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A B S T R A C T

Behind-the-meter distributed energy resources (DERs), including building solar photovoltaic (PV) technology
and electric battery storage, are increasingly being considered as solutions to support carbon reduction goals
and increase grid reliability and resiliency. However, dynamic control of these resources in concert with
traditional building loads, to effect efficiency and demand flexibility, is not yet commonplace in commercial
control products. Traditional rule-based control algorithms do not offer integrated closed-loop control to
optimize across systems, and most often, PV and battery systems are operated for energy arbitrage and demand
charge management, and not for the provision of grid services. More advanced control approaches, such as
MPC control have not been widely adopted in industry because they require significant expertise to develop
and deploy. Recent advances in deep reinforcement learning (DRL) offer a promising option to optimize the
operation of DER systems and building loads with reduced setup effort. However, there are limited studies that
evaluate the efficacy of these methods to control multiple building subsystems simultaneously. Additionally,
most of the research has been conducted in simulated environments as opposed to real buildings. This paper
proposes a DRL approach that uses a deep deterministic policy gradient algorithm for integrated control of
HVAC and electric battery storage systems in the presence of on-site PV generation. The DRL algorithm, trained
on synthetic data, was deployed in a physical test building and evaluated against a baseline that uses the
current best-in-class rule-based control strategies. Performance in delivering energy efficiency, load shift, and
load shed was tested using price-based signals. The results showed that the DRL-based controller can produce
cost savings of up to 39.6% as compared to the baseline controller, while maintaining similar thermal comfort
in the building. The project team has also integrated the simulation components developed during this work as
an OpenAIGym environment and made it publicly available so that prospective DRL researchers can leverage
this environment to evaluate alternate DRL algorithms.
1. Introduction

Behind-the-meter distributed energy resources (DERs) include local
electricity generation (e.g., solar photovoltaic [PV]), energy storage de-
vices (e.g., battery units), and thermostatically controlled loads (TCLs)
such as heating, ventilation and air conditioning systems (HVAC) [1].
DERs are transforming the demand side of the grid from traditionally
passive to active systems [2] and they are increasingly being con-
sidered as solutions to support carbon emissions and energy saving
goals, and to maximize grid reliability and resiliency [3]. However,
coordinating these resources with traditional building loads to improve
load flexibility and grid response is not common practice in commer-
cial control systems [4]. The challenge is how to implement a DER
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1 These authors contributed equally to this work.

energy management system such that the control strategy can fulfill
the grid flexibility commitment without affecting building services
(e.g., occupant comfort) [3].

Traditional rule-based control algorithms do not offer integrated
control to coordinate across systems and they typically operate sub-
optimally [4]. On the other hand, several advanced control algorithms
have been proposed in academia in the last two decades, including
Model Predictive Control [5–7], Particle Swarm Optimization [8,9],
Neural Networks [10,11] for similar energy management problems.
Nevertheless, these algorithms have not been adopted by the controls
industry at scale, yet. For instance, model-predictive control (MPC) is
currently the state of the art for building controls, particularly those
vailable online 13 September 2021
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Nomenclature

$saving(%) Cost savings %
$𝐸baseline Cost of Net Energy Consumption by base-

line
$𝐸DRL Cost of Net Energy Consumption by DRL
%𝐸saving Energy savings %
𝑎𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 Explanation for the abbreviation
𝐸baseline Net energy consumption by baseline
𝐸DRL Net energy consumption by DRL
𝐸net Net energy consumption
𝐸saving Energy savings
𝑃batt Net battery power
𝑃bld Building load
𝑃pv PV generation
𝛥shedhp Differential shed
𝛥takelow+med p Differential take
𝜂overshoot Number of timestamps when ZAT overshot

thermal comfort band
𝜂total Total number of occupancy timestamps
𝜇𝜈 Mean of comfort violation
𝜈 Comfort violation
𝜎𝜈 Standard deviation of comfort violation
𝜁𝜈 Comfort violation in (◦C-h)
a Total floor area
Pbaseline,hp Baseline demand during high price
Pbaseline,low+med p Baseline demand during low+medium

