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a b s t r a c t

A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and chikungunya is
to transformmosquito populationswith virus-suppressingWolbachia. In general,Wolbachia transinfected
into mosquitoes induce fitness costs through lower viability or fecundity. These maternally inherited
bacteria also produce a frequency-dependent advantage for infected females by inducing cytoplasmic
incompatibility (CI), which kills the embryos produced by uninfected females mated to infected males.
These competing effects, a frequency-dependent advantage and frequency-independent costs, produce
bistable Wolbachia frequency dynamics. Above a threshold frequency, denoted p̂, CI drives fitness-
decreasing Wolbachia transinfections through local populations; but below p̂, infection frequencies tend
to decline to zero. If p̂ is not too high, CI also drives spatial spread once infections become established
over sufficiently large areas.We illustrate how simplemodels provide testable predictions concerning the
spatial and temporal dynamics ofWolbachia introductions, focusing on rate of spatial spread, the shape of
spreading waves, and the conditions for initiating spread from local introductions. First, we consider the
robustness of diffusion-based predictions to incorporating two important features of wMel-Aedes aegypti
biology that may be inconsistent with the diffusion approximations, namely fast local dynamics induced
by complete CI (i.e., all embryos produced from incompatible crosses die) and long-tailed, non-Gaussian
dispersal. With complete CI, our numerical analyses show that long-tailed dispersal changes wave-width
predictions only slightly; but it can significantly reduce wave speed relative to the diffusion prediction;
it also allows smaller local introductions to initiate spatial spread. Second, we use approximations
for p̂ and dispersal distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti
in Cairns, Australia, Third, we describe new data from Ae. aegypti populations near Cairns, Australia
that demonstrate long-distance dispersal and provide an approximate lower bound on p̂ for wMel in
northeastern Australia. Finally, we apply our analyses to produce operational guidelines for efficient
transformation of vector populations over large areas.We demonstrate that even very slow spatial spread,
on the order of 10–20 m/month (as predicted), can produce area-wide population transformation within
a few years following initial releases covering about 20–30% of the target area.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Wolbachia are maternally inherited endosymbionts, pervasive
among arthropods (Weinert et al., 2015) and best known for re-
productive manipulation (Werren et al., 2008). Their most widely
documented reproductive manipulation is cytoplasmic incompat-
ibility (CI) (Hoffmann and Turelli, 1997; Hamm et al., 2014), which
kills embryos produced byWolbachia-uninfected femalesmated to
infected males. Wolbachia-infected females are compatible with
both infected and uninfected males and generally produce only
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infected progeny. CI gives infected females a reproductive advan-
tage that increases with the infection frequency. Consequently, CI-
inducing Wolbachia can spread within and among populations, at
least once they become sufficiently common that the CI-induced
advantage overcomes any frequency-independent disadvantages
(Caspari and Watson, 1959; Turelli and Hoffmann, 1991; Turelli,
2010; Barton and Turelli, 2011). BecauseWolbachia are maternally
transmitted, selection favors variants that increase the fitness of in-
fected females (Turelli, 1994; Haygood and Turelli, 2009). Teixeira
et al. (2008) and Hedges et al. (2008) discovered that Wolbachia-
infected individuals are protected from some pathogens, including
viruses. Pathogen protection is not universal (Osborne et al., 2009),
and studies of both transient somatic Wolbachia transinfections
(Dodson et al., 2014) and stable transinfections (Martinez et al.,
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2014) suggest that Wolbachia can occasionally enhance suscepti-
bility to pathogens. However, virus protection seems to be a com-
mon property of both natural and introducedWolbachia infections
(Martinez et al., 2014).

This anti-pathogen effect has revitalized efforts to use Wol-
bachia for disease control, an idea first proposed in the 1960s
(Laven, 1967; McGraw and O’Neill, 2013). The disease-vector
mosquito Aedes aegypti has been transinfectedwith twoWolbachia
strains from Drosophila melanogaster (wMelPop, McMeniman
et al., 2009 and wMel, Walker et al., 2011). Two isolated natural
Australian Ae. aegypti populations have been transformed with
wMel to suppress dengue virus transmission (Hoffmann et al.,
2011), and these populations have remained stably transformed
for more than four years (Hoffmann et al., 2014; S. L. O’Neill,
pers. comm.). The dengue-suppressing phenotype of wMel-
transinfected Ae. aegypti, first demonstrated in laboratory colonies
(Walker et al., 2011), has beenmaintained, and possibly enhanced,
after two years in nature (Frentiu et al., 2014). Recently, wMel
has also been shown to block the spread of the Zika virus by Ae.
aegypti (Dutra et al., 2016). Anopheles stephensi was also transin-
fected with Wolbachia, making them less able to transmit the
malaria-causing parasite (Bian et al., 2013). Wolbachia transin-
fections are now being deployed for disease control in at least
five countries (Australia, Vietnam, Indonesia, Brazil and Colombia,
see the ‘‘Eliminate Dengue’’ website:http://www.eliminatedengu
e.com/program), with many more releases planned. We present
simple approximation-based predictions to understand and aid the
deployment of these transinfections.

Ourmathematical analyses rest on bistable frequency dynamics
forWolbachia transinfections. Namely, the frequency-independent
costs associated with introduced infections cause frequencies to
declinewhen the infections are rare; but the frequency-dependent
advantage associated with CI overcomes these costs when the
infections become sufficiently common. As explained in the Dis-
cussion, bistability now seems implausible for naturally occurring
Wolbachia infections (cf. Fenton et al., 2011; Kriesner et al., 2013;
Hamm et al., 2014). However, we present several lines of evidence,
including new field data, indicating that wMel transinfections in
Ae. aegypti experience bistable dynamics in nature.

Why does bistability matter? As reviewed in Barton and Turelli
(2011), bistability constrains which variants can spread spatially,
how fast they spread, how difficult it is to initiate spread, and
how easily spread is stopped. Roughly speaking, spatial spread
can occur only if the critical frequency, denoted p̂, above which
local dynamics predict deterministic increase rather than decrease,
is less than a threshold value near 1/2. As discussed in Turelli
(2010), p̂ is determined by a balance between the frequency-
dependent advantage provided by cytoplasmic incompatibility
and frequency-dependent disadvantages associated with possible
deleterious Wolbachia effects on fecundity, viability and develop-
ment time. As p̂ increases, the rate of predicted spatial spread slows
to zero (then reverses direction), the area inwhich the variantmust
be introduced to initiate spread approaches infinity, and smaller
spatial heterogeneities suffice to halt spread. Spatial dynamics
depend on details of local frequency dynamics and dispersal that
are not well understood empirically. This motivates our explo-
ration of quantitative predictions using relatively simple but robust
models that focus on three key biological phenomena, dispersal,
deleterious fitness effects and cytoplasmic incompatibility.

We seek conditions under which minimal releases of dengue-
suppressing Wolbachia transinfections achieve area-wide disease
control by transforming a significant fraction of the vector popu-
lation in a relatively short period. We focus on simple models to
provide quantitative predictions and guidelines, and test the ro-
bustness of the predictions to long-distance dispersal. Our simple
approximations make testable predictions that may be improved

as additional data become available. Many parameters in detailed
models will be difficult to estimate and are likely to vary in time
and space. Our idealization is motivated by the scarce information
concerning the ecology of disease vectors such as Ae. aegypti. For
instance, the dynamics of introductions must depend on ecolog-
ical factors such as density regulation (Hancock et al., 2011a,b).
However, the ecology of Ae. aegypti is so poorly understood that in-
creases in embryo lethality associated with CI might lead to either
decreasing or increasing adult numbers (cf. Prout, 1980; Walsh
et al., 2013; but see Hancock et al., 2016). As in Barton and Turelli
(2011), we ignore these ecological complications and emphasize
quantitative conclusions that depend on only two key parameters:
σ , a measure of average dispersal distance, and p̂, the unstable
equilibrium frequency. We illustrate how these two parameters
can be estimated from introduced-Wolbachia frequency data (pro-
ducing predictions that can be cross-validated) and explore the
robustness of the resulting predictions.

Our new analyses build on Barton and Turelli (2011), which
used diffusion approximations to understand spatial and tem-
poral dynamics. To determine the robustness of those diffusion-
based predictions, which make mathematical assumptions that
may not be consistent with the biology ofWolbachia-transinfected
mosquitoes, we examine dispersal patterns that assign higher
probabilities to long-distance (and very short-distance) dispersal.
We ask how dispersal patterns affect wave speed, wave shape, and
the conditions for initiating an expanding wave (Section 4). We
use these new, more robust predictions to propose guidelines for
field deployment of dengue-suppressing Wolbachia. This involves
addressing new questions. For instance, Barton and Turelli (2011)
determined the minimum area over which Wolbachia must be
introduced to initiate spatial spread, but ignored the fact that near
this critical size threshold, dynamics would be extremely slow.
Effective field deployment requires initiating multiple waves to
cover a broad area relatively quickly, given constraints on how
many mosquitoes can be released. This requires understanding
how transient dynamics depend on initial conditions. We syn-
thesize data-based and model-based analyses of spatial spread to
outline efficient strategies for area-wide transformation of vector
populations (Section 7).

In addition to our theoretical results concerning predicted prop-
erties of spatial spread and near-optimal release strategies, we
illustrate the theory with predictions concerning the outcome of
wMel releases in Cairns, Australia in 2013 (Section 5). We also
analyze some previously unpublished data from the 2011 releases
reported in Hoffmann et al. (2011) to approximate a lower bound
for p̂ relevant to the Cairns releases (Section 6).

2. Mathematical background, models and methods

Our initial numerical analyses focus on testing the robustness
of predictions presented in Barton and Turelli (2011). We first
describe the diffusion approximations and results from Barton and
Turelli (2011) before describing the alternative approximations
and analyses. Next we describe the model used to analyze the new
data we present. Finally we describe our approaches to approxi-
mating optimal release strategies.

2.1. Diffusion approximations, alternative dynamics and predictions

The simplest spatial model relevant to understanding Wol-
bachia frequency dynamics in space and time is a one-dimensional
diffusion approximation:

∂p
∂t

=
σ 2

2
∂2p
∂x2

+ f (p), (1)

where f (p) describes local dynamics and p(x, t) denotes the infec-
tion frequency at point x and time t , and σ denotes the standard
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deviation of dispersal distances. If we approximate the local
bistable dynamics by the cubic

f (p) = shp(1 − p)(p − p̂), (2)

where sh describes the intensity of CI, there is an explicit asymp-
totic traveling wave solution of (1), given as Eq. 13 of Barton and
Turelli (2011). Eq. (1), extended to two dimensions as described by
Eq. 22 of Barton and Turelli (2011), can be solved numerically to
address transient dynamics associated with local releases. In two
dimensions, we interpret σ 2 as the variance in dispersal distance
per generation along any axis. (This implies that the average Eu-
clidean distance between the birthplaces ofmothers anddaughters
is σ

√
π/2, assuming Gaussian dispersal.) Themodel defined by (1)

and (2) provides analytical predictions for wave speed and wave
shape and numerical conditions for establishing a spreading wave
from a local introduction.

