
UNIVERSITY OF CALIFORNIA,
IRVINE

On Priors for Bayesian Neural Networks

DISSERTATION

submi�ed in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Eric Thomas Nalisnick

DISSERTATION Commi�ee:
Professor Padhraic Smyth, Chair

Chancellor’s Professor Pierre Baldi
Associate Professor Babak Shahbaba

2018

© 2018 Eric Thomas Nalisnick

DEDICATION

To my parents.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1

1.1 Bayesian Inference . 3
1.2 Priors for Prediction . 6
1.3 Preliminaries . 9

1.3.1 Outline and Contributions . 9
1.3.2 Notation . 12

2 Bayesian Neural Networks 13

2.1 Neural Networks . 14
2.1.1 Conditional Models . 15
2.1.2 Autoencoders . 17

2.2 Bayesian Neural Networks . 18
2.2.1 Conditional Models . 19
2.2.2 Generative Models . 20

2.3 Posterior Inference . 23
2.3.1 Markov Chain Monte Carlo . 23
2.3.2 Variational Inference . 29

3 Survey of Neural Network Priors 39

3.1 Conditional Models . 40
3.1.1 Gaussian Priors . 40
3.1.2 Heavy-Tailed Priors . 43
3.1.3 Other Priors: Discrete and Noninformative 48

3.2 Density Networks . 48

iii

4 Multiplicative Noise as an Induced Prior 52

4.1 Background . 54
4.2 Multiplicative Noise as Gaussian Scale Mixtures 55

4.2.1 Gaussian Scale Mixtures . 55
4.2.2 Noise Induced ARD Priors . 56
4.2.3 Corresponding Priors . 59

4.3 A Variational Derivation with Applications to Pruning 60
4.4 Experiments: Weight Pruning . 63
4.5 Conclusions . 65

5 Approximating Objective Priors 67

5.1 Background and Related Work . 69
5.1.1 Reference Priors . 69
5.1.2 Related Work . 71

5.2 Learning Reference Prior Approximations . 73
5.3 Empirical Results . 79

5.3.1 Recovering Je�reys Priors . 79
5.3.2 Optimization Stability . 82
5.3.3 VAE Case Study . 83

5.4 Conclusions . 85

6 Learning Priors for Invariance 86

6.1 Preliminaries . 88
6.1.1 Perturbation Processes . 88
6.1.2 Invariant Models . 89

6.2 Learning Invariant Priors . 90
6.2.1 �antifying Approximate Invariance . 90
6.2.2 Exposing the Prior . 91
6.2.3 Optimization Objective . 92

6.3 Analytical Solution for Linear Regression . 93
6.4 Black-Box Learning for Intractable Models . 95
6.5 Related Work . 96
6.6 Experiments . 98
6.7 Conclusions . 103

7 Nonparametric Priors for Density Networks 104

7.1 Stick-Breaking Processes . 105
7.2 SGVB for GEM Random Variables . 106

7.2.1 Composition of Gamma Random Variables 106
7.2.2 The Kumaraswamy Distribution . 107

7.3 Stick-Breaking Variational Autoencoders . 108
7.3.1 Generative Process . 109
7.3.2 Inference . 109
7.3.3 Semi-Supervised Model . 110
7.3.4 Related Work . 111

iv

7.3.5 Experiments . 112
7.4 Latent Dirichlet Process Mixtures . 118

7.4.1 Experiments . 120
7.5 Conclusions . 122

8 Open Problems and Conclusions 124

8.1 Open Problems . 124
8.2 Conclusions . 127

Bibliography 128

v

LIST OF FIGURES

Page

1.1 Gaussian Mixture Model Fit to Hit Locations. Graphic made with baseballr [Pe�i,
2016]. 7

2.1 Example of a Posterior Predictive Distribution. 20
2.2 Unsupervised Neural Network Models. Computation diagrams for the various un-

supervised neural network models. Black rectangles denote observed quanti-
ties, gray rectangles denote deterministic hidden units, white rectangles denote
stochastic latent variables. 21

2.3 Variational Autoencoder. 37

3.1 Gaussian Process Behavior of Bayesian Neural Networks. 43
3.2 Heavy-Tailed Priors. 46

4.1 Experimental Results. Weight pruning task (a, b, c) and empirical moments (d). . . 64

5.1 Approximation via Lower Bound Optimization. 78
5.2 �antifying the Approximation �ality. The Kolmogorov-Smirnov distance (supre-

mum of distance between empirical CDFs) between the Je�reys/true reference
prior and the various approximation techniques. The gray region denotes where
the test’s null hypothesis is rejected, meaning there is a statistical di�erence be-
tween the distributions. 80

5.3 Optimization Stability. I train an implicit prior for a multivariate Gaussian and
vary (a) the number of samples used in the VR-max estimator, and (b) the Gaus-
sian’s dimensionality. 82

5.4 Learning the Variational Autoencoder’s Reference Prior. (a) computational pipeline
from the implicit prior through the VAE decoder; (b) RP approximation (contours
are generated via kernel density estimation on 10, 000 samples). 83

6.1 Weight Visualization. Above I show filter visualizations for 100 weight matrices
sampled from two learned implicit priors, one invariant to dropout and one in-
variant to rotation. Both were trained on MNIST. The dropout invariant prior can
be seen to down-weight features found around the center of the image, which is
where the active features usually are found. The rotation invariant prior learns
spiral feature transformations roughly similar to some of the features learned by
Toroidal Subgroup Analysis (see Figure 3 in Cohen and Welling [2014]). 98

vi

6.2 Invariance vs Perturbation Magnitude. The plots above shows the robustness of
several distributions (y-axis showsEpλ(θ)EqζKLD[p(y|x,θ) || p(y|x̃,θ)]) to dropout
and rotation perturbations of increasing magnitude (x-axis). I compare the pro-
posed invariant priors—three approximations: implicit (red), factorized Gaussian
(green), Gaussian mixture (blue)—to a standard Normal prior (pink) and the pos-
terior (black) a�er training on perturbed data. We see the learned invariant pri-
ors exhibit invariance across all perturbation magnitudes, especially when using
implicit or mixture approximations. 99

7.1 Subfigures (a) and (b) show the plate diagrams for the relevant latent variable
models. Solid lines denote the generative process and dashed lines the inference
model. Subfigure (a) shows the finite dimensional case considered in [Kingma
and Welling, 2014b], and (b) shows the infinite dimensional case of our concern.
Subfigure (c) shows the feedforward architecture of the Stick-Breaking Autoen-
coder, which is a neural-network-based parametrization of the graphical model
in (b). 108

7.2 Subfigure (a) shows test (expected) reconstruction error vs training epoch for the
SB-VAE and Gauss VAE on the Frey Faces dataset, subfigure (b) shows the same
quantities for the same models on the MNIST dataset, and subfigure (c) shows
the same quantities for the same models on the MNIST+rot dataset. 114

7.3 Subfigure (a) depicts samples from the SB-VAE trained on MNIST. I show the
ordered, factored nature of the latent variables by sampling from Dirichlet’s of
increasing dimensionality. Subfigure (b) depicts samples from the Gauss VAE
trained on MNIST. 115

7.4 Subfigure (a) shows results of a kNN classifier trained on the latent representa-
tions produced by each model. Subfigures (b) and (c) show t-SNE projections of
the latent representations learned by the SB-VAE and Gauss VAE respectively. . . 116

7.5 Sparsity in the latent representation vs in the decoder network. The Gaussian
VAE ‘turns o�’ unused latent dimensions by se�ing the outgoing weights to zero
(in order to dispel the sampled noise). The SB VAE, on the other hand, also has
sparse representations but without decay of the associated decoder weights. . . . 117

7.6 Computation graph of a Deep Latent Gaussian Mixture Model (DLGMM). The
inference network computes the parameters of K mixture components. The de-
coder network receives a sample from each and computes the reconstruction.
The recursive process by which the mixture weights πk are generated is omi�ed. 120

7.7 Subfigures (a) and (b) show samples from the two mixture components at the
extremes of the latent space. Subfigures (c) and (d) show t-SNE embeddings of
the Gauss-VAE and DLGMM latent space (respectively). 121

7.8 Subtable (a) shows MNIST test error for kNN classifiers trained on samples from
the latent distributions. Results for 3, 5, and 10 (k) neighbors are given. Each
model was trained with no label supervision. Subfigure (b) reports the (Monte
Carlo) estimated marginal likelihood on the test set. 122

vii

LIST OF TABLES

Page

4.1 Noise Models and their Corresponding Gaussian Scale Mixture Prior. 60

6.1 Rotated MNIST. Test classification error on a data set of rotated hand-wri�en
digits [Larochelle et al., 2007]. The first four models (from the top) have no notion
of rotation, the next two have rotation invariant priors (ours), and the last two
have rotations explicitly parameterized in the model and represent the current
state-of-the-art. 100

6.2 IMDB Sentiment Analysis. Test classification error on the (large) IMDB sentiment
analysis data set [Maas et al., 2011]. ∗ indicates a method was trained without
the unlabeled examples. MC: Monte Carlo, CF : Closed-Form. 101

7.1 Marginal likelihood results (estimated) for Gaussian VAE and the three parametriza-
tions of the Stick-Breaking VAE. 114

7.2 Percent error on three semi-supervised classification tasks with 10%, 5%, and 1%
of labels present for training. The DGM with stick-breaking latent variables (SB-
DGM) is compared with a DGM with Gaussian latent variables (Gauss-DGM),
and a k-Nearest Neighbors classifier (k=5). 118

viii

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support and encouragement of my
advisor, Padhraic Smyth. Padhraic gave me a tremendous amount of intellectual freedom through-
out my time at UCI. Whenever I brought him my latest half-baked idea (e.g. stick-breaking au-
toencoders), he listened intently and sharpened my thinking through our discussions. In this
way, Padhraic taught me a good deal about communicating science and translating my unruly
thoughts into coherent whiteboard arguments. Moreover, no ma�er where in the world a con-
ference was being held, Padhraic always encouraged me to submit my work, saying he would
find a way for me to a�end upon acceptance—and he always did.

I also thank the rest of my commi�ee: Pierre Baldi and Babak Shahbaba. Each suggested es-
sential improvements to this dissertation in addition to providing helpful feedback at my public
defense. I especially thank Babak for allowing me to a�end his geometry, math, and statis-
tics seminar. The discussions with a�endees Hongkai Zhao, Kyle Cranmer, Je� Streets, Alex
Vandenberg-Rodes, Andrew Holbrook, and others were immensely influential and formative
early in my graduate studies. I also am grateful to Anima Anandkumar, who served as a sec-
ond advisor during my second and third years in the program and introduced to me interesting
topics such as score matching and the continuation method. Past and present members of the
Smyth DataLab have also been essential to making my time at UCI productive as well as enjoy-
able: Jimmy Foulds, Nick Navaroli, Kevin Bache, Moshe Lichman, Zach Butler, Homer Strong,
Chris Galbraith, Dimitrios Kotzias, Jihyun Park, Disi Ji, Efi Karra Taniskidou, Casey Gra�, and
Robby Logan. I have also learned much from the mentors, collaborators, and friends with whom
I have crossed paths during my stints in industry: Rich Caruana, Nick Craswell, Bhaskar Mitra,
Vijai Mohan, Eiman Elnahrawy, Mihir Bhanot, Madhu Kurup, Eric Reel, Hugo Larochelle, Sachin
Ravi, Harm De Vries, Ilija Bogunovic, Jake Snell, Mengye Ren, and others.

On a personal note: My time at UCI would not have been as successful without the lasting
friendships I have made here. My knowledge of statistics and machine learning was expanded (in
addition to my waistline) through weekly lunches with Brian Vegetabile and Andrew Holbrook.
Regular pub visits with Brian, Andrew, David Stenning, Chris, Lars Hertel, Garren Gaut, Maricela
Cruz, Micah Jackson, Lingge Li, and others provided some much needed liquid therapy. And last
but not least, Dimitrios and Dylan Conroy dragged me away from my desk and on many fun
adventures throughout southern California.

The work in this dissertation was supported by the National Science Foundation under awards
IIS-1320527, NRT-1633631, CNS-1730158, and DGE-1633631 and by the National Institutes of
Health under award NIH-1U01TR001801.

ix

CURRICULUM VITAE

Eric Thomas Nalisnick

EDUCATION

Doctor of Philosophy in Computer Science 2018

University of California, Irvine Irvine, California

Master of Science in Computer Science 2013

Lehigh University Bethlehem, Pennsylvania

Bachelor of Science in Computer Science and English Lit. 2012

Lehigh University Bethlehem, Pennsylvania

RESEARCH EXPERIENCE

Graduate Research Assistant 2013–2018

UCI Smyth DataLab Irvine, California

Applied Scientist Intern Fall 2016

Amazon Irvine, California

Research Intern Summer 2016

Twi�er Cambridge, Massachuse�s

Research Intern Summer 2015

Microso� Redmond, Washington

Research Scientist Intern Summer 2014

Amazon Sea�le, Washington

REFEREED CONFERENCE PUBLICATIONS

E. Nalisnick and P. Smyth. Learning Priors for Invariance. In Proceedings of the 21st Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

E. Nalisnick and P. Smyth. Learning Approximately Objective Priors. In Proceedings of the
33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

E. Nalisnick and P. Smyth. Stick-Breaking Variational Autoencoders. In Proceedings of the
5th International Conference on Learning Representations (ICLR), 2017.

E. Nalisnick, B. Mitra, N. Craswell, and R. Caruana. Improving Document Ranking with

DualWord Embeddings. In Proceedings of the 25th World Wide Web Conference (WWW), 2016.

x

E. Nalisnick and H. Baird. Character-to-Character Sentiment Analysis in Shakespeare’s

Plays. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(ACL), 2013.

E. Nalisnick and H. Baird. Extracting Sentiment Networks from Shakespeare’s Plays. In
Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR),
2013.

TEACHING EXPERIENCE

Teaching Assistant University of California, Irvine

CS175: Projects in Artificial Intelligence Winter 2018

Reader University of California, Irvine

CS274A: Probabilistic Learning Winter 2017

ACADEMIC REVIEWING

Conference on Neural Information Processing Systems (NIPS) 2016–2018

Best Reviewer Award (2017)
International Conference on Machine Learning (ICML) 2018

International Conference on Learning Representations (ICLR) 2018

Machine Learning 2017

Data Mining and Knowledge Discovery 2017

xi

ABSTRACT OF THE DISSERTATION

On Priors for Bayesian Neural Networks

By

Eric Thomas Nalisnick

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Padhraic Smyth, Chair

Deep neural networks have bested notable benchmarks across computer vision, reinforcement

learning, speech recognition, and natural language processing. However, neural networks still

have deficiencies. For instance, they have a penchant to over-fit, and large data sets and careful

regularization are needed to combat this tendency. Using neural networks within the Bayesian

framework has the potential to ameliorate or even solve these problems. Shrinkage-inducing

priors can be used to regularize the network, for example. Moreover, test set evaluation is done

by integrating out uncertainty and using the posterior predictive distribution. Marginalizing the

model parameters in this way is not only a natural regularization mechanism [MacKay, 1992a]

but also enables uncertainty quantification—which is increasingly important as machine learning

is deployed in ever more consequential applications.

Bayesian inference is characterized by specification of the prior distribution, and unfortunately,

choosing priors for neural networks is di�icult [Buntine and Weigend, 1991]. The primary ob-

stacle is that the weights have no intuitive interpretation and seemingly sensible priors can in-

duce unintended artifacts in the distribution on output functions. This dissertation aims to help

the reader navigate the landscape of neural network priors. I first survey the existing work on

priors for neural networks, isolating some key themes such as the move towards heavy-tailed

priors [Neal, 1994]. I then describe my own work on broadening the class of priors applicable to

xii

Bayesian neural networks. I show that introducing multiplicative noise to the hidden layer com-

putation induces a Gaussian scale mixture prior, suggesting links between dropout regularization

[Srivastava et al., 2014] and previous work on heavy-tailed priors. I then turn towards priors

with frequentist properties. Reference priors [Bernardo, 1979] cannot be analytically derived for

neural networks so I propose an algorithm to approximate them. Similarly, it is hard to derive

priors that make the model invariant under certain input transformations. To make progress, I

use an algorithm inspired by my work on objective priors to learn a prior that makes the model

approximately invariant. Lastly, I describe how to give Bayesian neural networks an adaptive

width by placing stick-breaking priors [Ishwaran and James, 2001] on their latent representation.

I end the dissertation with a discussion of open problems, such as incorporating structure into

priors while still maintaining e�icient inference.

xiii

Chapter 1

Introduction

To call in the statistician a�er the

experiment is done may be no more than

asking him to perform a post-mortem

examination: he may be able to say what

the experiment died of.

R. A. Fisher

Imagine you are a scout for a major league baseball franchise and are tasked with finding the

next Ted Williams.1 For any player you encounter, you ask the natural question: what is the

chance he will register a ‘hit’ in any given at-bat? This chance is known within baseball as a

player’s ba�ing average: a real number between zero and one (inclusive) representing the chance–

or more precisely, probability—that the player will score a hit. Of course, it is impossible to

know a player’s innate ba�ing average, but we can take steps toward an answer through making

observations, by tracking the results of his at-bats. The hope is that if we track the player’s

ba�ing results for long enough, we can eventually make a good estimate of his true ba�ing

1Theodore Samuel Williams (August 30, 1918 – July 5, 2002) was the last major league baseball player to record
a ba�ing average of .400 or higher over a season, which he accomplished in 1941.

1

potential (assuming the player’s skill and di�iculty of the opposing pitchers remain constant).

These ba�ing observations can be thought of as data: an at-bat results in a realization of a

random variableX ∈ {0, 1}. Say we observeN total at-bats for a given player, in turn producing

a data set x = {x1, . . . , xi, . . . , xN} with each xi being a realization of X , equal to one if the

player achieved a hit in the ith at-bat and zero if not. The total number of hits is
∑N

i=1 xi = k.

A probabilistic model for binary data of this type is the binomial distribution. The probability of

a data set can be computed under the model as follows:

p(x; π) = Binomial(k;N, π) =

(
N

k

)
πk(1− π)N−k

where π ∈ [0, 1] is known as a model parameter and, in the case of the binomial applied to ba�ing

results, represents the probability of a hit—or in other words, the player’s ba�ing average. In fact,

if we assume this posited binomial model is indeed a useful model of how hits are generated, then

ba�ing results for the player can be thought of as draws from the model, i.e. x̂ ∼ Binomial(1, π∗)

with π∗ being the player’s true hit probability. Making these modeling assumptions has turned

the problem of player evaluation into one of statistical inference: what is the value of a given

player’s Bernoulli parameter π∗? If we can somehow obtain π∗ or closely approximate it, then we

know the player’s innate ba�ing average, which then allows us to evaluate him as a prospect.

A frequentist approach to inference relies on two fundamental principles: repeated observation

and maximum likelihood estimation. In our example of player evaluation, a frequentist scout

would collect as large of a data set as possible. Then, given the (hopefully large) data set x,

maximum likelihood estimation finds the parameter estimate π̂ that results in the data having

its highest probability under the model. Moreover, as N →∞, maximum likelihood estimation

recovers the true parameter (under assumptions) [Casella and Berger, 2002]. Solving the simple

maximization problem for the binomial model yields the formula π̂MLE = k
N

. The result is intu-

itively satisfying as it is simply the number of hits divided by the number of at-bats. Readers

2

familiar with how major league baseball (as well as most other levels of play) reports statistics

will notice that o�icial ba�ing averages are obtained via the frequentist paradigm, i.e. maxi-

mum likelihood estimates of the Bernoulli parameter. If the frequentist scout does not feel a

su�iciently large data set has been collected as to trust the maximum likelihood estimate, un-

certainty in the estimate can quantified via a confidence interval, which represents how widely

π̂ might vary under alternative data sets of the same size.

While the frequentist approach is undoubtedly elegant in its simplicity, its reliance on an in-

creasing amount of data becoming available is unrealistic in some cases. Using π̂MLE to quantify

a professional baseball player’s hi�ing ability is not problematic because professionals play over

160 games and usually bat at least three times per game, but consider a scout a�empting to

evaluate amateur players by observing their performance in college or high school games. These

players will take only a fraction of the number of at-bats a professional does. In that case, it may

seem as if statistical inference is doomed from the outset for how can we glean knowledge from

data without having much of it?

1.1 Bayesian Inference

Bayesian inference is an alternative to the frequentist paradigm, and it assumes the model pa-

rameters are fundamentally random. Instead of obtaining a point estimate π̂ and controlling for

how it varies under data resampling, Bayesians’ fundamental quantity of interest is a probabil-

ity distribution in its own right. Continuing with the baseball scout example, given the binomial

model p(x|π)2 and a prior distribution p(π), the scout uses Bayes’ theorem [Bayes, 1763] to

compute

p(π|x) =
p(x|π)p(π)

p(x)
(1.1)

2I have changed the notation from p(x;π) to p(x|π) to emphasize that π is now considered a random variable.

3

where p(x) =
∫
π
p(x|π)p(π)dπ, which is known as the model evidence, and p(π|x) is the condi-

tional distribution of the parameter given the data and is known as the Bayesian posterior.

Before turning discussion towards the posterior, let us first consider the prior. Before any player

data is observed, the Bayesian scout must specify p(π), and doing so is “the most important

step” in the Bayesian approach in that it can “drastically alter the subsequent inference” [Robert,

2001]. At first glance, Bayesian inference may seem non-rigorous for why would we want to let

the modeler—with all of her human bias and subjectivity—exert such a degree of control over

the parameter estimates? The criticism of using ‘personalistic probability’ [Savage, 1972, Jaynes,

1968] has been slung against Bayesians since the infancy of statistical inference [Fisher, 1922].

Yet, as Jaynes [1968] elegantly clarifies, priors, when specified properly, are not ‘personalistic’ in

the sense that they contain information available only to one person. Rather, priors should be

based on information that is scientifically testable and therefore available to anyone who may

perform the appropriate experiment [Jaynes, 1968]. In this view, priors are perhaps no more

subjective than the data model, which needs to be specified no ma�er the inference philosophy.

Returning to the problem posed above—how can we evaluate players without many ba�ing

observations?—the Bayesian scout can still hope to make accurate inferences by specifying a

useful prior. If the player has ba�ing performance data available for a previous season, that

information could serve as a reasonable prior. Or for another example, perhaps out-of-game in-

formation such as the speed with which he swings the bat or the distance his hits travel during

practice has been recorded. A player with a high bat speed and who hits many home runs during

practice should likely be given a prior that favors a higher estimate of π. Note that in the these

examples, the information on which the prior is based is all testable.

Now with p(π) chosen, the Bayesian scout is free to collect data, again observing N at-bats

x = {x1, . . . , xN}, and then compute the posterior p(π|x). Assume that the prior has been

4

chosen to be the Beta distribution, which has density function

p(π;α0, β0) =
πα0−1(1− π)β0−1

B(α0, β0)

where α0, β0 > 0 are the parameters (chosen by the modeler during prior specification) and

B(·, ·) is the Beta function. For the Bernoulli model, the Beta distribution is said to be its conjugate

prior [Casella and Berger, 2002] since the posterior distribution is again a Beta:

p(π|x) = Beta (π;α = k + α0, β = (N − k) + β0) =
πk+α0−1(1− π)(N−k)+β0−1

B (k + α0, (N − k) + β0)
. (1.2)

Notice how the prior’s parameters interact with the data via addition. This simple posterior form

enables us to think of α0 and β0 as pseudo-counts (or pseudo-data) contributing to the number of

successes (k) and total number of at-bats (N) respectively. Knowing that the posterior will have

this intuitive form enables the prior to be specified even more precisely since the scout can reason

about the prior’s parameters in terms of the data. For instance, if the prior is set according to

the player’s bat speed, then the scout can be explicit in how many extra hits (α0) or failures (β0)

any given speed is worth. Having a concrete translation between physical or observed quantities

and parameters further elucidates prior assumptions, allowing them to be reformulated if shown

over time to be misguided. From this perspective we can see that priors provide nothing for free

and are perhaps be�er thought of as a mechanism through which already observed data and the

corresponding inferences can be brought mathematically to bear in a new inferential task.

Once it is time for the Bayesian scout to report her evaluation of the player, point estimates

such as the posterior mean—which for the Beta is π̂MPE = (k + α0)/(N + β0 + α0)—or the

posterior mode—which is π̂MAP = (k+α0−1)/(α0 +N +β0−2)—can be computed. If the scout

wishes to incorporate some notion of uncertainty, then she can also report a posterior credible

interval. Unlike confidence intervals, credible intervals have the intuitive interpretation that the

parameter has the specified level of probability of falling within the range. Lastly, a satisfying

5

aspect of the Bayesian methodology is that it naturally lends itself to continual inference. If the

scout is tasked with re-evaluating a player, such as in the subsequent season, then the current

posterior can serve as the future prior and the whole framework remains coherent.

1.2 Priors for Prediction

For much of the discipline’s history, statistics has concerned itself with asking inferential ques-

tions like the one posed in the previous section. There is some random variable that we wish to

hone in upon by observing data generated as a function of that same variable. In the example of

a baseball scout, the random variable is the ba�ing average (π), the data is the ba�ing results,

and the model is the binomial distribution. Once the quantity has been estimated to a satisfy-

ing degree of accuracy and precision, then the task is essentially complete, and decisions can be

made based on the outcome. The scout reports the estimated ba�ing average to the franchise

and the leadership decides whether to sign the player to a contract or not. Situations such as

determining the e�ectiveness of a pharmaceutical drug or validating the outcome of a scientific

experiment would transpire similarly.

However, there are alternative forms of probabilistic reasoning. The one this dissertation is pri-

marily concerned with is model-based prediction. Instead of seeking to determine the value of a

particular model parameter, prediction’s goal is to estimate the parameters of the model so that

the model’s output itself is useful. I will demonstrate the di�erence via another example from

baseball. Consider a data set that contains the coordinates of a player’s hits, and denote this

data set as X = {xi = (xi, yi)}Ni=1 whereby xi = (xi, yi) are the x− y coordinates of the ith hit

and N is the total hits observed. If a team’s statistician has such a data set for opposing players,

she can build a model to predict where a given player may hit the ball. The team’s coach can

then use the model to position his players in the field so they may make a catch3. A Gaussian

3If a ba�ed ball is caught by an opposing player before it touches the ground, then it is counted as an ‘out.’ The

6

Figure 1.1: Gaussian Mixture Model Fit to Hit Locations. Graphic made with baseballr [Pe�i, 2016].

mixture model is one model that can make such predictions; it has the form

p
(
x;π, {µk}Kk=1, {Σk}Kk=1

)
=

K∑
k=1

πk Normal(x;µk,Σk) (1.3)

where π is a K-dimensional vector of mixture weights that sum to one, µ and Σ are the mean

(row) vector and covariance matrix of a Gaussian (a.k.a. normal) distribution, and k indexes

the K components that form the mixture. The Gaussian densities have the functional form:

Normal(x;µ,Σ) = exp
{−1

2
(x− µ)Σ−1(x− µ)T

}
/
√
|2πΣ|. A�er performing maximum like-

lihood estimation to find the weights, means, and covariances, the model’s output can be vi-

sualized by plugging every position on the baseball field into Equation 1.3. Doing this with an

example data set yields the density shown in Figure 1.1. The utility of Figure 1.1 is immediate,

even from a cursory glance. The red shading—the area of highest probability density—clearly

shows that the player’s hits favor the le� side of the field. Thus, the coach should signal to the

third baseman to expect a hit his way and perhaps should even have the other players take a

few steps to their right.

The crucial di�erence between the ba�ing average example and the hit density example above

is that there is no specific parameter of interest in the la�er model. Of course, we need the

o�ensive player does not reach base and leaves the field of play.

7

parameter estimation procedure—in the example above, maximum likelihood—to work well in

order to build a model faithful to the data, but in no way are we concerned with recovering some

true mean or covariance. Rather, we simply want the aggregate density, which is formed by all

parameters in concert, to reflect the ba�er’s future behavior. To rephrase the distinction, a coach

has a clear interpretation of what the ba�ing average estimate π̂ means in the absence of the

binomial model. Yet, she has no immediate use for, say µ̂k=2, the mean of the second component.

It is only the model output p
(
x; π̂, {µ̂k}Kk=1, {Σ̂k}Kk=1

)
that is useful.

Another way to think about the di�erence between prediction and inference is of the former sub-

suming the later. The goal of artificial intelligence (AI) is to build autonomous systems that can

perform useful tasks without any human supervision. And if one assumes these decisions should

be based on data, then a well-performing AI must encapsulate both the role of the statistician—

building models, performing inference—and the person making the decision based on the in-

ference [Ghahramani, 2008]. In the example of deciding whether to give a player a contract or

not, a franchise could build an AI program to make that decision itself, giving it the raw ba�ing

data as input. The AI ostensibly would need to perform inference for the Bernoulli parameter

on its own as a sub-task, which is the role of the statistician / scout, and then generate the final

decision, the role of the franchise leadership. Robust, general AI is far o�, but I include the above

argument to show that inference and prediction are not necessarily disparate.

Thinking back to the Bayesian paradigm for inference, one may wonder how useful it is for

prediction tasks. If we do not have a strong concern for the values of the model parameters, how

can we set the prior distribution? For the Gaussian mixture model, it is possible to incorporate

some considerations about the player for which we wish to build the model. For instance, if the

player has a large and powerful physique, the statistician make place priors on the means such

that they are located closer to the outfield fence than would be done for, say, a player known

for his smaller stature and quickness. However, the Gaussian mixture posterior does not have

the additive interactions between the prior and data that the beta-Bernoulli model does and

8

therefore priors may behave in unexpected ways.

Se�ing priors for the Gaussian mixture is relatively easy compared to the the models with which

this dissertation is concerned: neural networks [Hebb, 1949, McCulloch and Pi�s, 1943, Rosen-

bla�, 1958, Hopfield, 1982, Hinton, 1986, LeCun et al., 1998, Goodfellow et al., 2016]. Neural

networks are hierarchical models that transform some input by composing several pairs of lin-

ear transformations followed by element-wise non-linear functions. In a Bayesian treatment,

the priors are (usually) placed on the parameters of the linear transformation. Se�ing priors for

these parameters is an especially challenging task that is only magnified at the deeper levels

of composition. The immediate answer to this problem is that we should not be thinking about

priors in terms of the distribution they induce on parameters but instead as the distribution they

induce on output functions. Since output is the model artifact the user truly cares about, then

the priors should be specified in that context. Of course, such a statement is easier wri�en than

done well. Over the course of this dissertation, I will discuss a range of priors for neural networks,

including ones that are objective, subjective, and nonparametric.

1.3 Preliminaries

Before starting the dissertation’s technical material, I give its outline and highlight the primary

research contributions. I then introduce the notation used throughout the dissertation.

1.3.1 Outline and Contributions

This dissertation is organized into a background chapter (2), a chapter surveying the work on

neural network priors (3), four chapters of original work (4, 5, 6, 7), and a concluding chapter (8).

The background chapter briefly reviews neural networks in their supervised and autoencoder

formulations before discussing Bayesian versions of each model. Posterior inference by way

9

of both Markov chain Monte Carlo and variational inference is also covered. Since there are

many well-wri�en textbooks and tutorials on this foundational material, my treatment aims to

be high-level and to draw connections between concepts. Detailed explanations can be found in

the relevant citations.

Moving on to Chapter 3, the dissertation surveys other work on priors for neural networks (again,

for both supervised and unsupervised models). The dissertations of MacKay [1992c] and Neal

[1994] established much of the research bedrock underlying Bayesian neural networks, and

many of their contributions are still relevant today. I summarize their ideas and then discuss

how they have been built upon in the deep learning era. This chapter is the most current survey

of neural network priors of which I am aware. In fact, Robinson [2001] and Lee [2004] are the

only previous surveys I could find, and they are now considerably out of date.

I begin discussing my own work in Chapter 4, starting with an analysis of multiplicative noise in

neural networks [Nalisnick et al., 2015]. I show that regularizing a network with multiplicative

noise—as is done with dropout [Srivastava et al., 2014]—is equivalent to placing a Gaussian scale

mixture prior on the parameters and integrating out the scale with a Monte Carlo approxima-

tion. I then derive a variational EM update for the noise / scale parameter, revealing its shrinkage

mechanism. Interestingly, the derivation shows that the mechanics of noise regularization con-

flict with the commonly used signal-to-noise weight pruning heuristic. I then reformulate the

heuristic so that it is in agreement with noise-based regularization. Experiments validate the

analysis, showing that my proposed heuristic outperforms the signal-to-noise ratio in several

pruning tasks.