price
PDRL, hp DRL demand during high price
PDRL, low+med p DRL demand during low+medium price

that coordinate diverse end-use systems [12]. However, MPC requires
a dynamic model (typically based on first principles or a mix of physics
and data) of the system under control. Developing these models need
significant expertise and it is time consuming, making this approach
difficult to scale. Since buildings are heterogeneous, different models
are required for each building. Without addressing these scalability
issues, MPC algorithms for DERs cannot be broadly implemented.

With the development of machine learning algorithms and avail-
ability of inexpensive computing power, Deep Reinforcement Learning
(DRL) has emerged as a promising alternative to MPC for manag-
ing DERs and building loads [13]. Hence, this work explores the
development of a DRL controller and its deployment in an actual
building to study the benefits and challenges of such approach and to
evaluate potential scalability issues. While there are multiple ways to
develop a DRL controller, the process generally involves formulating
an agent that is in a partially observable environment and learning the
best decisions through interactions with the environment. The agent
observes environment snapshots, and chooses an action, receiving a
reward value for this action in the current state. It continues to receive
feedback on its actions until a terminal state is reached. The objective
is to maximize the cumulative reward over all actions in the time
the agent is active [14]. Nevertheless, allowing a DRL controller to
train directly in a real building (the environment) by actively changing
setpoints (online learning) could result in discomfort to the occupants
nd damage to the equipment. Hence, in the literature, the agent is
ometimes trained using historical operational data before deploying
t to real buildings (offline learning). However, as operational data
rom an existing building might be insufficient to represent all possible
ystem states, oftentimes simulation models of the building (e.g., using
imulation software such as MATLAB and EnergyPlus™) are used to
2

rain the DRL controller [15].
This paper proposes a DRL-based approach to control DER and test
t in a real building that includes building PV and electric battery
torage. The rest of the paper is organized as follows: in Section 2 we
eview the key concepts of Reinforcement Learning (RL) 2.1, present
summary of the existing research that have applied RL in building

ontrols 2.2, and consequently, we identify the research gaps in the
iterature and state the contributions of this paper 2.3. In Section 3
e present the methodology, including the details about the field test
nd experimental setup, and in Section 4 we describe the design and
raining of the DRL algorithm. In Section 5 we present the results of
he experiment, and Section 6 dives into detail about some of the
nteresting topics of discussion, including future directions of research.
he paper is summarized and concluded in Section 7.

. Related work

This section details the reinforcement learning background, specif-
cally the Markov Decision Process. It also discusses the Deep Deter-
inistic Policy Gradient (DDPG) method and how DRL can be used

or building controls. Finally it highlights the research gaps that were
dentified through literature review and the contributions of this paper.

.1. Learning via Markov decision processes

.1.1. Reinforcement learning overview
Reinforcement learning (RL) is a class of machine learning algo-

ithms that are based on a trial-and-error learning approach. An RL
gent interacts with the environment, learns the dynamics by directly
rying different control actions and observing the consequences through
ome notion of rewards. This typically involves the agent trying a signif-
cant number of actions (e.g., HVAC setpoints, battery setpoints) from
possible action space in the environment (e.g., building, DER system)

hat is in one of the many possible states (such as a specific time of the
ay when the building is occupied or outdoor temperature is above a
ertain limit) and receives a reward. The rewards indicate to the RL
gent how well a particular action performed with respect to some
nvironmental condition (e.g., thermal comfort, energy cost) [14].