To more accurately approximate CI dynamics, Barton and
Turelli (2011) replaced the cubic approximation (2)with themodel
of Schraiber et al. (2012)

dp
dt

= f (p) =
shp(1 − p)(p − p̂)

1 − sf p − shp(1 − p)
,with (3a)

p̂ = sr/sh = (sf + sv − sfsv)/sh. (3b)

(Eq. (3a) assumes that the daily death rate for the infected individ-
uals is dI = 1, so that time is measured in terms of the average
lifetime of an infected individual.) As in Eq. (2), sh measures the
intensity of CI; whereas sr measures the net reduction in fitness
caused by the Wolbachia infection. As in the discrete-time model
of Turelli (2010), fitness costs may involve reductions of both
fecundity and mean life length (viability), as measured by sf and
sv, respectively; however, sv enters the dynamics only through p̂.
Numerical integration can be used to compare the cubic-based
analytical predictions with those produced by this more biologi-
cally explicit approximation. For fixed p̂, the dynamics described by
Eq. (3a) depend onwhether fitness costs primarily involve viability
or fecundity effects (because only sf appears in the denominator).
The data of Hoffmann et al. (2014) suggest that fecundity effects
may dominate.

In our discrete-time, discrete-space analyses, we approximate
local dynamics with the Caspari–Watson model (1959) which in-
corporates CI and fecundity effects (cf. Hoffmann and Turelli, 1988;
Weeks et al., 2007). LetH denote the relative hatch rate of embryos
produced from an incompatible cross. Setting H = 1 − sh and
F = 1 − sf, and letting p denote the frequency of infected adults,
the local dynamics are described by

∆p = p′
− p =

shp(1 − p)(p − p̂)
1 − sfp − shp(1 − p)

,with (4a)

p̂ = sf/sh. (4b)

In this model, the condition for bistability (i.e., simultaneous local
stability of p = 0 and p = 1) is sh >sf >0, i.e., the (frequency
dependent) benefit to the infection from CI must exceed its (fre-
quency independent) cost, modeled as decreased fecundity. Both
lab and field experiments indicate that wMel causes complete CI,
i.e., sh ≈ 1 in Ae. aegypti (Hoffmann et al., 2014).

2.1.1. Wave speed
Measuring time in generations, the predicted wave speed from

(1) with cubic dynamics (2) is

c = σ
√
sh(1/2 − p̂) (5)

provided that p̂ > 0. This one-dimensional result also describes the
asymptotic speed of a radially expanding wave in two dimensions

(see Eqs. 23–25 of (Barton and Turelli, 2011)). Barton and Turelli
(2011) used numerical solutions of (1) to compare this speed
prediction to the wave speed produced by (3), which explicitly
models the fast local dynamics associatedwith strong CI. Themore
realistic dynamics (3) led to slightly faster wave propagation (as
expected because the denominator of f (p) is less than one).

2.1.2. Wave width
The explicit traveling-wave solution of (1) for cubic f (p) pro-

vides a simple description for the asymptotic wave width, the
spatial scale over which infection frequencies change. Defining
wave width as the inverse of the maximum slope of infection
frequencies (Endler, 1977), the diffusion approximationwith cubic
dynamics implies that the traveling wave has width

w = 1/Max(|∂p/∂x|) = 4σ/
√
sh, (6)

which becomes 4σ with complete CI, as in Ae. aegypti. The explicit
solution that produces (6) implies thatwith sh = 1, the scaledwave
(with space measured in units of σ ) has shape 1/[1 + Exp(−x)].
Thus, infection frequencies increase from about 0.18 to 0.82 over
3σ . If steady spread is observed in the field, we can use this
wave-shape approximation to estimate σ from spatial infection-
frequency data. These estimates can be compared to independent
estimates from release–recapture experiments or genetic data.We
show below that relation (6) is relatively robust to more realistic
descriptions of local frequency dynamics and long-tailed dispersal.

2.1.3. Wave initiation
Finally, the diffusion approximation predicts theminimumarea

that must be actively transformed to initiate deterministic spatial
spread. Barton and Turelli (2011) consider introductions over a
circular area with initial infection frequency p0 in the circle. This
initial state corresponds to rapid local establishment of a transin-
fection from intensive releases. Hoffmann et al. (2011) showed that
releases in isolated suburbs near Cairns produced wMel frequen-
cies over 80%within 12weeks, about three Ae. aegypti generations.
Fig. 3 of Barton and Turelli (2011) summarizes the diffusion predic-
tions concerning theminimum radius of release areas,measured in
units of dispersal distance σ , needed to initiate a spreading wave.
In their analysis, the scaled critical radius, denoted Rcrit, depends
only on p̂. As p̂ increases from0 to 0.3,Rcrit increases from0 to about
3.5σ , then rapidly increases towards infinity as p̂ approaches 0.5,
the approximate upper bound on p̂ consistent with spatial spread.
Releases over areas smaller than Rcrit are predicted to fail, with the
infection locally eliminated by immigration from surrounding un-
infected populations. Barton and Turelli (2011) used the Schraiber
et al. (2012) model (3) to assess the robustness of these cubic-
based predictions to more realistic local CI dynamics. Model (3)
produced Rcritpredictions within a few percent of those derived
from the cubic (see Fig. 3 of Barton and Turelli, 2011), assuming
that Wolbachia reduce fitness primarily through viability effects.
Below, we contrast the diffusion predictions of Barton and Turelli
(2011) with numerical results that account for fecundity effects,
faster local dynamics and alternative forms of dispersal.

2.1.4. Time scale for asymptotic wave speed and width
Predictions (5) and (6) for wave speed and wave width are

based on the asymptotic behavior of the traveling wave solutions
to the diffusion model (1) assuming cubic dynamics. (As discussed
in Barton and Turelli (2011), the asymptotic wave speed andwidth
are the same in one dimension and two.) To apply these predictions
to frequency data generated from field releases, it is important to
know how quickly these asymptotic values are approached. Fig. 1
illustrates numerical solutions for the transient dynamics of the
cubic-diffusionmodel in two dimensionswith plausible parameter
values for wMel in Ae. aegypti, sh = 1 and p̂ = 0.25 (discussed
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Fig. 1. Transient dynamics of wave position and wave width from numerical solutions of the two-dimension version of diffusion model (1) with cubic dynamics (2), sh = 1
(i.e., complete CI) and p̂ = 0.25. The calculations assume circular introductions with radial symmetry and initial frequency p(R) = 0.8/{1+ exp[4(R−3)/v]} for v = 0.8 and
8. (Note that v is a scale factor that determines the steepness with which infection frequency falls.) Setting v = 0.8 produces an abrupt drop in the initial frequency from
0.75 to 0.05 over roughly R = 2.5 to R = 3.5; with v = 8, the initial frequency drops from 0.65 at R = 0 to 0.25 at R = 4.6. The left panel shows wave position measured
as the point of maximum slope, the right panel shows the width, measured as the inverse of the maximum slope (see Eq. (6)). The dotted curves correspond to v = 0.8,
modeling a rapid introduction in a confined area. This produces a faster approach to the expected asymptotic speed of 0.25. Both initial conditions, one with narrower width
than the asymptotic value of four, the other wider, approach the asymptotic width of four within 7–10 generations.

below). The calculations use two initial conditions. In the first,
the infection is introduced with p0 near 0.8 over a circular region
with diameter 3 (see Fig. 1 legend for details), which is about 14%
larger than Rcrit = 2.64, the critical radius needed to initiate spatial
spread. In the second, the infection frequency drops smoothly from
0.65 at the center of the introduction to 0.25 (the unstable point, p̂)
at aboutR = 4.6. As shown in Fig. 1, for these parameters and initial
conditions, the approach to the asymptotic wave speed and width
is rapid, on the order of five-to-ten generations. Similar results hold
for our discrete-time models and data from field releases of wMel
in Ae. aegypti (data not shown).

2.2. Numerical analyses of discrete-time, discrete-state (DTDS) mod-
els

To explore the robustness of the diffusion predictions, we
consider the simultaneous effects of fast local dynamics, associ-
ated with complete CI, and long-tailed dispersal. To do this, we
replace the PDE approximation (1) with discrete-time, discrete-
space (DTDS) models that assume discrete generations and dis-
crete patches in which the consequences of mating, fecundity
effects and CI occur and between which adult migration occurs.

2.2.1. Model structure and dynamics.
Let i denote a patch in one or two dimensions, let g(p) = p′

denote a function (such as Eq. (4)) that describes how mating,
fecundity differences and CI transform local infection frequencies
between generations, and letm(i, j) denote the probability that an
individual at location i after migration originated in location j. As-
suming discrete generations in which migration of newly eclosed
individuals precedes local CI dynamics, the infection frequencies
among adults in each patch follow

p(i, t + 1) = g

⎡⎣∑
j

m(i, j)p(j, t)

⎤⎦ . (7)

Our choice of patch spacing for these discretizations is discussed
below. We approximate local dynamics with the Caspari–Watson
model (4).

2.2.2. Alternative dispersal kernels
FollowingWang et al. (2002), we compare results obtainedwith

three models of dispersal: a Gaussian, denoted G(x), versus two
‘‘long tailed’’ distributions, the Laplace (or reflected exponential),
denoted L(x), and the exponential square root (ExpSqrt), denoted
S(x). Letting σ denote the standard deviation of dispersal distances,

Fig. 2. Alternative dispersal models with σ = 1. The three models are: Gaussian
(blue), Laplace (green), and ExpSqrt (red) as described by (8). Each describes the
probability, denoted m(x) in the figure, of moving distance x along any axis. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

our dispersal kernels in one dimension (proportional to the prob-
ability of moving distance x in one dimension) are

G(x) = Exp[−x2/(2σ 2)]/
√

2πσ 2, (8a)

L(x) = Exp
[
−

√
2x2/σ 2

]
/
√

2σ 2, and (8b)

S(x) =

√
15/(2σ 2)Exp

[
−

4
√
120x2/σ 2

]
. (8c)

These alternative dispersal models are illustrated in Fig. 2. Our
DTDS calculations used patch spacing of 0.5σ . We truncated the
dispersal functions at ±10σ . We adjusted the variance parameter
in our discrete calculations so that the actual standard deviation
of the discrete distribution was σ . In two dimensions, (x, y), the
dispersal models, generically denoted m(z), were implemented as
m

(√
x2 + y2

)
.

