchmarked against the GKW,

EUTERPE, and ORB5 codes in [110]. In this case, the alternative version of GENE refers

to the implementation described in the previous section (without using integration by parts

for the field solver) and the original version of GENE is the version used in [110]. All code

versions give good agreement, and the two versions of GENE give very good agreement.

The benchmarks show very good agreement between the original and alternative version

of the GENE code for the linear growth rates and frequencies. While this new scheme was

developed particularly with the hope of resolving issues occurring in nonlinear simulations,

the linear benchmarks inspire confidence that the implementation has been done correctly,

at least as far as the linear modes are concerned. A nonlinear benchmark is difficult, because
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Figure 5.1: Local β scan for the kyρs = 0.2 mode of the CBC parameter set. As β is increased
from 0% to 2%, the dominant microinstability changes from an ITG, to a TEM, and finally
to a KBM.
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Figure 5.2: Global β scan for the n0 = 19 toroidal mode number of the CBC parameter set.
As the reference density, nref , is increased from 5 · 1016m−3 to 14 · 1019m−3, the dominant
mode changes from an ITG to a KBM.

such tests can be highly expensive, and the original code can become unstable for different

scenarios, making comparisons difficult. However, some insights can be gained by studying

zonal flows (the main candidate for saturation of ITG modes), and a Rosenbluth-Hinton test

must also be performed to ensure the numerical stability of the code implementations.
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5.2 Rosenbluth-Hinton test for electromagnetic field implementa-

tion

One of the fundamental tests of the numerical stability of a code is the Rosenbluth-Hinton

test. The ky = 0 mode in a simulation must not be unstable, and this feature has been used

to study the numerical stability of the various schemes proposed in section 5.1. Perpendicular

magnetic field fluctuations do not appear in the ky = 0 part of the electromagnetic gyrokinetic

equation. However, the magnetic induction, Eind
‖ , does appear, and simulations of ky = 0

can be used to examine the stability of different induction schemes as well as the parallel

nonlinearities for both the local and global versions of the code. The tests performed for this

case have been done with CBC parameters at different values of β, ρ∗, and mass ratio.

For the local version of the code, both the linear and nonlinear electromagnetic schemes

appear to be stable, as shown in Fig. 5.3, although the nonlinearities do not seem to change

the results significantly. The difference in the electromagnetic implementation is that the

induction is solved for explicitly. In the nonlinear electromagnetic model, the electrostatic

parallel nonlinearity, the nonlinear contribution to the induction, and the nonlinear response

to the induction are all included. This test seems to indicate that the electromagnetic model

with nonlinear terms can be used in gyrokinetic flux-tube simulations.

The Rosenbluth-Hinton test has also been performed for the global electromagnetic case.

When the parallel nonlinearities are excluded, then the test is passed and the zonal flows are

stable. The results of this test are displayed in Fig. 5.4. However, it is not straightforward

to implement the nonlinear contribution to the plasma induction in the GENE code. GENE

uses an LU decomposition method to solve for the fields. The matrix is constructed, and

decomposed into an upper and lower matrix in the initialization. The field equations are

then solved with this decomposed matrix for each time-step in the simulation. If one wished

to run gyrokinetic simulations with the nonlinear induction contribution included, one would

have to rewrite the code so that the field matrix is constructed each time-step. One would

then need to factor this matrix each time-step, or use an alternative field solver besides LU-

decomposition. This would require too much time in code development and computational
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Figure 5.3: Oscillations in electrostatic potential vs. time for the ky = 0 mode. This local
simulation was run with kxρs = 0.01. The electromagnetic simulations were performed with
β = 2%. The nonlinear simulations were performed with ρ∗ = 5%. All of the runs were
performed with νc = 0.025% to reduce grid-sized features in the electron dynamics (such a
collisionality is near the nominal value). These runs were performed with a grid resolution
of 64× 256× 64 in (z, v‖, µ). Very high values for these parameters were chosen so as to test
the stability of the model in extreme parameter regimes. It can be seen in the plot that the
oscillations decay in time, and φ tends toward a finite residual value.