In the subsequent chapter, I turn to my work on approximating objective Bayesian priors [Nalis-

nick and Smyth, 2017b]. Objective priors are said to be noninformative in the sense that they re-

sult in posteriors with frequentist properties—for example, credible intervals nearly match confi-

dence intervals [Irony and Singpurwalla, 1997]. These priors, however, are intractable to compute

for neural networks. To bypass the obstacle, I derive an algorithm for learning reference prior

10

approximations for a wide class of models that includes neural networks. In the experiments, I

show the proposed approach is superior to two previously proposed methods for approximating

reference priors and use it to reveal the variational autoencoder’s objective prior.

One notable hole in the previous work on Bayesian neural networks is the lack of subjective

priors. Inspired by the above work on reference priors, I fill in this gap for a subclass of invariant

priors [Nalisnick and Smyth, 2018]. The method measures how the model output changes under

input perturbations and optimizes the prior so that the model output is le� invariant. In super-

vised se�ings, this method does not depend on the labels being present and thus is amenable to

semi-supervised learning. The prior can be optimized on the unlabeled data and then used in the

fully-supervised model as usual. Experiments show that learning invariant priors improves model

performance, allowing Bayesian methods to become competitive to non-Bayesian approaches.

The final original work contained in the dissertation is described in Chapter 7. I propose placing

Bayesian nonparametric priors on the latent variables of unsupervised Bayesian neural networks

[Nalisnick et al., 2016, Nalisnick and Smyth, 2017c]. This allows their width to become adaptive

and enables their latent space to inflate its dimensionality as the data necessitates. I show two

variants of this model—one with just stick-breaking latent variables and another with a Dirichlet

process mixture latent space. Experiments confirm these priors allow for richer latent represen-

tations: we see factors of variation divide into di�erent subspaces or regions of latent space

(depending on the model version).

Finally, chapter 8 concludes the dissertation. I discuss several directions for future research,

concentrating particularly on structured and discrete priors that do not admit analytic di�er-

entiation. Such priors are especially challenging to apply to neural networks since they do not

admit backpropagation, but they have the potential to make neural network computation more

e�icient and to extend Bayesian reasoning to the level of network architectures.

11

1.3.2 Notation

I use the following notation throughout the dissertation except where noted otherwise. Matri-

ces are denoted with upper-case and bold le�ers (e.g. X), vectors with lower-case and bold (e.g.

x), and scalars with lower-case and no bolding (e.g. x). Data are represented as row vectors

x ∈ X with X representing the underlying population. I assume N independently and identi-

cally distributed draws from X are observed, and these draws constitute the empirical data set

X = {x1, . . . ,xN}. When X is the variable I wish to model, I define the likelihood function to be

p(x|θ) where θ ∈ Θ are the model parameters taking values in some space Θ. Furthermore, let

the data set likelihood be denoted p(X|θ) =
∏N

i=1 p(xi|θ) with the factorization following from

the i.i.d. assumption. In the case of prediction or supervised learning tasks in which X are covari-

ates (features) that are predictive of another variable y = {y1, . . . , yN}, the likelihood function is

a conditional model of the form p(y|x,θ), and the data set likelihood is
∏N

i=1 p(yi|xi,θ). When

a distribution is conditioned on a random variable, I write it as p(X|θ), but when those param-

eter are considered fixed or a hyperparameter, I denote the distribution as p(X;θ). I overload

the notation for Bayesian inference, using the semi-colon to demarcate variables without priors.

For example, writing p(X|θ;α) means that the reader should expect there to be a prior p(θ)

placed on θ. On the other hand,α does not have a prior and will be given a point estimate when

performing any posterior inference.

12

Chapter 2

Bayesian Neural Networks

Radford Neal: I don’t necessarily

think that the Bayesian method is the best

thing to do in all cases…

Geoff Hinton: Sorry Radford, my

prior probability for you saying this is zero,

so I couldn’t hear what you said.

An exchange at the 2004 CIFAR workshop

When performing prediction, the goal of model building is to obtain parameter estimates that ex-

tract generalizing pa�erns from the data. To make the model as accurate as possible, it is natural

to want to make it as ‘big’ as possible. ‘Big,’ in this sense, means it has the capacity to represent

a wide range of predictive functions. Neural networks are one variety of high-capacity model that

have achieved notable success as of late. The family of neural-network-based techniques known

under the umbrella term deep learning [LeCun et al., 2015, Goodfellow et al., 2016, Deng and Yu,

2014, Bengio et al., 2013a, Schmidhuber, 2015] has made clear empirical progress on certain tasks

in the subfields of computer vision [Krizhevsky et al., 2012], speech processing [Dahl et al., 2012],

13

natural language processing [Manning, 2016], and reinforcement learning [Mnih et al., 2015]. In

this chapter, I define neural networks in both their supervised and unsupervised variants. I then

motivate and introduce their Bayesian formulation, establishing the necessary background for

the dissertation’s eventual discussion of various classes of priors.

2.1 Neural Networks

I introduce neural networks by starting with linear models in order to demonstrate how the

former can be composed from the la�er. Assume we have data of the formD = {(xi, yi)}Ni=1 with

xi being a row vector of covariates predictive of the corresponding label or response yi. Recall

the definition of a generalized linear model (GLM) [Nelder and Baker, 1972], which parametrizes

the expected value of the dependent variable by way of a transformed inner product between

data and parameters:

E[yi|xi] = g−1(xiw + b) (2.1)

where E[y|x] denotes the conditional expectation of y, g : µ 7→ R is the link function, w ∈ Rd

is a column vector of real-valued parameters, and b ∈ R is a scalar bias variable. Crucially, the

link function maps the mean of the distribution to the real line, and its specification depends

on the distributional assumptions placed on y. For instance, if we assume y ∼ Poisson(λ =

g−1(xw + b)), then g−1 is the exponential function, i.e. λ = exp(xw + b).

A common problem is that while x may contain information about its corresponding y, that infor-

mation is not laid bare in the original feature set—or at least not exposed enough to be extracted

by a linear function. One solution is to define a new feature vector based on a transformation,

i.e. x̃ = h(x) with h(·) denoting the transformation function. A polynomial expansion is one

simple way to define h(·); if x is assumed two-dimensional, then h(x) = (x1, x2, x
2
1, x1x2, x

2
2).

14

Yet, choosing a specific feature transformation can be time consuming, and one workaround is

to parametrize the transformation, i.e. x̃ = h(x;φ) with φ being the parameters. Combining

this formulation with the GLM definition, we have what is known as adaptive basis function

regression:

E[yi|xi] = g−1(h(xi;φ)w + b). (2.2)

This model is termed adaptive since the model itself can choose how to transform the features

(up to the expressivity of h(·)). As the model’s choice is guided by the optimization objective, the

transformation should be one that enables a good fit of the conditional model. While passing

the burden of feature design from modeler to model is sensible and a�ractive, it comes with a

trade-o� in that the new feature representation may not be interpretable to the user. All of its ties

to the original semantic designations and physical quantities may be lost. Yet, as our primarily

goal is optimal predictive accuracy, many modelers are willing to sacrifice interpretability if the

predictive gains are worthwhile. The successes of deep learning have been won by taking this

bet.

2.1.1 Conditional Models

Neural networks (NNs) are simply adaptive basis function regressors with the basis function being

a series of stacked GLMs. To demonstrate, a one-hidden-layer NN is defined as follows:

E[yi|xi] = g−1(h(xi; W1,b1)w2 + b2), h(xi; W1,b1) = f(xiW1 + b1) (2.3)

where the equality on the LHS is the same as Equation 2.2 but with the basis function parameters

made explicit, i.e. φ = {W1,b1}. The equation on the RHS is the feature transformation; it takes

the form of our previous GLM definition except that it produces a vector output. Accordingly, the

parameters W1 ∈ Rd×d′ and b1 ∈ Rd′ are a matrix and a vector respectively, and they map from

15

the original feature space’s dimensionality d to a new dimensionality d′. The function f(·) acts

element-wise and is known as the activation function. Sometimes f(·) is chosen to be a particular

link function—the logistic function used to be a common choice—but it is important to note that,

unlike g(·), f(·)’s form is in no way dictated by y’s support. Instead, f(·) is essentially free for the

modeler to choose. Yet, in order to perform gradient-based optimization, f(·) is all but always

chosen to be di�erentiable and non-saturating (at least in one direction). The rectified linear unit

(ReLU) defined as f(z) = max(z, 0) is a popular choice [Nair and Hinton, 2010, Goodfellow et al.,

2016]. Readers familiar with spline regression [De Boor et al., 1978, Schumaker, 2007] will notice

this as the ‘hockey stick’ function.

Extending a one-hidden-layer network to a deep network of multiple layers simply means that

h(x; ·) is comprised of a composition of several GLM-like transformations. Define aL-layer NN’s

basis function recursively as

hl
(
xi; {Wj}lj=1, {bj}lj=1

)
= fl(hl−1

(
xi; {Wj}l−1j=1, {bj}l−1j=1

)
Wl + bl), h0 (xi) = xi (2.4)

for l ∈ [0, L]. The deep NN output is then a GLM defined on the last layer of features: E[yi|xi] =

g−1(hL(xi; {Wl}Ll=1, {bl}Ll=1)WL+1 + bL+1). For simplicity, from here forward I suppress the

functional notation and instead write the intermediate hidden representations as

hi,l = hl
(
xi; {Wj}lj=1, {bj}lj=1

)
.

In order to perform probabilistic inference, we need to write the deep NN log likelihood. It is:

L
(
D, {Wl}L+1

l=1 , {bl}
L+1
l=1

)
= log p

(
y|X, {Wl}L+1

l=1 , {bl}
L+1
l=1

)
=

N∑
i=1

log p
(
yi|xi, {Wl}L+1

l=1 , {bl}
L+1
l=1

) (2.5)

with the model parameters being the collection of weights and biases.

16

2.1.2 Autoencoders

NNs can also be used without supervision, and these models are known as autoencoders (AEs)

(a.k.a. diablo networks or auto-associators) [Co�rell et al., 1989, Baldi and Hornik, 1989, Bourlard

and Kamp, 1988, Hinton and Salakhutdinov, 2006, Bengio et al., 2013a]. The AE takes in an

observation xi as input, computes one or more hidden representations hi,1, . . . ,hi,L, and then

tries to predict the observation back from the latent representation:

E[xi|xi] = g−1(hi,LWL+1 + bL+1), hi,l = fL(hi,l−1Wl + bl), hi,0 = xi (2.6)

where g−1(·) is again the inverse link function that maps the inner product to the proper domain,

fl(·) is the hidden activation, such as a ReLU, that produces a non-linear latent representation,

and the parameters to be estimated are the weights {Wl}L+1
l=1 and biases {bl}L+1

l=1 . One-hidden-

layer AEs are usually thought of as being comprised of two separate components: the encoder

f(xiW1 + b1) and the decoder g−1(hiW2 + b2). The AE optimization objective is equivalent to

that of principal components analysis (PCA) when (i) we assume the observations are Gaussian,

(ii) the non-linear activation functions are removed (or equivalently, assumed to be the identity

function), and (iii) the encoding and decoding parameters are tied [Baldi and Hornik, 1989]. Just

as one could do with the latent representations produced by PCA, hi can be used as a compressed

representation of xi and incorporated into downstream tasks such as fast retrieval [Hinton and

Salakhutdinov, 2006].

The data set log likelihood under an AE is wri�en as:

L
(
X, {Wl}L+1

l=1 , {bl}
L+1
l=1

)
= log p

(
X|X, {Wl}L+1

l=1 , {bl}
L+1
l=1

)
=

N∑
i=1

log p
(
xi|xi, {Wl}L+1

l=1 , {bl}
L+1
l=1

)
.

(2.7)

Notice that the basic AE is not a principled probabilistic model because the distribution on xi

17

is conditioned on itself via the latent representation hi,L. Yet, the model is made practical by

choosing h to have a dimensionality less than that of x, resulting in a ‘bo�leneck’ that prevents

the model from learning a spurious identity map. Ideally, the information lost should be the

observation noise, and hi,· should retain the underlying, useful semantic information. Some

work has been done to reformulate AEs to be proper generative models. Bengio et al. [2013c]

accomplishes this by adding noise to x before it is passed into the model. Then the noise model

and AE can be composed to form a transition operator of a Markov chain (subject to assumptions

and conditions).

2.2 Bayesian Neural Networks

Frequentist methods—such as maximum likelihood for parameter estimation, penalized objec-

tives for regularization, cross-validation for model selection, and bagging [Breiman, 1996] as

a means of ensembling—have predominantly been used to fit NNs. Bayesian treatments have

been less common with the primary obstacle being mathematical: the analytical intractabilities

that result from the NN’s composition of non-linear functions. However, Bayesian NNs have

the potential to be immune to several of the problems known to accompany deep learning. For

instance, NNs are ‘data hungry,’ requiring training data sets of perhaps millions of labeled in-

stances. Bayesian NNs may get around this glu�ony by, for example, using well specified priors,

similarly to how I described them being used in Chapter 1 for the data scarce baseball se�ing.

Or for another example, the denominator in Bayes’ theorem, the model evidence term p(x), in-

tegrates over the uncertainty in the parameters and thus is a natural regularization mechanism

[MacKay, 1992a]. Using the evidence and related quantities such as the posterior predictive

distribution may make deep NNs robust even in situations without much available data.

18

2.2.1 Conditional Models

NNs can be given a Bayesian treatment by placing priors on the weights and biases. Writing

Bayes theorem with a conditional NN model, we have

p({Wl}L+1
l=1 , {bl}

L+1
l=1 |y,X) =

p(y|X, {Wl}L+1
l=1 , {bl}

L+1
l=1)

∏L+1
l=1 p(Wl)p(bl)

p(y|X)
(2.8)

where the model evidence term is computed as

p(y|X) =

∫
W,b

p(y|X, {Wl}L+1
l=1 , {bl}

L+1
l=1)

L+1∏
l=1

p(Wl)p(bl) dWdb.

One glance at the posterior distribution above provokes the question: why is it useful? In the

baseball example from Chapter 1, the posterior p(π|x) is conspicuously useful since it quan-

tifies uncertainty about the player’s ba�ing average. There is no analogous interpretation for

p({Wl}L+1
l=1 , {bl}

L+1
l=1 |y,X). Wl is just one of many (perhaps billions) of parameters and has no

inherent meaning in isolation. In fact, NNs are invariant under permutation—that is, the incom-

ing and outgoing weights of the hidden representations can be switched and (with appropriate

book keeping) still the network will have the same output [Goodfellow et al., 2016]. Thus, even if

two NNs have exactly the same architecture and produce exactly the same outputs, their param-

eter estimates will not necessarily correspond. This fact makes clear that it will be exceptionally

hard for the modeler to glean an interpretation from p({Wl}L+1
l=1 , {bl}

L+1
l=1 |y,X) alone.

Recalling that our goal is to generate predictions for a newly observed point x∗, the posterior

predictive distribution is the quantity we truly desire:

p(y∗|x∗,y,X) =

∫
W,b

p(y∗|x∗, {Wl}L+1
l=1 , {bl}

L+1
l=1) p({Wl}L+1

l=1 , {bl}
L+1
l=1 |y,X) dWdb (2.9)

where p(y∗|x∗, {Wl}L+1
l=1 , {bl}

L+1
l=1) is the likelihood evaluated on the new feature vector and

p({Wl}L+1
l=1 , {bl}

L+1
l=1 |y,X) is the posterior as computed on the training set. Notice that this

19

Figure 2.1: Example of a Posterior Predictive Distribution.

distribution is defined on the data space and therefore has much more of a hope of being inter-

pretable than any distribution on the NN parameters. Figure 2.1 shows an example predictive

distribution. The black squares denote training observations, the blue line represents the predic-

tive function, and the gray regions mark the model’s posterior predictive uncertainty. Observe

how the uncertainty inflates in the areas without data.

2.2.2 Generative Models

AEs could be given a Bayesian formulation in much the same way as the conditional model

above, by simply placing priors on the weight matrices and biases. However, this would not fix

the problem of AEs being improper generative models. One solution is to reformulate the AE

into a latent variable model akin to factor analysis (FA) [Bartholomew, 1987], where the latent

representation is a random variable. MacKay and Gibbs [1999] call this model a density network,

and its one-hidden-layer version is defined as follows:

E[xi|zi] = g−1(hiW2 + b2), hi = f(ziW1 + b1), zi ∼ p(z) (2.10)

where hi represents a deterministic latent representation (like in the AE) and zi denotes a random

latent variable drawn from the shared (across all i) prior p(z). Priors can also be placed on the

20

(a) Autoencoder

(b) Deep Density Network, Deterministic (c) Deep Density Network, Stochastic

Figure 2.2: Unsupervised Neural Network Models. Computation diagrams for the various unsu-
pervised neural network models. Black rectangles denote observed quantities, gray rectangles
denote deterministic hidden units, white rectangles denote stochastic latent variables.

weights and biases. Density networks are properly generative since z appears on the RHS of the

conditional expectation and not x. Thus, ancestral sampling can be used to draw from the model:

ẑ ∼ p(z), x̂ ∼ p(x|ẑ; {Wl}L+1
l=1 , {bl}

L+1
l=1). Readers familiar with FA will first notice that remov-

ing the deterministic hidden layer and se�ing the link to the identity results in FA’s traditional

formation, i.e. E[xi|zi] = ziW + b, with W being known as the loading matrix. Hence, the den-

sity network model can be thought of as a particular implementation of non-linear FA [Gibson,

1960, McDonald, 1962]—specifically, non-linear in both the parameters and the factors, as was

first introduced by Amemiya [1993]. Generative adversarial networks [Goodfellow et al., 2014]

have a density network as their underlying generative model; however, the generator network

is not trained through the usual likelihood-based approaches, making the coming discussion of

inference methods not fully applicable.

Density networks can be made ‘deep’ in at least two ways. The first is to insert multiple de-

terministic representations hi,· between zi and the model output, just as one would make an

AE deep. The second is slightly more interesting: use multiple stochastic latent variables and

parametrize the prior at layer l in terms of the variables at layer l − 1. For a concrete example,

21

consider parametrizing the mean of a Gaussian with the preceding latent variable:

p(zl|zl−1;θ,Σl) = N(zl;µl = ψ(zl−1;θ),Σl)

where ψ(zl−1;θ) is a function with parameters θ that maps the latent variable to the mean.

Rezende et al. [2014] consider such a model and use NN transformations for the maps (which

could include multiple deterministic layers). Figure 2.2 shows computation diagrams for the

unsupervised NN models discussed: the AE and the two variants of a deep density network.

Subfigure (b) shows how depth is added to the density network via deterministic transformations

and no additional stochastic latent variables. Subfigure (c) shows multiple levels of stochastic

variables with the one at an earlier layer parametrizing the prior for one at a later layer. There

has also been work on fusing density networks with general graphical model structures [Johnson

et al., 2016, Lin et al., 2018].

Lastly, I show how to write Bayes’ theorem for the density network. In order to make the ex-

pression most general, I write it for the deep stochastic version with L layers of (random) latent

variables. I use θl to denote the parameters of the transformation that maps zl−1 to the param-

eters of the distribution on zl:

p({zi,l}Ll=1|X; {θl}L+1
l=2) =

∏N
i=1 p(xi|zi,L;θL+1)p(zi,1)

∏L
l=2 p(zi,l|zi,l−1;θl)

p(X; {θl}L+1
l=2)

(2.11)

where p(X; {θl}L+1
l=2) is the model evidence1 and is computed by integrating over all {zi,l}Ll=1 for

all i. A fully Bayesian treatment would also place priors
∏L+1

l=1 p(θl) on all the transformation

parameters, but practical implementations commonly use point estimates [Kingma and Welling,

2014b, Rezende et al., 2014].

1Note that since there is no transformation associated with z1, the index on θl begins at two.

22

2.3 Posterior Inference

While I have given the analytical expression for the posterior distribution of both types of Bayesian

NNs discussed (Equations 2.8 and 2.11), computing the posterior is not easily done. It is made

complicated by the model evidence terms p(y|X) and p(X; {θl}L+1
l=2). These integrals are in-

tractable, generally, because (i) NN’s composition of non-linear functions prevents analytical

solutions and (ii) the usual high-dimensionality of the parameter space causes naive numerical

approaches, i.e. quadrature, to fail. There are two ways to get around computing the model ev-

idence. The first is to work with posterior ratios so the model evidence term cancels out; this is

the idea behind Markov chain Monte Carlo. The second is to optimize a bound on the evidence;

this is the idea behind variational inference. I describe both ideas below, and to do so most gen-

erally, I use π to denote the random variables and X to denote the data. A�er introducing the

methods, I discuss the details for each Bayesian NN type.

2.3.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) generates posterior samples via a random walk through the

posterior density. A random walk is simply a probabilistic transition between two points, which I

denote p(πt+1|πt), and in order to guarantee proper sampling, this walk’s stationary distribution

must be the posterior:

p(πt+1|πt)
p(πt|πt+1)

=
p(πt+1|X)

p(πt|X)
(2.12)

Although the RHS of the expression looks problematic, as it involves the very posterior we are

unable to compute, it is not since the evidence terms cancel, i.e.

p(πt+1|X)

p(πt|X)
=
p(X|πt+1) p(πt+1)���p(X)

p(X|πt) p(πt)���p(X)
.

23

This simplification is the key property that makes MCMC suitable for posterior inference. Turn-

ing back to Equation 2.12, constructing the LHS, the transition probabilities, is actually the chal-

lenging part. We can make progress by decomposing the true transition into a proposed tran-

sition and an accept probability [Hastings, 1970]: p(πt+1|πt) = q(πt+1|πt)A(πt+1|πt) where

q(πt+1|πt) is known as the proposal distribution and A(πt+1|πt) as the accept distribution. With

these two quantities in hand, we can write:

p(πt+1|X)

p(πt|X)
=
p(X|πt+1)p(πt+1)

p(X|πt)p(πt)
=
p(πt+1|πt)
p(πt|πt+1)

=
q(πt+1|πt)A(πt+1|πt)
q(πt|πt+1)A(πt|πt+1)

. (2.13)

The user specifies the proposal distribution thus leaving A(·|·) as the only unknown quantity

above. Re-writing Equation 2.13 by moving the proposals to the same side as the likelihood and

prior, so that all the known quantities are together, we have

A(πt+1|πt)
A(πt|πt+1)

=
p(X|πt+1)p(πt+1)

p(X|πt)p(πt)
q(πt|πt+1)

q(πt+1|πt)
. (2.14)

The second ratio on the RHS is known as the Hastings correction since it adjusts for any asym-

metry in the proposal and will cancel out if the proposal is symmetric.

From Equation 2.14, we see the problem of posterior sampling has been distilled into the problem

of computing the accept probability A(πt+1|πt). Or in other words, given a seed point π̂t and

a new point sampled from the proposal π̂prop ∼ q(πt+1|π̂t), does π̂prop have a high enough

probability under p(πt+1|πt) such that we can treat it as a sample from the chain and hence

from the posterior? The di�iculty is we do not have access to A(πt+1|πt) directly, only the

surrogate ratio on the RHS of Equation 2.14. We can work in terms of the RHS by observing that

there are only two outcomes when evaluating

r(π̂prop, π̂t) =
p(X|π̂prop)p(π̂prop)

p(X|π̂t)p(π̂t)
q(π̂t|π̂prop)

q(π̂prop|π̂t)
. (2.15)

If r(π̂prop, π̂t) ≥ 1, then that implies A(π̂prop|π̂t) ≥ A(π̂t|π̂prop), meaning that the proposed

24

point is at least as probable under the chain as the previous point. If this is the case, we should

accept the transition. On the other hand, if r(π̂prop, π̂t) < 1, then A(π̂prop|π̂t) < A(π̂t|π̂prop),

which means that the new point is less probable under the chain. But this does not mean that we

want to reject for then the algorithm would get trapped at modes. We instead want to sample

an outcome (move or not) from A(π̂prop|π̂t). Noticing that A(π̂t|π̂prop) is an upper bound on

the probability of accepting π̂prop makes the ratio of accept distributions amenable to rejection

sampling, which we can perform on the surrogate: sample û ∼ Uniform[0, 1] and if r(π̂prop, π̂t) >

û, we accept the move, se�ing π̂t+1 = π̂prop [Hastings, 1970]. Otherwise, we sample a new

proposed transition and re-evaluate. A�er many iterations, the algorithm returns a collection

of samples {π̂0, . . . , π̂t, . . . , π̂T}. Usually the early samples from time t ∈ [0, B] are discarded

because they were sampled when the chain was simply making its way from the initial point

to an area of high density; this is known as the burn-in phase. The samples {π̂B+1, . . . , π̂T} are

then treated as being from the posterior and used to calculate quantities of interest, such as

moments: E[f(π)] ≈ 1
T−B−1

∑T
t=B+1 f(π̂t).

While MCMC has proven successful, its base implementation described above can fail as di-

mensionality increases. One reason is that the proposal distribution must be set well in order

to e�eciently explore the high dimensional space. However, as dimensionality increases, human

intuition degrades, making it hard to set the very proposal distribution that is so critical. One

way to fix this is to incorporate model information into q(πt+1|πt). Hamiltonian Monte Carlo

(HMC) [Neal, 2011] does just this by using the model’s gradient to compute the next candidate

point. HMC operates on an augmented system with Hamiltonian function

H(π,v) = U(π)+
1

2
vTM−1v, U(π) = −

N∑
i=1

log p(xi|π)− log p(π), v ∼ N(0,M) (2.16)

with v being an auxiliary momentum variable and M being a mass matrix. The system then

moves with dynamics {dπ = M−1vdt, dv = −∇U(π)dt} for a user-defined number of

‘leapfrog’ steps to propose new v̂prop and π̂prop variables. Once this is done, the usual HM accept-

25

reject step is performed with the ratio

rHMC(π̂prop, π̂t, v̂prop, v̂t) = exp{H(π̂prop, v̂prop)−H(π̂t, v̂t)} (2.17)

with π̂prop being accepted as π̂t+1 = π̂prop if rHMC(π̂prop, π̂t, v̂prop, v̂t) > û.

2.3.1.1 Conditional Models

Now I discuss performing MCMC for Bayesian NNs in particular. To reduce notational clu�er,

I drop the bias variables from here forward. As most practical NNs are deep and wide, the

high dimensionality of their parameter space complicates MCMC from the outset, and using

HMC is all but required [Neal, 1993]. HMC requires the model joint be di�erentiable in order to

calculate∇U({Wl}L+1
l=1) to run the Hamiltonian dynamics. Fortunately, this is not an issue with

NNs, as it can be for some models, since they are designed with gradient-based optimization

(i.e. backpropagation) in mind. However, notice that U({Wl}L+1
l=1) (Equation 2.16) requires a

sum over the whole data set for each leapfrog step, and this O(N) dependence can present an

obstacle to scaling HMC to large data sets. One natural idea is to use a subset of the data to

compute an approximation:

U({Wl}L+1
l=1) = −

N∑
i=1

log p(yi|xi, {Wl}L+1
l=1)− log p({Wl}L+1

l=1)

≈ −N
M

M∑
m=1

log p(ym|xm, {Wl}L+1
l=1)− log p({Wl}L+1

l=1)

(2.18)

for some subset or mini-batch of the data {(y1,x1), . . . , (yM ,xM)},M << N . Chen et al. [2014]

propose such a scheme, calling it stochastic gradient HMC, but Betancourt [2015] points out

subsampling the data introduces “an irreducible bias that devastates the scalable2 performance”

of HMC.
2Scalable here refers to scalable w.r.t the dimensionality of the parameter space.

26

When HMC is made impractical by the data set size, stochastic gradient Langevin dynamics

(SGLD) [Welling and Teh, 2011] and its sister method stochastic gradient Fisher scoring [Ahn

et al., 2012] (SGFS) can be used instead. SGLD generates a posterior sample at time t, denoted

Ŵt, via the equation:

Ŵt+1
l = Ŵt

l +
α

2
C ∇Wl

[
N

M

M∑
m=1

log p(ym|xm, {Wt
l}L+1
l=1)− log p({Wt

l}L+1
l=1)

]
+ ε̂

ε̂ ∼ N(0, αC)

(2.19)

where α is again the step size, C is a preconditioning matrix, and ε is a Gaussian random vari-

able. Notice that the expression inside the brackets is the subsampled U({Wl}L+1
l=1) from above.

Intuitively, SGLD generates posterior samples via ‘noisy’ stochastic gradient ascent on the log

model joint. The Gaussian noise serves a similar role to the rejection sampling component of

the Metropolis-Hastings step in it allows the chain to transition out of local modes and explore

neighboring regions of lower posterior probability. Hence, the SGLD step size must be prop-

erly annealed in order to perform unbiased sampling from the posterior [Welling and Teh, 2011].

SGFS uses the same base update as SGLD but improves upon the chain’s mixing time by se�ing

the gradient preconditioning as:

α

2
C→ 2

[
N +M

N
F̂ +

4

α
B

]−1

where B is any symmetric positive-definite matrix and F̂ is the running empirical Fisher infor-

mation matrix (online estimate of the covariance of the gradients). The Gaussian distribution

is changed as well, to ε ∼ N(0, 4
α
B). Experiments [Welling and Teh, 2011, Ahn et al., 2012]

have demonstrated that SGLD and SGFS are competitive alternatives to HMC, especially when

computational costs are factored in.

The choice of MCMC variant not withstanding, the unidentifiability, symmetries, and invari-

ances innate to the NN model definition can prevent mixing [Müller and Insua, 1998, Vehtari

27

et al., 2000, Pourzanjani et al., 2017]. For instance, as noted earlier in the chapter, NNs are in-

variant under permutation, and this leads to multiple, equally-likely posterior modes. MCMC is

liable to explore all of these modes but the e�ort is essentially wasted since the modes represent

practically equivalent solutions. This permutation invariance can be broken by imposing a strict

ordering on the biases at each hidden layer [Pourzanjani et al., 2017]. ReLU units present another

model pathology because they have the scaling symmetry ReLU(hw) = 1/c · ReLU(c · hw) for

a scalar c. Constraining the incoming weight vectors to have unit norm breaks this symmetry

[Pourzanjani et al., 2017]. In addition to these details of model specification, implementation

details such as the starting value and the number of chains can have a substantial e�ect on the

results [Vehtari et al., 2000].

2.3.1.2 Density Networks

Performing MCMC for density networks involves all the parametrization-based di�iculties en-

countered with conditional models—scale invariance, equivalence under permutation—but these

are magnified by the fact that we need to perform MCMC for each per-data-point latent variable

zi. The O(N) dependence has moved from the inner loop, the proposal step, to the outer loop

of running the whole chain. In the paper that proposed density networks, MacKay and Gibbs

[1999] performed posterior inference by Monte Carlo importance sampling and by HMC. How-

ever, the data sets used were relatively small by today’s standards in both number of points and

in dimensionality.

Ho�man [2017] revisits MCMC for GPU-era density networks, proposing a hybrid strategy in

which a model q(zinit
i |xi;φ) is used to sample an initialization and then HMC is run starting from

the sample. The number of necessary HMC steps, presumably, should be reduced since the ini-

tialization model can be optimized to give HMC a significant ‘head start.’ The initialization model

is also helpful when encountering new data points since the training set can be leveraged to ex-

pedite inference. This general strategy—incorporating a parametrized distribution into MCMC

28

and optimizing it—is called variational Monte Carlo [De Freitas et al., 2001].

2.3.2 Variational Inference

Variational inference (VI) [Peterson and Anderson, 1987, Saul et al., 1996, Jordan et al., 1999, Blei

et al., 2017] is a model- and optimization-based approach to computing the posterior. Instead of

obtaining a finite set of samples as MCMC does, VI fits a distribution—call it q(π;φ) with pa-

rameters φ—to approximate the true posterior: p(π|X) ≈ q(π;φ). VI bypasses the problematic

evidence term by bounding it, usually from below, and optimizing the bound w.r.t. the variational

parameters. The derivation is as follows:

log p(X) = log

∫
π

p(X,π)dπ = log

∫
π

q(π;φ)

q(π;φ)
p(X,π)dπ

= logEq(π)

[
p(X,π)

q(π;φ)

]
(importance integral)

≥ Eq(π) [log p(X,π)− log q(π;φ)] = Eq(π) [log p(X,π)] + Hq(π)[π]

= JELBO(X,φ)

(2.20)

where Hq(π)[π] is the entropy of the approximation. The inequality is from Jensen’s. This ob-

jective is known as the evidence lower bound (ELBO) [Jordan et al., 1999], and it is optimized by

maximizing w.r.t. φ. Readers familiar with the expectation-maximization (EM) algorithm [Demp-

ster et al., 1977] may notice similarities. In fact, the relationship runs deep, as pointed out by

Neal and Hinton [1998]. Firstly, the expectation in the ELBO is the same as the one computed

in the E-step of EM except that in VI it is taken w.r.t. a model of our choosing, not a conditional

posterior. Secondly, the entropy term does not appear in EM since the approximation is just a

point estimate with constant entropy. Turning back to VI’s implementation, o�en a mean-field

assumption [Peterson and Anderson, 1987, Saul et al., 1996] is invoked that assumes the pos-

terior approximation factorizes over some or all variables, i.e. q(π;φ) =
∏D

d=1 q(πd;φd). This

simplification makes computing the ELBO’s expectations easier. A�er the approximation has

29

been fit, q(π;φ) can be used to compute posterior quantities of interest, such as expectations:

Ep(π|X)[f(π)] ≈
∫
π
q(π; φ̂)f(π)dπ.