Taking logs of the densities, the tails of G(x) decline as −x2,
whereas the tails of L(x) and S(x) decline as−|x| and−

√
|x|, respec-

tively, corresponding to successively higher probabilities of long-
distance dispersal. Denoting the random variables corresponding
to these densities as G, L and S, we have P(|G| > 3σ ) = 0.003,
P(|L| > 3σ ) = 0.014 and P(|S| > 3σ ) = 0.022. As Fig. 2 shows,
higher probabilities of long-distance dispersal are accompanied
by higher probabilities of short-distance dispersal (e.g., P(|G| <
0.5σ ) = 0.383, P(|L| < 0.5σ ) = 0.507 and P(|S| < 0.5σ ) =

0.678), with corresponding medians for |G| , |L| and |S| of 0.67σ ,
0.49σ and 0.28σ , respectively.
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In two dimensions, we assume that dispersal is isotropic, with
radial distribution given by the kernels defined by (8), and scaled
such that the standard deviation along any one axis isσ . To approx-
imate σ from experiments that estimate mean Euclidean dispersal
distances, D, note that the Gaussian produces E(DG) = σ

√
π/2 ≈

1.25σ ; whereas for the Laplace and ExpSqrt, we have E(DL) ≈

1.15σ and E(DS) ≈ 0.94σ , respectively. Thus, empirical estimates
of average Euclidean dispersal distance can imply values of σ that
differ by over 30%depending on the shape of the dispersal function,
with longer tails implying higher values of σ . (Note that statistical
estimation of dispersal requires some assumption about the distri-
bution of dispersal distance.)We compare the predictions resulting
from alternative dispersal models by holding fixed the variance
parameter σ 2, which is natural measure of dispersal distance for
diffusion approximations (see, for instance, the derivations in Hal-
dane (1948), Slatkin (1973) or Nagylaki (1975)).

2.3. Model used for data analysis: an isolated deme subject to immi-
gration

Barton and Turelli (2011) adapted the ‘‘island model’’ of Hal-
dane (1930) to approximate the rate of immigration ofWolbachia-
infected individuals required to ‘‘flip’’ an isolated population from
uninfected to infected. In addition to approximating the critical
migration rate, m, the analysis produces an analytical approxima-
tion for the equilibrium infection frequency when the immigra-
tion rate is too low to flip the recipient population to Wolbachia
fixation. Assuming complete CI, 100% frequency of Wolbachia in
the donor population and one-way immigration into the recipient
population, Eq. (31) of Barton and Turelli (2011) predicts thatWol-
bachia should take over the recipient population if m, the fraction
of individuals who were new migrants each generation, exceeds
m∗

= p̂2/4. For m < m∗, the predicted Wolbachia equilibrium
frequency in the recipient population, using a cubic approximation
for local dynamics, is

p∗
= (p̂/2) −

√
(p̂/2)2 − m < p̂/2 (9)

(this is a reparameterization of Eq. (31) of Barton and Turelli, 2011).
Hence, if we use the long-term average Wolbachia frequency, p̄, to
approximate p*, the equilibrium described by (9), we can approxi-
mate a lower bound for the unstable equilibrium, p̂, as 2p̄.

2.4. Near-optimal release strategies

We analyze alternative release strategies using a combination
of numerical solutions of diffusion models, DTDS models and even
simpler models that assume constant rates of radial spread from
release foci. Each analysis is described below alongwith the results
it produces.

3. New data demonstrating bistability

We analyze a small subset of theWolbachia infection frequency
data collected subsequent to the first ‘‘Eliminate Dengue’’ field
releases of wMel-infected Ae. aegypti, described in Hoffmann et al.
(2011). The releases occurred in early 2011 in two isolated towns,
Gordonvale (668 houses) and Yorkeys Knob (614 houses), near
Cairns in northeast Australia. As described in Hoffmann et al.
(2011), Pyramid Estate (PE) is an area of Gordonvale separated
from the town center by a major highway, with roughly 100 m
separating the nearest houses on either side. Highways seem to
inhibit Ae. aegyptimigration (Hemme et al., 2010). The 2011 wMel
releases were restricted to the main part of Gordonvale; but as
reported in Hoffmann et al. (2011), wMel-infected mosquitoes
were found in PE within months of the initial releases. The PE
capture siteswere scattered over an area of houses on the order of 1

km2 with traps roughly 100–500 m from the nearest residences in
the Gordonvale release area. As described in Hoffmann et al. (2011,
2014), infection frequencieswere estimatedusing PCRofDNA from
adults reared fromeggs collected in oviposition traps. Between late
March 2011 and January 2015, 2689 adults were assayed in PE. The
data are available as an online appendix.

4. Results: Robustness of diffusion results to long-tailed disper-
sal and rapid CI dynamics

4.1. Wave speed

We initially calculatedwave speed in a one-dimensional spatial
array, then as in Barton and Turelli (2011), we checked the results
with two-dimensional calculations. To disentangle the effects of
non-Gaussian dispersal from the effects of fast local dynamics,
we contrast results obtained assuming complete CI (sh = 1), as
observed with wMel-infected Ae. aegypti, with results assuming
weak CI (sh = 0.2). Fig. 3 compares the numerically approximated
wave speeds to the analytical prediction, c = σ

√
sh(1/2 − p̂), from

the diffusion approximation with cubic dynamics. The left panel
shows that with relatively slow local dynamics (sh = 0.2), the
cubic diffusion approximation is accurate and robust to the shape
of the dispersal function. This is expected from the derivation of
approximation (1) as a limit of discrete-time, discrete-space dy-
namics (Haldane, 1948; Nagylaki, 1975). The derivation explicitly
invokes slow local dynamics and limited dispersal, retaining only
the variance of dispersal distances in the quadratic approximation.
The sh = 0.2 results have two other notable features. First, despite
the overall accuracy of approximation (5), we see that ExpSqrt
dispersal slightly slows propagation. This can be understood in
terms of the lowermedian dispersal distance and the fact thatwith
bistability, rare long-distance dispersal is not effective at pushing
the wave forward, because long-distance migrants are swamped
by the much more abundant natives. This distinguishes bistable
spatial dynamics from those with zero as an unstable equilibrium.
For such systems, long-tailed dispersal can produce accelerating
waves (see Supporting Information Appendix A for references
and comparison of bistable versus Fisherian wave speeds). More-
over, geographic spread associated with spatially non-contiguous,
successful long-distance colonization events (cf. Shigesada and
Kawasaki, 1997, Ch. 5), can greatly exceed predictions based on
average dispersal distances. Second, note that as p̂ approaches 0.5,
the analytical approximation starts to underestimate wave speed.
As described by Barton and Turelli (2011), this reflects the fact that
the cubic model produces the threshold p̂ ≤ 0.5 for spatial spread,
whereas models more accurately describing CI and fitness costs,
such as (3) and (4), predict spatial spreadwith p̂ slightly above 0.5.

The right panel of Fig. 3 (sh = 1) shows that faster local
dynamics accentuate both phenomena seen with sh = 0.2: slower
speed with more long-tailed dispersal and underestimation of
observed speed as p̂ approaches 0.5. With complete CI and plau-
sible p̂ (i.e., 0.2 ≤ p̂ ≤ 0.35), observed speed closely follows the
cubic-based diffusion prediction with Gaussian dispersal, but is
reduced by about 10% for Laplace dispersal and by much more
(25%–40%) for ExpSqrt dispersal. A simple interpretation is that
long-tailed dispersal is associated with smaller median dispersal
distances. Long-distance migrants are effectively ‘‘wasted’’ in that
they cannot initiate local spread.

Appendix A provides a more complete description of the con-
sequences of alternative dispersal models on wave speed under
bistable versus monostable local dynamics, including the conse-
quences of finite population size at the front on wave propagation.
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Fig. 3. Wave speed. Speed calculated from DSDT analyses compared to the cubic-based diffusion prediction, c = σ
√
sh( 12 − p̂), as a function of p̂, for sh = 0.2 (left) and

sh = 1 (right). As in (2), σ denotes the standard deviation of dispersal distances; sh denotes the intensity of CI. The green dots were produced with Gaussian dispersal, blue
with Laplace and black with Exponential Square root (ExpSqrt). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Wave width. Wave width as a function of p̂ calculated using discrete-time, discrete-space (DTDS) analyses with alternative dispersal models. The dots from the DTDS
analyses are compared to the diffusion prediction (w = 1/Max(|∂p/∂x|) = 4σ/

√
sh , red line) for sh = 0.2 (left) and sh = 1 (right). As in Fig. 3, σ denotes the standard

deviation of dispersal distances and sh denotes the intensity of CI. The green dots were produced with Gaussian dispersal, blue with Laplace and black with Exponential
Square root (ExpSqrt). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.2. Wave width

Under the diffusion model with cubic dynamics, the predicted
wave width is w ≈ 4σ

√
sh (6). Fig. 4 compares this predic-

tion with the results obtained from DTDS with Caspari–Watson
dynamics and alternative dispersal models. With relatively slow
local dynamics (sh = 0.2), Panel A shows that the cubic-diffusion
prediction remains accurate for all three dispersal models, analo-
gous to the results for wave speed illustrated in Fig. 3A. ExpSqrt
dispersal slightly reduces wave width, presumably reflecting the
lower median dispersal. As with wave speed, sh = 1 produces
larger departures from the cubic-diffusion prediction and much
greater effects of dispersal shape. However, for plausible values of
p̂ (i.e., 0.2 ≤ p̂ ≤ 0.35), the observed width remains within about
15% of prediction (6) for Gaussian and Laplace and very close to the
prediction for ExpSqrt.

4.3. Wave initiation: critical radius Rcrit

Fig. 3 of Barton and Turelli (2011) showedhow Rcrit, theminimal
radius of an introduction needed to initiate spread (measured in
units of the dispersal parameter σ ), depends on p̂ and p0 under the
diffusion approximation. It contrasts the predictions for cubic dy-
namics versus Schraiber et al. (2012)Wolbachia dynamics (Eq. (3)).
Fig. 5 compares those predictions to DTDS results under Caspari–
Watson Wolbachia dynamics (Eq. (4)). The key result is that long-
tailed dispersal produces smaller critical radii, and the effect of
long-tailed dispersal increases as p̂ increases. This result is comple-
mentary to the wave-speed results. With longer-tailed dispersal,

more individualsmove very little so that themedian dispersal falls,
making it easier to establish a wave (but the resulting wave moves
more slowly). The discrepancies between the diffusion results
with Schraiber et al. (2012) dynamics and the DTDS results for
Gaussian dispersal are mainly attributable to the fact that the
Schraiber et al. (2012) results illustrated in Fig. 5 assume only
viability costs, which produces slower dynamics (see Eq. (4a)) and
requires larger introductions, than if one assumes fecundity costs,
as done in the DTDS Caspari–Watsonmodel. The effect of fecundity
vs. viability costs is illustrated in Table 1 in Section 5.1. For p̂ = 0.35
and p0 = 0.8, numerical solution of the diffusion equation with
Schraiber et al. (2012) dynamics produces Rcrit = 3.36 if sf = 0
(so that p̂ = sv), but this drops to Rcrit = 2.76 if sv = 0 (so that
p̂ = sf). The corresponding values under the DTDS model with
Caspari–Watson dynamics are Rcrit = 3.01, 2.91, 2.55, for Gaussian,
Laplace and ExpSqrt dispersal, respectively.