resources. Nevertheless, one could still add the nonlinear response of the plasma to the

induced electric field and neglect the nonlinear contribution. This is analogous to the way

that the electrostatic parallel nonlinearity is sometimes studied in GENE simulations, even

though the electrostatic nonlinear field solver is never considered. However, the gyrokinetic

model with the nonlinear induction response seems to be numerically unstable after very

short time intervals. This numerical instability seems to exist mainly for realistic mass

ratio. The distinguishing feature of the numerical instability is that the potential becomes

very sharp at a single point in z before the point of blowing up. This feature cannot be

destroyed with any value of hyperdiffusion in z, regardless of whether the hyperdiffusion

term contributes to the plasma induction or not. It also seems to persist independent of the

resolution in (x, z, v‖, µ). When the electrons are 100 times heavier, the simulations seem

to be stable, as shown in Fig. 5.5. It is possible that this numerical instability is related

to the cancellation problem. When the nonlinearity is included in the plasma response to

the induced field, but excluded from the field solver, it creates an imbalance that perhaps

manifests itself as the observed numerical instability. This could be tested in future full-f

scrape-off layer versions of GENE, but it is too difficult to test in the current delta-f version
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Figure 5.4: Oscillations in electrostatic potential vs. time for the ky = 0 mode. This global
simulation was run with β = 1.5% and ρ∗ = 0.1%. These runs were performed with a grid
resolution of 128×24×64×32 in (x, z, v‖, µ). This run was performed with a z-hyperdiffusion
of 2.0 and a parallel velocity hyperdiffusion of 0.2. The nonlinear induction terms have been
excluded from this simulation. This result shows that the global gyrokinetic model with
linear induction is stable.

of the code. It is also possible that the instability is the result of numerical schemes which

are not fully conservative.

5.3 Global electromagnetic runaway

One of the major problems associated with the global version of the GENE code is the

global EM runaway. It has been found that if the plasma β is too high, the simulation

becomes numerically unstable and the moments of the simulation explode. This is displayed

in Fig. 5.6 for a global nonlinear simulation with the cyclone base case parameter set and a

plasma β of 2%.

These nonlinear simulations were conducted with a resolution of (nx, nky, nz, nv, nµ) =

320× 32× 20× 50× 16. The first toroidal mode number was taken as the minimum toroidal

mode number for this simulation. The first 10% and last 10% of the radial domain were

acted on by Krook type buffer terms of the form −νKrook(x)fa. The Krook operator had an

amplitude of 20 for x ≤ 0.1 and x ≥ 0.9 where the radial domain extended from 0 to 1. This

was done in an attempt to make sure the fluxes went down to zero relatively smoothly at

the Dirichlet boundary. Additionally, Krook-type particle and heat sources were in place in
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Figure 5.5: Rosenbluth-Hinton test for the global gyrokinetic model with a nonlinear response
to the induction and unrealistic mass ratio (the electrons are 100 times heavier). This global
simulation was run with β = 1.5% and ρ∗ = 0.1%. This model appears to be stable, unlike
the model with realistic mass ratio.

order to maintain a fixed temperature and density profile. The amplitudes were chosen to

be 0.08cref/Lref . See ref. [18, 26] for more information on particle and heat sources. Circular

geometry was utilized with a minor radius of r = 0.36 and a major radius of R = 1. The

safety factor profile was set to q(x) = 1.15− 0.16x+ 2.52x2, and ρ∗ was set to 0.00555. The

temperature and density profiles for the ion and electron species assumed the following form:

T (x) =

(
cosh

(
(x− x0 + ∆T )/ωT

)
cosh

(
(x− x0 −∆T )/ωT

))−κT rωT /2

n(x) =

(
cosh

(
(x− x0 + ∆n)/ωn

)
cosh

(
(x− x0 −∆n)/ωn

))−κnrωn/2

.