Further intuition about the ELBO’s workings can be gleaned by separating the model joint into

likelihood and prior:

JELBO(X,φ) = Eq(π) [log p(X,π)− log q(π;φ)]

= Eq(π) [log p(X|π) + log p(π)− log q(π;φ)]

= Eq(π) [log p(X|π)]− KLD [q(π;φ) || p(π)]

(2.21)

where KLD [· || ·] denotes the Kullback-Leibler divergence (KLD), which is defined as KLD [q || p] =∫
z
q(z)[log q(z)− log p(z)]dz. From this view, we see that the ELBO is akin to regularized maxi-

mum likelihood: the first term is simply the expected log likelihood under the variational poste-

rior and the second term, the KLD regularizer, quantifies how far the approximation has deviated

from the prior. Since the posterior is an interpolation between the MLE and prior, we see that

both of these terms are accounted for when fi�ing q(π;φ).

Lastly, an important question but one I have yet to address is: how accurate is the approximation

p(π|X) ≈ q(π;φ)? An alternative derivation of the ELBO unveils the approximation gap:

KLD [q(π;φ) || p(π|X)] =

∫
π

q(π;φ)
q(π;φ)

p(π|X)
dπ =

∫
π

q(π;φ)
q(π;φ)p(X)

p(X,π)
dπ

= −Eq(π) [log p(X,π)− log q(π;φ)] + log p(X)

= −JELBO(X,φ) + log p(X), rearranging terms yields…

log p(X) = JELBO(X,φ) + KLD [q(π;φ) || p(π|X)] .

(2.22)

This derivation shows that maximizing the ELBO is equivalent to minimizing the KLD between

approximation and posterior. The gap between ELBO and model evidence is exactly the bits

lost in the approximation, as quantified by the KLD. If the approximation becomes exact, then

KLD [q(π;φ) || p(π|X)] = 0, making the ELBO equivalent to the log evidence. Unfortunately,

30

while this derivation reveals the intuition underlying the approximation gap, it does not allow us

to usefully quantify the gap because the expression depends on the hard-to-compute posterior

that necessitates the use of VI in the first place. Developing metrics to assess VI’s goodness-of-

fit is an open problem; see Yao et al. [2018] for work in the area. Using alternative optimization

objectives is also an area of active research [Minka, 2001, Burda et al., 2016, Li and Turner, 2016,

Ranganath et al., 2016, Liu and Wang, 2016, Bouchard and Lakshminarayanan, 2015, Dieng et al.,

2017, Chen et al., 2015].

2.3.2.1 Conditional Models

For Bayesian NNs, unfortunately, the ELBO’s expectations do not have a closed-form except in

simplistic cases (such as with identity or linear activation functions). Therefore, the major chal-

lenge in performing VI is how to approximate these expectations e�iciently and within a scalable

optimization framework [Hinton and Van Camp, 1993, Graves, 2011]. Due to stochastic gradient

ascent/descent being just about the only viable method for NN optimization, we aim to com-

pute the gradients w.r.t. the parameters of the mean-field approximation p({Wl}L+1
l=1 |y,X) ≈

q({Wl}L+1
l=1 ;φ) =

∏L+1
l=1 q(Wl;φl):

∇φJNN-ELBO(X,φ)

=
N∑
i=1

∇φEq({Wl}L+1
l=1)

[
log p(yi|xi, {Wl}L+1

l=1)
]
−

L+1∑
l=1

∇φKLD [q(Wl;φl) || p(Wl)]

≈
M∑
m=1

∇φEq({Wl}L+1
l=1)

[
log p(ym|xm, {Wl}L+1

l=1)
]
−

L+1∑
l=1

∇φKLD [q(Wl;φl) || p(Wl)]

= ∇φJ̃NN-ELBO(X̃,φ)

(2.23)

where X̃ denotes a mini-batch {x1, . . . ,xM} (M << N) of the training set. Again, I have

dropped the bias terms to simplify the expressions. We assume the KLD gradient can be com-

puted in closed form, which is usually the case, but if not, techniques similar to the ones I describe

31

below can be used for approximation. Thus, the primarily di�iculty is how to compute the gradi-

ent of the expected log likelihood. There are essentially three well-known techniques that I now

summarize.

1. Delta Method: A straight-forward but expensive and usually inaccurate approximation

is to linearize around the mean of the variational posterior [Tierney et al., 1989, MacKay,

1992b, Wang and Blei, 2013]:

Eq({Wl}L+1
l=1)

[
log p(ym|xm, {Wl}L+1

l=1)
]

≈ Eq({Wl}L+1
l=1)

[
log p(ym|xm, {µφ

l }
L+1
l=1)

+
L+1∑
l=1

(Wl − µφ
l)∇µφ

l
log p(ym|xm, {µφ

l }
L+1
l=1)T

+
1

2

L+1∑
l=1

(Wl − µφ
l)∇2

µφ
l

log p(ym|xm, {µφ
l }

L+1
l=1)(Wl − µφ

l)T
]

= log p(ym|xm, {µφ
l }

L+1
l=1)

+
L+1∑
l=1

(Eq(Wl) [Wl]− µφ
l)∇µφ

l
log p(ym|xm, {µφ

l }
L+1
l=1)T

+
1

2

L+1∑
l=1

Eq(Wl)

[
(Wl − µφ

l)∇2

µφ
l

log p(ym|xm, {µφ
l }

L+1
l=1)(Wl − µφ

l)T]
]
.

Solving the expectations then yields the final gradient approximation:

∇φEq({Wl}L+1
l=1)

[
log p(ym|xm, {Wl}L+1

l=1)
]

≈ ∇φ

[
log p(ym|xm, {µφ

l }
L+1
l=1) +

1

2

L+1∑
l=1

trace
{

Σφ
l ∇

2

µφ
l

log p(ym|xm, {µφ
l }

L+1
l=1)

}] (2.24)

where µφ
l is the first moment of q({Wl}L+1

l=1) and Σφ
l is the second. I use the subscript φ

to emphasize these are (or are functions of) the variational parameters. Thus, they have

been exposed and gradients can be calculated as usual.

32

2. Score Function Estimator: The score function (or likelihood ratio or REINFORCE) estima-

tor [Williams, 1992, Paisley et al., 2012] relies on an algebraic identity of the score function

to re-write the gradient of the expectation as an expectation of the score function:

∇φEq({Wl}L+1
l=1)

[
log p(ym|xm, {Wl}L+1

l=1)
]

=

∫
W

log p(ym|xm, {Wl}L+1
l=1)∇φq({Wl}L+1

l=1 ;φ) dW

=

∫
W

log p(ym|xm, {Wl}L+1
l=1)∇φ log q({Wl}L+1

l=1 ;φ) q({Wl}L+1
l=1 ;φ) dW

= Eq({Wl}L+1
l=1)

[
log p(ym|xm, {Wl}L+1

l=1)∇φ log q({Wl}L+1
l=1 ;φ)

]
≈ 1

S

S∑
s=1

log p(ym|xm, {Ŵl,s}L+1
l=1)∇φ log q({Ŵl,s}L+1

l=1 ;φ)

(2.25)

where the Monte Carlo expectation is calculated with S samples from the approximation,

i.e. Ŵl,s ∼ q(Wl). While this estimator is quite general, not even requiring the likelihood

be di�erentiable w.r.t. W, it su�ers from high variance and must o�en be paired with

control variates [Ross, 2006].

3. Pathwise Derivative Estimator: The pathwise derivative estimator (a.k.a. infinitesimal

perturbation analysis or the re-parametrization trick) [Glasserman, 2004, Kingma and Welling,

2014b,a] uses a change of variables to write the integral as a Monte Carlo expectation under

some fixed distribution, call it p0(ξ), whose samples can be deterministically transformed

into samples from q(·;φ), i.e. Ŵ = g(ξ̂;φ), ξ̂ ∼ q(·;φ). For example, the Normal distri-

bution can be sampled via its location-scale form: x̂ = µx + σx � ξ̂, ξ̂ ∼ N(0, 1). Inverse

transform sampling is another re-parametrization that would fall into this class. Given p0

33

and g(·; ·), a Monte Carlo estimate of the gradient can be derived as:

∇φEq({Wl}L+1
l=1)

[
log p(ym|xm, {Wl}L+1

l=1)
]

= ∇φ

∫
W

log p(ym|xm, {Wl}L+1
l=1) q({Wl}L+1

l=1 ;φ) dW

= ∇φ

∫
W

log p(ym|xm, {Wl}L+1
l=1)

∫
ξ

q({Wl}L+1
l=1 |ξ;φ)p0(ξ) dξ dW

= ∇φ

∫
ξ

∫
W

log p(ym|xm, {Wl}L+1
l=1)δ({Wl}L+1

l=1 − {g(ξl;φ)}L+1
l=1)p0(ξ) dW dξ

= ∇φ

∫
ξ

log p(ym|xm, {g(ξl;φ)}L+1
l=1)p0(ξ) dξ

= Ep0(ξ)
[
∇φ log p(ym|xm, {g(ξl;φ)}L+1

l=1)
]

≈ 1

S

S∑
s=1

∇φ log p(ym|xm, {g(ξ̂l,s;φ)}L+1
l=1)

(2.26)

where again S samples are drawn ξ̂l,s ∼ p0(ξ). This estimator has been shown to have a man-

ageable variance [Kingma and Welling, 2014a] and is currently the preferred choice in VI for

Bayesian NNs [Blundell et al., 2015].

Once a gradient estimator has been chosen, performing VI for Bayesian NNs is simply a ma�er of

performing updates φt+1 = φt + α∇φJ̃NN-ELBO(X̃,φt), with α denoting the learning rate, until

convergence. Then the approximation can be used to compute quantities such as the posterior

predictive distribution, which will require a Monte Carlo expectation:

p(y∗|x∗,y,X) ≈
∫

W

q({Ŵl,s}L+1
l=1 ;φT) p(y∗|x∗, {Wl}L+1

l=1) dW

≈ 1

S

S∑
s=1

p(y∗|x∗, {Ŵl,s}L+1
l=1)

(2.27)

where Ŵl,s ∼ q(Wl;φT). Notice that there are two steps of approximation. The first arises from

using an approximation to the true posterior and the second is from the Monte Carlo expectation.

34

2.3.2.2 Density Networks

Moving on to VI for generative models, the ELBO for a one-stochastic-layer density network is

given as:

JDN-ELBO(X,φ) = Eq({zi}Ni=1)

[
log p(X|{zi}Ni=1;θ)

]
− KLD

[
q({zi}Ni=1;φ) || p(z)

]
=

N∑
i=1

Eq(zi) [log p(xi|zi;θ)]− KLD [q(zi;φi) || p(z)]
(2.28)

where again I have assumed a mean-field factorization of the approximation: p({zi}Ni=1|X; ;θ) ≈

q({zi}Ni=1;φ) =
∏N

i=1 q(zi;φi). Whereas with conditional models the posterior factorizes over

weight matrices, here the variational posterior factorizes across per-data-point latent variables,

each with their own parameters φi. VI for density networks involves the same challenges de-

scribed for conditional models in the previous subsection. Again, as stochastic gradient methods

are the target optimization strategy, we require cheap gradients of the expected log likelihood

Eq(zi) [log p(xi|zi;θ)]. The same three techniques—the delta method, score function estimators

[Mnih and Gregor, 2014], and pathwise derivatives [Kingma and Welling, 2014b] can all be used

here—but the pathwise estimator has been the particular method of choice for density networks

[Kingma and Welling, 2014b, Kingma et al., 2014, Burda et al., 2016]:

Eq(zi) [log p(xi|zi;θ)] ≈ 1

S

S∑
s=1

log p(xi|g(ξ̂i,s;φi);θ), ξ̂s ∼ p0(ξ̂) (2.29)

with p0 again being the fixed distribution subject to transformation.

Calculating the expectations and their gradients is not the only obstacle with performing VI

for density networks. There is an additional cost, an O(N) memory requirement for storing the

variational parameters, which limits their application to large data sets. Amoritzed VI [Gershman

and Goodman, 2014] alleviates this cost by using a model to predict the variational parameters

35

whenever they are required:

φi = γ(xi;ψ) (2.30)

where γ(·;ψ) is the inference model with parameters ψ. NNs [Kingma and Welling, 2014b,

Rezende et al., 2014] and Gaussian processes [Tran et al., 2016] both have been used success-

fully as inference models. Writing the ELBO with both the pathwise derivative function g(·; ·)

and the amortization model γ(·; ·), we have

JDN-ELBO(X,φ) = JDN-ELBO(X,ψ)

=
N∑
i=1

Ep0(ξ)
[
log p(xi|g(ξ̂i,s;φi);θ)

]
− KLD [q(zi;φi) || p(z)]

=
N∑
i=1

Ep0(ξ)
[
log p(xi|g(ξ̂i,s; γ(xi;ψ));θ)

]
− KLD [q(zi; γ(xi;ψ)) || p(z)] .

(2.31)

Notice that the local variational parameters φi have all been replaced by the global (shared) pa-

rameters ψ of the inference model. Not only does amortization help with the model’s memory

footprint, but it also expedites inference for a new (test) point x∗. Without the inference model,

obtaining x∗’s posterior would require fi�ing a new distribution q(z∗;φ∗) from some random

initialization, usually requiring several optimization steps. But with amortization, new param-

eters φ∗ are produced by simply running the inference model. Note that using an inference

model, no ma�er how deep or complex it is, does not necessarily result in a more flexible pos-

terior approximation. Using independent parameters {φ1, . . . ,φN} is actually the upper limit

of flexibility since they are not constrained by a shared parametrization. Yet, amortization can

lead to a be�er approximation in practice because the inference model can act as a regularizer

and make optimization be�er conditioned.

Looking at Equation 2.31 and recalling the base AE definition in Equation 2.6, we see a striking

similarity: xi now appears on both sides of the conditional distribution p(xi|g(ξ̂i,s; γ(xi;ψ));θ).

36

Figure 2.3: Variational Autoencoder.

The form is reminiscent of an AE, and this is why the composition of a density network with

an inference model is known as a variational autoencoder (VAE) [Kingma and Welling, 2014b,

Rezende et al., 2014]. A diagram of the VAE computation path is given in Figure 2.3. We see

that there is a fully di�erentiable path between µxi and xi, thus allowing gradients to be used to

update both the generative (θ) and inference (ψ) parameters simultaneously—just as we would

take gradients w.r.t. both the decoder and encoder of a regular AE. Yet note that xi being on both

sides of the likelihood conditional does not make the model improperly generative. The RHS xi is

an artifact of the end-to-end composition of the generative and inference processes, and proper

sampling is being done via the introduction of ξ̂. If we view the regular AE from this perspective,

we can think of the encoder as parametrizing a degenerate distribution δ(zi − h(xi; ·)), where

h(xi; ·) are the hidden units computed at some intermediate layer. As this distribution is just a

point mass concentrated at h(xi; ·), the only sample it can return is h(xi; ·), resulting in a fully

deterministic computation path.

One may wonder if amortized inference is useful for models with global variables, such as condi-

tional NNs. Upon first thought, the answer is ‘no’ since by definition global variables are already

shared across all data points. However, upon further thought, amortization could be used to

quickly generate posteriors over multiple data sets; this is the idea behind the neural statistician

(NS) [Edwards and Storkey, 2017]. The NS is characterized by a statistic model q(·|D) that takes

as input an entire data set D and produces some aggregate representation. Specifically, Ed-

37

wards and Storkey [2017] use mean pooling to get an exchangeable, fixed-dimension summary

vector. I have done work (not described in this thesis) using amortization within the frequentist

paradigm. The amortized bootstrap [Nalisnick and Smyth, 2017a] uses a shared model to gen-

erate the parameter estimates for each bootstrap replicate. This allows an unlimited number of

parameter samples to be drawn at test time, providing a richer distribution than one restricted

to the original K bootstrap replicates.

38

Chapter 3

Survey of Neural Network Priors

We demand rigidly defined areas of doubt

and uncertainty!

Douglas Adams

The Hitchhiker’s Guide to the Galaxy

Having covered the basics of Bayesian NNs and strategies for inferring their posterior, I now

turn to the focal point of the dissertation: prior distributions for both conditional NNs and den-

sity networks. Surprisingly, a broad review of Bayesian NN priors has been performed by only

Robinson [2001], which is now considerably out of date. Thus, in this chapter I survey the ex-

isting work on NN priors, some of which was performed in the early days of Bayesian NNs and

therefore also discussed by Robinson [2001]. However, most of the work is recent, some having

been conducted concurrently with my own work to be presented in the coming chapters.

NNs have been applied to a myriad of di�erent problems over the past thirty years, and this

of course makes it impossible to discuss every prior ever used for a NN. Instead, I a�empt to

summarize broad themes from the literature that pertain to core NN methodology. For instance,

for conditional NNs, this discussion dates back to Neal [1993] and centers around the use of

39

Gaussian priors, their relationship to Gaussian processes, and why this relationship has provoked

the use of heavy-tailed priors. Priors for density networks, on the other hand, have only recently

become an active area of research. Accordingly, I point to various open questions.

3.1 Conditional Models

As conditional NNs were the predominant flavor of Bayesian NNs until of late, choosing their

priors has been given the most thought. Regularization is usually of the foremost concern with

conditional models, and therefore I will mainly discuss the work on shrinkage inducing priors,

which is the most abundant. Yet, I will close with a brief discussion of more exotic priors such

as discrete and noninformative ones.

3.1.1 Gaussian Priors

Not surprisingly, mostly due to its connection to weight decay [Plaut et al., 1986] and the ridge

penalty [Hoerl and Kennard, 1970], the zero-mean Gaussian distribution was the first NN prior

to be explored [Buntine and Weigend, 1991, MacKay, 1992c, Neal, 1993]: p(Wl) = N(0,Σ). The

choice is a reasonable one since the zero-centering induces shrinkage and the Gaussian assump-

tion implies smoothness. A thorough analysis of the prior by Neal [1994] showed that, assuming

hl is bounded, placing Gaussian priors on the output parameters and taking the number of hid-

den units to infinity results in the NN becoming a Gaussian process (GP) [Rasmussen, 2004]. To

see this, I write the NN in terms of its last layer

ψ(xi) = hL(xi)wL+1 =
H∑
k=1

wL+1,khL,k(xi),

40

and place the Gaussian prior wL,j ∼ N(0, σ2/H) (where H is the number of hidden units in

the last hidden layer and σ2 is some constant) on the hidden-to-output weights. It is easy to

compute the first two moments, them being:

E

[
H∑
k=1

wL+1,khL,k(xi)

]
=

H∑
k=1

E [wL+1,k]hL,k(xi) = 0

and

E

(H∑
k=1

wL+1,khL,k(xi)

)2
 = hL(xi)hL(xi)

T

H∑
k=1

E
[
w2
L+1,k

]
= hL(xi)hL(xi)

THσ2/H = σ2hL(xi)hL(xi)
T .

From the central limit theorem, the distribution on the NN output is then

p(ψ(xi)) = N(0, σ2hL(xi)hL(xi)
T).

To show the equivalence to a GP, we need to show the joint distribution between function eval-

uations is Normal: p(ψ(xi), ψ(xj)) = N(0,K). The crucial quantity is the covariance between

function evaluations, which Neal [1994] shows is:

E [ψ(xi)ψ(xj)] = E

[(
H∑
k=1

wL+1,khL,k(xi)

)(
H∑
k=1

wL+1,khL,k(xj)

)]

=
H∑
k=1

E
[
(wL+1,k)

2
]
hL,k(xi)hL,k(xj) = σ2κ(xi,xj).

(3.1)

The multivariate CLT then implies p(ψ(xi), ψ(xj)) = N(0,K) where κ(xi,xi) = hL(xi)hL(xi)
T

and κ(xi,xj) = hL(xi)hL(xj)
T . It is then natural to consider how placing priors on the preced-

ing layers a�ects the GP equivalence, i.e. wl,j,k ∼ N(0, σ2/H). Lee et al. [2018] show that the

41

distribution at layer l can be characterized by the recurrence relation

E [ψl(xi)ψl(xj)] = σ2
l Eψl−1∼GP(0,Kl−1) [fl(ψl−1(xi))fl(ψl−1(xj))] . (3.2)

This quantity can be found in closed-form for ReLU functions [Lee et al., 2018].

Lastly, I recreate Neal [1994]’s simulations to show the GP behavior of NNs. The blue lines in

Figure 3.1 are sampled from a one-hidden-layer NN with one input dimension (x-axis), H step-

function (i.e. discrete) hidden units, and one output dimension (y-axis). They represent a draw

of ψ(xi). Subfigure (a) shows sampled functions when a Gaussian prior is placed on the weights

and as the number of hidden units increases (H = {10, 1000, 100, 000}). WhenH = 10, one can

see that there are ‘jumps’ in the regression line, meaning that the function can change drastically

depending on which hidden units are active. If it is desired that the NN learn latent features,

then these jumps are a good thing for the NN to exhibit. However, as H →∞, the line becomes

Brownian motion: it wanders according to very small, independent increments. This is markedly

di�erent behavior than the jumps we saw when H = 10, and in the words of Neal [1994]: “the

contributions of individual units are all negligible, and consequently, these units do not represent

hidden features that capture important aspects of the data.”

de G Ma�hews et al. [2018] show that this convergence to Brownian motion is a concern in

practice, with Bayesian NNs taking on GP-like behavior when using as few as 20 hidden units.

NN depth helps combat the behavior but only for a few 10’s of units more. Yet, the convergence

to GP behavior occurs for a wider class of priors than just Gaussian. In fact, the central limit

theorem (CLT) underlies the phenomenon, and therefore even NNs with discrete weights will

converge to GPs via the Lyapunov CLT if the hidden units are real valued. In order to stop

the convergence, Bayesian NNs must be defined so that the CLT’s underlying assumptions are

broken [de G Ma�hews et al., 2018]. Doing so presents challenges, but I discuss priors that stop

the onset of the CLT in the next section. While Bayesian NNs seem to insist on converging to

42

(a) Bayesian Neural Network with Gaussian Prior

(b) Bayesian Neural Network with Cauchy Prior

Figure 3.1: Gaussian Process Behavior of Bayesian Neural Networks.

GPs, this tendency can be a good thing for GP users as it means that Bayesian NNs can be used

as plug-in approximations for GPs. Swapping a GP for a Bayesian NN results in considerable

computational savings for large data sets since the user is trading the GP’sO(N3) cost of matrix

inversions and determinants for a Bayesian NN’s O(N) training data dependence. Snoek et al.

[2015] use this very idea to perform scalable Bayesian optimization.

3.1.2 Heavy-Tailed Priors

One way to break the CLT is to draw the NN’s weights from a distribution with infinite variance—

such as from a member of the symmetric stable family with index α < 2. These distributions

have ‘heavy,’ sub-exponential tails, which allows “some of the hidden units in an infinite network

[to] have output weights of significant size, allowing them to represent hidden features” [Neal,

1994]. The Cauchy distribution is in the stable family (α = 1) and therefore meets the criterion.

To demonstrate how the NN behavior changes under priors of this form, in Subfigure (b) of

Figure 3.1 I sample functions from the same NN architecture but with a Cauchy prior1. We see

1This is another figure recreated from Neal [1994].

43

that the line exhibits large jumps even as H →∞, which means that the regression function is

still dependent on which hidden units are active.

Unfortunately, heavy-tailed distributions are not easy to work with analytically or computation-

ally. The Cauchy, for instance, does not have finite moments of any order. Neal [1994] recom-

mends the student-t distribution as a compromise, which is CLT-breaking when its degrees of

freedom parameter is less than two. A student-t can be conveniently represented as a Gaussian

scale mixture of the form

wl,i,j ∼ N(0, σ2), σ2 ∼ Γ−1(ν/2, sν/2)

where Γ−1(·, ·) denotes the inverse gamma distribution. The marginal distribution is then a zero-

centered student-t with scale s and ν degrees of freedom:

student-t(w; 0, s, ν) =

∫
σ

Γ−1(σ2; ν/2, sν/2)N(w|0, σ2)dσ.

Posterior inference for Bayesian NN’s with student-t priors can be performed e�iciently by using

MCMC or VI to compute the expectation under the Gaussian and then by using Gibbs sampling

steps to update the student-t’s parameters (if desired). Decoupling inference for the weights

and hyperparameters in this way allows the user to easily monitor and control the NN’s CLT

conditions.

In other work on heavy-tailed distributions, Laplacian priors were proposed by Williams [1995]

and Gou�e and Hansen [1997]. Like the student-t, the Laplace distribution can be represented

as a Gaussian scale mixture but with the exponential distribution as the hyperprior:

wl,i,j ∼ N(0, σ2), σ2 ∼ Exponential(b).

Williams [1995]’s argument for the prior is driven by Jaynes [1968]’s principles of transformation.

44

Since most NN architectures have symmetry w.r.t. the sign of the weights—as I discuss in Section

2.3.1.1—the prior should be a function of |wl,i,j|. Gaussian priors, on the other hand, are a function

of the signed weight and therefore do not reflect the symmetry. Both Williams [1995] and Gou�e

and Hansen [1997] present experiments using MAP estimates and demonstrate the ability to

prune weights without su�ering performance degradation. However, Kabán [2007] and Castillo

et al. [2015] (among others) have shown that Laplace priors do not induce the same amount of

useful sparsity in their posteriors as is found in their MAP estimates. Thus, Laplace priors may

not provide enough regularization under fully Bayesian treatments of NNs.

Recently, advances in VI have allowed more aggressive heavy-tailed priors to be considered, such

as the horseshoe prior (HSP) [Carvalho et al., 2009]. It too has a convenient hierarchical form:

wl,i,j ∼ N(0, σ2), σ ∼ Cauchy+(x0 = 0, γ = 1)

where Cauchy+(·, ·) denotes the half-Cauchy distribution—the Cauchy restricted to the positive

real numbers. The HSP has no closed-form marginal expression, but it can be plo�ed, which

I do in Figure 3.2 (a) using the red line. From the figure we see the HSP has heavy tails like

the student-t, but unlike the student-t, it asymptotes to the le� and right of zero. This means

that it allows the NN weights to grow large, like the student-t, but has fierce shrinkage near

zero, making the HSP a stronger regularizer than the Gaussian, Laplacian, or student-t densities.

Ghosh and Doshi-Velez [2017] describe Bayesian NNs with HSPs placed on their pre-activation

values in order to perform model selection over the number of hidden units.

Any time a hyperprior is placed on the first-level prior’s scale parameter, as is the case for the

student-t, Laplace, and HSP, then it is amenable to the automatic relevance determination (ARD)

framework [MacKay, 1994, Neal, 1994]. ARD, when applied to NNs, ties the variance of all out-

going weights from a particular hidden unit:

wl,i,j ∼ N(0, σ2
l,i,·), σl,i,· ∼ pσ(λ) (3.3)

45

(a) Density Functions (b) Regularization Penalties

Figure 3.2: Heavy-Tailed Priors.

where λ denotes the parameters of the scale hyperprior and σl,i,· signifies that all of the weights

in the ith row of Wl share the same scale. Giving the prior this structure ensures that all the

weights multiplied with hidden unit hl−1,i grow and shrink together. This is a form of group

regularization: all weights within the same row must be shrunk together if any are shrunk. The

end result is essentially feature / hidden unit selection since if all of a unit’s outgoing weights

are near zero, then the unit in inconsequential to the model output.

Lastly, heavy-tailed priors without hierarchical forms have been proposed by Williams [1999],

Toussaint et al. [2006], and Kingma et al. [2015]. Beginning with the earliest work, Williams

[1999] further developed his invariance arguments (used to motivate Laplace priors above) to

derive the prior:

p(wi) ∝
1

||wi||γp

where ||wi||p denotes the pth norm of the weight vector wi and γ is a positive constant. Focus-

ing on invariance in the activation functions in particular, Toussaint et al. [2006] proposed the

following values for Williams [1999]’s constants: p(wi) ∝ 1/||wi||γ=d+1
p=2 where d is the number

of elements in the vector. In the most recent work, a variational-inference-based analysis lead

Kingma et al. [2015] to find that the log-uniform distribution is the Bayesian prior that best

46

mimics the dropout2 [Srivastava et al., 2014] regularization mechanism:

p(wl,i,j) ∝
c

| wl,i,j |
(3.4)

where c is a scalar constant and | · | denotes the absolute value. Interestingly, this is the same

as Williams [1999]’s prior with p = 1, γ = 1 but factorized across the vector, i.e. p(wl,i) =∏d
j=1 p(wl,i,j). In Figure 3.2 (a), I plot the log-uniform density (orange line) against the Gaussian

(blue), student-t (purple), and horseshoe (red) densities. I omi�ed the other priors mentioned to

prevent clu�er. We see that the log-uniform is similar to the HSP but has even stronger shrinkage

and fla�er tails. Molchanov et al. [2017] present experiments using the log-uniform prior and

find that indeed it induces weight sparsity3.

When finding a MAP estimate, the log-uniform prior corresponds to the regularization penalty

− log{1/ | wl,i,j |} = log | wl,i,j |. Interestingly, Helmbold and Long [2015] analyze dropout

from the perspective of optimizing a penalized loss and find a regularization penalty that looks

qualitatively similar to log | wl,i,j |. In subfigure (b) of Figure 3.2, I plot Helmbold and Long

[2015]’s function (their Equation 10) in green against the regularization penalties derived from

the mentioned distributions by taking the negative logarithm of their density functions. From

this figure, we see that all penalties except the Gaussian have the ability to ‘turn o�’ in the

sense that the penalty plateaus as the weight moves away from zero. This is from heavy-tailed

densities’ unique ability to distribute their mass away from their center. Although Helmbold

and Long [2015]’s analysis is not within the Bayesian framework, their derived penalty is clearly

similar in character to the densities discussed here, thus implying connections between dropout,

heavy-tailed densities, and certain invariance properties. I explore connections between dropout

and scale mixtures in the next chapter, but I conjecture there is more to be uncovered in this

area, especially in regards to the invariances induced by dropout.

2Dropout will be defined and discussed at length in a later chapter.
3Although, Hron et al. [2017] argues that the log-uniform prior induces an ill-posed posterior that does not

induce sparsity, in general, and that the observed sparsity is an optimization artifact.

47

3.1.3 Other Priors: Discrete and Noninformative

While the vast majority of work has been done on shrinkage-inducing priors, there are at least

two more types of prior to note. The first is discrete. NNs with binary weights are defined via

Bernoulli priors [Saad and Marom, 1990, Mayoraz and Aviolat, 1996, Soudry et al., 2014, Cour-

bariaux et al., 2015, Hubara et al., 2016], and they are of interest for their computational e�iciency

[Soudry et al., 2014] and biological plausibility [Baldassi et al., 2007]. Unfortunately, binary NNs

are exceptionally di�icult to train since they are not amenable to backpropagation (gradients

are undefined), and the majority of work has focused on inventing di�erentiable relaxations.

The most widely studied solution is the straight-through estimator [Bengio et al., 2013b]: binary

weights are sampled for the forward pass but their mean is used during the backward pass.

Solutions relying on the CLT [Soudry et al., 2014, Shayar et al., 2018] have also been proposed.

The second prior type that deserves mention are so-called ‘noninformative’ priors. These will be

discussed in further detail in Chapter 5, but to briefly summarize, noninformative priors are de-

rived to be invariant under model re-parametrization. Je�reys priors [Je�reys, 1946] are the best

known of this type and are defined as pJEFF(π) ∝
√

detF (π) where π are the model parameter

and F (π) is the Fisher information matrix. Lee [2005] derives the Je�reys prior for a NN’s out-

put parameters and shows it produces results comparable to Neal [1994]’s student-t—with the

added benefit of not having any hyperparameters to tune. However, deriving the Je�erys prior

for the weights of any preceding layer is intractable, which is the problem my work addresses.

3.2 Density Networks

Gaussian densities were also the first priors investigated for density networks [MacKay and

Gibbs, 1999], and the use of Gaussians has continued through to the modern work on VAEs

[Kingma and Welling, 2014b, Rezende et al., 2014, Kingma et al., 2014, Burda et al., 2016]. The

48

widespread use of Gaussian priors seems sensible since density networks can use their NN lay-

ers to create complex transformations for warping the latent variables. Moreover, D. Kingma

reported that preliminary experiments using Laplacian and scale mixture priors “did not result

in be�er generative models.”4

However, Ho�man and Johnson [2016] analyzed the VAE’s ELBO and showed that it can be

re-wri�en by decomposing the KLD term as:

JDN-ELBO(X,φ) =
N∑
i=1

Eq(zi) [log p(xi|zi;θ)]− Iq(i,zi) [i, zi]− KLD [q(zi) || p(z)] (3.5)

where q(z) = 1
N

∑N
i=1 q(zi|xi) is the marginal distribution over latent variables and Iq(i,zi) [i, zi]

is the mutual information between a latent variable and its index. Ho�man and Johnson [2016]

found that the first two terms are optimized well by the basic VAE formulation, but the third term

is o�en still considerably large even upon convergence, e�ectively decreasing the ELBO. Large

values of KLD [q(zi) || p(z)] imply that the model is finding it di�icult to match the aggregate

posterior and the prior. The VAE wants to make the marginal posterior significantly richer but

needs to sacrifice capacity in order to match the prior. Ho�man and Johnson [2016] recommend

that “we should investigate multimodal priors that can meet q(z) halfway.”