There are two striking results concerning the DTDS-derived
values of Rcrit. First, like the wave-width results, the critical radii
are relatively insensitive to the dispersal model. Second, how-
ever, unlike the wave-width results, the critical radii are signifi-
cantly different and smaller than those produced by the diffusion
approximation. Barton and Turelli (2011) showed that the
Schraiber et al. (2012) dynamics produced smaller Rcrit values
than the cubic model, even if fitness costs were purely based on
reduced viability. Reduced fecundity, as assumed in the Caspari–
Watson model, accelerates the local dynamics and hence allows
much smaller introductions to initiate a traveling wave. Even with
p̂ = 0.35, introductions with p0 = 0.8 will succeed as long as the
initial radius of release, denoted RI, satisfies RI ≥ 2.5σ (or 3.0σ )
with ExpSqrt (or Gaussian) dispersal.
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Fig. 5. Critical radius, Rcrit , assuming complete CI and alternative dynamics. The
upper points reproduce the diffusion results from Barton and Turelli (2011) with
cubic (red curve) and Schraiber et al. (2012) CI dynamics (assuming only viability
fitness costs). The red curve shows the cubic-diffusion predictions with initial
infection frequency p0 = 0.8, the large blue dots are the cubic with p0 = 0.6.
The small red (blue) dots are produced by the diffusion analysis of Schraiber et al.
(2012) CI dynamics with p0 = 0.8 (p0 = 0.6). The lower points and curves show
our DTDS predictions as a function of p̂ and p0 with alternative dispersal models.
The lower lines correspond to p0 = 0.8 with Gaussian (green), Laplace (blue) and
ExpSqrt (black) dispersal. The points above and below these lines correspond to
p0 = 0.6 and p0 = 1, respectively. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

5. Results: Predictions for 2013 Cairns releases

5.1. Diffusion-based predictions

One of our primary aims is to understand the robustness of the
Barton and Turelli (2011) diffusion predictions. Rather than discuss
generalities, we will focus on specific field releases. In early 2013,
three localized releases were performed within the city of Cairns.
Releases were made in three neighborhoods, Edgehill/Whitfield
(EHW), Parramatta Park (PP), and Westcourt (WC). The release
areas were roughly 0.97 km2 for EHW, 0.52 km2 for PP, and only
0.11 km2 for WC. Infection frequencies quickly rose above 0.8
within all three release areas, and each release area adjoined hous-
ing into which the wMel infection might plausibly spread. What
predictions emerge from the diffusion approximations?

Numerical predictions require estimates ofσ and p̂. Russell et al.
(2005) performed a mark–release–recapture experiment with Ae.
aegyptiusing a release site abutting the 2013 EHWrelease area. The
mean absolute distance of recaptures from the release point was
about 78 m. The diffusion approximation assumes that dispersal
is measured as the standard deviation of dispersal distance along
any axis. If we assume that dispersal distance is roughly Gaussian
distributed with mean 0 and standard deviation σ along each
axis, the mean absolute dispersal distance is σ

√
π/2 or about

1.25σ . With this assumption, the estimate from Russell et al.
(2005) implies σ ≈ 62 m/(generation)1/2. In general, however,
release–recapture estimates tend to be systematically lower than
those based on genetic data (see, for instance, Barton and Hewitt,
1985, Fig. 3). Moreover, estimates of dispersal distance for Ae.
aegypti are extremely variable in time and space. For instance,
Harrington et al. (2005) found that repeated estimates of mean
dispersal distance in the same village in Thailand ranged from
about 40 m/(generation)1/2 to about 160 m/(generation)1/2. Our
theoretical predictions concerning the consequences of dispersal
are best interpreted as temporal averages, which aremore likely to
be accurately captured by indirect estimates of average dispersal
such as wave width (or genetic data describing the decline of
relatedness with distance). Given that direct estimates systemat-
ically underestimate average dispersal in nature, we use σ ≈ 100
m/(generation)1/2 as a plausible estimate for Cairns. We recognize,

however, that dispersal is likely to vary significantly with local
conditions.

Assuming σ ≈ 100 m/(generation)1/2, Eq. (6) implies that if
spatial spread is observed, the wave width should be about 400
m. From Eq. (5), the corresponding wave speed is c = 100(1/2 − p̂)
m per generation (m/gen). As argued in Section 6.1, p̂ is probably
above 0.2. Thus, the maximum predicted speed is about 30 m/gen.
However, if p̂ is as high as 0.35, predicted speed falls to 15 m/gen.
Assuming about 10 Ae. aegypti generations per year near Cairns,
these crude estimates indicate that wMel spread in Ae. aegypti
is likely to be on the order of 150–300 m/yr – two or three
orders of magnitude slower than the spread of wRi in California
and eastern Australia D. simulans (100 km/year, Kriesner et al.,
2013). Yet repeated estimates of dispersal distances for various
Drosophila species suggest that natural dispersal distances are at
most 5–10 times greater for D. simulans than for Ae. aegypti (e.g.,
Dobzhansky and Wright 1943; Powell et al., 1976; McInnis et al.,
1982). The critical difference between the speeds associated with
these exemplars of Wolbachia spread is unlikely to be dispersal,
but more probably the bistability of wMel dynamics in Ae. ae-
gypti versus the monostability of wRi dynamics (see Discussion
Section 8.3).Monostability allows relatively rare human-mediated,
long-distance dispersal to greatly enhance spatial spread, as de-
scribed, for instance, by ‘‘structured diffusion’’ models (Shigesada
and Kawasaki, 1997 Ch. 5).

Whether spatial spread occurs with bistability depends on the
size of the release area, the initial frequency produced in the
release area (p0), and p̂. From Fig. 3 of Barton and Turelli (2011)
with p0 = 0.8, if p̂ were as large as 0.35, the minimum radius of
a circular release needed to produce an expanding wave would be
on the order of 4σ , implying a minimal release area of about 0.5
km2 (assuming σ ≈ 100 m/(generation)1/2). Replacing the cubic
in (2) with the Schraiber et al. (2012) description of CI dynamics
(3), Barton and Turelli (2011) showed that the minimal radius
with p̂ = 0.35 falls from about 4σ to about 2.8–3.5σ , with the
value depending onwhetherwMel-infected Ae. aegypti lose fitness
primarily through fecundity (as the data of Hoffmann et al., 2014
suggest), which produces 2.8σ , or viability, which produces 3.5σ .
The smaller values (from Schraiber et al., 2012) imply minimal
release areas of about 0.25–0.38 km2 (the lower value assumes
only fecundity effects). In contrast, if p̂ were as small as 0.2, the
minimum radius falls to about 2σ for both the cubic model and
Schraiber et al. (2012) dynamics (with either fecundity or viability
effects), corresponding to a minimal area of about 0.13 km2.

Table 1 summarizes our diffusion-based predictions. Note that
according to these analyses, the releases at EHW and PP should
certainly lead to spatial spread, but the WC release is close to
minimal release area even if p̂ is as small as 0.2. Nextwe address the
robustness of these predictions to long-tailed dispersal and patchy
spatial distributions.

5.2. DTDS-based predictions

Our robustness analyses of the wave-width predictions emerg-
ing from the cubic-diffusion model indicate that σ can be reliably
estimated from observed widths of traveling waves of Wolbachia
infections. In contrast, our wave-speed analyses suggest that given
an estimate of σ , the predicted wave speed depends significantly
on the shape of dispersal with plausible speeds that may be on
the order of 20%–30% below the cubic-diffusion prediction c =

σ
√
sh(1/2 − p̂).
Our final prediction concerns spatial spread from individual

localized releases. As shown in Fig. 5, the critical release radius
for spread depends on: (1) p̂, the unstable point; (2) p0, the initial
infection frequency produced within the release areas; (3) the
shape of the dispersal function; and (4) σ , dispersal distance. As
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Table 1
Diffusion-based predictions for spatial spread.

Unstable point Speed (m/gen) Width (m) Minimum release area (km2)

p̂ = 0.2 30 400 0.13
p̂ = 0.35 15 400 0.25–0.38a (0.5)

These predictions assume σ ≈ 100 m, p0 = 0.8, and 0.2 ≤ p̂ ≤ 0.35. They are based
on Eq. 5, Eq. 6 and Fig. 3 of Barton and Turelli (2011).
a The smaller prediction (0.25) is derived with Schraiber et al. (2012) CI dynamics (3)
assuming that wMel reduces only the fecundity of Ae. aegypti (i.e., sr = sf in (3b)),
the larger result (0.38) assumes that wMel reduces only viability. The cubic model
produces the still larger value (0.5).

dispersal becomes more long-tailed (moving from Gaussian to
ExpSqrt), the critical radius of the initial introduction decreases.
If we assume that p̂ = 0.3 and p0 = 0.8, Rcrit is about 2.61σ if
dispersal is Gaussian, but falls to about 2.51σ (or 2.16σ ) if dispersal
is Laplace (or ExpSqrt). Hence, for each of the three release areas
in Cairns, we can ask what is the maximum σ consistent with
our deterministic predictions for spatial spread. Given that spread
occurs only if the release area exceeds πR2

critσ
2, for each release

area, we can approximate an upper bound on σ consistent with
spatial spread by

σ <

√
(release area)/(πR2

crit ). (10)

Table 2 presents these upper bounds onσ associatedwith the three
2013 release areas in central Cairns for a plausible range of p̂.

Given that very few empirical estimates of σ for Ae. aegypti
exceed 100 m, these results suggest that spatial spread should
certainly be observed for the Edge Hill/Whitfield and Parramatta
Park releases. The prediction for Westcourt is more ambiguous.
Note that from Table 1, our diffusion predictions with 0.2 ≤ p̂ ≤

0.35 indicated a minimum release area of 0.14 km2. This lower
bound assumes σ = 100 m and p̂ = 0.2. Thus the diffusion
analyses suggested probable failure of the Westcourt release. In
contrast, as shown in Fig. 5, our DTDS analyses indicate that the
Westcourt release areamay be near the lower limit for spread,with
the outcome depending critically on the exact values of σ and p̂.

