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Chapter One

INTRODUCTION

A rapidly growing area of great concern is the response of relatively light equipment
components. Coolant piping systems within nuclear power plants, sensitive scientific equip-
ment used in hospitals and research laboratories, and control systems mounted on air-
planes, missiles, or other space structures are a few examples of portions of an overall sys-
tem that are not only expensive but highly essential. It is necessary, therefore, that these
relatively light items be designed so as to withstand any adverse conditions imposed upon
the structure within which they are housed. The types of structural excitations we will con-

sider are short duration ground shock and impact as well as earthquake ground shaking.

The purpose of this work is to develop analytical results which can be easily used in
the determination of equipment response. It is our hope that these results will serve as an
alternative to costly standard numerical integration schemes as well as to various ad-hoc

methods that are presently being employed.

The study begins with a description of classical perturbation theory - a powerful tool
in the analysis of equipment-structure systems. Next the equipment-structure system is
modeled as a two-degree-of-freedom discrete system, primarily to familiarize the reader
with an application of perturbation theory as well as to repeat some important fundamental
results previously obtained in a different manner. A multi-degree-of-freedom secondary
system (multi-degree-of-freedom structure connected by rigid links to multi-degree-of-
" freedom equipment) is then explored. The response is determined in terms of the convo-
lution of Green’s function for the equipment with the excitation imposed on the structure.
The Green’s function is composed solely of properties of the individual sub-systems, the

manner in which they are connected, and damped simple harmonic functions. The case



where all natural frequencies of the equipment are well spaced from all natural frequencies
of the structure (the grossly detuned case) as well as the more complicated problem of one
natural frequency of the equipment close to a natural frequency of the siructure (the tuned
case) are discussed. Approximate results in terms of design response spectra are obtained.
The discussion of secondary systems is conciuded with the results of various numerical

iesis.

A further exploration into the mechanics of equipment-structure systems is provided
by the analysis of a simple three-degree-of-freedom tertiary system (very light equipment
attached to light equipment which in turn is attached to the structure). The work concludes

with an investigation of muiti-degree-of-freedom tertiary systems.



Chapter Two

MATHEMATICAL PRELIMINARIES

The following sections discuss some of the basic mathematical techniques used in the
analysis of equipment-structure systems. The discussion of classical perturbation theory as
given in Sections 2.1, 2.2, and 2.3 follows Butkov [1] closely. However, the presentation in
the text below is more detailed in certain areas and specialized to the types of sysiems we
will be analyzing. Treatments of the subject similar to Butkov’s can be found in Kemble

{91, Schiff [16], or Morse and Feschbach [10] as well as numerous other sources.



2.1 Classical Perturbation: First Order Non-Degenerate Theory
We wish to solve the following eigenvalue problem
[H‘*'W]l!'i“’)\i% (2.1.1)
for the eigenvalues A, and eigenvectors , We will assume that H and W are real, sym-
metric matrices and that W can be considered a perturbation of H (i.e. given the elements

of H are of order one, then the elements of W are of order & where a<<1).
We now expand A and ¢ as power series in a;

A=A O W aD

"’=¢(0>+‘l’(l>+¢(2)+“'

where the superscript indicates the order of that term in the series (i.e. 2@ is of the order
of @® A" is of the order of a!, etc.) For the first order theory we retain terms only up to
the order of o'. Substituting the resulting expressions for A and ¢ into our original equa-

tion and discarding second order terms we are left with

Hl’l '.(0) 4 H"’i(]) + Wll’ 1'(0) o A’(O)w i(O) + A,,(O)lll I(]) + Ai(l)w ,(0) (212)

We now solve the zeroth order problem

Hy @ =\ Oy © (2.1.3)

for the eigenvalues Ai(m and the eigenvectors ,-(0). It will be assumed that all the eigen-

values are distinct - this is what we mean by a non-degenerate problem. Since the eigenvec-

tors are only determined within an arbitrary scale factor, we will further require

Oy O 5, (2.1.4)

i
(where & ; is the Kronecker delta and T denotes matrix transposition). This simplifies the

subsequent results. Once we have satisfied the zeroth order problem, (2.1.2) reduces to

H.lli(l) + W‘I’i«)) - A’(O)‘piﬂ) + }\i(])'bi(m (215)

We now seek the first order perturbation of the eigenvalues. Pre-multiplying (2.1.5) by

;
O we get



vOHY O + ¢ © W © = ) Oy © B+ Ay © Ty © (2.1.6)
Since H= H” and

o nr (] Dt ©, © 0, O, (1
i() ‘!’l() Hlll,()glll,( }\i( )‘,’i( )=Ki( )'l‘i() i()

Hy ) = scalar =

(2.1.6) becomes

A M 'I‘(O) Wy 0 .1.7)

where we have also used (2.1.4).
In order to determine the first order perturbation of the eigenvectors we express them
as a linear combination of the unperturbed eigenvectors (the unperturbed eigenvectors

form a basis for the space).

(1) Ec(l) 0 (2.1.8)

j=1
where N is the dimension of H. Substituting (2.1.8) into (2.1.5) we have

ZC(I) (0) + Wlli o = A (O)ZC(I)‘,’ (0) + A (l)w ©)

J=1 j=1

Pre-multiplying the above by ¢, O7 where /i and using (2.1.3) and (2.1.4) we have

T, .
C;;l))\ I(O) + 'I’I(O) Wy I_(O) - X,'(O)C,';]); I3

or
Cff = — b g (2.1.9)
i = )\,(0)_“)\[(0) ’ ! 1.9
where
W, =4 Wy © (2.1.10)

In order to determine the C,-,“) we will require the approximate -eigenvectors
np,-zup,(‘” + ;pi‘” to be normalized (to first order). It is readily shown that the approximate
eigenvectors are already orthogonal, thus giving no new information on C,,(”. The ortho-
normality requirement states

¥y, =1 (2.1.11)
Recall
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T T L S S SO T (2.1.12)

The last term in the above expression is of second order and will be dropped. Substituting

(2.1.8) into (2.1.12) and using (2.1.4) and (2.1.11) gives

2)

3)

4)

ciV=0 (2.1.13)

We can summarize the results of the first order non-degenerate theory as follows:
Solve (2.1.3) for A ® and ¢ © requiring (2.1.4).

Calculate A [V from (2.1.7).

Calculate ¢ [V from (2.1.8) using (2.1.9), (2.1.10), and (2.1.13).

The solution of (2.1.1) to first order is given by A,=AP +A/Y and

0 1
b=y +y



2.2 Classical Perturbation: Second Order Non-Degenerate Theory

In most instances the solution of (2.1.1) by the first order theory for the non-
degenerate problem as described in Section 2.1 gives results of acceptable accuracy. How-
ever, there are instances where the increased computatonal effort required to obtain second
order nerturbations is not only justified but required. Such will be the case in multi-
degree-of-freedom tertiary systems.

The development is closely related to the methodology presented in the previous sec-
tion. Naturally, the first order perturbations are exactly those described in Section 2.1. As
a matter of expediency we will merely quote the results for second order perturbations
which will be used in our later work. (The interested reader is referred to Butkov, pp.

658-661 for a more comprehensive treatment).

The necessary quantities will be

N
p@ =3 CPy O (2.2.1)
=1
where
W, W, W,Wi
C,‘Q) = J - . ;i¢ '
j é‘,(}‘ i(o)__}\j(o)) (n 00—y ) (r [(0)_}\}0))2 J (2.2.2)
i
and
L& an
co = __,__2._2] c (2.2.3)
j=‘

with W and CV given by (2.1.9), (2.1.10), and (2.1.13).



2.3 Classical Perturbatien: Degenerate Theory

It was assumed in the previous two sections that all of the eigenvalues of the zeroth
order problem were unique. Of course this will not always be the case. Let us assume that
the unperturbed system (2.1.3) is completely degenerate. This means that all of the eigen-
values of (2.1.3) are the samme. When some eigenvalues of the zeroth order problem are
distinct while others are repeated will be called a mixed problem. The mixed problem will be

discussed briefly in the subsequent section.

Let us return now to the problem of complete degeneracy. Unfortunately, we now
have N linearly independent eigenvectors (where N is the dimension of H) associated with
a single eigenvalue. Of course any linear combination of the eigenvectors is also an eigen-
vector. This gives rise to a fundamental difficulty. How does one choose the unperturbed

eigenvectors upon which our solution will be constructed?

We are at liberty to choose the N linearly independent eigenvectors associated with
the degenerate eigenvalue. We select an orthonormal basis ¢}°) j=1,2, ... N. The
unperturbed eigenvectors must lie in this space and can therefore be written as some linear

combination of our arbitrarily chosen basis, i.e.

N
=3 ce” (2.3.1)
j=1
The unknown coefficients C’; as well as the first order perturbations in the eigenvalues can
be determined from the first order equation (2.1.5). In a manner similar to that discussed
in Section 2.1 we are led to the following eigenvalue problem
W =\ D¢ (2.3.2)
where
W= W] W= We® (2.3.3)
We solve (2.3.2) for the eigenvalues A and eigenvectors C'. These vectors are collected

in a matrix (see below) whose elements are the unknown coefficients of (2.3.1).



[cu]=[cie ) (2.3.4)
If the solution of this eigenvalue problem gives distinct values of )\“), then the
degeneracy is "broken in the first order”. Fortunately this will be the case for the systems

we will be investigating.

In a manner similar to that used in Section 2.1 to establish C{" = 0, we can show

that in the completely degenerate problem

M=9 (2.3.5)
A more detailed discussion of the material presented in this section can be found in

the references mentioned at the beginning of this chapter.
A procedural summary for the completely degenerate problem is given below:
1} Solve (2.1.3) for the N-fold degenerate eigenvalue

AO= O =12, N
2)  Choose an orthonormal basis 4:}0). A convenient basis will be ¢ }O) = ¢;, where e, is a
Nx1 vector whose jth entry is one and all other entries are zero.

3)  Calculate W as given by (2.3.3).

4)  Solve (2.3.2) for AV and C'.

N
5) Thenh, =A@ +aVand g, =¥ = 3.C 09
=
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2.4 Classical Perturbation: Mixed Theory

Although the mixed problem (when the zeroth order problem gives distinct as well as
multiple eigenvalues) is the most general one, it is also the most complex. Few authors
deal with the mixed problem in its entirety, but rather concentrate on the non-degenerate
and degenerate cases previously described. The approach discussed in Section 4.2 allows us

to reduce the mixed problem to a series of problems that are either entirely non-degenerate

or completely degenerate.
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Chapter Three

TWO-DEGREE-OF-FREEDOM SYSTEM

Let us illustrate the use of the theory described in Chapter Two by applying it to a
simple two-degree-of-freedom secondary system (see Figure One). In Sections 3.1 and 3.2
we determine the eigenvalues and eigenvectors (to first order) of the undamped system.
The equipment response when the structure is subjected to arbitrary short duration ground

shock or impact is discussed in Section 3.3.
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3.1 The Non-Degenerate Eigensystem

The eigenvalue problem associated with the undamped system of Figure One is

Kx = AMx (3.1.1)

ekl

In order to get (3.1.1) in the form of (2.1.1) we perform the following transforma-

where

kK —k

K=1_k (k+0

tion:

x=T¢ (3.1.2)

where

m™ 0
T=1o M

Notice that the diagonal entires of the transformation T are the normalized (with respect o
mass) modal matrices (in this case each matrix is of dimension one by one) of the equip-

ment alone and the structure alone.

When (3.1.2) is substituted into (3.1.1) and the resulting equation is premultiplied by

T7 we get

Ky = ¢ (3.1.3)
since

TTMT =1
where I is the identity matrix and where

TKT = K
For this problem

2 o2
k- ., T (3.1.4)
—y "’ (Q4yw?)

We will assume that our perturbation parameter « of Section 2.1 is y*% 1If y is of order

€<<1, then 'y% is of order €”, also small compared to one. We will also assume that
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w? is not close to 22 i.e. that their difference is of order one and not of order « (or
higher). This is what is called complete detuning. Then in the notation of Section 2.1

w’ 0 0 —y
H = 0 O? W= *'y%wz 0

Notice that the ‘ywz portion of the term in the second row and second column of the matrix

'/zw2

(3.1.5)

in (3.1.4) gives a second order contribution.
Solving the zeroth order problem (2.1.3) we get

AI(O) - wz’ }\2(0) = 02

WiV =e, i =¢

where e, is a 2 X 1 vector with one in row / and zero elsewhere.

