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As computing moves to battery operated portable systems, the functionality is increasingly imple-
mented in software with an embedded/real-time operating system (RTOS). For such systems, there is
a need for power-aware applications and system software. In this paper, we present a layered software
architecture that enables the application and OS programmers to design energy-efficient applications and
RTOS services. The software architecture consists of a power-aware RTOS kernel and a set of standard
software interfaces that enable easy exchange of timing and power information among the underlying
hardware platform, the RTOS, and the applications. To demonstrate the utility of our approach we focus
on making the task scheduling process in an RTOS power-aware, and incorporate an OS-directed dy-
namic power management technique that enables adaptive power-fidelity tradeoffs during task schedul-
ing. We have implemented it using the RedHat eCos operating system running on a complete variable
voltage system based on the Intel XScale micro-architecture. We ran four different algorithms, from
a simple shutdown based scheme to a dynamic predictive and adaptive DVS algorithm. The results
show an energy gain of up to 66% when comparing to the execution without any power management
incorporated and 17% comparing to the simple shutdown scheme.
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1 Introduction

Fueled by rapid advances in system integration and wireless communication technology, embed-
ded systems are increasingly becoming networked. These systems often involve integration of high-
performance computing and wireless communication capabilities, many of which operate under real-
time constraints. The complexity of these systems together with the need for high-flexibility, and aggres-
sive time-to-market schedules have resulted in the wide use of programmable system solutions. Software
support for these systems usually takes the form of a real-time operating system (RTOS), device drivers,
and runtime libraries.

Wireless embedded systems are often battery driven and, therefore, have to be designed and op-
erated in a highly energy-efficient manner to maximize the battery lifetime. The pressing need for
reduced-energy solutions has spurred the research and development of several low-power circuit design
methodologies [1, 25]. While using low-power hardware circuits is necessary, it alone is not sufficient,
especially since the increasing levels of system integration and clock frequencies continuously worsen
the energy problem. System lifetime can only be maximized by managing the various system resources
in a power-aware manner, thus empowering the system with the ability to dynamically adjust its op-
erating point in the performance-energy-fidelity tradeoff space. To address this issue, Dynamic Power
Management (DPM) techniques are being investigated (see for example, [8]). A commonly used DPM
scheme is to put the idle system components in a shutdown or into a low-power state. An alternative
— and more efficient when applicable — technique is Dynamic Voltage Scaling (DVS), where the volt-
age and operating frequency of the processor are changed dynamically during runtime to just meet the
instantaneous performance requirement. Realizing the potential benefits of DVS, several commercially
available mobile embedded processors (Intel StrongARM [2], Intel XScale [22], Transmeta Crusoe [3],
AMD Athlon [4], etc.) now support dynamic clock and voltage scaling.

In this context, an RTOS provides a number of services to an embedded system application. It man-
ages the creation, destruction, and scheduling of tasks, as well as the communication between tasks. It is
responsible for all resource allocation and management decisions, and serves as an interface between an
application and the underlying hardware platform. The RTOS has global information about the perfor-
mance requirements of all the applications, and can directly control the underlying hardware, tuning it
to meet specific system requirements. These characteristics make the RTOS an ideal place to implement
system-level power management policies.

1.1 Paper Overview and Contributions

This paper presents an structured and layered software architecture for power-aware wireless and
portable embedded systems. The architecture consists of a power-aware RTOS kernel, and a set of
standard software interfaces that enable easy exchange of timing and power information between the
underlying hardware platform, the RTOS, and the application. It provides a programming interface
(named PASA for Power-Aware Software Architecture) that can be used to efficiently incorporate system
power management policies into the RTOS. To demonstrate the impact of PASA, we focus our attention
on the task scheduling process in an RTOS. We use PASA to incorporate (and compare) several DPM
techniques (from a simple shutdown based scheme to an advanced DVS scheme that enables adaptive
power-fidelity tradeoffs) into the RedHat eCos [20] operating system running on a complete variable-
voltage system based on the Intel XScale micro-architecture.




1.2 Related Work

The importance of a well-structured software architecture for energy-efficiency in mobile systems is
discussed in [5]. As a first step to analyze and improve the energy impact of various OS decisions,
researchers have attempted to characterize the power consumption of embedded RTOSs [6, 7]. There
exists a multitude of work on OS-directed dynamic power management. Shutdown based power man-
agement schemes [8] attempt to optimize the system’s transition policy between several states, each of
which is characterized by a performance and power consumption level.