Where x0 = 0.5, ωT = ωn = 0.05, ∆T = ∆n = 0.3, κn = 2.23, κT,ions = 6.96, and κT,electrons =

3.0 for the case under review. Collisions were not considered in this case. It must be stressed

however, that β is the relevant parameter for investigations of the global EM runaway. The

buffer terms, sources, and profiles were less important as far as this numerical instability was

concerned.

In this case, the β value is extremely high, and the simulations explode after less than

half of a time unit. However, simulations have been found to become unstable at much lower

values of β as well. At these lower values, the simulations may still be numerically unstable,
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Figure 5.6: The above plots show the time traces for the moments (left) and fluxes (right)
in the higher β CBC parameter set for the standard version of the GENE code.

but it would only become apparent after a much longer simulation time. This could then be

a very frustrating problem for users of the global code version, because the instability could

render very long and expensive simulations useless, and it was never clear at what threshold

of the plasma β the simulations failed to stabilize.

With the alternative code version developed in this thesis, the global EM runaway prob-

lem appears to be solved. The same parameter set was run with the alternative code, which

was very well benchmarked with the earlier GENE code in terms of linear physics. The

nonlinear results seem to be numerically stable, at least out to about 60 time units (the

simulations cannot be run indefinitely) as shown in Fig. 5.7. This case has an artificially

high β for a circular geometry parameter set, so not much physics information can be ob-

tained from these results besides numerical stability. However, characterizing the behavior

of the model at extreme values of β is still worthwhile. It can be seen that for high β,

the electron heat flux is predominantly electromagnetic and the spectra tends to peak at

extremely low toroidal mode number, as shown in Fig. 5.8. It seems that even noninteger

toroidal mode numbers might be needed to resolve the flux spectra, although this may not

hold for lower values of β. The radial heat flux profiles are shown in Fig. 5.9. It seems to

be relatively smooth, except that the electron electromagnetic heat flux rises rapidly from

the boundaries. This phenomena seems to exist even with relatively high amplitude buffer

terms (∼ 20). But again, this could be related to the artificially high plasma β. The ion
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Figure 5.7: The above plots show the time traces for the moments (left) and fluxes (right)
in the higher β CBC parameter set for the newly developed version of the GENE code.

Figure 5.8: Heat flux spectra of the ions (left) and electrons (right) for the higher β CBC
parameter set for the newly developed version of the GENE code.

heat flux remains nearly entirely electrostatic.

As of this writing, the newly developed electromagnetic code exists solely on a separate

branch in the git repository. This branch is based off of an earlier version of the code, and

not the newly refactored version with additional features, such as the block-structured grids.

This alternative scheme shall soon be ported to the newly refactored x-global code, as well

as GENE-3D. While this modified code version is numerically stable for the x-global code,

and the spectra and profiles seem to be mostly well-behaved, one should still be careful

regarding numerical conservation properties and numerical gauge invariance. Additionally,

one should be careful to ensure that the field matrix is Hermitian, and that the magnetic

field is divergence-free. While it is assumed that the use of the magnetic vector potential
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Figure 5.9: Radial heat flux profiles of the ions (left) and electrons (right) for the higher β
CBC parameter set for the newly developed version of the GENE code.

automatically ensures a divergence-free magnetic field, this is only true if the discretization

schemes are designed such that ∇ · (∇×A) = 0 is numerically satisfied for the field aligned

coordinate system. These considerations are important to keep in mind in case one comes

across other numerical issues in simulations.

It should also be pointed out that while this revised scheme seems to mitigate the global

instability, the revised scheme seems to have no effect on the NZT that occurs at high β

in the flux-tube code. This is plausible, because while the global EM runaway considered

above clearly resembled an artificial instability, the NZT could be well resolved and seemed

like a normal system that evolved in the absence of zonal flows (which were destroyed by

magnetic field perturbations) as reported in ref. [92, 93]. Both advanced collision operators

and the electromagnetic parallel nonlinearity were tested on a CBC case with β = 1%, and

in both cases, the heat flux failed to saturate at reasonable values for local simulations.