Assuming that the environment is a fully observed collection of
tates, such that the observation at time 𝑡 is equal to the environment
tate at time 𝑡 (i.e., 𝑠𝑡), the sequential interaction between the RL agent
nd the environment can be modeled as a Markov Decision Process
MDP), which means the future state 𝑠𝑡+1 of the environment is only
ependent on the current state 𝑠𝑡 (i.e., given the present state, a future
tate is independent of the past states) [16]. Formally, for an MDP the
tate transition probability is defined as:

(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1, 𝑎𝑡−1,…) = (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) (1)

n MDP is defined as a four element tuple ⟨ ,, ,, 𝛾⟩, where  is the
et of states of the environment,  is the set of possible actions,  is the
tate transition probability that describes the probability distribution of
ext steps (𝑠𝑡+1) given the current state (𝑠𝑡) and action (𝑎𝑡),  is the
eward function that provides the reward obtained of taking action 𝑎𝑡
t state 𝑠𝑡, and finally 𝛾 ∈ [0, 1] is a parameter that is called discount
actor, which determines the importance of future rewards. If 𝛾 = 0 the
gent will be concerned only by maximizing immediate rewards, which
eans it will learn a control policy that selects actions to maximize
𝑡+1. As 𝛾 increases, the RL agent becomes increasingly focused on the

uture rewards. Given an MDP, the RL agent learns, by mapping the
nvironment states to the actions, a control policy (𝜋(𝑎𝑡|𝑠𝑡) ∶ 𝑆𝑡 →

𝑡) that maximizes the expected cumulative reward at each time step
i.e., maximizing the expected cumulative reward it will receive in the
uture) [17].

Further, RL algorithms can be subcategorized into different groups:
n-policy versus off-policy, online versus offline learning, and model-
ased versus model-free algorithms. Off-policy algorithms, as compared
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to on-policy ones, have a greedy learning approach. In on-policy learn-
ing, the RL controller records rewards based on the current strat-
egy/action performed, while in off-policy, the RL greedily selects the
actions that gave the best performance from memory. Online learning
means the RL agent is deployed in the real-world environment and RL
agent is trained by interacting with the environment. Offline learning
means the RL agent is trained without directly interacting with the
environment. Instead, it learns from historical data or in a virtual
training environment. In offline learning, the controller is deployed in
the real environment once it is well trained. Given this nature, offline
learning is ‘‘less risky’’ because the controller does not need to interact
with the environment when it is not well trained. In model-based
learning, the controller learns the system dynamics first and then uses
the learned system dynamics for planning; while model-free algorithm
learns the optimal control without learning the system dynamics. The
model-based algorithm is usually more computationally expensive, be-
cause the algorithm first needs to learn an accurate environment model
(usually a difficult task in real application), then it needs to find an
optimal policy. Thus, model-free algorithms are more popular, as they
are usually less computationally expensive.

Action value function The action-value function represents the
expected cumulative reward of the RL agent starting from state 𝑠
and following control policy 𝜋. Formally the action-value function is
efined as:

𝜋 (𝑠, 𝑎) = E𝜋

[ 𝑇
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]

(2)

here E𝜋 is the expected value given that the RL agent follows the
ontrol policy 𝜋. 𝑇 is a final time step of the episode. Depending on
he considered environment, the value of the discount factor 𝛾 need to

be tuned based on the need to balance the current and future rewards.
Q-Learning The action-value function, which is also known as 𝑄-

value, gave its name to one of the major off-policy and model-free RL
algorithms named Q-learning. The process of Q-learning algorithms is
o compute and update at each iteration the 𝑄-value for each state–

action pair at time 𝑡, in order to achieve the maximum cumulative
rewards. The optimal 𝑄∗

𝜋 (𝑠𝑡, 𝑎𝑡) for action 𝑎𝑡 taken at state 𝑠𝑡 can be
expressed using a recursive relation known as a Bellman equation, which
is a summation of the present reward and the maximum discounted
future rewards:

𝑄∗
𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑚𝑎𝑥𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1) (3)

When used in a discrete state–action space, the RL agent policy is
determined by a state–action lookup table called a Q-table, which is
used to select an action for a given state. The Q-table is updated
according the following equation:

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) ← 𝑄𝜋 (𝑠𝑡, 𝑎𝑡)+𝛼
[

𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑚𝑎𝑥𝑎′∈𝑄𝜋 (𝑠𝑡+1, 𝑎′) −𝑄𝜋 (𝑠𝑡, 𝑎𝑡)
]

(4)

where 𝛼 ∈ [0, 1] is the learning rate.
Deep Q-Learning The Q-table approach can work well for envi-

ronments where the state–action space is relatively small, but when
the states and action spaces increase or become infinite (i.e., environ-
ment with continuous states/actions), the size of the table becomes
intractable. A solution to this problem is to replace the Q-table with
a nonlinear representation (i.e., function approximation) that maps
state and action onto a Q-value, which can be seen as a supervised
learning problem (i.e., regression). Recently, approximating the action
value function with a deep neural network has became one of the most
popular options, due to network’s capacity to accurately approximate
high dimensional and complex systems. A simplified illustration of the
Q-learning algorithm using an approximation function is provided by
the following pseudo-code.

Several papers used neural network to approximate action-value
functions [18,19]. However, these early methods often resulted in
being unstable. This instability was due to: (1) the correlation between
sequential observations, (2) the correlation between the action-values
3

o

Algorithm 1: Q-learning algorithm using approximation function
1. Initialize 𝑄(𝑠𝑡, 𝑎𝑡) (i.e., initialize the neural networks with
random weights).
2. Obtain the observation of the transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) by
making the RL agent interact with the environment.
3. Compute the loss function:
 =

(

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) −
[

𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑚𝑎𝑥𝑎′∈𝑄𝜋 (𝑠𝑡+1, 𝑎′)
])2.

4. Update 𝑄 (e.g., using the stochastic gradient descent
algorithm) by minimizing  with respect of the neural network
parameters.
5. Repeat starting from 2 until some convergence criteria is
satisfied.

(𝑄𝜋 (𝑠𝑡, 𝑎𝑡)) and 𝑟(𝑠𝑡, 𝑎𝑡)+𝛾𝑚𝑎𝑥𝑎′𝑄𝜋 (𝑠𝑡+1, 𝑎′), and (3) the fact that a small
hange to the action-value function may significantly change the policy.

In 2015, Mnih et al. [20] introduced Deep Q-Network (DQN), which
as the first successful use of a combination of deep neural network and
-learning algorithm. This work is responsible for the rapid growth of

he field of deep reinforcement learning (DRL). In addition to the inno-
ation of using neural networks, DQN proposed the use a replay buffer
nd two neural networks to approximate the action-value function and
o overcome the instability issues of previous approaches. The replay
uffer is used to store a relatively large number of observations of
ransitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). Mini-batches of these transitions are sampled
andomly (using a uniform distribution), which allows the algorithm
o update the neural network from a set of uncorrelated transitions
t each iteration. To reduce the correlation between the action-values
𝑄𝜋 (𝑠𝑡, 𝑎𝑡)) and 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑚𝑎𝑥𝑎′𝑄𝜋 (𝑠𝑡+1, 𝑎′), DQN uses two neural net-
orks. The weights of the first one are updated at each iteration, and

his network is directly interacting with the environment. The weights
f the second neural network, called a target network, are updated after
fixed number of iterations by simply copying the weights of the first
etwork.

While DQN can handle environments with high dimensional state
paces, it can only be used with discrete and low-dimensional action
paces. In fact, DQN relies on finding the action that maximizes the
ction-value function, which requires an iterative optimization at every
tep, if used with an environment that has continuous action. In theory,
ne can discretize the action space; however, this solution is likely be
ntractable for problems that require fine control of actions (i.e., finer
rained discretization). The high number of discrete actions spaces
re difficult to explore efficiently. Moreover, a naive discretization
trategy of the action-spaces can exclude important information about
he action domain, which can be essential for finding optimal control
olicy in several problems. To overcome this issue of discrete action
paces, [21] introduced the Deep Deterministic Policy Gradient (DDPG)
lgorithm, which is a model-free, off-policy algorithm that can learn
ontrol policies in high-dimensional, continuous action spaces.