Since w? and Q7 are distinct, this is a non-degenerate problem and we shall proceed
with the theory of Section 2.1. A direct application of (2.1.7) gives
AV =AM =0
In other words, there is no frequency shift (to first order) in the frequencies of the unper-
turbed system H due to the perturbations W. There will, however, be a first order correc-
tion to the eigenvectors. These are found by applying (2.1.8) with (2.1.9), (2.1.10) and
(2.1.13). The result is

Y2

D 0 g4V (1 - 0%’
] = 173 2 = 0
I SN
(Q¥%w?—1)

Therefore the eigenvalues and eigenvectors of our transformed system (3.1.3) are to

first order

Klz(x)z,hz"—'ﬂz

Y

1 1—-Q%wd
¥ = % ) Wy = i (3.1.6)
(QYu?-1)

Note that the above eigenvectors are orthonormal (to first order).
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The eigenvalues of our original system (3.1.1) are given by (3.1.6). The reason for
this is that the eigenvalues of a matrix are not changed if the matrix undergoes a similarity
transformation (see {12}). The operations we performed to get (3.1.3) comprise a similar-
ity transformation. This is not the case for the eigenvectors. In order to get the eigenvec-

tors of the original system, we must apply the transformation T to the vectors of (3.1.6).

This gives
M
] 2 2
m (1 - Q%«?
- . = , 3.1.7
Xy m/z , X3 M——/; ( )
MQ Y- 1)

Eigenvectors can be multiplied by an arbitrary scale factor. Multiplying x; by m” and X, by
M", we see that both terms in x, are of order one. However the second term of x, is of
order y (second order) while the first term is of order one. This is not due to an incon-
sistency in the perturbation, but a result of the transformation back to real space of the per-
turbation result. In order to obtain a result for x; which is correct to second order, one
would have to use the theory of Section 2.2 and include those results in (3.1.6). This is
unnecesary since the vectors in (3.1.7) are orthogonal with respect to the mass and stiffness

matrices of (3.1.1) to the first order.
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3.2 The Degenerate Eigensystem

We now assume that the structure natural frequency is close to the natural frequency

of the equipment. That is

0= 0i(l+a)

where « is the detuning parameter and is of the order of y%. Then instead of (3.1.5) we
will have

0 h_,y'/sz
—w? e’

3.2.1)

0 ?

Using the above operator H, the zeroth order problem (2.1.3) gives

wrly o] w-

)\1(0) = )\2(0) - (1)2

Since all the eigenvalues of the zeroth order problem are the same, we have a degenerate
problem and must use the methodology of Section 2.3. We will choose an arbitrary ortho-

normal basis

6V =,V =0¢ (3.2.2)

where e; and e, are the unit vectors discussed in Section 3.1. Then according to (2.3.2) and
{2.3.3) we must solve the following eigenvalue problem for AW and L O
we =\Mc
where because of our choice of basis (3.2.2), W is the same as W given in (3.2.1). We
solve the eigenvalue problem above by a determinental approach. One can obtain a non-
trivial solution only if
®4W~Amdx0

This gives

(3.2.3)

where
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Y
o

1 (3.2.4)

b=yt

Notice that the expression (3.2.3) is of first order. Now that the admissible values of AV
are known, we return to the eigenvalue problem given above and solve for its eigenvectors
', This gives

%

— a/2)
c, - (e 1oz/

(C\C/2 - ,u,) i
We form a matrix whose columns are the above vectors and by (2.3.4) and (2.3.1) calculate

the zeroth order eigenvectors

: Y
1 (w — a/2)
PO = " P10 = ! (3.2.5)

S AN
(af2 — )

By (2.3.5), the first order perturbations in the eigenvectors are zero. The eigenvectors of
(3.1.3) (to first order) in the nearly tuned system are given by (3.2.5). In order to obtain

the eigenvectors in real space we apply (3.1.2) to (3.2.5) which gives

M——'/z

—th

m (w — a/2)

x| = . w=| S (3.2.6)
Ma/2 — u)
The eigenvalues of (3.1.1) are (to first order)

A= w1+ g‘—f,u (3.2.7)

2

where p is defined in (3.2.4). The frequency shift for the nearly tuned system illustrated
by (3.2.7) is discussed in Section 3.2 of [15]. The eigenvectors shown in (3.2.6) are spe-
cialized for the perfectly tuned system and presented in [8]. It is readily seen that in both

mode shapes the structure component is small in comparison to the equipment component.
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3.3 Equipment Response

Let us now use the results of the previous sections to determine the equipment
response of the system in Figure One when the fixed base is subjected to a short duration

ground shaking u, in the direction of U (and hence u). The equations of motion are

Mi + Cu + Ku = CRu, + KRy, (3.3.1)
Bwm ~Bwm

where K and M are given in (3.1.2) and
u
C=2 —Bwm Bom+BaAM)| > %~ [U]

We assume that the damping ratios 8 and B are of order a << 1. The vector R couples the

ground motion to the degrees of freedom. For this problem, R is a 2x1 vector of ones.

We solve (3.3.1) by a standard modal solution. Let us first examine the completely
detuned system. Since we are interested in the acceleration response, we take two time
derivatives of (3.3.1) and substitute the expression below

i = Xy (3.3.2)

where

ha

X“[MXQ] S Y=y,

and x;, x; are given in (3.1.7). Pre-muitiplying by X7 leads to the following uncoupled (to

first order) equations on the modal coordinates y, ; i=1,2
510 + 2Buir (0 + 02n() = 42 [i6, (0] + Biii (0

5200 + 2BQy() + Q7,(0) = Azg;[iig(t)] + By () (3.3.3)

where

Ai == X,’TCR/X,'TMXI’

B, = xKR/x/Mx; ; i=1,2

Since 4, << B, the contribution to the overall response from the A4, terms will be negligi-

ble. They will therefore be dropped. From (3.1.1)

*
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x/KR = A ;x/MR
The solution to (3.3.3) is found from ordinary differential equation theory as
) =Twe™Psinlwi) * i,

yoft) =T e B%%in(Q 1) * i, (3.3.4)

where

/
S * i, = lf(fwr) i (7) dr
and
I =x/MR/xMx, ; i=1,2

The above expression (3.3.4) is not correct to first order as a solution of the
differential equations (3.3.3) introduces the damped rather than the undamped natural fre-
quencies in the sine terms of (3.3.4). Use of the damped frequency instead of the
undamped natural frequency has a negligible effect on the response for the completely
detuned case and is therefore not included. Substituting (3.3.4) into (3.3.2) and solving for

equipment response we have (retaining dominant terms only)

() = [ e isin(wn + 1 Qe Bin(Q 0] * i,

] — (w/Q)? 1 —(Q/w)?

This result was obtained by Sackman and Kelly in [15] by Laplace transform methods. A
result for maximum equipment acceleration can then be obtained in terms of the ground
pseudo-acceleration response spectrum. This is discussed in [6] or [15]. Also discussed in
{6] are two cases of gross detuning: w<<{) and w>> Q. The tuned or nearly tuned sys-
tem is best analyzed by Laplace transform methods. The reader is referred to [15] where
this is done in a comprehensive manner. The results presented there are specialized for
extremely short duration input in [6]. The results for gross detuning as well as slight or no
detuning are then combined in [6] to form a "universal” result. This "universal" result is a
single formula that can readily be used to determine maximum equipment response over 4

broad range of frequencies. The "universal" result developed there is replicated here for
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reference purposes:

o (mﬂ)v2 Q
i - Ttz || 5 Si@ + 2-5.,0.0 (335
(y+¥2+48B)" 2

where k' = arctan({)/¢'; {' = ly+¥*~(8—B)1"%/(8+B)

—w . _ O
BO + fo %B VT )

and S4(w,£) is the ground pseudo-acceleration response spectrum evaluated at frequency o

C=

and damping €.

The equipment response when the structure is subjected to impact loading can be
determined in a similar manner. The right hand side of (3.3.1) becomes a two by one vec-
tor with first entry zero and second entry the arbitrary force F(#). The constants multiply-
ing the exponential and sine terms in (3.3.4) will be different, yet the rest of the solution
remains the same. This problem is discussed in detail in [6] where a "universal® resuit for

impact is developed. This formula is replicated below for reference purposes.

. L- (7+\If2+4,,BB)/’ (o +;(;2(wﬂﬁ./;nz’

%—S,,(w,b + 8,(0,2)

w—{} - w—{}
wt+Q [ w+

and S,(w,£) is the pseudo-acceleration response spectrum for the input F(r)/ M evaluated

(3.3.6)

where

{=

at frequency w and damping £.

A number of numerical tests were performed in [6] to determine the accuracy of
(3.3.5) and (3.3.6). The performance of both equations over a large range of frequencies

was extremely good.
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Chapter Four

MULTI-DEGREE-OF-FREEDOM SECONDARY SYSTEMS

A multi-degree-of-freedom secondary system is depicted in a general way in Figure
Two. The system is assumed to have a discrete number of degrees of freedom. The struc-
ture [denoted (1)] is fixed to the ground. Attached to various degrees of freedom in both

the structure and the equipment [denoted (2)] are rigid links. The structure has 'V

degrees of freedom (which include the link attachment points). The equipment has n®
"free" degrees of freedom (the link attachment points are not included in these degrees of
freedom). Thus the "fixed base" equipment properties are based on the links being fixed.
The properties of the fixed base structure are, of course, based on the fixed ground condi-
tion (without the equipment). In order for the system of Figure Two to be a secondary

system, all the elements of the mass and stiffness matrices of the equipment must be small

in comparison to all the elements of the mass and stiffness matrices of the structure.

In the subsequent sections, expressions for the acceleration response of the equip-
ment degrees of freedom, in terms of the properties of the sub-systems and the excitation,
are determined. The completely detuned system (where all the natural frequencies of the
fixed base sub-systems are well spaced) is analyzed by a "direct approach” in Section 4.1. In
order to analyze the tuned secondary system (when a natural frequency of the structure is
close to a natural frequency of the equipment) a sub-problem solution procedure is intro-

duced in Section 4.2 and directly employed in Section 4.3. The maximum acceleration of

-+ (2)

each equipment degree of freedom, i, Lax, is determined in terms of the pseudo-

acceleration response spectrum description of the excitation and the system properties. The

numerical tests discussed in Section 4.5 indicate that the results of this chapter are indeed

promising.
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4.1 The Completely Detuned System: Direct Approach
In order to analyze the system shown in Figure Two we must solve the foliowing

eigenprobiem

Kx = A\Mx 4.1.1)
where
@ ) @ 40D (63
m m k k X
M = [mm) mm'] K= K12 o X7 L“)l 4.1.2)
mV = m® + m? . kD = kD + g®
and

xm, xV are the displacement vectors associated with the equipment and structure
respectively

m?, k? and m'V, k™" are the fixed base mass and stiffness for the equipment and
structure respectively

m"? = m@7 are the "cross-coupling” mass matrices (these matrices are zero for a
lumped mass formulation)

K1Y = k@7 apre "cross-coupling” stiffness matrices (the elements of these matrices
come from the fixed base equipment stiffness k@)

" and k are the contributions to m and k© from the equipment.

We will solve the eigenvalue problem of (4.1.1) by classical perturbation theory. To

do so we transform to standard form by the transformation

x=Ty (4.1.3)

where

o &)(1)

In the above ®? is the normalized (with respect to mass) fixed base equipment modal

7 (2)
T - [‘I’ 0 ] 4.1.4)

matrix [dimension (#? x #@)] and & is the normalized (with respect to mass) fixed



22

base structure modal matrix [dimension (n¥ x nD)].

Substituting (4.1.3) into (4.1.1) and pre-multiplying by T7 we get

Ko =2y 4.1.5)
sinice
TTMT =1
and where
K = TTKT.

