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ABSTRACT OF THE DISSERTATION 

 

Harnessing Network Data to  

Address Scientific Challenges 

 

by 

 

George Dewey 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2024 

Professor Akihiro Nishi, Chair 

 

Complex systems in science can be represented using networks and can be better understood by 

studying network-based principles that bridge different scientific disciplines. This dissertation 

showcases three studies that exemplify the use of network data to answer distinct scientific 

questions. Chapter 1 introduces network concepts and briefly discusses the scientific background 

and rationale for each of the three studies that make up the dissertation. Chapter 2 evaluates the 

differences between cooperation, defection, and punishment decisions in two series of online 

network games using decision times and assessed if experimental time pressure could shift the 

distribution of decision types away from punishment and toward cooperation; results show that 

punishment was slower than either cooperation or defection and that experimental time pressure 

did not reduce the frequency of punishment comparing games with and without time pressure. 
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Chapter 3 uses an agent-based framework to simulate a network intervention to increase the lung 

cancer screening rate in the United States and tests two modifications to the framework with the 

potential to further increase the screening rate (allowing agents to adopt the intervention prior to 

observation and expanding the network size); results show that the intervention increases the 

screening rate among eligible individuals to 51% after 10 years of simulation (compared to the 

current screening rate among eligible individuals of 5.8%) and that increasing the network size 

boosts the screening rate above the rate achieved by the intervention alone. Chapter 4 describes 

the use of data from a citation network of scientific articles from epidemiology and public health 

to evaluate potential biases in ChatGPT’s ability to rate the validity of a scientific citation; results 

show that citation-reference pairs that included cited articles from English-speaking or high-

income countries were rated higher than pairs with cited articles from non-English-speaking or 

low-income countries. Chapter 5 summarizes the results of the three studies and describes 

implications of those results for future research. Overall, this dissertation demonstrates the use of 

network science principles and network data to explore solutions to three challenges from 

behavioral science, intervention planning, and artificial intelligence. 
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Chapter 1: Introduction 

1.1 Introduction to Networks 

Networks underpin many of the complex systems that scientists seek to understand (1-3). 

For example, the spread of the SARS-CoV-2 virus around the world that started the COVID-19 

pandemic involved a diverse ensemble of systems that can be modeled as a single network or as a 

combination of multiple networks. These include the systems and methods governing transmission 

of the infection (4-6) in addition to those describing the mobility of healthy and infected 

individuals and the effects of non-pharmaceutical interventions on mobility (7-9). Researchers 

have also used networks to analyze the spread of both truthful and misleading information about 

COVID-19 vaccines and treatments through social media platforms (10, 11).  These systems 

(transmission networks, mobility networks, and information networks) are composed of different 

elements and have entire disciplines built around understanding their characteristics, issues, and 

the data they generate. However, using network science, scientists can use a set of global principles 

that describe how individual components of systems behave and interact with each other to 

evaluate each of these network types using the same fundamental rules. These principles allow 

scientists to condense information that can describe entire complex systems into network-based 

data structures. 

Fundamentally, network data describes both the characteristics of individual components 

of a network and the information that quantifies the relationships between those components. In 

network data, individual components are referred to as nodes: nodes represent actors within the 

network and each node can be characterized by node-specific attributes. Relationships between 

nodes are called ties or edges: ties can either quantify a relationship between nodes or be used to 

describe the characteristics of the relationship. For example, social networks are a type of network 
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that will be familiar to most readers, describing the connections between individuals that engage 

with each other. In social networks, nodes represent individual humans; characteristics of these 

nodes could include network members’ names, their political affiliation, or their current health 

status.  Ties in social networks could therefore indicate the strength of the friendship or physical 

distance between two individuals in the network.  

In addition to describing individual components of networks such as node-level and tie-

level data, network datasets can also include summary measures that describe characteristics of 

the network in aggregate. The most common of these network metrics are measures of centrality, 

which serve to identify important nodes in the network, such as influential individuals in a 

business, super-spreaders in a transmission network, or key players in a network game. The 

simplest form of centrality is the degree (and by extension, the degree distribution of the network). 

The degree of a node is the number of ties it has to other nodes – nodes with higher degree have 

greater centrality since they are connected to more of the network at large. Consequently, the 

degree distribution is the probability distribution of individual node degrees over the entire 

network. Another common centrality measure is the betweenness centrality, which measures the 

probability of each node to be on the shortest path between two other nodes; nodes that are on 

many such paths have higher betweenness and are therefore more central in the network.  

In summary, networks allow us to better understand systems which are difficult to 

understand if analysis only includes information about the individual components of the system. 

Information from networks can be condensed into network data, which includes information about 

the individual nodes of the network, relationship data that quantifies node connections, as well as 

measurements of the relationships between individual nodes or ties and the other nodes or ties in 

the network. The following three sections describe three examples of scientific areas where the 
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blend of individual- and group-level characteristics encapsulated by network data provide valuable 

insights: studying decision-making in dynamic experiments using networks, network intervention 

planning, and the science of science. 

 

1.2 Cooperation and Punishment in Networks 

 Cooperation in humans exceeds what would be expected from an evolutionary perspective 

(12-15). People often choose to behave altruistically, benefiting complete strangers while gaining 

little or nothing for themselves (16, 17); this altruistic cooperation is often considered to be a 

defining characteristic of humanity (18). Cooperation is frequently contrasted with punishment: 

behavior that involves paying a cost to harm others. Prevailing theories about the rationale behind 

punishment decisions generally link such choices to their influence on future cooperation. One 

theory suggests that punishment is part of a cycle that maintains cooperation in human societies 

by reducing the fitness of free-riders to convert them into future cooperators (19, 20). An 

alternative theory suggests that punishment is an equalizing mechanism which allows people with 

less wealth to take resources away from those with more wealth to reduce inequality (21-24).  

 To investigate these theories, researchers from a range of fields including economics, 

psychology, and evolutionary biology, have turned to laboratory-based experiments such as the 

public goods game (PGG) or prisoner’s dilemma (PD) game to evaluate why and how people 

choose to cooperate or defect (choosing not to affect others). One aspect of these games that has 

proven fruitful in the investigation of cooperation has been researchers’ ability to directly measure 

the decision times associated with each type of choice. In these experimental games, decision times 

reflect a combination of the experimental parameters as well as the conditions of the individual 

participants (25). Under conditions in which participants are allowed to make decisions without 



 

  4 

external time pressure, slower decisions reflect the occurrence of decision conflict (26-28), in 

which participants’ individual preferences do not match the conditions in which decisions are 

made.  

 The importance of understanding the environmental conditions of cooperation or defection 

decisions make experiments using network-based approaches an obvious fit for this field of study. 

By arranging experimental participants in network structures, researchers can measure the speed 

of decisions while simultaneously evaluating the environment in which those decisions were made 

by recording both the decision speed of a focal participant and the decision speeds of participants 

connected to the focal participant in the experimental network.  For example, research has shown 

that the frequency and speed at which people choose to cooperate or defect is influenced by the 

social environment of the actor (29) as well as by cultural norms which change how likely people 

are to be cooperative with strangers (30). Adaptation of the network-based experimental 

frameworks that were used in these studies could add punishment to the existing cooperation and 

defection options to evaluate the relationships between these three behaviors, especially in the 

context of decision times and decision conflict. 

 

1.3 Network Interventions 

 Valente’s framework of network interventions (31) has been a vital asset to community 

leaders and public health professionals who develop interventions to promote behavior change. 

Network interventions rely on network features to succeed: for example, the most basic and most 

common type of network intervention approach (the individuals approach) asks intervention 

planners to identify important individuals within a network and use them as opinion leaders. 

Successful individual-approach interventions must therefore identify central individuals in their 



 

  5 

respective networks who are connected to not only other well-connected individuals but also less-

connected pockets who may benefit more from the intervention. Such interventions have been 

shown to be effective in promoting a variety of preventive health behaviors including drug use 

cessation (32), HIV prevention (33-35), and cancer screening (36, 37).  

An alternative to the individuals approach is the induction approach, which encourages 

network members to interact with each other to promote diffusion of the intervention behavior or 

product. Induction-approach interventions are like word-of-mouth marketing campaigns (38) in 

that they begin with a few people supporting the intervention change who spread the behavior or 

product to others in their network, which is followed by repetition of this process and eventual 

propagation of the intervention throughout the combined network of the participants. Like 

individual-approach interventions, induction-based network interventions have also been found to 

be effective in spreading a variety of preventive health behaviors (39). 

The role of network data in planning network interventions is clear. However, solutions to 

challenges to planning network interventions, such as requiring identification of peer leaders or 

calculating the needed network size or network architecture to ensure the success of a network 

intervention are still unclear. Effective use of network data from networks of different 

constructions, especially through simulation and evaluation of networks in the planning stages of 

interventions, should provide vital insights into the development of future network interventions.  

 

1.4 Networks of Scientific Citations 

Scientific citations are central to the scientific process: researchers give credit to other 

researchers who inspired their work or those who previously detailed the scientific principles that 

support the researchers’ current work (40). The scientific study of citations and citation behavior 
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(known as scientometrics) has provided insights into the psychology (41, 42) and motives (43, 44) 

behind citations and has been used to produce many of the citation metrics such as impact factor 

(45) and h-index (46) that label the profiles of academic researchers today. With the advent of the 

Internet and platforms such as Web of Science and PubMed, researchers have been able to 

construct expansive network studies that detail the citation history and patterns of citation for many 

scientific domains (47-49). In scientific citation networks, nodes represent individual authors, 

academic institutions, or scientific articles, with connections to other authors (networks where 

nodes represent authors or institutions are sometimes referred to as collaboration networks) or 

articles representing individual citations. Analysis of these citation networks have improved the 

scientific community’s understanding of biases in academic publishing, hiring, and promotion (50-

53) and can be a useful tool for scientists to “self-regulate” any unconscious biases in their own 

citation behavior. 

Recent developments in the field of language modeling and the publicization of large 

language model (LLM) platforms such as OpenAI’s ChatGPT have led researchers to strongly 

consider the use of these models in the research process. Of particular interest is the use of language 

models to serve as “research assistants” which can compare information described in one scientific 

article to information described in others and verify if references connecting multiple articles are 

accurate. However, the output generation process of models like ChatGPT has been shown to be 

biased (54-56); these biases are generally considered to arise from the characteristics of the data 

used to train the models (primarily English-language text from Western nations) (57).  

 With these issues in mind, an evaluation of ChatGPT using a citation network labeled with 

paper characteristics that ChatGPT could be biased against (such as the language or authorship or 

country of origin of individual papers) should be fruitful. By comparing ChatGPT’s performance 



 

  7 

on a research task using different elements from a complex network dataset, future studies could 

improve our understanding of ChatGPT’s biases and increase our awareness of potential downfalls 

of using the model and similar tools in the research process. 

 

1.5 Dissertation Goals and Rationale 

 This dissertation highlights three studies (which each correspond to one chapter of the 

dissertation) which aim to answer the following scientific questions from the three domains 

introduced previously: 

- How do punishment and cooperation decisions differ in dynamic online network games, 

especially in the context of decision times? (Chapter 2) 

- How do variations in network parameters affect the outcomes of a planned network 

intervention in agent-based simulations? (Chapter 3) 

- How does bias influence ChatGPT’s performance on a research task that evaluates data 

from a network of citations? (Chapter 4) 

 

Each study in this dissertation was based on a network dataset that was curated from a data 

source that was constructed to identify solutions to these questions and to address testable 

hypotheses that provide supporting evidence for the solutions. Chapter 2’s data is derived from 

two series of online experiments hosted on Amazon Mechanical Turk that were played by players 

from around the world. Meanwhile, Chapter 3 details network simulations of an intervention to 

improve the lung cancer screening rate in the United States and explains the effects of modifying 

the network size and network structure on the intervention’s outcomes. Finally, Chapter 4 utilizes 
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a citation network of scientific articles from public health and epidemiology to evaluate potential 

biases in ChatGPT’s ability to determine the validity of citation-reference pairs. 
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Chapter 2: Punishment is Slower than Cooperation or Defection in Online Network Games 

 

2.1 Abstract  

Punishment serves as a balancing force that dissuades people from acting selfishly, which 

complements cooperation as an essential characteristic for the prosperity of human societies. Past 

studies using economic games with two options (cooperation and defection) reported that 

cooperation decisions are generally faster than defection decisions and that time pressure possibly 

induces human players to be more intuitive and thus cooperative. However, it is unclear where 

punishment decisions sit on this time spectrum. Therefore, we recruited human players and 

implemented two series of online network games with cooperation, defection, and punishment 

options. First, we find that punishment decisions are slower than cooperation or defection decisions 

across both game series. Second, we find that imposing experimental time pressure on in-game 

decisions neither reduces nor increases the frequency of punishment decisions, suggesting that 

time pressure may not directly interact with the mechanisms that drive players to choose to punish.  