An early work on software architecture to enable power management at OS level include BIOS-based
Advanced Power Management (APM [24]). The principal limitation of APM is that the OS has no
knowledge of the APM actions. Its follow on, the Advanced Configuration and Power Management
(ACPI [23]) allows OS-directed power management by defining hardware registers and BIOS interfaces
(table, control methods). ACPI primarily enables use of Intel-specific hardware mechanisms for power
reduction. It does not provide any support for real time contraints. More importantly, it does not pro-
vide any mechanisms for the application software that can allow it to use the operating system power
reduction services.

Variable voltage schemes for energy-efficient task scheduling have mostly targetted either workstation-
like environments where latency is not an issue, and average throughput is the metric of performance [9,
10], or hard real-time systems, where a single timing violation may be catastrophic to system functional-
ity [11, 12, 13, 14]. It is only recently that a new class of power-aware scheduling schemes has emerged
that targets soft-real time systems, and permits a few deadlines to be missed [15, 16], thereby adding
another degree of freedom, namely system fidelity or quality of computation, to the design and operation
of these systems. This is particularly important for wireless systems where missed deadlines and packet
loss over the wireless link can be treated in a similar fashion providing a level of flexibility to enable
aggressive power management.

2 Software Architecture Requirements

In seeking to develop an architecture for the system and application software we briefly examine the
requirements that such an architecture must satisfy. There are, of course, requirements related to the
real-time nature of many embedded applications, many of which are satisfied by a range of available
RTOSs. For instance, the OS should be able to monitor the real time parameters of task instances (e.g.,
deadlines). Further, the OS must also be able to monitor the system workload and to predict future
execution times based on previous ones. The OS should also be able to manage the available hardware
knobs for speed-power trade-off, adjusting them according to the system workload. This includes setting
processor frequency and voltage, and set the processor into low power states by means of a simple and
structured interface.

For efficient system-level power management, it is important that an application is able to monitor and
control power related hardware “knobs” (such as processor voltage and frequency) as well as control and
take advantadge of power aware operating system services (such as task scheduling). There is a need
for mechanisms in the system software that allow efficient communication of energy, performance and
accuracy tradeoffs for a given application. The electrical “knobs” must be made available to the operating
system to enable the OS system writer to introduce power and energy awareness into traditional OS
services.




Making an OS or runtime system aware of the system power and energy constraints is not sufficient
in providing guarantees on how an application will perform in a power/energy constrained environment.
The operating system services must also be available to the application programmer so that application
can make use of this information in determination of power/energy dependent functionality and perfor-
mance characteristics. Specifically, facilities are needed for an application to create and instantiate a
task, taking into consideration the task timing parameters (period, deadline and execution time). The
application should also be able to inform the operating system about the start and end of its computation
and also about the expected remaining time of a given task instance (helping the OS to get a picture of
the system workload).

While many dynamic power management strategies are specific to the underlying hardware and soft-
ware, the application requirements for functionality and performance delivered under energy constraints
can be specified independent of the platform being used. Given the diversity of hardware and software
platforms used in portable, embedded and/or real-time systems, it is critical that power, energy and tim-
ing information is communicated through well-defined interfaces to ensure application portability across
platforms. More concretely, to make the API level operating system independent, all system calls to the
native operating system should be done by means of a POSIX interface (or any other portable operating
system standard interface).

3 Software Architecture Description

We view the notion of power awareness in the application and OS as a capability that enables a
continuous dialogue between the application, the OS, and the underlying hardware. This dialogue es-
tablishes the functionality and performance expectations (or even contracts, as in real-time sense) within
the available energy constraints. We describe here our implementation of a specific service, namely the
task scheduler, in PASA that makes it power aware. PASA is composed of two software layers and
the RTOS kernel. One layer interfaces applications with operating system and the other layer makes
power related hardware “knobs” available to the operating system. Both layers are connected by means
of corresponding power aware operating system services as shown in Figure 1. At the topmost level,
embedded applications call the API level interface functions to make use of a range of services that ulti-
mately makes the application energy efficient in the context of its specific functionality. The API level is
separated into two sub-layers. PA-API layer provides all the functions available to the applications, while
the other layer provides access to operating system services and power aware modified operating system
services (PA OS Services). Active entities that are not implemented within the RTOS kernel should also
be implemented at this level (threads created with the sole purpose of assisting the power management
of an operating system service, such as a thread responsible for killing threads whose deadlines were
missed, is one example). We call this layer the power aware operating system layer (PA-OSL).

To interface the modified operating system level and the underlying hardware level, we define a power
aware hardware abstraction layer (PA-HAL). The PA-HAL gives the access to the power related hard-
ware “knobs” in a way that makes it independent of the hardware.