There have been several proposed solutions to this marginal matching problem. Makhzani et al.

[2016] were actually the first to highlight the pathology, and they proposed optimizing the

marginal posterior directly via an adversarial loss. Unfortunately, this modifies the VI objec-

tive away from the foundationally-sound ELBO. Subsequent work by Chen et al. [2017] fix the

problem without changing the ELBO by simply parametrizing the prior with an autoregressive

transformation, which allows it to warp itself as necessary in order to meet the demands of the

marginal posterior. Tomczak and Welling [2018] a�ack the problem more directly yet still within

the ELBO framework. Firstly, they show that the prior that maximizes the ELBO is, unsurpris-

4�ote taken from D. Kingma’s comment posted in r/MachineLearning: “Behind the scenes I did compare with
sparse priors (Laplace and Gaussian scale mixtures) but these didn’t result in be�er generative models.”

49

ingly, the marginal posterior itself. However, se�ing the prior to the aggregated posterior can

lead to overfi�ing and would be expensive to evaluate, requiring a sum over all the training data.

In turn, Tomczak and Welling [2018] define the prior as the marginal posterior over K pseudo-

inputs: p(z) = 1
K

∑K
k=1 q(zk|uk) with uk being the kth pseudo-input. The authors term this the

variational mixture of posteriors prior, or VampPrior for short. The pseudo-inputs are optimized

along with the other generative and variational parameters; yet this does not lead to overfi�ing

since K is chosen to be much smaller than N 5. Lastly, another path to solving the marginal

matching problem is through re-scaling the KLD term in the ELBO. Higgins et al. [2017] propose

training the VAE via

Jβ−VAE(X,φ) =
N∑
i=1

Eq(zi) [log p(xi|zi;θ)]− βKLD [q(zi;φi) || p(z)]

where β > 0. Jβ−VAE was proposed originally for learning disentangled latent representations,

but Ho�man et al. [2017] show that training with that objective is equivalent to regular ELBO

optimization under the prior

r(z) =
q(z)1−βp(z)β

Z(β)
, Z(β) =

∫
z

q(z)1−βp(z)β dz

with Z(β) being the normalizing constant. The implicit prior r(z) interpolates between the

aggregated posterior q(z) and the explicit prior p(z). We can think of p(z) as multiplicatively

regularizing q(z) (with the regularization strength controlled by β), and therefore it serves the

same role as choosing K << N for the VampPrior.

Just as with conditional models, there is interest in using discrete priors on the latent space of

density networks. In addition to the computational benefits noted earlier, discrete latent vari-

ables have the potential to be more interpretable than continuous ones. Discrete variables are

clearly ‘on’ or ‘o�’ and thus can be visualized with a grid of black-and-white boxes and the di-

5Experiments showed se�ing K to be between 200 and 400 to be su�icient.

50

mensions commonly active across a group can be readily identified. Yet, again because of a lack

of available gradients, training density networks with discrete variables is di�icult. Score func-

tion [Mnih and Gregor, 2014] and pass-through estimators could be used to a�ain gradients,

but the most promising approach seems to be a continuous relaxation of the Gumbel-max ‘trick’

for sampling discrete variables. Instead of using the non-di�erential argmax operator, Maddison

et al. [2017] and Jang et al. [2017] propose passing the Gumbel noise through the so�max op-

erator so that the random variable is still amenable to pathwise gradients. Unfortunately, using

this relaxation makes the Monte Carlo pathwise gradients biased, but follow-up work by Tucker

et al. [2017] has shown the bias can be eliminated by using the Gumbel-so�max trick not as the

primary estimator but as a control variate for a score function estimator.

Before ending my discussion of priors for density networks, I must note that using multiple

stochastic layers induces complex priors on the subsequent variables, and this in turn mud-

dles much of the discussion above. To elaborate, assume z1 is given a Gaussian prior and the

prior on z2 is a Gaussian parametrized by z1, i.e. p(z2|z1) = N(µ(z1),Σ(z1)). While the

prior on z2 is conditionally Gaussian, the marginal prior is decidedly not Gaussian: p(z2) =∫
z1
p(z1)N(z2;µ(z1),Σ(z1))dz1. Performing this marginalization is intractable. Density net-

works with multiple stochastic latent variables have been found di�icult to train [Rezende et al.,

2014, Sønderby et al., 2016, Zhao et al., 2017], and hence, understanding their training dynamics—

and how the choice of prior a�ects their performance—is an open problem.

51

Chapter 4

Multiplicative Noise as an Induced Prior

We have only begun to learn how to detect

and measure,…finding in each Deeper

Significance and trying to string them all

together like terms of a power series hoping

to zero in on the tremendous and secret

Function whose name, like the permuted

names of God, cannot be spoken…

Thomas Pynchon

Gravity’s Rainbow

Training deep NNs (DNNs) under multiplicative noise—by introducing a random variable into

the inner product between a hidden layer and a weight matrix—has led to significant improve-

ments in predictive accuracy. Typically the noise is drawn from the Bernoulli distribution, which

is equivalent to randomly dropping neurons from the network during training, and hence the

practice has been termed dropout [Hinton et al., 2012, Srivastava et al., 2014]. Yet, Gaussian

[Srivastava et al., 2014] and beta [Tomczak, 2013] noise have been shown to be just as e�ective.

Despite its empirical success, regularization by way of multiplicative noise is not well understood

52

theoretically, especially for DNNs. The multiplicative noise term eludes analysis as a result of

being buried within the DNN’s composition of non-linear functions.

Adopting a Bayesian perspective, I show that we can develop closed-form analytical expressions

that describe the e�ect of training under multiplicative noise1. When a zero-mean Gaussian prior

is placed on the weights of the DNN, the multiplicative noise variable induces a Gaussian scale

mixture (GSM), i.e. the variance of the Gaussian prior becomes a random variable whose distri-

bution is determined by the multiplicative noise model. Conveniently, GSMs can be represented

hierarchically with the scale mixing variable—in this case the multiplicative noise—becoming

a hyperprior. This allows us to circumvent the problematic coupling of the noise and likeli-

hood through reparametrization, making them conditionally independent. Once in this form,

variational EM can be used to derive updates for the multiplicative noise terms and make the

regularization mechanism explicit. While the GSM reparametrization and learning procedure

are not novel in their own right, employing them to understand multiplicative noise in NNs is a

novel contribution. Moreover, the analysis is not restricted by the network’s depth or activation

functions, as previous a�empts at understanding dropout have been.

As for its practical implications, my analysis suggests a new criterion for principled model com-

pression. The closed-form regularization penalty I isolate naturally suggests a new weight prun-

ing strategy. Interestingly, my new rule is in stark disagreement with the commonly used signal-

to-noise ratio (SNR) [Graves, 2011, Blundell et al., 2015]. The SNR is quick to prune weights with

large variances, deeming them noisy, but my approach finds large variances to be an essential

characteristic of robust weights that are likely to generalize. Experimental results on well-known

predictive modeling tasks show that my weight pruning mechanism is not only superior to the

SNR criterion by a wide margin, but also competitive to retraining with so�-targets produced

by the full network [Hinton et al., 2014, Ba and Caruana, 2014]. In each experiment my method

was able to prune at least 20% more of the model’s parameters than SNR before seeing a vertical

1The work in this chapter is from Nalisnick et al. [2015]

53

asymptote in test error. Furthermore, in two of these experiments, the performance of mod-

els pruned with my method reduced or matched the error rate of the retrained networks until

reaching 50% reduction.

4.1 Background

Training with multiplicative noise (MN) is a regularization procedure implemented through slight

modification of the base NN definition (Equation 2.4). It causes the intermediate representation

hi,l−1 to become stochastically corrupted by introducing random variables to the inner product

hi,l−1Wl. Rewriting Equation 2.4 with MN (and again dropping the bias terms to reduce clu�er),

we have

hi,l = fl(hi,l−1ΛlWl) (4.1)

where Λl is a diagonal dl−1 × dl−1-dimensional matrix of random variables λj,j drawn indepen-

dently from some noise distribution p(λ). Dropout corresponds to a Bernoulli distribution on λ

[Hinton et al., 2012, Srivastava et al., 2014].

Training under MN is done by sampling a new Λl matrix for every forward propagation through

the network. Backpropagation is done as usual using the corrupted values. We can view the

sampling as Monte Carlo integration over the noise distribution, and therefore, the MN loss

function can be wri�en as

LMN(y,X, {Wl}L+1
l=1) = Ep(λ)[− log p(y|X, {Wl}L+1

l=1 , {Λl}Ll=1)]

≈ 1

S

S∑
s=1

− log p(y|X, {Wl}L+1
l=1 , {Λ̂l,s}Ll=1)

(4.2)

where the expectation is taken with respect to the noise distribution p(λ) and Λ̂l,s denotes the

54

sth set of samples for the lth layer. At test time, the bias introduced by the noise is corrected;

for instance, the weights would be multiplied by (1− p) when training with Bernoulli(p) noise.

Direct analysis of Equation 4.2 for NNs is di�icult since the non-linear activation functions sit

between the expectation and the noise variables. Nevertheless, analysis of dropout has received

a significant amount of a�ention in the recent literature, and progress has been made by consid-

ering second order approximations [Wager et al., 2013, Baldi and Sadowski, 2013], asymptotic

assumptions [Wang and Manning, 2013], linear networks [Baldi and Sadowski, 2013, Warde-

Farley et al., 2013], generative models of the data [Wager et al., 2014], and convex proxy loss

functions [Helmbold and Long, 2015].

4.2 Multiplicative Noise as Gaussian Scale Mixtures

In this section, I show that analysis of multiplicative noise (MN) regularization can be made

tractable by adopting a Bayesian perspective. The key observation is that if we assume the

weights to be Gaussian random variables, the product λw, where λ is the noise andw is a weight,

defines a Gaussian scale mixture (GSM). GSMs can be represented hierarchically with the scale

mixing variable—in this case the noise λ—becoming a hyperprior. The reparametrization works

even for deep NNs (DNNs) regardless of their size or activation functions.

4.2.1 Gaussian Scale Mixtures

A random variable θ is a Gaussian scale mixture (GSM) if and only if it can be expressed as the

product of a Gaussian random variable–call it u with zero mean and some variance σ2
0–and an

independent scalar random variable z [Andrews and Mallows, 1974, Beale and Mallows, 1959]:

θ
d
= zu, u ∼ N(0, σ2

0), z ∼ p(z) (4.3)

55

where d
= denotes equality in distribution. The RHS is known as the GSM’s expanded parametriza-

tion [Kuo and Mallick, 1998]. While it may not be obvious from Equation 4.3 that θ is a scale

mixture, the result follows from the Gaussian’s closure under linear transformations, resulting

in the following marginal density of θ:

p(θ) =

∫
zp(u; 0, σ2

0)p(z)dz =

∫
N(0, σ2

0z
2)p(z)dz (4.4)

where p(z) is now clearly the mixing distribution. As I discuss at length in Section 3.1.2, super-

Gaussian distributions, such as the student-t, Laplace, and horseshoe, can be represented as

GSMs, and this hierarchical formulation is o�en used when employing these distributions as

robust priors [Steel et al., 2000].

4.2.2 Noise Induced ARD Priors

Now that I have defined GSMs, I demonstrate their relationship to training under MN noise. I do

so by assuming the Bayesian framework and then working to derive the Monte Carlo objective

in Equation 4.2. Assume we have a L-hidden layer Bayesian NN with the following hierarchical

specification:

yi ∼ p(y|xi, {Ml}L+1
l=1), ml,j,k ∼ N(0, σ2

0ξ
2
l,j,·), ξl,j,· ∼ p(ξ) (4.5)

where ml,j,k denotes the NN weights and ξl,j,· is the Gaussian prior’s scale and thus takes the

role of z in the GSM definition above. Notice that I have given ξl,j,· a layer index (l) and row index

(j) but not a column index (k). Thus, all weights in the same row share the same scale—this is

the ARD framework discussed in Section 3.1.2 (Equation 3.3). As the prior on the weights is a

GSM, we can reparametrize the model into the GSM’s equivalent expanded form:

yi ∼ p(y|xi, {Wl}L+1
l=1 , {Ξl}Ll=1), wl,j,k ∼ N(0, σ2

0), ξl,k,· ∼ p(ξ) (4.6)

56

where now the weights are denoted wl,j,k and drawn from a Gaussian with a fixed variance. The

reparametrization changes the NN’s hidden layers to:

hi,l = fl(hi,l−1Ml)
reparametrization−→ fl(hi,l−1ΞlWl) (4.7)

where Ξl is a diagonal dl−1 × dl−1-dimensional matrix of scale values ξl,j,·. The kth hidden unit

is now computed as hi,l,k = fl

(∑dl−1

j=1 hi,l−1,jξl,j,·wl,j,k

)
.

Lastly, now consider marginalizing out the scale variables in the expanded parametrization:

p({Wl}L+1
l=1 |y,X) ∝

∫
ξ

p(y|X, {Wl}L+1
l=1 , {Ξl}Ll=1)p(ξ)

L+1∏
l=1

p(Wl; 0, σ2
0) dξ

= Ep(ξ)
[
p(y|X, {Wl}L+1

l=1 , {Ξl}Ll=1)
] L+1∏
l=1

p(Wl; 0, σ2
0).

(4.8)

Doing so makes the objective for the marginal MAP estimate of the weights:

LMAP(y,X,{Wl}L+1
l=1) = − log p({Wl}L+1

l=1 |y,X)

∝ − logEp(ξ)
[
p(y|X, {Wl}L+1

l=1 , {Ξl}Ll=1)
]

+− log
L+1∏
l=1

p(Wl; 0, σ2
0)

∝ − logEp(ξ)
[
p(y|X, {Wl}L+1

l=1 , {Ξl}Ll=1)
]

+
1

2σ2
0

L+1∑
l=1

dl−1∑
j=1

dl∑
k=1

w2
l,j,k.

(4.9)

I now perform the final two steps in the derivation: (i) I use Jensen’s inequality to upper-bound

57

the first term, and (ii) I assume the variance of the prior on the weights goes to infinity.

LMAP(y,X,{Wl}L+1
l=1)

≤ Ep(ξ)
[
− log p(y|X, {Wl}L+1

l=1 , {Ξl}Ll=1)
]

+
1

2σ2
0

L+1∑
l=1

dl−1∑
j=1

dl∑
k=1

w2
l,j,k

→ Ep(ξ)
[
− log p(y|X, {Wl}L+1

l=1 , {Ξl}Ll=1)
]

(assuming σ0 →∞)

≈ 1

S

S∑
s=1

− log p(y|X, {Wl}L+1
l=1 , {Ξ̂l,s}Ll=1) (Monte Carlo approximation)

= LMN(y,X, {Wl}L+1
l=1) (Equation 4.2 with p(ξ) = p(λ)).

(4.10)

In the last step, I reach equality with Equation 4.2, the Monte Carlo MN optimization objective,

by se�ing the scale distribution p(ξ) to be the noise model p(λ).

To summarize the derivation, I started with a Bayesian NN given an ARD GSM prior. I then

reparametrized the model into its expanded form, moving the random Gaussian scale from the

first-level prior into the likelihood function. To arrive at the objective, I considered the model’s

marginal map estimate of the NN weights and upper-bounded the objective via Jensen’s, e�ec-

tively moving the noise distribution outside the logarithm (first line in Equation 4.10). I then

assumed the Gaussian prior’s variance is su�iciently large so that the ridge penalty can be ig-

nored. Equation 4.2 is then a�ained by assuming the expectation is computed with a Monte

Carlo approximation. The assumption that the Gaussian’s variance goes to infinity (second line

of Equation 4.10) can be removed if using both weight decay [Hinton, 1986] and MN regulariza-

tion, which is done by Srivastava et al. [2014] (see their Table 9). The variance should simply be

set so that the term 1/2σ2
0 matches the weight decay strength parameter. The ARD assumption

can be removed if we assume all weights have independent scales, which changes the hidden

layer computation to:

hi,l = fl(hi,l−1(Ξl �Wl))

where� denotes the Hadamard product (element-wise) and Ξl is now a dense matrix. Following

58

the same derivation from this point reveals an equivalence to dropconnect regularization [Wan

et al., 2013], which uses MN on each weight instead of each hidden unit. This disconnection

from ARD may explain why dropconnect is not as widely used as dropout.

4.2.3 Corresponding Priors

Having shown the equivalence between GSM priors and MN, I now discuss some specific noise

distributions and their corresponding priors. Starting with dropout, the noise distribution is

λ ∼ Bernoulli(p), and this implies the prior on the Gaussian’s variance is also Bernoulli, i.e.

λ2 ∼ Bernoulli(p), since the square of a Bernoulli random variable is still a Bernoulli of the same

distribution. The marginal prior on the NN weights is then

p(w) =
∑

λ∈{0,1}

λ N(w; 0, σ2
0) p(λ) = p N(w; 0, σ2

0) + (1− p) δ[0] (4.11)

where δ[0] denotes the delta function located at zero. This is the spike-and-slab prior commonly

used for Bayesian variable selection [Mitchell and Beauchamp, 1988, George and McCulloch,

1993, Kuo and Mallick, 1998]. Interestingly, the expanded parametrization was used for linear

regression by Kuo and Mallick [1998], and thus their work should be considered a precursor to

dropout. However, Kuo and Mallick [1998] were interested in obtaining the marginal posteriors

p(λ = 1|y,X) rather than deriving a regularization mechanism to improve predictive perfor-

mance. When dropout is performed without weight decay, dropout’s prior becomes

pDROP(w) ∝ p 1 + (1− p) δ[0], (4.12)

where the improper uniform distribution 1 is derived by taking σ0 → ∞. Thus, we see that

dropout interpolates between no regularization (1) and absolute shrinkage (δ[0]). Recalling the

regularization penalties discussed in Section 3.1.2, we see that the penalties derived by Kingma

59

Noise Model p(λ) Variance Prior p(λ2) Marginal Prior p(w)
Bernoulli Bernoulli Spike-and-Slab
Gaussian χ2 Unnamed
Rayleigh Exponential Laplace

Inverse Nagakami Γ−1 Student-t
Half-Cauchy Unnamed Horseshoe

Table 4.1: Noise Models and their Corresponding Gaussian Scale Mixture Prior.

et al. [2015] and Helmbold and Long [2015] do exactly this: they aggressively pull the weights

toward zero but then relax the penalty into a plateau once su�iciently far from the origin. The

region near zero corresponds to the δ[0] term and the plateau to corresponds to the 1 term.

In Table 4.1, I list several more noise models, their corresponding priors on the Gaussian vari-

ance, and their marginal distribution on the weights. Gaussian MN, which Srivastava et al.

[2014] showed to work as well as or be�er than Bernoulli noise, corresponds to a χ2-distribution

on the variance. I am unaware of a name for the corresponding marginal distribution, however.

Other notable cases are Rayleigh noise, which corresponds to a Laplace marginal, inverse Na-

gakami noise [Nakagami, 1960], which corresponds to a student-t, and half-Cauchy noise, which

corresponds to the HSP [Carvalho et al., 2009] discussed in Section 3.1.2.

4.3 A Variational Derivation with Applications to Pruning

Having established the link between MN and GSMs, I next wish to isolate the mechanics of MN

regularization. Writing Λl as a function of Wl may reveal the interplay between the noise and

parameters. Such a derivation for the expanded parametrization is still di�icult, as the noise is

buried within the activation functions, but working with the hierarchical form has the potential

to simplify the problem. Leaving the ‘noise’ variable as the Gaussian scale removes it from the

likelihood term and thus outside of the deep NN.

60

Consider the following variational EM derivation for the Bayesian NN with a GSM prior in its

hierarchical formulation (originally defined in Equation 4.5):

yi ∼ p(y|xi, {Ml}L+1
l=1), ml,j,k ∼ N(0, σ2

0λ
2
l,j,·), λl,j,k ∼ p(λ)

where λ is now used for the scale / noise variable. I assume the posterior is approximated by

p({Ml}L+1
l=1 , {Λl}Ll=1|y,X) ≈

L+1∏
l=1

dl−1∏
j=1

dl∏
k=1

q(ml,j,k;µi,j,k, σl,j,k)δ[λl,j,k]

where the posterior on the weights is assumed to be Gaussian with parameters µi,j,k and σl,j,k.

Writing the ELBO for this model and approximation we have:

log p(y|X) ≥ Eq(M)

[
log p(y|X, {Ml}L+1

l=1)
]

+
L+1∑
l=1

−Eδ[λl] [KLD[q(Ml)||p(Ml|λl)]] + Hδ[λ][λl]− Eδ[λ][log p(λl)]

= Eq(M)

[
log p(y|X, {Ml}L+1

l=1)
]

+
L+1∑
l=1

−KLD[q(Ml)||p(Ml|λ̂l)]− log p(λ̂l) + C

= Eq(M)

[
log p(y|X, {Ml}L+1

l=1)
]

+
L+1∑
l=1

dl−1∑
j=1

dl∑
k=1

− log
λ̂l,j,k
σl,j,k

−
σ2
l,j,k + µ2

l,j,k

2λ̂2l,j,k
− log p(λ̂l,j,k) + C

(4.13)

where C is a constant. If we assume the noise model has continuous support, we can then update

the noise variable by taking the derivative and se�ing it to zero:

0 =
∂

∂λ̂l,j,k

[
Eq(M)

[
log p(y|X, {Ml}L+1

l=1)
]
− log

λ̂l,j,k
σl,j,k

−
σ2
l,j,k + µ2

l,j,k

2λ̂2l,j,k
− log p(λ̂l,j,k)

]

=
−1

λ̂l,j,k
+
σ2
l,j,k + µ2

l,j,k

λ̂3l,j,k
− ∂

∂λ̂l,j,k
log p(λ̂l,j,k)

= −λ̂2l,j,k + σ2
l,j,k + µ2

l,j,k − λ̂3l,j,k
∂

∂λ̂l,j,k
log p(λ̂l,j,k).

(4.14)

61

To get the final update, I assume that λ̂l,j,k nearly maximizes log p(λ̂l,j,k) so that I can consider

its derivative weak and therefore negligible. The approximate update for λ̂l,j,k is then:

λ̂t+1
l,j,k ≈ σ2

l,j,k,t + µ2
l,j,k,t. (4.15)

In words, we should set the noise / variance at time t + 1 to the sum of the weight’s posterior

variance and mean. The connection to the shrinkage dynamics can then be seen by plugging the

update back into the Gaussian prior and viewing it as a ridge penalty:

R(mt) =
1

2σ2
0

L+1∑
l=1

dl−1∑
j=1

dl∑
k=1

m2
l,j,k,t

λ̂tl,j,k
≈ 1

2σ2
0

L+1∑
l=1

dl−1∑
j=1

dl∑
k=1

m2
l,j,k,t

σ2
l,j,k,t−1 + µ2

l,j,k,t−1
. (4.16)

The update results in the ridge penalty being scaled inversely proportional to σ2
l,j,k,t−1 +µ2

l,j,k,t−1,

meaning that the larger the posterior moments, the weaker the regularization. Conversely, as

σ2
l,j,k,t−1 + µ2

l,j,k,t−1 → 0, the penalty explodes, quenching the weight to true zero. This behavior

roughly parallels that of the heavy-tailed penalties (Section 3.1.2).

While the above analysis provides some view into the mechanics behind MN, it does not im-

mediately suggest an improvement upon how MN and GSMs are used in practice. However, I

did find immediate and practical benefits in the context of model compression [Ba and Caruana,

2014, Hinton et al., 2014]. My variational EM derivation of MN regularization conspicuously con-

flicts with the signal-to-noise ratio (SNR) commonly used for NN weight pruning [Graves, 2011,

Blundell et al., 2015]. The SNR heuristic is defined by the following inequality:

|µl,j,k|
σl,j,k

< τ (4.17)

where |µl,j,k| is the absolute value of the posterior mean of weight ml,j,k, σl,j,k is the posterior

standard deviation of the same weight, and τ is some positive constant. Pruning is carried out

by se�ing to zero all weights for which the inequality holds (i.e. |µ|/σ is below the threshold τ).

62

Blundell et al. [2015] conducted experiments using the SNR and stated it “is in fact related to

test performance.”

Now I propose an alternative rule based on my EM analysis. Recall that the ridge penalty in

Equation 4.16 is weighted by the inverse of the posterior mean and variance. Since large posterior

moments turns o� the shrinkage penalty, that means that we should retain the weights with

large means and large variances. This conclusion conflicts with the SNR since using |µ|/σ prunes

weights with large variances first. Thus, I propose the following competing heuristic I call signal-

plus-robustness (SPR):

|µl,j,k|+ σl,j,k < τ (4.18)

where the terms are defined the same as above.

4.4 Experiments: Weight Pruning

I experimentally compared both pruning rules on three data sets, each with very di�erent char-

acteristics. The first is the well-known MNIST dataset (d = 784, N = 50k/10k), the second is

the large IMDB movie review dataset for sentiment classification [Maas et al., 2011] (d = 5000,

N = 25k/25k), and the third is a regression task using features preprocessed from the Million

Song Dataset (MSD) [Lichman, 2013] (d = 90, N = 460k/50k). I trained the networks with

Bernoulli MN and when convergence was reached, switched to Langevin dynamics (Equation

2.19) with no MN to collected 10,000 samples from the posterior weight distribution of each

network. A polynomial decay schedule was set by validation set performance.

I ordered the weights of each network by SNR and SPR and then removed weights (i.e. set them

to zero) in increasing order according to the two rules. Plots showing test error (number of

errors, error rate, mean RMSE) vs percentage of weights removed can be seen in panels (a), (b),

63

(a) MNIST, 500-300 Hidden Units (b) IMDB, 1000 Hidden Units

(c) MSD, 120 Hidden Units (d) Posterior Weight Moments

Figure 4.1: Experimental Results. Weight pruning task (a, b, c) and empirical moments (d).

64

and (c) of Figure 4.1. For another source of comparison, I show the performance of a network

(completely) retrained on the so�-targets [Hinton et al., 2014] produced by the full network. To

make comparison fair, the retrained networks had the same depth as the one on which pruning

was done, spli�ing the parameters equally between the layers. No so�-target results are shown

for (c), the MSD year prediction task, as I found training with so�-targets does not have the

same benefits for regression it does for classification.

We see that my rule, SPR (|µ|+σ), is clearly superior to SNR (|µ|/σ). I was able to remove at least

20% more of the weights in each case before seeing a catastrophic increase in test error. The most

drastic di�erence is seen for the IMDB dataset in (b), which I believe is due to the sparsity of the

features (word counts), exaggerating SNR’s preference for over-determined weights. My method,

SPR, even outperformed retraining with so�-targets until at least a 50% reduction in parameters

was reached. Finally, further empirical support of my findings, a sca�er plot showing the first

two moments of each weight for two networks–one trained with Bernoulli MN and the other

without MN–can be see in panel (d) of Figure 4.1. I produce the figure to show that although

my closed-form penalty technically doesn’t hold for discrete noise distributions (due to the need

to compute the gradient), the analysis (shrinkage vs scale robustness) most likely extends to

discrete mixtures.

4.5 Conclusions

This chapter improves our understanding of how multiplicative noise regularizes the weights

of deep NNs. I show that multiplicative noise can be interpreted as inducing a Gaussian scale

mixture prior (under mild assumptions). This analysis holds for NNs regardless of their depth or

activation function. Moreover, I derive a variational EM algorithm to isolate the mechanics of

MN, writing the noise variable in terms of the posterior weight moments. Lastly, I demonstrated

the utility of my findings via a new weight pruning rule that naturally extends from my analysis

65

of MN. Pruning via signal-plus-robustness is significantly more e�ective than the previously

proposed signal-to-noise ratio and is even competitive to retraining with so�-targets.

66

Chapter 5

Approximating Objective Priors

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

Robert Frost

The Road Not Taken

In many practical situations, there are no available means for obtaining useful prior information.

For example, in high-dimensional problems the parameter space is o�en inherently unintuitive.

The usual way to proceed is to pick a noninformative prior that is flat and/or objective. By

flat prior I mean a distribution that does not have any substantial concentration of its mass;

maximum entropy priors [Jaynes, 1957] o�en exhibit this characteristic. An objective prior is one

that has some formal invariance property. The two best known examples of objective priors are

Je�reys [Je�reys, 1946] and reference [Bernardo, 1979] priors, which are both invariant to model

reparametrization. Some priors are both objective and flat: the Je�reys prior for the Gaussian

mean is the (improper) uniform distribution. However, just because a prior is relatively flat does

67

not mean it is objective. For example, the Bernoulli’s Je�reys prior is the arcsine distribution,

which, having vertical asymptotes at 0 and 1, is conspicuously not flat.

Since there are no guarantees that what looks to be a flat prior might not harbor hidden sub-

jectivity, objective priors seem to be the be�er ‘default’ choices. However, the mathematical

rigor that makes objective priors a�ractive also makes their use problematic: their derivation is

di�icult for all but the simplest models. To be specific, solving the calculus of variations prob-

lem for a reference prior requires, among other properties, an analytical form for the posterior

distribution, which is rarely available.

In this chapter, I broaden the potential use of objective priors by describing a method for learning

high-fidelity reference prior approximations1. The proposed method is akin to black-box (poste-

rior) variational inference [Ranganath et al., 2014]: I posit a parametric family of distributions

and perform derivation-free optimization to find the member of the family closest to the true

reference prior. Doing so would be useful, for example, if one wishes to have an objective prior

that preserves model conjugacy2. The modeler could employ the techniques proposed below to

find the conjugate prior’s parameter se�ing that makes it closest to objective. Moreover, these

methods learn a reference prior for a given model independently of any data source3, which

means that obtaining a reference prior for a particular model needs to be done only once.

In my experimental results I demonstrate that the proposed framework recovers the Je�reys

prior be�er than existing numerical methods. I also analyze the optimization objective, providing

intuition behind a number of hyper-parameter choices. And lastly, I learn a reference prior for

a variational autoencoder [Kingma and Welling, 2014b] (see Section 2.3.2.2). In an interesting

case study, we see that the variational autoencoder’s reference prior di�ers markedly from the

standard Normal distribution that is commonly used as the prior on the latent space.

1The work in this chapter is presented in Nalisnick and Smyth [2017b].
2Reference priors are o�en improper distributions, let alone conjugate.
3Except when the model is for a conditional distribution, i.e. p(y|x). In this case, samples of x are necessary to

learn the approximate reference prior.

68

5.1 Background and Related Work

I begin by defining reference priors, highlighting their connection to the Je�reys prior, and sum-

marizing the related work on computing intractable reference priors. I use the following nota-

tion throughout the chapter. Define the likelihood to be p(D|θ) =
∏N

i=1 p(xi|θ) where θ are the

model parameters andD is the data set, which is comprised ofN i.i.d. observations xi ∈ X . p(θ)

denotes the prior, p(θ|D) the posterior, and p(D) =
∫
θ
p(D|θ)p(θ)dθ the marginal likelihood (or

model evidence). When I refer to the ‘likelihood function’ I mean the functional form of the data

model, p(x|θ). I write expectations with respect to the data set likelihood, but because of D’s

i.i.d. assumption, these can be wri�en equivalently in terms of each data instance; for example:

HD|θ[D] = −
∫
D
p(D|θ) log p(D|θ)dD = −

∫
x

∏
i

p(xi|θ) log
∏
i

p(xi|θ)dx = NHx|θ[x].

5.1.1 Reference Priors

Reference priors [Berger et al., 2009, Bernardo, 2005] (RPs) are objective Bayesian prior distri-

butions derived for a given likelihood function by finding the prior that maximizes the data’s

influence on the posterior distribution. Equivalently, the prior’s influence on the posterior is

minimized, which is precisely the behavior we desire if we wish to represent a state of ignorance

about the model parameters. The RP’s data-driven nature yields ‘frequentist-esque’ posteriors:

for large sample sizes, the 1−α credible interval approximates a confidence interval with signifi-

cance levelα [Irony and Singpurwalla, 1997]. Thus, RPs give results that are the nearest Bayesian

equivalent to maximum likelihood estimation, and this behavior is how they derive their name:

RPs serve as a reference against which to test subjective priors.