  

2.2 Introduction 

Punishment is widely observed in various forms: recent and ongoing examples include the 

gun violence epidemic in the United States (1, 2), the waging of war under the guise of security or 

using punishment as a just cause for war (3-6), institutional responses to crimes (7), and anti-

prevention behavior during the COVID-19 pandemic (8-10). Games are no exception to this rule; 

for example, in competitive, multiplayer games, players may choose to sacrifice some of their own 

chances of victory to substantially reduce the chances of victory for their opponents.  In all these 

scenarios, punishment involves paying a cost to harm others and serves as an important counterpart 
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to cooperation (paying a cost to benefit others), a characteristic that has been integral to the 

formation of human societies (11-16). However, in addition to the costs associated with choosing 

to punish, punishers incur societal and emotional penalties: institutions that punish in unjust or 

cruel ways are labeled tyrannical (17), while individuals who punish others make themselves a 

target for retaliation or reduced reputation (18, 19). This divide between punishment’s potentially 

important relationship with cooperation and the negatives associated with choosing to punish 

contributes to a lack of clarity about the mechanisms that drive punishment. Researchers have 

generally proposed that punishment serves to sustain cooperation through negative reinforcement: 

prominent theories suggest that punishment promotes the development of cooperation in social 

networks by reducing the payoff of defectors and converting them into cooperators (20-22) or that 

punishment acts as a balancing mechanism that allows people to reduce perceived inequality by 

allowing poorer individuals to spend a small amount to take a larger amount away from their richer 

neighbors (23-27).  

Decision times in experimental games have been used in several studies as a tool to 

understand cooperation (28-32). Employing an experimental approach in which study participants 

could only choose between cooperation decisions or defection decisions (not paying anything and 

not affecting others), one study found that choosing cooperation is faster than choosing defection 

when participants have many cooperative neighbors but slower when one’s neighbors are less 

cooperative (30). This finding may be the result of “decision conflict” (33): a mismatch between 

the current state of connected neighbors (the “social environment”) and the participant’s intended 

choice, eliciting a feeling of conflict, which slows down decision-making speed; this conflict may 

compound the general sense that defection may provoke more feelings of conflict than 

cooperation. Other studies (28, 29) found that participants’ intuition and social heuristics may 
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prefer cooperation over defection, and therefore, when time pressure (limiting the amount of time 

available for participants to make decisions) was imposed, participants might be more likely to 

mobilize intuition over deliberation, resulting in more frequent cooperation. However, these 

findings have not been clearly reproduced in follow-up studies (34-36).  

In this study, we examine the unexplored relationship between punishment and decision 

time using two experiments consisting of online network games to better understand how 

punishment decision-making differs from decision-making that leads to cooperation or defection. 

In Experiment 1, we compared the decision times of punishment to those of cooperation and 

defection Here, we hypothesized that decisions involving punishment would take longer than those 

involving cooperation or defection in general (regardless of decision mismatches) because 

choosing to punish requires players to decide to pay an immediate cost, give up any potential 

fitness gains from reciprocal cooperation in the short term, and prepare for potential retaliation 

from those who are punished. Then, in Experiment 2, we determined if experimental time pressure 

could alter the distribution of players’ decisions by reducing the occurrence of punishment and 

increase the occurrence of cooperation. By minimizing the amount of time available to make 

decisions, we would expect players to be inclined to make “intuitive” choices – that is, to opt to 

cooperate and not to punish.  

 

2.3 Methods Overview 

a) Experimental Design 

We implemented two series of repeated public goods game (PGG) by adapting an online, 

network-based framework (30, 37) previously used to study cooperation and decision time by 

introducing a punishment option. The games allow players to interact with a dynamic group of 
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other players over time and strategize ways to improve their status based on the decisions and 

statuses of others. Players were recruited from around the world using Amazon Mechanical Turk 

(mTurk) between March 2018 and December 2018 for Experiment 1 and between March 2023 and 

May 2023 for Experiment 2. The experiments were approved by and performed according to 

guidelines and regulations set by the UCLA Office of Research Administration (UCLA IRB#16-

001920). Informed consent was obtained online from all participants. At the end of all games, 

accumulated in-game wealth was converted at a rate of 2,000 points to 1 USD; players were also 

compensated USD 3 for participating in the games. Recruited players were assigned to dynamic 

networks and asked to interact in the PGG over 15 rounds. Each network was generated by 

arranging each game session’s players into a Erdős-Renyi random graph in which 30% of all 

possible ties were present at the start of the experiment.  

Players were first invited to play two practice rounds to introduce them to the game format 

and layout of elements within the experimental platform (Fig. 2.1). Once these two practice rounds 

were completed, all players in the game were randomly allocated a high or low quantity of in-

game points and asked to interact with each other. Game sessions that did not recruit enough 

players from mTurk did not progress to the practice round stage and were closed to further entry; 

players who previously completed a game (session) were prohibited from participating in future 

sessions. 

At the start of each game round, players entered the decision phase, where they were given 

one of three options: cooperation (the player pays 50 points per connected player to have all 

connected players gain 100 points), defection (the player pays nothing, not affecting other players), 

and punishment (the player pays 50 points per connected player to have all connected players lose 

100 points). No institutional/central punishment (38) or sanctioning (39) occurred. Each option 



 

  18 

was indiscriminate: players could not choose to interact with some connected players and not 

interact with others and the option that was selected resulted in the appropriate change to all 

connected players. Once players made their decisions, they were shown the decisions made by 

other connected players in the decision phase and an updated tally of in-game points for the focal 

player and any connected players was shown. In Experiment 1, sessions were randomly assigned 

to have neighboring players’ wealth be visible or invisible (with the update at the end of the 

decision phase mirroring this randomization); however, statistical analysis (not shown) implied 

that there was no effect of wealth visibility on the frequency of punishment or decision times, 

allowing us to keep wealth visible in all sessions of Experiment 2. The effect of wealth visibility 

on other outcomes such as subjective well-being has been reported elsewhere (without examining 

or including decision time in analyses) (40).   

Players were then allowed to update their network connections by answering a series of 

questions in the rewiring phase. In this phase, 30% of all possible ties in the network were 

randomly selected by breadboard. For each extant tie, one player from the tie pairing was chosen 

at random and asked if they wanted to break the tie. If the player chose to break the tie, the 

connection was broken for the next round; if the player chose not to break the tie, the tie was 

retained. For each non-extant tie, both players in the potential tie were asked if they wanted to 

make a new connection; if and only if both players agreed, the tie was constructed and carried over 

to the next game round. The networks were then reconstructed based on the results of the rewiring 

phase and the subsequent round began until all 15 rounds of the game were completed.  

 

b) Decision Time  
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For this study, we defined decision time (a.k.a. response time) of the cooperation-defection-

punishment decision-making as the time interval between two timestamps which were recorded 

by breadboard: the first timestamp recorded the appearance of the screen which allowed players 

to choose between cooperation, defection, or punishment (shown in Fig. 2.1), while the second 

timestamp recorded when players clicked one of the buttons representing cooperation, defection, 

or punishment. 

 

c) Punishment Mechanisms 

To guide our analysis of the different rationales for punishment decisions in our games, we 

classified punishment decisions into four categories based on prevailing theorized punishment 

mechanisms in the literature (20, 25-27, 41). These mechanisms are not mutually exclusive and 

can overlap.  

First, we classified punishment for copying or retaliation as punishment that occurred when 

at least one connected player in the prior round chose to punish. Punishment of this type may be 

beneficial because copying others’ behavior and learning from copying is known to be 

advantageous regardless of the reason for the copied behavior (42, 43). Retaliation occurs when 

the punisher chooses to punish punishers from the last encounter to dissuade them from punishing 

in the future (41, 44-46). Revenge is a related concept which pairs retaliation with an emotional 

argument that punishers should be punished in return. Unfortunately, our experimental setting 

cannot precisely distinguish between these related mechanisms and therefore we combine 

punishment decisions that could be classified as supported by either mechanism into one single 

category.   
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Second, we defined punishment for negative reinforcement as punishment that occurred 

when the cooperation rate among connected players in the prior round was less than 50%. In our 

experimental setting, players paid 50 units for each connecting player when choosing to cooperate. 

As a result, the cost-benefit ratio of choosing cooperation was 0.5 (as the cost of cooperation is 

greater than the expected benefits since connected players could choose either to defect or punish); 

this means that cooperation would decay very quickly if the cooperation rate fell below 50%. 

Therefore, punishing connected neighbors may contribute to long-term reciprocal cooperation in 

social networks when the networks are not very cooperative (20, 21, 47, 48). 

Third, we defined punishment for inequality aversion as punishment that occurred when a 

focal player’s wealth was less than the average wealth of connected players in the prior round. 

Since the cost to punish is on average lower than the expected loss from being punished, the degree 

of economic inequality (the difference of in-game points) is reduced when poorer players punish 

connected richer players. Therefore, players could be motivated to punish by inequality aversion 

(25-27, 49).  

Fourth and finally, punishment decisions that did not meet any of the above three 

definitions were classified as unclassified or de novo punishment, possibly reflecting a base 

inclination to choose punishment. It is possible that some players wanted to “try out” the 

punishment option even if they were not poor and connected to mainly cooperative neighbors. 

 

d) Statistical Analysis 

The structure of the game sessions and the arrangement of players into networks meant that 

multiple observations were made for a single player across multiple rounds in each session. We 

account for this hierarchical data structure using multilevel random intercepts models, utilizing R 
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version 4.3.1 (50) and the lme4 statistical package. Detailed results from these multilevel models 

are listed in the Supplementary Materials. 

While prior work (28, 30, 51) utilized a log10-transformation when analyzing decision 

times because decision times are generally only left-bounded by zero, time data from games 

involving time pressure would also be right-bounded by the time limit. As a result, we chose to 

omit the transformation to keep model estimates from limited and non-limited data on the same 

scale. 

 

2.4 Experiment 1 

a) Results 

In Experiment 1, 719 unique players (mean: 14.9/game, range: 9-25/game) made 9,776 

decisions of cooperation, defection, or punishment. Cooperation was chosen 4,878 times (49.4%, 

95% confidence interval for proportion [CI]: 48.4-50.5%), defection was chosen 4,336 times 

(43.9%, 95% CI: 42.9-45.0%), and punishment was chosen 562 times (6.6%, 95% CI: 5.6-7.7%) 

(Fig. 2.2A). The mean degree (the number of connections a player had at any moment) in 

Experiment 1 was 5.9 (range: 0-17). At the end of 15 rounds, the mean accumulated wealth across 

all players was 1,584 in-game points (equivalent to USD 0.79). Therefore, combined with the USD 

3 participation award, players in Experiment 1 obtained USD 3.79 on average.  

We found that that punishment decisions (mean = 7.0 seconds, 95% CI: 6.2-7.8 seconds) 

are slower than cooperation decisions (mean = 5.3 seconds, 95% CI: 5.0-5.5 seconds, p of 

punishment vs. cooperation from random intercepts model: 0.004) and defection decisions (mean 

= 5.8 seconds, 95% CI: 5.6-6.1 seconds, p of punishment vs. defection: 0.032) (Fig. 2.2B; 

Supplementary Table S2.1).   
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  Punishment due to copying or retaliation encompassed 1.4% (149 instances) of all 

decisions in Experiment 1 (Fig. 2.2C) and the mean decision time of such decisions was 5.5 

seconds (95% CI: 4.4-6.7 seconds) (Fig. 2.2D), which tended to be the fastest among the four 

punishment categories (p vs. negative reinforcement = 0.66, p vs. inequality aversion = 0.16, p vs. 

unknown punishment = 0.02, p vs. all three other categories = 0.01). Punishment due to negative 

reinforcement comprised 2.9% (307 instances) of all decisions (Fig. 2.2C) with a mean decision 

time of 6.3 seconds (95% CI: 5.3-7.3 seconds) (Fig. 2.2D), while punishment due to inequality 

aversion included 2.7% (286 instances) of all decisions (Fig. 2.2C) with a mean decision time of 

7.0 seconds (95% CI: 5.9-8.2 seconds) (Fig. 2.2D). Unclassified punishment encompassed 1.4% 

(154 instances) of all decisions (Fig. 2.2C) with a mean decision time of 8.1 seconds (95% CI: 

6.3-9.9 seconds) (Fig. 2.2D); these decisions tended to be longer than punishment for inequality 

aversion (p = 0.73) and longer than punishment decision times for the combination of the three 

abovementioned mechanisms (p = 0.04). Furthermore, having a punisher among one’s network 

neighbors in the previous round (that is, having been punished in the previous round) was 

associated with a 2.4 second decrease in punishment decision time (p = 0.009, Supplementary 

Table S2.5).   

