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Allele-specific expression reveals genes 
with recurrent cis-regulatory alterations in high-
risk neuroblastoma
Arko Sen1, Yuchen Huo2, Jennifer Elster2,3, Peter E. Zage2,3 and Graham McVicker1*  

Background
Neuroblastoma is an extracranial solid tumor of the peripheral sympathetic nervous sys-
tem which accounts for approximately 8% of all childhood cancers and 15% of childhood 
cancer mortality [1–6]. Compared to other pediatric malignancies, neuroblastomas har-
bor few recurrent somatic mutations, and most tumors lack identifiable driver muta-
tions in protein-coding genes at the time of initial diagnosis [7]. Instead, neuroblastoma 
tumors are characterized by frequent somatic copy number alterations (SCNAs). The 
most common focal SCNA is amplification of the chromosome 2p24 region, including 

Abstract 

Background: Neuroblastoma is a pediatric malignancy with a high frequency of 
metastatic disease at initial diagnosis. Neuroblastoma tumors have few recurrent pro-
tein-coding mutations but contain extensive somatic copy number alterations (SCNAs) 
suggesting that mutations that alter gene dosage are important drivers of tumorigen-
esis. Here, we analyze allele-specific expression in 96 high-risk neuroblastoma tumors 
to discover genes impacted by cis-acting mutations that alter dosage.

Results: We identify 1043 genes with recurrent, neuroblastoma-specific allele-specific 
expression. While most of these genes lie within common SCNA regions, many of 
them exhibit allele-specific expression in copy neutral samples and these samples are 
enriched for mutations that are predicted to cause nonsense-mediated decay. Thus, 
both SCNA and non-SCNA mutations frequently alter gene expression in neuroblas-
toma. We focus on genes with neuroblastoma-specific allele-specific expression in the 
absence of SCNAs and find 26 such genes that have reduced expression in stage 4 dis-
ease. At least two of these genes have evidence for tumor suppressor activity including 
the transcription factor TFAP2B and the protein tyrosine phosphatase PTPRH.

Conclusions: In summary, our allele-specific expression analysis discovers genes that 
are recurrently dysregulated by both large SCNAs and other cis-acting mutations in 
high-risk neuroblastoma.
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the MYCN oncogene, which is associated with high-risk disease and adverse treatment 
outcomes [8, 9]. Other common SCNAs span tens of megabases and include loss of dis-
tal chromosome arms 1p, 3p, and 11q and duplication of the distal arm of chromosome 
17q [7, 9–12]. These large SCNAs may drive tumorigenesis by altering the expression of 
multiple tumor suppressors or oncogenes. For example, chromosome 1p deletions affect 
many potential tumor suppressors including CHD5, CAMTA1, KIF1B, CASZ1, UBE4B, 
and MIR34A [13–21]. In addition to the common SCNAs described above, neuroblas-
toma tumors also contain a patchwork of less common SCNAs or loss of heterozygosity 
(LOH) regions. A major challenge in interpreting large SCNAs is that they span dozens 
of genes, making it difficult to distinguish between driver and passenger genes.

Prior studies of genes with altered dosage in neuroblastoma have largely focused on 
functional characterization of genes affected by SCNAs while disregarding other dos-
age-altering mutations. Discovery of important driver genes dysregulated by non-SCNA 
mutations has been limited because only a small number of whole genome sequences 
for neuroblastoma are available, and it is difficult to determine which noncoding vari-
ants affect gene regulation. We hypothesized that genome-wide analysis of allele-specific 
expression (ASE) could illuminate dysregulated genes in neuroblastoma tumors.

ASE quantifies the difference in expression of two alleles of a gene and can be meas-
ured using RNA-seq reads that align to heterozygous sites. Compared to standard dif-
ferential gene expression analysis, ASE is insensitive to environmental or trans-acting 
factors, which generally affect both alleles equally. This makes ASE a powerful tool for 
revealing genes that are affected by cis-acting mutations, including noncoding regulatory 
mutations that affect sequences such as promoters, enhancers, and insulators as well as 
protein-coding or splicing mutations that result in nonsense-mediated decay (NMD) 
(Fig. 1A). Another advantage of ASE is that it is detectable even when the identity of the 

Fig. 1 Allele-specific expression analysis in neuroblastoma. A Four example mechanisms that can cause 
allele-specific expression (ASE) of genes: (i) somatic copy number alterations (deletions or duplications), (ii) 
premature stop mutations that trigger nonsense mediated decay (NMD), (iii) promoter DNA methylation, 
and (iv) cis-acting mutations that affect gene regulatory sequences such as enhancers. These examples are 
not exhaustive and there are additional genomic alterations that can cause ASE. B Recurrence of ASE across 
96 neuroblastoma samples for genes with ASE in at least one sample (FDR < 0.1). C Estimates of ASE  (aRNA) 
for H19, an established imprinted gene, in neuroblastoma tumor samples compared to normal adrenal gland 
and whole blood samples from GTEx. D Estimates of ASE for KIF1B, a known neuroblastoma tumor-suppressor 
gene. E Gene Ontology analysis of 1043 genes with recurrent ASE in neuroblastoma (NB-ASE genes)
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pathogenic variants causing dysregulation is unknown and it can reveal the effects of 
rare germline or somatic mutations [22, 23]. Thus, ASE is a powerful tool for the identifi-
cation of genes with altered gene dosage due to cis-acting genome alterations.

In addition to somatic mutations, ASE can also be caused by common germline poly-
morphisms [24–26], imprinting [27] or random monoallelic expression [28, 29]; how-
ever, these factors are less likely to be involved in tumorigenesis. To discover genes which 
are dysregulated by pathogenic events, ASE in disease tissue can be compared to either 
paired-normal tissue or to a large panel of normal tissues to identify cancer-specific gene 
dysregulation [22, 23, 30, 31]. Genome-wide analysis of ASE therefore has the potential 
to reveal novel tumor suppressor and oncogenes both within and outside SCNAs.

Results
To discover genes with ASE in neuroblastoma tumors, we obtained exome-seq and 
RNA-seq data for 96 neuroblastoma tumor samples from the NCI Therapeutically Appli-
cable Research to Generate Effective Treatments (TARGET) project. To estimate ASE 
in these samples, we implemented a statistical model that utilizes allele-specific read 
counts at heterozygous sites within the exons of genes, while accounting for genotyping 
errors, sequencing errors, and overdispersion of RNA-seq read counts. This model esti-
mates allele imbalance (aRNA) for each gene, which is how far the reference allele propor-
tion differs from the expected value of 0.5.

With this method, we identify 8527 genes with ASE in at least one tumor sample under 
a false discovery rate (FDR) of 10% (likelihood ratio test). Most genes exhibit ASE in only 
a single sample (4676 out of 8527); however, 3851 genes have ASE in more than one 
sample, and many genes show highly recurrent ASE in neuroblastoma (926 genes have 
ASE in 5 or more samples) (Fig. 1B and Additional file 2: Table S1). Since recurrent ASE 
can result from non-pathogenic factors including common germline polymorphisms 
[24–26], imprinting [27], or random monoallelic expression [28, 29, 32], we compared 
the frequency of ASE in neuroblastoma to that of normal tissues, obtained from the gen-
otype tissue expression project (GTEx). Specifically, we compared neuroblastoma ASE 
estimates to those from normal adrenal gland and whole-blood tissues. These tissues 
were chosen because the adrenal cortex is the tissue of origin for most neuroblastoma 
tumors and whole-blood has by far the largest number of available samples in GTEx. 
To illustrate the utility of comparing normal and tumor tissues, we examined ASE for 
a well-established imprinted gene, H19 [33], and for a tumor suppressor gene, KIF1B, 
which is located on chromosome 1p and is frequently deleted in neuroblastoma [16, 34]. 
As expected, H19 has very strong ASE in almost all normal and tumor samples (Fig. 1C), 
whereas ASE of KIF1B is observed exclusively in neuroblastoma samples (Fig. 1D).