If m? is of order ¢ and m‘V is of order one, then retaining terms only up to €” in K we
get

K=[H+w]

where

m(2)2 0
’ “lA O

0 m(1)2

H=[ 0 41

A= (i,(l)Tk(lz)(i, )]

2 2 . . .
and o? R oV are diagonal matrices whose diagonal elements are the squared natural fre-

quencies of the fixed base equipment and structural system respectively.

As in the two-degree-of-freedom system, &V and m'V give second order contribu-
tions. We assume that all the frequencies in H are distinct. Furthermore W is symmetric.

Thus we shall use the theory of Section 2.1.

The zeroth order problem (2.1.3) gives

MO =@ s k=12,...,n?
2
A= ol L2, a0 e
and
‘(0) == ei » i=—‘“1,2, ey n(2)+n(1)

where e; is a (n@+ M) x 1 vector whose ith entry is one and zero otherwise. In order to
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facilitate the subsequent discussion, we will assume that the range of the indices i, k, and /
are those given above. It is easily verified that (2.1.7) gives for all i

APV=0
Thus the eigenvalues of (4.1.1) are to first order given by (4.1.6). In other words, the
natural frequencies of the completely detuned cornbined system are the same (to first

order) as the natural frequencies of the individual sub-systems.

We now calculate (2.1.9) which gives the following non-zero values

W= W

k,n(2’+i = Alk

So by (2.1.8) we have

-l ol

where 0 and 0 are zero vectors of dimension 7n® and nV

respetively. For a particular
value of k, the vector f, [dimension (n'¥x1)] has components /i=1,2, ..., " given

below

A
2 . 2
(wf? — wf?)

For a particular value of [ the vector g, [dimension (nPx1)] has components

k=12, ..., n? given below

Alk
2 2
(V= 0@

The eigenvectors of (4.1.5) are to first order given by

€ g/
P = £, ) ¢'n(2)+,= él

where &, is a n'? x 1 vector whose kth element is one and all other entries are zero and g

isa n x 1 vector whose /th entry is one and all other entries are zero.
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We now find the eigenvectors in real space by performing the transformation given in

(4.1.3) which gives
[~ (2>~ 2
b g/?
X = f/f'l) . x,,(2)+/ = &I(l)
& N
where for a particular value of k the vector f,((” is given as
A 3D,

flil):.___ 2

2 2
= (@ — oM

and for a particular value of / the vector g,“"’ is given as

(2) 2 (D)
4 b A

2 2.
(o~ o @Y

The eigenvectors are then collected to form the following N X N matrix, where

g/? =

N = n(2)+”(])

X= [Xl X7 X,o4,0
Let us now solve the ground shock problem; i.e. where the base of the structure is
subjected to a short duration ground shaking. The equation of motion on the total displace-

ment wu is then

Mii + Cu + Ku= CRu, + KRy, (4.1.7)
where M and K are given in (4.1.2) and

(2) V)]
u r

(n] ; R= [ <1)] (4.1.8)
u
The vector u'? contains the total displacements of the equipment degrees of freedom.
Similarly u'" contains the total displacements of the structure degrees of freedom. If the
ground is given a unit displacement in the direction of the ground shaking, the vector r
represents the displacements of the equipment degrees of freedom, while the vector V)

represents the displacements of the structure degrees of freedom (pseudo-static motion

vector). The combined damping matrix is
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Fal
L=

7
@ 2 I
¢

c(12) )

where the matrices in C are of the same form as the matrices in K given in (4.1.2). We
will assume that the sub-systems are modally damped. That is

&V DD 18P @ . WG W - 281 (4.1.9)
where 8% 'Y and 8wV are diagonal matrices whose entries are the product of modal
damping (fraction of critical) and modal frequency. We further require the modal damping

ratios to be small (of first order).

We solve (4.1.7) by first taking two derivatives with respect to time. A transforma-
tion to modal coordinates
= Xy (4.1.10)
and pre-multiplying the resulting equation by X7 gives a set of uncoupled equations on the
modal coordinates y, The fact that this similarity transformation diagonalizes K and M (1o
first order) comes from the eigenvalue problem. That it also diagonalizes C (to first order)
comes from (4.1.9) and the structure of X. The contribution to the response from the
damping term in the right hand side of (4.1.7) is negligible and will be dropped. Also we
have from the eigenproperties

x,-TKR = N\ ,‘X,‘TIV.[R

Using this we have for the modal coordinates

g2, @
7D = TP isin(w @0 * i,
and
g My, 3
Vo0 =T a,wle B in(w V) * iy
where
F,‘ = X,-PN[R/X,-MXi

Solving for the participation factors given above we have (to dominant order)
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and

where

PV = ¢ T

PO = § DT @@

~

(DTy,(12) 2 (2)
.y ) k(l )¢

C = PV Ay

Using these results together with (4.1.10) we find the equipment response as

2, @)
iiz(z’(t) - 2¢(2)P(2) 2, Brek ‘sin (e @)
22y ‘2)(2)C @ o
k Cue - .
* (2)22 (1)2 PP Ism(ﬂ’/?)t)
k=11=1 (0" — ;")
22 (0 (2>(2)C a.m
& Cl - ‘. .
+ o TR “Msintw 0] * i, (4.1.12)
k=11=1 (w (V" = o P
for z=12,...,n™®. Notice that the expressions within the braces is the Green’s function

for the total acceleration of the equipment due to ground shaking of the system in Figure
Two.

Let us now consider the impact case. The right hand side of (4.1.7) becomes F(¢),
the vector of nodal forces. We will assume that a particular force-time history is applied at
a single structural degree of freedom or distributed over many structural degrees of free-

dom. This allows us to write the following

F=S8F(

where
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0
S=lgm

and SV is a nV x 1 vector whose entries are one (or a fraction thereof) if the force-time

history is applied to this degree of freedom and zero otherwise. Letting

u= Xy

and pre-multiplying by X7 we are led to uncoupled ordinary differential equations on the

modal coordinates y,. Their solution is given by

Ty 6—3152)“'/?)‘

(D) = —5 sin(lwP1) * F
2]
@y —g,
Yy (0 = e P in(w V) ¥ F (4.1.13)
Wy
where

FOF = [ fu=)FG) dr
0

]‘:i = X,'TS/X,'TMX,'

Since we are interested in acceleration response, we take two derivatives with respect to
time of (4.1.13). This results in (dropping negligible terms)

_ g, @
Y () =T 0 Pe i 'sin(w,ﬁz)t) *F
k

. - gy M,
Voo () ==T o, 0P sinw®) * F
@4y a4 ] /

When these results are combined in vector form and pre-multiplied by the matrix of eigen-
vectors X, we have the equipment acceleration response for the case of complete detuning

due to impact loading as

22 0 %(Z)D ) )
. i Dy - .
i = -1 3y ; - @ PRk i (0 (1)
o | (m’(c2) - w{(l))
20 GOp .
i Dy -~ .
+ z oD P Sin( Wl * F (4.1.14)

2 2

where
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Dy =PBY4, (4.1.15)

and

F)I(i) = f[
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4.2 The Completely Detuned System: Sub-Problem Approach

In this section, we obtain the results of the previous section by the solution of a series
of sub-problems. This would certainly not be an efficient solution procedure for the com-
pletely detuned system. This method can be used to solve the tuned secondary system that

will be examined in the next section.
Problem One
Instead of employing the entire transformation matrix T of Section 4.1, let us make

the transformation

XmTldl

where

0 (i)(l)—

where ® ? is the equipment modal matrix described in Section 4.1 and &~ is the normal-

‘i‘)(Z) 0
T, -

ized structural modal matrix without the mth mode [dimension (nV x nV=1)].

When the matrix T; instead of the matrix T of Section 4.1 is used in our perturbation
solution of the eigenvalue problem (4.1.1), we are led to a reduced set of eigenvalues and
eigenvectors. The eigenvalues will be those of Section 4.1 without the mth structure
natural frequency. The matrix of eigenvectors will be a rectangular matrix [dimension
(n@+2Y x pP4+,V-1)] which, in essence, lacks the effect of the mth structure mode.
When this rectangular matrix of eigenvectors is used in a modal solution of (4.1.7), the

equipment response will be

2)

- (2) g, @ () ~BPuPr
u, ([) = 2¢2k Pk Wi e
=1

sin(w (20

2) ) 2 Q)
T & ¢zk Clk (2) -—B‘({z’w,?)l

; (2
sin(w 1)
2 2
prass B (‘D/?) - w1(1) )
I#=m

3
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) (1 5 ()
+" < bz Cu ay B Me M WPl * i
w; € Sintw, 't U 4.2.1)
(2 _ (@72 2.
k=1 i=1 (e wg)
{#=m

We notice that all the Pk(z) type terms present in the solution (4.1.12) appear here,

while two series involving the Cj are missing. The procedure described here is essentially

a Ritz condensation procedure.

Problem Two
We now need to include the effect of the mth structure mode on the response. This
can be done by introducing the transformation

@ o
T =

0 By

It will be convenient in the tuned system to further subdivide the above matrix to

T2="—

(“b(:!)* )

S
where & @~ is the matrix of eigenvectors of the equipment system without the nth eigen-
vector [dimension (n? x n®—1)] and (?),(,,” is the mth structure eigenvector. The remain-
ing effect (between the mth structure mode and the nth equipment mode) will be dis-

cussed in Problem Three.

Again when the matrix T, instead of the matrix T of Section 4.1 is used in our pertur-
bation solution of the eigenvalue problem (4.1.1) we are led to a reduced set of eigenvalues
and eigenvectors. The eigenvalues will be all equipment natural frequencies except the nth
frequency as well as the mth structural natural frequency. The matrix of eigenvectors will
contain only the effect of the modes associated with the above frequencies on the system
and will be a rectangular matrix [dimension (7?47 x n®)]. When this rectangular
matrix of eigenvectors is used in a modal solution of (4.1.7), the equipment response will

be
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() ”(2)’(7) 2 (@ —B,ﬁ”w}(zh s (D
U, () =13 i Pllwe sin{w "' 1)
k=1
k= n

3] 5 (2)
a b Cok —g 2, @,
+ ok @ P Sin(w @)

(2)? (n?
fom1 —
k?fn(wk Wy )

@ 3 (2)
n & i Cox —g D,y B
E W P m sin(w W i,

1 2 2
,/;;ln(w,(,,) — w?)
As we remarked at the end of Problem One all the Pk(z’ type terms necessary for the
complete solution are contained there. Thus the Pk(z) type terms appearing here are

superfluous and must be dropped. The relevant result from Problem Two is

2 B0C,

-+ (2) ), Be : 2
u, () =13 o an e T sin(w P)
fe=1 (wk Wy )
k#n

@ 5 (2)
i d)zk ka 1) -B,(n”w,‘n“t
g2

)2 @y "7
feem 1 — )
k= pn (@ )

-+

sin(w POV * i, 4.2.2)

Problem Three
The effect of the mth structure mode on the nth equipment mode is now sought.

Let

2 (2) 0
Ty=| . (4.2.3)
5= - 2.
0 ¢,
where the above matrix is of dimension n®@+»r® by 2. Using Tj instead of T in the per-
turbation solution of the eigenvalue problem (4.1.1) leads to two frequencies and mode
shapes. The eigenvalues are the nth equipment frequency and the mth structure fre-
quency. The matrix of eigenvectors contains only the effect of the modes associated with

these two frequencies on the system and will be a rectangular matrix [dimension

(n'P4+rV x 2)]. When this matrix of eigenvectors is used in a modal solution of (4.1.7),



the equipment response will be

. [ - C gD,y
uz(z)(t) - 2(3) Pn(z) 4 o mn (1)2) 0),(,2)6 B, w, {SIﬁ(m '(12) f)
(w n T Wy

Q) Comn m ,BYai

o (1) * 3
e Sem € sin(w,,’ O} * i,
(wp' —w,?)

Again the term P,,(Z) must be discarded resulting in

1)
D zn Conn @ -8 D2y

iP() = " sin(w 21
z (2)2 (1)2 n n
(w,”" —wy')
~ C —g Wy, .
+¢2 e wMePmen lin (o W] + iy

2 2
0 -0
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(4.2.4)

(4.2.5)

When the results from Problems One, Two, and Three [given in (4.2.1), (4.2.2), and

(4.2.4)] are added, the solution to the original problem [given in (4.1.12)] is obtained.

The results of a sub-problem solution procedure in the impactcase are given below.