Table 1 lists the functions relevant to the implementation of power aware scheduling techniques. At
the PA-API layer there are functions to create types (informing the real time related parameters) and
instances of tasks, to notify start and end of tasks (needed by the OS in order to detect whether the
task execution is over and the deadline of a task has been met), and to either inform the application
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Figure 1. Power Aware Software Architecture

about the execution time predicted by the OS or tell the OS about the execution time prediction es-
timated by the application (which can be based on application specific parameters). At the PA-OSL
layer there are functions to manipulate information related to the power aware scheduling schemes that
are maintained within the kernel (such as the type table in the case of the scheduler), the thread re-
sponsible for killing threads whose deadlines were missed (assuming, of course, that the threads whose
deadlines were missed are no longer useful). The alarm handler notifies the killer thread, which in turn
kills the thread and re-creates it. At the PA-HAL layer functions to manipulate processor frequency
and voltage levels and low power states are present. These are called by the RTOS scheduler when
slowing down the processor or shutting it down. For processor frequency and voltage scaling, different
platforms have different precautions that have to be taken care of before doing the scaling. These pre-
cautions might have to be done before the scaling, after it or both before and after. For these the functions
pahal_pre_ set_frequency_and_voltageandpahal_post_set_frequency and_voltageare
provided and must be filled by the OS programmer according to the platform.

Figure 2 shows an example on how the PA-API functions are used in the application source code in
creating threads using PA-API functions. A thread is created specifying that the deadline and period
are 100 and the worst case execution time is 31. The thread is instantiated and access to the power-
aware functionality contracts is enabled and terminated by the functions paapi_app_started()




void main()
{
thread_typel =
paapi_create_thread_type(100,31,100);

paapi_create_thread_instance{thread_typel,

thread) ;

void thread()
{
for (;i) {
paapil_app_started();

/* start of the original code */
/* do some processing */

/* end of the original code */

paapi_app_done () ;

Figure 2. Power aware source code

and paapi_app_done () respectively.

4 Implementation

The software architecture presented above has been incorporated in the eCos operating system 1. We
ported eCos to an Intel XScale processor based platform called 80200 Intel Evaluation Board (80200
Board for short) [21].

The XScale platform supports nine frequency levels ranging from 200MHZ to 733Mhz, even though
only seven of them are used in the 80200 board due to its own limitations. The processor can also be put
on three different low-power modes: IDLE, DROWSY and SLEEP. The SLEEP state is the most power
saving one but requires a processor reset in order to return it to active mode. The idle state, on the other
hand, is the least power saving but requires a simple external interrupt to wake the processor up.

As is the case with most RTOSs, eCos requires a periodic interrupt to keep track of the internal
operating system tick, responsible for the timing notion within the system. In the 80200 board the only
source of such interrupt is the internal XScale performance counter interrupt. In our case, this turned out
to be a problem because the interrupt is internal to the processor. Therefore it cannot wake it up from
one of the low power modes. Instead, we use a source of external interrupts to awaken the processor.

The source code for PASA implementation can be downloaded from http://www.ics.uci.edu/~cpereira/pads




The external interrupt is connected into the interrupt pin of the processor and the interrupts are generated
from an external microcontroller board.

Further, the only counter available in the 80200 board is the internal XScale performance counter,
which increments one unit every processor clock cycle. Unfortunately, this counter is no longer valid
when we put the processor in a low power mode because it stops. In addition, each time the clock
frequency is changed, the counter has to be adjusted leading to loss of precision in mainting time. Our
remedy was to associate one of the pins of the 80200 board external bus header, which enables it to
generate a signal telling the external microcontroller board to get a timestamp and store its value on the
host-PC. In this manner we have an accurate and precise notion of time external to the 80200 board.
This is needed to keep track of time during execution of experiments. The relationship among the 80200
~ board, the microcontroller board and the host-PC is depicted in Figure 3 (See a picture of the hardware
setup in Section E). The Maxim board shown in the lower left part is a wire-wrapped board that is
directly responsible for the dynamic voltage scaling of the XScale platform.

Intel Interrupts
80200 j=—————| Microcontroller
Evaluation | Timestamps Board
Board |
Timestamps
Voltage Value Processor
Supply Voltage
Voltage
Scaling Host
Maxim PC
Board ’

Figure 3. Hardware Architecture

4.1 Voltage Scaling

The hardware platform for implementing dynamic voltage scaling (voltage scaling at runtime) consists
of a Maxim 1855 evaluation board, and an interface circuitry made using a PLD. Whenever a voltage
change of the processor is required, the processor sends a byte through the peripheral bus of the 80200
board to interface circuitry which basically acts as an addressable latch. The outputs of this latch are
connected to the digital inputs of the Maxim variable supply board. These inputs select the output
supply voltage of the Maxim board and the processor analog and core supplies are fed from this supply
voltage. For the experiments, the system was configured to run at supply voltages from 1.0V to 1.5V
and frequencies from 333 MHz to 733 MHz. The frequency is changed using XScale internal registers.
The supply voltage from the Maxim board can vary at steps of 0.05V.