Neither the cubic electromagnetic parallel nonlinearity nor the nonlinear corrections to the

field equations were tested, and it is plausible that these terms could have an effect. However,

the NZT does appear to be a robust physical feature of the delta-f gyrokinetic model.
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5.4 Chapter summary

In this chapter, a new electromagnetic implementation for gyrokinetic codes has been de-

vised. While such an implementation is still subject to the Non-Zonal Transition for the

local code version, it seems to no longer be subject to global numerical instabilities previ-

ously occurring in high β simulations. With the global instability problem solved, global

electromagnetic simulations will now be far easier to perform, and many new scientific in-

vestigations will be possible. These include global investigations of kinetic ballooning mode

(KBM) and toroidal Alfvén eigenmode (TAE) turbulence, and global simulations of high

β devices, such as spherical tokamaks. Since the new electromagnetic scheme is stable,

it can also be implemented in GENE 3D, and allow for an investigation of global electro-

magnetic turbulence in stellarators. This capability, when combined with the many other

features of GENE, such as advanced multi-species collision operators, block-structured grids,

non-Maxwellian backgrounds, etc., shall make GENE uniquely qualified for many scientific

investigations of global electromagnetic plasma turbulence.

Additionally, the new electromagnetic scheme can be appropriately generalized to allow

for full-f electromagnetic gyrokinetic simulations. However, a new field solver where the

matrix can be changed every time-step must be utilized in order to avoid the cancellation

problem. Such an implementation is planned for a new full-f version of GENE capable of

studying turbulence and transport in the scrape-off layer.
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CHAPTER 6

Conclusion

Computational gyrokinetic models have achieved great success in the study of the transport

and turbulence characteristics of many different magnetic confinement scenarios. However,

such models have encountered difficulties when tested in extreme parameter regimes. At

higher collisionalities, the previous collision operator in use was found to artificially create

free energy (in violation of the second law of thermodynamics) leading to numerical insta-

bilities. At higher values of the plasma β, the local gyrokinetic model failed to replicate the

experimental transport level by orders of magnitude due to a mitigation of the zonal flows by

magnetic field perturbations, and the global gyrokinetic model became outright numerically

unstable. In the course of this work, significant progress has been made in the develop-

ment of collisional and electromagnetic models in the GENE code. With the developments

made in this thesis, it is now possible to explore local and global (including with the use of

block-structured grids) gyrokinetic plasma turbulence in regions of higher collisionality, such

as the edge. It is also now possible to explore global plasma turbulence for scenarios with

higher plasma β, such as spherical tokamaks. Since these models have been shown to work

in the x-global code, this thesis also provides a preliminary roadmap for the implementation

of collisions and electromagnetic fields in GENE 3D and investigations of collisional and

electromagnetic plasma turbulence in stellarators.

In addition to the expansions made to the code, GENE has been used (along with the

newly developed collision operator) to characterize the plasma behavior in the edge of an

L-mode discharge. Gyrokinetic models are frequently utilized for studying the core of the

plasma discharge, but only very rarely are attempts made to study how such models behave

when applied to a parameter regime with such extreme collisionality and magnetic geometry.
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Such an investigation has been conducted in this work. It has been found that the nature of

turbulence in the edge is primarily electron drift wave turbulence which is expected to shift

to lower binormal wave-numbers as one goes farther out to the edge. At the radial position

of r/a = 0.93, the heat transport for both the ions and electrons was higher than the

experimentally measured values, but were brought into agreement by lowering the electron

temperature gradient by 40%. A summary of the results described in the last three chapters

shall be given, along with an outline of future work that can be done relating to collisions,

electromagnetic fields, and investigations of edge plasmas.