To define a set of genes with neuroblastoma-specific ASE (NB-ASE), we used two fil-
tering criteria: (a) genes that are testable for ASE in at least 10 neuroblastoma and 10 
adrenal gland or blood samples and (b) genes with significant ASE in ≥ 3 neuroblas-
toma tumors and ≤1 normal tissue (Additional file 2: Table S2). These criteria resulted in 
1043 NB-ASE genes for downstream analysis. We performed a Gene Ontology analysis 
of these genes and found that they are enriched in biological processes frequently dys-
regulated during tumorigenesis including microtubule-based process (GO:0007017, p 
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value = 2.6e−06), DNA repair (GO:0006281, p-value = 2.5e−05), and cellular metabolic 
process (GO:0044237, p-value = 0.00074) (Fig. 1E and Additional file 2: Table S3).

SCNAs are a common cause of ASE in tumors [35], and we hypothesized that many 
NB-ASE genes would be attributable to large-scale SCNAs that dominate the genetic 
landscape of neuroblastoma [2, 3, 6, 7]. To determine which NB-ASE genes can be 
attributed to SCNAs, we adapted our ASE framework to identify SCNAs, which are 
detectable as large genome segments with allelic imbalance of DNA sequencing reads 
[36]. While several existing tools leverage read depth to predict SCNAs, these methods 
have limited precision and report many false positive focal SCNAs [37, 38]. To detect 
SCNAs, we estimated DNA allelic imbalance from heterozygous sites in windows con-
sisting of 20 consecutive exons for tumor  (atumor) and normal  (anormal) samples. We then 
computed the difference in their absolute values (δa) and performed circular binary seg-
mentation (CBS) [39] to obtain DNA allelic imbalance for continuous segments which 
we refer to as the SCNA score (Fig. 2A and Additional file 2: Table S4).

To test our allelic imbalance approach for SCNA discovery, we applied it to chromo-
some 1, which has distal p arm deletions in ~30% of neuroblastoma tumors [7, 10, 12]. 

Fig. 2 Detecting somatic copy number alterations in neuroblastoma. A Schematic of the DNA allelic 
imbalance method for detecting somatic copy number alterations (SCNAs). B Difference in DNA allelic 
imbalance between normal and tumor tissues (δa) for 96 neuroblastoma patients across chromosome 1 (left 
panel). Results are compared to log2 fold-change in normalized read coverage between tumor and normal 
tissues estimated by CNVkit (right panel). C Occurrence matrix of the 10 most frequent SCNAs detected 
using the DNA-imbalance approach. SCNAs were filtered using SCNA score ≥ 0.09 and annotated based on 
their cytoband location. Neuroblastoma patients are grouped by MYCN z-score normalized gene expression. 
D Manhattan plot for Spearman’s correlation analysis between ASE (aRNA) and SCNA score for 945 NB-ASE 
genes. E Spearman’s rank correlation between allele-specific expression (aRNA) and SCNA score for KIF1B (left 
panel), a tumor suppressor in the chromosome 1p deletion region, and IP6K2 (right panel), a putative tumor 
suppressor within the 3p deletion region
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We compared our predictions to those made by CNVkit, which utilizes read depth at 
exome capture targets to infer copy number and has better sensitivity compared to other 
methods for SCNA discovery [40]. SCNA breakpoints detected by our method are con-
sistent with those detected by CNVkit, but our predictions are considerably less noisy 
(Fig.  2B). We also compared our results to those from high density single-nucleotide 
polymorphism (SNP) arrays, which were available for 33 out of the 96 neuroblastoma 
tumors [41], and found them to be highly concordant (Additional file  1: Fig. S1). We 
obtained similar results for other common SCNAs such as the chromosome 11q dele-
tion region (Additional file 1: Fig. S2).

To further examine the SCNAs in neuroblastoma, we partitioned samples based on 
MYCN expression and found known patterns of SCNA co-occurrence [7]. For exam-
ple, chromosome 1p and 11q deletions occur most frequently in samples with high and 
low expression of MYCN, respectively (Fig.  2C). In addition to the well-characterized 
SCNAs, we detected less frequent SCNAs across all chromosomes (Fig.  2C) includ-
ing loss of 16q in 16 neuroblastoma tumors (Additional file 1: Fig. S3). This SCNA has 
not been extensively studied but has been previously reported by comparative genomic 
hybridization in familial neuroblastomas and some other pediatric cancers such as 
Wilm’s tumor [42–44]. Our deletion predictions for 16q appear to be true positives 
because they are concordant with both SNP-array predictions and patterns of ASE 
(Additional file 1: Fig. S3). In combination, these results indicate that DNA allelic imbal-
ance is a powerful approach for the detection of SCNAs in cancer genomes.

To determine whether general patterns of ASE in neuroblastoma can be attributed to 
SCNAs, we computed Spearman’s correlation between ASE and SCNA score, restricting 
our analysis to 935 NB-ASE genes that are located within SCNA segments in at least one 
neuroblastoma sample. Under an FDR of 10%, 65% (684 out of 1043) of NB-ASE genes 
are significantly correlated with SCNAs, and of these, 59% (401 out 684) are located 
on the chromosomes with the most frequent SCNAs (chromosomes 1, 3, 11, and 17) 
(Fig. 2D and Additional file 2: Table S5).

The chromosome 1p, 3p, and 11q deletion regions are hypothesized to contain tumor 
suppressor genes; however, the identities of the tumor suppressors are difficult to deter-
mine because the deletions are large and contain hundreds of genes. We reasoned 
that, in the absence of large deletions, tumor suppressors within these regions may be 
affected by other types of genome alterations that affect dosage, and that the effects of 
these alterations would be detectable by ASE. We examined the relationship between 
ASE and SCNAs for two genes, IP6K2 and KIF1B, which have been previously identi-
fied as potential tumor suppressors located within the chromosome 3p and 1p deletion 
regions. Knockdown of IP6K2 impairs apoptosis in colorectal cancer cells [45], and its 
deletion or low expression is associated with adverse clinical outcomes in aerodigestive 
tract carcinoma and breast cancer [46, 47]. Overexpression of KIF1B in neuroblastoma 
cell lines causes apoptotic cell death and its knockdown enhances tumor formation in 
mouse models [34]. In the case of IP6K2, we found that every sample with significant 
ASE also has a high SCNA score (Fig. 2E, right panel), indicating that ASE of IP6K2 is 
solely attributable to overlapping chromosome 3p deletions. The pattern exhibited by 
KIF1B is different. While ASE of KIF1B is correlated with SCNA score (Spearman’s 
rho = 0.68, FDR corrected p-value = 2.4e−07), several samples have strong ASE in the 
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absence of a chromosome 1p deletion (SCNA score ≤ 0.09) (Fig. 2E, left panel). Thus, 
in some samples, ASE of KIF1B is caused by factors other than large-scale SCNAs. Sev-
eral other putative tumor suppressors in the chromosome 1p or 11q deletion regions 
including CHD5 [15, 48], UBE4B [13], CADM1 [49], and ATM [50], have patterns that 
are similar to KIF1B, where a subset of samples exhibit strong ASE in the absence of 
deletions (Additional file  1: Fig. S4). These results indicate that both SCNA and non-
SCNA genome alterations affect the expression of these genes.