Empirically testing these predictions concerning minimal re-
lease areas is confounded by the fact that dynamics very close to
the critical values for spread are expected to be slow. Assuming
that p̂ = 0.25, if the release area is 10% (5%) smaller than the
critical value, the time for collapse is on the order of 15–20 (20–25)
generations, roughly two years. Conversely, if the release area
is only 10% (5%) larger that the critical area, the time scale for
appreciable spatial spread is also on the order of 15–20 (20–25)
generations. In contrast, release areas twice as large as necessary
should produce appreciable spread in only 10–15 generations;
whereas release areas only half as large as needed should essen-
tially collapse in 10–15 generations. These calculations motivated
our analyses presented below of ‘‘optimal’’ release sizes aimed at
area-wide coverage within a few years.

6. Results: Data relevant to bistability and long-distancedisper-
sal

6.1. Heuristic approximation for p̂ from Pyramid Estates data

Pyramid Estates (PE) was sampled for over two years after the
releases stopped. The few capture sites were scattered over an
area of houses that is on the order of 1 km2 with traps varying
between about 100 and 500 m from the nearest residences in
our release area. For over two years, the wMel frequency in PE
remained persistently low, but non-zero with p̄ ≈ 0.106 (N =

2689, averaged over space and time). (We found no evidence that
infection frequency variedwith distance from the release area.) For
instance, a sample of 43 Ae. aegypti from theweek ending 9 January

Table 2
Predicted maximum σ (in meters) consistent with spatial spread.

Location p̂ Gaussian Laplace ExpSqrt

Westcourt (0.11 km2) 0.2 92 95 115
0.25 81 84 101
0.3 72 74 87
0.35 62 64 73

Parramatta Park (0.52 km2) 0.35 135 140 160
Edge Hill/Whitfield (0.97 km2) 0.35 184 191 218

These predictions, based on inequality (10), assume that assuming that p0 = 0.8
and 0.2 ≤ p̂ ≤ 0.35.

2015 yielded an infection frequency of 0.07 [with 95% binomial
confidence interval (0.01, 0.19)]. From Eq. (9), a long-term average
of 0.105 implies p̂ ≥ 0.21. The persistence of a low infection
frequency for over two years clearly demonstrates regular immi-
gration of infected individuals that has been unable to push the
local PE population past its unstable point. The fitness data from
Hoffmann et al. (2014) suggest that p̂ forwMel near Cairns is likely
to be at least 0.2. This is corroborated by the transient dynamics
described in Hoffmann et al. (2011) which also suggest that p̂ is
unlikely to be significantly above 0.3.

6.2. Long-tailed dispersal

Gordonvale and Yorkeys Knob are separated from other siz-
able populations of Ae. aegypti by kilometers. Yet, Hoffmann et al.
(2014) found consistent low frequencies of uninfected individuals
more than three years after wMel reached near-fixation, despite
no evidence for imperfect maternal transmission. Yorkeys Knob
is less isolated than Gordonvale and shows a significantly higher
frequency of uninfected individuals, about 6% versus 3%. Long-
distance dispersal is the most plausible explanation for uninfected
individuals in Gordonvale and Yorkeys Knob – and the persistence
of rare infected individuals at Pyramid Estate.

7. Results: Near-optimal release strategies

Weseek conditions underwhich releases of disease-suppressing
Wolbachia transinfections achieve area-wide control of a disease
such as dengue (cf. Ferguson et al., 2015) by transforming a signifi-
cant fraction of the vector population, say 80%, in a relatively short
period, say two to four years (on the order of 20–40 generations),
while releasing as few Wolbachia-infected vectors as possible. We
consider several questions associated with optimizing the timing,
spacing and intensity of releases. First, we contrast pulsed releases,
over a time scale of very few vector generations, with prolonged
low-intensity releases. Second,we consider optimizing the spacing
and intensity of releases, as quantified by three parameters: (a)
local initial infection frequencies after releases, (b) areas of local
releases, and (c) the spacing of releases. Third, given that optimiza-
tion requires knowing parameters that can only be approximated,
we consider the consequences of non-optimal releases.
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7.1. Timing of releases: pulse versus gradual introduction

With bistable dynamics, the frequency of an infection (or allele)
must be raised above a critical threshold, p̂, over a sufficiently
large area to initiate spread. What is the most efficient way to
establish an infection? At one extreme, the frequency could be
raised essentially instantaneously to some p0(x); if p0 > p̂ over
a large enough region (cf. Fig. 5), the infection will spread. At the
other extreme, theremight be a gradual introduction, described by
a local introduction ratem(x), sustained until deterministic spread
is initiated. If this input is sufficiently high over a sufficiently large
region, the infection will be locally established and spread. Be-
tween these extremes, releases might be sustained for a set period
ofmanymonths or a fewyears. Supporting InformationAppendix B
investigates conditions for local establishment andwave initiation,
providing analytical results for a single deme and for a point
source of introduction in one dimension, and numerical results
for two dimensions. We show that it is most efficient to raise
infection frequency rapidly, in a brief pulse, rather than making
gradual introductions. This accordswith the intuition that it ismost
efficient to raise the frequency as quickly as possible above the
threshold p̂: this maximizes the reproductive value of introduced
individuals. The principle is simple; during gradual introductions,
until local infection frequencies exceed p̂, the introduced infected
individuals are systematically eliminated by deterministic selec-
tion that dominates the weaker (frequency-dependent) force of
CI at low Wolbachia frequencies. Assuming that releases quickly
drive the local infection frequency to a value p0 sufficient to initiate
spatial spread, we ask how long it might take to cover a large area
and what spatial patterns of release minimize the time to reach a
desired coverage.

7.2. Spacing and intensity of releases

We start with idealized analyses, then discuss their relative
robustness and the effects of environmental heterogeneity. Con-
sider an area with a relatively uniform vector density. What is
the optimal release strategy? The calculations in Appendix B show
that for a given number of mosquitoes, the best strategy is to
release a short pulse, i.e., to essentially instantly produce a local
infection frequency sufficient to initiate a wave. Obviously there
are practical constraints on numbers that can be released, as well
as density-dependent effects, that limit the rate of local trans-
formation. However, empirical results of Hoffmann et al. (2011)
demonstrate that patches on the order of 1 km2 can be converted
to relatively high Wolbachia-infection frequencies, on the order
of 0.8, within two or three months. For simplicity, we focus on
releasingWolbachia-infectedmosquitoes in circular areas of radius
RI that will form expanding waves. Because the expansion rate
approaches zero as the release radius approaches the critical size
threshold needed to produce an expanding wave, RI must exceed
this critical size. We assume that because of limitations associated
with density regulation and constraints on numbers released, the
highest initial frequency, p0, that can plausibly be achieved in each
release area is pmax < 1. We consider laying out release areas in a
uniform grid with spacing D between the centers of each release.

We envision expanding waves from each release. When the
waves meet, the radius of each infected patch is D/2 and the frac-
tion of the space occupied by Wolbachia-transformed mosquitoes
is π/4 = 0.785 (i.e., π (D/2)2/D2) , or roughly 80%. If the waves
were instantly moving at the asymptotic speed c , they wouldmeet
in (D/2 − RI) /c time units. The actual time will be slower because
the infection frequencymust rise in the release area and the proper
wave shape establish. Given that we can control p0 (≤pmax), RI,
and D, we can ask: what values of these three parameters pro-
duce waves that meet in a minimum time for a fixed number of

mosquitoes released – and what is that time? Alternatively, we
can ask what is the minimum number of mosquitoes that must
be released to produce advancing waves that meet within a fixed
time? Given practical constraints on achieving specific values for
p0,RI, andD, we then consider how sensitive our results are to these
parameters and to model assumptions concerning dynamics and
dispersal.

7.3. Empirically based approximations for area-wide coverage

Before addressing these questions with detailed dynamic mod-
els,we provide informative approximations fromempirical results.
From the data reported in Hoffmann et al. (2011, 2014), we know
that releases of wMel-infected Ae. aegypti can be used to stably
transform areas with radius roughly RI = 400 m. A Wolbachia
frequency of about 80% within such release areas can be achieved
in about 10 weeks (under three generations) by releasing weekly
a number of adults on the order of 50%–100% of the resident
adult population (Hoffmann et al., 2011; Ritchie et al., 2013). Our
theoretical analyses above and in Barton and Turelli (2011) suggest
that rates of spatial spread are likely to be habitat dependent. But
in relatively uniform habitats, comparable our release areas near
Cairns with σ ≈ 100 m/(generation)1/2 and p̂ ≈ 0.25–0.3, we
expect wave speeds on the order of 10–20 m per month.

To understand the consequences of slow spatial spread, we
initially consider dividing the target region into non-overlapping
D × D squares. We will determine the value of D that achieves
about 80% coverage over the desired period. Suppose that at the
center of each square, we release Wolbachia-infected mosquitoes
over a circle of radius RI. Assume that each release initiates a wave
moving c meters per generation (roughly per month). If we want
the expanding circles to hit the edges of the D × D squares within
T generations, the wave front must move a distance D/2 – RI in T
generations. Hence, the distance between adjacent centersmust be

D = 2(RI + cT ). (11)

The fraction, F , of the target area thatmust be actively transformed
to achieve π /4 coverage in T generations is F = πR2

I /D
2, where D

is given by (11). Thus,

F = πR2
I /[4(RI + cT )2]. (12)

Table 3 shows how F depends on time (T , in generations), wave
speed per generation (c), and the initial release radius (RI). The
target times correspond roughly to one-to-four years. These ap-
proximationsmake sense only if the initial frequency in the release
area is high enough that the asymptotic wave speed is reached
within a few generations. They imply that for relatively homoge-
neous target areas consistent with steady spatial spread, roughly
80% can be covered in three or four years with initial releases of
0.5–1 km2 that cover about 10%–30% of the target. Comparable
results are obtained below from explicit dynamic models for wave
initiation and spread.

To completely cover a region as quickly as possible, a regular
grid of releases is not optimal. Fig. 6 shows how rows of releases
with the centers offset between adjacent rows reduces the distance
each wave must travel by D/

√
2 − 5D/8 ≈ 0.08D. (Note that

with the release configuration shown in Fig. 6, when the radii of
the expanding waves reach 5D/8, the entire target area has been
transformed.) The empirical relevance of such idealized release
spacings is considered in the Discussion.

7.4. Model-based approximations

Next, we reconsider the times to achieve roughly 80% coverage
using explicit models for temporal and spatial dynamics. With
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Table 3
Fraction of the target area that must be actively transformed to produce about 80% (π /4) coverage in T generations.