6.1 Key developments

6.1.1 Collisions

The linearized Sugama collision operator (analytically derived in ref. [14]) was implemented

in GENE using a second-order finite-volume scheme. The model was shown to conserve

particles, momentum, and energy to machine precision, while also dissipating free energy and

relaxing an arbitrary distribution to a perturbed Maxwellian in the drift-kinetic limit, even

for a nonisothermal parameter set (which is not a property of the original linearized Landau-

Boltzmann operator). The implementation has been carried out for both local and global

code versions. This is a significant improvement over the previous collision operator, which

could artificially create free energy, leading to numerical instabilities. Finite Larmor Radius

(FLR) corrections were implemented for the new operator in the local code. Previously, the

FLR corrections were incorporated only into the spatial diffusion term, and not the terms

with the velocity space moments. In addition, the global version of the collision operator was

developed in such a way as to be compatible with the block-structured grid implementation,

allowing for more computationally affordable, collisional, global simulations. Neoclassical

and microinstability benchmarks were also performed to verify that the implementation

of the collision operator was done correctly. The developments made in this thesis allow

for new, reliable, and computationally affordable simulations of the plasma edge and lower

temperature magnetic confinement scenarios.
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6.1.2 Edge Physics

The ASDEX Upgrade L-mode discharge 28132 was examined with the local GENE code at

a radial position of r/a = 0.93. This is one of the first quantitative gyrokinetic studies of

L-mode edge transport so close to the separatrix. Such studies are of great importance in

eventually addressing the physics of the L-H transition. This discharge was diagnosed with

earlier GENE simulations at the radial positions r/a = 0.75 and r/a = 0.85. At these radial

positions, the heat fluxes from the simulations matched the experimental values very closely

with the nominal input parameters. At r/a = 0.93, the simulated heat flux was higher for

the electrons by about a factor of 4, and higher for the ions by about a factor of 2. When the

electron temperature gradient was lowered by 40%, the heat fluxes for both species matched

the experimental measurements. 40% is a moderately large assessment for an error bar on the

electron temperature gradient, but a comparison to the experimental measurements shows

that it is certainly possible. It may also be the case that global, full-f, or neutral particle

effects would lower the transport. Nevertheless, this does indicate that the gyrokinetic

model can reproduce the experimentally obtained transport. Additionally, it was found

at the radial position under consideration that the turbulence was predominantly electron

drift wave turbulence. The cross-phases between electrostatic potential and temperature

fluctuations gave fairly good agreement in the part of the binormal spectrum for which

significant transport occurred (0.1 > kyρs > 0.5). The agreement was fairly poor outside of

this range, however, there was not significant transport in this region. It was also observed

that electromagnetic effects lead to a large increase in the electrostatic heat flux at lower

toroidal mode numbers. This could be attributed to electromagnetic effects on the linear

spectra. However, electromagnetic effects also lead to a significant change in the cross-

phases in the region (kyρs . 0.1). This is consistent with the findings in ref. [75, 76]. While

nonlinear simulations at farther radial positions were too expensive to perform with the

current explicit time-stepping scheme, the linear simulations at ρtor = 0.96 indicate that

the transport peak should shift to lower toroidal mode numbers at farther radial positions.

However, this prediction is based on linear physics, and it remains to be seen if this holds

true in nonlinear simulations.
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6.1.3 Electromagnetic Fields

A new scheme to evaluate the electromagnetic fields has been devised and implemented in the

GENE code. The purpose of this development was to solve the violent numerical instability

which occurs in global electromagnetic simulations at high plasma β. Such a scheme has

been shown to satisfy the essential Rosenbluth-Hinton test and is well benchmarked with

the linear physics. The new implementation solves the global electromagnetic instability, as

confirmed by a global simulation with cyclone base case parameters and a plasma β of 2%

(well beyond any practical value of β in a realistic simulation). This scheme has been tested

for high β local simulations as well (with and without the higher-order parallel nonlinear

induction term), but the nonzonal transition seems to still occur, adding further evidence

that the nonzonal transition is a physics phenomenon associated with the local gyrokinetic

model.