Previous studies have demonstrated that ASE can be caused by nonsense-mediated 
decay (NMD) [51–53], an evolutionarily conserved mechanism that degrades transcripts 
with premature termination codons [54–56] (Fig. 1A). We hypothesized that genes that 
exhibit ASE in neuroblastoma in the absence of SCNAs may contain mutations that 
cause NMD. To identify somatic mutations that are likely to cause NMD, we analyzed 
paired tumor-normal exome-seq data with variant effect predictor (VEP), which collec-
tively labels missense, frameshift, and nonsense mutations that are likely to cause NMD 
as “high-impact.” We identified 12,122 unique high-impact mutations in the 96 tumor 
samples, 886 of which are located within 490 NB-ASE genes. Most of these mutations 
(788 out of 890) are stop-gain mutations (Fig. 3A and Additional file 2: Table S6) and 
map to 452 NB-ASE genes.

To determine if stop-gain mutations are enriched within NB-ASE genes, we examined 
their frequency in three different gene sets: (a) NB-ASE genes, (b) randomly selected 
genes with at least one somatic mutation, and (c) genes with ASE observed in both neu-
roblastoma and normal tissues. To create a null distribution, we sampled 100 genes from 
each gene set 500 times and counted the number of genes carrying stop-gain mutations 
each sampling iteration. A substantially greater number of NB-ASE genes carry stop-
gain mutations, indicating that NMD is an important driver of neuroblastoma-specific 
ASE (Fig. 3B).

We observed that many genes with correlated ASE and SCNA scores also contain 
stop-gain mutations in some samples (Fig. 3C), leading us to hypothesize that NMD is 
an important mechanism that alters gene dosage in samples lacking SCNAs. To test this 
hypothesis, we partitioned neuroblastoma samples for each gene into three categories: 
non-ASE samples, ASE samples with SCNAs (ASE_SCNA), and ASE samples without 
SCNAs (ASE_non-SCNA) (Fig. 3D). We then calculated the rate of stop-gain mutations 
across all genes and samples in each of the three categories. To generate a null distribu-
tion of rates that controls for gene lengths and mutation rate heterogeneity, we permuted 
the category labels for each gene 1000 times. This analysis revealed that stop-gain muta-
tions occur at a substantially higher rate in ASE_non-SCNA samples compared to other 
categories (Fig. 3E). This supports the hypothesis that gene expression is often altered by 
NMD-causing mutations in the samples that lack SCNAs.

An example of a gene which is dysregulated by both NMD and SCNAs is Pleckstrin 
Homology and RhoGEF Domain Containing G5 (PLEKHG5). PLEKHG5 is located in 
cytoband 1p36.31 which is frequently deleted in neuroblastoma [57]. Two samples have 
strong ASE in the absence of SCNAs, one of which is heterozygous for a C>A muta-
tion that introduces a premature stop codon (Fig.  3F). The cause of ASE in the other 
ASE_non-SCNA sample is unknown and could potentially be discovered by analysis of 
whole-genome sequencing data.
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Outside of SCNAs, 108 NB-ASE genes are located in genome regions that are copy 
neutral across all tumor samples, including PHOX2B which is a target of recurrent 
germline mutations in neuroblastoma [58, 59]. In addition, 251 genes lack significant 
correlations between ASE and SCNA score even though they overlap SCNAs in one 
or more samples (Additional file  2: Table  S5). Thus, 34% of the NB-ASE genes (359 

Fig. 3 Genes with recurrent allele-specific expression are enriched for stop-gain mutations that cause 
nonsense-mediated decay. A The number of variants annotated as high-impact by variant effect predictor 
(VEP) in genes with recurrent allele-specific expression in neuroblastoma (NB-ASE genes) grouped by 
functional consequence. B NB-ASE genes more frequently carry stop-gain mutations. To create the 
distributions, we performed 500 sampling iterations and counted the number of unique genes carrying 
stop-gain mutations each iteration. In each iteration, we sampled 100 genes from three gene sets: a random 
panel of control genes (random), genes with ASE in both neuroblastoma and normal tissues (normal-ASE), 
and genes with ASE that is specific to neuroblastoma (NB-ASE). C Overlap between genes with correlated 
ASE and somatic copy number alteration (SCNA) score and NB-ASE genes which contain at least one 
stop-gain mutation. D Graphical representation of three categories of neuroblastoma samples we define for 
a given gene: samples without ASE (non-ASE), samples with ASE and SCNA (ASE_SCNA), and samples with 
ASE but no SCNA (ASE_non-SCNA). E Samples with ASE in the absence of SCNAs are enriched for stop-gain 
mutations. The boxplots show the log2 ratio of observed to expected stop-gain mutation rate for the three 
sample categories. Expected rates are estimated by permuting category labels within each gene; points are 
observed/expected ratios computed across genes after each permutation. F Spearman’s correlation between 
ASE  (aRNA) and SCNA score for PLEKHG5, a chromosome 1p deletion gene. Two samples have high ASE but 
low SCNA scores and one of these samples, PAPTCR, carries a premature stop mutation (1:6536019, C>A)
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out of 1043) are not associated with SCNAs, suggesting that other mutational events 
that alter gene dosage are common in neuroblastoma genomes.

We reasoned that the overall expression of NB-ASE genes could be examined in 
a larger gene expression dataset where ASE measurements are unavailable. We asked 
whether the 316 non-SCNA ASE genes are associated with neuroblastoma progres-
sion and metastasis, by analyzing the SEQC/MAQC-III Consortium dataset, which 
contains clinical and microarray expression data for 498 neuroblastoma tumors [60]. 
Under an FDR of 5% (Student’s t test) and absolute log2 fold-change ≥ 0.5, 34 genes 
have significantly different gene-expression in stage 4 or metastatic disease compared to 
other stages (Fig. 4). Among them, 8 genes have increased expression and 26 genes have 
decreased expression in stage 4 disease. Most notably, MAP7, PTPRH, TFAP2B, and 
SLC18A1 have more than a 2-fold decrease in expression in stage 4 tumors. We hypoth-
esized that these genes may be important tumor suppressors in neuroblastoma, even 
though they lie outside of the common SCNA regions of the genome, and we performed 
further functional analysis of TFAP2B and PTPRH.