.1.2. Deep deterministic policy gradient
DDPG [21] is an actor–critic framework based on the deterministic

olicy gradient (DPG) method [22], and it borrows methodological
dvances (i.e., replay buffer and target networks) developed for the
QN algorithm [20]. An actor–critic algorithm is a RL algorithm that has

wo agents: an actor and a critic. The actor makes decisions based on
bservation of the environment and the current control policy. The role
f the critic is to observe the state of the environment and the reward
btained by using an action and return the value-function estimate to
he actor.

DDPG learns two networks that approximate the actor function
(𝑠𝑡|𝜃𝜇) and the critic function 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄), where 𝑠𝑡 is the state of the
nvironment at time 𝑡, 𝑎𝑡 is the control action (i.e., the HVAC setpoints
nd the battery setpoint), and 𝜃𝜇 and 𝜃𝑄 are respectively the weights

f the actor and critic networks.
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The actor function 𝜇(𝑠𝑡|𝜃𝜇) deterministically maps states to a specific
ction and represents the current policy. The critic function 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄)
i.e., the action’s values function) maps each action-state pair to a value
n R that is the expected cumulative future reward obtained by taking
ction 𝑎𝑡 at state 𝑠𝑡 following the policy. During the training process
he actor and critic networks are iteratively updated using stochastic
radient descent (SGD) on two different losses, 𝐿𝜇 and 𝐿𝑄, which
re computed using mini-batches of transitions samples (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1).
𝑡+1 is the resulting state by taking action 𝑎𝑡 at state 𝑠𝑡, and 𝑟𝑡 is the
ubsequent reward. Using SGD assumes that the transition samples in
he mini-batches are independently and identically distributed, which
ay not be the case when the observations are generated sequentially.

imilarly to DQN, DDPG address this issue by sampling uniformly
he transitions from a relatively large fixed size replay buffer. This
llows the algorithm to update the actor and critic network from a
et of uncorrelated transitions, at each training iteration. The replay
uffer is populated by sampling transitions from the environment using
he current policy, and after the buffer is fully populated, the oldest
ransitions are replaced by the new ones. Another method that DDPG
orrows from DQN to improve the stability of the training process is the
se of two target networks: 𝜇′(𝑠𝑡|𝜃𝜇

′ ) and 𝑄′(𝑠𝑡, 𝑎𝑡|𝜃𝑄
′ ). Their weights

𝜃𝜇′ and 𝜃𝑄′ are slowly tracking the learned weight 𝜃𝜇 and 𝜃𝑄.
As for most DRL algorithms, DDPG needs to explore the state-space

in order to avoid converging to a local minimum that produces non-
optimal policies. Usually, this exploration is performed by adding noise
sampled from a predefined random process 𝑁 to the actions produced
by the actor network:

𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) +𝑁 (5)

where 𝑁 can be either a Gaussian process or, as proposed in [21], an
Ornstein–Uhlenbeck (OU) process that generates temporally correlated
exploration. This solution makes the changes in action noise less abrupt
from one time step to another.

The pseudo-code of DDPG is given below. This algorithm is the DRL
approach used in this work.

2.1.3. Hyperparameter tuning
As seen in Henderson et al. [23], the sensitivity of various DRL

techniques can impact the reward scale, environment dynamics, and
reproduciblity of the experiments. Finding benchmarks for a fair com-
parison is a challenge, but OpenAI stable baselines can help provide
initial comparison across the gym environments chosen. Complex hy-
perparameters can affect how quickly the DRL solutions reach consen-
sus or produce a robust solution that achieves the maximum reward. A
popular technique to find optimal hyperparameters is the grid search
as illustrated by Liang et al. [24].