Definition. I now state the RP definition formally. A RP p∗(θ) is the distribution that maximizes

the mutual information between the parameters θ and the dataD [Berger et al., 2009, Bernardo,

69

1979]:

p∗(θ) = argmax
p(θ)

I(θ,D) = argmax
p(θ)

H[θ]︸︷︷︸
maximize prior

uncertainty

− H[θ|D].︸ ︷︷ ︸
minimize posterior

uncertainty

(5.1)

Here I(·, ·) denotes mutual information. In the second line, I(·, ·) is (by definition) decom-

posed into separate marginal and conditional entropy terms, showing that maximizing I(θ,D)

in turn maximizes the prior’s uncertainty while minimizing the posterior’s uncertainty. The

second term reflects the RP’s data-driven nature as it encourages the posterior to contract

quickly (as N increases). Another way to see how the RP accentuates the data’s influence is

by writing the mutual information in terms of a Kullback-Leibler divergence (KLD): I(θ,D) =∫
D p(D) KLD[p(θ|D) || p(θ)] dD. This form shows that increasing I(θ,D) decreases the similar-

ity between the posterior and prior. I�i and Baldi [2006] call the KLD between prior and posterior

beliefs the Bayesian surprise, and from this point of view, we can interpret RPs as the priors that

result in the largest expected surprise.

Solution. Solving Equation 5.1 for p∗ is a calculus of variations problem whose solution can be

expressed by re-writing the mutual information as

I(θ,D) = −
∫
θ

p(θ) log
p(θ)

f(θ)
dθ where f(θ) = exp

{∫
D
p(D|θ) log p(θ|D) dD

}
. (5.2)

Clearly, the mutual information is maximized when p(θ) ∝ f(θ). See Bernardo (1979) for a

complete discussion of the derivation. Equation 5.2 also makes clear the analytical obstacles

that need to be overcome to solve the optimization problem for a given model: the functional f

requires that the log posterior—which is usually intractable to compute—be integrated over the

likelihood function. Note that the solution is commonly not a proper distribution (that integrates

to 1).

Relation to Je�reys Priors. Je�reys priors are defined as π(θ) ∝
√

detF [θ] where F de-

70

notes the Fisher information matrix, and RPs are equal to the Je�reys in one dimension but not

in general. The equivalence is obtained by invoking the Bernstein-von Mises theorem: se�ing

p(θ|D) ≈ N(θMLE,F−1(θ)) where θMLE is the maximum likelihood estimate and F is the Fisher

information matrix. RPs, also like the Je�reys, are invariant to model reparametrization, which

follows from the fact that the mutual information is itself invariant to a change in parametriza-

tion [Berger et al., 2009].

5.1.2 Related Work

Next I review existing techniques for approximating intractable RPs. These methods have a no-

table lack of scalability, requiring numerical integration over the parameter space. Nonetheless,

since they share some fundamental similarities with my proposed method, I reproduce their main

components so that I can later discuss how my method handles the same analytical di�iculties.

Numerical Algorithm. Berger et al. [2009] proposed a numerical method for computing a RP’s

value at any given point θ0. Their method is, simply, to calculate f(θ) numerically via Monte

Carlo approximations:

p∗(θ0) ≈ exp

{
1

J

J∑
j=1

log
p(D̂j|θ0)1Θ∑S
s=1 p(D̂j|θ̂s)

}
(5.3)

where 1Θ is an improper uniform prior over the parameter space. The method proceeds by

sampling J data sets from the likelihood function, i.e. D̂j = {x̂j,i|x̂ ∼ p(x|θ0)}, and S pa-

rameter values from the prior, i.e. θ̂s ∼ 1Θ. The posterior is then approximated as p(θ|D) ≈

p(D̂j|θ0)1Θ/
∑S

s=1 p(D̂j|θ̂s). This numerical approximation has two significant downsides. The

first is that the user must specify the points at which to compute the prior, and the second is

that numerically integrating over the parameter space is computationally expensive in even low

dimensions.

71

MCMC. La�erty and Wasserman [2001] proposed a Markov chain Monte Carlo (MCMC) method

for sampling from a RP. Their approach involves running the Metropolis-Hastings algorithm on

the following ratio [La�erty and Wasserman, 2001]:

log
pt+1(θ)

pt+1(θ′)
= (t+ 1)(Hx|θ′ [x]−Hx|θ[x]) +

∑
x∈X

W t(x)[p(x|θ′)− p(x|θ)] (5.4)

where t is the iteration index, Hx|θ[x] is the entropy of the likelihood function, and W t(x) =

W t−1(x)+log 1
St

∑St
s=1 p(x|θ̂ts) where θ̂ts are the parameter samples collected during the previous

iteration.

While this MCMC approach may look dissimilar to Berger et al. [2009]’s method at first glance,

the two methods are in fact related. We can see the connection by examining just one of the

distributions in the ratio (when t = 0):

log p1(θ) = −Hx|θ[x] +
∑
x∈X

−W 0(x)p(x|θ) =
∑
x∈X

p(x|θ)

[
log p(x|θ)− log

1

S0

S0∑
s=1

p(x|θ̂0s)

]
.

The line above becomes equivalent to Equation 5.3 if we use a Monte Carlo approximation of the

expectation over p(x|θ) and then exponentiate both sides. Despite this close connection between

the two methods, La�erty and Wasserman [2001]’s approach is superior to that of Berger et al.

[2009]’s since it draws samples from the prior instead of merely computing its value at points the

user must select. Yet the same costly discrete approximations of the integrals will be required.

Reference Distance Method. The third approach, and the only other that I am aware of for

finding approximate RPs, is the Reference Distance Method (RDM) proposed by Berger et al.

[2015]. This method focuses on finding a joint RP by minimizing the divergence between a

parametric family and the marginal RPs [Berger et al., 2015]. Since we are concerned with models

for which even the marginal RPs are intractable, the RDM is not a relevant point for comparison.

72

5.2 Learning Reference Prior Approximations

I now turn to the primary contribution of this chapter: approximating RPs by learning the pa-

rameters of the approximation. My proposed approach contrasts with Berger et al. [2009]’s and

La�erty and Wasserman [2001]’s in that their methods are not model-based. In other words,

their procedures produce no parametric artifact for the prior unless a post-hoc step of model fit-

ting is carried out. My black-box optimization framework subsumes the utility of the numerical

and MCMC methods as it can directly learn either a parametric approximation to evaluate the

prior’s density or a functional sampler that can generate new samples from the prior at any later

time.

Inspired by recent advances in posterior variational inference (VI), I use similar ideas to optimize

an approximate prior—call it pλ(θ) with parameters λ—so that it is the distribution in the family

closest to the true RP p∗(θ). The mutual information still serves as the natural optimization

objective; the di�erence is that I take the argmax over λ, instead of the density p itself, such

that p∗(θ) ≈ pλ∗(θ):

λ∗ = argmax
λ

I(θ,D)

= argmax
λ

∫
θ

pλ(θ)

∫
D
p(D|θ) log

p(D,θ)

pλ(θ)p(D)
dDdθ

= argmax
λ

∫
θ

pλ(θ)

∫
D
p(D|θ) log

p(D|θ)

p(D)
dDdθ

= argmax
λ

Eθλ

[
−HD|θ[D]− ED|θ[log p(D)]

]
.

(5.5)

In the final line above, I wrote the mutual information as the di�erence between the negative like-

lihood entropy and the expected log marginal likelihood because this is I(θ,D)’s most tractable

form: it contains only p(D) instead of p(D) and p(θ|D). I use the notional θλ to emphasize that

θ’s distribution is a function of λ.

Bounding log p(D). The marginal likelihood term in Equation 5.5 is still problematic, and thus,

73

just as in posterior VI, we need some tractable bound to optimize instead. Since we need to

bound I(θ,D) from below, log p(D) must be bounded from above. Hence, unfortunately, we

cannot use the evidence lower bound (ELBO) common in posterior VI. As an alternative I use the

variational Rényi bound [Li and Turner, 2016] (VR), which is defined as:

log p(D) ≤ 1

1− α
logEθ

[
p(D|θ)1−α

]
for α ≤ 0.

Plugging the VR bound into Equation 5.5 yields a general lower bound on the mutual information:

I(θ,D) ≥ Eθλ

[
−HD|θ[D]− ED|θ

[
1

1− α
logEθ

[
p(D|θ)1−α

]]]
. (5.6)

In theory, se�ing α = 0 provides the tightest bound, and decreasing α loosens the bound. How-

ever, as I discuss next, practical implementation requires a negative value for α.

Optimization Objective. The expectation within the VR bound usually will not be analyti-

cally solvable, requiring the use of a Monte Carlo approximation (which I refer to as MC-VR).

Yet, introducing sampling into the VR bound can give rise to numerical challenges. The MC-

VR estimator is an exponentiated form of the harmonic mean estimator [Ra�ery et al., 2007],

which is notorious for its high variance. Furthermore, approximating the expectation with sam-

ples, since they reside inside the logarithm, biases the bound downward. Li & Turner (2016)

propose the following VR-max estimator, corresponding to α→ −∞, to cope with these issues:

maxs log p(D|θ̂s) where s indexes samples θ̂s ∼ p(θ). I find that the VR-max estimator generally

preserves the bound and needs to be checked only in high dimensions (100+), which is a regime

not well suited for reference priors anyway (due to overfi�ing).

Introducing the VR-max estimator into Equation 5.5 yields a tractable lower bound on the mutual

74

information:

I(θ,D) ≥ JRP(λ) = Eθλ

[
−HD|θ[D]− ED|θ[max

s
log p(D|θ̂s)]

]
. (5.7)

Maximizing JRP(λ) with respect to the prior’s parameters λ results in pλ(θ) ≈ p∗(θ) as long as

pλ is su�iciently expressive. JRP(λ) can be interpreted as follows. The first term is the entropy of

the likelihood function, and thus maximizing its negation encourages certainty in the data model.

The second term, the expected value of the VR-max estimator under the likelihood, encourages

diversity in pλ by forcing a data setD0 ∼ p(D|θ0) to have low probability under other parameter

se�ings θ̂s.

Connection to Previous Work. Further understanding of JRP(λ) can be gained by re-writing

it to see its relationship to Berger et al. [2009]’s and La�erty and Wasserman [2001]’s methods.

Pulling out the expectation over the likelihood, we have the equivalent form:

JRP(λ) = EθλED|θ
[
log p(D|θ)−max

s
log p(D|θ̂s)

]
,

which is the di�erence between the data’s log-likelihood under the model (i.e. parameter se�ing)

that generated this data and the data log-likelihood under several samples from the prior. We

see that optimization forces the prior to place most of its mass on parameters that generate iden-

tifiable data sets—or in other words, data sets that have high probability under only their true

generative model. Turning back to Berger et al. [2009]’s Equation 5.3 and recalling its connec-

tion to the MCMC method, we see each method is approximately computing log[p(D|θ)/p(D)]

with the critical di�erence being that Berger et al. [2009] and La�erty and Wasserman [2001]

approximate log p(D) with log 1
S

∑
s p(D|θ̂s) whereas I use maxs log p(D|θ̂s) in order to ensure

a proper lower bound.

75

5.2.0.1 Black-Box, Gradient-Based Optimization

I now address how to compute and optimizeJRP(λ) (Equation 5.7) e�iciently using di�erentiable

Monte Carlo approximations.

Computing the Expectations. Consider first the three expectations in Equation 5.7. Starting

with the HD|θ[D] term, for many predictive models, p(x|θ) is either Gaussian, as in regression,

or Bernoulli, as in binary classification, meaning HD|θ[D] can be computed analytically4. The

second term, ED|θ[maxs log p(D|θ̂s)], is simply the cross-entropy between p(D|θ) and p(D|θ̂max)

where θ̂max is the sample that maximizes the likelihood. This term also can usually be calculated

analytically for regression and classification models. The only component that will typically be

intractable is the expectation over pλ(θ), as the parameters are o�en buried under nonlinear

functions and nested hierarchies. To address this I compute the outer expectation with samples

θ̂ ∼ pλ(θ):

J̃RP(λ) =
1

S

S∑
s=1

H[p(D|θ̂s)||p(D|θ̂max)]−HD|θ̂s [D]

=
1

S

S∑
s=1

KLD[p(D|θ̂s) || p(D|θ̂max)]

(5.8)

for S samples from the RP approximation and where H[p(D|θ̂s)||p(D|θ̂max)] denotes the cross-

entropy term mentioned above. If both entropy terms can be computed analytically, we can

write the expression as a KLD, which I do in the second line by using the identity KLD[q||p] =

H[q||p]−H[q]. If the entropy terms are not analytically tractable, they will need to be estimated

by sampling from the likelihood function.

Di�erentiable Sampling: We can take derivatives through each θ̂s, thereby allowing for fully

gradient-based optimization, by drawing the samples via a di�erentiable non-centered parametriza-

4To keep the notation simple, in my discussion of conditional models the dependence on the features is implicit.
Writing the entropy with X′ as the feature matrix and x as the vector of labels, we have: Hx|X′,θ[x].

76

tion (DNCP)—the so-called ‘reparametrization trick’ [Kingma and Welling, 2014b], i.e.

∂

∂λ

[
KLD[p(D|θ̂s) || p(D|θ̂max)]

]
=

∂

∂θ̂

[
KLD[p(D|θ̂s) || p(D|θ̂max)]

] ∂θ̂
∂λ

where ∂θ̂
∂λ

is the derivative that needs a DNCP in order to be evaluated. Requiring that pλ has

a DNCP does not significantly limit the approximating family. For instance, most mixture den-

sities have a DNCP. When dealing with discrete data or parameters, we can use the Concrete

distribution [Maddison et al., 2017, Jang et al., 2017], a di�erentiable relaxation of the discrete

distribution, to still have fully gradient-based learning.

5.2.0.2 Implicit Priors

A crucial detail to note about Equation 5.8 is that it does not require evaluation of the prior’s

density. Rather, we need only to draw samples from it. This allows us to use black-box functional

samplers as the variational family [Ranganath et al., 2016], i.e. θ̂ = g(λ, ε̂) where ε ∼ p0, g is

some arbitrary di�erentiable function (such as a NN), and p0 is a fixed noise distribution. I call

pλ an implicit prior in this se�ing since its density function is unknown.

Thus, the proposed information bound provides a ‘built-in’ sampling technique in lieu of La�erty

and Wasserman [2001]’s MCMC algorithm. Although we cannot guarantee the same asymptot-

ically unbiased approximation as MCMC, the lack of restrictions on g(λ, ε̂) should allow for a

su�iciently expressive sampler. Furthermore, we can persist the sampler just by saving the values

of λ; there’s no need to save the samples themselves. And since learning a RP for a generative

model is data set independent, λ could be shared easily via an online repository and users desir-

ing a RP for the same model could download λ to generate an unbounded number of their own

samples. The same can be done when pλ is a proper distribution.

77

(a) Bernoulli (b) Gaussian Scale (c) Poisson

Figure 5.1: Approximation via Lower Bound Optimization.

5.2.0.3 Example: Gaussian Mean

To provide some intuition and to sanity check the proposed approach, consider learning an

approximate RP for the mean parameter µ of a Gaussian density. The RP on µ is the im-

proper uniform distribution, which can be approximated as a Gaussian with infinite variance:

p∗(µ) ∝ 1 ≈ N(·,∞). The analytical solution to the KLD term in Equation 5.8 in this case is:

KLD[p(D|θ̂s) || p(D|θ̂max) =
1

2
|| µ̂s − µ̂max ||22,

which is the squared distance between two samples from pλ. Maximizing Equation 5.8 therefore

maximizes the average distance between samples from the RP approximation. If we set pλ =

N(µλ, σ
2
λI) and transform to the Normal’s DNCP θ = µ + σ � ε where ε ∼ N(0, I), then the

optimization objective becomes

|| µ̂s − µ̂max ||22 = || σλ � (ε̂s − ε̂max) ||22,

and optimization would increase σ2
λ without bound, agreeing with the infinite-variance Normal

approximation.

78

5.3 Empirical Results

Below I describe several empirical analyses of the proposed methods. Formulating experiments

is somewhat di�icult due to the fact that RPs do not necessarily improve a model’s ability to

generalize to out-of-sample data. In fact, using an RP when a model requires regularization will

likely degrade performance. Thus, my main analysis is a qualitative case study of the variational

autoencoder [Kingma and Welling, 2014b, Rezende et al., 2014]. But before analyzing the varia-

tional autoencoder’s RP, I check that my methods do indeed recover known RPs for exponential

family models.

For all experiments, I used the AdaM optimization algorithm [Kingma and Ba, 2014] with se�ings

β1 = 0.9 and β2 = 0.999. Training parameters such as the learning rate, latent dimensionality of

the functional sampler g(λ, ε̂), and number of samples were chosen based on which combination

gave the highest average value of the information lower bound over the last 50 updates. The

number of training iterations was set at 250 and the batch size was set to 100 in all cases.

5.3.1 Recovering Je�reys Priors

I begin experimental evaluation by a�empting to recover the true RP for three one-dimensional

models: the Bernoulli mean parameter, p∗(p) ∝ Beta(.5, .5), the Gaussian scale parameter,

p∗(σ) ∝ 1/σ, and the Poisson rate parameter, p∗(λ) ∝ 1/
√
λ. These are also the Je�reys priors

for the respective models (since we are in the univariate case). The chosen learning rate was

.001 for the implicit priors and .0001 for the parametric approximations, the number of samples

drawn was 50 for all models, and the functional sampler g was a linear model with a latent di-

mensionality of 5, i.e. ε ∼ N(0, I5×5). I used a logit-normal distribution for the Bernoulli RP’s

parametric approximation and a log-normal for the Gaussian scale’s and Poisson’s RP approxi-

mation. Both the logit- and log-normal have DNCPs.

79

(a) Bernoulli (b) Gaussian Scale (c) Poisson

Figure 5.2: �antifying the Approximation �ality. The Kolmogorov-Smirnov distance (supremum
of distance between empirical CDFs) between the Je�reys/true reference prior and the various
approximation techniques. The gray region denotes where the test’s null hypothesis is rejected,
meaning there is a statistical di�erence between the distributions.

�alitative Evaluation. Plots of the density functions learned by the lower bound method

(Section 5.2) are shown in Figure 5.1. The red line shows the Je�reys prior (the gold-standard

RP), the blue line shows the parametric approximation, and the gray histogram represents 10, 000

samples from the implicit prior. Both approximation types have negligible qualitative di�erence

to the red line.

�antitative Evaluation. Next I quantitatively compare my methods via a two-sample test

against three baselines: Berger et al. [2009]’s numerical method, La�erty and Wasserman [2001]’s

MCMC algorithm, and a uniform prior, which serves as a naive flat prior. For Berger et al. [2009]’s

method, I use the same number of parameter samples (S) as my method, set the J parameter to

100, and sample data sets containing 500 points. To generate samples from Berger et al. [2009]’s

method, I calculate the prior at 1000 evenly spaced grid points across the domain and then treat

them as a discrete approximation with each point having probability p(θi)/
∑1000

j p(θj). I then

80

sample from this discrete distribution 1000 times. For the MCMC method, I replicate La�erty

and Wasserman [2001]’s simulations by using a uniform proposal distribution and running for

10, 000 iterations. I kept the last 1000 samples drawn (no need to account for auto-correlation

due to the uniform proposal). For the Gaussian and Poisson cases, I approximated X using 1000

points. For all se�ings, I made sure my approximation methods ran no longer than the base-

lines, but this was never an issue: my methods converged in a fraction of the time the numerical

algorithms needed to run.

I quantify the gap in the approximations via a Kolmogorov-Smirnov two-sample test (KST) under

the null hypothesis H0 : p = q where p is the true RP and q is an approximation. I draw

samples from the true RP, when it is improper, via the same discrete approximation used for

Berger et al. [2009]’s method. The KST computes the distance (KSD) between the distributions

as KSD(p, q) = supx | F̂p(x)− F̂q(x) | where F̂p(x) is the empirical CDF.

Figure 5.2 shows the KSD between samples from the Je�reys prior and the various approximation

techniques, as the sample size increases. The black do�ed line in conjunction with the gray

shaded area denotes the threshold at which the null hypothesis (that the distributions are equal)

is rejected. The uniform distribution is denoted by the dark gray line, the numerical algorithm by

the black, MCMC by the brown, the parametric approximation by the red, the implicit prior by

the blue, and the particle approximation described in Nalisnick and Smyth [2017b] by the green.

We see that the la�er three approximations (mine) have a lower KSD—and thus are closer to the

true RP—in almost every experiment. The exceptions are that MCMC is superior to A-SVGD for

the Bernoulli (and competitive with the implicit), and the Berger et al. [2009] technique bests

A-SVGD and the parametric approximation for the Poisson. The parametric approximation for

the Bernoulli and the implicit prior for the Gaussian scale and Poisson are the only methods that

achieve conspicuous indistinguishability.

81

(a) Samples (b) Dimensionality

Figure 5.3: Optimization Stability. I train an implicit prior for a multivariate Gaussian and vary
(a) the number of samples used in the VR-max estimator, and (b) the Gaussian’s dimensionality.

5.3.2 Optimization Stability

As discussed in Section 5.2, the VR-max estimator used in Equation 5.7 has intrinsically high-

variance. While I have just shown in the previous section that my approximations be�er recover

the true RP in one dimension, scaling to higher dimensions is a concern (as is also the case for

existing techniques). Here I examine optimization progress of an RP approximation for the scale

parameters of a multivariate Gaussian with a diagonal covariance matrix. I produce two plots:

one showing the information lower bound’s progress (for a linear model implicit prior) when

using a di�erent number of samples over which to take the maximum (Figure 5.3a) and another

showing progress as the Gaussian’s dimensionality increases (Figure 5.3b). For the former, using

a five dimensional Gaussian, we see there is a trade-o� between lower bound maximization and

the number of samples used: using more samples increases the rate of progress but also the

objective’s variance. I find that in less than ten dimensions, using around 50 samples (red line)

results in a good variance vs progress balance. In Figure 5.3b, in which I vary the dimensionality

of the Gaussian while keeping the number of samples fixed at 100, we see that the objective’s

variance decreases with dimensionality. While this may seem non-intuitive at first, recall that

the VR-max estimator acts as a diversity term, finding points in space that give the data high

82

(a) Training Configuration (b) Approximation

Figure 5.4: Learning the Variational Autoencoder’s Reference Prior. (a) computational pipeline from
the implicit prior through the VAE decoder; (b) RP approximation (contours are generated via
kernel density estimation on 10, 000 samples).

probability even though it was generated with di�erent parameters. As dimensionality inflates,

it becomes harder and harder for a finite number of samples to capture these points and thus

the −H term in Equation 5.8 becomes prone to mode seeking.

5.3.3 VAE Case Study

Lastly, I study learning an RP approximation for an intractable, neural-network-based model: a

variational autoencoder [Kingma and Welling, 2014b] (VAE). The standard Normal distribution

is o�en chosen as the prior on the VAE’s latent space [Kingma and Welling, 2014b, Rezende

et al., 2014, Burda et al., 2016], and this choice is made more for analytical simplicity rather

than convictions based on prior information5. Thus, I learn an RP for the VAE to investigate the

qualities of its objective prior, which was previously intractable.

I trained an implicit prior (IP) for a VAE with 784 output dimensions (MNIST’s size), 100 en-

coder hidden units with hyperbolic tangent activations, and a two-dimensional latent space for

5“I chose the simple Gaussian prior N(0,I) because it’s simple to demonstrate but also because it results in a
relatively friendly objective function.” — D. Kingma, comment taken from r/MachineLearning, 4/12/16.

83

purposes of visualization. The IP g(λ, ε̂) is also a one-hidden layer NN6. The computational

pipeline is depicted in Figure 5.4a, where p(x|z) denotes the VAE likelihood function (decoder)

and z = g(λ, ε̂) denotes the functional sampler. Note that the VAE has two sets of parameters:

z, the latent variable on which I place the prior, and the weights of the decoder, denoted as W.

The weights must have some value during RP training and thus I place a standard normal prior

on W and sample from this prior during optimization of g.

Figure 5.4b shows samples from the VAE’s RP. We see that the learned IP is drastically di�erent

than the standard Normal that is typically used: the IP is multimodal and has a much larger

variance. Yet, the di�erence is intuitive: placing most prior mass at opposite sides of the latent

space encourages the VAE to space it’s latent representations with as much distance as possible,

ensuring they are as identifiable w.r.t. the model likelihood, the VAE decoder, as possible. Inter-

estingly, recent work by Ho�man and Johnson [2016] suggests that VAEs can be improved by

multimodal priors: ”[T]he [VAE]’s individual encoding distributions q(zi|xi) do not have sig-

nificant overlap. . .then perhaps we should investigate multimodal priors that can meet q(z)

halfway”. This suggests using multimodal, dispersed priors encourages flexibility and objectivity

in the posterior distribution.

We can also see analytically that the distribution in Figure 5.4b allows the VAE ‘to follow the

data’ as a good RP should. For simplicity, consider using a bivariate Gaussian as the RP ap-

proximation, and assuming it captures the same distribution as in Figure 5.4 (b), its parameters

would be approximately {µ = 0,Σ = 200 I2×2}. Next recall the VAE’s optimization objective

(the ELBO): LVAE = Eq[− log p(x|z)] + KLD[q(µ,Σ) || p(0, 200 I2×2)]. The first term opti-

mizes the model w.r.t. the data and the second acts as regularization, ensuring the variational

posterior q is close to the prior. Assuming q’s covariance matrix is also diagonal, we can write

KLD[q(µ,Σ) || p(0, 200 I2×2)] = KLD[q(µ,Σ) || p(0, I2×2)] − 1
2

log 200. This means that us-

ing the standard Normal up-weights the regularization (towards the prior) by about a factor of

6Architecture / training paramters: 2000 latent noise dimensions, 1000 hidden dimensions, ReLU activations,
.0003 learning rate, 50 samples for VR-max term.

84

√
200.

5.4 Conclusions

I have introduced a flexible, widely applicable, and derivation-free method for approximating

reference priors. It optimizes a new lower bound on the reference prior objective and allows

for parametric or non-parametric approximations to be employed, depending on whether the

user prefers to easily evaluate the prior or to have a maximally expressive approximation. I

demonstrated quantitatively and qualitatively that these methods can recover the true reference

priors for univariate distributions as well as generalize to more exotic models such as variational

autoencoders.

Looking forward, I believe using similar techniques for constructing priors that optimize ob-

jectives other than mutual information presents a promising next step. For example, Liu et al.

[2014] showed that priors that maximize divergence measures other than KLD, such as Hellinger

distance, between the prior and posterior have desirable properties. Extending the proposed ap-

proximation techniques to these other families of objectives may enable new classes of Bayesian

prior distributions.

85

Chapter 6

Learning Priors for Invariance

I have had my results for a long time: but

I do not yet know how I am to arrive at

them.

Carl Friedrich Gauss

The modeler o�en knows some prior information that is essential for obtaining good perfor-

mance, and it is common to incorporate this knowledge via ‘engineering tricks’ or methods less

principled than Bayesian inference. For example, achieving state-of-the-art performance on im-

age classification frequently requires data set augmentation [He et al., 2016]: creating new train-

ing instances by flipping, scaling, rotating, etc. the original images [Baird, 1992]. Another exam-

ple is using feature dropout on bag-of-words representations to simulate the e�ect of varying

a document’s length [Wager et al., 2016]. Training a model under these stochastic augmenta-

tion or perturbation strategies is in e�ect inducing a prior, one that encourages robustness with

respect to these known invariances.

While methods for including prior information via means other than the likelihood or prior are

undoubtedly highly e�ective in practice, they are di�icult to reconcile with principled probabilis-

86

tic inference. One problem is that the resulting Bayesian posteriors are conditioned on an artifi-

cial training set, not on what is truly observed. Another issue is that, as is the case when training

with dropout, it is unclear how to interpret the regularization mechanism: are the masking vari-

ables model parameters and if so should we be computing their posterior? These and related

questions motivate recent work on formulating dropout as (approximate) Bayesian inference

[Gal and Ghahramani, 2016a,b, Kingma et al., 2015].

In this chapter, I propose a method for transferring a modeler’s knowledge about invariances

into a corresponding Bayesian prior1. Doing so allows data set augmentation, dropout, and

other e�ective regularization strategies to be incorporated into the model as a proper Bayesian

prior. Once this is done, Bayesian inference can proceed as usual without complication of or

the need to re-interpret the inference strategy (whatever it may be: Markov chain Monte Carlo,

variational inference, maximum a posteriori estimation, etc.).

My proposed approach is to formulate a variational problem [Blei et al., 2017]: given a param-

eteric family, find the member of the family that, when used as a prior, makes the model as

near to invariant as possible. To do this, I first derive a lower bound that quantifies the model’s

invariance under some specific perturbation process. I then maximize this bound with respect

to the parameters of the parameteric family. An important detail to note is that I am not per-

forming empirical Bayesian inference. Rather, I learn the prior from the data model, similarly to

how objective priors are specified [Je�reys, 1946, Bernardo, 2005, Nalisnick and Smyth, 2017].

For supervised models, this means that only the features are needed, making my method well

suited for semi-supervised se�ings, as the experiments demonstrate.

1The work in this chapter was originally presented in Nalisnick and Smyth [2018]

87

6.1 Preliminaries

Before describing the proposed methods, I begin by defining perturbation processes and invari-

ant statistical models. I use the following notation throughout the chapter. As our primary focus

is on supervised learning, I denote input features as xi ∈ Rd and labels (indicating class mem-

bership or a real-valued response) as yi, where i indexes the observed data. Define the data

model (likelihood function) to be p(yi|xi,θ) where θ ∈ Θ are the model parameters. Thus, in

the Bayesian se�ing, p(θ) denotes the prior and p(θ|y,X) the posterior. I write all expectations,

entropies, and divergences in their continuous form (i.e. with integrals), but sums should be used

when the support is discrete.

6.1.1 Perturbation Processes

Many of the recent successes in supervised machine learning have come from data augmentation

and corruption processes that perturb observations and parameters. These processes have the

e�ect of regularizing the classifier to which they are applied by implicitly encoding user knowl-

edge. I define them formally and generally as follows. Call a generative process that takes in a

random variable z ∈ Z and samples a random transformation z̃ ∈ Z̃(z) a perturbation process

(PP):

z̃ ∼ q(z̃; z, ζ) (6.1)

where z denotes the random variable pre-transformation, z̃ denotes the same variable post-

transformation, and ζ are the parameters of q. Below I describe dropout and rotation as a PP

acting on the features (i.e. z = x).

Dropout. Dropout corruption—where elements of the data or model parameters are set to zero

at random—has been observed to consistently improve the held-out performance of logistic re-

88

gression [Wager et al., 2013, Maaten et al., 2013] and deep NNs [Srivastava et al., 2014]. In this

chapter I focus on feature dropout, which can be wri�en as a PP as follows:

x̃ = b� x where b ∼ Bernoulli(1− ζ) (6.2)

where � denotes an element-wise product and ζ ∈ (0, 1) the dropout probability. The random

variable b acts, simply, as a element-wise mask on the feature vector x.

Rotation. As mentioned in the Introduction, many image data sets exhibit rotations, and clas-

sifier performance can be improved by augmenting the data set with rotated version of the true

observations. As a PP, 2D rotation can be wri�en as

x̃ =

cos(φ) − sin(φ)

sin(φ) cos(φ)


x1
x2

 (6.3)

where φ ∼ Uniform(ζ ∈ [0, 2π]). Usually padding or some other standardization is used to keep

the image size consistent.

In this chapter, I focus on dropout and rotation transformations, illustrating the proposed tech-

nique for point-wise and a�ine transformations, respectively. Applying the techniques to other

operations in these classes would proceed in a similar manner. The techniques I propose can

also be applied to just about any functional transform as long as the parameterized prior is suf-

ficiently expressive.

6.1.2 Invariant Models

Invariant statistical models have been well studied, both in theory [Eaton, 1989] and in practice

[Cohen and Welling, 2016, Schmidt and Roth, 2012]. The classic formulation is group theoretic,

as in Eaton (1989) [Eaton, 1989]. I use a similar definition except that I require invariance with

89

respect to all members of a PP’s support, which may not form a proper algebraic group.

Definition 6.1. Let x̃ ∈ X̃ (x) be a realization from a perturbation process q(·; ζ) acting on x ∈ X ,

and let Py|x be a family of models indexed by their parameters. A statistical model p ∈ Py|x is qζ-

invariant if

p(y|x) = p(y|x̃) ∀ x̃ ∈ X̃ (x).

Intuitively, this invariance property can be thought of as robustness: a dropout-invariant classi-

fier, for instance, should produce the same output distribution no ma�er how the input features

are corrupted. In the case of the usual Bernoulli(0.5) noise, however, it is unlikely a classifier

could be meaningfully dropout-invariant since the probability that all features will be masked is

non-zero.