We first investigated TFAP2B, which is a retinoic acid-induced transcriptional activator 
that mediates noradrenergic neuronal differentiation of neuroblastoma cells in  vitro [61, 

Fig. 4 Expression of genes with recurrent allele-specific expression that is not associated with somatic 
copy number alterations. The heatmap shows hierarchically clustered gene expression z-scores from 498 
neuroblastoma tumors in the SEQC/MAQC-III Consortium. Of the 359 NB-ASE genes that were not associated 
with somatic copy number alterations (SCNAs), 316 genes were covered by at least one expression probe. 
Samples are labeled by clinical characteristics: MYCN amplification status (amplified, non-amplified and 
unknown); high-risk tumor (yes or no); International Neuroblastoma Staging System (INSS) (1, 2, 3, 4, and 4S). 
Difference in gene-expression between stage 4 and all other stages is indicated as log2 fold-change (log2FC). 
The 34 genes with absolute log2FC ≥ 0.5 and FD-corrected p-value ≤ 0.05 from Student’s t test are labeled
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62]. TFAP2B has ASE in 3 out of 31 testable neuroblastoma samples, has no evidence of 
ASE in adrenal gland tissues (0 out of 12 testable samples), is not expressed in whole blood, 
and is copy neutral in all patient samples (Additional file 1: Fig. S5A). Consistent with the 
above observations, the samples with ASE of TFAP2B have strong allelic imbalance of 
RNA-seq reads at heterozygous sites, but no allelic imbalance of exome-seq reads, indicat-
ing that the ASE is not due to SCNAs (Additional file 1: Fig. S5B). Dysregulation of TFAP2B 
in neuroblastoma cells has previously been associated with aberrant promoter-methylation 
[62], so we investigated DNA methylation as a potential mechanism. Using estimates of 
promoter methylation computed from the Human Methylation 450K array, we found that 
TFAP2B is one of the NB-ASE genes with the strongest correlations between ASE and 
promoter-methylation, although this correlation is not significant under an FDR threshold 
of 10% (Spearman’s correlation coefficient = 0.60, FDR-corrected p-value = 0.116) (Addi-
tional file 1: Figs. S5C-E, S6 and Additional file 2: Table S7). Furthermore, one patient sam-
ple (PASNZU) has near-complete methylation (>75%) of the TFAP2B promoter, which is 
associated with loss-of-expression of both alleles (Additional file 1: Fig. S5C-E and Addi-
tional file 2: Table S8). In the SEQC/MAQC-III Consortium data, TFAP2B expression is 
decreased in stage 4 or metastatic neuroblastomas (Additional file  1: Fig. S5F) and low 
expression of TFAP2B is associated with worse event-free survival outcomes in non-MYCN 
amplified neuroblastoma patients (Additional file 1: Fig. S5G). Collectively these observa-
tions are consistent with earlier findings [62] and strongly suggest that TFAP2B is a tumor-
suppressor in neuroblastoma with decreased expression in the presence of promoter 
methylation.

We next investigated PTPRH (Protein Tyrosine Phosphatase Receptor Type H), which 
is a member of a large family of receptor tyrosine phosphatases and a critical regulator of 
apoptosis and cell motility [63, 64]. In neuroblastoma, 5 out of 68 testable samples exhibit 
ASE, compared to 1 out 139 testable adrenal gland tissues from GTEx (Fisher’s exact test 
p-value = 0.015) (Fig. 5A); PTPRH is not expressed in the whole blood. PTPRH is located 
on chromosome 19q, which rarely undergoes SCNA in neuroblastoma, and ASE of PTPRH 
is not correlated with SCNA score (Fig. 5B). In addition, the RNA-seq reads in ASE sam-
ples exhibit strong allelic imbalance but there is no allelic imbalance in exome-seq reads, 
confirming that ASE of PTPRH is not attributable to large or focal SCNAs (Fig. 5C). ASE 
of PTPRH is negatively correlated with gene-expression (Spearman’s correlation coefficient 
= −0.58, FDR-corrected p-value = 2.3e−05) indicating that ASE reflects loss of expres-
sion of one allele, potentially due to regulatory or other cis-acting mutations (Fig. 5D and 
Additional file 2: Table S8). Gene expression of PTPRH is substantially reduced in stage 4 
tumors, and reduced expression of this gene is associated with worse event-free survival 
outcomes in non-MYCN amplified tumors (Fig.  5E, F). To further test the function of 
PTPRH, we performed shRNA knockdown experiments in the neuroblastoma cell lines SK-
N-SH and SK-N-BE(2), which are MYCN non-amplified and amplified, respectively (Addi-
tional file 1: Fig. S7). Knockdown of PTPRH increases proliferation in both cell lines and 
cellular migration in the SK-N-SH cell line (Fig. 6A, B). These results support the hypoth-
esis that PTPRH is a MYCN-independent tumor suppressor.
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Discussion
Our study leveraged allelic imbalance of RNA and DNA sequencing reads to discover 
genes with recurrent ASE and delineate SCNA regions in neuroblastoma genomes. 
Neuroblastoma genomes contain a surprisingly large number of genes with recurrent 
ASE; however, the majority of ASE events can be attributed to SCNAs which are well-
characterized and common genomic alterations in neuroblastoma that typically span 
tens of megabases.

Our ASE analysis revealed that, in some samples, genes within recurrent SCNA 
regions are dysregulated by non-SCNA events. Non-SCNA ASE events are pre-
sent in genes which have been previously described as putative tumor suppressors 

Fig. 5 Genomic profiling of PTPRH. A ASE (aRNA) of PTPRH in neuroblastoma and adrenal gland tissues. PTRPH 
has detectable ASE in 5 out of 68 neuroblastoma patients and 1 out of 139 Adrenal gland tissues (Fisher’s 
exact test p-value = 0.015). B Spearman’s correlation between ASE  (aRNA) for PTPRH and SCNA score for the 
overlapping genomic segments. C Reference and alternate allele proportions for RNA-seq and exome-seq 
reads at heterozygous sites within the PTPRH gene in 5 samples with significant ASE. D Spearman’s 
correlation between ASE (aRNA) and gene expression for PTPRH. E Normalized gene expression of PTPRH 
across different disease stages for 498 neuroblastoma patients from the SEQC/MAQC-III Consortium data. 
F Kaplan-Meier survival analysis comparing MYCN non-amplified patients with high or low expression of 
PTPRH from the SEQC/MAQC-III Consortium data set
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and studied in the context of recurrent SCNAs including KIF1B, PLEKHG5, UBE4B, 
CHD5, CADM1, and ATM. With larger sample sizes, ASE could potentially be uti-
lized to distinguish passenger genes from driver genes within recurrent SCNA 
regions. In some samples, ASE in the absence of SCNAs can be attributed to muta-
tions that cause NMD; however, in other samples, the cause is unknown. In these 
cases, the cause of ASE could potentially be revealed by future studies. For example, 
whole genome sequencing and analysis of non-coding mutations near NB-ASE genes 
could illuminate cis-acting regulatory mutations that cause ASE.