In order to prove the utility of our software architecture, we implemented different power management
algorithms using PASA. In the sequel we describe opportunities during task scheduling to both slowdown
and shutdown the processor.



4.2 Power Aware Scheduling Algorithms

It has been observed in many systems that, during runtime, the processor utilization factor is often
far lower than 100%, resulting in long idle intervals. This slack that inherently exists in the system can
be exploited for DPM by either shutting down the processor, or through the use of processor slowdown
and DVS. Note that the extent of slowdown is limited by the schedulability of the task set at the reduced
speed, since excessive slowdown may cause deadline violations. A second opportunity for DPM arises
due to the time-varying nature of the system workload. Performance analysis studies have shown that for
typical embedded system applications (e.g., audio and video encoding/decoding, encryption/decryption
etc.), the instance to instance task execution time varies significantly and is often far lower than the worst
case execution time (WCET) [18], which results in additional slack being created in the task schedule.
Since task instance execution times are not known at design time, to exploit this observation, the power
management policy has to be dynamic in nature.

System shutdown. The most obvious way of exploiting idle intervals in the schedule is to shutdown
the processor. Modern embedded processors offer multiple low-power states, corresponding to varying
degrees of system shutdown. Most shutdown based DPM policies are either predictive [19], or stochas-
tic [8] in nature. Several techniques for DPM policy optimization have also been proposed [8].

Static voltage and frequency scheduling. Quite often, in order to reduce the complexity of implemen-
tation, power management policies are static in nature. Note that static in the context of such a DVS
policy refers to the fact that the voltage and frequency settings of the processor are determined offline at
design time. The settings can vary from task to task, which will require the processor voltage and fre-
quency to be changed dynamically during runtime. The main advantage of a static power management
policy is that it is simpler than a dynamic policy. However, the downside is that such a policy cannot ex-
ploit DPM opportunities that arise dynamically, during system operation. We have implemented a static
DVS technique described in [16]. The objective of the algorithm is to determine a slowdown factor for
every task such that energy consumption is minimized while still guaranteeing the schedulability of the
task set. .

The response time of a task instance is defined as the amount of time needed for the task instance
to finish execution, from the instant at which it arrived in the system. The worst case response time
(WCRT), as the name indicates, is the maximum possible response time that a task instance can have.
For a conventional fixed speed system, the WCRT of a task under the RM scheduling scheme is given
by smallest solution of the equation [26]:

R;
R=C+ ) f71 x Cj Y]
jehp(i) *J

where hp(i) denotes the set of tasks with priority greater than that of task i, and [ | denotes the ceiling
operator. The summation term on the right-hand-side of the equation represents the total interference
that an instance of task i sees from higher priority tasks during its execution. If the WCRT of the task is
less than its deadline D, the task is guaranteed to be schedulable.

Proactive DVS scheme for power-fidelity tradeoff. In [16] the authors observe that even though task
instance execution times vary significantly, they depend on data values that are obtained from physical
real-world signals (e.g., audio or video streams), and hence are likely to have some temporal correlation
between them. This temporal correlation can be exploited to proactively manage processing resources
by predicting the execution times of individual task instances based on the past history of execution
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times, and setting the processor speed and voltage accordingly. Several prediction models can be used,
such as simple average, exponential average, least mean square, efc. While the use of more sophisticated
models yields better prediction accuracy, it also places a higher computational burden on the scheduler,
which is undesirable. As in [16], we use a simple average model that is computationally light-weight
and reasonably effective.

Adaptive speed setting policy. As in any predictive policy, mispredictions do occur, which lead to task
deadline misses. Wireless embedded systems invariably have some communication noise (in the form of
data losses and packet errors), and are designed to be tolerant to these channel impairments. The result of
a few task deadline misses is no different from noise, and only leads to a slight drop in system fidelity. To
keep the system fidelity under specified limits, they introduce an adaptive feedback mechanism into the
prediction process. The recent deadline miss history is monitored, and if the number of deadline misses
is found to be increasing, the prediction is made more conservative, reducing the probability of further
deadline misses. Similarly, a decreasing deadline miss history results in more aggressive prediction to
reduce energy consumption. The prediction scheme thus becomes adaptive to a recent history of missed
deadlines, resulting in an adaptive power-fidelity tradeoff which can be fine tuned to suit application
needs.