6.2 Learning Invariant Priors

Having introduced PPs and defined model invariance, I next detail the proposed methodology. I

begin by proposing a quantity representing a ‘nearness’ to invariance and then discuss how to

minimize such a quantity with respect to the model’s prior.

6.2.1 �antifying Approximate Invariance

Recall that our goal is to learn a prior that prefers invariance, and thus we need some continuous

quantity that represents how near to invariant a model is. Definition 2.1 is not appropriate as

is, because it would require the equality be checked for all x̃ ∈ X̃ (x). Instead, I consider the

expectation of the model under q, which is also invariant:

90

If p ∈ P is qζ-invariant, then Eqζ [p(y|x̃)] is qζ-invariant:

Eqζ [p(y|x̃)] =

∫
X̃
p(y|x̃) q(x̃; x) dx̃ = p(y|x)

∫
X̃
q(x̃; x) dx̃ = p(y|x). (6.4)

This fact is useful for quantifying nearness to invariance because it weights p(y|x̃) over X̃ , mean-

ing that a lack of invariance for a particular x̃ can be excused or neglected if q(x̃; x) is near zero.

Thus, quantifying the degree of invariance of a model reduces to computing some divergence be-

tween p(y|x) andEqζ [p(y|x̃)]. I use the Kullback-Leibler divergence—KLD[p(y|x) ||Eqζ [p(y|x̃)]]—

which is zero if and only if p(y|x) = Eqζ [p(y|x̃)] almost everywhere and is positive otherwise.

Since Eqζ [p(y|x̃)] will be intractable for most models of interest, I use the following upper bound

on the divergence so that we can obtain an unbiased Monte Carlo approximation of the expec-

tation, obtaining an upper bound via Jensen’s inequality:

KLD[p(y|x) || Eqζ [p(y|x̃)]] = Ep(y|x)[log p(y|x)]− Ep(y|x)[logEqζ [p(y|x̃)]]

≤ Ep(y|x)[log p(y|x)]− Ep(y|x)Eqζ [log p(y|x̃)]

= EqζKLD[p(y|x) || p(y|x̃)].

(6.5)

6.2.2 Exposing the Prior

I now discuss how to introduce Bayesian thinking into my formulations of invariance. Consider

the aforementioned models as marginal likelihoods:

p(y|x) =

∫
Θ

p(y|x,θ)p(θ)dθ = Ep(θ)[p(y|x,θ)].

Looking ahead, our ultimate goal is to optimize Equation 6.5 with respect to p(θ). Ideally we

would do this in its current marginalized form, but computing the marginal likelihood is noto-

riously di�icult, even for relatively simple models. Hence, I again upper bound the divergence,

91

which in turn makes the quantity amenable to an unbiased Monte Carlo approximation:

KLD[p(y|x) || p(y|x̃)] = KLD[Ep(θ)[p(y|x,θ)] || Ep(θ)[p(y|x̃,θ)]]

≤ Ep(θ)KLD[p(y|x,θ) || p(y|x̃,θ)].

(6.6)

The bound follows directly from the fact that KLD is a convex function over the domain of proba-

bility distributions. With this upper bound, I expose p(θ) and make it accessible for optimization.

6.2.3 Optimization Objective

Letλ denote the parameters of the prior pλ(θ). I propose optimizingλ by the following objective,

which is formed by combining Equations 6.5 and 6.6 with an entropy term:

L∗(λ; x) = Hλ[θ]− KLD[p(y|x) || Eqζ [p(y|x̃)]]

≥ Hλ[θ]− EqζKLD[p(y|x) || p(y|x̃)]

≥ Hλ[θ]− Epλ(θ)EqζKLD[p(y|x,θ) || p(y|x̃,θ)] = J (λ; x)

(6.7)

where Hλ[θ] = −
∫
θ
pλ(θ) log pλ(θ) dθ. I assume the objective is optimized under the empirical

distribution of feature observations, i.e. Ep(x̂)[J (λ; x)] = 1
N

∑
i J (λ; xi). Maximizing J w.r.t.

λ means that we are finding the distribution that minimizes the expected divergence between

the unperturbed and perturbed model—or in other words, the invariance—under the prior. This

objective does not depend on the observed y’s, only the model output distribution over y. Because

of this fact we can use unlabeled feature observations during learning of the prior.

The inclusion of the entropy term in Equation 6.7 is motivated by the principle of maximum en-

tropy, i.e., that the appropriate distribution for representing prior beliefs is one that obeys known

constraints and has maximum entropy otherwise [Jaynes, 1957, U�ink, 1996]. This behavior is

precisely what Equation 6.7 encourages; the first term encourages maximum entropy and the

second imposes the invariance constraints. In practice, the entropy term encourages the prior to

92

avoid spurious solutions. For example, a NN could become dropout-invariant by learning as the

prior a delta function at zero. I will show this phenomenon analytically for linear regression in

Section 6.3.

Equation 6.7 is amenable to a wide range of parametric forms for the prior. For example, it

supports mixture densities pλ(θ) =
∑K

k=1 πkpλk(θ) where pλk is the kth component with pa-

rameters λk and πk is the corresponding mixture weight. When using a mixture for the prior,

the divergence component of the objective can be wri�en as

Epλ(θ)Eqζ(ζ)KLD[pθ||pθ(ζ)] =
∑
k

πkEpλk (θ)Eqζ(x̃;ζ)KLD[pθ(yi|xi,θ)||pθ(yi|x̃i,θ)],

where the objective is evaluated under each component distribution and a weighted average

taken according to the mixture weights.

6.3 Analytical Solution for Linear Regression

To build intuition and to further examine the proposed objective (Equation 6.7), I next show an

analytical solution for linear regression under dropout noise and its connection to the popular

g-prior [Goel and Zellner, 1986]. I use the unbiased form of dropout, meaning E[x̃] = x and

Var[x̃] = 1
1−ζx

2 [Maaten et al., 2013], and I set the prior to be a multivariate normal pλ(θ) =

N(µλ, diag(Σλ)) with diagonal covariance matrix. Define the data model to be a standard linear

model with Gaussian error: y = xTθ+ ε0, ε0 ∼ N(0, σ2
0). The divergence portion of the objective

93

simplifies to:

Epλ(θ)EqζKLD[p(y|x,θ) || p(y|x̃,θ)] = Epλ(θ)Eqζ

[
(xTθ − x̃Tθ)2

2σ2
0

]
= Epλ(θ)

[
(xTθ)2

2σ2
0(1− ζ)

]
=

(xTµλ)2 + xTΣλx

2σ2
0(1− ζ)

(6.8)

If the proposed objective consisted of only the divergence (invariance) term, minimizing the

equation above would clearly lead to both µλ and Σλ being set to zero. In other words, the

optimal prior would be pλ(θ) = δ0, the delta function placed at zero.

The solution becomes much more interesting when the entropy term is included. The full objec-

tive can be wri�en as:

JLR(λ; x) = log det(Σλ)− (xTµλ)2 + xTΣλx

2σ2
0(1− ζ)

. (6.9)

Since the entropy term does not include the prior’s mean, the optimal solution for this pa-

rameter is still µλ = 0. Di�erentiating JLR with respect to σλ, the optimal covariance ma-

trix is σ2
0(1 − ζ)diag(xTx)−1. Pu�ing these together I obtain the final solution for the prior:

p∗λ(θ) = N(0, σ2
0(1− ζ)diag(xTx)−1).

Interestingly, the solution is equivalent to a diagonalized version of the well-known g-prior [Goel

and Zellner, 1986]—N(0, g(xTx)−1)—with g set by the dropout level. The g-prior has the nice

property that the posterior mean is a linear combination of the prior mean and maximum like-

lihood estimator: θpost = g
1+g
θMLE + (1 − g

1+g
)µλ. Thus, in the case of the prior learned by my

proposed method, we see the dropout rate plays the role of multiplicative shrinkage of the ML

solution.

94

6.4 Black-Box Learning for Intractable Models

For most problems of interest we will not be able to analytically solve the objective’s required

integrals, as in the previous section. Hence, in this section I describe how to make learning

derivation-free and ‘black-box’ using recently developed techniques from posterior variational

inference [Ranganath et al., 2014, Kingma and Welling, 2014a]. Specifically, I use Monte Carlo ap-

proximations combined with di�erentiable non-centered parameterizations [Kingma and Welling,

2014a] to make learning fully gradient-based no ma�er how complicated the likelihood function

is. I also discuss how to use what I call an ‘implicit prior’—a highly expressive functional sampler.

Monte Carlo Expectations. For most modern, large-scale models, computing the expectations

w.r.t. θ and ζ will not be feasible analytically. Thus we turn to a nested Monte Carlo (MC)

approximation:

Epλ(θ)EqζKLD[p(y|x,θ)||p(y|x̃,θ)] ≈ 1

SM

S∑
s=1

M∑
m=1

KLD[p(y|x, θ̂s)||p(y|ˆ̃xm, θ̂s)] (6.10)

such that M samples are drawn from the perturbation process ˆ̃xm ∼ q(x̃; ζ) and S samples are

drawn from the prior we wish to learn θ̂s ∼ pλ(θ).

Di�erentiable Sampling. Using MC approximations makes computing derivatives w.r.t. the

prior’s parameters λ di�icult, as they need to be computed through the samples θ̂s:

∂

∂λ

S∑
s=1

M∑
m=1

KLD[p(y|x, θ̂s)||p(y|ˆ̃xm, θ̂s)]

=
S∑
s=1

M∑
m=1

∂

∂θ̂s
KLD[p(y|x, θ̂s)||p(y|ˆ̃xm, θ̂s)]

∂θ̂s
∂λ

.

(6.11)

One way we can ensure ∂θ̂s
∂λ

is computable is by sampling θ by way of a di�erentiable non-

centered parameterization [Kingma and Welling, 2014a] (DNCP), which has the general form

θ̂ = g(λ, ε̂) where ε̂ ∼ p(ε). ε is an auxiliary variable drawn from some fixed distribution and

95

g is a di�erentiable function. A well-known example of a DNCP is the Gaussian’s location-scale

form µ+ σ � ε̂ where ε is drawn from a standard Normal distribution.

Implicit Priors. Notice that when using MC approximations of the integrals (Equation 6.10), the

only term in Equation 6.7 that requires the prior’s density be evaluated is the entropy term. Thus,

using a nonparametric estimate for H[θ] [Beirlant et al., 1997] can completely remove the need

to evaluate the prior. Doing so allows us to use what I call an implicit prior: a prior from which

we can draw samples but which we cannot evaluate as a density function, i.e. θ̂ = f(λ, ε̂) where

ε̂ is a sample drawn from some fixed distributions and f(·) is some di�erentiable, su�iciently

flexible function such as a NN. Treating the prior as a simulator in this way is similar to the

ideas behind Generative Adversarial Networks [Goodfellow et al., 2014] and Variational Programs

[Ranganath et al., 2016]. The benefit of using an implicit prior is that we can have an extremely

flexible distribution over θ; the downside is that we will eventually need to evaluate the implicit

prior’s density—possibly having to turn to nonparametric density estimation.

6.5 Related Work

The closest work to what I propose is prior work on the definition and specification of objective

priors [Je�reys, 1946, Bernardo, 2005, Nalisnick and Smyth, 2017]. I say that not because my

method learns noninformative priors—quite the opposite—but because the method I propose

here learns a prior based on the data model, just as objective priors do. For conditional models,

the feature variables must be included to define the model, and thus, the prior is dependent

on the observed data. This fact links my method (and objective priors) to empirical Bayesian

inference [Casella, 1985]. However, a significant di�erence between my method and empirical

Bayesian methods is that the variable being modeled (the classification label or regression re-

sponse) is not considered in my prior’s specification, as it typically is for most empirical Bayesian

methods [Casella, 1985].

96

As for the specifics of the proposed optimization objective, its form is motivated by the principle

of maximum entropy, which has a long history dating back to statistical physics [Jaynes, 1957,

Guiasu and Shenitzer, 1985]. There has been some work on learning invariant maximum entropy

distributions [Nieves et al., 2010] and approximations to such distributions [Li and Risteski, 2016],

but this previous work is tailored to specific se�ings (soil analysis and pairwise moment mean

parameters, respectively). In contrast, my approach requires only samples from the perturbation

and the distribution to be estimated (the prior).

More closely related is the work of Bachman et al. [2014] on pseudo-ensemble agreement regu-

larization. They propose a regularization penalty of the form:

R(θ) = Ex∼pxEξ∼pξV [fθ(x), fθ(x; ξ)],

where the first expectation is with respect to the empirical distribution of the features, the

second expectation is with respect to a noise process (such as dropout corruption [Srivastava

et al., 2014]), and V [·, ·] is some way to measure the discrepancy between the unperturbed and

pertrubed model fθ. The divergence term I propose in Equation 6.7 is a special case of Bach-

man et al.’s penalty: Equation 6.7 can be obtained by se�ing V [·, ·] to be KLD (as Bachman et al.

[2014] do in some experiments) and adding an expectation over the model parameters. The key

di�erence between Bachman et al.’s work and what I propose is that they use their regularization

term within a penalized likelihood framework. There is no concept of learning a Bayesian prior

nor one of transferring the stochastic regularization into a probability distribution.

Lastly, this work has been inspired by recent e�orts to analyze dropout both from the perspec-

tives of penalized likelihood [Bachman et al., 2014, Wager et al., 2013, Wang and Manning, 2013]

and approximate Bayesian inference [Kingma et al., 2015, Gal and Ghahramani, 2016a,b]. In the

former category, Bachman et al. [2014], Wager et al. [2013], and Wang and Manning [2013] carry

out analyses of linear regression that are similar to that in Section 6.3. However, their analyses

97

(a) Dropout Invariant (b) Rotation Invariant

Figure 6.1: Weight Visualization. Above I show filter visualizations for 100 weight matrices sam-
pled from two learned implicit priors, one invariant to dropout and one invariant to rotation.
Both were trained on MNIST. The dropout invariant prior can be seen to down-weight features
found around the center of the image, which is where the active features usually are found.
The rotation invariant prior learns spiral feature transformations roughly similar to some of the
features learned by Toroidal Subgroup Analysis (see Figure 3 in Cohen and Welling [2014]).

are motivated by seeking a closed-form regularization penalty that mimics the e�ect of dropout.

There are no notions of Bayesian priors, and my development of the connection to the g-prior is

new. In the la�er category, Kingma et al. [2015] and Gal and Ghahramani [2016a,b] show that

dropout can be interpreted as approximate Bayesian inference under certain variational posteri-

ors. This work has similar motivations—that is, to link dropout and Bayesian methodology—but

I do so via the Bayesian prior. I formulate the prior that corresponds to dropout thus allowing

inference to proceed with no constraints and by way of either MCMC or variational methods.

6.6 Experiments

In this section I report empirical analyses of the proposed methods, focusing on dropout and

rotation transformations. First, I discuss some qualitative properties of the learned priors by

visualizing them as weight filters. Second, I quantitatively analyze the degree of invariance of

98

(a) Feature Dropout (b) Rotation

Figure 6.2: Invariance vs Perturbation Magnitude. The plots above shows the robustness of sev-
eral distributions (y-axis shows Epλ(θ)EqζKLD[p(y|x,θ) || p(y|x̃,θ)]) to dropout and rotation
perturbations of increasing magnitude (x-axis). I compare the proposed invariant priors—three
approximations: implicit (red), factorized Gaussian (green), Gaussian mixture (blue)—to a stan-
dard Normal prior (pink) and the posterior (black) a�er training on perturbed data. We see the
learned invariant priors exhibit invariance across all perturbation magnitudes, especially when
using implicit or mixture approximations.

several distributions with respect to dropout and rotation perturbations. And lastly, I describe

classification tasks to demonstrate that using the proposed invariant priors results in accuracy

on par with that of non-Bayesian methods. The multi-class classification experiments use NN

likelihoods of the form yi ∼ Multinoulli(p = γθ(xi)) where γθ(xi) = so�max(hLθL+1), the

so�max output of one or more NN layers with the form hl+1 = ReLU(hlθl+1), where h0 = xi.

The binary classification (sentiment analysis) experiment uses a logistic regression likelihood of

the form yi ∼ Bernoulli(p = logistic(xiθ)).

Regarding hyperparameter selection, Adam [Kingma and Ba, 2014] was used for all experiments

with a learning rate chosen from {.001, .0005, .0001, .00005} via a validation set (other parame-

ters kept at Tensorflow defaults). For the Monte Carlo approximations used to learn the invari-

ant priors, 50 samples were used for both the parameters and perturbation process. The best

priors were selected based on those which obtained the highest value of Equation 6.7 upon con-

vergence. All posteriors were obtained via Stochastic Gradient Variational Bayes [Kingma and

Welling, 2014b], and the posterior mean was used to calculate test performance in all cases.

�alitativeAnalysis. I begin by performing visual inspection of the invariant priors. I do this by

99

Test Error (%)
SVM [Larochelle et al., 2007] 10.38
Bayesian Neural Net w/ N(0, .0025) prior 10.08
Neural Net w/ Dropout 8.85
CNN [Cohen and Welling, 2016] 5.03
Bayesian Neural Net w/ Invariant Prior (Factorized Gaussian) 9.41
Bayesian Neural Net w/ Invariant Prior (Mixture of Three Gaussians) 8.29
Rotation-Invariant RBM [Sohn and Lee, 2012] 4.20
Rotation-Aware ConvRBM [Schmidt and Roth, 2012] 3.98
Group Equivariant CNN [Cohen and Welling, 2016] 2.28
Harmonic Networks [Worrall et al., 2017] 1.69

Table 6.1: Rotated MNIST. Test classification error on a data set of rotated hand-wri�en digits
[Larochelle et al., 2007]. The first four models (from the top) have no notion of rotation, the next
two have rotation invariant priors (ours), and the last two have rotations explicitly parameterized
in the model and represent the current state-of-the-art.

learning an implicit prior (one-hidden-layer NN, 1000 hidden units) for the two weight matrices

of a one-hidden-layer NN with 500 hidden units. I trained the prior on the MNIST data set under

dropout and rotation perturbations (separately).

Samples from the prior on the first layer weights are shown in Figure 6.1. Subfigure (a) shows

filter samples from the prior learned under dropout noise. The weights near the center of the

image are conspicuously lower (i.e. darker) than those on the edges. This is expected, as placing

low-weights on frequently active features reduces the e�ect of dropping out those features. Wa-

ger et al. [2013] come to a similar conclusion: dropout penalizes the weights of rare features less

harshly than it does those of common features. Subfigure (b) shows the filter samples learned

under rotation perturbations. We see they exhibit spiral transformations, which is expected since

being rotation invariant would require that features similar distances from the image center re-

ceive near equal weight.

�antitative Analysis. Next I quantitatively analyze the invariance properties of the priors. I

quantify invariance based on the the proposed objective’s KLD term, i.e. Epλ(θ)EqζKLD[p(y|x,θ) || p(y|x̃,θ)].

I calculate this quantity by drawing a sample from the prior, drawing a sample perturbation, and

100

Test Error (%)
Logistic Regression w/ L2 14.22∗

Bayesian Logistic Regression w/ N(0, .25) prior 14.19∗

Transductive SVM 13.98
Logistic Regression w/ MC Dropout 12.83∗

Logistic Regression w/ CF Dropout 11.90
Bayesian Logistic Regression w/ Invariant Prior (Factorized Gaussian) 11.93
Bayesian Logistic Regression w/ Invariant Prior (Mixture of Three Gaussians) 11.81

Table 6.2: IMDB Sentiment Analysis. Test classification error on the (large) IMDB sentiment analy-
sis data set [Maas et al., 2011]. ∗ indicates a method was trained without the unlabeled examples.
MC: Monte Carlo, CF : Closed-Form.

computing the KLD between the unperturbed and perturbed models with the sampled param-

eters and perturbation. I repeat the process 500 times and average the runs to obtain the final

result. Again, the model I used for the experiment was a one-hidden-layer NN (500 hidden units)

and the data set was MNIST undergoing dropout and rotation perturbations.

I trained three forms of invariant priors—a factorized Gaussian (green), a three-component mix-

ture of factorized Gaussians (blue), and an implicit prior (red) parameterized by a one-hidden-

layer NN (1000 hidden units)—and compare them to a standard Normal prior (pink) and a factor-

ized Gaussian posterior (black) in Figure 6.2. The Gaussian posterior was obtained by training

the network on MNIST with stochastic perturbations sampled for each forward pass. We see

that, in the case of dropout (Subfigure a), all learned priors are markedly more robust to dropout

noise than the two Gaussian baselines. The Gaussian mixture and implicit priors remain in-

variant at even a high noise level (> 0.8), showing only a slight upward trend. In the case of

rotation (Subfigure b), the factorized Gaussian posterior and invariant prior have nearly identi-

cal invariance, but again the implicit and mixture invariant priors are notably robust across all

perturbation levels.

Fully-Supervised Classification. Next I report results on (fully) supervised classification ex-

periments on the rotated MNIST data set [Larochelle et al., 2007], which consists of 12,000 train-

101

ing images and 50,000 test images. 2,000 images were used as a validation set and recombined

into the training set to obtain the final test performance, following [Cohen and Welling, 2016,

Larochelle et al., 2007]. I trained three Bayesian NNs (NNs)—one with a standard Normal prior

(variance chosen by validation set), one with a factorized Gaussian rotation invariant prior, and

one with a mixture of Gaussians (K = 3) rotation invariant prior—and a NN with Bernoulli(.5)

dropout. All networks had two hidden layers with 2,750 units each.

Test set classification error is shown in Table 6.1. The table is divided into three sections: the

first has no concept of rotation, the second has a rotation invariant prior, and the third has

rotation-invariance built into the data model. We see that the invariant priors allow the Bayesian

NNs to perform comparably to (factortized Gaussian) or be�er than (mixture of Gaussians) all

of the models with no built-in concept of rotation except the Convolutional NN. However, the

performance gap between the models with invariant priors and models with rotations explicitly

parameterized (bo�om four) is still considerable. I conjecture that the gap is due to the prior

learning coarse rotational invariance. To elaborate, the filters preferred by the prior (Figure 1

(b)) do not exhibit the fine, digit-specific rotated edge detectors learned by the parameterized

models, as seen in Schmidt and Roth [2012]. The ability to learn these refined rotations likely

boosts performance considerably. Moreover, these models have been extensively hand-cra�ed

to be rotationally invariant while my method is general and requires no additional e�ort from

the modeler.

Semi-Supervised Classification. Lastly I report results on semi-supervised classification ex-

periments on the large IMDB data set [Maas et al., 2011], which consists of 50,000 unlabeled

examples and 25,000 for training and testing each. 5,000 of the training examples were used as

a validation set. I trained several Bayesian and non-Bayesian logistic regression models, includ-

ing one with the closed-form (CF) dropout penalty proposed by Wager et al. [2013]2. I used the

unlabeled data to train dropout invariant priors as well as the CF dropout penalty.

2The error is higher than what is reported by Wager et al. [2013] due to using unigrams and a smaller vocabulary
(20,000 words).

102

Test set classification error is shown in Table 6.2. The Bayesian logistic regression model with

a Gaussian mixture invariant prior achieves the lowest error rate, even besting the closed-form

dropout penalty, which has the ability to learn the regularization and data model jointly. I con-

jecture that invariant priors were able to achieve be�er comparative performance in this se�ing

because dropout is a simpler perturbation.

6.7 Conclusions

I have proposed an optimization objective (Equation 6.7) for learning priors that represent known

invariance constraints. When the objective has an analytical solution (Section 6.3), we see that

the resulting distribution is sensible and that both the objective’s components are necessary.

Experimentally, I demonstrated use of the prior results in be�er performance than when the

invariance is not accounted for. Only models extensively hand-cra�ed for the invariance se�ing

outperformed use of my proposed prior. This work, I believe, represents an important first step

in allowing subjective priors to be specified for modern, large-scale Bayesian models.

103

Chapter 7

Nonparametric Priors for Density

Networks

There is a concept which corrupts and

upsets all others. I refer not to Evil,

whose limited realm is that of ethics; I

refer to the infinite.

Jorge Luis Borges

Avatars of the Tortoise

Deep generative models trained via stochastic gradient variational Bayes (SGVB) [Kingma and

Welling, 2014b, Rezende et al., 2014] e�iciently couple the expressiveness of deep neural net-

works with the robustness to uncertainty of probabilistic latent variables. This combination

has lead to their success in tasks ranging from image generation [Gregor et al., 2015, Rezende

et al., 2016] to semi-supervised learning [Kingma et al., 2014, Maaløe et al., 2016] to language

modeling [Bowman et al., 2016]. Various extensions to SGVB have been proposed [Burda et al.,

2016, Maaløe et al., 2016, Salimans et al., 2015], but one conspicuous absence is an extension to

Bayesian nonparametric processes. Using SGVB to perform inference for nonparametric distri-

104

butions is quite a�ractive. For instance, SGVB allows for a broad class of non-conjugate approx-

imate posteriors and thus has the potential to expand Bayesian nonparametric models beyond

the exponential family distributions to which they are usually confined. Moreover, coupling non-

parametric processes with neural network inference models equips the networks with automatic

model selection properties such as a self-determined width, which I explore in this chapter.

I make progress on this problem by first describing how to use SGVB for posterior inference for

the weights of stick-breaking processes1 [Ishwaran and James, 2001]. This is not a straightfor-

ward task as the beta distribution, the natural choice for an approximate posterior, does not have

the di�erentiable non-centered parametrization that SGVB requires. I bypass this obstacle by

using the li�le-known Kumaraswamy distribution [Kumaraswamy, 1980].

Using the Kumaraswamy as an approximate posterior, I then reformulate two popular deep gen-

erative models—the variational autoencoder [Kingma and Welling, 2014b] and its semi-supervised

variant (model M2 proposed by Kingma et al. [2014])—into their nonparametric analogs. These

models perform automatic model selection via an infinite capacity hidden layer that employs

as many stick latent variables as the data requires. I experimentally show that, for data sets of

natural images, stick-breaking priors improve upon previously proposed deep generative models

by having a latent representation that be�er preserves class boundaries and provides beneficial

regularization for semi-supervised learning.

7.1 Stick-Breaking Processes

First I define stick-breaking processes with the ultimate goal of using their weights for the VAE’s

prior p(z). A random measure is referred to as a stick-breaking prior (SBP) [Ishwaran and James,

2001] if it is of the form G(·) =
∑∞

k=1 πkδζk where δζk is a discrete measure concentrated at

ζk ∼ G0, a draw from the base distribution G0 [Ishwaran and James, 2001]. The πks are random
1The work in this chapter is a combination of Nalisnick and Smyth [2017c] and Nalisnick et al. [2016]

105

weights independent of G0, chosen such that 0 ≤ πk ≤ 1, and
∑

k πk = 1 almost surely. SBPs

have been termed as such because of their constructive definition known as the stick-breaking

process [Sethuraman, 1994]. Mathematically, this definition implies that the weights can be

drawn according to the following iterative procedure:

πk =


v1 if k = 1

vk
∏

j<k(1− vj) for k > 1

(7.1)

where vk ∼ Beta(α, β). When vk ∼ Beta(1, α0), then we have the stick-breaking construction

for the Dirichlet Process [Ferguson, 1973]. In this case, the name for the joint distribution over the

infinite sequence of stick-breaking weights is the Gri�iths, Engen and McCloskey distribution

with concentration parameter α0 [Pitman, 2002]: (π1, π2, . . .) ∼ GEM(α0).

7.2 SGVB for GEM Random Variables

Having covered the relevant background material, I now discuss the first contribution of this

chapter, using Stochastic Gradient Variational Bayes for the weights of a stick-breaking process.

I focus on performing inference for just the series of stick-breaking weights, which I refer to as

GEM random variables a�er their joint distribution.

7.2.1 Composition of Gamma Random Variables

In the original SGVB paper, Kingma and Welling [2014b] suggest representing the Beta distri-

bution as a composition of Gamma random variables by using the fact v ∼ Beta(α, β) can be

sampled by drawing Gamma variables x ∼ Gamma(α, 1), y ∼ Gamma(β, 1) and composing

them as v = x/(x+y). However, this representation still does not admit a DNCP as the Gamma

distribution does not have one with respect to its shape parameter. Knowles [2015] suggests that

106

when the shape parameter is near zero, the following asymptotic approximation of the inverse

CDF is a suitable DNCP:

F−1(û) ≈ (ûaΓ(a))
1
a

b
(7.2)

for û ∼ Uniform(0, 1), shape parameter a, and scale parameter b. This approximation becomes

poor as a increases, however, and Knowles recommends a finite di�erence approximation of the

inverse CDF when a ≥ 1.

7.2.2 The Kumaraswamy Distribution

Another candidate posterior is the li�le-known Kumaraswamy distribution [Kumaraswamy, 1980].

It is a two-parameter continuous distribution also on the unit interval with a density function

defined as

Kumaraswamy(x; a, b) = abxa−1(1− xa)b−1 (7.3)

for x ∈ (0, 1) and a, b > 0. In fact, if a = 1 or b = 1 or both, the Kumaraswamy and Beta

are equivalent, and for equivalent parameter se�ings, the Kumaraswamy resembles the Beta

albeit with higher entropy. The DNCP we desire is the Kumaraswamy’s closed-form inverse

CDF. Samples can be drawn via the inverse transform:

x ∼ (1− u
1
b)

1
a where u ∼ Uniform(0, 1). (7.4)

Not only does the Kumaraswamy make sampling easy, its KL-divergence from the Beta can be

closely approximated in closed-form (for ELBO computation).

107

(a) Finite Dimensional (b) Infinite Dimen-
sional (c) The Stick-Breaking Variational Autoencoder.

Figure 7.1: Subfigures (a) and (b) show the plate diagrams for the relevant latent variable models.
Solid lines denote the generative process and dashed lines the inference model. Subfigure (a)
shows the finite dimensional case considered in [Kingma and Welling, 2014b], and (b) shows the
infinite dimensional case of our concern. Subfigure (c) shows the feedforward architecture of the
Stick-Breaking Autoencoder, which is a neural-network-based parametrization of the graphical
model in (b).

7.2.2.1 Gauss-Logit Parametrization

Another promising parametrization is inspired by the Probit Stick-Breaking Process [Rodriguez

and Dunson, 2011]. In a two-step process, we can draw a Gaussian and then use a squashing

function to map it on (0, 1):

v̂k = g(µk + σkε) (7.5)

where ε ∼ N(0, 1). In the Probit SBP, g(·) is taken to be the Gaussian CDF, and it is chosen as

such for posterior sampling considerations. This choice is impractical for our purposes, however,

since the Gaussian CDF does not have a closed form. Instead, I use the logistic function g(x) =

1/(1 + e−x).

7.3 Stick-Breaking Variational Autoencoders

Given the discussion above, I now propose the following novel modification to the VAE. Instead

of drawing the latent variables from a Gaussian distribution, I draw them from the GEM distri-

108

bution, making the hidden representation an infinite sequence of stick-breaking weights. I term

this model a Stick-Breaking Variational Autoencoder (SB-VAE) and below detail the generative

and inference processes implemented in the decoding and encoding models respectively.

7.3.1 Generative Process

The generative process is nearly identical to previous VAE formulations. The crucial di�erence

is that we draw the latent variable from a stochastic process, the GEM distribution. Mathemat-

ically, the hierarchical formulation is wri�en as

πi ∼ GEM(α0) , xi ∼ pθ(xi|πi) (7.6)

where πi is the vector of stick-breaking weights and α0 is the concentration parameter of the

GEM distribution. The likelihood model pθ(xi|πi) is a density network as described in Section

2.2.2.

7.3.2 Inference

The inference process—how to draw πi ∼ qφ(πi|zi)—requires modification from the standard

VAE’s in order to sample from the GEM’s stick-breaking construction. Firstly, an inference net-

work computes the parameters of theK fraction distributions and samples values vi,k according

to one of the parametrizations in Section 7.2. Next, a linear-time operation composes the stick

segments from the sampled fractions:

πi = (πi,1, πi,2, . . . , πi,K) =

(
vi,1, vi,2(1− vi,1), . . . ,

K−1∏
j=1

(1− vi,j)

)
. (7.7)

109

The computation path is summarized in Figure 7.1 (c) with arrows denoting the direction of

feedforward computation. The gray blocks represent any deterministic function that can be

trained with gradient descent—i.e. one or more neural network layers. Optimization of the SB-

VAE is done just as for the VAE, by optimizing Equation 2.31 w.r.t. φ and θ. The KL divergence

term can be computed (or closely approximated) in closed-form for all three parametrizations

under consideration.

An important detail is that theKth fraction vi,K is always set to one to ensure the stick segments

sum to one. This truncation of the variational posterior does not imply that we are using a finite

dimensional prior. As explained by Blei and Jordan [2006], the truncation level is a variational

parameter and not part of the prior model specification. Truncation-free posteriors have been

proposed, but these methods use split-and-merge steps [Hughes et al., 2015] or collapsed Gibbs

sampling, both of which are not applicable to the models I consider. Nonetheless, because SGVB

imposes few limitations on the inference model, it is possible to have an untruncated posterior. I

conducted exploratory experiments using a truncation-free posterior by adding extra variational

parameters in an on-line fashion, initializing new weights if more than 1% of the stick remained

unbroken. However, I found this made optimization slower without any increase in performance.