Fig. 6 PTPRH knockdown in neuroblastoma cell lines increases cellular proliferation and migration. A Change 
in relative confluence (i.e., confluence at each time point normalized to confluence at time 0) for parental 
and PTPRH knockdowns (KDs) in SK-N-BE(2) and SK-N-SH cells. Six replicates for each condition were used 
for the SK-N-BE(2) cell line and SK-N-SH cell line. B Left panels show representative images for scratch wound 
assays used to measure cellular migration for parental and PTPRH-KD in SK-N-BE(2) and SK-N-SH cells. Right 
panels show wound closure percentage for parental and PTPRH-KD in SK-N-BE(2) and SK-N-SH cells over 48 
h. Each time point had 9 replicates. Error bars indicate +/− one standard deviation around the mean across 
replicates at each time point. The lines are fits from cubic spline regression using 3 knots, and the p-value is 
from an F-test for a difference in splines between parental and KD cells
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Outside of recurrent SCNA regions, we discovered 359 genes that are recurrently 
dysregulated in neuroblastoma. These genes include TFAP2B, MAP7, PTPRH, and 
SLC18A1, which have substantially lower expression in stage 4 disease. TFAP2B is 
important for noradrenergic neuronal differentiation of neuroblastoma cells in vitro 
and is dysregulated by aberrant promoter methylation [62]. Our independent valida-
tion of this finding is additional evidence that TFAP2B is an important tumor suppres-
sor in neuroblastoma. PTPRH belongs to a group of receptor tyrosine phosphotases 
which reduce phosphorylation of Akt and its cellular substrates such GSK-3α or 
GSK-3β [64]. PTPRH may inactivate Akt and promote apoptosis in cancer cells. In 
addition, overexpression of PTPRH has been demonstrated to disrupt actin-based 
cytoskeleton as well as inhibit cellular responses promoted by integrin-mediated cell 
adhesion, including cell spreading on fibronectin, growth factor-induced activation 
of extracellular signal-regulated kinase 2, and colony formation [63]. In our study, we 
found that (a) PTPRH exhibits recurrent ASE in neuroblastoma, (b) low expression 
of PTPRH is associated with adverse patient outcomes, and (c) knockdown of PTPRH 
increases proliferation and wound healing in neuroblastoma cell lines. Collectively, 
these observations suggest that PTPRH functions as a tumor suppressor in high-risk 
neuroblastomas. Confirmation that PTPRH acts as a tumor suppressor will require 
in vivo experiments that are beyond the scope of this study.

Conclusions
In summary, our study provides a framework for analysis of ASE and SCNAs in 
tumors. Using this framework, we study the impact of genomic alterations that affect 
gene expression in neuroblastoma and discover that multiple types of mutations 
work in concert to dysregulate gene expression. While most ASE in neuroblastoma 
is driven by large-scale SCNAs, many genes exhibit ASE in samples that lack SCNAs. 
These samples are enriched for mutations that are predicted to cause NMD. In addi-
tion, we identify some genes that have recurrent ASE outside of common SCNA 
regions, including TFAP2B and PTPRH, both of which have low expression in stage 4 
disease and evidence for tumor suppressor activity.

Methods
Datasets

Next-generation sequencing (NGS) data for neuroblastoma patients were obtained 
from the Therapeutically Applicable Research to Generate Effective Treatments 
(TARGET) initiative [7]. Our dataset consisted of RNA sequencing for 143 tumors 
and paired tumor-normal exome sequencing for 97 neuroblastoma patients. Out of 
the 97 samples with both RNA-seq and exome-seq data, 87 also had Illumina Infin-
ium Human Methylation 450K data and 33 had HumanHap 550K BeadChIP (SNP-
array) data. We also obtained 175 adrenal gland and 369 whole blood samples from 
the GTEx Consortium and used them as a normal ASE reference set [65].
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Quality control

To ensure that NGS data from the same patient are properly paired, we compared the 
RNA-seq and exome-seq data from 97 neuroblastoma tumors using NGSCheckMate 
[66]. Based on this analysis, we found that one sample had mismatched RNA-seq and 
exome-seq data and we removed this sample from the study. Our final dataset for ASE 
analysis consisted of RNA-seq and exome-seq data from 96 neuroblastoma patients.

Variant calling pipeline

We aligned exome-seq reads to the reference genome (hg19) using BWA-MEM with 
default parameters [67]. Then, we generated GVCF files for each sample using the 
GATK HaplotypeCaller (4.1.1) and performed joint genotyping using GATK Geno-
typeGVCFs. We extracted single nucleotide polymorphism (SNPs) using GATK 
SelectVariants command and recalibrated variant quality scores with GATK variant 
quality score recalibration (VQSR) pipeline. The filtered and processed SNPs were 
used for downstream analyses.

Somatic mutation discovery pipeline

We used Mutect2 from GATK (4.1.1) to compare the mutation profile from exome-
seq data for 96 neuroblastoma tumor and normal whole blood samples [68]. We fil-
tered somatic mutations from Mutect2 using the GATK recommended filtering 
pipeline (https:// gatk. broad insti tute. org/ hc/ en- us/ artic les/ 36003 55311 32). To deter-
mine the functional consequence of somatic mutations and to assign mutations to 
respective genes, we further analyzed individual somatic mutations in each sample 
using variant effect predictor (VEP) [69].

Read depth‑based detection of somatic copy number alternations

SCNAs in neuroblastoma were detected using our DNA allelic imbalance method 
described below and a read depth-based method, CNVkit [40]. Briefly, CNVkit uses 
exome-seq reads to calculate log2 copy ratios across the genome for tumor-normal 
pairs. SCNAs for large chromosomal regions are then detected by combining log2 
copy ratios across adjacent genomic regions using Circular Binary Segmentation 
(CBS). For this study, we processed aligned exome-seq reads with the batch option 
from CNVkit using the --drop-low-coverage parameter to control for low coverage 
exome targets. Heatmaps showing CNV calls for all samples were generated using 
CNVkit’s heatmap script.

RNA‑seq alignment and processing

We aligned RNA-seq reads end-to-end to the reference genome (hg19) using STAR 
(2.5.3a) [70]. The aligned reads were filtered to those with mapping quality ≥ 20 using 
samtools (1.9) [71]. Reads mapping to each gene were counted using featureCounts 
(1.6.3) for GENCODE (v28) genes [72]. Gene counts were converted to Fragments 
Per Kilobase Per Million (FPKM) using DESeq2 (1.22.2) [73]. Finally, the FPKM 
matrix was quantile normalized using the preprocessCore (1.44) package and z-score 
transformed.

https://gatk.broadinstitute.org/hc/en-us/articles/360035531132
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Estimating DNA allelic imbalance using exome‑seq

We realigned exome-seq reads from tumor and normal samples to the reference 
genome (hg19) using BWA-ALN and filtered the sequencing reads to remove map-
ping bias using WASP [74]. We obtained allele-specific read counts at heterozygous 
sites (excluding multiallelic sites) for normal tissues using the CollectAllelicCounts 
from GATK (4.1.1). We assumed that most heterozygous sites in normal tissues 
are germline polymorphisms and obtained allele-specific read counts at the shared 
positions for matched tumor samples. We analyzed shared heterozygous positions 
because this facilitates direct comparison of reference allele proportions between 
tumor and paired normal tissues.

To model DNA allelic imbalance over large genomic segments, we sorted exons by 
their genomic coordinates and grouped 20 consecutive exons into genomic bins. Next, 
we assigned the heterozygous sites which were covered by at least 10 reads to the 
genomic bins. To ensure robust regional DNA allele imbalance estimates, we retained 
genomic bins with at least 10 heterozygous sites for DNA allele imbalance analysis.

To model allele-specific read counts. we assumed that the reference allele count at 
heterozygous sites is beta-binomially distributed. The likelihood for the allelic imbal-
ance parameter, a, and the dispersion parameter, d, at a single heterozygous site i is then 
defined by:

where pX() is the beta binomial probability mass function; xR, i  is the observed refer-
ence allele count from overlapping reads at site i; ni is the total count of overlapping 
reads matching the reference or alternate allele at site i; p is the reference allele propor-
tion; a is the allelic imbalance parameter and is defined over the range [−0.5,0.5]; d is 
the beta binomial dispersion parameter; and B() is the beta function. To perform likeli-
hood calculations, we used the beta-binomial probability mass function (dbetabinom) 
provided by the rmutil (1.1.5) package, which is described in the vignette (https:// cran.r- 
proje ct. org/ web/ packa ges/ rmutil/ rmutil. pdf ).