 

b) Discussion 

Experiment 1 allowed us to determine how decision times associated with different 

mechanisms of punishment relate to one another to better understand why punishment was on 

average slower than either cooperation or defection. The relative quickness of punishment for 

copying or retaliation compared to the other punishment mechanisms may reflect players needing 

less time to justify choosing to punish if connected players have punished previously, especially 
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since punishment was relatively infrequent compared to cooperation and defection and therefore 

players were not frequently connected to others who had punished before. Punishment for negative 

reinforcement was slower compared to punishment for copying or retaliation; this difference may 

be a product of players needing additional time to choose to punish to stop a perceived decay in 

cooperation in their social network. Increased decision time associated with inequality aversion is 

also understandable since punishing richer neighbors is a valid in-game strategy which takes a 

more self-interested viewpoint; players choosing this strategy may need more time to contemplate 

about their economic position in relation to other players in the session as opposed to the overall 

wealth of the group (which would apply more to the two previously mentioned mechanisms for 

punishment). We speculate that unclassified punishment having the longest average decision time 

may reflect the degree of feelings of decision conflict and may be triggered by feelings of remorse 

for taking points away from other players. 

 In summary, the small differences in decision time over the four punishment categories did 

not give us conclusive evidence about the specific mechanisms that slow down the punishment 

decision-making process. However, we identified the tendency for the decision times of 

punishment decisions to increase as the complexity or lack of clarity related to the driving 

mechanisms increased. For example, in copying or retaliation punishment, some proportion of 

connecting players are no longer cooperative and thus may deserve to be punished. Because our 

experimental setting requires players to make a decision that will affect all connected players, 

choosing to punish to copy or as retaliation will require players to punish both punishers and 

cooperators; such a situation could elicit feelings of conflict.  
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2.5 Experiment 2 

Since Experiment 1 showed that punishment decisions are slower than cooperation or 

defection decisions, we hypothesized that setting a time limit on decision-making could reduce the 

number of punishment decisions (Hypothesis 1). However, we also considered an alternative 

hypothesis: since most of the punishment decisions that occurred in Experiment 1 were linked to 

postulated mechanisms, the number of punishment decisions would be unchanged unless the 

context that led to the punishment decision was addressed (Hypothesis 2).  

To reconcile these two hypotheses, we developed Experiment 2, a second experimental 

series of 50 games which were randomly divided into 25 games with a time pressure setting (the 

TP+ setting) (Fig. 2.1B), in which player decisions had to be made in 3 seconds or less, and 25 

other games with no time pressure (the TP- setting) (Fig. 2.1A). In the TP+ setting, if players did 

not confirm their choice within the time limit, the system automatically repeated their decision 

from the previous round; if players missed two decision-making opportunities due to inactivity, 

they were dropped from the remainder of the session (Supplementary Fig. S2.1). We chose to 

implement time pressure in Experiment 2 as a three-second limit on decision-making; we based 

our selection of three seconds on the distribution of decision times in Experiment 1 

(Supplementary Fig. S2.2). 

 

a) Results 

In Experiment 2 (across both TP+ and TP- settings), 739 players (mean: 14.8/game, range: 

8-20/game) made 10,654 decisions. Cooperation was chosen 4,185 times (39.3%, 95% CI: 38.3-

40.3%), defection was chosen 5,790 times (54.4%, 95% CI: 53.4-55.4%), and punishment was 

chosen 679 times (6.4%, 95% CI: 5.4-7.4%). The mean degree across sessions in Experiment 2 
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was 5.7 (range: 0-16). At the end of 15 rounds, the mean accumulated wealth was 935 in-game 

units (equivalent to USD 0.47); with the USD 3 participation award, the average reward for 

participants in Experiment 2 was USD 3.47.  

In the TP+ setting, punishment was chosen 338 times out of 5,407 decisions (6.3%, 95% 

CI: 4.8-7.7%), while in the TP- setting, punishment was chosen 341 out of 5,247 decisions (6.5%, 

95% CI: 5.1-7.9%). While there was no substantial difference in the frequency of punishment 

comparing the TP+ and TP- setting (p = 0.475) (Fig. 2.3A), all decision-making was faster in the 

TP+ games as expected (Fig. 2.3C), suggesting that Experiment 2 was successfully implemented. 

We then evaluated if time pressure reduced the frequencies of any of the three justifiable 

mechanisms of punishment that we highlighted in Experiment 1. Results show that the frequency 

of the punishment decisions due to copying or retaliation did not change between the TP- and TP+ 

settings (1.5% and 1.7% respectively, p = 0.893), the frequency of punishment for negative 

reinforcement did not change (3.5% and 3.5%, p = 0.634), the frequency of punishment for 

inequality aversion did not change (3.7% and 3.6%, p = 0.440), and the frequency of unclassified 

punishment did not change (1.3% and 1.1%, p = 0.645) (Fig. 2.4).  

 

b) Discussion 

Although we successfully predicted that punishment would be slower than cooperation or 

defection, we did not observe the hypothesized reduction in punishment associated with time 

pressure, as game sessions from the TP+ and TP- settings in Experiment 2 had a similar frequency 

of punishment decisions (6.3% vs. 6.5%, respectively). Furthermore, we found no substantial 

difference in frequency for any of the mechanisms for punishment when comparing game sessions 

with and without time pressure. We were particularly interested in observing a potential decrease 
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in the frequency of punishment for negative reinforcement; previous studies have linked 

deliberation to the degradation of cooperation with others (52-54), suggesting that limiting 

deliberation could potentially dissuade players from choosing the punishment option in favor of 

cooperation. However, we did not observe this decrease, a result which falls in line with other 

studies (36, 55, 56) that limit their endorsement of the link between intuition and cooperation (and 

in our view, the link between deliberation and non-cooperation, which includes punishment). 

 In summary, time pressure did not substantially reduce the frequency of punishment 

decisions in general, potentially because prohibiting slow decisions does not address the specific 

mechanisms that drive punishment decisions.  Since our investigation of external time pressure 

only addresses Hypothesis 1, further research to address Hypothesis 2 should be conducted by 

addressing each of the individual mechanisms for punishment in an experimental manner and 

evaluating how the distribution of decision-making changes. 

2.6 General Discussion 

Using two series of online, network-based public goods games, we found that on average, 

players spend more time when choosing to punish compared to choosing to cooperate or defect. 

Follow-up experimentation based on this result evaluated if experimental time pressure could 

reduce the occurrence of punishment in favor of cooperation; no such reduction occurred.  

Our experimental efforts to determine if time pressure could reduce the occurrence of 

punishment were partially inspired by recent violent and damaging trends in the United States and 

around the world that reflect a widespread inclination to punish. We aimed to identify a practical 

method to suppress punishment or behavior that harms others in a social context; however, we 

were unable to do so. Reducing the occurrence of punishment is a difficult task which requires 

addressing the source of the initial motivation to punish.  
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Our study has several limitations that could limit the translation of our results to other 

settings in social and behavioral sciences. First, we did not measure several cultural, emotional, or 

psychological characteristics that could influence the relationship between punishment decision-

making and decision speed in our experiments. Recent efforts analyzing the relationship between 

decision times and cooperation have explored how factors such as belief about other individuals’ 

intentions (57), personal time preferences (58), and age (59) influence cooperation decision-

making. Furthermore, recent work has found that the reputation of punishers decreases when they 

punish quickly, but when the punishment was slow, the punishers’ reputation instead increased 

(60). Future studies should aim to evaluate these each of these characteristics in detail as they relate 

to punishment and decision times. 

Second, we kept the payoff structure consistent across experimental settings with and 

without time pressure to evaluate the independent effect of time pressure. Our experimental payoff 

structure did not penalize punishers any more than cooperators were incentivized; however, this 

may not reflect realistic interactions in human society because choosing punishment is generally 

perceived as negative and may incur greater than expected costs for the punisher. It is possible that 

modifying the payoff structure to be more extreme (i.e., paying a greater cost to inflict the same 

level of harm shown in Experiments 1 and 2) could return greater differences in experimental 

participants’ decision-making profile. 
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2.7 Figures and Tables 

 

Figure 2.1. Example player’s screenshot without (A) and with (B) time pressure. The focal player is 
represented by the larger, central circle highlighted in orange, while the smaller surrounding circles 
represent connected players in the same game session (the colors of the circles indicate the choice of each 
player in the round prior). In the setting with time pressure (B), a horizontal bar appeared on the player’s 
screen showing the remaining time the player had to make their decision (this setting only appeared in 
Experiment 2). In the setting without time pressure (A), no time pressure was implemented, and no bar 
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appeared; panel A is representative of all sessions in Experiment 1. Values in the circles represent players’ 
in-game points. 

 

Figure 2.2. Punishment is rare and slower than cooperation or defection in Experiment 1. A: 
Cooperation and defection are more common. Punishment is relatively uncommon (6.6%). B: On 
average, punishment decisions took longer to make compared to defection or cooperation. C: The 
proportion of decisions reflecting each of the mechanisms of punishment. The total proportion 
represented in panel C exceeds the actual proportion of punishment decisions in the experiment because 
the mechanism categories can overlap. D: Mean decision times for each punishment mechanism. The 
mechanisms display a tendency to slow down as the complexity of the punishment decision increases. 
Bars indicate 95% confidence intervals of proportions or decision time.    
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Figure 2.3. Punishment is slower than cooperation or defection, even under time pressure. A: There was 
no substantial difference in the frequencies of each decision type comparing sessions with time pressure 
(TP-; left, bars without crosses) and sessions with time pressure (TP+; right, bars with white crosses). B: 
Punishment was slower than cooperation and defection in both the TP- and TP+ settings. The red line 
indicates the three-second time pressure boundary. Error bars represent 95% confidence intervals of 
proportions or means. 
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Figure 2.4. Time pressure does not change the frequency of mechanism-specific punishment. In 
Experiment 2, we observed no substantial difference in the proportion of punishment that reflects each of 
the competing hypotheses for punishment mechanisms with the implementation of time pressure. Because 
the punishment motivation categories overlap, the total proportion of the bars exceeds the true proportion 
of punishment in the experiment. P-values are from random intercepts mixed effects models testing 
differences between the TP- (left, bars without crosses) and TP+ (right, bars with white crosses) settings. 
Bars represent 95% confidence intervals of proportions. 
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2.8 Supplementary Information 

 
Supplementary Figure S2.1. Example message shown to dropped players in the time pressure condition. 
Players in the TP+ condition who did not click on a button within the allotted time were first given a warning 
(and their choice from the previous round was repeated). If players did not click in two different rounds, they 
were dropped from future rounds of the experiment and were shown the message “You were dropped for being 
idle.” 
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Supplementary Figure S2.2. Distributions of decision times for cooperation, defection, and 
punishment in Experiment 1. The median decision times for cooperation and defection in Experiment 
1 are close to three seconds (the red dashed line) while the median decision time for punishment is 
noticeably to the right of the red line.  
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 Exp. 1  Exp. 2, TP- Exp. 2, TP+ 
N 9,776 5,247 4,066 
Fixed Effects    
Defection vs. cooperation 0.30411 (0.23036) [p 

= 0.18684] 
-0.273991 (0.106943) [p 
= 0.01048] 

-0.051397 (0.01966) 
[p = 0.0089] 

Punishment vs. 
cooperation 

1.21569 (0.42149) [p 
= 0.00393] 

0.47002 (0.147547) [p = 
0.00145] 

0.115546 (0.02799) [p 
= 0.000037] 

Round -0.16708 (0.01916) [p 
< 0.0001] 

-0.020730 (0.006745) [p 
= 0.00213] 

-0.006124 (0.00109) 
[p < 0.0001] 

Intercept 6.79184 (0.30462) [p 
< 0.0001] 

3.329949 (0.122798) [p 
< 0.0001] 

2.090189 (0.023485) 
[p < 0.0001] 

Random Effects    
Player-level variance 11.789 (3.434) 1.58559 (1.2592) 0.07370 (0.27147) 
Game-level variance 1.824 (1.350) 0.08172 (0.2859) 0.00315 (0.05613) 
Residual variance 64.809 (8.050) 4.38568 (2.0942) 0.08420 (0.29018) 

Supplementary Table S2.1. Multilevel random intercepts models for decision times for all 3 experimental 
settings.  The reference category for decision type was cooperation. Standard errors for fixed effects and 
standard deviations for random effects are shown in parentheses. P-values are shown in square brackets. 
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 Punishment Cooperation Defection 
N 10,654 10,654 10,654 
Fixed Effects    
Time Pressure 0.77967 (0.39389, 

1.54330) [p = 
0.475] 

1.30413 (0.39811, 
4.27207) [p = 0.661] 

0.80540 (0.20294, 
3.19637) [p = 0.758] 

Round 0.97390 (0.95276, 
0.99551) [p = 
0.182] 

0.9530 (0.93636, 
0.96993) [p < 0.00001] 

1.05696 (1.03725, 
1.07704) [p < 0.00001] 

Intercept 0.02495 (0.01506, 
0.04132) [p < 
0.00001] 

0.44260 (0.18905, 
1.03621) [p = 0.0604] 

1.03491 (0.38632, 
2.77243) [p = 0.94558] 

Random Effects    
Player-level variance 6.908 (2.6283) 27.00 (5.196) 35.06 (5.921) 
Game-level variance 0.641 (0.8006) 2.42 (1.556) 3.392 (1.842) 