7.3.3 Semi-Supervised Model

I also propose an analogous approach for the semi-supervised relative of the VAE, the M2 model

described by Kingma et al. [2014]. A second latent variable yi is introduced that represents a

class label. Its distribution is the categorical one: qφ(yi|xi) = Cat(y|gy(xi)) where gy is a non-

linear function of the inference network. Although y’s distribution is wri�en as independent of z,

the two share parameters within the inference network and thus act to regularize one another.

I assume the same factorization of the posterior and use the same objectives as in the finite

dimensional version [Kingma et al., 2014]. Since yi is present for some but not all observations,

110

semi-supervised DGMs need to be trained with di�erent objectives depending on whether the

label is present or not. If the label is present, following Kingma et al. [2014] we optimize

J̃ (θ,φ; xi, yi) =
1

S

S∑
s=1

log pθ(xi|πi,s, yi)−KL(qφ(πi|xi)||p(πi;α0)) + log qφ(yi|xi) (7.8)

where log qφ(yi|xi) is the log-likelihood of the label. And if the label is missing, we optimize

J̃ (θ,φ; xi) =
1

S

S∑
s=1

∑
yj

qφ(yj|xi) [log pθ(xi|πi,s, yj)] + H[qφ(y|xi)]

−KL(qφ(πi|xi)||p(πi;α0))

(7.9)

where H[qφ(yi|xi)] is the entropy of y’s variational distribution.

7.3.4 Related Work

To the best of my knowledge, neither SGVB nor any of the other recently proposed amortized

VI methods [Kingma and Welling, 2014a, Rezende and Mohamed, 2015, Rezende et al., 2014,

Tran et al., 2016] have been used in conjunction with BNP priors. There has been work on using

nonparametric posterior approximations—in particular, the Variational Gaussian Process [Tran

et al., 2016]—but in that work the variational distribution is nonparametric, not the generative

model. Moreover, I am not aware of prior work that uses SGVB for Beta (or Beta-like) random

variables.

In regard to the autoencoder implementations I describe, they are closely related to the existing

work on representation learning with adaptive latent factors—i.e. where the number of latent

dimensions grows as the data necessitates. The best known model of this kind is the infinite

binary latent feature model defined by the Indian Bu�et Process [Ghahramani and Gri�iths,

2005]; but its discrete latent variables prevent this model from admi�ing fully di�erentiable in-

ference. Recent work that is much closer in spirit is the Infinite Restricted Boltzmann Machine

111

(iRBM) [Côté and Larochelle, 2016], which has gradient-based learning, expands its capacity

by adding hidden units, and induces a similar ordering on latent factors. The most significant

di�erence between the SB-VAE and the iRBM is that the la�er’s nonparametric behavior arises

from a particular definition of the energy function of the Gibbs distribution, not from an infi-

nite dimensional Bayesian prior. Lastly, my training procedure bears some semblance to Nested

Dropout [Rippel et al., 2014], which removes all hidden units at an index lower than some thresh-

old index. The SB-VAE can be seen as performing so� nested dropout since the latent variable

values decrease as their index increases.

7.3.5 Experiments

I analyze the behavior of the three parametrizations of the SB-VAE and examine how they com-

pare to the Gaussian VAE. I do this by examining their ability to reconstruct the data (i.e. density

estimation) and to preserve class structure. Following the original DGM papers [Kingma et al.,

2014, Kingma and Welling, 2014b, Rezende et al., 2014], I performed unsupervised and semi-

supervised tasks on the following image datasets: Frey Faces2, MNIST, MNIST+rot, and Street

View House Numbers3 (SVHN). MNIST+rot is a dataset I created by combining MNIST and ro-

tated MNIST4 for the purpose of testing the latent representation under the conjecture that the

rotated digits should use more latent variables than the non-rotated ones.

Complete implementation and optimization details can be found in the code repository5. In all

experiments, to best isolate the e�ects of Gaussian versus stick-breaking latent variables, the

same architecture and optimization hyperparameters were used for each model. The only dif-

ference was in the prior: p(z) = N(0,1) for Gaussian latent variables and p(v) = Beta(1, α0)

(Dirichlet process) for stick-breaking latent variables. I cross-validated the concentration pa-

2Available at http://www.cs.nyu.edu/∼roweis/data.html
3Available at http://ufldl.stanford.edu/housenumbers/
4Available at http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/MnistVariations
5Theano implementations available at https://github.com/enalisnick/stick-breaking

dgms

112

http://www.cs.nyu.edu/~roweis/data.html
http://ufldl.stanford.edu/housenumbers/
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
https://github.com/enalisnick/stick-breaking_dgms
https://github.com/enalisnick/stick-breaking_dgms

rameter over the range α0 ∈ {1, 3, 5, 8}. The Gaussian model’s performance potentially could

have been improved by cross validating its prior variance. However, the standard Normal prior

is widely used as a default choice [Bowman et al., 2016, Gregor et al., 2015, Kingma et al., 2014,

Kingma and Welling, 2014b, Rezende et al., 2014, Salimans et al., 2015], and my goal is to exper-

imentally demonstrate that a stick-breaking prior is a competitive alternative.

7.3.5.1 Unsupervised

I first performed unsupervised experiments testing each model’s ability to recreate the data as

well as preserve class structure (without having access to labels). The inference and generative

models both contained one hidden layer of 200 units for Frey Faces and 500 units for MNIST and

MNIST+rot. For Frey Faces, the Gauss VAE had a 25 dimensional (factorized) distribution, and

I set the truncation level of the SB-VAE also to K = 25, so the SB-VAE could use only as many

latent variables as the Gauss VAE. For the MNIST datasets, the latent dimensionality/truncation-

level was set at 50. Cross-validation chose α0 = 1 for Frey Faces and α0 = 5 for both MNISTs.

Density Estimation. In order to show each model’s optimization progress, Figure 7.2 (a), (b),

and (c) report test expected reconstruction error (i.e. the first term in the ELBO) vs training

progress (epochs) for Frey Faces, MNIST, and MNIST+rot respectively. Optimization proceeds

much the same in both models except that the SB-VAE learns at a slightly slower pace for all

parametrizations. This is not too surprising since the recursive definition of the latent variables

likely causes coupled gradients.

I compare the final converged models in Table 7.1, reporting the marginal likelihood of each

model via the MC approximation log p(xi) ≈ log 1
S

∑
s p(xi|ẑi,s)p(ẑi,s)/q(ẑi,s) using 100 sam-

ples. The Gaussian VAE has a be�er likelihood than all stick-breaking implementations (∼ 96

vs ∼ 98). Between the stick-breaking parametrizations, the Kumaraswamy outperforms both

the Gamma and Gauss-Logit on both datasets, which is not surprising given the others’ flaws.

113

0 50 100 150 200 250 300 350
Training Epoch

0

200

400

600

800

1000

1200

1400
(E

x
p
e
ct

e
d
)

R
e
co

n
st

ru
ct

io
n
 E

rr
o
r

Gamma-SB VAE
Logit-SB VAE
Kumar-SB VAE
Gauss VAE

(a) Frey Faces

0 100 200 300 400 500 600 700 800
Training Epoch

60

80

100

120

140

160

180

200

(E
x
p
e
ct

e
d
)

R
e
co

n
st

ru
ct

io
n
 E

rr
o
r

Gamma-SB VAE
Logit-SB VAE
Kumar-SB VAE
Gauss VAE

(b) MNIST

0 100 200 300 400 500 600 700 800
Training Epoch

50

100

150

200

250

(E
x
p
e
ct

e
d
)

R
e
co

n
st

ru
ct

io
n
 E

rr
o
r

Gamma-SB VAE
Logit-SB VAE
Kumar-SB VAE
Gauss VAE

(c) MNIST+rot

Figure 7.2: Subfigure (a) shows test (expected) reconstruction error vs training epoch for the SB-
VAE and Gauss VAE on the Frey Faces dataset, subfigure (b) shows the same quantities for the
same models on the MNIST dataset, and subfigure (c) shows the same quantities for the same
models on the MNIST+rot dataset.

− log p(xi)
Model MNIST MNIST+rot

Gauss VAE 96.80 108.40
Kumar-SB VAE 98.01 112.33
Logit-SB VAE 99.48 114.09
Gamma-SB VAE 100.74 113.22

Table 7.1: Marginal likelihood results (estimated) for Gaussian VAE and the three parametriza-
tions of the Stick-Breaking VAE.

Given this result, I used the Kumaraswamy parametrization for all subsequently reported ex-

periments. Note that the likelihoods reported are worse than the ones reported by Burda et al.

[2016] because my training set consisted of 50k examples whereas theirs contained 60k (training

and validation).

I also investigated whether the SB-VAE is using its adaptive capacity in the manner I expect, i.e.,

the SB-VAE should use a larger latent dimensionality for the rotated images in MNIST+rot than

it does for the non-rotated ones. I examined if this is the case by tracking how many ‘breaks’ it

took the model to deconstruct 99% of the stick. On average, the rotated images in the training

set were represented by 28.7 dimensions and the non-rotated by 27.4. Furthermore, the rotated

images used more latent variables in eight out of ten classes. Although the di�erence is not as

large as I was expecting, it is statistically significant. Moreover, the di�erence is made smaller

114

(a) SB-VAE: MNIST Samples Drawn from Prior
(b) Gauss VAE: MNIST Sam-
ples Drawn from Prior

Figure 7.3: Subfigure (a) depicts samples from the SB-VAE trained on MNIST. I show the ordered,
factored nature of the latent variables by sampling from Dirichlet’s of increasing dimensionality.
Subfigure (b) depicts samples from the Gauss VAE trained on MNIST.

by the non-rotated one digits, which use 32 dimensions on average, the most for any class. The

non-rotated average decreases to 26.3 when ones are excluded.

Figure 7.3 (a) shows MNIST digits drawn from the SB-VAE by sampling from the prior—i.e. vk ∼

Beta(1, 5), and Figure 7.3 (b) shows Gauss VAE samples for comparison. SB-VAE samples using

all fi�y dimensions of the truncated posterior are shown in the bo�om block. Samples from

Dirichlets constrained to a subset of the dimensions are shown in the two columns in order to

test that the latent features are concentrating onto lower-dimensional simplices. This is indeed

the case: adding a latent variable results in markedly di�erent but still coherent samples. For

instance, the second and third dimensions seem to capture the 7-class, the fourth and fi�h the

6-class, and the eighth the 5-class. The seventh dimension seems to model notably thick digits.

Discriminative �alities. The discriminative qualities of the models’ latent spaces are as-

sessed by running a k-Nearest Neighbors classifier on (sampled) MNIST latent variables. Results

are shown in the table in Figure 7.4 (a). The SB-VAE exhibits conspicuously be�er performance

than the Gauss VAE at all choices of k, which suggests that although the Gauss VAE converges to

a be�er likelihood, the SB-VAE’s latent space be�er captures class structure. I also report results

for two Gaussian mixture VAEs: Dilokthanakul et al. [2016]’s Gaussian mixture Variational Au-

115

k=3 k=5 k=10

SB-VAE 9.34 8.65 8.90

DLGMM 9.14 8.38 8.42
Gauss VAE 28.4 20.96 15.33
Raw Pixels 2.95 3.12 3.35

GMVAE6 — 8.96 —

(a) MNIST: Test error for kNN on latent
space

t-SNE EmEeddLng of StLcN-BreaNLng VAE'V Latent SSace

(b) MNIST SB-VAE

t-SNE EmEeddLng of StLcN-BreaNLng VAE'V Latent SSace

(c) MNIST Gauss VAE

Figure 7.4: Subfigure (a) shows results of a kNN classifier trained on the latent representations
produced by each model. Subfigures (b) and (c) show t-SNE projections of the latent represen-
tations learned by the SB-VAE and Gauss VAE respectively.

toencoder (GMVAE) and Nalisnick et al. [2016]’s Deep Latent Gaussian Mixture Model (DLGMM).

The GMVAE6 has sixteen mixture components and the DLGMM has five, and hence both have

many more parameters than the SB-VAE. Despite the SB-VAE’s lower capacity, we see that its

performance is competitive to the mixture VAEs’ (8.65 vs 8.38/8.96).

The discriminative qualities of the SB-VAE’s latent space are further supported by Figures 7.4

(b) and (c). t-SNE was used to embed the Gaussian (c) and stick-breaking (b) latent MNIST

representations into two dimensions. Digit classes (denoted by color) in the stick-breaking latent

space are clustered with noticeably more cohesion and separation.

Combating Decoder Pruning. The ‘component collapsing’ behavior of the variational autoen-

coder has been well noted [Maaløe et al., 2016]: the model will set to zero the outgoing weights

of latent variables that remain near the prior. Figure 7.5 (a) depicts this phenomenon for the

Gauss VAE by plo�ing the KL divergence from the prior and outgoing decoder weight norm for

each latent dimension. We see the weights are only nonzero in the dimensions in which there is

posterior deviation. Ostensibly the model receives only sampling noise from the dimensions that

remain at the prior, and se�ing the decoder weights to zero quells this variance. While the be-

havior of the Gauss VAE is not necessarily improper, all examples are restricted to pass through

6The GMVAE’s evaluation is di�erent from performing kNN. Rather, test images are assigned to clusters and
whole clusters are given a label. Thus results are not strictly comparable but the ultimate goal of unsupervised
MNIST classification is the same.

116

(a) Gauss VAE (b) Stick-Breaking VAE

Figure 7.5: Sparsity in the latent representation vs in the decoder network. The Gaussian VAE
‘turns o�’ unused latent dimensions by se�ing the outgoing weights to zero (in order to dispel
the sampled noise). The SB VAE, on the other hand, also has sparse representations but without
decay of the associated decoder weights.

the same latent variables. A sparse-coded representation—one having few active components

per example (like the Gauss VAE) but diversity of activations across examples–would likely be

be�er.

I compare the activation pa�erns against the sparsity of the decoder for the SB-VAE in Figure 7.5

(b). Since KL-divergence doesn’t directly correspond to sparsity in stick-breaking latent variables

like it does for Gaussian ones, the black lines denote the average activation value per dimension.

Similarly to (a), blue lines denoted the decoder weight norms, but they had to be down-scaled by

a factor of 100 so they could be visualized on the same plot. The SB-VAE does not seem to have

any component collapsing, which is not too surprising since the model can set latent variables

to zero to deactivate decoder weights without being in the heart of the prior. I conjecture that

this increased capacity is the reason stick-breaking variables demonstrate be�er discriminative

performance in many of my experiments.

7.3.5.2 Semi-Supervised

I also performed semi-supervised classification, replicating and extending the experiments in the

original semi-supervised DGMs paper [Kingma et al., 2014]. I used the MNIST, MNIST+rot, and

SVHN datasets and reduced the number of labeled training examples to 10%, 5%, and 1% of the

total training set size. Labels were removed completely at random and as a result, class imbalance

117

MNIST (N=45,000) MNIST+rot (N=70,000) SVHN (N=65,000)
10% 5% 1% 10% 5% 1% 10% 5% 1%

SB-DGM 4.86±.14 5.29±.39 7.34±.47 11.78±.39 14.27±.58 27.67±1.39 32.08±4.00 37.07±5.22 61.37±3.60
Gauss-DGM 3.95±.15 4.74±.43 11.55±2.28 21.78±.73 27.72±.69 38.13±.95 36.08±1.49 48.75±1.47 69.58±1.64
kNN 6.13±.13 7.66±.10 15.27±.76 18.41±.01 23.43±.01 37.98±.01 64.81±.34 68.94±.47 76.64±.54

Table 7.2: Percent error on three semi-supervised classification tasks with 10%, 5%, and 1% of
labels present for training. The DGM with stick-breaking latent variables (SB-DGM) is compared
with a DGM with Gaussian latent variables (Gauss-DGM), and a k-Nearest Neighbors classifier
(k=5).

was all but certainly introduced. Similarly to the unsupervised se�ing, I compared DGMs with

stick-breaking (SB-DGM) and Gaussian (Gauss-DGM) latent variables against one another and

a baseline k-Nearest Neighbors classifier (k=5). I used 50 for the latent variable dimensionality /

truncation level. The MNIST networks use one hidden layer of 500 hidden units. The MNIST+rot

and SVHN networks use four hidden layers of 500 units in each. The last three hidden layers

have identity function skip-connections. Cross-validation chose α0 = 5 for MNISTs and α0 = 8

for SVHN.

�antitative Evaluation. Table 7.2 shows percent error on a test set when training with the

specified percentage of labeled examples. We see the the SB-DGM performs markedly be�er

across almost all experiments. The Gauss-DGM achieves a superior error rate only on the easiest

tasks: MNIST with 10% and 5% of the data labeled.

7.4 Latent Dirichlet Process Mixtures

I now describe a novel modification of the DLGM/VAE in which I use a Gaussian mixture model

(GMM) as the prior and approximate posterior. I modify the generative process to be πi ∼

Dir(α) , zi ∼
∑K

k=1 πi,kN(z;θk) , xi ∼ pθ(x|zi) where pθ(x|zi) is the density network. I assume

118

the posterior factorizes as

q(π, z|xi) = q(π|xi)q(z|πi,xi) =
∏
K−1

Kumar(ai,k, bi,k)
K∑
k=1

πi,kNθk(z|xi)

where Kumar(a,b) denotes the Kumaraswamy distribution [Jones, 2009]. Notice that we bypass

the complication of sampling valid mixture weights πi by, firstly, using the Dirichlet’s marginal

(aka ‘stick-breaking’) construction and, secondly, employing the Kumaraswamy as the approxi-

mate posterior for the Dirichlet’s marginal Betas. The Kumaraswamy has a closed-form inverse

CDF that can serve as a valid di�erentiable non-centered parametrization (DNCP) [Nalisnick and

Smyth, 2017c] whereas the Beta has no such DNCP. Having defined the prior and posterior, we

now can write the SGVB evidence lowerbound (ELBO) for this model as:

LSGVB =
∑
k

µπk [
1

S

∑
s

log pθ(xi|ẑi,k,s) + Eqk [log p(zi)]]

− KLD[q(πk|xi)||p(πk)]−
1

S

∑
s

log
∑
k

π̂i,k,sq(ẑi,k,s;φk)

(7.10)

where π̂ and ẑ are S samples taken via non-centered parametrizations and µπk is the mean of the

posterior weight distribution. This model has the benefit of relatively straightforward DNCPs

but has the drawback of needing to run the density network (‘decoder’) K times, where K is

the number of components, for each forward pass. This expensive marginalization is required

because of the di�iculty in sampling from the mixture directly, i.e. z ∼
∑

k πkqk(z)7.

The computation path of the the proposed DLGMM is summarized in Figure 7.6. The inference

network computes the parameters of theK mixture components, and the density network is run

for a sample from each. The mixture weight, once sampled, is used nowhere in the computation

path to reconstruct the data. Rather its influence is in the ELBO, weighting each term according

to the corresponding component. Equation 7.10 can be extended to multiple stochastic layers,

7Alex Graves’ note Stochastic Backpropagation through Mixture Density Distributions describes a technique for
calculating gradients though samples from a mixture model, but I found the method requires many samples (100+)
of the latent variables and did not result in models with competitive marginal likelihoods.

119

Figure 7.6: Computation graph of a Deep Latent
Gaussian Mixture Model (DLGMM). The inference
network computes the parameters of K mixture
components. The decoder network receives a sam-
ple from each and computes the reconstruction. The
recursive process by which the mixture weights πk
are generated is omi�ed.

but the density network must be runKs times, whereK is the number of components and s the

number of stochastic layers, for each forward pass.

As we are already using the Dirichlet’s stick-breaking construction, it is easy to extend the model

to infinite mixtures defined by the Dirichlet Process (assuming posterior truncation), i.e. G(·) =∑∞
k=1 πkδζk where δζk is a discrete measure concentrated at ζk ∼ G0 and the πks are, again,

random weights chosen independent of G0 such that 0 ≤ πk ≤ 1 and
∑

k πk = 1. The only

significant change is the prior on the Beta marginals. For all k, we have vi,k ∼ Beta(1, α0)

where α0 is the concentration parameter. I assume the variational posterior takes the same form

as above and is truncated to T components, as is usually done when performing variational

inference for DP mixtures [Blei and Jordan, 2006].

7.4.1 Experiments

I compared the proposed deep latent Gaussian mixture model (DLGMM) and deep latent Dirichlet

Process mixture model (DLDPMM) to the single-Gaussian VAE/DLGM (Gauss-VAE) [Kingma and

Welling, 2014b, Rezende et al., 2014] and the stick-breaking VAE (SB-VAE) Nalisnick and Smyth

[2017c] on the binarized MNIST dataset and Omniglot [Lake et al., 2015], using the pre-defined

train/valid/test splits. I optimized all models using AdaM [Kingma and Ba, 2014] with a learning

rate of 0.0003 (other parameters kept at their Tensorflow defaults), batch sizes of 100, and early

stopping with 30 look-ahead epochs. For the marginal likelihood results, all Gaussian priors are

120

(a) µ = −1.5 (b) µ = 1.5

t-SNE EmEeddLng of StLcN-BreaNLng VAE'V Latent SSace

(c) Single Gaussian (d) Gaussian Mix. (K=5)

Figure 7.7: Subfigures (a) and (b) show samples from the two mixture components at the ex-
tremes of the latent space. Subfigures (c) and (d) show t-SNE embeddings of the Gauss-VAE and
DLGMM latent space (respectively).

standard Normals and all Dirichlets are symmetric, with α = 1, except for the DLDPMM, which

has α0 = 1.

�alitative evaluation. First I compared the models qualitatively by examining samples and

class distribution within the latent space. Samples from two components of a 5-component DL-

GMM are shown in Subfigures (a) and (b) of Figure 7.7. Normal priors were placed on the five

components with means set to µ = {−1.5,−.75, 0, .75, 1.5} and all variances set to one. The

samples are from the extremes of the prior, i.e. µ1 = −1.5 and µ5 = 1.5. We see that the DL-

GMM learned not only recognizable MNIST digits but also to divide their factors of variation

into di�erent parts of the latent space. Thin digits such as sevens are generated from the com-

ponent with the most negative prior mean and wide digits such as zeros are generated from the

component with the most positive prior mean. Also I visualized the MNIST class distribution

in the latent space via t-SNE projection. The 2D embeddings are shown in Figures 7.7 (c) and

(d) for the Gauss-VAE and DLGMM respectively; colors denote digit classes. The DLGMM’s la-

tent space exhibits conspicuously be�er clustering. I validate this observation empirically below

using kNN.

�antitative evaluation. I compared the models quantitatively using a k-Nearest Neighbors

(kNN) classifier on their latent space as well as by calculating the marginal likelihood of a held-

out set. Table (a) of Figure 7.8 reports MNIST test error for kNN classifiers trained on the latent

121

k=3 k=5 k=10
DLGMM 9.14 8.38 8.42
SB-VAE 9.34 8.65 8.90
Gauss-VAE 28.4 20.96 15.33

(a) MNIST test error for kNN on latent
space

− log pθ(xi)
MNIST OMNIGLOT

DLGMM (500d-3x25s) 96.50 123.50
DLDPMM (500d-17tx25s) 96.91 123.76
Gauss-VAE (500d-25s) 96.80 119.18
SB-VAE (500d-25t) 98.01 −

(b) Estimated Marginal Likelihood

Figure 7.8: Subtable (a) shows MNIST test error for kNN classifiers trained on samples from the
latent distributions. Results for 3, 5, and 10 (k) neighbors are given. Each model was trained with
no label supervision. Subfigure (b) reports the (Monte Carlo) estimated marginal likelihood on
the test set.

space of the Gauss-VAE, a SB-VAE, and the proposed DLGMM. Note that none of these models

had access to labels during training. We see from the table that the DLGMM performs markedly

be�er than the Gauss-VAE—supporting our visual analysis above of the t-SNE projections—and

slightly be�er than the SB-VAE. Moreover, the DLGMM’s superior performance holds across all

number of neighbors tested (k = {3, 5, 10}).

Lastly, in Figure 7.8 (b) I report the (Monte Carlo) estimated marginal likelihood for the various

models on MNIST and Omniglot. The network architectures are given in parentheses: d denotes

a deterministic layer, s a stochastic layer, K× the number of mixture components, and t the

truncation level for the DP and SB models. I find that using a mixture latent space improves the

likelihood modestly for MNIST but not at all for Omniglot.

7.5 Conclusions

I have described how to employ the Kumaraswamy distribution to extend stochastic gradient

variational Bayes to the weights of stick-breaking Bayesian nonparametric priors. Using this de-

velopment I then defined deep generative models with infinite dimensional latent variables and

showed that their latent representations are more discriminative than those of the popular Gaus-

122

sian variant. Moreover, the only extra computational cost is in assembling the stick segments, a

linear operation on the order of the truncation size. Not only are the ideas herein immediately

useful as presented, they are an important first-step to integrating black box variational infer-

ence and Bayesian nonparametrics, resulting in scalable models that have di�erentiable control

of their capacity. Furthermore, di�erentiable stick-breaking has the potential to increase the

dynamism and adaptivity of neural networks, a subject of recent interest [Graves, 2016], in a

probabilistically principled way.

123

Chapter 8

Open Problems and Conclusions

That was it. That was really it. She knew

that she had told herself that that was it

only seconds earlier, but this was now the

final real ultimate it.

Douglas Adams

Dirk Gently’s Holistic Detective Agency

This dissertation has presented the fundamentals of Bayesian neural networks (Chapter 2), a

survey of the various priors used for the model (Chapter 3), and original work on Gaussian

scale mixture (Chapter 4), objective (Chapter 5), invariant (Chapter 6), and stick-breaking priors

(Chapter 7). I now part with some discussion of open problems and concluding thoughts.

8.1 Open Problems

While advancements in technology continually lighten the computational burden of training

and deploying neural networks, there exist some core challenges that cannot be readily solved

124

by throwing more computation at the problem. I list some of them below, focusing in particular

on the interplay between optimization-based inference and latent structures without derivatives.

1. Inference Bo�lenecks: As mentioned previously, gradient-based methods currently are

the only viable optimization procedure for deep neural networks. This constraint then

necessarily follows to posterior inference, forcing variational methods to also be gradient-

based. This is not a problem for priors with continuous support, but many interesting

distributions—discrete, nonparameteric, structure-based—do not readily admit di�erenti-

ation and so considerable work needs to be done on gradient approximations. As automatic

di�erentiation and advances in probabilistic programming have allowed modelers to by-

pass deriving bespoke inference algorithms, cra�ing gradient approximations has become

the new-found bo�leneck in the model building pipeline. Variational optimization strate-

gies [Salimans et al., 2017] are perhaps the most intriguing work residing at the research

frontier. These methods can approximate a function’s gradient via perturbation, and while

a single perturbation is only marginally informative, the method can be parallelized to

get reliable estimates. Whether or not these methods are viable for a large class of non-

di�erentiable functions has yet to be determined. Fortunately, with the increased interest

in reinforcement learning, many people are now thinking hard about optimizing without

analytic derivatives.

2. Bayesian Reasoning Over Structures: Experiments have shown NNs to be sensitive

to the network architecture, and peak performance on tasks such as ImageNet has been

achieved only by careful specification of the filter sizes, residual blocks, pooling types, etc.

The Bayesian priors described can perform some reasoning over structure; for instance,

an automatic relevance determination (ARD) prior essentially prunes nodes. Moreover,

stick-breaking priors allow for network width to be adaptive. However, these priors over

structure are relatively limited, and it would be much more valuable if the Bayesian crank

could be applied to LSTM unit configurations, for instance. Work is ongoing in this direc-

125

tion [Fortunato et al., 2017] but the gradient bo�leneck discussed above still presents a

strong headwind against progress.

3. Hybrid Models: Given the obstacles in non-di�erentiable inference and reasoning over

structures, researchers have shi�ed to hybrid models that support mixed inference strategies—

that is, composing neural networks with more traditional graphical models. Johnson et al.

[2016] made perhaps the first notable contribution to this research direction, but their

work is limited to conjugate updates for the latent graphical model. Subsequent work

by Lin et al. [2018] has already extended the method to non-conjugate updates. A re-

lated trend is composing models with high-capacity invertible transformations [Dinh et al.,

2017]. Switching out non-invertible neural networks for the invertible transformations in-

troduced by Dinh et al. [2017] can (with some thought) make inference exact on the latent

graphical structure. Gradient updates can then be run on the marginal likelihood to up-

date the transformations. Korshunova et al. [2018] use this idea to define an expressive

recurrent model for exchangeable data, with the exchangeability being guaranteed by a

student-t process (with closed-form inference).

4. Neural Nonparametrics: As researchers with Bayesian leanings have resorted to hybrid

models and mixed inference to incorporate structured stochastic variables, deep learning

researchers have formulated structured but still di�erentiable neural components, many

having nonparametric qualities. The foremost example is di�erentiable memory architec-

tures [Graves et al., 2016, Santoro et al., 2016, Sukhbaatar et al., 2015] that use a so� (i.e.

di�erentiable) read/write head to update and extract vectors from an external memory

unit. Architectures of this variety have found success in tasks with limited labeled data

[Santoro et al., 2016, Vinyals et al., 2016, Bartunov and Vetrov, 2018]. Similar ideas were

used by Graves [2016] to define an RNN that can self-determine its number of recursions

per time step, essentially giving it an unbounded depth. Linking these ‘neural nonparamet-

ric’ models with traditional Bayesian nonparametrics is an interesting research direction

126

that might suggest (i) principled training algorithms for the neural models, (ii) neural-

network-based inference algorithms for traditional Bayesian nonparametric priors, and

(iii) novel neural network architectures based on more exotic nonparametric priors, such

as the Beta-GOS process [Airoldi et al., 2014].

8.2 Conclusions

Deep neural networks have triggered an influx of hope and hype to machine learning, and it is

important to keep grounded in the George-Box-ian view of the model building process [Box and

Tiao, 1973, Blei, 2014] (a.k.a. Box’s loop), I believe. For Bayesian models, the first step in that

loop is to specify knowledge via the prior. Neural networks make this specification hard, as I

have discussed, but that is no reason to give up on doing so. Work analyzing the relationship be-

tween optimization, priors, and approximate posteriors (e.g. [Ho�man and Johnson, 2016, Chen

et al., 2017, Tomczak and Welling, 2018]) has undoubtedly led us to a be�er understanding of

deep generative models and improved their empirical performance, but I fear that deriving pri-

ors solely by reverse engineering the ELBO can lead us away from principled model building.

However, I recognize the link between priors and inference is fundamental, and the most e�ica-

cious contributions will lie at this intersection, as I discuss in the open problems above. If I must

emphasize one point from this dissertation, it is: use the recent advances in variational inference

and optimization to help specify priors. When working with Bayesian neural networks, what

really ma�ers is the induced distribution on the model’s output, and hence we should optimize

this quantity directly (if only approximately). My work on reference (Chapter 5) and invariant

(Chapter 6) priors serves as humble but illustrative examples of doing just that.

127

Bibliography

Sungjin Ahn, Anoop Kora�ikara, and Max Welling. Bayesian Posterior Sampling via Stochastic
Gradient Fisher Scoring. In Proceedings of the 29th International Conference on International
Conference on Machine Learning (ICML), pages 1771–1778, 2012.

Edoardo M Airoldi, Thiago Costa, Federico Basse�i, Fabrizio Leisen, and Michele Guindani. Gen-
eralized Species Sampling Priors with Latent Beta Reinforcements. Journal of the American
Statistical Association, 109(508):1466–1480, 2014.

Yasuo Amemiya. On Nonlinear Factor Analysis. In Proceedings of the ASA Social Statistics Section,
pages 290–294, 1993.

David F Andrews and Colin L Mallows. Scale Mixtures of Normal Distributions. Journal of the
Royal Statistical Society. Series B (Methodological), pages 99–102, 1974.

Jimmy Ba and Rich Caruana. Do Deep Nets Really Need to be Deep? In Advances in Neural
Information Processing Systems (NIPS), pages 2654–2662, 2014.

Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with Pseudo-Ensembles. In Ad-
vances in Neural Information Processing Systems (NIPS), pages 3365–3373, 2014.

Henry S Baird. Document Image Defect Models. In Structured Document Image Analysis, pages
546–556. Springer, 1992.

Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina. E�icient Supervised
Learning in Networks with Binary Synapses. BMC Neuroscience, 8(2):S13, 2007.

Pierre Baldi and Kurt Hornik. Neural Networks and Principal Component Analysis: Learning
from Examples Without Local Minima. Neural Networks, 2(1):53–58, 1989.

Pierre Baldi and Peter J Sadowski. Understanding Dropout. In Advances in Neural Information
Processing Systems (NIPS), pages 2814–2822, 2013.