We estimate a single-dispersion parameter across all heterozygous sites genome-wide. 
This is accomplished by fixing a to 0 and finding the value of d that maximizes the total 
likelihood across all heterozygous sites in either a normal or a tumor sample:

After estimating the dispersion parameter, we estimate the allelic imbalance and com-
pute the likelihood for bins. In the case of DNA allelic imbalance, a bin consists of 20 
consecutive exons as described above. In the case of RNA allelic imbalance, we utilize 
the set of heterozygous sites within the exons of the gene being considered as described 
below. To estimate the imbalance of a bin, we combine information across all of the 
heterozygous sites within the bin. Since we do not know the phasing of the alleles, we 
consider all possible phasings (i.e., haplotype configurations), when computing the likeli-
hood. Under the assumption that all phasings are equally probable, the likelihood of the 
parameters for bin B is:
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where HB is the set of all possible phasings (i.e., hapolotype configurations) for bin B. 
A phasing is defined by a vector of 0s and 1s, with each element corresponding to a het-
erozygous site. Element i of the phase vector is set to hi = 0 if the reference allele for site i 
is on “chromosome A” and set to hi = 1 if the reference allele for site i is on “chromosome 
B”. “Chromosome A” is defined as the chromosome that carries the reference allele for 
the first heterozygous site in the bin. In total there are ‖HB‖ =  2m − 1 possible phasings, 
where m is the number of heterozygous sites within the bin. While the number of phas-
ings grows exponentially with m, the number of heterozygous sites in the bin, the likeli-
hood for the bin can be computed efficiently in linear time using dynamic programming:

where T is an array of length m that is used to compute the cumulative likelihood.
We performed one dimensional optimization to obtain maximum likelihood estimates 

of a for each bin. We perform this procedure separately for tumor and normal samples 
to obtain estimates of a for tumor (atumor) and normal samples (anormal). We then calcu-
late the difference in a between tumor and normal samples,δa as follows:

Finally, to create contiguous segments of allelic imbalance, we performed Circular 
Binary Segmentation (CBS) on δa using the DNAcopy package (1.56.0) [39]. We defined 
the aggregate value for δa obtained from CBS as the “SCNA score”. Plots for δa and 
SCNA scores were generated using Gviz (1.26.5), ComplexHeatmap (1.20.0), and gplots 
(3.0.1.1) [75].

Estimating allele‑specific expression per gene using RNA‑seq reads

We filtered RNA-seq reads for mapping bias and obtained allele specific read counts at 
heterozygous positions using WASP [74]. WASP uses random sampling to ensure that 
allele counts at nearby heterozygous sites are independent. Specifically, when a read 
overlaps multiple sites, the allelic count is incremented at only one of the sites, which is 
selected randomly. We observed that at most heterozygous sites overlapping RNA-seq 
reads only match the reference or alternate alleles. However, some sites also have reads 
that match neither allele, which we refer to as “other” reads. “Other” reads may reflect 

LB

(
a, d = d̂|xR , n

)
=

1

‖‖HB
‖‖

∏

h∈HB

∏

i∈B

(
1 − hi

)(
Li

(
a, d = d̂|xR,i , ni

))
+
(
hi

)(
Li

(
a, d = d̂|ni − xR,i , ni

))

T [1] ← L1

(

a, d = d̂|xR,1, n1

)

for i in 2, . . . ,m do

T [i] ← (T [i − 1])
(

Li

(

a, d = d̂|xR,i, ni

)

+ Li

(

a, d = d̂|ni − xR,i, ni

))

return
T [m]

‖HB‖

δa = |atumor | − |anormal |



Page 16 of 23Sen et al. Genome Biology           (2022) 23:71 

sequencing errors or mis-mapped reads so, prior to ASE analysis, we removed all het-
erozygous sites where the “other” read count was greater than two.

Genotyping errors can create a false signal of allelic imbalance. For the SCNA analy-
sis above, DNA imbalance is estimated from many heterozygous sites within each bin 
and then estimates from multiple bins are combined with circular binary segmenta-
tion. Since many heterozygous sites are used for this analysis, genotyping errors can be 
ignored without a major effect. However, when we calculate ASE for a gene, we only 
consider heterozygous sites within the exons of the gene. Thus, when estimating ASE for 
a single gene, we often utilize a small number of heterozygous sites, so it is desirable to 
account for genotyping errors. To control for genotyping errors, we calculate the geno-
typing error rate, ϵG, i, for each heterozygous site i directly from the genotype quality 
(GQ) scores provided by GATK:

When a genotyping error occurs, a heterozygous site can be homozygous reference 
(0/0) or alternate (1/1), and we assume these two possibilities are equally likely. When 
there is a genotyping error and the sample is homozygous, all sequencing reads that 
come from one of the two alleles must arise due to sequencing or mapping errors. We 
use the parameter ϵS to describe the frequency of these sequencing errors. The likeli-
hood of the parameters for a single heterozygous site is then:

where, as described above, pX() is the probability mass function for the beta binomial 
distribution.

To find the maximum likelihood estimate of d and ϵS, we fix a to 0 and optimize d and 
ϵS over all heterozygous sites overlapping exons:

For optimization, we used the L-BFGS-B algorithm implemented by the “optim” func-
tion provided by the stats package in R-4.0.1.

To estimate the ASE of a gene within a sample, we obtain a maximum likelihood esti-
mate of a, keeping the dispersion and sequencing error rate fixed to their genome-wide 
estimates ( ̂d and ǫ̂S ). We combine information across all heterozygous sites within each 
gene. To combine information across heterozygous sites, we use the same approach 
described in the DNA imbalance section above. We group all of heterozygous sites that 
fall within the exons of a gene into a “bin” and compute likelihoods that consider all pos-
sible phasings of alleles. We use a likelihood ratio test to compare the alternative model 
(with a free a parameter) to the null model of no allelic imbalance (with a fixed to a = 0) 
and to compute p-values. We correct the p-values for multiple testing using the Benja-
mini-Hochberg method. To make it clear when we are referring to allelic imbalance in 
RNA instead of DNA, we refer to a for RNA-seq read as aRNA.
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Gene Ontology enrichment analysis

Gene Ontology (GO) enrichment analysis for Biological Processes (BP) was performed 
using topGO (2.34.0). Enrichment was calculated using Fisher’s exact test, and all genes 
tested for ASE in neuroblastoma were used as the universe.

Correlation between DNA allele‑imbalance and SNP‑array predictions

We used GenomicRanges (1.34.0) to find overlaps between SCNAs detected using our 
DNA allelic-imbalance method and SCNA predictions obtained from TARGET which 
were generated using HumanHap 550K Beadchip (SNP-array) [41]. For segments which 
show at least a 50% overlap, we computed Spearman’s correlation between segmented 
DNA allele imbalance (i.e., SCNA score) and corrected Log R ratio estimated using SNP-
array data from TARGET [41].

Association between allele‑specific expression and SCNAs

We assigned our candidate genes to genomic segments predicted to be SCNAs based 
on the location of their promoters (transcription start site +/− 1500bp) using Genomi-
cRanges (1.34.0) [76] and computed Spearman’s correlation between ASE (aRNA) and 
SCNA score. We corrected the p-values for multiple testing using the Benjamini-Hoch-
berg procedure. We only tested genes with non-zero variance in both SCNA scores and 
aRNA and with an SCNA score in at least one sample ≥ 0.09. Manhattan plots for Spear-
man’s correlation coefficient were generated using ggbio (1.30.0) [77].