Problem One

@ 0 7 (2)
¢ Dy (z)e-ﬁ(z) ),

n n
iizm(t) - 2 2 K9k Sin(cu,?)t)
1 @2 _ (12
k l[;‘ (wk w)
m
2@ &)Z(I%)le (1, (),

w,(”e_ﬂ’ "sinlw Vol * F

+ X2

2 2
k=11=1 (@ ,m - m,‘f’ )
I#m

Problem Two

7 é,(z)D (2),, ()
.. k4 mk -
uzm(t) = - Z Z w(z) Pice

. (2)

sin(w ¥ 1)
2)? (1?

fe=1 -

k;f”(wk W )



Problem Three

2 = —

MNotice that in the sub-problem approach for impact, no terms need be discarded.

2@
b 21 Dy w® ~ﬁ,(‘2)w,(;2)t) .

£ (;(2)1) .
3 zk Y mk = SN ~
Y '"(2)2 w Ve B m sinfw Pl * F
k=1 (@ .. —
k¢n( " wi)

(2)
sin(w ,?1)
2 2 n n

(w ,(,2) - (l),(nl) )
»Pp
zn ~mn 40 ~ﬁ,("”w(”1

—aw " sin(w V0 * F

2
(@ = @)

33
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4.3 The Tuned System

Suppose now that one natural frequency of the structure (w,(n”) is close to a natural

frequency of the equipment (@ ‘¥). That is
wmz 1+ ozm,,)ou(z)2

where a ,, is the detuning parameter and is of first order. If one were to directly use the
transformation T discussed in Section 4.1 in a perturbation solution of the eigenproblem
(4.1.1), we would be led to a mixed problem. As we have mentioned before, such systems
are very complex and are not usually treated in a general way. The methodology of the
previous section will be used to resolve this problem.

Problems One and Two of Section 4.2 are unaffected by the introduction of tuning.
In Problem Three, however, if o) is exactly »!? (the case of «,, = 0), the response
becomes indeterminate. Also the 2 X 2 eigenproblem associated with Problem Three in the
case of tuning will be degenerate rather than non-degenerate as we had previously. Both of
these facts force us to take an alternate solution approach in Problem Three, when there is

tuning or slight detuning between the mth structure and nth equipment natural frequency.
Let

u = T:Q (4.3.1)

q(2)
= q(l)

We explore the ground shock problem first. Substituting (4.3.1) into (4.1.7) and pre-

where T, is given in (4.2.3) and

multiplying by T results in

i@ 3 2, an (}m
(1) B (1) (1)

(2)

m,(f)z A
n = T, KRu, + T CRug

mn

q
q

+

2
Amn wr(nl)
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20T 13 (2
Apn = ¢r(n k(12¢( )

We now solve this two-degree-of-freedom system by Laplace transforms. This resulis

- [V D)3, 43.2)

where p is the Laplace transform parameter and a bar over a function denotes its Laplace

transform. Since TYCR << TyKR we shall neglect it. Then

N(p) = (p+28 Ve D ptao WD) 7@ — (B pt4, ) fO
D(p) = (428 Y6 P pto 1) (428 P P pto D7) = (Byppt Ay,
and
f(2) ‘f’ (2)T(k(2) ) + k(Zl) (1))
s = ¢(”T(k“2) @ 4 )

We now prove that £@ = 0. The vector R as given in (4.1.8) is the rigid body dis-
placement field of the combined system when the ground is given a unit displacement.
Since this is an unconstrained rigid body motion, no internal forces develop. We now fix
the ground and impose the above displacement field R on the combined system. To do this
would require forces applied to the structure degrees of freedom. No forces would be

required in the equipment, however. Thus

KR=F

0
F= F(l)

Performing the matrix multiplication we have the following sets of equations

where

kP 4 QDD o g

K12, 4 O f@) (4.3.3)
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One could calculate FV from the second of equations (4.3.3) given the rigid body dis-
placement field R. From the first of equations (4.3.3) we see
@9
Let us examine f“) further. In the expression for f“), we see that the term k2r®@
is of the order of m'® while the term kWr'" is of the order of m'". Since m'? << m‘

we will neglect this term and are left with

f(l) o~ &’(nl)Tk(l)r(l) - wr('})2$2)rm(1)r(1) - w,(r})zPrfz”

This equivalent two-degree-of-freedom secondary system will be analyzed by the
approach used in [15]. First, the zeros of D(p) are determined. The resulis are identical
to those in Section 3 of [15] if we replace the w, &, v, 8, and B of that report with
02 a, /2,y B2, and BV respectively. Where

Yo = Al P’
is an "effective" mass ratio. Of course, the zeros of D{(p) are closely related to the natural
frequencies of this equivalent two-degree-of-freedom system. There is a first order shift in
frequency here which was not present in Problems One and Two. An inversion of (4.3.2)
by the approach used in [15] leads to a Green’s function associated with equipment
response, Gc2(1), of the type discussed in Section 4 of [15]. The expression for 42 (¢) is

given by substituting &2 (¢) for the iig(#) of Section 4 of [15], as well as performing the
substitutions previously mentioned above.
The solution to Problem Three when there is tuning is given below (for the case of
ground shock)
0 = 1B G0 i 434

2
(l)n)

The comparable response for the impact case can be established in a similar manner

and is given below.
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+o (3 o Dmn .o
uz(Z)(l) = ;3)"‘(“2)7615(2)“) *F (4.3.5)

Wy

The complete equipment response is given by adding the response above to the

results of Problems One and Two previously obtained.
We summarize the results for equipment response as follows

Ground Shock

NG

N — (2)
i () = 2¢><2>P<2> @ 0 (@)
o= ]

D0 GO P
zk M~k 2) —Bpwge
+ 2 2 w

> > sin(w (2)1)
k=1 1=1 (@ 2" — @ 1)
1= m

2 D quC (Mo (1,
Ik .
+ wMe P17 fsin(w (V1)
11 (@ M = @9
k=1 I=1 tw g
1#=m

n? ¢(2)C @,
mk
(2)6’ By w

+ o “sin(w (2),)
k=1 —
kxn(wk @ )
P 2)C gD, W),
+ ¢Z o w P Fo'em tsin (@ [an)
Fe==1 —
k;é,,(w”’ W )
- Con
(2) : (2) ::
+il—dun 27 — G D} Ug (4.3.6)
wn

Impact
2@ () @
¢> Dy, gD, @),
20 =] §F —LE T 0, in (20
(D2
k=1 I=1 (w - ')
I#m
2@ 0 5 (@)
¢ D _g i, (),
k ik ) B e sin (@ (l)t)

+¥ Y |
2
et 1 (o (2 _ g 2%
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"2 62D 2),, @)
k k - t
+ Z 2 m - w[gz)e B iy

- sin(w 2'1)
he== (w,ﬁz) -ww,(,,”)
n

k=
ey 55(2)1) ) RN
i - .
+ 3 ( (1); mk(z)z)w,(,}) B m 'sin(w 1)
fe=1 —
kot 2 @k
niy D
(2 mn <. (2)
(b s O\t F (4.3.7)
wﬂ

For completeness, we also list the Green’s function iig(#) from [15].

Asinh L;—w fcos —}‘—w sin

£
> 1+

~(B+Bwt/2
&
2

wl

lig() = ==
G N

wt — usinh £ tcos }"cu cos

2 2
wi

A= -\}—5-{{[#52—(3—3) 244628~ B) Y "+ [y +£2-(B-B) I}

= “\}7{{[7+§2”(B~B)2]2+4§2(B-—B)2}%-[y+§2——([3—8)2]}"5

For particular situations, e.g., the system is undamped or damped with perfect tuning, the

—~Acosh S—"«m tsin %—w 1cos

£
1—+—2

w!

£
1+2

--jcosh £ 4 tsin l‘—w tsin

£
5 3 1+

2

expression for i (1) greatly simplifies; see [15].
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4.4 Response Spectrum Analysis

The results of the previous section, as given in (4.3.6) and (4.3.7), can be used in a
time domain analysis. In most instances the quantity of interest is maximum equipment
acceleration, not the equipment acceleration as a function of time. The purpose of this sec-
tion is to express the maximum equipment acceleration in terms of properties of the system
and ground motion (or impact). The results will be developed in terms of design spectra

since these are the input characterizations most readily available to the structural designer.

Consider the equipment response of the tuned system when the structure is subjected
to short duration ground shock or impact. In order for the impuise to be "short" we require
its duration to be small in comparison to the period of the two close frequencies. The max-
imum equipment response in this case is governed by the beating phenomenum associated
with the two close frequencies. Considering only this effect and using our "equivalent”
two-degree-of-freedom system properties, we have the following result for maximum equip-

ment acceleration when the structure is subjected to ground shock

~ ) Cmn K
o (2)? ¢ (4.4.1)
U = i A4 3
Ty, a4+ 48,7800 2

where S,(w,B) is the pseudo-accleration response spectrum for the input ground motion

i, (1) evaluated at frequency w and damping factor 8 and
g

Klﬂﬂ = arC[an (C 177’1)/€I71I1
%
Comm =Yt atdd— BP =Y 1BP+80)

The corresponding result for impact is

2@ D | ~x
o
wn

o ol
e bnan = 2 EPYIVAREE 2 0)
(y mn + a mn/4 + 4BI1 :Bm )

where S, (w,8) is the pseudo-acceleration response spectrum for the input F(n)/ 4,

mn

(4.4.2)
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evaluated at frequency » and damping factor 8. The modal mass M, is, throughout the
development, unity for all n.

When the duration of the input is of the same order as the period of the two close
frequencies, but the peak response occurs after the excitation has finished, an improved
estimate of maximum equipment acceleration is obtained by including the average damping

B2+ ")/2 in the above response spectrum.

Caution must be exercised in the use of the above formulas. Although there are large

amplifications associated with beating, the beat envelope is scaled by the coefficients

- C
) “om
n (4.4.3)
w ’(72>?
for ground shock and
nny D
) Ymn
n T (4.4.4)
zn w ’(’2)2

for impact. If these quantities happen to be small in comparison to similar terms in (4.3.6)
and (4.3.7), then the above results (4.4.1) and (4.4.2) will underestimate the maximum
response. In such instances, the complete expressions (4.3.6) and (4.3.7) should be
evaluated and the maximum in each degree of freedom obtained by a numerical scheme.
Alternatively, the convolution with the input can be replaced by an "effective impulse" for
excitation that is primarily of delta function character. This "effective impulse" would be
the area under the input-time history (a constant). The pseudo-acceleration response spec-

tra used in (4.4.1) and (4.4.2) essentially determines the "effective impulse".

The coeflicients in (4.4.3) and (4.4.4) can become "small" under a variety of condi-
tions, as they depend upon symmetries in the structure or equipment as well as the manner

in which the two are connected. How the input excites the structure also has an effect.

Assume now that the structure is subjected to earthquake excitation. This type of
excitation is generally characterized as a stationary random process. In a random vibration

analysis of response, a system with well spaced frequencies (the completely detuned
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system) exhibits negligible correlation between modes thus allowing the application of a
standard summation rule. Applying the square root of the sum of the squares procedure to

(4.1.12) results in

el @ iy qAB (;E)C/A
-+ (2) 2 pQ2 z ‘
2]~ (T |[p2pe + § 222 s 0 28)

= =1 (0 07— o M)
() ) ’ '
4 ¢ PCy
+ 3 sz G Sl 81 (4.4.5)
f=1 (w W )

Correlation between the two close frequencies of the tuned system is significant (see
[4] or [5]) thus prohibiting the use of the square root of the sum of the squares procedure.
Crandall and Mark [2] analyze a two-degree-of-freedom system and determine the response
in terms of the system parameters and the power spectral density function of the stationary

random excitation of the primary system.