RI (area) 40 generations 30 generations 20 generations 10 generations

400 m (0.5 km2) 0.09–0.20 0.13–0.26 0.20–0.35 0.35–0.50
560 m (0.99 km2) 0.13–0.27 0.18–0.33 0.27–0.43 0.43–0.57

These calculations assume wave speed c = 10–20 m/generation starting from initial releases in circles of radius RI that
produce local infection frequencies p0 near 1.

Fig. 6. Optimal spacing. The green circles within the D × D squares represent
release areas with radii RI . If the release areas were laid out on a regular grid,
each expanding wave would have to travel to the corner of the enclosing square, a
distance of (D/

√
2) – RI , to transform the entire target area. In contrast, by offsetting

the release centers between adjacent rows, as illustrated, each wave must travel
only (5D/8) – RI for area-wide transformation.

explicit dynamics we can address various questions involving,
for instance, optimal size and spacing of release areas and op-
timal initial frequencies in the release areas. Release areas have
a major impact on subsequent dynamics. For releases near the
minimal sizes required to initiate spread (cf. Fig. 5), dynamics
will be extremely slow. In contrast, our calculations above assume
that asymptoticwave speed is reached essentially instantaneously.
Assuming Caspari–Watson dynamics with alternative dispersal
models, we use the DTDS approximations (7) to describe optimal
release strategies under different constraints.

7.4.1. Optimal spacing and sizes of releases
For these calculations, we assume that releases occur in a fixed

fraction, ρ, of the target area and that the initial Wolbachia fre-
quency within the release areas is p0. To understand fully how
mosquito releases translate into local infection frequencies, den-
sity regulation must be understood. Instead, we consider ρ and
p0 as simple proxies for release effort. As above, we assume that
release areas are circles of radius RI set at the centers of D × D
squares that cover the target area. Given ρ, the spacing D dictates
the radii, RI, of the releases, with RI = D

√
ρ/π . For fixed ρ, we seek

the spacing D (or equivalently the release area) that minimizes the
time until the waves meet (covering π /4 of the target area). The
minimal time is denoted Tmin.

Assuming releases over 20% of the target area (ρ = 0.2) with
initial infection frequencies, p0, of 0.6 or 0.8 in each release area,
Table 4 presents optimal spacing for releases and the number of
generations to reach 80% coverage for two plausible values of p̂.
What seemsmost notable is that for these parameters, the optimal
release radii are only about 30%–45% larger than the minimum
radii needed to initiate spatial spread.With ‘‘optimal’’ spacing, 80%
coverage is predicted in about 1.25–3.5 years, assuming about 10

generations per year. The values of Tmin are considerably smaller
than those reported in Table 3, and the critical difference is that the
release areas are considerably smaller. Table 3 assumes σ = 100
m, so the release sizes are fixed at RI = 4 and 5.6. The shorter times
in Table 4 are associated with the fact that in principle smaller
releases will suffice to start waves that relatively quickly approach
their asymptotic speed.

Table 4 shows that Tmin depends only weakly on the shape
of dispersal. As expected from our speed calculations, long-tailed
dispersal leads to longer wait times. Two factors contribute to
this, the differences in wave speed demonstrated in Fig. 3 and
the differences in the optimal spacing. With longer dispersal tails,
wave speed slows down, but the optimal spacing is closer (because
smaller release radii suffice to initiate spread), and these effects
partially cancel. In contrast, as p̂ increases from 0.2 to 0.3, Tmin
increases by 70%–80%, whereas the analytical prediction c =

σ
√
sh(1/2− p̂) and the numerical results in Fig. 3 indicate that wave

speed should decrease by only about 50%, at most. The additional
factor explaining the discrepancy is that larger releases are needed,
producing larger spacing, D, so that the waves must travel farther
to meet. Table 4 also predicts how Tmin varies with the number
of infected mosquitoes released, as measured by p0. As expected,
the critical spacing, D, and the minimal time, Tmin fall as initial
frequencies rise. For instance, with Gaussian dispersal and p̂ =

0.3, (D, Tmin) fall from (13.06, 17.60) with p0 = 0.6 to (10.74,
14.25) with p0 = 0.8 and to (9.36, 12.03) with p0 = 1.0. Overall,
decreasing p0 from 0.8 to 0.6 leads to lengthening Tmin by a factor
of 1.20–1.25.

7.4.2. Optimal distribution: release area, ρ, versus initial frequency,
p0

Optimization depends on constraints. Above we assume that
ρ and p0 have been chosen, then seek the optimal spacing (or
equivalently the optimal sizes for the individual release areas),
conditioned on ρ, the total area over which releases will occur.
An alternative is to assume that available resources dictate the
number of mosquitoes that can be released, then ask whether it is
more efficient to produce a low initial frequency over a large area
or a higher frequency over a smaller area. In general, we expect
that achieving a frequency of 0.45 requires less than half the effort
required to achieve 0.9 for at least two reasons. First, density-
dependence is likely to produce diminishing returns from very
intensive releases (Hancock et al., 2016); and second, very high
frequencies can only be achieved with repeated releases, which
are less efficient than more intense releases over shorter periods.
Nevertheless, if we view that product ρp0 as proportional to total
release effort, it is instructive to ask for a fixedρp0 what p0 achieves
80% coverage as quickly as possible?

Using all three dispersal models and p̂ = 0.2 or 0.3, Fig. 7
plots the minimal time to achieve 80% cover as a function of p0
assuming ρp0 = 0.2. The results indicate that releases producing
initial frequencies between roughly 0.5 and 0.8 are essentially
equivalent, with coverage times varying less than 10%. In con-
trast, the considerable additional effort required to produce p0 ≥

0.9 yields slightly slower rather than faster coverage. Conversely,
reaching only p0 = 0.4–0.5 requires significantly larger optimal
release areas and yields slower coverage. For instance,with Laplace
dispersal, p̂ = 0.3 and ρp0 = 0.2, Tmin is achieved with RI = 4.10
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Table 4
Optimal spacing of releases

p = 0.6 p̂ = 0.2 p̂ = 0.3

Dispersal D RI Rcrit Tmin D RI Rcrit Tmin

Gaussian 13.06 3.30 2.48 17.60 16.26 4.10 3.19 30.22
Laplace 12.21 3.08 2.35 17.95 16.22 4.09 3.06 31.13
ExpSqrt 11.30 2.85 1.99 19.54 15.11 3.81 2.64 34.87

p = 0.8 p̂ = 0.2 p̂ = 0.3

Dispersal D RI Rcrit Tmin D RI Rcrit Tmin

Gaussian 11.26 2.86 2.05 14.17 13.43 3.39 2.61 24.26
Laplace 10.25 2.60 1.97 14.57 13.39 3.38 2.52 25.09
ExpSqrt 9.34 2.36 1.62 16.25 12.18 3.07 2.16 28.59

All distances are measured in units of σ . Assuming releases over 20% of the target area (i.e., ρ = 0.2 and p0 = 0.6 or 0.8),
we compare the spacing,D (distance between adjacent release centers), that produces the shortest time (in generations),
Tmin , required to reach 80% coverage as a function of p0 , initial infection frequency in release areas, p̂ and dispersal shape.
The initial radius of these optimal releases, RI = D

√
ρ/π , is compared to the minimum radius, Rcrit , required to initiate

an expanding wave for the specified p0 and p̂.

Fig. 7. Time to reach about 80% (∼π /4) coverage as a function of initial frequency in
the release area, p0 . The calculations assume ρ p0 = 0.2, where ρ is the fraction of
the target area overwhich releases occur. The small dots are producedwith p̂ = 0.2;
the large dots with p̂ = 0.3. Green points are for Gaussian dispersal, blue points for
Laplace, and black for ExpSqrt. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

for p0 = 0.7 but RI = 5.84 for p0 = 0.5, corresponding to roughly
doubling the release areas. These results suggest that releases
should aim for initial Wolbachia frequencies in the neighborhood
of 60%–80%.

7.4.3. Robustness of coverage times to incomplete knowledge
Although one can propose optimal spacing and release areas

for fixed ρ and p0, the optimal values are unlikely to be achieved
in practice because they depend critically on two parameters, the
local dispersal parameter σ and the value of the unstable equi-
librium p̂, that will be known only approximately. Moreover, the
geometry of field releases will be influenced by factors such as
housing density and type, barriers to wave movement, and local
community acceptance. Although the fraction of the target area in
which releases are initially performed, ρ, is clearly under exper-
imental control, as is the initial frequency in those release areas,
p0, it is important to understand the robustness of the minimum
times presented in Table 4 and Fig. 7 to alternative release areas,
RI, which are measured in units of σ .

Fig. 8 summarizes the results for all three dispersal models,
assuming that we initially release over 20% of the target area (ρ =

0.2) and produce an initial infection frequency p0 = 0.8 relatively
rapidly. As RI departs from the optima given in Table 4, Fig. 8 shows
how the time to achieve 80% coverage increases relative to Topt,
the minimal time achievable. As expected from Table 4, there is
a fundamental asymmetry produced by the fact that the optimal
RI is typically only about 25%–30% larger than the minimal release
size needed to produce an expanding wave. Hence, undershooting

Fig. 8. Time to reach about 80% (∼π /4) coverage, relative to the minimum time,
as a function of release area. For each model, release areas are measured relative
to the release area, RI(opt) , that produces Tmin for that model. The DTDS calculations
assume Caspari-Watson dynamics with ρ = 0.2 and p0 = 0.8 (i.e., releases produce
an initial frequency of 0.8 over 20% of the target area). The small dots are produced
with p̂ = 0.2; the large dots with p̂ = 0.3. Green points are for Gaussian dispersal,
blue points for Laplace, andblack for ExpSqrt. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

the optimal release size by as little as 25% can lead to releases
that collapse rather than expand. In contrast, for a realistic range
of unstable points and all three models of dispersal, overshooting
the optimal release area by 50% increases Tπ/4 by less than 20%.
Even releases twice as large as optimal increase Tπ/4 by at most
43%. The clear implication is that one should use conservatively
large estimates of σ and p̂ to design releases that will produce
near-optimal results with little possibility of collapse. The practical
implications of Table 4 and Fig. 7 are discussed below.