5 Experiments and Results

We executed four different DVS algorithms using the software and hardware platforms previously
described. The first is a simple “shutdown when idle” scheme. The second applies static slowdown
factors and shutdown. The third applies shutdown, static and dynamic slowdow factors, the latter being
based on predictions. Finally the fourth scheme combines shutdown, static and dynamic slowdown
factors, and in addition a deadline miss driven adaptive factor, which keeps slowing down the processor
by a factor, S, when no deadlines are being missed in the last W threads executions. This process is
repeated until the total slow down factor reaches a minimum M. When THRESHOLD deadlines are
missed in the previous window W of tasks executions, the processor is speeded up by factor I.

For our prototype system, we designed synthetic tasksets in which each task executes a busy loop
whose execution time varies according to the best case (BCET) and worst case (WCET) execution times
(see example in Section A) of the task in the same manner as described in [15]. The actual execution time
of each task instance is computed from a random gaussian distribution with Mean = (BCET +WCET)/2
and Standard Deviation = (WCET — BCET) /6. The BCET is expressed as a percentage of the WCET.
Four different tasksets were used for the experiments. The gaussian distribution function was extract
from the Gnu Scientific library (GSL) [27] code.

All algorithms used in the experiments shutdown the processor as soon as it becomes idle. The
processor is awakened when the next external interrupt arrives and then continues executing. The period
of the fastest task is the same as the period of the external interrupt to ensure that at awake time, the
processor is not idle. A limitation of the data collection strategy for our current testbed requires us to
make all tasks with periods multiple of the fastest task. However, this is not a fundamental limitation of
the software architecture or the DPM algorithms.

The shutdown mechanism is implemented using the operating system idle thread. Whenever the
system becomes idle, the idle thread is scheduled. We take advantadge of this and run the code to switch
the processor to IDLE state as the first action of this task. When the processor wakes up this task is




resumed and the highest rate task starts executing.

With reference to the algorithms described earlier, the slowdown factors are maintained internally to
eCos in the form of tables. Each task type is associated with a static factor, which is computed during
system initialization. The dynamic and adaptive factors are maintained in a table of task instances. The
task type table also maintains a specified number (10 in our experiments) of execution times of previous
tasks executions. eCos kernel has full access to these tables. PA-API layer accesses these tables by
means of functions provided by the PA-OSL layer.

With all these information available, whenever a context switch occurs, the information about the
preempted and scheduled tasks are updated and the voltage and frequency of the scheduled task are
adjusted according to the static, dynamic and/or the adaptive factors based on to the algorithm running
at the moment.
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Figure 4. Core and Analog power for XScale Add-Integer instructions at different frequencies and voltages

The tasksets used in the experiments are shown in Table 2. Each task set was executed using different
algorithms and ratios BCET /WCET, namely 0.1,0.3,0.5,0.7,0.9. The first column shows the taskset
name, the second their characteristics (Period, Worst Case Execution Time, Deadline) and the third the
static slow down factor according to the Rate Monotonic Analysis criteria. This slowdown factor is
multiplied into the maximum processor frequency value resulting in the frequency the task is executed.
On the top of this the other factors are applied, depending on the algorithm being used. The results
are shown in Figure 5 for different ratios BCET /WCET. These show the percentage of total energy
consumption of the tasksets running four different algorithms over the power consumption of running
the same tasksets without any power management strategy. A smaller ratio indicates a better power
management strategy. All of the power management strategies were implemented using the PASA de-
scribed earlier. We see improvements of up to 66% of energy consumption comparing with no power
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management and 17% comparing to the simple shutdown scheme.

We collected traces for the various executions of each taskset and based on the traces we calculate
the total power consumption. For the traces, the application is loaded into the 80200 board through the
serial interface. Once its running, for each change on the processor state we send a timestamp signal to
the microcontroller board, which in turn stores it in the host PC. By change in the processor state we
refer to voltage/frequency change, shutdown to idle and wake up from idle. For each time we request
a timestamp, we also store the ID of the event that just happened in the 80200 Board internal memory.
After finishing the execution of a taskset, the entire sequence of IDs is sent into the PC host through the
serial port. Having both traces available on the PC host we calculate the energy consumption, which
is the power consumption of XScale Add-Integer instructions at different frequency levels (that were
measured as shown in Figure 4), multiplied by the execution time at a specific frequency level. For the
IDLE state the power consumption was 1 mW as per the datasheet.