Supplementary Table S2.2: Multilevel logistic random intercepts model for the effect of time pressure on 
the odds of punishment, cooperation, and defection in Experiment 2 (results for Fig. 2.3A). Estimates 
shown are exponentiated and represent odds ratios. 95% confidence intervals for fixed effects odds ratios and 
standard deviations of random effects are shown in parentheses. P-values are shown in square brackets. 
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 Copying/ 

retaliation 
Negative 
reinforcement 

Inequality 
aversion 

Unclassified 

N 10,654 10,654 10,654 10,654 
Fixed Effects     
Time Pressure 0.93220 (0.34538, 

2.51606) [p = 
0.889]  

0.83141 (0.39301, 
1.75886) [p = 0.629] 

0.76709 
(0.39435, 
1.49212) [p = 
0.435] 

0.85826 (0.44474, 
1.6524) [p = 
0.649] 

Round 1.02502 (0.98436, 
1.0580) [p = 0.269] 

1.03644 (1.00987, 
1.063471) [p = 
0.0069] 

1.02228 
(0.99594, 
1.04932) [p = 
0.098] 

0.83194 (0.79264, 
0.87319) [p < 
0.00001] 

Intercept 0.00575 (0.00269, 
0.01228) [p < 
0.00001] 

0.01049 (0.00594, 
0.01853) [p < 
0.00001] 

0.01042 
(0.00626, 
0.01733) [p < 
0.00001] 

0.02098 (0.01249, 
0.03523) [p < 
0.00001] 

Random Effects     
Player-level 
variance 

2.722 (1.650) 4.903 (2.214) 6.9448 
(2.6374) 

3.919 (1.9798) 

Game-level 
variance 

2.117 (1.455) 1.007 (1.004) 0.4017 
(0.6338) 

0.358 (0.5984) 

Supplementary Table S2.3: Multilevel logistic random intercepts model for the effect of time pressure on 
the odds of individual punishment mechanisms in Experiment 2 (results for Fig. 2.4). Estimates shown 
are exponentiated and represent odds ratios. 95% confidence intervals for fixed effects odds ratios and 
standard deviations of random effects are shown in parentheses. P-values are shown in square brackets. 
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 Exp. 1 
N 9,776 
Fixed Effects  
Negative reinforcement 0.5307 (1.1866) [p = 0.655] 
Inequality aversion 1.5698 (1.1200) [p = 0.162] 
Unclassified 3.7815 (1.6083) [p = 0.019] 
Round -0.1209 (0.1023) [p = 0.2377] 
Intercept 6.2481 (1.5349) [p < 0.0001] 
Random Effects  
Player-level variance 23.47 (4.845) 
Game-level variance 11.29 (3.360) 
Residual variance 64.44 (8.028) 

Supplementary Table S2.4. Multilevel random intercepts models for decision times to compare 
individual punishment mechanisms.  The reference category for decision type was punishment for 
copying/retaliation. Standard errors for fixed effects and standard deviations for random effects are shown in 
parentheses. P-values are shown in square brackets. 
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 Exp. 1  
N 508 
Fixed Effects  
Last punished -2.4355 (0.9306) [p = 0.0091] 
Round -0.1489 (0.1003) [p = 0.1384] 
Intercept 9.1691 (1.1074) [p < 0.00001] 
Random Effects  
Player-level variance 23.89 (4.887) 
Game-level variance 10.43 (3.229) 
Residual variance 64.10 (8.006) 

Supplementary Table S2.5: Multilevel random intercepts models for the effect of having been punished 
in the prior round on punishment decision times in Experiment 1. Standard errors for fixed effects and 
standard deviations for random effects are shown in parentheses. P-values are shown in square brackets. 
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Chapter 3: The Role of Network Size in Intervention Planning for Increasing the Lung 

Cancer Screening Rate: An Agent-based Modeling Study 

 
3.1 Abstract  

Low-dose computed tomography (LDCT) has been the recommended screening test for 

lung cancer by both the Centers for Disease Control and Prevention and the United States 

Preventive Services Task Force since 2013. However, as of 2021, only 5.8% of eligible 

individuals in the United States have received LDCT screening. To find methods to address this 

low adoption rate, we developed an agent-based simulation framework to model a network 

intervention program that promotes observational learning between peers which would increase 

the LDCT screening rate in a community of individuals susceptible to lung cancer. Using this 

framework, we evaluated if seeding the network with agents who adopt LDCT screening 

behavior before intervention initiation or increasing the number of agents in the intervention 

population could increase the screening rate beyond the rate achieved by the intervention alone. 

Results show that while seeding the network with adopter agents does not increase the screening 

rate, increasing the number of agents in the network does increase the screening rate until the 

network size becomes sufficiently large. In conclusion, network intervention planners should 

consider expanding the size of their intervention programs to secure a strong enough induction 

force to generate a diffusion cascade of the intervention behavior. 

 

3.2 Introduction 

 Annual lung cancer screening using low-dose computed tomography (LDCT) has been 

recommended since 2013 for individuals aged 55 to 74 with 30 or more pack-years of smoking 
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history who currently smoked or had quit smoking in the last 15 years, with a recent shift to a 

recommendation for individuals aged 50 to 80 with a 20 pack-year smoking history (1, 2). While 

there is a substantial range of clinical evidence (3-7) for the effectiveness of LDCT in increasing 

the detection of lung cancers and reducing mortality, adoption of LDCT screening among 

eligible individuals in the United States remains low. As of 2021, only 5.8% of an estimated 14.2 

million eligible patients have received LDCT under CDC and US Preventive Task Force 

recommendations (1, 8). Furthermore, LDCT screening rates vary widely across geographic 

regions, ranging from less than 1% in California to over 16% in Massachusetts (9, 10).  

 There is a sharp contrast between the rapid diffusion of other preventive behaviors such 

as physical distancing (11, 12) and mask-wearing (13) during the COVID-19 pandemic and the 

slow diffusion of LDCT screening.  Two factors that complement the urgency associated with the 

rapid onset of COVID-19 can explain why diffusion of LDCT screening is slow compared to the 

spread of physical distancing and mask-wearing. First, since the proportion of individuals in the 

US eligible for LDCT is low (4.2% (9)) and the current screening rate is low (5.8% (9)), it is 

unlikely that eligible individuals would interact with each other without intervention. 

Conversely, both physical distancing and mask-wearing were widely prevalent during the 

COVID-19 pandemic since almost all individuals were susceptible to COVID-19 infection. 

Second, LDCT screening behavior is not public; people do not know if friends or family 

members in their social network are interested in LDCT screening or receive the screening unless 

the topic is discussed. In contrast, both physical distancing and mask-wearing are public 

behaviors whose adoption did not need to be explicitly shared with friends or family to be 

known.  



 

  46 

  We therefore developed a simulation framework using a social network of eligible 

individuals in which an intervention displayed LDCT screening behavior publicly and shared the 

behavior with other eligible individuals. This network intervention design falls into the induction 

approach from Valente’s network interventions framework (14). The induction approach aims to 

motivate individuals to implicitly or explicitly interact with others in their social network to 

promote the diffusion of new or beneficial behaviors, information, or products (15, 16). These 

interventions have been proven to be effective in various domains, including the improvement of 

social and emotional well-being (17), academic citation behavior (18), and job-seeking (19-21). 

As people tend to use observational learning (22) – observing, analyzing, and adopting the 

behaviors of their network connections to modify their own behavior, it should follow that 

network interventions that motivate individuals to take advantage of observational learning (for 

example, asking people to share their voting behavior with their friends and acquaintances (23) 

should accelerate the spread of the intervention behavior. This is supported by a recent 

systematic review (24) which identified 19 intervention programs using the induction approach 

to generate influence or elicit behavioral change in targeted social networks, with varying pre-

intervention rates of the target behavior (median: 38.5%, range: 1–83%) and varying sizes of 

communities of interest (median: 854, range: 89–9,042).  

Induction-based interventions have demonstrated their ability to promote various 

behaviors in different socioeconomic and cultural contexts (25-28). However, planning these 

interventions is difficult when the pre-intervention rate of the target behavior is low. In such a 

scenario, the number of individuals in the social network who adopt the intervention behavior is 

insufficient to promote a diffusion cascade of the intervention behavior. When this is the case 

(e.g., in the case of LDCT where the pre-intervention rate of the behavior is approximately 
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5.8%), observational learning is unlikely to occur because sources from which LDCT screening 

behavior can be observed are uncommon. We therefore assessed two potential solutions to 

resolve this issue in the network intervention planning stage: 1) proactively asking a percentage 

of study participants to adopt the target behavior as seed individuals (forced early adopters) to 

boost its diffusion, and 2) expanding the size of the social network in which intervention 

participants share information about their behavioral choices.  

In the present study, we focused on increasing the LDCT screening rate in the US. Using 

agent-based simulations embedding network interventions via the induction approach, we aimed 

to examine the consequences of seeding the network with agents who adopt the LDCT screening 

behavior before the intervention initiation and expanding the total number of study participants. 

We initially hypothesized that the post-intervention screening rate would be lower at lower levels 

of initial seeding of the target behavior and in networks representing smaller study participant 

sizes. 

 

3.3 Methods 

To develop our agent-based simulation framework, we first identified and calibrated a set 

of simulation parameters (the control setting) that would generate results which approximated 

the currently low rate of LDCT screening in the United States of 5.8%. We used 1,000 iterations 

of the simulation under the control setting to model a network of 200 agents over 40 quarters (or 

10 years) in which agents behaved without being influenced by other agents. This setting 

confirmed that in the absence of any network intervention, the screening rate in our simulated 

networks remained constant at or near the current LDCT screening rate. Next, we developed 

three different simulation settings that included the induction-based intervention and observed 
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how the LDCT screening rate changed in comparison to the control setting. In the observational 

learning setting, agents were allowed to share information with each other through their strong 

and weak network ties to influence each other agents’ behavior. In the adding seeds setting, we 

selected a percentage of agents to adopt the intervention behavior before introducing the 

intervention to the network. Lastly, in the modifying network size setting, we changed the size of 

the network to be smaller or larger than the default value of 200 agents and deployed the 

intervention (without adding seeds). We analyzed the outcomes of each simulation setting by 

calculating the median screening rate for each year of observation and the corresponding 95% 

quartile ranges. We also evaluated if each setting led to diffusion of LDCT screening behavior by 

comparing the screening rate in year 1 of the simulations and the screening rate in year 10 of the 

simulations. 

 

1. Setup of the agent-based simulations (Control setting) 

Agents. We constructed an agent-based simulation framework that models a human social 

network in which the target behavior rate approximates the current rate of LDCT screening in the 

United States. Agents in the simulation represent individuals eligible for annual LDCT screening 

who are recruited into an intervention that aims to increase the LDCT screening rate in the 

agents’ community. For reference, the US Preventive Services Task Force recommends “annual 

screening for lung cancer with low dose computed tomography (LDCT) in adults aged 50 to 80 

years who have at least a 20 pack-year smoking history” (1). We assumed that all agents had the 

same sociodemographic characteristics and that individual agents were permitted to interact with 

any other agent in the network.  
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We conceptualized the simulation as a scenario in which we work with a community 

intervention planner who manages the health of a community with a population size 

approximating the size of an average US-based elementary school zone. Based on the current 

population of the US (335 million as of January 2024 (29) and the number of public elementary 

schools (approximately 70,000 as of 2021) (30), one school zone is estimated to have 4,750 

individuals. Since the number of LDCT-eligible individuals in the US is estimated to be 14.2 

million (9) (4.2% of the US population), an elementary school zone, on average, is estimated to 

include approximately 4,750 x 0.042 = 200 eligible individuals. We therefore used 200 

individuals as the default value for parameter 1 [P1] of the simulations. 

 

Environment (network structure). We placed the 200 agents into a single social network (i.e., 

the number of networks = 1 [P2]), meaning that none of the agents were isolated and each agent 

was on at least one path with another agent in the network. Agents were weakly linked to all 

other agents (weak ties) such that each agent had a degree (the number of network ties per agent) 

of 199. In this manner, we assumed that each agent had some level of knowledge of the behavior 

of all other agents, for example, through word-of-mouth, engagement in the community, or via 

social media/the internet, and thus was only weakly influenced by any specific agents’ behavior.  

We also modeled influence on agents from close friends and family members (strong ties) 

using the Watts-Strogatz small-world model (31), using an initial neighborhood size (the number 

of neighbors in the base lattice structure) of 4 [P3] and a rewiring probability of 0.2 [P4]. In this 

arrangement, each agent had 4 neighbors in a base circle lattice structure, which is then rewired, 

resulting in variations in the number of neighbors and reducing the average network distance 

between any two agents in the network. In real-world terms, this value suggests that each agent 
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in our network of eligible individuals had 4 close friends or family members who were also 

eligible to be screened. While this may suggest strong homophily between eligible participants, 

past research has shown that individuals considering cancer screening or individuals at higher 

risk for cancer strongly consider information from homophilic network ties when making health 

decisions (32, 33). Agents connected by strong ties were not simultaneously connected with a 

weak tie to avoid overlaps. In summary, each agent had a different number of weak and strong 

ties that exerted peer influence within networks of 200 agents. One network was prepared for 

each iteration of the simulations. 