David J Bartholomew. Latent Variable Models and Factors Analysis. Oxford University Press, Inc.,
1987.

Sergey Bartunov and Dmitry Vetrov. Few-Shot Generative Modeling with Generative Match-
ing Networks. In Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 84, pages 670–678, 2018.

128

Thomas Bayes. An Essay Towards Solving a Problem in the Doctrine of Chances. Philosophical
Transactions (1683-1775), pages 370–418, 1763.

EML Beale and CL Mallows. Scale Mixing of Symmetric Distributions with Zero Means. The
Annals of Mathematical Statistics, 30(4):1145–1151, 1959.

Jan Beirlant, Edward J Dudewicz, László Györfi, and Edward C Van der Meulen. Nonparamet-
ric Entropy Estimation: An Overview. International Journal of Mathematical and Statistical
Sciences, 6(1):17–39, 1997.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and
New Perspectives. IEEE transactions on pa�ern analysis and machine intelligence, 35(8):1798–
1828, 2013a.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
through Stochastic Neurons for Conditional Computation. ArXiv e-prints, 2013b.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized Denoising Auto-
Encoders as Generative Models. In Advances in Neural Information Processing Systems (NIPS),
pages 899–907, 2013c.

James O Berger, José M Bernardo, Dongchu Sun, et al. The Formal Definition of Reference Priors.
The Annals of Statistics, 37(2):905–938, 2009.

James O Berger, Jose M Bernardo, and Dongchu Sun. Overall Objective Priors. Bayesian Analysis,
10(1):189–221, 2015.

Jose M Bernardo. Reference Posterior Distributions for Bayesian Inference. Journal of the Royal
Statistical Society. Series B (Methodological), pages 113–147, 1979.

José M Bernardo. Reference Analysis. Handbook of Statistics, 25:17–90, 2005.

Michael Betancourt. The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo
and Naive Data Subsampling. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), pages 533–540, 2015.

David M Blei. Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models.
Annual Review of Statistics and Its Application, 1:203–232, 2014.

David M Blei and Michael I Jordan. Variational Inference for Dirichlet Process Mixtures. Bayesian
Analysis, pages 121–143, 2006.

David M Blei, Alp Kucukelbir, and Jon D McAuli�e. Variational Inference: A Review for Statisti-
cians. Journal of the American Statistical Association, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty
in Neural Networks. In Proceedings of The 32nd International Conference on Machine Learning
(ICML), pages 1613–1622, 2015.

129

Guillaume Bouchard and Balaji Lakshminarayanan. Approximate Inference with the Variational
Holder Bound. ArXiv e-prints, 2015.

Hervé Bourlard and Yves Kamp. Auto-Association by Multilayer Perceptrons and Singular Value
Decomposition. Biological Cybernetics, 59(4-5):291–294, 1988.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. Generating Sentences from a Continuous Space. CoNLL, 2016.

George EP Box and George C Tiao. Bayesian Inference in Statistical Analysis, volume 40. John
Wiley & Sons, 1973.

Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

Wray L Buntine and Andreas S Weigend. Bayesian Back-Propagation. Complex Systems, 5(6):
603–643, 1991.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders. In-
ternational Conference on Learning Representations (ICLR), 2016.

Carlos M Carvalho, Nicholas G Polson, and James G Sco�. Handling Sparsity via the Horse-
shoe. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 73–80, 2009.

G. Casella and R.L. Berger. Statistical Inference. Thomson Learning, 2002.

George Casella. An Introduction to Empirical Bayes Data Analysis. The American Statistician, 39
(2):83–87, 1985.

Ismaël Castillo, Johannes Schmidt-Hieber, Aad Van der Vaart, et al. Bayesian Linear Regression
with Sparse Priors. The Annals of Statistics, 43(5):1986–2018, 2015.

Tian Chen, Je�rey Streets, and Babak Shahbaba. A Geometric View of Posterior Approximation.
ArXiv e-prints, 2015.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In
Proceedings of the 31st International Conference on Machine Learning (ICML), pages 1683–1691,
2014.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Variational Lossy Autoencoder. International Conference on
Learning Representations (ICLR), 2017.

Taco Cohen and Max Welling. Learning the Irreducible Representations of Commutative Lie
Groups. In Proceedings of the 31st International Conference on Machine Learning (ICML), pages
1755–1763, 2014.

Taco Cohen and Max Welling. Group Equivariant Convolutional Networks. In Proceedings of
The 33rd International Conference on Machine Learning (ICML), pages 2990–2999, 2016.

130

Marc-Alexandre Côté and Hugo Larochelle. An Infinite Restricted Boltzmann Machine. Neural
Computation, 2016.

G.W. Co�rell, P. Munro, and D Zipser. Image Compression by Back Propagation: A Demonstra-
tion of Extensional Programming. Models of Cognition, pages 208–240, 1989.

Ma�hieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep
Neural Networks with Binary Weights During Propagations. In Advances in Neural Information
Processing Systems (NIPS), pages 3123–3131, 2015.

George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-Dependent Pre-Trained Deep Neural
Networks for Large-Vocabulary Speech Recognition. IEEE Transactions on Audio, Speech, and
Language Processing, 20(1):30–42, 2012.

Carl De Boor, Carl De Boor, Etats-Unis Mathématicien, Carl De Boor, and Carl De Boor. A
Practical Guide to Splines, volume 27. Springer-Verlag New York, 1978.

Nando De Freitas, Pedro Højen-Sørensen, Michael I Jordan, and Stuart Russell. Variational
MCMC. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI),
pages 120–127, 2001.

Alexander G. de G Ma�hews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahra-
mani. Gaussian Process Behaviour in Wide Deep Neural Networks. International Conference
on Learning Representations (ICLR), 2018.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (methodological),
pages 1–38, 1977.

Li Deng and Dong Yu. Deep learning: Methods and Applications. Foundations and Trends in
Signal Processing, 7(3–4):197–387, 2014.

Adji B Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David M Blei. The χ-Divergence
for Approximate Inference. In Advances in Neural Information Processing Systems (NIPS), 2017.

Nat Dilokthanakul, Pedro Mediano, Marta Garnelo, Ma�hew Lee, Hugh Salimbeni, Kai Arulku-
maran, and Murray Shanahan. Deep Unsupervised Clustering with Gaussian Mixture Varia-
tional Autoencoders. ArXiv e-prints, 2016.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density Estimation Using Real NVP.
International Conference on Learning Representations (ICLR), 2017.

Morris L Eaton. Group Invariance Applications in Statistics. In Regional Conference Series in
Probability and Statistics, pages i–133. JSTOR, 1989.

Harrison Edwards and Amos Storkey. Towards a Neural Statistician. International Conference on
Learning Representations (ICLR), 2017.

Thomas S Ferguson. A Bayesian Analysis of Some Nonparametric Problems. The Annals of
Statistics, 1973.

131

R. A. Fisher. Review of J. M. Keynes�s Treatise on Probability. Eugenics Review, 14:46–50, 1922.

Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian Recurrent Neural Networks.
ArXiv e-prints, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In Proceedings of The 33rd International Conference on Machine
Learning (ICML), pages 1050–1059, 2016a.

Yarin Gal and Zoubin Ghahramani. A Theoretically Grounded Application of Dropout in Re-
current Neural Networks. In Advances in Neural Information Processing Systems (NIPS), pages
1019–1027, 2016b.

Edward I George and Robert E McCulloch. Variable Selection via Gibbs Sampling. Journal of the
American Statistical Association, 88(423):881–889, 1993.

Samuel Gershman and Noah Goodman. Amortized Inference in Probabilistic Reasoning. In
Proceedings of the Cognitive Science Society, volume 36, 2014.

Zoubin Ghahramani. Should All Machine Learning be Bayesian? Should All Bayesian Models
be Non-Parametric?, October 2008. Bayesian Research Kitchen Workshop (BARK), Grasmere,
England.

Zoubin Ghahramani and Thomas L Gri�iths. Infinite Latent Feature Models and the Indian
Bu�et Process. In Advances in Neural Information Processing Systems (NIPS), 2005.

Soumya Ghosh and Finale Doshi-Velez. Model Selection in Bayesian Neural Networks via Horse-
shoe Priors. NIPS Workshop on Bayesian Deep Learning, 2017.

WA Gibson. Nonlinear Factors in Two Dimensions. Psychometrika, 25(4):381–392, 1960.

P. Glasserman. Monte Carlo Methods in Financial Engineering. Applications of Mathematics:
Stochastic Modeling and Applied Probability. Springer, 2004.

P. Goel and A. Zellner. On Assessing Prior Distributions and Bayesian Regression Analysis with
g-Prior Distributions. Bayesian Inference and Decision Techniques, pages 233–243, 1986.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in Neural
Information Processing Systems (NIPS), 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Cyril Gou�e and Lars Kai Hansen. Regularization with a Pruning Prior. Neural Networks, 10(6):
1053–1059, 1997.

Alex Graves. Practical Variational Inference for Neural Networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 2348–2356, 2011.

Alex Graves. Adaptive Computation Time for Recurrent Neural Networks. ArXiv e-prints, 2016.

132

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenste�e, Tiago Ramalho, and John Aga-
piou. Hybrid Computing Using a Neural Network with Dynamic External Memory. Nature,
538(7626):471, 2016.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. DRAW: A Recur-
rent Neural Network For Image Generation. In Proceedings of the 32nd International Conference
on Machine Learning (ICML), 2015.

Silviu Guiasu and Abe Shenitzer. The Principle of Maximum Entropy. The Mathematical Intelli-
gencer, 7(1):42–48, 1985.

W Keith Hastings. Monte Carlo Sampling Methods Using Markov Chains and their Applications.
Biometrika, 57(1):97–109, 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pa�ern Recognition
(CVPR), pages 770–778, 2016.

DO Hebb. The Organization of Behavior; a Neuropsychological Theory. Wiley, 1949.

David P Helmbold and Philip M Long. On the Inductive Bias of Dropout. Journal of Machine
Learning Research, 16:3403–3454, 2015.

Irina Higgins, Loic Ma�hey, Arka Pal, Christopher Burgess, Xavier Glorot, Ma�hew Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-VAE: Learning Basic Visual Concepts with a Con-
strained Variational Framework. International Conference on Learning Representations (ICLR),
2017.

Geo�rey E Hinton. Learning Distributed Representations of Concepts. In Proceedings of the 8TH
Annual Conference of the Cognitive Science Society, volume 1, page 12. Amherst, MA, 1986.

Geo�rey E Hinton and Ruslan R Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science, 313(5786):504–507, 2006.

Geo�rey E Hinton and Drew Van Camp. Keeping the Neural Networks Simple by Minimizing
the Description Length of the Weights. In Proceedings of the 6th Annual Conference on Com-
putational Learning Theory, pages 5–13. ACM, 1993.

Geo�rey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdi-
nov. Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. ArXiv
e-prints, 2012.

Geo�rey E Hinton, Oriol Vinyals, and Je� Dean. Distilling the Knowledge in a Neural Network.
NIPS Workshop on Deep Learning, 2014.

Arthur E Hoerl and Robert W Kennard. Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Technometrics, 12(1):55–67, 1970.

133

Ma�hew Ho�man and Ma�hew Johnson. ELBO Surgery: Yet Another Way to Carve Up the Vari-
ational Evidence Lower Bound. NIPS Workshop on Advances in Approximate Bayesian Inference,
2016.

Ma�hew D Ho�man. Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo.
In In Proceedings of the 34th International Conference on Machine Learning (ICML), pages 1510–
1519, 2017.

Ma�hew D. Ho�man, Carlos Riquelme, and Ma�hew J. Johnson. The β-VAE’s Implicit Prior.
NIPS Workshop on Bayesian Deep Learning, 2017.

John J Hopfield. Neural Networks and Physical Systems with Emergent Collective Computa-
tional Abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

Jiri Hron, Alexander Ma�hews, and Zoubin Ghahramani. Two Problems with Variational Gaus-
sian Dropout. NIPS Workshop on Bayesian Deep Learning, 2017.

Itay Hubara, Ma�hieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
Neural Networks. In Advances in Neural Information Processing Systems (NIPS) 29, pages 4107–
4115, 2016.

Michael C Hughes, Dae Il Kim, and Erik B Sudderth. Reliable and Scalable Variational Inference
for the Hierarchical Dirichlet Process. In Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2015.

Telba Z Irony and Nozer D Singpurwalla. Non-Informative Priors Do Not Exist: A Dialogue with
Jose M. Bernardo. Journal of Statistical Planning and Inference, 65(159):189, 1997.

Hemant Ishwaran and Lancelot F James. Gibbs Sampling Methods for Stick-Breaking Priors.
Journal of the American Statistical Association, 2001.

Laurent I�i and Pierre Baldi. Bayesian Surprise A�racts Human A�ention. In Advances in Neural
Information Processing Systems (NIPS), pages 547–554, 2006.

E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-So�max. International
Conference on Learning Representations (ICLR), 2017.

Edwin T Jaynes. Information Theory and Statistical Mechanics. Physical Review, 106(4):620, 1957.

Edwin T Jaynes. Prior Probabilities. IEEE Transactions on Systems Science and Cybernetics, 4(3):
227–241, 1968.

Harold Je�reys. An Invariant Form for the Prior Probability in Estimation Problems. In Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume
186, pages 453–461. The Royal Society, 1946.

Ma�hew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and SanDeep R Da�a.
Composing Graphical Models with Neural Networks for Structured Representations and Fast
Inference. In Advances in Neural Information Processing Systems (NIPS), pages 2946–2954, 2016.

134

MC Jones. Kumaraswamy�s Distribution: A Beta-Type Distribution with Some Tractability Ad-
vantages. Statistical Methodology, 6(1):70–81, 2009.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An Introduction
to Variational Methods for Graphical Models. Machine Learning, 37(2):183–233, 1999.

Ata Kabán. On Bayesian Classification with Laplace Priors. Pa�ern Recognition Le�ers, 28(10):
1271–1282, 2007.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR), 2014.

Diederik Kingma and Max Welling. E�icient Gradient-Based Inference Through Transformations
Between Bayes Nets and Neural Nets. In Proceedings of the 31st International Conference on
Machine Learning (ICML), pages 1782–1790, 2014a.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. International Conference
on Learning Representations (ICLR), 2014b.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
Supervised Learning with Deep Generative Models. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational Dropout and the Local Repa-
rameterization Trick. In Advances in Neural Information Processing Systems (NIPS), 2015.

David A Knowles. Stochastic Gradient Variational Bayes for Gamma Approximating Distribu-
tions. ArXiv e-prints, 2015.

I. Korshunova, J. Degrave, F. Huszár, Y. Gal, A. Gre�on, and J. Dambre. A Generative Deep
Recurrent Model for Exchangeable Data. ArXiv e-prints, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet Classification with Deep Con-
volutional Neural Networks. In Advances in Neural Information Processing Systems (NIPS), pages
1097–1105, 2012.

Ponnambalam Kumaraswamy. A Generalized Probability Density Function for Double-Bounded
Random Processes. Journal of Hydrology, 1980.

Lynn Kuo and Bani Mallick. Variable Selection for Regression Models. Sankhyā: The Indian
Journal of Statistics, Series B, pages 65–81, 1998.

John La�erty and Larry Wasserman. Iterative Markov Chain Monte Carlo Computation of Refer-
ence Priors and Minimax Risk. In Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 293–300, 2001.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-Level Concept Learn-
ing Through Probabilistic Program Induction. Science, 350(6266):1332–1338, 2015.

135

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An Em-
pirical Evaluation of Deep Architectures on Problems with Many Factors of Variation. In Pro-
ceedings of the 24th International Conference on Machine Learning (ICML), pages 473–480, 2007.

Yann LeCun, Léon Bo�ou, Yoshua Bengio, and Patrick Ha�ner. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Herbert KH Lee. Priors for Neural Networks. In Classification, Clustering, and Data Mining
Applications, pages 141–150. Springer, 2004.

Herbert KH Lee. Neural Networks and Default Priors. In Proceedings of the American Statistical
Association, Section on Bayesian Statistical Science, 2005.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Je�rey Pennington, and
Jascha Sohl-Dickstein. Deep Neural Networks as Gaussian Processes. International Conference
on Learning Representations (ICLR), 2018.

Yingzhen Li and Richard E Turner. Variational inference with Renyi divergence. In Advances in
Neural Information Processing Systems (NIPS), pages 1073–1081, 2016.

Yuanzhi Li and Andrej Risteski. Approximate Maximum Entropy Principles via Goemans-
Williamson with Applications to Provable Variational Methods. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 4635–4643, 2016.

M. Lichman. UCI Machine Learning Repository, 2013. URL http://archive.ics.uci.
edu/ml.

W. Lin, N. Hubacher, and M. Emtiyaz Khan. Variational Message Passing with Structured Infer-
ence Networks. International Conference on Learning Representations (ICLR), 2018.

Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian
Inference Algorithm. In Advances in Neural Information Processing Systems (NIPS), pages 2378–
2386, 2016.

Ruitao Liu, Arijit Chakrabarti, Tapas Samanta, Jayanta K Ghosh, and Malay Ghosh. On Di-
vergence Measures Leading to Je�reys and Other Reference Priors. Bayesian Analysis, 9(2):
331–370, 2014.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary Deep
Generative Models. In Proceedings of the 33rd International Conference on Machine Learning
(ICML), 2016.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Po�s. Learning Word Vectors for Sentiment Analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics (ACL), pages 142–150, 2011.

136

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Laurens Maaten, Minmin Chen, Stephen Tyree, and Kilian Q Weinberger. Learning with
Marginalized Corrupted Features. In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML), pages 410–418, 2013.

David JC MacKay. Bayesian Interpolation. Neural Computation, 4(3):415–447, 1992a.

David JC MacKay. Information-Based Objective Functions for Active Data Selection. Neural
Computation, 4(4):590–604, 1992b.

David JC MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute of
Technology, 1992c.

David JC MacKay. Bayesian Non-Linear Modeling for the Prediction Competition. In Maximum
Entropy and Bayesian Methods, pages 221–234. Springer, 1994.

David JC MacKay and Mark N Gibbs. Density Networks. Statistics and Neural Networks: Advances
at the Interface, pages 129–144, 1999.

C. J. Maddison, A. Mnih, and Y. Whye Teh. The Concrete Distribution: A Continuous Relaxation
of Discrete Random Variables. International Conference on Learning Representations (ICLR),
2017.

Alireza Makhzani, Jonathon Shlens, NavDeep Jaitly, Ian Goodfellow, and Brendan Frey. Adver-
sarial Autoencoders. ICLR Workshop, 2016.

Christopher D Manning. Computational Linguistics and Deep Learning. Computational Linguis-
tics, 2016.

Eddy Mayoraz and Frédéric Aviolat. Constructive Training Methods for Feedforward Neural
Networks with Binary Weights. International Journal of Neural Systems, 7(02):149–166, 1996.

Warren S McCulloch and Walter Pi�s. A Logical Calculus of the Ideas Immanent in Nervous
Activity. Bulletin of Mathematical Biology, 52(1-2):99–115, 1943.

Roderick P McDonald. A General Approach to Nonlinear Factor Analysis. Psychometrika, 27(4):
397–415, 1962.

Thomas P Minka. Expectation Propagation for Approximate Bayesian Inference. In Proceedings
of the 17th Conference on Uncertainty in Artificial Intelligence (UAI), pages 362–369, 2001.

Toby J Mitchell and John J Beauchamp. Bayesian Variable Selection in Linear Regression. Journal
of the American Statistical Association, 83(404):1023–1032, 1988.

Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning in Belief Networks. In
Proceedings of the 31st International Conference on Machine Learning (ICML), pages 1791–1799,
2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, and Georg Ostrovski. Human-
Level Control Through Deep Reinforcement Rearning. Nature, 518(7540):529–533, 2015.

137

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational Dropout Sparsifies Deep
Neural Networks. In Proceedings of the 34th International Conference on Machine Learning
(ICML), pages 2498–2507, 2017.

Peter Müller and David Rios Insua. Issues in Bayesian Analysis of Neural Network Models.
Neural Computation, 10(3):749–770, 1998.

Vinod Nair and Geo�rey E Hinton. Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. In Proceedings of the 27th International Conference on Machine Learning (ICML), pages
807–814, 2010.

Minoru Nakagami. The M-Distribution: A General Formula of Intensity Distribution of Rapid
Fading. In Statistical Methods in Radio Wave Propagation, pages 3–36. Elsevier, 1960.

Eric Nalisnick and Padhraic Smyth. Learning Approximately Objective Priors. Proceedings of the
33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

Eric Nalisnick and Padhraic Smyth. The Amortized Bootstrap. ICML Workshop on Implicit Mod-
els, 2017a.

Eric Nalisnick and Padhraic Smyth. Learning Approximately Objective Priors. In Proceedings of
the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), volume 33, 2017b.

Eric Nalisnick and Padhraic Smyth. Stick-Breaking Variational Autoencoders. International Con-
ference on Learning Representations (ICLR), 2017c.

Eric Nalisnick and Padhraic Smyth. Learning Priors for Invariance. In Proceedings of the 21st
International Conference on Artificial Intelligence and Statistics (AISTATS), pages 366–375, 2018.

Eric Nalisnick, Anima Anandkumar, and Padhraic Smyth. A Scale Mixture Perspective of Multi-
plicative Noise in Neural Networks. ArXiv e-prints, 2015.

Eric Nalisnick, Lars Hertel, and Padhraic Smyth. Approximate Inference for Deep Latent Gaus-
sian Mixtures. NIPS Workshop on Bayesian Deep Learning, 2016.

Radford M Neal. Bayesian Learning via Stochastic Dynamics. In Advances in Neural Information
Processing Systems (NIPS), pages 475–482, 1993.

Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1994.

Radford M Neal. MCMC Using Hamiltonian Dynamics. Handbook of Markov Chain Monte Carlo,
2(11), 2011.

Radford M Neal and Geo�rey E Hinton. A View of the EM Algorithm that Justifies Incremental,
Sparse, and Other Variants. In Learning in Graphical Models, pages 355–368. Springer, 1998.

John Ashworth Nelder and R Jacob Baker. Generalized Linear Models. Wiley Online Library, 1972.

Veronica Nieves, Jingfeng Wang, Rafael L Bras, and Elizabeth Wood. Maximum Entropy Distri-
butions of Scale-Invariant Processes. Physical Review Le�ers, 105(11):118701, 2010.

138

John Paisley, David M Blei, and Michael I Jordan. Variational Bayesian Inference with Stochas-
tic Search. In Proceedings of the 29th International Conference on International Conference on
Machine Learning (ICML), pages 1363–1370, 2012.

Carsten Peterson and James R Anderson. A Mean Field Theory Learning Algorithm for Neural
Networks. Complex Systems, 1:995–1019, 1987.

Bill Pe�i. baseballr, 2016. R package version 0.4.

Jim Pitman. Combinatorial Stochastic Processes. UC Berkeley Technical Report (621), 2002.

David C Plaut, S J Nowlan, and G E Hinton. Experiments on Learning by Back Propagation.
Technical Report, 1986.

Arya A. Pourzanjani, Richard M. Jiang, and Linda R. Petzold. Improving the Identifiability of
Neural Networks for Bayesian Inference. NIPS Workshop on Bayesian Deep Learning, 2017.

Adrian E Ra�ery, Michael A Newton, Jaya M Satagopan, and Pavel N Krivitsky. Estimating the
Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity. Bayesian
Statistics, pages 1–45, 2007.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference. In Proceedings
of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), pages 814–
822, 2014.

Rajesh Ranganath, Dustin Tran, Jaan Altosaar, and David Blei. Operator Variational Inference.
In Advances in Neural Information Processing Systems (NIPS), pages 496–504, 2016.

Carl Edward Rasmussen. Gaussian Processes in Machine Learning. In Advanced Lectures on
Machine Learning, pages 63–71. Springer, 2004.

Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In Pro-
ceedings of The 32nd International Conference on Machine Learning (ICML), pages 1530–1538,
2015.

Danilo Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approx-
imate Inference in Deep Generative Models. In Proceedings of the 31st International Conference
on Machine Learning (ICML), pages 1278–1286, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra.
One-Shot Generalization in Deep Generative Models. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), 2016.

Oren Rippel, Michael A Gelbart, and Ryan P Adams. Learning Ordered Representations with
Nested Dropout. In Proceedings of the 31st International Conference on Machine Learning
(ICML), 2014.

Christian Robert. The Bayesian Choice. Springer, 2001.

139

Mark Robinson. Priors for Bayesian Neural Networks. Master’s thesis, University of British
Columbia, 2001.

Abel Rodriguez and David B Dunson. Nonparametric Bayesian Models Through Probit Stick-
Breaking Processes. Bayesian Analysis, 2011.

Frank Rosenbla�. The Perceptron: A Probabilistic Model for Information Storage and Organiza-
tion in the Brain. Psychological review, 65(6):386, 1958.

Sheldon M Ross. Simulation. Academic Press, 2006.

David Saad and Emanuel Marom. Training Feed Forward Nets with Binary Weights Via a Mod-
ified CHIR Algorithm. Complex Systems, 4(5), 1990.

Tim Salimans, Diederik Kingma, and Max Welling. Markov Chain Monte Carlo and Variational
Inference: Bridging the Gap. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution Strategies as
a Scalable Alternative to Reinforcement Learning. ArXiv e-prints, 2017.

Adam Santoro, Sergey Bartunov, Ma�hew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-Learning with Memory-Augmented Neural Networks. In Proceedings of the 33rd Inter-
national Conference on Machine Learning (ICML), pages 1842–1850, 2016.

Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean Field Theory for Sigmoid Belief
Networks. Journal of Artificial Intelligence Research, 4:61–76, 1996.

Leonard J Savage. The Foundations of Statistics. Courier Corporation, 1972.

Jürgen Schmidhuber. Deep learning in Neural Networks: An Overview. Neural Networks, 61:
85–117, 2015.

Uwe Schmidt and Stefan Roth. Learning Rotation-Aware Features: From Invariant Priors to
Equivariant Descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pa�ern
Recognition (CVPR), pages 2050–2057. IEEE, 2012.

Larry Schumaker. Spline Functions: Basic Theory. Cambridge University Press, 2007.

Jayaram Sethuraman. A Constructive Definition of Dirichlet Priors. Statistica Sinica, 1994.

Oran Shayar, Dan Levi, and Ethan Fetaya. Learning Discrete Weights Using the Local Reparam-
eterization Trick. International Conference on Learning Representations (ICLR), 2018.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian Optimization Using Deep
Neural Networks. In Proceedings of the 32nd International Conference on Machine Learning
(ICML), pages 2171–2180, 2015.

140

Kihyuk Sohn and Honglak Lee. Learning Invariant Representations with Local Transformations.
In Proceedings of the 29th International Conference on Machine Learning (ICML), pages 1311–
1318, 2012.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Lad-
der Variational Autoencoders. In Advances in Neural Information Processing Systems (NIPS),
pages 3738–3746, 2016.

Daniel Soudry, Itay Hubara, and Ron Meir. Expectation Backpropagation: Parameter-Free Train-
ing of Multilayer Neural Networks with Continuous or Discrete Weights. In Advances in Neural
Information Processing Systems (NIPS), pages 963–971, 2014.

Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfi�ing. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Mark FJ Steel et al. Bayesian Regression Analysis With Scale Mixtures of Normals. Econometric
Theory, 16(01):80–101, 2000.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-End Memory Networks. In
Advances in Neural Information Processing Systems (NIPS), pages 2440–2448, 2015.

Luke Tierney, Robert E Kass, and Joseph B Kadane. Fully Exponential Laplace Approximations
to Expectations and Variances of Nonpositive Functions. Journal of the American Statistical
Association, 84(407):710–716, 1989.

Jakub M Tomczak. Prediction of Breast Cancer Recurrence Using Classification Restricted Boltz-
mann Machine with Dropping. ArXiv e-prints, 2013.

Jakub M Tomczak and Max Welling. VAE with a VampPrior. In Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

Udo v Toussaint, Silvio Gori, and Volker Dose. Invariance Priors for Bayesian Feed-Forward
Neural Networks. Neural Networks, 19(10):1550–1557, 2006.

Dustin Tran, Rajesh Ranganath, and David M Blei. Variational Gaussian process. International
Conference on Learning Representations (ICLR), 2016.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. REBAR:
Low-Variance, Unbiased Gradient Estimates for Discrete Latent Variable Models. In Advances
in Neural Information Processing Systems (NIPS), pages 2624–2633, 2017.

Jos U�ink. The Constraint Rule of the Maximum Entropy Principle. Studies in History and
Philosophy of Modern Physics, 27(1):47–79, 1996.

Aki Vehtari, Simo Sarkka, and Jouko Lampinen. On MCMC Sampling in Bayesian MLP Neu-
ral Networks. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks, volume 1, pages 317–322. IEEE, 2000.

141

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching Networks for One
Shot Learning. In Advances in Neural Information Processing Systems (NIPS), pages 3630–3638,
2016.

Stefan Wager, Sida Wang, and Percy S Liang. Dropout Training as Adaptive Regularization. In
Advances in Neural Information Processing Systems (NIPS), pages 351–359, 2013.

Stefan Wager, William Fithian, Sida Wang, and Percy S Liang. Altitude Training: Strong Bounds
for Single-Layer Dropout. In Advances in Neural Information Processing Systems (NIPS), pages
100–108, 2014.

Stefan Wager, William Fithian, and Percy Liang. Data Augmentation via Levy Processes. Pertur-
bations, Optimization, and Statistics, 2016.

Li Wan, Ma�hew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of Neural
Networks Using DropConnect. In Proceedings of the 30th International Conference on Machine
Learning (ICML), pages 1058–1066, 2013.

Chong Wang and David M Blei. Variational Inference in Nonconjugate Models. Journal of Ma-
chine Learning Research, 14(Apr):1005–1031, 2013.

Sida Wang and Christopher Manning. Fast Dropout Training. In Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML), pages 118–126, 2013.

David Warde-Farley, Ian J Goodfellow, Aaron Courville, and Yoshua Bengio. An Empirical Anal-
ysis of Dropout in Piecewise Linear Networks. ArXiv e-prints, 2013.

Max Welling and Yee W Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
Proceedings of the 28th International Conference on Machine Learning (ICML), pages 681–688,
2011.

Peter M Williams. Bayesian Regularization and Pruning Using a Laplace Prior. Neural Compu-
tation, 7(1):117–143, 1995.

Peter M Williams. Matrix Logarithm Parametrizations for Neural Network Covariance Models.
Neural Networks, 12(2):299–308, 1999.

Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
Networks: Deep Translation and Rotation Equivariance. In Proceedings of the IEEE Conference
on Computer Vision and Pa�ern Recognition (CVPR), pages 5028–5037, 2017.

Y. Yao, A. Vehtari, D. Simpson, and A. Gelman. Yes, but Did It Work?: Evaluating Variational
Inference. ArXiv e-prints, 2018.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning Hierarchical Features from Genera-
tive Models. In Proceedings of The 34th International Conference on Machine Learning (ICML),
2017.

142

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Bayesian Inference
	Priors for Prediction
	Preliminaries
	Outline and Contributions
	Notation

	Bayesian Neural Networks
	Neural Networks
	Conditional Models
	Autoencoders

	Bayesian Neural Networks
	Conditional Models
	Generative Models

	Posterior Inference
	Markov Chain Monte Carlo
	Variational Inference

	Survey of Neural Network Priors
	Conditional Models
	Gaussian Priors
	Heavy-Tailed Priors
	Other Priors: Discrete and Noninformative

	Density Networks

	Multiplicative Noise as an Induced Prior
	Background
	Multiplicative Noise as Gaussian Scale Mixtures
	Gaussian Scale Mixtures
	Noise Induced ARD Priors
	Corresponding Priors

	A Variational Derivation with Applications to Pruning
	Experiments: Weight Pruning
	Conclusions

	Approximating Objective Priors
	Background and Related Work
	Reference Priors
	Related Work

	Learning Reference Prior Approximations
	Empirical Results
	Recovering Jeffreys Priors
	Optimization Stability
	VAE Case Study

	Conclusions

	Learning Priors for Invariance
	Preliminaries
	Perturbation Processes
	Invariant Models

	Learning Invariant Priors
	Quantifying Approximate Invariance
	Exposing the Prior
	Optimization Objective

	Analytical Solution for Linear Regression
	Black-Box Learning for Intractable Models
	Related Work
	Experiments
	Conclusions

	Nonparametric Priors for Density Networks
	Stick-Breaking Processes
	SGVB for GEM Random Variables
	Composition of Gamma Random Variables
	The Kumaraswamy Distribution

	Stick-Breaking Variational Autoencoders
	Generative Process
	Inference
	Semi-Supervised Model
	Related Work
	Experiments

	Latent Dirichlet Process Mixtures
	Experiments

	Conclusions

	Open Problems and Conclusions
	Open Problems
	Conclusions

	Bibliography