2.2. DRL for building and DER control

The literature on advanced control algorithms for optimizing a
building’s energy operations is large, as mentioned in Section 1. Given
the scope of this work, in this section we focus on reviewing the grow-
ing body of research using RL-based algorithms to control buildings and
DERs [13,15,25,26]. Researchers used DRL controllers to achieve differ-
ent objectives: authors of [27–36] aimed at improving thermal comfort
of building occupants while minimizing energy consumption, whereas
others [37–47] aimed at improving energy efficiency and reducing
cost. Some recent work also has looked at using DRL for better load
management through peak reduction, load shifting, and better schedul-
ing [18,48,49]. The actions taken by DRL controllers include generating
supervisory control setpoints for the HVAC systems (e.g., variable air
volume [VAV] boxes, chiller plants, room thermostats), such as tem-
perature [27,28,30–33,37–39,41,42,49], flow rate [29,31,42,49] and
fan speed setpoints [45]. Supervisory control of electrical batteries
4

by setting the charge/discharge rate [35,44,46,47] is also common.
Algorithm 2: DDPG algorithm
Initialize 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄) and 𝜇(𝑠𝑡|𝜃𝜇) networks with random weights
𝜃𝑄 and 𝜃𝜇 .
Initialize target networks 𝜇′(𝑠𝑡|𝜃𝜇

′ ) and 𝑄′(𝑠𝑡, 𝑎𝑡|𝜃𝑄
′ ) with

𝜃𝜇′ ← 𝜃𝜇 𝜃𝑄′
← 𝜃𝑄.

Initialize replay buffer 𝐵.
for episode = 1, ...,𝑀 do

Initialize a OU process 𝑡 for exploration
Obtain initial observation of state 𝑠1
for 𝑡 = 1, ..., 𝑇 do

Obtain action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) +𝑡
Execute action 𝑎𝑡 and compute the reward 𝑟𝑡 and observe
the new state 𝑠𝑡+1
Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay buffer 𝐵
Randomly sample a mini-batch of 𝑁 transitions
(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from 𝐵
Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇

′
|𝜃𝑄′ )

Update 𝜃𝑄 by minimizing the loss:
𝐿 = 1

𝑁
∑𝑁

𝑖=1(𝑦𝑖 −𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))2

Update 𝜃𝜇 using the sampled policy gradient:

∇𝜃𝜇 ≈ 1
𝑁

𝑁
∑

𝑖=1
∇𝜃𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖 ,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇|𝑠 = 𝑠𝑖

Update the target networks:

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏𝜃𝑄

′
); 𝜃𝜇

′
← 𝜏𝜃𝜇 + (1 − 𝜏𝜃𝜇

′
)

This approach has the advantage of leaving the lower-level control
of the equipment to local controllers that ensure quick response and
equipment safety. For simpler systems, such as residential appliances,
authors of [18,35,43,46,48] have also generated actions to turn them
on and off directly. With a focus more on the supply side of the grid,
Hua et al. also developed an asynchronous advantage actor–critic (A3C)
algorithm based DRL controller to manage grid level renewable energy
sources (subgrid level PV, Wind Turbine Generator) along with the
building load, and trained the algorithm in simulation [50].

The reward functions used in the literature typically track the objec-
tive of the DRL algorithm, hence penalizing occupant discomfort and
rewarding for energy savings (and corresponding cost savings) [18,27–
35,37–43,45–49]. Control of on-site energy storage often includes an
additional penalty to discourage battery depreciation [18,44,47].

Researchers have developed their DRL algorithms using a wide vari-
ety of algorithms: Actor–Critic [27,35], Asynchronous Actor–Critic [37,
39–41], Policy Gradient [18,28], Deep Deterministic Policy Gradi-
ent [32,42,47,49], Trust Region Policy Optimization [38], Double
Deep Neural Fitted Q Iteration [34], Q-learning [45,46,48], Deep
Q-learning [18,29–31,44,49], and Proximal Policy Optimization [33].