The power spectral density Sy can be interpreted in terms of a response spectrum.
Assuming the root mean square response is the peak response (this is the commonly

accepted practice of ignoring "peak factors”), we have from (2] eq. (2.44)

Siw,)) = E{yzi = ‘g*%w

The maximum equipment response due to the two close frequencies can now be
determined directly in terms of the response spectrum and our "equivalent" two-degree-of-
freedom system properties. Specializing [2] eq. (2.57) for the parameters of our perfectly
tuned two-degree-of-freedom system, we have the following result for the maximum equip-

ment response due to the tuned frequencies

2 @ _Comn
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Lo g o | o B2HBY
L BRA O Ty
iy + 4828
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This result is then combined with the contribution to maximum equipment response from

the non-tuned frequencies given below

2
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by the square root of the sum of the squares procedure.
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4.5 Numerical Studies

A variety of numerical tests to determine the validity of the method presented in the
previous sections were performed on the equipment-structure system of Figure Three. The
structure mass and stiffness were set to one and 100 respectively. The natural frequencies
of the structure were then .708, 1.98, and 2.87 cycles per second (cps). The undamped sys-
tem was checked for a variety of m/M ratios and tunings. The natural frequencies (w?)
and mode shapes (x;) for the combined system were calculated using the CAL {17] com-
puter program. The mode shapes were then used to calculate a "response matrix" associated
with the undamped ground shaking problem. The response is given as

i = Rv * i,
where R is the "response matrix" whose columns are the vectors x[I,,
I'; = x,"MR/x,"Mx; [( M, R are defined in (4.1.2) and (4.1.8)] and v is a vector whose
ith entry is given by
v, =wgsinlw;t) ; i=1,2,..., N
where N is the dimension of the combined system.

From the methodology of this chapter, the natural frequencies of the combined sys-
tem are approximated by the natural frequencies of the sub-systems when these frequencies
are well spaced. When a natural frequency of the equipment system is close to a natural

frequency of the structure system, a first order shift occurs in the combined system fre-

quencies which must be taken into account. For perfect tuning (w,(,,”2= w,(,z)z) of the

undamped system the two close frequencies of the combined system are given by

2
wl=0®0Fyk)

These frequencies are then arranged in numerically increasing order and compared to

the CAL program results. Tables One and Two show excellent correlation between the

"method” and "exact" results. In Table One and subsequent tables & = 10“—%, the percent
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(METHOD—CAL)

0 .
CAL x100, and the starred numbers are associated

difference is given by

with the two close frequencies. The contribution by a particular non-tuned frequency to
the equipment part of the response matrix is readily seen from (4.3.6) o be
2 3 PCy

2 2
k=1 (w/(” . (l),£2))

for the non-tuned structure frequencies and

(
atV Clk

3 (2) PO 4
zk k 3 5
A w? - 0™

for the non-tuned equipment frequencies.

The contributions to the response matrix from the tuned frequency is more compli-

cated. Contributions to the response matrix associated with ., can be found from a classi-

cal perturbation solution of the undamped Problem Three to be

52 (2)
+- ¢zn Cmn
— ) 92
7/nn/2wr(r )

From (4.3.6) we see there is also a non-dominant contribution associated with the tuned

equipment frequency of

)
C
] p@ In
¢ 1P+ z
zn n [“1 (m i(zz)Z . wl(])z) (4.5.1)
1 m
and associated with the tuned structure frequency
22 (z'z(lf)cmk

(4.5.2)

| (1)? (2)?
k= —
k n(wm W g )

In the case of perfect tuning it is difficult to determine which is associated with w, and

which with _. Let us assume the equipment and structure natural frequencies are slightly

detuned. Then

2
w‘l":w}(?z) ( + /2 i/"*mn)

where
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As discussed in [15] the tuned structure frequency shifts to w, while the tuned equip-
ment frequency shifts to w_. Thus in the limiting case of «,,, identically zero, the non-
dominant contribution to the column in the response matrix associated with e, is (4.5.2)
while that asociated with w_ is (4.5.1). The vectors calculated above when arranged accord-
ing to numerically increasing frequency are compared to the equipment part of R. Tables
Three and Four show good correlation between the "method” and "exact" results. It is
unfortunate that the quantities associated with the two close frequencies exhibit the greatest
difference from the "exact" result since they combine to form the dominant response. The
errors increase with increasing effective mass ratio vy ,,,, as one would expect. For small
v mn» the method approach certainly produces highly accurate frequencies and response

matrices.
The equipment frequencies for the grossly detuned system are .942 and 1.63 cps.

Time history analyses by a Newmark integration scheme which solves directly for
acceleration (see [6]) were then performed on the damped equipment-structure system of
Figure Three. The following equipment-structure properties were taken from [13] and are

considered typical in nuclear power plant construction

m=1x10kg M = 2x107kg
k=5942x10"kgf/m K =6x10%%gf/m

P =01 BV =04

for j=1,2 and i=1,2,3. The structure natural frequencies are 3.88, 10.9 and 15.7 cps.
Choosing the equipment stiffness in this manner tunes the first structure natural frequency
to the first equipment natural frequency. This particular tuning was chosen because it gives
the largest equipment response and also allows the use of (4.4.1) and (4.4.2) instead of the

convolution necessary in (4.3.6) or (4.3.7).
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A Phantom F-4 jet impact force-time history, also taken from [13], was used as an
acceleration ground shock history (maximum acceleration of 1-g.). The properties of the
equipment-structure system given above produce an effective mass ratio (y,) of approxi-
mately .003. The equipment mass and stiffness were then scaled by 10 and 0.1 to achieve
effective mass ratios of approximately .03 and .0003 respectively. The tuning is unaffected.
The response spectrum values were computed using {11}, Table Five shows excellent

correlation between the Newmark and Method results.

The same Phantom F-4 jet impact was applied to the first structure degree of freedom.
The properties of the equipment-structure system were those first mentioned in (4.5.3).
Again excellent correlation between the derived result (4.4.2) and the Newmark integration

scheme were obtained (see Table Six).

The first 30 seconds of the El Centro record (see Figure Four) were used in a
verification of the last results presented in Section 4.4. The equipment-structure system

was that of Figure Three with

m=1x10kg M= lkg
k=1981x10"%kgf/m K = 1x10%kgf/m

D=0 V=104

These properties were chosen to reduce the cost of the Newmark integration scheme which
in order to insure accurate results requires fifty time steps per minimum period. Excellent
results were obtained (see Table Seven). The efficiency of the method is certainly realized

given the requirements above on the Newmark scheme.
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Chapter Five

THREE-DEGREE-OF-FREEDOM TERTIARY SYSTEMS

The system of Figure Five, where m; << m, << m; is analyzed in the subsequent
sections. The governing equation for the response of the very light equipment item (m;)
when the system is subjected to an arbitrary ground acceleration i, (1) is given in transform
space by

7 = [N/ D)7, (5.0.1)
where p is the Laplace transform parameter and
N(p) = (231(0117 + wlz)(ZBzmzp + wzz)(2[33w3p + w32)
D(p) = (p* + 281w p + wlz)(pz + 2800 + 0D (P2 + 2B5w3p + w3)
+ y2up (P2 + 2Byw2p + 0,9 (283030 + w3?)

+ v302(p? + 2B1w1p + 01D 2B3w3p + w3

+ 7311)2(2820)21) + wzz) (2,330)3[) + (u32) (502)
. ms ms mj iy
The mass ratios are y3 = —, y3 = ——, and y, = ——. These quantities are not
g iy mny
Y32

independent as y3) = —=
Yu
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5.1 The Uncoupled System

We begin our study of tertiary systems by examining the uncoupled system. Setting
all mass ratios in (5.0.2) to zero, eliminates the interaction effect between the sub-systems.
This is the conventional floor spectrum analysis procedure, where the primary system
motion is determined as if the other systems were not present and used as the input to the
secondary system, etc. An analysis of this type (a cascaded system analysis) will lead to an
overestimation of equipment response when the system is tuned or nearly tuned, since

energy transfer mechanisms are ignored.
Undamped, Slightly Detuned Case

For the undamped slightly detuned uncoupled system one sets all damping coefficients
and mass ratios in the governing equation (5.0.2) to zero and defines the detuning parame-

ters

Wi — Wy w3 7 W)
= a3 =
wf w?

If the detuning parameters are zero, one has a triple zero of D(p) at

P =—wi
Since the detuning parameters are small, we assume the zeros of D{(p) will be slightly per-
turbed from the above. That is
pl=—wil + )
where 5 << 1. Solving for the zeros of D(p) we get the roots
n = Ov X1 X3
In order to invert (5.0.1), we first write the denominator as

D(p) = (p—p) (p=p') (p—p) (p—p') (p—p3) (p—p'3)

where

P11 = iwj
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(44
Py = iwy(l + —2)

2

(44
Dy = fwz(l + ’——'232)

and a prime indicates the complex conjugate. We are able to do this because the zeros of
D{(p) occur in complex conjugate pairs. By evaluating the residues of (5.0.1) at each pole
and collecting complex conjugate terms in pairs, we obtain the following result, correct to

dominant order

ansin(wzr) + a38in

wz(l + _‘3‘_12_)']

w1 + -‘521%»”] * i,

iis (1) = {_W._“i?__m

Q2303

— o 158in

where 3= 13— A3 and

{
£ iy = f £ iig(2) dr
0
We notice that Green’s function (the expression in the braces) becomes indeterminate as

one of the detuning parameters becomes zero.
Damped, Perfectly Tuned Case

Again we set the mass ratios in (5.0.2) to zero and make the further simplification

that
W= W)= ;= @
If the damping factors were also set to zero, we would have again a triple zero at
p? = —w? Since the damping factors are small compared to one we assume the zeros of

D(p) will be slightly perturbed from this triple zero and thus let

p = iw(l +8)

where & is small compared to one. Using this transformation we have for the zeros of

D{(p)

3 = iBls iBZa 153
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and
p = iw(l + i8)
pr=iw(l + iBy) (5.1.1)
p3 = iw(l + iB3)
The roots occur in complex conjugate pairs, which leads to the following result upon
inversion

e~ﬁlwl e—ﬂzwt
4

on e
i3(2) [ sine 1) (B1—B) (B1—B3) " (BB (Br—B3)

el
+ * U
(BB (B—B2) ¢
Damped, Slightly Detuned Case
A similar analysis of the damped slightly detuned uncoupled system yields the follow-
ing zeros of D(p) and their complex conjugates (assuming the damping and detuning are of

the same order and still small compared to one).

D1 = iwz(l + %LZ_ + IB])

py= iw)(1 + iBy)

%37

5 + il33)

p3 = iwz(l +

These yield upon inversion (to dominant order)

arxy + by,

i - —Bowyt] 2%+ b
ii3 (1) = Jwze M 552 | T@e Powyi| G220 T O2¥
afi + bl

a22+b22

a3xyt+ byys

+ (ugéﬁﬁ}mzt 3 3
a3 + b3

ay= ‘“2[012(31“33) + ala(ﬁl—ﬁz)]

where

a, = _2[0112(32“133) + a32(l32“‘,31)]



with

ay = —2la;(B7—B3) + an(B—By)
by =—14(B1—B) (B1—B3) + aai;
by = —{4(B1—B2) (B~B3) + a3

by = —|4(B1—B3) (Br—B3) + apan

a1

x1=cos|wy(l + —=) 4 ; y; = sinw,(1 +

x3 = cos|w,(1 +

2
x3 = coslwyt) ; y; = sinlwyt)

a3
)4

5 5 v = sinfw,(1 +

@)

a32)

2
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One sees that the expression for tertiary system response greatly increases in complex-

ity as the number of parameters is increased. Thus only under limited conditions will we

be able to obtain closed form expressions for response when interaction is included (the

case of greater interest).
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5.2 The Effect of Interaction
Undamped, Perfectly Tuned Case

For the undamped perfectly tuned system with tuning frequency w, substituting

=01 +y) ; p<<l
into D{(p) = 0 gives

D) =n* =y +yn’— G+ yu—yidn+y3 =0

If one assumes y3; and vy, are of order e<<1, then y3, is of order €2 This leads to two

zeros of D(n) of order €” that are

n="T("% (5.2.1)

where y' = y3; + y2; and a zero of D(y) of order € given by

p=21L (5.2.2)
Y

We will assume that the response is dominated by the frequency shift associated with

the roots 7 that are of order €”. This is equivalent to setting the small root to zero. Then

n A
= iw1+—(12—)—-—-]
Y]

Py = iw

and their complex conjugates are the zeros of D(p). An inversion of (5.0.1) by evaluating
the residues at the poles and collecting complex conjugate terms in pairs, yields the result,

correct to dominant order

() = 1= 2sin’(n " Dsin(@D)| * iy (5.2.3)
where

n = wly) /4.
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The Green’s function (expression in the braces above) exhibits a beating phenomena
as described in [15] for the tuned secondary system. The beat envelope in this case how-
ever, is a sine squared envelope (see Figure Six) rather than the sine envelope discussed in
[15]. If we had retained the shift of order ¢ given by (5.2.2), the response would take the

following form

() = {f—"-,-[smw(1+—~‘/1—i>t + sinw(1- Y20
2y 2 2

- 25inw(1+%—3~1,-)l” * i, (5.2.4)
Y

A variety of numerical tests were done to determine the validity of the simplifying
assumption that led to (5.2.3). The Green’s function given in (5.2.4) was evaluated at
specific time intervals, the maximum value and time at which this maximum occured were
stored and compared to similar quantities derived from a numerical evaluation of (5.2.3).
These tests were performed for a variety of mass ratios and are presented in Table Eight.
The results certainly indicate that the response is not dependent on the frequency shift of

order e.