Correlations between allele‑specific expression and promoter methylation

In Human Methylation 450K BeadChIP array (HM450K) data, the ratios of intensities 
between methylated and unmethylated CpG probes are referred to as beta values (β) and 
range from 0 (unmethylated) to 1 (completely methylated). We downloaded a pre-com-
puted β matrix for 87 neuroblastoma samples from TARGET and annotated the CpG 
probe positions based on GENCODE (version 28) genes. Then, we computed the mean 
β for promoter regions (transcription start site +/− 1500 bp) and computed Spearman’s 
correlations between promoter methylation and ASE  (aRNA) for 1043 NB-ASE genes. We 
corrected the p-values for multiple testing using the Benjamini Hochberg procedure. We 
only tested genes with at least 3 CpG probes within promoter regions.

Survival and expression analysis in neuroblastoma patients

We analyzed the SEQC/MAQC-III Consortium dataset consisting of 498 individuals 
using the R2: Genomics Analysis and Visualization Platform (http:// r2. amc. nl) to gen-
erate Kaplan-Meier survival plots for neuroblastoma [60]. We also downloaded a nor-
malized gene expression matrix (i.e., log (1 + FPKM)) for SEQC/MAQC-III Consortium 
dataset from Gene Expression Omnibus (GSE49711) [60] and generated gene expression 
heatmaps using ComplexHeatmap (1.20.0) and ggplot2 (3.2.1) [75, 78].

Cell culture and transfection

The SK-N-BE(2) and SK-N-SH cell lines were purchased from the American Type Cul-
ture Collection (www. atcc. org) and grown in a humidified chamber with 5%  CO2 in 
RPMI 1640 medium (Gibco, #11875119) supplemented with 10% fetal bovine serum 

http://r2.amc.nl
http://www.atcc.org
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(FBS), 2mM l-glutamine, sodium pyruvate, non-essential amino acids, and 1% antibiotic 
antimycotic.

For stable transfection, the cell lines were seeded in 6-well plates and allowed to grow 
to 70% confluence. Cells were transfected with shRNAs purchased from Sigma-Aldrich 
(shPTPRH-373, #TRCN0000355579; shPTPRH-1136, #TRCN0000355581; shPT-
PRH-1947, #TRCN0000355580; shPTPRH-3265, TRCN0000355631; shPTPRH-3621, 
#TRCN0000002866) with jetOPTIMUS® DNA transfection Reagent (VWR, #76299-
632) following the protocol provided by the manufacturer. The cells were selected in 
RPMI containing puromycin 24hrs after transfection (SK-N-BE(2), 1μg/ml puromycin 
and SK-N-SH, and 1.25μg/ml puromycin). The stably transfected cells were maintained 
in complete medium supplemented with puromycin until use.

Quantitative RT‑PCR analysis

SK-N-BE(2) and SK-N-SH cells were seeded in 6-well plates and allowed to grow to 
50% confluence. RNA was isolated from the cells with Zymo Quick-RNA Miniprep 
kit (VWR, #76299-632) according to the manufacturer’s instructions. Total RNA was 
reversed transcribed into cDNA using High-Capacity cDNA Reverse Transcription 
Kit (Fisher Scientific, #4374966). Real-time PCR was performed using iTaq™ Universal 
SYBR Green Supermix (Bio-Rad Laboratories, #1725122) on a Bio-Rad CFX96 system. 
Gene expression was analyzed by the log2ΔΔCt method.

Immunoblotting

SK-N-BE(2) and SK-N-SH cells were seeded in 6-well plates and allowed to grow to 
70–80% confluence. Cells were lysed in RIPA buffer, and the protein concentration 
was determined by a Pierce BCA protein assay (Life Technologies, #23225). Equal 
amounts of protein were loaded into 8% Bolt™ Bis-Tris Plus gels (Life Technologies, 
#NW00085BOX), separated by SDS-PAGE and then transferred to PVDF membranes. 
The membranes were incubated with primary antibodies (PTPRH antibody, 1:1000, 
Fisher Scientific, #PIPA531340) overnight at  4oC. The membranes were then probed 
with appropriate horseradish peroxidase-conjugated secondary antibodies (Goat Anti-
Rabbit IgG(H+L)-HRP Conjugate, Bio-rad Laboratories, #170-6515). The immunob-
lots were visualized with SuperSignal West Pico Plus Chemiluminescent Substrate (Life 
Technologies, #PI34580).

Proliferation and migration assays

SK-N-BE(2) and SK-N-SH cells were plated in 96-well plates at a seeding density of 7500 
cells/well and allowed to attach overnight. Cells were then monitored by continuous 
live-cell imaging in the IncuCyte®  ZoomTM system (Essen Bioscience), and 10x phase 
contrast images were taken every 3h. Cell confluence in each image was calculated by 
the IncuCyte® analysis software.

For migration assays, SK-N-BE(2) and SK-N-SH cells were seeded in IncuCyte® Ima-
gelock 96-well plates (Essen Bioscience, #4379) at seeding densities between 100,000 
and 200,000 cells/well and allowed to grow to 100% confluence. Cells were treated with 
10μM cytosine arabinoside (Sigma-Aldrich, #C1768) for 4h, and then, identical scratch 
wounds were made in each well with a 96-pin WoundMaker (Essen Bioscience). Wound 
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closure was monitored by continuous live-cell imaging in the IncuCyte  ZoomTM (Essen 
Bioscience), and 10x phase contrast images were taken every 6h. The wound closure per-
centage was calculated using IncuCyte Scratch Wound Analysis Software.

To analyze the cellular proliferation and migration rates, we computed the mean con-
fluence and mean wound closure at each time point across replicates. To allow for non-
linearity in both types of data, we performed cubic spline regression with 3 knots (two 
degrees of freedom) to describe the change in confluence or wound closure with time. 
To quantify differences in proliferation or migration between knockdown and parental 
cells, we included an interaction term between knockdown status and the time spline 
in the model. Specifically, we utilized the following linear model command in R, where 
“response” is the confluence or wound closure, “ns” is the cubic spline function, and 
“cond” is a factor giving knockdown status (parental or knockdown):