 

Behavior. Each simulation progressed over a period of 10 years, divided into 4 quarters each (a 

total of 40 quarters [Quarter 1 to 40]), with each quarter making up a single time step in the 

simulation). We run the simulation for 12 additional quarters (3 years) prior to observation to 

allow the simulation’s behavior to stabilize. In the control setting, agents’ behavior in each time 

step was programmed to only be influenced by the agents’ own decision-making. The control 

setting represents the current situation of lung cancer screening where scheduling appointments 

for screening and actively going to a doctor’s office or clinic for screening is driven solely by 

personal intentions (without observational learning or peer influence). 

Agents were programmed to schedule LDCT screening every quarter if they had not 

previously been screened. Agents who received the screening were prevented from scheduling 

new appointments for 3 quarters after their last screening. To inform the initial set of parameters 

for the simulation, we assumed a baseline quarterly rate of appointment (the rate at which 

individuals, with no influence from network ties or from intervention, choose to voluntarily 

schedule an LDCT appointment) of 2.0% [P5], a conversion rate from scheduling a screening 
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appointment to going to the scheduled appointment of 75% [P6], and that when an appointment 

is missed, no follow-up scheduling of the appointment occurs for any following quarters. Given 

these parameters, we hypothesized that the median rate of LDCT screening in our simulated 

population would stabilize at approximately the rate of lung cancer screening in the US of 5.8% 

(as [1 - (1 - (0.02 × 0.75))4] ≈ 0.058).  

Our model also considered changes in behavior associated with waning interest in 

screening; agents who have been screened in the last four quarters (i.e., screened in the last year) 

have their chance to make an appointment set to 55% [P7]. We used this value to estimate the 

effect of adherence to screening guidelines once agents get screening in the year prior; we based 

this value on the estimated rate of LDCT adherence as reported by Lopez-Olivo and colleagues 

(34). Agents who did not have a screening in the last year have their chance of scheduling an 

LDCT appointment reduced accordingly [P8] (see Supplementary Information for details on 

the value of P8, which is not manually manipulated but is calculated as a function of P7). Based 

on these conditions and our assumptions based on the reported rate of LDCT in the US, we 

aimed to model no progress in the diffusion of LDCT screening over 10 years of the simulation 

under the control setting and a constant LDCT screening rate of around 5.8%.  

 

Calibration. Using the parameters described above (P1 – P8), we calibrated our baseline 

simulation setting to approximate the LDCT screening rate of 5.8% by identifying sets of 

parameters that resulted in simulations that achieved median screening rates over 90% of the 40 

quarters of the simulation of 5.8 ± 0.5% (5.3% - 6.3%). Our main target for calibration was the 

baseline appointment rate (P5) We selected a range of possible values for P5 centered around 

2.0% and conducted 1,000 simulations for each value of P5.  We varied P5 from 0.5% to 3.5% in 
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increments of 0.1% (a total of 30 values) and compared the performance of each set of 1,000 

simulations. Based on our hypothesis for a constant LDCT rate in the control setting, we 

predicted the correctly calibrated simulation should result in approximately 200 ´ 10 ´ 0.058 = 

116 instances of LDCT screening over the 10 years of the simulation. Using this criterion, we 

identified that a P5 value of 3.4% resulted in simulations with a median of 116 instances of 

screening (95% quantile range for median: 115-117, Supplementary Table S3.1). 

 

2. Adding Observational Learning to the Simulations (Observational learning setting) 

In simulation setting 2 (the observational learning setting), we modeled an intervention 

where agents in the same social network are notified of others’ LDCT screening behavior in the 

past quarter at the start of every new quarter using a peer-to-peer communication system 

representing a social media platform and/or text messaging. The intervention encourages agents 

to use observational learning to adopt a new behavior based on information learned from strong 

or weak ties. In this setting, agents have a 200% increased chance [P9] to schedule an LDCT 

screening when a strong tie schedules a screening in the prior quarter. For example, given the 

calibrated appointment rate of 3.4%, if one strong tie of a focal agent schedules LDCT screening 

in Quarter t, the chance of the focal agent to schedule LDCT screening in Quarter t+1 is boosted 

from 3.4% to 10.2% (since the context-dependent rate is equal to the baseline rate of making an 

LDCT screening appointment multiplied by the boost from the strong tie (200%); 0.034 × (1+2) 

= 10.2%). Similarly, a focal agent who received screening in the last year whose appointment 

rate was set to 24.15% by P7 would have their appointment rate in Quarter t+1 boosted from 

24.15% to 72.45% by a single strong tie who also schedules LDCT in Quarter t. If multiple 

strong ties schedule LDCT within the same time step, the aggregate effect is constrained by a 
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90% discount rate [P10]; for example, given a focal agent with four strong ties in which all four 

tie agents receive LDCT screening in Quarter t, the probability the focal agent schedules an 

LDCT screening is boosted from 3.4% to 20.7% (0.034 × (1 + 2 + 2 × 0.9 + 2 ×	0.92 + 2 × 0.93) 

= 20.7%). Under this intervention setting, agents are also notified when their weak ties schedule 

LDCT; weak ties contribute a 50% increased chance [P11] to schedule LDCT (a quarter of the 

effect of strong ties). This effect of weak ties is similarly discounted at a rate of 90% [P12].  

  

3. Addressing the Challenge of Observational Learning in Two Ways  

We anticipated that the observational learning setting would result in a higher LDCT 

screening rate than the control setting over the course of the simulations; however, it is possible 

that observational learning alone would not promote rapid diffusion of the intervention behavior. 

One potential cause of this slow diffusion is a low occurrence of observational learning events: 

since the average number of strong ties (close friends or family members) is 4, most agents are 

not connected to other agents who have adopted LDCT screening at the start of the simulations 

(on average, each agent is expected to be connected to 4 ´ 0.058 = 0.23 agents who adopt the 

behavior at the start of the intervention). Furthermore, under the control setting, each network of 

200 agents would only include on average 200 ´ 0.058 » 12 agents who adopt LDCT screening 

behavior. In this context, the number of weak ties per agent in this scenario may not be sufficient 

to generate a strong enough trend of behavioral change for us to observe.  

To address this challenge, we explored two solutions that network intervention planners 

could apply. In the first solution, we modified the intervention program so that the intervention 

behavior was seeded in the community through outreach before the observation period began. In 

this setting, we randomly assign a percentage of agents [P13] to get screened prior to widespread 
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deployment of the intervention (i.e., force a certain percentage of agents to receive LDCT at 

Quarter 0), which enhances observational learning as soon as the intervention period begins 

(“LDCT screening seeds”). Just as in the observational learning setting, we measured the LDCT 

screening rate at the end of each simulation and the median screening rate over the course of the 

simulations. This method combines the induction approach utilized in the observational learning 

setting with the individuals approach of Valente’s network intervention framework (14), which 

identifies important individuals in social networks to use as facilitators of behavioral change.  

In the second solution, instead of adding seeds prior to the interventions, we modeled scenarios 

where network intervention planners modified the capacity of the intervention to include 

different sizes of networks, ranging from networks of size 50 to networks of size 5,000. In this 

setting, the social networks for the intervention are modified to include fewer or more weak ties 

compared to the control setting depending on the size of the network being evaluated, while the 

number of strong ties remains the same. We use this setting to observe the relationship between 

network size and the LDCT screening rate, again measuring LDCT screening rate at the end of 

each simulation period and tracking the median LDCT screening rate over time.  

 

4. Quantitative Analysis of Simulation Results 

We ran 1,000 iterations of the simulation for each set of simulation parameters. For each 

simulation, we calculated the median screening rate of agents in the simulations across each 

quarter of the simulation (Quarters 1 – 40) and the 95% quartile ranges for the median screening 

rate in each year. We compared the effects of the three intervention settings (simulation settings 

2, 3, and 4) to the control setting by comparing the end-of-simulation screening rates and their 

corresponding quartile ranges. 
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5. Robustness tests 

We also conducted a series of robustness tests to evaluate the effects of modifying 

individual simulation parameters under the observational learning setting. To do so, we carried 

out 1,000 iterations of the simulation for discrete values in the parameter ranges listed in Table 

3.1 while keeping the values of the other parameters constant (equal to those used in the setup for 

simulation setting 2). We then recorded the median screening rate for each year for each 

parameter value and compared the effects of adjusting each parameter’s value on the end-of-

simulation screening rate. 

 

3.4 Results 

Observational Learning Setting vs. Control Setting. We found that in the observational learning 

setting (simulation setting 2), the median screening rate increased from 21.5% in year 1 (95% 

quantile range [QR]: 21.0 – 22.0%) to 51.0% in year 10 (95% QR: 50.5% - 51.0%). There was 

no increase in the control setting (setting 1) (5.5% in year 1 and year 10 for the control setting) 

(Figures 3.1A and 3.1B). This corresponds to the observational learning setting influencing 91 

additional agents to get LDCT screening at year 10 compared to the control setting (200 ´ 0.51 = 

102 agents for the observational learning setting vs. 200 ´ 0.055 = 11 agents for the control 

setting). We can also compare the total number of screening events across the 10 years of the 

simulation for the observational learning setting and the control setting; using this comparison, 

we see that the observational learning setting results in approximately 1,119 screening events 

compared to only 110 screening events for the control setting.  We observed a steep increase in 
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the LDCT screening rate in the first three years after the introduction of the intervention, 

followed by smaller increases in screening rate over the remainder of the simulations. 

 

Adding seeds (Solution 1). We observe that changing the percentage of seeding agents shifts the 

median screening rate at the start of the simulations but does not affect the median screening rate 

achieved in year 10. We found no difference in year 10 screening rate comparing simulations in 

networks where there were no LDCT screening agents (median rate = 51.0%, 95% QR: 50.5 – 

51.5%) (Fig. 3.2A and 3.2B, dark green) and in networks where 50% of agents were assigned 

to be LDCT screening agents (median rate = 51.0%, 95% QR: 50.5% – 51.5%) (Fig. 3.2A and 

3.2B, gold).  

 

Modifying network size (Solution 2). From simulations evaluating different network sizes, we 

observe that the largest increase in the year 10 screening rate occurs when increasing the network 

size from 50 agents to 100 agents (from 35.0% to 45.0%). We also observe that each subsequent 

addition of 50 agents results in a smaller net increase in year 10 median screening rate (Figure 

3.3B), with the increases being minimized after the network size exceeds approximately 1,000 

agents. 

 

Robustness tests. In our robustness tests, we found that increases in the Watts-Strogatz 

neighborhood size, observational learning strength (for both strong and weak ties) and discount 

rate (again, for both strong and weak ties) corresponded to increases in the year 10 median 

screening rate. These results are consistent with the roles of each of these parameters in the 

simulation; by increasing the neighborhood size, we increase the number of strong ties each 
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agent has and therefore increase the chances that agents will use observational learning and adopt 

LDCT screening behavior. Similarly, increasing the strength of the intervention and increasing 

the discount rate (thus increasing the added effect of each additional tie who adopts the 

intervention behavior) should correspond to more agents adopting LDCT screening behavior. 

These robustness tests did not substantially change our major results and interpretations. 

 

3.5 Discussion 

 In this study, we used agent-based simulations to demonstrate that a network intervention 

can successfully increase the rate of lung cancer screening in a community of eligible 

individuals. We also tested two methods (adding seed individuals and modifying the network 

size) that could theoretically increase the screening rate above the rate resulting from the 

intervention alone. We found that increasing the network size in which the intervention is 

deployed improves the increase in screening rate generated by the intervention. However, we 

also found that seeding the intervention behavior prior to the simulation period results in 

different starting levels of the screening rate but does not result in higher screening rates at the 

end of the simulations.  

Using our agent-based simulation framework, we identified an intervention scenario that 

would increase the median LDCT screening rate in our simulated community above the national 

average LDCT rate of 5.8% to approximately 51.0% after 10 years of intervention. Ideally, 

public health professionals planning an LDCT screening intervention would want all the 

intervention participants to adopt and maintain a regular screening regimen. This aligns with the 

idea that through observational learning, all network members would eventually be exposed to 

the intervention behavior and be more likely to adopt it. However, we observed that the 
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screening rate in our simulations which included the intervention increased rapidly over the first 

few years of the intervention program but increased at a much slower rate once approximately 

45.0% of the agents were getting LDCT screening every year.  

One plausible explanation for this slowing down can be attributed to the behavioral logic 

of agents in our simulation. Agents were programmed to reduce their chances to get LDCT 

screening if they did not receive the screening in the past year to reflect barriers against 

screening behavior (for example, cost of the procedure or lack of awareness leading to low 

interest (35, 36)) but increased their chances to get LDCT screening if they did receive the 

screening in the past year. This dichotomy would likely lead to two sub-sections of the network 

developing over time – a section of the network who get regular screening and maintain high 

interest and willingness to get screened and another section that is entrenched in their refusal. As 

a result of the relatively small size of the network, it is possible that groups of strong ties could 

become static in their makeup, with clusters of willing screeners in one group and clusters of 

screening refusers in the other group, preventing the overall screening rate from exceeding the 

50% mark we observed in simulation setting 2.  