If we follow the procedure used in [15], we can develop from (5.2.3) the following

expression for maximum equipment acceleration

.. 2

lmLax == 75,4((0,0)
where S,(w,0) is the pseudo-acceleration response spectrum for the input ground motion
i, evaluated at frequency o and zero damping. It is certainly not intuitively obvious that
the amplification factor should take the form 2/v'.

Undamped, Slightly Detuned Case

For a3, a3 of order €” and y1,, y3; of order e, the zeros of D(p) are

p2 = ~—m22(1 + )

where v is given by solutions of the following equation
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= (apn+an)n? — (' — apasn
+ (azpyor + aigys) =0 (5.2.5)

In the undamped tuned case, one solution for » was of higher order than the others.
This allowed us to express m directly in terms of the mass ratios [see (5.2.1) and (5.2.2)].
In general this will not be the case when detuning is introduced, as all solutions to (5.2.5)
will be of order €”. One special case which vields one root of order € and two roots of
order €” is when the mass ratios and detunings are of the order given above but combine in
such a manner that asyy, + ajyys; is of order € or higher. Since this is a very unlikely
occurrence, it will not be explored further. Of course, if the detunings are of the order of
v or higher, then they are small enough not to contribute a noticeable effect and the solu-
tion is given by (5.2.3). Similarly if v’ is of order higher than € while the detunings are of
order €”, then the detuning dominates and the system behaves as if it were uncoupled (see
Section 5.1). Given the ordering first mentioned, one could obtain a closed form solution
for the three roots of (5.2.5) that are of order €” by the general solution procedure for a
cubic equation (see [3]). This leads to unnecessarily complicated results, however, and it is
best to solve (5.2.5) for the roots n; j=1,2,3 by a numerical procedure given the numeri-

cal values of the mass ratios and detunings.

Once the roots 7, are obtained, we can construct Green’s function in the manner pre-

viously described. The result is

sinw2(1+%3-)t sinw2(1+%—2-)t

(1) = w; mi—m) G —mn9 (i —n2)(a— 79

) 3
sinw,{(1+ 5 )t (5.2.6)

(1~ n3 (02— ny)
Plots of iig(1) for various mass ratios and detunings are shown in Figures Seven through

Twelve. One notices that a beating phenomena is exhibited, yet it is of a highly irregular

character.
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One can obtain an upper bound to (5.2.6) as given below

) l 1 1
< +
uGlmax w2[l(7}3~n1)(n1“1}z) AT PACPER B

1
+
(n2 = m3) (a3 — M) u

An actual evalutaion of the maximum of (5.2.6) for various parameter values is compared

to this upper bound in Table Nine.
Damped, Perfectly Tuned Case

For B, B2, B3 of order €” and v21, Y32, of order e, the zeros of D(p) are
pi=iw(l+8)) ;j=1273
and the complex conjugates p';.
The &, are solutions of the following

equation:

5= 181+ 8o+ B|a2 = [y/4 + (B8 + i85 + B9)|o

+ '{Blﬁzﬂa + By + l33721)/4] =0 (5.2.7)

We are again led to the difficulties previously discussed. In general, all three solutions of
(5.2.7) will be of order €”. If, given the above ordering, 818,83 + (Biy3 + Biya)/4 is of
order €, then two roots will be of order €” and the other root of order e. The roots in this
case are easily found, however the likelihood that the dampings and mass ratios will com-
bine in such a way is slim. Of course if the 8; (i=1,2,3) are of the order of y', then the

mass ratio effect dominates and the roots are given by (to dominant order)

02

On the other hand if ' is of third order in comparison to 8;, then the damping effect dom-

|
2
inates and the roots &, are given by (5.1.1). Given the ordering first discussed, the most
efficient solution procedure for the roots &; will be a numerical solution of (5.2.7) for

specific numerical parameter values. Once the roots & ; are found, where
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O, =u;+ v

the Green's function is given by

. v ,.xxL‘] _M,ra,\'“‘r’z‘) 1
() = S| OV ) @20 00
ai + b1 aj + bz
~vywyr| @3X3+ b3y .

+ ywplf T3S U« i 2

where
a;=—|(vi—v) Cuy—u3y) + Cuy—uy) (vi—v3)
(dy = - (Vz"‘V;)(UZ'“lQ) + (le"bl])(llz"l@)
ay == — (V;*‘Vz)(tlf‘ul) + (113—“112)(113'“\7[)
by = — (Llr‘llz)(llr‘Ll3) - (VI—VZ)(V]“VS)
by = —{Cur—u) Cug—13) — (vy—v) (vy—v3y)
b3 = (U3"Ll|)(U3“uZ) - (V3~ V1)(V3—- V2)

and

xp=coslwy(1 + u)dd ; yy=sinfwy(1 + u) 4
x3=cos|lwy(1 + u)ft ; yy=sinjw,(1 + uy 1

x3=coslwy(1 + ) . y3=sin|w(1 + u3)4

Damped, Slightly Detuned Case

Assume now that ayy, a3, By, B2 and B3 are of order e” while y2 and y3; are of

order €. The zeros of D{(p) are

p=iw(l +8) ; j=123

and the complex conjugates p',. The & ; are solutions of the following equation:

[‘8]33 + [8i(/3|+ﬁz+/33)+4(alz+a3z) 87
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8B B IBHBIBI 4B+ @,

""4 f(,Bz“"ﬂ})a 12""20]20{324‘27’]8*‘
[‘8 iB\B B34 1B 23— 4B B3 12+ 2 iy 30

_2iBI'Y32”‘2iB3721“7320‘l2‘"721a32] = 0. (5.2.9)
For this particular ordering, the solution of (5.2.9) will, in general, yield three roots
of order €”. These roots are best found by a numerical solution of (5.2.9) for specific
numerical parameter values. Once the roots &, are found, where
8= u; + iv;
the Green’s function is given by (5.2.8). If the relative orders of the detunings, dampings,
and mass ratios are not as given above; then certain effects will dominate and the problem

reduces to one of the particular cases previously discussed.
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Chapter Six

MULTI-DEGREE-OF-FREEDOM TERTIARY SYSTEMS

A multi-degree-of-freedom tertiary system is depicted in a general way in Figure Thir-
teen. The system has a discrete number of degrees of freedom. The links joining the pri-
mary system [denoted (1)] to the secondary system [denoted (2)] as well as those joining
the secondary system and tertiary system [denoted (3)] are rigid. The primary system has
n't degrees of freedom (which include the link attachment points). The secondary system
has n'? degrees of freedom (which include the attachment points of the links to the tertiary
system but not the attachment points of the links to the primary system). The tertiary sys-
tem has n® degrees of freedom (which do not include the link attachment points). The
fixed base properties of the primary system are obtained by fixing the ground and removing
the secondary and tertiary systems. To obtain the "fixed base” secondary system properties,
the links to the primary system are fixed and the tertiary system is removed. Similarly the
"fixed base" properties of the tertiary system are based on the "fixed link" condition. We
require that all elements of m"” are small in comparison to all elements of m'? which in
turn are small in comparison to all elements of m‘Y. A similar requirement is made of the

stiffness matrices k', k2, and k" described in Section 6.1.

In the subsequent sections, expressions for the acceleration response of the very light
equipment [system (3)] degrees of freedom, in terms of the properties of the sub-systems
and the excitation, are determined. The completely detuned system (when all of the
natural frequencies of the fixed base sub-systems are well spaced) is analyzed in Section
6.1. The tuned tertiary system (when a natural frequency of the primary system is close to
a natural frequency of the secondary system which in turn is close to a natural frequency of

the tertiary system) is discussed in Section 6.2. Insights gained from the sub-problem soli-
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tion approach of Chapter Four are used to deducc the response of the tuned tertiary sys-
tem.

Finally, the maximum acceleration of each very light equipment degree of freedom,

iiz(”l_m, is determined in terms of the pseudo-acceleration response spectrum description

of the earthquake excitation and the system properties.
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6.1 The Completely Detuned System
We begin our study of tertiary systems by analyzing the system shown in Figure Thir-
teen when all natural frequencies are well spaced. The basic equations of motion for earth-

quake ground shaking are

Mii + Cu + ku= CRu, + CRuy, (6.1.1)
where
m(3) 0 0 k(3) k(32) 0
M=10 m? o K= Kk® @ @
o 0 m(l). o k(lZ) k(l)'
c(3) c(32) 0 u(g) l.(3)
C=|c® cm“ e S u= el . R= e
0 12 W7 a® ey
m?D = mV+ a? . kD = k™ 4 gW®
m? = m? + m® : k@ = k@ 4+ @
and

u®, u®, u'" are the absolute displacements of the tertiary system, secondary system,

and primary system respectively

mm, km; mm, km; and m(”, k" are the fixed base mass and stiffness for the terti-

ary, secondary, and primary system respectively

k) = k07 gre "cross-coupling” stiffness matrices between the tertiary and secon-
dary systems (the elements of these matrices come from the fixed base tertiary system

stiffness)

T . . . .
k12 = k@Y7 are "cross-coupling” stiffness matrices (the elements of these matrices
come from the fixed base secondary system stiffness)

2)

@ and k® are the contributions to m® and k® " from the tertiary system
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)

‘" and k' are the contributions to m'" and kY from the secondary system

P 1@ and 'Y are the pseudo-static influence coefficients for the tertiary, secon-

dary, and primary system due to the ground motion u,.

The damping is of the same form as the stiffness. The zeros in the mass matrix are the

result of a lumped mass formulation.
The associated eigenproblem is, of course, given by

Kx = AMx (6.1.2)

where x is of the same form as u. Let us perform the transformation

x = Ty (6.1.3)
where
6(3) O 0
T=|0 &% o0
0 0 (i)(l)

and 6(3), &(2), &V are the fixed base modal matrices of the tertiary, secondary, and pri-

mary system respectively.

Pre-multiplying (6.1.2) by T7 results in

Ky = A¢
where
K=T7KT
We solve the above by classical perturbation. Separating the zeroth and first order

terms in K and discarding second order terms we have

K=H+W
where
w(3)2 0 0 0 A(23)T 0
H=1| 0 w(2)2 0 W= A2 0 A(IZ)T
O 0 w(l)z 0 A(12) O

2 2 2 . . . N
and " , w? R o'V are diagonal matrices of the tertiary, secondary, and primary sysiem
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squared natural frequencies respectively. Also
A &)(Z)Tk(EB)&,O)

A2 qf)uﬁk(m@(z)
Since all frequencies are well spaced, we have a non-degenerate problem and we

proceed with the theory of Section 2.1.

A solution of the zeroth order problem gives

NO =@ =12, .., 4@
ANY,, =0 s k=12,...,2? (6.1.4)
"D, oy, =0 =12, ™
and
O—e, ;i=1,2,..., 00454, (6.1.5)

where e, is a vector of dimension 1P+ nP4 1M x 1 with a one in column i and zeros else-
where. To facilitate the subsequent discussion, we will assume the range of the indices i,
J» k, [ will be that given above. By (2.1.7) we have
AV =0

for all i.