This implementation also has the potential of being generalized to allow for full-f electro-

magnetic simulations, although it would require changing the matrix for the field-solver every

time-step in order to avoid the cancellation problem. However, implementing the electro-

static full-f field equation would also require updating the field matrix every time-step, so no

new barrier is introduced for full-f gyrokinetic simulations. The capability of conducting high

β global electromagnetic simulations, when combined with the many other features of GENE,

such as advanced multi-species collision operators, block-structured grids, non-Maxwellian

backgrounds, etc., make GENE a unique and powerful tool for scientific investigations of

global plasma turbulence and transport.

6.2 Future work

6.2.1 Collisions

While the Sugama collision operator implemented in GENE has well tested conservation and

dissipation properties, it can be very expensive to utilize when the collisionality is high due

to a dramatic shrinking of the time-step. This problem can become especially bad when
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FLR corrections are utilized. It has been found in the ASDEX simulations in the edge that

the spatial diffusion part of the collision operator can shrink the value of the time-step by

two orders of magnitude, making such simulations intractable, even linearly. This problem

would also make investigations of the scrape-off layer, where collisionality is extremely high,

infeasible. To mitigate this problem, implicit time-stepping schemes should be investigated

for use with collision operators.

Additionally, the linearized Sugama collision operator should also be ported to GENE-

3D, and FLR corrections should be implemented for both the x-global and 3D code versions.

However, an implicit time-stepping scheme should perhaps be prioritized, because simula-

tions with FLR corrections may be intractable until such a scheme is implemented. Neutral

particle collision operators should also be considered. These collisional effects may become

important for discharges with high impurity content.

Finally, a full-f collision operator should be developed for use with the scrape-off layer

version of the GENE code. This however, is a challenging task compared to the implementa-

tion of the delta-f collision operator. The full-f nonlinear collision operator is fundamentally

nonlocal in velocity space, meaning that a convolution integral would need to be performed

in this subspace, leading to more memory usage, and more floating point operations. Fur-

thermore, it has been found that such an operator can lead to the full distribution function

becoming negative in numerical implementations, a problem that would ultimately have to

be resolved. Additionally, implementing FLR corrections into the nonlinear operator is a

much more difficult task than with the delta-f operator.

6.2.2 Edge Physics

At the radial position under consideration (ρtor = 0.9), it was found that the heat fluxes

could match experimental values, and the linear and nonlinear cross phases mostly agreed

in the part of the spectrum for which significant transport occurred (0.1 > kyρs > 0.5),

and disagreed outside of that range (kyρs . 0.1). As one goes further towards the edge,

the transport from electron drift waves is expected to peak at larger scales in the (kyρs .
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0.1) region. Previous studies of the edge (ref. [75, 76]) have found that the transport is

highly nonlinear because electron drift wave turbulence nonlinearly couples to MHD in this

large wavelength region through electromagnetic interactions. It is worthwhile to investigate

farther radial positions where electron drift wave transport in the long wavelength regime

is expected to dominate, to see if this nonlinear electromagnetic coupling is observed with

GENE. Attempts to conduct nonlinear simulations at farther radial positions during this

thesis were hampered because of limited computational resources. There were constraints

put on the time-step due to collisions, as well as higher required resolution in configuration

space to resolve the A‖ structures. Nevertheless, such simulations would be worthwhile.

Investigations of the edge of I-mode and H-mode discharges are also crucial, and the next

logical step after analyzing the L-mode discharge.

6.2.3 Electromagnetic Fields

While the global electromagnetic instability has been solved, the developments done in this

thesis were conducted on an earlier version of the GENE code before major refactoring of the

code was performed. The most important work to be done is to implement the appropriate

changes that resolve the electromagnetic instability in the newly refactored version of GENE.

Electromagnetic effects should also be implemented in GENE-3D as well as the new full-f

scrape-off layer version of GENE under development. New simulations of high β devices,

such as spherical tokamaks, should also be investigated.
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