Significance of the interaction term was determined with an F-test.
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Additional file 1: Fig. S1. Validation of SCNA scores using SNP-array data. A SCNA predictions based on DNA allelic 
imbalance compared to SNP-array predictions. Left panel shows SCNA scores across chromosome 1 estimated from 
DNA allelic imbalance from 33 neuroblastoma patients. Right Panel shows Corrected Log R ratio (or Corrected LRR) 
calculated from SNP array data for the same 33 patients. Corrected LRR is defined as aneuploidy corrected total 
probe intensity of a given genomic segment relative to a canonical set of normal controls and directly available 
from the TARGET. B Spearman’s rank correlation between SCNA score and absolute Corrected LRR for chromosome 1 
(Spearman’s correlation coefficient = 0.614, p-value = 3.51e-06). Exome-seq and SNP arrays use different sets of SNPs 
to predict SCNAs. Therefore, the Circular Binary Segmentation (CBS) algorithm tends to output segments which do 
not share the same genomic start and end positions. To directly compare SCNA detection using DNA allele imbal-
ance and SNP array, we first calculated the fraction overlap between genome segments identified by the respective 
methods. Next, we performed pairwise Spearman’s correlation between SCNA score and absolute Corrected LRR 
for genomic segments with fraction of overlap ≥ 0.5 or 50%. The points in the correlation scatter plot are colored 
by fraction overlap. The two points labelled PANRVJ correspond to two disjointed SCNAs spanning chr1:1922327-
9171333 and chr1:49201909-120298048. These regions showed absolute Corrected LRR < 0.5 and were annotated 
as copy neutral by SNP array. We suspect that these segments may be copy-neutral loss of heterozygosity regions, 
which are not detectable using direct analysis of SNP-arrays in TARGET. Fig. S2. SCNA predictions for chromosome 
11. A Comparison between DNA-imbalance SCNA predictions and CNVkit predictions for chr11. Left panel shows 
heatmap of δ" for 96 neuroblastoma patients. Right panel shows fold-change in normalized read coverage between 
tumor and normal tissues estimated using CNVkit. B Comparison between DNA-imbalance predictions and SNP-
array predictions for chr11. Left panel shows SCNA score across 33 neuroblastoma patients with SNP-array data in 
TARGET. Right panel shows corrected LRR calculated array SNP-array available through TARGET. C Spearman’s rank 
correlation between SCNA score and absolute corrected LRR for chr11 (Spearman’s correlation coefficient = 0.565, 
p-value = 2.3e-05). The points are colored based on fraction of overlap between genomic regions detected by our 
method and genomic regions from SNP-array based predictions. D Spearman’s rank correlation between ASE (aRNA) 
and SCNA score for MTMR2, a gene located within a common deletion segment on cytoband 11q21 (Spearman’s 
correlation coefficient = 0.64, p-value = 0.0001). Fig. S3. Detection of rare SCNAs on chromosome 16. A Left panel 
shows the heatmap of δ" for chromosome 16. Right panel shows the log2 fold-change in normalized read coverage 
between tumor and normal tissues estimated using CNVkit for chromosome 16. B Comparison between SCNA 
score and SNP-array predictions (i.e. corrected LRR) for chromosome 16 for 33 neuroblastoma samples. C Spear-
man’s rank correlation between SCNA score and absolute corrected LRR for chromosome 16 (Spearman’s correlation 
coefficient=0.59, p-value = 5.04e-05) for overlapping genomic regions. The points are colored based on fraction 
overlap between genomic regions detected by our method and genomic regions from SNP-array based predic-
tions. D Spearman’s rank correlation between ASE (aRNA) and SCNA score for CDT1, a gene located in the distal 
region of the q-arm (i.e., 16q24.3) (Spearman’s correlation coefficient = 0.58, FDR corrected p-value = 2e-06). Fig. 
S4. Haplo-insufficient tumor suppressors within common SCNAs may be dysregulated by secondary mechanisms. 
Spearman’s correlation between ASE (aRNA) and SCNA score for example chromosome 1p and chromosome 11q 
deletion genes: A CHD5, B UBE4B, C CADM1, and D ATM. Several samples show ASE in the absence of SCNAs. Fig. S5. 
Allele-specific expression, gene expression, promoter methylation, and survival for TFAP2B. A ASE (aRNA) of TFAP2B 
in neuroblastoma and adrenal gland tissues. B Reference and alternate allele proportion for RNA-seq and exome-seq 
reads at heterozygous sites which were used to estimate ASE for TFAP2B. C Correlation between ASE (aRNA) and pro-
moter methylation for TFAP2B. DNA methylation data was missing for 1 neuroblastoma sample (PAMVRA). The two 

lm(response ∼ cond ∗ ns(time, df = 2))
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samples with significant ASE are among those with the greatest promoter methylation. ASE of TFAP2B is correlated 
with its promoter methylation, however this correlation is not significant under an FDR threshold of 10% (Spearman’s 
rho= 0.604, FDR corrected p-value = 0.116). D Spearman’s correlation between ASE (aRNA) and gene expression for 
TFAP2B. E Genomic distribution of HM450K β-values for TFAP2B locus. The TFAP2B promoter is highlighted (gold box). 
F Expression profile of TFAP2B across different stages of disease for 498 neuroblastoma patients obtained from SEQC/
MAQC-III Consortium data set. We observed loss of expression of TFAP2B in stage 4 or metastatic disease suggesting 
this gene might act as a tumor suppressor. G Kaplan Meier survival analysis for MYCN nonamplified patients from 
the SEQC/MAQC-III Consortium data set. Fig. S6. Quantile-quantile plot for Spearman’s correlation analysis between 
ASE (aRNA) and promoter methylation for 1,043 NB-ASE genes. Under an FDR of 10% only the expression of ODZ4 
is significantly correlated with promoter methylation. Fig. S7. Knockdown of PTPRH in neuroblastoma cell lines. A, 
B PTPRH expression measured by qPCR in (A) SK-N-SH or (B) SK-N-BE(2) neuroblastoma cell lines stably transfected 
with 5 different shRNAs targeting PTPRH. Gene expression is plotted as 2-DDCt normalized to HPRT1 expression. C, D 
Western blot of PTPRH and GAPDH protein expression for the same (C) SK-N-SH and (D) SK-N-BE(2) cell lines. shRNA 
shPTPRH-373 consistently reduced gene and protein expression of PTPRH in both SK-N-SH and SK-N-BE(2) cells 
and was used for all downstream experiments. E, F Uncropped versions of the western blots of PTPRH and GAPDH 
protein expression in (E) SK-N-SH and CHP212 cells, and (F) SK-N-BE(2) cells. Note that we only used SK-NSH and SK-
N-BE(2) cells for the proliferation and wound healing assays shown in main text Fig. 6.

Additional file 2: Table S1. Results from Allele-Specific Expression (ASE) analysis of RNA-seq data for 96 neuro-
blastoma samples from TARGET. Table S2. Number of significant (FDR ≤ 0.1 or 10%) and testable (i.e., at least 1 
heterozygous site with ≥ 10 reads) samples for neuroblastoma tumors, adrenal gland, and whole-blood tissues for 
all significant ASE genes. Genes were considered to have neuroblastoma-specific ASE if they met these criteria; a) 
testable in ≥ 10 neuroblastoma and normal (i.e., adrenal-gland and whole-blood) samples and b) significant in ≥3 
neuroblastoma and significant ≤ 1 normal sample. The prefix “r.” indicates the number of samples showing significant 
ASE and “N.” indicates the number of samples testable for ASE. Table S3. Top 20 Gene Ontology (Biological processes) 
categories enriched for 1,043 NB-ASE genes. Table S4. SCNA scores for 96 neuroblastoma patient samples. Table S5. 
Spearman’s correlation between ASE  (aRNA) for 1,043 NB-ASE genes and SCNA score for overlapping genomic seg-
ments. Table S6. Table of high-impact somatic mutations mapping to NB-ASE genes detected using exome-seq 
data using Variant Effect Predictor (VEP) in 96 neuroblastoma tumors. Table S7. Spearman’s correlation between ASE 
(aRNA) and mean promoter methylation for 1,043 NB-ASE genes. Table S8. Spearman’s correlation between ASE 
 (aRNA) and gene expression (z-score normalized Fragments per Kilobase Per Million mapped) for 1,043 NB-ASE genes.

Additional file 3. Review history.
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