8. Discussion

8.1. Robustness of the cubic-diffusion predictions for spatial spread

8.1.1. Wave width
The point of estimating wave width is that it provides an aver-

age estimate – under natural field conditions – of the dispersal pa-
rameter σ that is central to predictingwave speed (see Eqs. (5) and
(6)). Using discrete-time, discrete-space (DTDS) approximations
with alternativemodels of dispersal, we have tested the robustness
of diffusion-based approximations forwave speed,wavewidth and
the size of releases needed to initiate spatial spread. The most
robust prediction concerns wave width (see Eq. (6) and Fig. 4).
For a wide range of dispersal models and parameters, wave width
is observed to be within about 10% of the analytical prediction,
Eq. (6), produced by the cubic-diffusion approximation for bistable
dynamics. This implies that estimates of the dispersal parameter σ
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can be obtained from data on the spatial pattern of infection fre-
quencies after local releases. Unlike dispersal estimates obtained
from short-term release–recapture experiments, estimates based
on infection-frequency wave width average over seasons and are
largely free from behavioral artifacts associated with inflated pop-
ulation densities or the effects of lab rearing, marking or handling.

8.1.2. Wave speed
The cubic-diffusion model produces the wave-speed approxi-

mation Eq. (5): c = σ (1/2 − p̂) per generation, assuming complete
cytoplasmic incompatibility (i.e., sh = 1 in Eq. (3a) or (4a)). Our
DTDS calculations show that this approximation remains accurate
even for the rapid local dynamics produced by complete CI if
dispersal is near-Gaussian (i.e., Gaussian or Laplace in Eq. 2.8) and
the unstable point is below 0.4 (Fig. 3B). However, for long-tailed
dispersal as described by the ExpSqrtmodel (see Eq. (8c) and Fig. 2),
spatial spread is slowed by 30%–40% relative to the analytical
prediction for 0.2 ≤ p̂ ≤ 0.35. Hence, if σ is on the order of 100
m/(generation)1/2 and p̂ is near 0.25, the predicted wave speed can
drop from about 25 m/generation to about 15 m/generation. The
result is that with about 10 Ae. aegypti generations per year, wMel
is expected to spread through natural populations of Ae. aegypti
at a rate nearly three orders of magnitude slower than the 100
km/yr rate at which wRi spread through D. simulans populations
in California and eastern Australia.

8.1.3. Wave initiation
Finally, our DTDS calculations indicate that the cubic-diffusion

approximations for the minimum radii of release areas from Bar-
ton and Turelli (2011) are likely to be significant overestimates,
especially if fitness is reduced primarily through fecundity. Fig. 5
shows that the diffusion approximation may overestimate mini-
mum release sizes by a factor of two for 0.2 ≤ p̂ ≤ 0.35 (as noted
in Section 4.3, most of this discrepancy is attributable to using a
model that explicitly models Wolbachia dynamics, assuming that
the cost of transinfections is mainly associated with a fecundity
reduction). In general, for fixed σ , smaller releases will initiate
spatial spread when dispersal is more long-tailed. With σ ≈

100 m/(generation)1/2, releases that produce initial frequencies of
0.8 over about 0.13 km2 should suffice to initiate spatial spread,
assuming that p̂ ≤ 0.3. However, near this minimum, expansion
(or collapse) is expected to be extremely slow, easily on the order
of two years.

8.2. Predictions for 2013 Cairns releases

In 2013, thewMel releases in the Edgehill/Whitfield (EHW) and
Parramatta Park (PP) regions of Cairns quickly produced infection
frequencies about 0.8 within the release areas (S. L. O’Neill, pers.
comm.). Given that these sites are roughly 0.97 km2 (EHW) and
0.52 km2 (PP), we expect spatial spread of the infection from
both release areas. Assuming σ ≈ 100 m/(generation)1/2 (cor-
responding to wave width on the order of 400 m), our analyses
predict spread on the order of 10–25 m/generation, assuming
p̂ ≈ 0.25. In contrast, the Westcourt (WC) release encompassed
only 0.11 km2, very close to the critical value that separates ex-
pected local establishment from collapse, assuming p̂ ≈ 0.25 and
100 m/(generation)1/2 (see Table 2 for additional details). Given
the slow rate of change expected near this threshold, considerable
replication of such small releases would be required to convert
our ambiguous prediction into a rigorous test. In contrast to the
difficulty of testing our predictions concerning the minimum sizes
of releases, our wave-speed and wave-width predictions can be
easily compared to empirical data from urban field releases. The
‘‘Eliminate Dengue’’ project is currently preparing the data from
the 2013 Cairns releases for publication.

8.3. Bistability for Wolbachia transinfections but probably not for
natural infections

8.3.1. Background
Early proposals by O’Neill and his collaborators (e.g. Sinkins

et al., 1997) to transform natural populations with introduced
Wolbachia were motivated at least in part by the belief that
even fitness-decreasing infections might spread rapidly in na-
ture, driven by the force of cytoplasmic incompatibility (Turelli
and Hoffmann, 1991, 1995). However, the rapid spatial spread of
natural Wolbachia infections in Drosophila now seems dependent
on net fitness advantages, previously unknown – and still not
fully understood, that allow them to increase systematically in
frequency even when they are so rare that cytoplasmic incom-
patibility provides no appreciable benefit (Fenton et al., 2011;
Kriesner et al., 2013; Hamm et al., 2014). For Wolbachia infections
that tend to increase when rare, occasional long-distance dispersal
events can allow them to establish locally, spread and coalesce
with other propagules, speeding their spatial spread far beyond
what might be expected from more typical dispersal. Bistable
dynamics, as produced by the appreciable fitness costs associ-
ated with wMel-infected Aedes aegypti in Australia, restrict spatial
spread to speeds set by average dispersal. Moreover, bistability
sets a fundamental constraint on which transinfections might ever
spread. S. L. O’Neill’s ‘‘Eliminate Dengue’’ project (http://www.
eliminatedengue.com/program) initially proposed introducing the
life-shortening Wolbachia, wMelPop, into Ae. aegypti to greatly re-
duce the frequency of females old enough to transmit dengue virus.
However, the fitness costs associated with wMelPop in Ae. aegypti
produced an unstable infection frequency far above 0.5, precluding
spatial spread (Barton, 1979; Turelli, 2010; Walker et al., 2011;
Barton and Turelli, 2011).

Turelli and Hoffmann (1991) proposed bistable dynamics to
describe the northward spread of Wolbachia variant wRi through
California populations of D. simulans. The rationale for bistability
was that the frequency-dependent advantage associated with CI
seemed to be counteracted at low frequencies by two factors:
imperfectmaternal transmission,whereby a fewpercent of the ova
produced by infected mothers were uninfected (Hoffmann et al.,
1990; Turelli and Hoffmann, 1995; Carrington et al., 2011); and
reduced fecundity for infected females, with a 10%–20% fecundity
disadvantage observed in the lab (Hoffmann and Turelli, 1988;
Hoffmann et al., 1990; Nigro and Prout, 1990) and a smaller, but
statistically significant, fecundity disadvantage observed once in
nature (Turelli and Hoffmann, 1995).

The generality of bistable frequency dynamics for natural Wol-
bachia infections was brought into question by two infections
found first in Australia that cause little (wMel in D. melanogaster,
(Hoffmann, 1988; Hoffmann et al., 1998) or no (wAu inD. simulans,
(Hoffmann et al., 1996) CI or other reproductive manipulation
(Hoffmann and Turelli, 1997). It was subsequently discovered that
these Wolbachia nevertheless spread in nature. First noted was
a turnover of Wolbachia variants among global populations of D.
melanogaster (Riegler et al., 2005; Richardson et al., 2012), even
though none of these variants cause appreciable CI when males
are more than a few days old (Reynolds and Hoffmann, 2002;
Harcombe andHoffmann, 2004). Similarly,Wolbachia variantwAu,
which does not cause CI in D. simulans (Hoffmann et al., 1996), was
found spreading to intermediate frequencies through D. simulans
populations in eastern Australia, despite imperfectmaternal trans-
mission (Kriesner et al., 2013). The spread of wAu was followed
by the spread of wRi through these same populations, beginning
from threewidely separated geographical locations (Kriesner et al.,
2013). Although spread of bistableWolbachia could in principle be
initiated by chance fluctuations (Jansen et al., 2008), a net fitness
advantage that counteracts imperfect transmission seems farmore

http://www.eliminatedengue.com/program
http://www.eliminatedengue.com/program
http://www.eliminatedengue.com/program
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plausible (Hoffmann and Turelli, 1997; Fenton et al., 2011; Hamm
et al., 2014). The observed rate of spread for wRi, approximately
100 km/yr, in both California and eastern Australia, is easy to
understand only if long-distance, human-mediated dispersal can
establish local infections that spread and coalesce (see Shigesada
and Kawasaki, 1997, Ch. 5). Such rapid expansion is implausible if
local introductions must be sufficiently extensive to exceed initial
area and frequency thresholds imposed by bistability (Lewis and
Kareiva, 1993; Soboleva et al., 2003; Altrock et al., 2011; Barton
and Turelli, 2011). With bistability, spatial spread is likely to be
limited by the relatively slow processes of active insect dispersal.
As demonstrated below, this indicates that the spread of transin-
fectionswith bistable dynamics inAe. aegyptiwill be orders ofmag-
nitude slower than the 100 km/yr observed for wRi in California
and Australia populations of D. simulans.

A net fitness benefit for natural Wolbachia infections helps
explain the persistence and spread of Wolbachia variants, such as
wAu and wMel, that do not cause appreciable CI in their native
Drosophila hosts. A net fitness benefit, so that the relative fitness
of infected females, F , and their maternal transmission rate, l − µ,
satisfy F (1 − µ) > 1, would also help explain the extraordinarily
rapid human-mediated spatial spread of wRi in both California
and Australia. Mitochondrial data reported in Kriesner et al. (2013)
suggest that wRi spread northward in California shortly after it
was introduced to southern California, rather than being stalled
by a transverse mountain range, as might be expected with bista-
bility (cf. Turelli and Hoffmann, 1995). Several fitness advantages
have been proposed to counteract imperfect transmission and
possible fecundity disadvantages, including nutritional effects
(Brownlie et al., 2009; Gill et al., 2014) and microbe protection
(Hedges et al., 2008; Teixeira et al., 2008).

These arguments against bistability for naturalWolbachia infec-
tions may suggest that intrinsic fitness advantages, together with
CI, could lead to rapid spread of disease-suppressing Wolbachia
transinfections in nature fromminimal introductions. The data we
discuss in Section 6 argue strongly against this.

8.3.2. New evidence for bistability of transinfections
Based on the theory in Barton and Turelli (2011) and the expec-

tation that few mosquitoes would cross the highway, Hoffmann
et al. (2011) predicted that ‘‘Unless fitness costs are essentially
zero or there are unexpected fitness benefits, we do not expect
the infection to spread further . . . ’’ Four years later, wMel has
not become established in PE despite repeated immigration. An
adaptation of Haldane’s (1930) island model, Eq. (9), indicates a
lower bound on the unstable equilibrium, p̂, of about 0.21. This lo-
cal frequency threshold for population transformation appreciably
slows the predicted rate of spatial spread, as indicated by Eq. (5).