 Our investigations into adjustments to the intervention simulation set-up that could 

increase the screening rate past the rate achieved by the intervention alone were somewhat 

fruitful. We hypothesized that simulation setting 3 (adding seeding agents) could increase the 

screening rate boost generated by the intervention by using the LDCT screening seeds as 

influential agents to start observational learning earlier in the simulation, resulting in more gains 

in screening rate at the end of the simulation period. However, we found that the year 10 

screening rates were similar across all tested values of the proportion of LDCT screening seeds. 

This result suggests that in networks where most individuals are highly connected, it is difficult 
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to identify key network nodes from which diffusion cascades can spread. It would thus be 

reasonable for intervention planners to consider the layout of their network of interest before 

deploying interventions that rely on the network structure to take hold. This result also 

encourages careful consideration of the costs and benefits of utilizing individuals within the 

network compared to induction-based approaches in which only a few individuals need to adopt 

the intervention behavior to begin a diffusion cascade. 

We also expected that simulation setting 4 (changing network size) could increase the 

screening rate past the rate observed in simulation setting 2. We obtained two main findings. 

First, even under the smallest tested network size (N = 50), the year 10 screening rate exceeded 

the year 10 screening rate of the control setting. Second, we identified that gains in median 

screening rate associated with increasing the network size diminish as the network size increases. 

Since we observed that the intervention increased the median screening rate in a small network 

of 50 agents and that larger networks experienced a greater increase in median screening rate 

until the network size reaches approximately 1,000 agents, we can be relatively confident that 

our intervention was successfully implemented in the simulations. Our observation of a curve 

(Fig. 3.3B) that could be used by intervention planners to perform calculations akin to the power 

calculations conducted before experimental studies to determine if the network intervention can 

successfully diffuse shows promise. Future work should evaluate different types of interventions 

and intervention characteristics which could be used to develop a series of formulas that could be 

used for network intervention planning calculations. 

 Our study has several limitations. Like all agent-based simulation studies, we make 

several assumptions regarding the behavior and environment of our agents to mimic the real-

world scenario of eligible patients receiving exposure to LDCT screening from friends and 
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acquaintances. We especially must approximate the “strength” of the intervention to convert 

individuals resistant to screening into those willing to make clinic appointments to eventually 

receive LDCT screening. Underestimating the strength of the intervention and requiring more 

network neighbors to adopt the behavior before observational learning can take hold would result 

in slower diffusion of the screening rate and a need for a longer period of observation. As seen in 

the robustness tests (Supplementary Fig. S3.1), we observe that at lower levels of observational 

learning strength (for both strong ties and weak ties), the median screening rate at year 10 does 

not reach the 51% figure we identified in simulation setting 2. We also observe that increases in 

appointment rate past the 10% mark do not correlate with increases in the year 10 median 

screening rate, suggesting that diminishing returns should be a consistent concern when planning 

network interventions. 

Additionally, although we designed our simulations to include agents were programmed 

to reduce their chances to get the screening if they had not been screened in the last year, prior 

research suggests that participants who are already willing to get cancer screening such as LDCT 

screening may be more willing than random members of the population to adhere to guidance 

from clinicians or other health professionals about health behaviors or lifestyle (37, 38). Finally, 

we do not model sociodemographic factors or intervention-related factors that could change the 

behavior of intervention participants in real-world scenarios such as duration of the intervention 

program or required frequency of interacting with research staff that could limit individuals’ 

willingness to participate in an intervention program, interact with healthcare professionals or 

clinical staff, or listen to advice from friends, family members, or other types of acquaintances to 

change their own behavior (39-41).  
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3.6 Figures and Tables 

 

 
  

 Parameter Calibrated Values (Range for 
Robustness Tests) 

Agents 
P1 Number of LDCT-eligible agents in a target community 200 (50 – 5,000) 
Environment (network structure) 
P2 Number of networks 1  
P3 Watts-Strogatz neighborhood size 4 (2 – 30) 
P4 Watts-Strogatz rewiring probability 0.2 (0.1 – 0.4) 
Behavior  
P5 Rate of appointment  3.4% (1 - 20%) 
P6 Conversion rate 75% (50 – 90%) 
P7 Chance of screening after being screened in last year* 24.15% (10 – 80%) 
P8 Chance of screening after missing screening in past year Varies as a function of P7 
Intervention  
P9 Observational learning effect – strong ties  2 (0.5 – 4) 
P10 Discount rate for strong ties 0.9 (0 – 1) 
P11 Observational learning effect – weak ties  0.5 (0.125 – 0.75) 
P12 Discount rate for weak ties 0.9 (0 – 1) 
P13* Percentage of LDCT screening seed agents 0 (0 – 50%) 
Table 3.1. The 13 parameters manipulated in the agent-based simulations. Parameters listed under the 
Agents, Environment, and Behavior headings are used in the control setting and the three settings that include 
the intervention. Values and ranges were determined using literature review of cancer-related and health or 
economics-based behavioral research involving diffusion of innovations as well as discussion with clinicians 
specializing in lung cancer screening. *P13 is only used in simulation setting 3. 
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Figure 3.1. The observational learning setting (blue) successfully encourages diffusion of LDCT 
screening behavior compared to the control setting (gold). A: Solid lines represent the median screening 
rate across 1,000 simulations for each year of the simulation, while shaded regions represent 95% quantile 
ranges of the median screening rate. In the observational learning setting, we observe an increase in median 
screening rate of 29.5% from year 1 to year 10 (from 21.5% to 51.0%); there was no increase in the median 
screening rate under the control setting (5.5% in both year 1 and year 10). Simulations were run for an 
additional 12 quarters (shown in the figure as years -2, -1, and 0) prior to intervention deployment to allow 
simulations to stabilize. B: Comparison of the year 10 screening rate for the control setting and the 
observational learning setting. Error bars indicate the 95% quantile range of the year 10 screening rate.  
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Figure 3.2. Seeding the network with agents who have previously been screened does not result in 
increased diffusion of the intervention. A: The overlap in lines representing median screening rates for 
different proportions of seeding agents suggests that increasing the proportion of seeding agents does not 
spread the intervention behavior to more agents compared to deploying the intervention alone. Lines indicate 
median screening rates for 1,000 simulations while shaded regions represent 95% quantile ranges of the 
median screening rate. B: Year 10 screening rates for different proportions of seeding agents. Error bars 
represent 95% quantile ranges of the median screening rate in year 10 of the simulations. 
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Figure 3.3. Increasing the network size results in increased diffusion of the intervention, but with 
diminishing returns. A: Median screening rates for 1,000 simulations with different network sizes. Lines 
represent median screening rates for different network sizes. Overlapping lines result in darker regions. B. 
Scatterplot demonstrating the correlation between network size and the year 10 median screening rate. We 
observe that as the network size increases, the corresponding increase in the year 10 screening rate decreases, 
with only a 1.0% difference in screening rate comparing networks of size 1,000 (median rate = 0.565, 95% 
QR: 0.564 - 0.566) and networks of size 5,000 (median rate = 0.5754, 95% QR: 0.5750 - 0.5762). 
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3.7 Supplementary Information 

 
Calculating the percent decrease in the appointment rate of agents who were not screened in the 

previous year 

Our simulation’s control setting aims to replicate the average rate of LDCT screening in 

the United States of 5.8%. To allow the model to account for differential interest in screening, we 

program the simulation to adjust the rate at which agents make appointments for future screening 

based on their screening status in the past year. 

Based on literature evidence (34, 42) and UCLA Health data, we set the overall adherence 

rate of agents screened in the last year to 55%, which corresponds to a P7 value of 24.15% (as 1 - 

(1 - (0.2415 × 0.75))4  »  0.55. We accordingly modify the appointment rate of agents who were 

not screened in the prior year to model the effect of decreasing interest in the intervention behavior 

among agents who do not interact with the screening program while restricting the overall 

screening rate to remain at 5.8%. We demonstrate the calculation for P8, the appointment rate for 

agents not screened in the last year, below: 

 

58[1 − (1 − (1 − [P7] × [P6])!] + 942[1 − (1 − [P8] × [P6])! = 58 
 

58 × 0.55 + 	942[1 − (1 − [P8] × 0.75)!] = 58 
 

31.9 + 942[1 − (1 − 0.75 × [P8])!] = 58 
 

1 − (1 − 0.75 × [P8])! = 0.0277 
 

P8 = 0.009 
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Appointment Rate Median Number of LDCT Screenings 95% Quartile Range for 
Median LDCT Screenings 

0.030 112 111 – 113  
0.031 114 113 – 115  
0.032 114 113 – 115  
0.033 115 113 – 116  
0.034 116 115 – 117  
0.035 117 115 – 118  

Supplementary Table S3.1. Calibration results for the control setting simulations. Based on the 
search method described in the main text, we compared simulations using different values of the 
appointment rate [P5] by calculating the median number of LDCT screenings observed for each 
value. The grey highlighted row indicates that a simulation using an appointment rate of 3.4% 
resulted in our theorized value of 116 LDCT screenings (from 200 ´ 10 ´ 0.058) with a tolerance 
rate of 0.05%. 
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Supplementary Figure S3.1. Results of robustness tests for the observational learning setting 
(simulation setting 2). Increasing the neighborhood size [P3] (A), observational learning strength for strong 
and weak ties [P9 and P11] (D, F), and the observational discount rate for strong and weak ties [P10 and P12] 
(E, G) are correlated with increases in year 10 median screening rate. We also observe that the highest year 
10 screening rates correspond with raising the Watts-Strogatz network size to above 20 agents (A) and that 
increasing the appointment rate above 10% did not result in substantial increases in the year 10 median 
screening rate (C). Lines indicate median year 10 screening rates from 1,000 simulations for each setting; 
shaded regions indicate 95% quartile ranges from the median year 10 screening rate. 
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Chapter 4: ChatGPT Reinforces Geographic and Language Biases in a Citation Network of 

Epidemiologic Literature 

 
4.1 Abstract  

ChatGPT is an online chatbot that offers tremendous potential as a tool to be employed in 

the scientific research process. However, it is well documented that ChatGPT has the potential to 

give biased responses which may influence its utility as a research assistant, including 

preferences for English-language text and text from wealthy, Western countries. Given these 

biases, it is important for researchers to consider how ChatGPT’s biases affect its ability to 

complete research tasks. Therefore, in this study, we assess the potential biases in ChatGPT’s 

performance on a research task – rating the validity of a reference to the sentence in which it was 

cited – using a citation network of scientific articles from epidemiology and public health written 

by authors from over 160 countries around the world. We find that while ChatGPT completes the 

task for nearly all citation-reference pairs, it gives higher ratings when citations and references 

are from English-speaking countries and countries with higher incomes. Our findings suggest 

that ChatGPT reinforces geographic and language biases that stem from its training process and 

that output from ChatGPT should be carefully considered and verified by humans before it is 

fully integrated into the research workflow. 
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4.2 Introduction 

ChatGPT, an online chatbot based on the GPT suite of large language models by OpenAI, 

was released in late 2022 to worldwide attention. Because of its tremendous ability to take in 

human input and provide contextual responses based on user input, ChatGPT has been a topic of 

major interest among the scientific community since its release, especially regarding its potential 

uses in the research process. Researchers quickly recognized the high potential for plagiarism or 

misinformation associated with using AI models such as ChatGPT to co-author scientific papers, 

and within months of the release of ChatGPT, major scientific organizations like the journals 

Nature and Science established editorial policies forbidding human authors from claiming text 

generated by ChatGPT as their own or crediting ChatGPT with authorship (1, 2). In the year 

following these announcements, the scientific community has continued to search for ways to 

leverage ChatGPT’s power as a research assistant, but widespread adoption has hindered by 

several key shortcomings demonstrated in the platform’s output. 

Fundamentally, ChatGPT’s propensity to make errors in various tasks limits its ability to 

be a comprehensive research tool. For example, while ChatGPT can produce text that is hard to 

distinguish from human-written text (3), such text has both semantic and stylistic limitations that 

are more easily recognized (4). ChatGPT is also susceptible to artificial hallucination - asserting 

that a statement is factual (and stating that the statement is supported by real-world evidence) when 

in fact it is completely fabricated (5). While these faults are concerning, perhaps the most 

controversial issue regarding ChatGPT’s use in research is the presence of bias in ChatGPT’s 

underlying systems that change responses when given inputs with different characteristics. 

Researchers have identified that ChatGPT is susceptible to generating output containing biased 

language (6, 7). Such biased responses are consequences of a combination of the use of human-
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created data in model training and development (8) as well as adherence to associations between 

words that are key to the models’ function (9). Public commentary about these biased outputs have 

spurred ChatGPT’s development team to adjust the model and tailor responses generated by the 

model to avoid biased language at the expense of not providing answers to all user queries (10). 