Thus the eigenvalues of (6.1.2) to first order are given by (6.1.4). Calculating the
first order perturbations in the eigenvectors we have from (2.1.10) the following non-zero
values

23

W. Wnu)%—k,j = Akj

j~ﬂ(3)+k =

- - 402
W in®s,04, = Woo 0 00, = Ak

and hence from (2.1.8)
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of
4‘,‘,8)“(2)“ = |8
0

where 0, 0, and 0 are zero vectors of dimension n(”, nm, and n'V respectively. For a par-

ticular value of j, the vector g, [dimension (#®x1)] has components k=1,2, ..., 1"

given below as

23
2 2
((UJ(S) - (!)]((2) )

For a particular value of k; the vector h; [dimension (n®x1)] has components

j=1,2, ..., n® given below as
23
AF
2
(w P~ w}”z)
while the vector f; [dimension (#'Vx1)] has components /=1,2, ..., n'D given below as
12
AK”

2 2
@@ =0

For a particular value of [, the vector g, [dimension (n®x1)] has components
k=1,2, ..., n? given below as
Al§(12)
(V' — 0@
These first order perturbations are added to the zeroth order perturbations given in

(6.1.5) and transformed back to real space by the transformation given in (6.1.3). The

result is
453 3
; b
29 . 2 ()
x; =g X 04, = |Pk
0 £
O!
X0 ,@4 = 184 @
2 (D
b,

For a particular value of j, the vector g!(z) [dimension (#n@x1)] is



(2) 2 () 4 0n
@ _ % b1 Ay
g, = 2

32 p2
For a particular value of k, the vector h}> [dimension (n®x1)] is
3 2 (3) 4 (23
5 J Ak(j )

nl =

2 2
S -0

while the vector f{ [dimension (n‘Vx1)] is

(0 & (I)A (12
1) _ ! tk
=3

2 2
= RN

For a particular value of J, the vector g, ? [dimension (#®@x1)] is

) T () 402
z ¢ ALY

g/‘(z) = T
2 2
k=1 (w,(” - w;(cz) )

The presence of the zero vector in both x; and b SEYCI is highly suspicious.
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In a

modal approach, the tertiary system response would be a function of the convolution of

oscillatory harmonics whose frequencies are the natural frequencies of the secondary and

primary system with the ground motion. Although it is a possibility that there are no har-

monics associated with the tertiary system natural frequencies contributing to the response,

it is not a likelihood. We therefore resort to higher order (second order) perturbation

theory for the eigenvectors. Increasing the accuracy of the eigenvalues is not necessary. By

the theory of Section 2.2 we have

h; 0
=10 B, = es
f 0

h/

"’,(1%3)4,7‘2’“'—" 0

e

For a particular value of j, the vector h‘,f has components r=1,2, . .

2y (23) 23
n AP 4P

2 2 2 2
k=1 (ij - w,m )(w}” - m;(f))

., n® given as
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for r# j and whose jth component is

1 a2 AI((ZJ)
b J
) ) 2
2 (w’u/ __m;((Z))J
while the vector fj' has components /=1,2, ... ,nm given as
@ 12) 4 (23
d AP 4G

Z

2 2 2 2
s (wJQ) _ w,(l) )(wj(.?) - wéz) )
For a particular value of k, the vector g, has components s=1,2, ..., n? given as
3) 23)2
3

2 2 2 2
=1 (e ;(cz) - cubw e ,((2) - w}” )

for s5# k and whose kth component is

2 2
1 %) Ak(j23) Py A[/((]Z)
2 2 2 2
25 (w2 -w»,(3)) = (@ = oY)
For a particular value of I, the vector h,” has components j=1,2, ..., n™ given as
@ 12) 4 @3
a AP 4P
2 2 2 2
k=1 (o [V — w‘,(” YV = w2
while the vector f, " has components =1.2, . . ., n" given as
@ 12)2
5 Az‘;( )

Z

2 2 )2 2
k=1 (@ V"~ @V YoV — o)

for =1 and whose Ith component is

1 g) A”((lz)
Ty T o

2. (0" = 0®)
We include the second order corrections above only where they give a dominant con-

tribution (i.e. in place of 0 in ¢ ! and 0" in 4:,(18)”(2)“). Then by (6.1.3) we have

2 (3 3)
j hy
= (V2N 2@
X =1§; s X, 04, = 1P
(1
gj( ) fl(cl)
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h I’ha(3)

— *(2)
X 0,00 = 18

31

**(3)

where the only new quantities are g ;m and hy For a particular value of j, the vector

g;(l) is

. . el ‘; M 4 (12)A (?_3)
YA

2 2 2 32

For a particular value of /, the vector h;” ¥ is

72 3 2 (3) 4 (12) 4 (23)
b AT Ay

**(3) 2 Z

2 2 2 2
k=1 j=1 (w(” - w}” )(w,m - a),@)

A straightforward modal solution of (6.1.1) yields

i = Xy (6.1.6)

where

X = [x,-] ci=1,2, ., a4 @4

and y is a vector whose rows are given by

= {F ,\[):euﬁ"/r’(sin(\/)\_,‘t)

where

T, o X,‘IMR/X,'TMX,'

Calculating the participation factors we have (1o dominant order)

2) 23
r=P%+ 3 G
/ ! k=1 ( (37 _ (2)2)
a2 C,,((”)Ak(f”

2 2 2 2
=1k (w (3% _ w,(” )(wj@) - wz((‘Z) )

r O = P(?) +

where
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= T T T
Pl(l) - t;b/(” m(i)r(l) P(Z) ¢(2) (2)1.(2) , P(3) ¢(3) (3) (3)

12 !
Ci? = P4,

(23) _ 2) 23)
P = PPAS

From (6.1.6) we obtain the following expression for tertiary system response for the com-

pletely detuned system

-8 P0
i) = zd) (3>P(3) (3) g
Jj=1
23 (2 ¢ 3)C(21) A
+ < wjme B

2 2
k= (@ 3 — 0 )

Sm (o (3)1)

" sin(w (3),)

_ 3
s 23 5, ¢z )C IZ)A (23) (3)€~ﬂ(” /(3),Sm( 3 )
2 2 2 2 @ | @
P e e A A L )(“’;3) — i)
22 (3) (23) 3Dy (2) )
+ z - o Pe P Sin (0P
i=1j=1 (o 2 w,,(” )
3
N RCIIRITE) ‘f’z D 4 (23) (2)e_g,<(2’w,§2’r81n(w @)
2 2 2 :
=1 i1 =1 (@ (27— @ [ )(w;?) — o)
s A1 @, ¢z3)c(12)A (23) (l)e“‘ﬁl(”“'/m sin(e Ol * i 6.1.7)
wl g B -
=1 k=1/=1 (@ {1 ‘”}3)2) (@ 1(”2 - o)

for z=1,2,... n?.
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6.2 The Case of Tuning

Of course a straightforward application of the transformation T to the eigensystem

{(6.1.1) in the case of tuning
w7 = (1 + o )g (02
" Viili n

2 2
=0+ a(g,z,”)w,(,ﬂ

where o 17 and « 2% are of first order, results in the mixed problem discussed in Section
2.4. We therefore attempt to decompose the system into a non-degenerate and degenerate
part. Let us first review the procedure used for the multi-degree-of-freedom secondary sys-

tem.

In Problem Three of Section 4.2, three terms arose, two of which became singular
under the condition of perfect tuning [see (4.2.4)]. It was these two terms that combined
to form the dominant response described in Section 4.3. We therefore could have solved
the problem of Section 4.3 in a slightly different manner. That is to realize that the
response (4.3.6) is found by beginning with the completely detuned system resuit (4.1.12),
subtracting the terms of Problem Three that become singular at perfect tuning, and adding
the Green'’s function which results from a combination of these "singular" terms. We shall

take this approach here.

We begin by introducing the transformation

X=T3¢l
where
¢ 0 0
T;=1 0 62 0 (6.2.1)
0 0 ‘;(1)

Using this transformation instead of the transformation T of Section 6.1 results in the fol-

lowing response
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R g0y ),
i00 = (0P it
(3} ~(23)
_,.,(_l.)_.._g___.m_ @) B 3y,
4 - o w, € Sifitw ' 1)
(mé3) @y )
¢Z(3)c(l2)[4”(33) 3) ,_ﬂu) (()1 3
2 : — —w Ve sin(w &1
8 — 00 - @)
4 m @n
3 (3 ~(23)
70 C w( )e~ﬁ () ,52) Sll‘l(w (2)
2 N
(w 2) w;ﬁ)
(3) 12 23
25 Con Ao @, G (0 @)
- . - 5 e sinle ¢
(0@ — @) (@ @7 — ¢ 7
n n
3) ~ (12 4 (23)
d P2 4 —g Wy ) .
20 “mn Ao (l) B @ m sm(w(”t) * iy (6.2.2)

2 2 2 2
((l),(nl) _‘(1)(53) )((0,;1) *—w(z))

We see that all terms of (6.2.2) become singular except the first when we have perfect

tuning. We therefore subtract these terms from (6.1.7).

We now combine the singular terms of (6.2.2). Notice that the second and fourth
terms of (6.2.2) are of the same type as the "singular” terms of (4.2.4). As the frequency
approaches @, 2) these terms will combine in a similar manner as they did in Section
4.3. The result can therefore be written directly as
C(23)
“no

—i) (0} < il 6.2.3)

uZ(J)(,) =g 3
(2?2
wﬂ

z0

where g (3) (1) is the same as the G (1) of Section 4.3 if one replaces the a 32, vy }?, B2,

W of 4 (0 with —a (2, vy @ g9, (2 respectively.

Finally we see how the third, fifth, and sixth terms of (6.2.2) combine. This is done

by letting

u = T3Q
where T;is given in (6.2.1) and
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Iq(S)
q(Z)

q(l)

Q=

When the above is substituted into (6.1.1) and premultiplied by Ty an "equivalent" three-
degree-of-freedom tertiary system results. This system is solved by Laplace transform

methods. The governing equation is

= [N(p)/ D(p)]F, (6.2.4)

where

N{p) = f(3)[(p2+23 ,(,Z)w ,(12)p+w ,(,2)2) (p2+2ﬁ,<,,”w ,(,})p-i"w,(,,l)z)
— (B1D 4 412) ] f(”[(pZHB,,, o D ptes D) (B2 py 4 23
+ f~(1)[(3’§zlnz>+A’£‘1”2>)z]
D(p) = (p*+28! 3) (3)p+w (3)2)[(p2+2B,(,2)w,(,2)p+w,52)2)'
(P28 Dy D ptey D) — (B,S,LZ)IJJFA,L‘,,”)Z] (B2 pt 4 2).

(428 Do prs ) (BEY p+ A SV
and
nr 2) nr 3
8,9’12) ¢ ( (12)¢ { , Bn(g.’:) ¢ ( (23)¢( )
2 mT 5@ nT 3
A”(,}.,Z)""" r(n k(IZ)d’r(:) , A(23) ¢( ) k(23)¢( )
In a manner similar to that used in Section 4.3, one can establish that
f(z) f(3) =0
We proceed with an inversion of (6.2.4) by the methodology of Section 4.3. It is readily
apparent that the solution will be given as

(3) (3) CHz)A > (3)

. a mn no . ..

i, (1) =1, o4 (D} * i, (6.2.5)
Wy

where qm(t) is the Green’s function of Section 5.2 with the a3, @33, Y21, ¥32 B1, B2 B3

of that section replaced with a 17, « @Y, y 12, 29 gl @ g respectively. The
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guantities

2
12
A%

& Ry
(2)?

a2 _
mn

A
[3=)
L¥e)
%
]
P
T
2
ey
fO%]
L
b

£
X~
=
o
[—

are "effective" mass ratios.