Table 3 shows the results of deadlines missed for Tasksets A, B, C and D. We used a window W = 5
and for each taskset different values of M, S and I (M = 0.85, § = 0.05, I = 0.1 for taskset A; M = 0.90,
S =0.05, I = 0.1 for tasksets B and D; M = 0.85, § = 0.01, I = 0.2 for taskset C) with which we
traded off deadline misses and energy savings (note that the factors used were not the ideal ones since
the optimality of this factor is not on the scope of this paper). THRESHOLD value is 2. We can
see a low rate of deadlines missed except for the lower priority tasks of each taskset when executing
shutdown/static/dynamic/adaptive with BCET /WCET ratio 0.9 for A, B, C and D, and 0.7 for D.

6 Conclusions

In this paper, we have presented a sofware architecture, PASA, that enables communication of energy
related data among applications, RTOS and hardware. In order to show its utility, PASA was incor- -
porated into eCos operating system running on a complete variable voltage system based on a XScale
processor. We also implemented four different DVS algorithms, from a simple shutdown based scheme
to a dynamic predictive and adaptive DVS algorithm and collected data to show the energy savings on a
real system implemented using PASA. The results show a gain of up to 66% when compared to the exe-
cution without any power management incorporated and 17% compared to the simple shutdown scheme.
For future we will add more power aware services to the RTOS and augment PASA with functions to
access these services. We will also implement real power measurements with real applications running
on the system. :
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A Synthetic Task Set Example

In this section an example of one taskset is presented. The function cyg_user_start creates the
task types and instances. Each task executes a variable delay loop depending on the result of the gaussian
distribution function. When the execution is done the functions call the eCos function to get suspended.
The implementation below is not completely following the POSIX standard.

Copyright (c) 2001-2002 The Regents of the University of California.
All Rights Reserved. Permission to use, copy, modify, and distribute
this software and its documentation for educational, research and
non-profit purposes, without fee, and without a written agreement is
hereby granted, provided that the above copyright notice, this
paragraph and the following two paragraphs appear in all copies.
This software program and documentation are copyrighted by The

Regents of the University of California ("The University of California')

THE SOFTWARE PROGRAM AND DOCUMENTATION ARE SUPPLIED "AS IS," WITHOUT
ANY ACCOMPANYING SERVICES FROM THE UNIVERSITY OF CALFORNIA.
FURTHERMORE, THE UNIVERSITY OF CALIFORNIA DOES NOT WARRANT THAT THE
OPERATION OF THE PROGRAM WILL BE UNINTERRUPTED OR ERROR-FREE. THE
END-USER UNDERSTANDS THAT THE PROGRAM WAS DEVELOPED FOR RESEARCH
PURPOSES AND IS ADVISED NOT TO RELY EXCLUSIVELY ON THE PROGRAM FOR
ANY REASON.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. THE UNIVERSITY OF CALIFORNIA
SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Author(s): Cristiano Pereira

Date: 1/10/2002

Purpose: Made up task set, used to test the predictive algorithm

Description: This is a made up task set. Each task executes a loop,
which takes random execution time simulating in this way

variable task execution time in the system.
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#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <cyg/kernel/kapi.h>
#include <cyg/hal/hal_io.h>

#include "procpower.h"
#include "schedpower.h"

#include "gsl_randist.h"

#include "schedpower_debug.h"

#define FRACTION 0.9

#define NUM_TASKS 3
#define STACK_SIZE 4096

cyg_thread thread_s[NUM_TASKS];
char stack[NUM_TASKS] [STACK_SIZE];

cyg_thread_entry t simple_thread;

/* killer thread handle, thread region and stack area */
cyg_thread kt_thread_s;

cyg_thread test_thread_s;

char kt_stack[STACK_SIZE];

char test_stack[STACK_SIZE];

cyg_handle_t killer_handle;

cyg_handle_t test_handle;

struct thread _type_handle_t type_handle[NUM_TASKS];
struct thread_instance_handle_t instance_handle[NUM_TASKS];

void simple_thread(cyg_addrword_t data);
void test_thread(cyg_addrword_t data);

#include "sched_var.macro"

void cyg_user_start(void)
{
int i, J;
struct thread_type_info_t th_type_info;

struct thread_instance_info_t th_instance_info;
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init_log();
initialize_processor_power_management () ;

log_event (0x9) ;

cyg_thread_create(0, killer_thread, (cyg_addrword_t) 0, "Killer",
(void *) kt_stack, 4096, &killer handle, &kt_thread_s);

cyg_thread_resume (killer_handle);

init_power_scheduler();

/* thead type info */

th_type_info.wcet = 50;
th_type_info.deadline = 160;
th_type_info.period = 160;
th_type_info.hard = 1;
th_type_info.entry point = simple_thread;

create_task_type (th_type_info, &type_handle[0]);