With these issues in mind, we suggest that ChatGPT’s applications and use in scientific research 

could be expanded, given careful analysis of its capabilities and a thorough assessment of its 

weaknesses.  

 Two specific areas of bias in ChatGPT’s functionality are preferences for English language 

content and preferences for Western (primarily American) culture. ChatGPT’s preference for the 

English language is substantial: it is faster at answering questions and generating requested output 

in English compared to other languages, even when more recently updated versions of the model 

are tested (11). Additionally, the model offers adequate performance translating other languages 

into English (12), but struggles translating English text into non-English languages (13), especially 

when the target language does not use Latin characters. ChatGPT also demonstrates a strong 

alignment with American culture, with research showing that English-language input can guide 

the model to present its American bias even if the input is about non-Western cultures or countries 

(14).  

In a similar vein, biases towards wealthier, Western countries, especially those that use 

English as a primary language, are well-documented across the scientific landscape. The 

concentration of academic researchers in nations such as the United States and the United 

Kingdom and the historical movement of scientists around the world, among other factors, have 

led to a gap in scientific research that separates these wealthier, Western nations with less 

developed nations that are less likely to use English as a primary language, measured by metrics 
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such as scientific research output (15-19), funding for science (20, 21), opinions on research 

quality (22), barriers to writing and publishing scientific articles (23), and trust in science (24, 25). 

The imbalances in ChatGPT’s responses and among trends in scientific publishing are both 

examples of the Matthew effect (26), in which those who start with more wealth accumulate wealth 

at greater rates than those who begin with less. Because most of the world’s writing on the Internet 

is in English (it is estimated that between 55% and 64% of searchable websites on the Internet are 

in English (27, 28)), ChatGPT’s training process was fueled by large amounts of English-language 

data. As model development accelerated, additional training data was required and was inevitably 

composed of mostly English text due to the imbalances in the availability of unlabeled and labeled 

text data. This “rich get richer” phenomenon is amplified in scientific publishing, as English is 

firmly established as the default language of science across the world even in countries where 

English is a second or third language for most residents (29). 

With these issues in mind, we aim to provide an overview of ChatGPT’s performance on a 

simple research task and evaluate if ChatGPT’s responses reinforce the biases toward English-

language text and Western, more affluent countries that have been previously documented. 

Specifically, we assessed ChatGPT’s ability to quantify the relationship between sentences from 

scientific articles relevant to epidemiologists and public health scientists and the citations used to 

support those sentences. We hypothesized that ChatGPT would be conducive to the citation-

evaluation task (as ChatGPT has been reported to be able to solve many types of language-based 

tasks (30)) and would be able to provide a validity estimate for almost all the sentence-citation 

pairs we provided. However, we hypothesized that citation-reference pairs with references written 

in countries that predominantly speak and write in English such as the United States, Canada, and 

the UK would have higher overall validity scores compared to those with references from countries 



 

  77 

that are not English-dominant and that validity scores for references from high income countries 

would be higher than those from low income countries. 

 

4.3 Methods 

Data Collection. We identified 96,459 epidemiology-related research articles published between 

January 1, 2018, and December 31, 2022, that were indexed in PubMed. To be included in the 

study dataset, articles had to be tagged in PubMed with the epidemiology Major Topic term and 

be identified as discussing an epidemiologic study type (specifically cohort studies, case control 

studies, randomized controlled trials, and/or cross sectional studies) or epidemiologic bias. We 

identified articles meeting these criteria using the search query “((epidemiology [majr]) AND 

(((cohort studies [mh])) OR (case control studies [mh])) OR (randomized controlled trial[mh])) 

OR (cross sectional studies [mh]) OR (bias [majr])))) NOT (editorial[pt])) NOT (comment[pt])) 

NOT (review[pt])) NOT (systematic review[pt]) NOT (meta analysis[pt]) ) AND (2018/01/01: 

2022/12/31[dp])) AND (pubmed pmc[sb])” to serve as the citing papers in our analysis. We 

excluded articles that were categorized as systematic reviews or meta analyses because 

references in these article types are fundamentally different to those found in other scientific 

articles.  We simultaneously obtained the full text of articles contained in the PubMed Central 

Open Access Commercial subset published in the same date range and determined that we had 

full text data for 42,241 articles that matched our search query (see Figure 4.1 for details 

regarding the data collection and curation process). The citing papers contained 1,457,438 

separate citations that referred to another paper in the PubMed database, citing a total of 632,130 

unique articles. We limited the final dataset used for analysis to only include articles indexed by 

PubMed to ensure we could obtain article-level data (including the title, abstract and first author 
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affiliation) for cited papers using PubMed-supported APIs. After consolidation for network data 

purposes (see Network Characteristics below), we retained a final dataset encompassing 

401,737 references in 40,936 citing papers, citing a total of 129,063 unique articles.  

 

ChatGPT and Prompting. Data was provided to OpenAI’s GPT-3.5-turbo model in March 2024. 

This model is an updated version of GPT 3.5 that was used to fine-tune versions of ChatGPT that 

were first available to public users in 2023 (OpenAI does not provide methods for programmatic 

interaction with the web browser based ChatGPT platform). We asked the model to estimate the 

validity of each citation-reference pair by asking it to generate a numeric value from 0-100, using 

the prompt: “Here is a sentence from a scientific article: [citing sentence]. An article with the 

abstract [cited abstract] was used as a citation for the sentence. On a scale of 0-100, how valid is 

the citation? Keep your response as a numeric value.” If no abstract was provided for the cited 

article in PubMed, the title of the article was substituted instead. To avoid attribution of 

geographic or linguistic characteristics to either the citing sentences or cited text, we did not give 

ChatGPT additional information about the authors of the papers or their affiliations. A series of 

examples of citing sentences and cited abstracts from the dataset and their corresponding scores 

is shown in Table 4.1. 

 

Outcomes and Variables. Our outcome variable was the ChatGPT-generated validity score. 

Because OpenAI does not publicly release ChatGPT’s source code, we are unable to specifically 

define or parameterize the algorithm used to generate the scores; however, given that the score 

values were collected within a short time frame and that it is unlikely that the algorithms 

informing ChatGPT’s responses would change within that same time frame, our outcome 
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measure is likely to be representative of ChatGPT’s performance on our designated task. 

Furthermore, we do not define the outcome variable as the true validity of references to the citing 

sentences (as that would require manual verification of each citation-reference pair in our dataset 

by scientific experts), but ChatGPT’s estimated validity of each citation-reference pair based on 

the model’s combined comprehension of the citing sentence, the cited reference, and the research 

task input prompt. Assuming the algorithm used to generate the scores is identical for each 

sentence, our outcome variable measures the model’s understanding of scientific language and 

comparative ability, conditional on the biases and preferences that influence the model’s output. 

Our primary explanatory variables of interest were defined by similarities and differences 

between the countries of origin for cited papers and the countries of origin of citing papers. 

Specifically, we investigated if scores differed comparing citation-reference pairs where the 

citation and reference were from the same country to those where their country of origin differed; 

we hypothesized that citation-reference pairs where the citation and reference were from the 

same country would score higher compared to pairs where the citation and reference were from 

different countries. We based the country of origin for each paper on the first author’s reported 

affiliation, as first authors are intended to write and conduct most of the research work 

comprising scientific publications. 

In addition to evaluating differences between international and same-nation citation-

reference pairs, we also evaluated if English-language usage or the income level of the countries 

of origin of citation-reference pairs were associated with differences in the validity score. While 

most articles in PubMed Central are indexed in English (39) and English is the primary language 

of scientific writing worldwide (29), we assume that author teams around the world have 

differing levels of comfort and familiarity with English and therefore may use other languages in 
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their research. We therefore classified each article in our dataset into either English or non-

English primary categories based on the article’s country of origin. Language data was based on 

the CIA World Factbook (40); if multiple languages were listed as the official language or lingua 

franca of the country, we based our English vs. non-English classification on the language that 

was most prevalent.  

Country income data was obtained from the World Bank (41). Following the World Bank 

classification scheme, we categorized each country into one of four levels: high income, middle-

high income, middle-low income, and low income. These categories, when divided between high 

and middle-high income vs. middle-low and low income, are comparable to the global North vs. 

global South distinction historically used in other scientometric studies to compare scientific 

citation behavior (42-44).   

 
Network Characteristics. Network data was analyzed using the igraph R package (version 1.6.0). 

We obtained network characteristics for both citing and cited articles including their degree (the 

number of unique citations in each article) and betweenness centrality (how often an article was 

on the shortest citation path between two other articles). To reduce computational complexity, we 

excluded citation-reference pairs where the reference only appeared in one citing paper. Because 

we do not have complete citation information for the cited articles (as they are not all included in 

the PMC Open Access subset), we utilize only their degree and centrality among articles whose 

data was collected for this study. 

 

Statistical Analysis. We report proportions, frequencies, and cross-tabulations of our dataset’s 

characteristics.  We use linear regressions with random effects to examine associations between 

the validity score and characteristics of each citation-reference pair. We use the random effects 
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parameter to account for clustering by citing article. All statistical analyses were performed using 

R version 4.3.2 (45). 

 

4.4 Results 

 40,936 citing articles were included in our dataset for analysis (Table 4.2). Authorship of 

the citing papers represented 160 unique countries. China (n = 4,457, 10.9%), the United States 

(n = 4,040, 9.9%), the United Kingdom (n = 2,502, 6.1%), Australia (n = 2,324, 5.7%), and 

Ethiopia (n = 2,120, 5.2%) were the five most represented countries among citing papers. 13,993 

citing papers (34.2%) were written by English-primary authors. A majority of citing papers were 

written by authors from high-income countries (n = 23,997, 58.6%), with each decreasing level 

of income being less represented (middle-high income: n = 8,618, 21.1%; middle-low income: n 

= 5,244, 12.8%; low income: n = 3,077, 7.5%).  

Our dataset contained data on 129,063 cited papers that were indexed in PubMed and had 

relevant authorship information available in the PubMed database. Authorship of the cited papers 

represented 167 unique countries. The United States was the most represented country of 

authorship among cited papers (n = 48,299, 33.3%), followed by the United Kingdom (n = 

20,455, 14.1%), China (n = 7,055, 4.9%), Australia (n = 5,006, 3.5%), and Canada (n = 4,891, 

3.4%). Unlike the citing papers, most cited papers were written by English-primary authors (n = 

86,471, 59.6%).  Cited papers were more likely to be written by authors from high-income 

countries (n = 118,346, 81.6%), with the lower income brackets proportionally less represented 

(middle-high income: n = 15,405, 10.6%; middle-low income: n = 8,841, 6.1%; low income: n = 

2,425, 1.7%). 
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Since citing papers contained multiple references, we also analyzed the dataset on the 

citation-reference pair level (n = 401,737). Citing papers contained on average 9.8 citations 

(median: 9, range: 1-101) and cited papers were on average referenced 3.1 times (median: 2, 

range: 2-374). We found that 322,613 pairs (80.3%) included a citation and reference from the 

same country. We also observe that among pairs with English-primary citing papers (n = 

134,100), 26.2% of references were to papers from non-English primary countries, while among 

pairs with non-English-primary citing papers (n = 267,637), 45.7% of references were to papers 

by authors from non-English-primary countries. We also observe that many citation-reference 

pairs include citing and cited papers from countries with similar economies (n = 250,263, 

62.3%). Papers from lower-income economies citing papers from higher-income economies 

comprised 30.0% of sentence-reference pairs (n = 120,605) while sentences from higher-wealth 

economies citing papers from lower-wealth economies represented the remaining 7.7% of 

analyzed pairs (n = 30,869).  

 ChatGPT rated most sentences as highly related to their cited references (mean = 84.3, 

standard error of mean [s.e.m.] = 0.01; median = 85; range = 0-100). In bivariate analyses, we 

found that pairs with sentences that cited an English primary paper (mean = 84.4, s.e.m. = 0.01) 

had higher ratings than those that cited non-English primary papers (mean = 84.1, s.e.m. = 0.01) 

(Fig. 2b). We also found that pairs with citing sentences that were from English-primary papers 

(mean = 84.4, s.e.m. = 0.01) had on average higher scores that citing sentences from non-English 

primary papers (mean = 84.2, s.e.m., 0.001) (Fig. 4.2A). We also observed differences in rating 

across pairs with different income levels of both citing and cited countries of origin, with score 

increases correlating with higher levels of income for both citing and cited countries (Fig. 4.2C, 

4.2D). We observed no differences in mean validity score comparing pairs where both citation 
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and reference were from the same country to pairs where the citation and reference were from 

different countries.  

Results from the random effects linear regression models are shown in Table 4.3. We 

found that controlling for the citing paper’s English-language status and country income, citing 

an English-primary paper was associated with a score increase of 0.17 points compared to citing 

a paper from a non-English primary country and that for each increase in income level of the 

cited paper’s country of origin, the validity score increased by 0.26 points. We also evaluated 

regression models including the degree and betweenness centrality of the cited paper 

(Supplementary Table S4.1); while both network characteristics of the cited paper were 

associated with the validity score, the coefficients of the network metrics were an order of 

magnitude smaller than those of the primary variables of interest. 