Our new data and analyses bolster previous evidence for bista-
bility. In Hoffmann et al. (2011), an informal quantitative analysis
of the rising frequency of wMel in response to several weekly
releases indicated fitness costs on the order of 20%. However, the
frequency data could not distinguish fitness costs associated with
laboratory rearing from reduced fitness intrinsic to the Wolbachia
transinfection. Two years later, Hoffmann et al. (2014) resampled
these stably transformed populations and determined that the
infected females produced about 20% fewer eggs under laboratory
conditions, suggesting that p̂ ≥ 0.2. As a consequence of bistability,
the rate of spatial spread is limited by natural dispersal ability,with
a maximum speed bounded above by σ/2 per generation, where
σ is the dispersal parameter discussed below. In particular, bista-
bility precludes very rapid spatial spread based on long-distance,
human-mediated dispersal. Even when large numbers are trans-
ported by accident, the area transformed would be unlikely to
exceed the minimum size needed to initiate spatial spread (Fig. 4).

The unstable equilibrium frequency, p̂, is a useful abstraction
that captures key features of the complex frequency dynamics

of Wolbachia transinfections. The true dynamics are multidimen-
sional (Turelli, 2010; Zheng et al., 2014) and depend on age-specific
effects as well as ecological factors, such as intraspecific density-
dependence (Hancock et al., 2011a,b); (Hancock et al., 2016) and
interaction with other insects and microbes (Fenton et al., 2011).
However, a full description of this biology would involve many
parameters that would have to be estimated in each locale. We
doubt that these parameters could be estimated accurately enough
for more realistic models to produce better predictions that our
simple two-parameter approximations. Our idealized models of
frequency dynamics produce field-testable predictions and empir-
ically useful guidance for field releases.

8.4. Consequences of patchy population structure with bistable dy-
namics

Wehave assumed throughout a uniformpopulation density and
dispersal rate. In reality, habitat heterogeneitymay slow– or stop –
the spread of a wave. If increase is expected from low frequencies,
then a few long-range migrants can take the infection beyond a
local barrier. We expect this has happened repeatedly with the
observed spread of wAu and wRi in Drosophila simulans (cf. Coyne
et al., 1982, 1987; Kriesner et al., 2013). Similarly, many episodes
of successful long-distance dispersal and local establishment
must underlie the global spread of Aedes aegypti out of Africa
(Brown et al., 2011). However, bistability, as expected for the
wMel infection in Ae. aegypti, implies that infection spread can
be stopped indefinitely, as seems to be the case with Pyramid
Estate/Gordonvale near Cairns. Barton and Turelli (2011, Eq. 20)
gave a simple result that shows how a gradient in population
density alters wave speed: regardless of the detailed dynamics, a
gradient in log density will slow (or accelerate) a traveling wave
by σ 2d(log(ρ(x)) / dx, where ρ(x) denotes the population density
at x. However, such a gradient must be sustained over a sufficient
distance. Local heterogeneities, such as those due to the spacing
between discrete demes (e.g., individual households harboring Ae.
aegypti), have a negligible effect if they are over a shorter scale than
the width of the wave (Barton, 1979, p. 357).

In contrast, when the wave encounters a significant barrier,
such as the highway separating Pyramid Estate from Gordonvale,
we can understand wave stopping either in terms of sharp breaks
in density, as considered in Fig. 6 of Barton and Turelli (2011), or in
terms of migration from an infected population into an uninfected
population. The latter produces a lower bound on immigration
rate needed to ‘‘flip’’ the uninfected population past the unstable
point, as discussed above Eq. (1). Because large tropical cities that
are the targets of control efforts for arboviruses such as dengue
and Zika are filled with significant dispersal barriers, we have not
considered release schemes more elaborate than regularly spaced,
equal-sized release foci. Nevertheless, we hope these abstractions
accurately indicate the potential for area-wide control with plau-
sible effort over a span of a few years.

8.5. Practical guidelines for field releases

When the ‘‘Eliminate Dengue’’ program initially obtained Gates
Foundation ‘‘Grand Challenges’’ funding in 2006, the extraordi-
narily rapid spread of wRi through California populations of D.
simulans provided a plausible paradigm supporting the conjecture
that natural Ae. aegypti populations could be rapidly transformed
with disease-suppressing Wolbachia. The D. simulans paradigm
also suggested that very few local introductions could lead to area-
wide transformation within a few years for large metropolitan
areas with relatively continuous Ae. aegypti habitat. Unfortunately,
this rapid-spread paradigm, which remains demonstrably true for
natural Wolbachia infections (Kriesner et al., 2013), now seems
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clearly inapplicable to Wolbachia transinfections that significantly
reduce the fitness of their Ae. aegypti hosts. More plausible rates of
spatial spread seem to be at most 0.25 km per year, and even those
slow rates are expected only in near-continuous habitats. From our
analysis of the Pyramid Estate data, it seems that barriers on the
order of 100–200 m, such as highways, will suffice to halt spread.
Hence, it is reasonable to ask whether spatial spread can play a
significant role in achieving area-wide coverage over a time scale
of a few years.

A central question is whether real urban/suburban landscapes
provide enough nearly-continuous habitat to apply our optimal –
or near-optimal –release designs, involving a series of releases set
out in grids. We have showcased an empirical example in which
wMel has apparently not been able to cross a highway. We do not
yet know enough to characterize a priori the barriers that will halt
wMel spread. What is clear is that area-wide control over just a
few years will require many release areas. We can offer simple
guidance based on our mathematical results and the population
biology of vector-borne disease transmission. Given that spatial
spread will preferentially occur from high-density areas to low-
density areas, a guiding principle is that releases should initially
occur in areas that support the highest Ae. aegypti densities. Be-
cause disease transmission is proportional to vector density, these
areas are the natural targets for initial control efforts.

Our calculations provide more detailed guidance concerning
the size of individual releases, their spacing, and the initial infec-
tion frequencies that should be achieved. Fig. 7 shows that for a
wide range of parameters, releases need not produce initial fre-
quencies above 0.6. Indeed, the effort to achievemuchhigher initial
frequencies may produce slightly slower area-wide coverage, if a
fixed fraction of the local mosquito population is initially replaced.
As demonstrated by Fig. 7, overshooting optimal release areas even
by a factor of two should increase the time to produce large-scale
coverage by at most 50%. In contrast, Table 2 shows that ‘‘optimal’’
release areas are often only twice as large as the minimal release
areas needed to initiate spread (corresponding to RI/Rcrit =

√
2

in Table 2). Thus, release areas should be based on conservatively
large estimates of σ and p̂. Assuming σ ≤ 120 m/gen1/2 and p̂ ≤

0.3, individual releases on the order of 1 km2, producing initial
frequencies of 60%–80%, should generally suffice to guarantee local
spread, assuming that the surrounding habitat has population den-
sities comparable to or lower than the release area. If the habitat is
sufficiently homogeneous, covering only about a third of the target
area with such releases should produce about 80% coverage in less
than three years.

All of our guidelines are predicated on p̂ ≤ 0.35. The lower
the unstable point the better. But if there is any significant cost of
Wolbachia transinfections, so that p̂ ≥ 0.1, wave speed is likely
to be bounded above by σ /2. Although spatial spread of low-p̂
variants is unlikely to be significantly aided by occasional long-
distance dispersal, the spread of such variants is far less likely to
be stopped by minor barriers to dispersal. As shown in Fig. 6 of
Barton and Turelli (2011), step-increases in population density of
just over two-fold will stop the spatial spread of a transinfection
that produces p̂ = 0.25; whereas an increase greater than five-fold
is needed to stop a variant with p̂ = 0.1.

Given that only twoWolbachia transfections of Ae. aegypti have
been released in nature in population transformation efforts,we do
not know whether there are Wolbachia variants that can provide
effective virus-blocking and produce low fitness costs. In prelimi-
nary analyses, high Wolbachia titer is associated with better virus
blocking and also lower fitness of infected hosts (Walker et al.,
2011; Martinez et al., 2015). AmongWolbachia found in Drosophila
species and transferred intoD. simulans, the relationships between
titer and measures of fitness loss and virus protection are both
highly significant; but they explain only about half of the vari-
ation observed in each trait. Hence, it seems likely that further

exploration of Wolbachia variation in nature could uncover high-
protection, low-fitness-cost variants.

Despite the fact that the wMel variant currently being released
will spread very slowly and may be relatively easily stopped by
barriers to dispersal, it still offers significant benefits over disease-
control strategies like insecticide application and sterile-male
release (or release of CI-causing males) that require continual
applications to suppress local vector populations (McGraw and
O’Neill, 2013). As shown by Hoffmann et al. (2014), transforma-
tions of isolated populations with Wolbachia remain stable. Simi-
larly, for sufficiently large local releases, we expect localWolbachia
introductions to at least persist and probably slowly expand as
long as the surrounding areas do not harbor significantly higher
Ae. aegypti densities. Even if half of a large area has to be actively
transformed to achieve area-wide control, this will only have to
be done once. We do not know how long-lasting dengue-blocking
by wMel or other transinfections will be, but the comparative
evidence from naturalWolbachia infections suggests that it should
persist for at least a decade ormore (Bull and Turelli, 2013), a time-
scale over which effective vaccines may well become available
(Screaton et al., 2015).

8.6. Final comment: reversibility versus re-transformation

Population transformation carries a potential risk of unintended
consequences (Bull and Turelli, 2013). For instance, a Wolbachia
strain that inhibits the transmission of one diseasemay in principle
enhance the transmission of another (cf. Martinez et al., 2014).
Hence, it is interesting to ask whether an introduced Wolbachia
can be ‘‘recalled’’, returning the population to its initial uninfected
state. In principle, this could be done by swamping the popula-
tion with uninfected individuals so that the infection frequency
falls below p̂. However, given the tendency of variants with p̂ <
0.5 to spread spatially, this swamping strategy seems implau-
sible outside of relatively small isolated populations. It seems
more plausible to re-transform populations with a more desirable
Wolbachia variant that shows unidirectional incompatibility with
the first. For example, when Wolbachia wMel is introduced from
D.melanogaster intoD. simulans, which is naturally infected bywRi,
the wMel-infected females are incompatible with wRi infected
males,whereaswRi females are protected from the incompatibility
thatwMel induces against uninfected females (Poinsot et al., 1998).
Thus if a population has been transformed with wMel, it could in
principle be transformed again by introducing wRi. The hit-and-
miss process of identifying Wolbachia strains in nature with the
desired properties is likely to be greatly accelerated as we begin
to understand the loci within Wolbachia that cause CI (Beckmann
and Fallon, 2013; LePage et al., 2017; Beckmann et al., 2017) and
virus inhibition.
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