/* thead type info */

th_type_info.wcet = 100;
th_type_info.deadline = 320;
th_type_info.period = 320;
th_type_info.hard = 1;
th_type_info.entry point = simple_thread;

create_task_type(th_type_info, &type_handle(l]);

/* thead type info */

th_type_info.wcet = 150;
th_type_info.deadline = 640;
th_type_info.period = 640;
th_type_info.hard = 1;
th_type_info.entry point = simple_thread;

create_task_type(th_type_info, &type_handle[2]);

for ( i = 0; i < NUM_TASKS; i++ ) {
create_task_instance (type_handle([i],
&instance_handle[i],
(cyg_addrword_t)1,
"Thread",
(void *) stackl[i],

STACK_SIZE,
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&thread_s(i]);

void simple_thread(cyg_addrword_t data)
{
cyg_uint32 i = (cyg_addrword_t)data, j, k;
cyg_uintl6é instance_index = get_instance_table_index(cyg_thread_self(});
cyg_tick_count_t exec_time, current_time, start_tick;
unsigned usecl, usec2;
unsigned msecl, msec2;
cyg_uint32 delay;
gsl_rng *rng = (gsl_rng *)gsl_rng_alloc(gsl_rng default);

while (1) {
// Useful thread work is within app_started and app_done function calls
app_started(instance_index) ;

start_tick = current_time = cyg current_time();

#if defined(XSCALE_PROCESSOR) || defined(LINUX_SYNTHETIC_PROCESSOR)
// Get execution time according to a Gaussian distribution
delay = (unsigned)ceil{((1.0 + FRACTION) *
(instance_table[instance_index]->type_info->wcet))/
(double)2.0 + gsl_ran gaussian(rng,
((1.0 - FRACTION)*
(instance_table[instance_index]->type_info->wcet))/
(double)6.0));
// Wait for hundreds of microseconds
DELAY_100USEC( delay - 1 );
#endif
app_done (instance_index) ;

current_time = cyg_current_time();

cyg_thread_suspend(cyg_thread_self());
/* sleep until the beginning of the next thread period */
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B Interface with the Microcontroller board

Below the interface with the microcontroller board is presented. Every time the 1log_event is called
a time stamp is requested to the microtroller board, which sends it through the serial port. Also a event

identifier is written into the XScale board memory.

unsigned char power__log[MAX_EVENTS_LOGGED];
unsigned short 1og__index = 0;

unsigned char *timestamp_mem = (unsigned char *) (0x022c0000) ;

void time_stamp()
{

*timestamp_mem = O0xFF;

I

*timestamp_mem = 0x10;
*timestamp_mem = 0x10;

*timestamp_mem OXFF;

il

void init_log()
{

log_index = 0;

void log_event (unsigned char event_type)
{
time_stamp();

power_log[log_index++] = event_type;

15




C External and Internal Counter Interrupts Handling

// Interrupt service routine for the internal timer
static cyg_uint32 pmu_ccnt_ovfl_ISR(cyg_vector_t vector, cyg_addrword_t data)
{

usec_elapsed_time++;

hal_microsecond_timer_reset(0);

hal_interrupt_acknowledge (CYGNUM_HAI,_INTERRUPT_PMU_CCNT_ OVFL) ;

return CYG_ISR_HANDLED;

void hal_microsecond_timer initialize{(unsigned period)
{
// event types both zero; clear all 3 interrupts;
// disable all 3 counter interrupts;
// CCNT counts every processor cycle; reset all counters;
// enable PMU.
register unsigned init = 0x00000401;
register unsigned initl = 0x00000000;
asm volatile (
"mer pl14,0,%0,c0,c0,0;" // write into PMNC
"mer p13,0,%1,c8,c0,0;"

‘r*(init),"r" (initl)
/Fx/
)i
if { period != 0 ) {
orig_usec_period = period;
period = (“period) + 1;
usec_period = period;
}
hal_microsecond_timer_ reset (0);

hal_microsecond_timer_reset_count();

void hal_microsecond_timer reset (unsigned new_value)
{
if ( tnew_value ) {
asm volatile (
"mrc pl4,0,r0,cl,c0,0;" // read from CCNT - how long since OVFL
"mcexr pl4,0,%0,cl,c0,0;" // write into CCNT

'r' (usec_period)
" rO "w

)i
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}
else {
asm volatile (
"mrc pl4,0,r0,cl,c0,0;" // read from CCNT - how long since OVFL
'mcr pl14,0,%0,c1,c0,0;" // write into CCNT

"r" (new_value)
n ro "

)

void hal_microsecond_timer_ reset_count (void)
{

usec_elapsed_time = 0;

static cyg_uint32 nirg ISR(cyg_vector_t vector, cyg_addrword_t data)
{

int isr_ret = 0;

unsigned char old;

unsigned char i;