The total response for the tuned tertiary system is then given by adding (6.2.3) and

(6.2.5) to the completely detuned result (6.1.7) minus the singular terms of (6.2.2).
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6.3 Response Spectrum Analysis

Since all frequencies of the completely detuned system are well spaced, a conventional
summation rule can be applied to the results of Section 6.1 when the primary system is sub-
jected to long duration earthquake ground shaking. Using the square root of the sum of

the squares procedure, we obtain

a3 . e d’ (23)
.- (3) Np® 4 Zj
i ~{ZjePrY + 3
o J=1 k=1{ (@ ,(3)2 — w;g?‘)z)

2

(i) (3) ~ (12) (23)
2 ¢, CLP A SHw P89
2 2 2 FARTS
P (w M7 _ [(1) )(0)}3) - ("/EZ) )
a1 3 23
7 (3) ki
> Z 4 ) ()2
k=11 j=1 (wk et (J)j )
(3) 2
Ml ¢Z C (lz)A (23)

$382)

2 2 2 2
RO «w}”)(w,‘}’ — M

]
D] 2,0 5 (3)C(12)A (23)

| ke ki 2. (1) o (1)
Z 22 = SA(“’I B )
2 2 2 2
()] :1(3) )( [(1) ,£2))

1=1} k=1j=1 (e
where S,4(w,B) is the pseudo-acceleration response spectrum evaluated at frequency w and
damping factor 8. Displacement and velocity response can be obtained by substituting
appropriate design spectra in the above.

For short duration ground excitation, the dominant part of the response, in the case
of tuning, is given by the terms involving q(3)( 1) and q(3) (#) given below (since these
exhibit a beating phenomenum) provided the coefficients multiplying these time functions
are not so small as to markedly reduce the beating affect (see the discussion in Section 4.4).
Assuming this is not the case, then the maximum equipment response is best found by a

numerical evaluation of the following expression



V() =

(23)

7 (3) ~no
TPz

n

- (3)

”“"’""(2)2 4cg (0] +

2 (3
0

(12) 4 23
Cﬁiﬁ

HO

4
© '(12)

&i((;? QIR
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Chapter Seven

FURTHER RESEARCH

The problem of tuning in multi-degree-of-freedom secondary systems and in multi-
degree-of-freedom tertiary systems was discussed herein. An important problem which
deserves attention is that of clustering. An example in the multi-degree-of-freedom secon-
dary system would be a natural frequency of the equipment that is close to more than one
natural frequency of the structure (i.e. the structure has a number of natural frequencies
that are close to each other). It was found in the case of simple tuning that large
amplifications of equipment response are possible. It is expected that clustering will
significantly affect such amplifications. Of course, the equipment could also have a number
of close frequencies as well. Clustering is also possible in the multi-degree-of-freedom ter-
tiary system.

The sub-problem approach of Section 4.2 might be used to analyze systems with clus-
ters.

Many of the results of this work can be used in a more comprehensive random vibra-

tion analysis of equipment response.

Finally, a greater variety of numerical tests should be performed.
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Chapter Eight

CONCLUSION

Various equipment-structure models are explored in this work. Results for equipment
response are derived through the use of perturbation methods. The significant interaction
effect present in tuned or nearly tuned systems is considered and treated in a rational
manner. Expensive numerical integrations and ad-hoc methods are avoided by the use of
the results portrayed herein that depend solely on data that is already available to the struc-
tural designer: the fixed base properties of the equipment alone, the structure alone; the
manner in which they are connected; and the characterization of the excitation - either in

terms of a response spectrum or as a given time-varying function.



Figure One

THE TWO-DEGREE-OF-FREEDOM SYSTEM
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Figure Two

MULTI-DEGREE-OF-FREEDOM SECONDARY SYSTEM
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Figure Three

EQUIPMENT-STRUCTURE SYSTEM USED FOR NUMERICAL EXPERIMENTS
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Figure Five

THREE-DEGREE-OF-FREEDOM TERTIARY SYSTEM
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Figure Thirteen

THE MULTI-DEGREE-OF-FREEDOM TERTIARY SYSTEM

Z

88



Table One

FREQUENCY COMPARISON FOR PERFECT TUNING

12 2
[w,(n) =w’§z)}

DIFFERENCE IN PERCENT

m=1,n=1 | m=1,n=2 | m=2,n=1
Y mn X € 5.67 093 107
Fregs. of -.026* +.030 +.021
combined -.030* -.014* -.035*
system +.005 -.013* -037* | e=10"*
(num. incr. -.013 -.001 -.038
order) -.003 .000 -.016
Fregs. of -.307* +.293 +.223
combined =271 -.138* -.375*
system +.048 -.160* -335% | e=1073
{num. incr. -.134 =037 -.385
order) -.029 -.009 -.169
Fregs. of -3.49* +2.88 +2.44
combined -2.37* -1.11* -3.87*
system +.459 -1.75% -2.81* e =107
(num. incr. -1.34 -.393 -3.78
order) -.297 -.094 -1.711




Table One (Continued)

FREQUENCY COMPARISON FOR PERFECT TUNING

m——

w

1)2 (2)?
M =w”)}

DIFFERENCE IN PERCENT

m=2,n=2 | m=3,n=1 | m=3,n=2

YV mn X € 980 4.22 038

Fregs. of +.077 -.031 +.039
combined -.001 -.106 -.048

system -.013* -.052* -.022 e=10"*
(num. incr. -.018* -.053* -.021%

order) -.008 -.014 -.022%

Fregs. of +.777 -.285 +.398
combined -.821 -1.08 -.458

system -.154* -.546* -.241 e=10"°
(num. incr. - 153* -.513* -.208*

order) -.087 -.132 -211F

Fregs. of +7.43 -1.63 +4.00
combined -7.34 -9.85 -4.29

system -1.57* -5.63* -2.28 € =102
(num. incr. -1.46* -4.65*% -2.09*

order) -.876 -1.33 22,11




Table Two

FREQUENCY COMPARISON FOR COMPLETE DETUNING

DIFFERENCE IN PERCENT

e=10"" ] e=107| e = 1077
Fregs. of +.122 +1.20 +10.7
combined -.133 -1.22 -9.95
system +.019 +.192 +1.78
(num. incr. -.031 -.334 -3.16
order) -.005 -.055 -.554

91



Table Three

RESPONSE MATRIX COMPARISON FOR PERFECT TUNING

2

2
o]

DIFFERENCE IN PERCENT
m=1, n=1 m=1, n=2
VY mnX€ 5.67 .093
DOF 1 DOF 2 DOF 1 DOF 2
Fregs. of +3.65* +4.57* +.028 +.035
combined -2.32* -3.23* +1.28* +.980*
system .000 +.013 -1.26* -1.26* e=10"*
(num. incr. +.040 -.049 +.007 -.012
order) -.005 +.004 +.016 .000
Fregs. of +1.63* +9.13* +.229 +.333
combined -7.68* -10.5* +5.09* | +1.46*
system -.004 +.144 -4.76* -1.66* | e =1073
(num. incr. +.406 -.468 +.080 -.113
order) -.003 +.047 +.008 +.018
Freqs. of +14.9* +23.3* +2.17 +7.78
combined -28.6* -36.6* +26.9* -9.82*
system +.025 | +1.41 -22.5% +9.32% | e=1072
(num. incr. +4.02 -5.16 +1.35 -1.12
order) -.006 +.456 -.107 -.151

DOF 1 = First equipment degree of freedom

DOF 2 = Second equipment degree of freedom




Table Three (Continued)

RESPONSE MATRIX COMPARISON FOR PERFECT TUNING

2 2
{w’g) xwf})]

DIFFERENCE IN PERCENT
m=2, n=1 m=2, n=2
Y mn X € 107 .980
DOF 1 DOF 2 DOF 1 DOF 2
Fregs. of .000 -.021 +.084 +.077
combined +2.28* -.665* -.321 -.275
system -2.24* +.701* -1.12* +1.47* | e = 107*
(num. incr. -.029 -.099 +1.16* -1.50*
order) +.012 -.003 -.007 +.168
Fregs. of -.009 -.197 +.829 +.831
combined +8.41* -.848* -3.31 -2.87
system -7.94* +1.12* -3.52* +4.72% | € =103
(num. incr. -.350 -1.00 +3.85* -5.05*
order) +.131 -.024 -.067 +.120
Fregs. of +.027 -1.69 +7.12 +7.07
combined +43.9* +11.5% -34.5 -28.9
system -35.3* -12.3* -11.1* +16.1* e=10"2
(num. incr. -4.10 -11.1 +14.3* -19.7*
order) +1.53 -411 -.724 +1.18

DOF 1 = First equipment degree of freedom

DOF 2 = Second equipment degree of freedom



DOF 1

DOF 2

Tabie Three (Continued)

RESPONSE MATRIX COMPARISON FOR PERFECT TUNING

!

2 2
‘m},}) =mi(72)}

DIFFERENCE IN PERCENT

m=3, n=1 m=3, n=12
YV X € 4.22 .038
DOF 1 DOF 2 DOF 1 DOF 2
Fregs. of -.009 -.055 +.008 -.001
combined +.327 +.262 +.384 +.329
system +.237% -.354* -.096 -.016 e=10"*
(num. incr. -.240* +.350*% +2.99* -.978*
order) +.005 .000 -2.94* +.921*
Fregs. of -.123 -.522 +.100 -.019
combined +3.13 +2.62 +2.76 +2.19
system +1.27* -.626* -.936 -.164 e=10"3
(num. incr. -1.33* +.539* +9.30* -3.25*
order) +.037 -014 -8.70* +2.62%
Fregs. of -.874 -4.27 +.985 -.158
combined +20.6 +29.5 +29.3 +22.5
system +7.76* +.558* | +29.3* -13.3* e=10"?
(num. incr. -10.3* -4.31* +29.3* -13.3*
order) +.400 -.139 -22.8*% +5.37%

= First equipment degree of freedom

Second equipment degree of freedom




DOF 1

DOF 2

RESPONSE MATRIX COMPARISON FOR COMPLETE DETUNING

Table Four

DIFFERENCE IN PERCENT

e=10"* e=10""
DOF | DOF 2 DOF 1 DOF 2
Fregs. of +.296 +.307 | +2.86 +2.99
combined -.637 -.587 -6.34 -5.77
system -1 +.128 -1.08 +1.26
{(num. incr. +.193 -193 | +2.36 -1.93
order) +.005 +.014 -.014 +.079
e= 1077
DOF 1 DOF 2
Fregs. of +21.9 +23.1
combined +83.7 +84.5
system -9.95 +11.9
(num. incr. | +18.4 -19.1
order) -.170 +.805

First equipment degree of freedom

Second equipment degree of freedom
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Table Five

PHANTOM EARTHQUAKE

Yl DOF | NEWMARK | METHOD | % DIFF
(approx.) (max. acc. (max. acc.
in g) ing)

1 2.9480 2.8709 2.62
.03

2 3.1169 2.8709 7.89

1 4.9708 4.8314 1.19
003

2 49375 4.8314 1.24

1 5.7240 5.6207 1.80
.0003

2 5.7706 5.6207 2.60

DOF = Equipment degree of freedom

% DIFF = Percent difference



Table Six

PHANTOM FORCE

Y1 DOF | NEWMARK | METHOD | % DIFF
(approx.) (max. acc. (max. acc.
ing) ing)
1 1.292 1.295 0.23
003
2 1.294 1.295 0.08
Table Seven
EL CENTRO
Y11 DOF | NEWMARK | METHOD | % DIFF
(approx.) (max. acc. (max. acc.
ing) ing)
1 3.326 3.565 6.29
.003
2 3.341 3.565 6.70
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Table Eight

GREEN’S FUNCTION COMPARISON

Y21 Y31 |GFy| ey | LOCATION | |GFyl s | LOCATION
(rads.) (rads.)
107 | 107° 1.999 142.9 1.998 142.9
1073 | 6x107% | 1.999 73.8 1.998 73.8
1072 | 1074 1.990 42.4 1.984 42.4
1072 | 6x107™* | 2.000 23.6 1.995 23.6
107 | 1072 1.776 11.0 1.738 11.0

|GFlpmax = Maximum of the Green’s function given in equations (5.2.3) and (5.2.4)
2

respectively.



ltig|max = Maximum of equation (5.2.6)

& = 10“3, Y21 = €.

Table Nine

UPPER BOUND COMPARISON

v31 | anz | an | liglmx | UPPER | % DIFF
BOUND
€2 | Ve | Ve | 8655 1000. 15.5
€2 | 3ve | Ve | 4525 467.7 3.4
e2 | Ve | 0O 857.3 871.2 1.6
6e? | Ve | Ve | 280.4 285.5 1.8
6e? | 3ve | Ve | 3354 350.0 4.4
62 | Ve | 0 | 2681 304.9 13.7
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