  

 

4.5 Discussion  

In this study, we asked ChatGPT to provide ratings on citation-reference pairs from a 

citation network of epidemiologic articles to evaluate if the linguistic and economic 

characteristics of the cited paper’s country of origin would bias ChatGPT’s performance on a 

simple research task. We found that the ChatGPT ratings increased when citing sentences or 

cited papers were from countries that spoke English and had higher incomes. We also observed 

that while network characteristics of the cited paper such as the degree and betweenness 

centrality were associated with increases in the ChatGPT ratings, the magnitude of these 

associations were small in comparison to the associations with the cited paper’s characteristics.  
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We also generally observe that the distribution of our sample of epidemiology papers is 

like that of the general profile of scientific articles. More affluent, English-speaking nations, such 

as the United States, the United Kingdom, Canada, and Australia were well-represented among 

citing papers, but substantially more prevalent among cited papers. Interestingly, while many 

previous studies (42-44) focus on the differences in scientific research output or funding between 

the global North (which is generally considered to include only wealthy, English-speaking 

nations) and global South (which includes large nations such as China, Brazil, and countries in 

South America and Africa), China appears as a substantial contributor of both citing and cited 

papers in our dataset, perhaps reflecting the country’s increased investment in science (46, 47). 

As we would expect most scientific citation-reference pairs to be accurate to some degree, the 

generally high validity scores are not unexpected. However, using both the bivariate and 

regression analyses, we observe that pairs including papers from high income countries and 

English-speaking countries get higher scores than those that do not, with the cited papers’ 

country of origin contributing larger increases compared to the citing papers’ country of origin. 

As we previously noted, this preference is likely influenced by the characteristics of the 

tremendous amount of English-language data used to train GPT (and all its variations and 

derivative models): as of April 2024, OpenAI openly notes that ChatGPT is “skewed toward 

Western views and performs best in English. (48)” Although OpenAI has put significant effort 

into reducing the obvious biases of its flagship model, our findings suggest that some preferences 

persist; this should alert scientists aiming to use ChatGPT to evaluate the relationships between 

scientific texts to carefully consider the model’s output. 

Our study has several limitations that provide possibilities for future research. First, while 

our study intended to identify areas of bias in ChatGPT’s responses using an unbiased research 
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task, we recognize the possibility that even providing the input prompt in English may influence 

ChatGPT. However, given ChatGPT’s difficulties with translation between languages, we expect 

that providing the research task prompt in English offers a good balance of efficiency (allowing 

the model to rate more citation-reference pairs) and performance (ensuring that the model 

performs the task as requested). Similarly, we did not evaluate ChatGPT’s ability to score 

citation-reference pairs where either the citing sentence or the reference text were written in non-

English languages. Finally, our citation network data does not span the entire citation network of 

the citing papers since we could only use the full text data of papers in PubMed Central or 

metadata for both citing and cited papers that was stored in the larger PubMed database. It is 

possible that papers that are not indexed in PubMed or PubMed Central may be different enough 

from those we analyzed in ways that would affect ChatGPT’s ability or performance in 

conducting the evaluation.   
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4.6 Figures and Tables 

 

Figure 4.1. Flow diagram for obtaining the final dataset of citation-reference pairs used for analysis (n = 
401,737). The final dataset included data from 40,936 citing articles and 129,063 cited articles, combining to 
include the 401,737 individual citation-reference pairs. 
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Figure 4.2. ChatGPT-derived validity scores increase when citation-reference pairs include citations 
or references from English-speaking, high income countries.  A and B: We observe higher validity 
scores when the either the citing paper or cited paper was from a country that primarily speaks English 
compared to countries that did not primarily speak English. C and D: We also find that pairs score highest 
when either the citing paper or cited paper is from a high income country. Error bars represent 95% 
confidence intervals of the mean GPT validity scores for each category. 
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Citing Sentence Cited Abstract* GPT 
Validity 
Score 

In this sense, other studies 
indicate unhealthy dietary 
practices in this group, such as 
rapid weight-loss diets, the 
omission of certain important 
food groups, consumption of 
high-calorie foods and foods with 
reduced nutritional value and the 
excessive intake of alcohol, 
among other toxins (58). 

Objectives: To identify the prevalence of cocaine 
consumption among university students and to analyse the 
use of other drugs among the regular cocaine consumers (59). 
 
 

25  

The most common intestinal 
helminthes include Taenia a, 
Hymenolepis, Ascaris, 
Strongyloides, Trichuris, 
Enterobius vermicularis and 
Hook worm and are usually 
transmitted from contaminated 
food, water or environment (60). 

Background: Salmonella species are among the most 
common food borne pathogens worldwide and their 
infection is one of the major global public health problems. 
During the last decade, multidrug-resistant Salmonella 
species have increased to a great deal, especially in 
developing countries. The prevalence and antimicrobial 
susceptibility pattern of Salmonella isolates among food 
handlers at the University of Gondar, Ethiopia, were 
described in the current investigation (61). 

50 

Chronic pain is common and 
creates a significant burden to 
the individual and society. 
Emerging research has shown the 
influence of the family 
environment on pain outcomes. 
However, it is not clear what 
shared factors between family 
members associate with chronic 
pain. This study aimed to 
investigate the family-level 
contribution to an individual's 
chronic pain status (62).  

Because depression and painful symptoms commonly occur 
together, we conducted a literature review to determine the 
prevalence of both conditions and the effects of comorbidity 
on diagnosis, clinical outcomes, and treatment. The 
prevalences of pain in depressed cohorts and depression in 
pain cohorts are higher than when these conditions are 
individually examined. The presence of pain negatively 
affects the recognition and treatment of depression (63). 

85 

Sun exposure for 5 to 15 minutes 
twice or thrice a week allows the 
skin to generate about 80% of the 
vitamin D required by the human 
body (64). 

Most humans depend on sun exposure to satisfy their 
requirements for vitamin D. Solar ultraviolet B photons are 
absorbed by 7-dehydrocholesterol in the skin, leading to its 
transformation to previtamin D3, which is rapidly converted 
to vitamin D3. Season, latitude, time of day, skin 
pigmentation, aging, sunscreen use, and glass all influence 
the cutaneous production of vitamin D3. Once formed, 
vitamin D3 is metabolized in the liver to 25-hydroxyvitamin 
D3 and then in the kidney to its biologically active form, 
1,25-dihydroxyvitamin D3 (65). 

100 

Table 4.1. Examples of citation-reference pairs and their validity scores generated by GPT. Each 
sentence (left column) was used as the first input using the prompt described in the main text, followed by 
the corresponding abstract (middle column). *For brevity, we include only the first few sentences of each 
abstract; however, the entire abstract’s text was used when generating the scores used in the main analysis. 
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 Citing Papers (n = 40,936)  Cited Papers (n = 129,063) 
Number of countries represented 160 166 
English-primary country    
    Yes 13,993 (34.2) 77,261 (59.9) 
    No 26,943 (65.8) 51,802 (40.1) 
Income level   
    High income 23,997 (58.6) 105,321 (81.6) 
    Middle high income 8,618 (21.1) 13,637 (10.6) 
    Middle low income 5,244 (12.8) 7,936 (6.2) 
    Low income 3,077 (7.5) 2,169 (1.7) 
Number of citations* 9.81 [0.03] 3.11 [0.01] 
Network metrics   
    Degree 29.6 [14.6] 11.6 [31.6] 
    Betweenness 22.4 [0.27] 20.1 [0.67] 
Table 4.2. Characteristics of the citing papers and cited papers in our sample citation network of 
epidemiologic articles. For categorical variables, percentages are given in parentheses; standard errors of 
means for continuous variables are given in square brackets. *The number of citations for citing papers is 
the average number of citations contained in each citing paper; for cited papers, the number is the average 
number of times the paper is referenced by citing papers. 
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 Coefficient (Standard error) [p-value] 
Fixed Effects  
Intercept 82.97 (0.074) [p < 0.0001] 
Cited English-primary paper* 0.17 (0.016) [p < 0.0001] 
Cited country Income** 0.26 (0.013) [p < 0.0001] 
Citing English-primary paper* 0.05 (0.038) [p = 0.200] 
Citing country Income** 0.05 (0.019) [p = 0.009] 
Random Effects  
Citing paper-level variance  10.00 (3.162) 
Residual variance 18.48 (4.299) 
Table 4.3. Random effects linear regression results for the associations between cited paper 
characteristics and the ChatGPT-generated validity scores. The model controls for the English-
language status of the citing paper’s country of origin and the wealth level of the citing paper’s country of 
origin. We use a random effects term to account for clustering by sentences from the same citing paper. 
*Reference level is non-English **Reference level is low income. 
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4.7 Supplementary Information 

 Coefficient (Standard error) [p-value] 
Fixed Effects  
Intercept 82.96 (0.074) [p < 0.0001] 
Cited English-primary paper* 0.15 (0.017) [p < 0.0001] 
Cited country Income** 0.26 (0.013) [p < 0.0001] 
Citing English-primary paper* 0.05 (0.038) [p = 0.180] 
Citing country Income** 0.05 (0.019) [p = 0.01] 
Cited paper degree 0.005 (0.0002) [p < 0.0001] 
Cited paper betweenness centrality -0.0002 (0.00002) [p < 0.0001] 
Random Effects  
Citing paper-level variance  10.00 (3.162) 
Residual variance 18.46 (4.299) 
Supplementary Table S4.1. Random effects linear regression results for the associations between 
cited paper characteristics and the ChatGPT-generated validity scores including network 
characteristics. The model controls for the English-language status of the citing paper’s country of origin 
and the wealth level of the citing paper’s country of origin. We use a random effects term to account for 
clustering by sentences from the same citing paper. *Reference level is non-English **Reference level is 
low income. 
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5. Concluding Remarks 

 The potential of network science and the use of networks and network data to answer 

questions in science is seemingly limitless. As awareness of the ubiquity of networks in scientific 

systems has increased, a multi-disciplinary wave of researchers has come to recognize the need 

for network methods that capture information about not only the individual elements of the systems 

they study, but also about the relationships between those components and the position of each 

component in relation to the network or system in aggregate. Furthermore, network science is 

applicable to a wide variety of scientific disciplines and is adaptable to new technologies and fields 

of study; for example, the growing use of network analysis to study the proliferation of information 

through the Internet represents the use of network methods to study a technology that has only 

emerged in the last half century. Finally, the increasing awareness of the public of network 

concepts, especially through the lenses of social media platforms and viral marketing, has spurred 

interest in network science and provided network scientists with additional opportunities to obtain 

both funding opportunities and support for research in domains with commercial- or consumer-

oriented applications. 

 This dissertation highlighted three studies that utilized network data and network 

techniques to answer questions from a diverse set of scientific domains: the evolution of human 

behaviors, the planning of successful public health interventions, and the use of artificial 

intelligence tools in scientific research. Our main findings regarding these questions were as 

follows: 

1. In our series of online network games exploring cooperation and punishment using the lens 

of decision times, we found that punishment was slower than both cooperation and 

defection and that experimentally imposed time pressure did not reduce the occurrence of 
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punishment. We also evaluated instances of punishment using several theorized 

mechanisms from the literature and identified a tendency for punishment decisions to slow 

down as the perceived complexity of the punishment decision increased. However, we were 

unable to definitively identify mechanisms of punishment that were affected by time 

pressure. Future studies in this space should consider experimentally isolating punishment 

decisions to be based on specific mechanisms the researchers intend to study. 

2. Our development of an agent-based simulation framework for a network intervention to 

increase the lung cancer screening rate successfully identified an intervention setup that 

would increase the lung cancer screening rate in a community of eligible individuals past 

the currently low rate of adoption. We also tested two modifications of this setup, seeding 

individuals with screening behavior and increasing the network size, that could potentially 

boost the screening rate further; we identified that increasing the network size until the 

intervention population was sufficiently large resulted in additional increases in screening 

rate beyond the rate achieved by the intervention alone. This study highlights potential for 

such a network intervention to be deployed in the real world; future simulation studies 

should highlight specific subpopulations that could benefit from the intervention and test 

our simulation framework using those subpopulations’ characteristics. 

3. Our investigation of potential biases in ChatGPT’s responses to a research task using a 

citation network of articles from epidemiology and public health determined that the model 

reinforces geographic and linguistic biases that are recognized in the landscape of scientific 

publishing. Specifically, we determined that ChatGPT gave higher ratings to citation-

reference pairs with cited articles from English-speaking countries and countries with 

higher income compared to pairs with cited articles from non-English speaking countries 
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and low income countries. We also found that our sample of articles from epidemiology 

and public health reflected global trends found across scientific publishing: most references 

were to papers from English-speaking, high-income nations like the United States and 

United Kingdom. We were also encouraged to find increased rates of citation between 

papers from non-English speaking countries. These results suggest that researchers should 

remain cognizant of the issues with using ChatGPT in the research process, especially in 

the context of evaluating citations and references. 

 
 