// Acknowledges the external interruption
old = *int_ack_timestamp_mem;
for (i = 0; 1 < 40; i++ )

*int_ack _timestamp_mem = old & 0x2F;

*int_ack_timestamp_mem = old | 0x10;

if ( !first_time ) {
isr _ret = hal_call_isr (CYGNUM_HAL_INTERRUPT_ TIMER) ;
CYG_ASSERT (isr_ret & CYG_ISR_HANDLED, "Interrupt not handled");

clk++;
}
else {

first_time = 0;

}
hal_microsecond_timer_reset (0); // reset the microsecond internal timer
hal microsecond_timer_reset_count(); // reset the microsecond counter

#include "wakeup_threads.macro"

return isr_ret;
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Layer

Functions/Threads

PA-API

paapi_create_thread_type()
paapi_create_thread_instance()
paapi_app-started()
paapi_get_time_prediction()
paapi_set_time_prediction()

paapi_app-done()

PA-OSL

paosl_create_task_type_entry()
paosl_create_task_instance_entry()
paosl _killer_thread()
paosl_killer_thread_alarm_handler()

PA-HAL

pahal_initialize_processor_pm()
pahal_get_frequency_levels_info()
pahal_get_current_ffequency()
pahal_set_frequency_and_voltage()
pahal_pre_set_frequency_and_voltage()
_pahal_post_set_frequency_and_voltage()

pahal_get_lowpower_states_info()

pahal_set_lowpower_state()

Table 1. PASA relevant functions
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T1 = (16000, 5000, 16000)
T2 = (32000, 10000, 32000)
T3 = (64000, 15000, 64000)

0.85
0.85
0.85

T1 = (10000,1500,10000)
T2 = (10000,3000,10000)
T3 = (20000,9700,20000)
T4 = (40000, 700,40000)

0.95
0.95
0.95
0.95

T1 = ( 8000, 3100, 8000)
T2 = (16000, 2500, 16000)
T3 = (32000, 4400, 32000)
T4 = (88000,10000, 88000)
T5 = (176000,8000,176000)

0.85
0.85
0.85
0.85
0.85

T1 = ( 18000, 8800,18000)

T2 = (36000, 3500,36000)

T3 = (72000, 6000,72000)

T4 = (90000,13000,90000)
T5 = (108000, 2200,108000)
T6 = (180000, 1000,180000)

0.88
0.88
0.88
0.88
0.88
0.75

Table 2. Tasksets used in the experiments
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Taskset A
0.85 T T T T

shutdown

Ratio (No Power Management)/(Power Management)

0.3 1 1 1 I 1 L 1
01 02 0.3 04 0.5 0.6 0.7 08 0.9
Ratio BCET/WCET
TasksetC
09 T T T T T T
shutdown —+—
085 static/shutdown -
static/shutdown/dynamy
08 static/shutdown/dynami

Ratio (No Power Management)/(Power Management)

1 L 1

0.1 02 0.3 04 05
Ratio BCET/WCET

0.6 0.7 08 0.9

Ratio (No Power Management)/(Power Management)

Ratio (No Power Management)/(Power Management)

Taskset B

1

09

T T T T

shutdown ——

static/shutdown ---»-—

static/shutdown/dynamic, ;-
static/shutdowr/dynamic/adapti ]

Il ! ( 1 1 L

04
0.1

03 04 05 06 0.7 08 0.9
Ratio BCET/WCET

Taskset D

L 1 ! 1 1 1

0.3
0.1

03 04 05 0.6 07 08 0.9
Ratio BCET/WCET

Figure 5. Ratio between (No power management)/(Power management) for each task set executing different algorithms at

different ratios BCET/WCET
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Table 3. Percentage of deadlines missed per algorithm for tasksets A, B, C and D using shutdown/static/dynamic/adaptive

algorihm

A101(03|05|07]09| B {01]03|05/0.7]0.9
T1 | O 1 1 1 2 4TL) 00|00 ]|O
™| 0[O0 ] 0|0 |2 {|T2,0}0|]0]O0 1
T30 |0 [0 3 (25(T3,0 2|2 ]|2]2

410 1210|010

C|01]03]05(07|09] D |01]03]05/|0.7]09
T1| 1 | 2 |1 1 1 11,2 (20010
™| 0|0 |0 |00 |T22|2]0/0]O0
™W| o[ 00|04 T3/ 00000
™4/0 000 /|10)|T4] 0|00} 2|5
5{0 [ 0|0 |0 [|2|T5[0 0|0 ]| 2]21

T6| 0 | O | 0| 0|20
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