Python (using the OpenAI Gym framework) and MATLAB have
been the most popular programming environments used to develop
these DRL controllers. Due to the difficulty and cost of field testing,
a large portion of the existing work has been performed in simulation.
In the realm of simulation-based research, DRL-based controllers have
been developed for residential buildings [18,34,35,47,48], commercial
buildings (e.g., single-zone, multi-zone, multi-storey) [27–29,31–33,39,
49], and data centers [38,42]. In the few instances of field tests, DRL
controllers have been deployed in well instrumented facilities, such as
the Intelligent Workspace at Carnegie Mellon University, Pittsburgh,
United States [36,37,40,41] with unconventional HVAC systems, or in
simpler residential buildings [43,46].
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Fig. 1. (a) Outside view of FLEXLAB, (b) mechanical drawing of FLEXLAB envelope and HVAC (top view) [51].
2.3. Research gaps and contribution

The literature clearly shows that DRL research in the built environ-
ment has great potential, and it is a fast growing field [13,15,25,26].
However, a clear gap identified in the literature is that most of DRL-
based building energy optimization methods are still not implemented
in practice [52] nor use physical equipment [13]. This observation is
also echoed by various reviews such as [25]: ‘‘[...] The vast majority
of studies that implement RL for problems relating to building energy
management are in simulation only’’ and [26]: ‘‘[...] the research works
about applications of RL in sustainable energy and electric systems
are largely still in the laboratory research stage, which have not been
practically implemented in sustainable energy and electric systems’’. A
second gap is that very few RL studies have co-optimized DERs with
HVAC control to achieve load flexibility at the building level. The
few field tests that employ DRL-based algorithms only optimize the
operation of one system at a time (mostly the HVAC system).

Given these gaps in the literature, the goal of this paper is to
implement a price-responsive DRL-based controller and deploy it in
an actual building that includes on-site distributed energy resources
(DERs). The DRL algorithm will aim at minimizing energy cost while
maintaining acceptable indoor thermal comfort. The performance of
the DRL-based controller will be tested against a best-in-class rule-based
controller. The paper makes the following contributions to the existing
literature:

• An application of a DRL algorithm for integrated optimal control
of a DER system composed of PV, electric storage, and thermal
loads in a commercial building

• A field demonstration of the DRL controller in a well instrumented
single-zone commercial building test facility, controlling multiple
pieces of equipment, along with on-site DERs

• An open-source OpenAI Gym environment that can be reused
by other researchers, in order to both train and evaluate the
performance of their algorithms

• A discussion about the challenges and lessons learned in the
field deployment of the DRL controller in an actual building,
particularly with respect to integrating multiple building systems

3. Methodology

This section discusses the experimental design and test set up. It
also outlines the performance metrics used to monitor and evaluate the
outputs of different tests and assess the efficacy of the DRL controller.
Finally, it discusses the baseline strategy used to control the battery and
the building loads during the tests.
5

3.1. Experimental design and setup

The evaluation of the controller developed in this work was con-
ducted in FLEXLAB [51], a well-instrumented experimental test facil-
ity at Lawrence Berkeley National Laboratory in Berkeley, California,
United States. FLEXLAB allows accurate measurement of the behavior
of integrated systems (e.g., HVAC and batteries) in providing grid
services (e.g., Shift/Shed load when requested) and building services
(e.g., visual and thermal comfort). To evaluate the performance of
the DRL controller compared to a baseline, we used a pair of side-
by-side identical cells (called Cell A and B in the paper), a unique
feature of FLEXLAB (Fig. 1). Each cell is representative of a small
office space with a floor area of 57 m2 and includes a large south-
facing window. FLEXLAB can be reconfigured with different types of
equipment, end-uses, and envelope features. As HVAC we selected a
single-zone variable-capacity air-handling unit (AHU) for each cell,
a very common system installed in many U.S. buildings [53]. The
AHU had a single variable-speed fan and two dampers for outdoor air
and return air mixing. The air side of the AHU was monitored with
sensors to measure air volume flow rate as well as the temperatures
and humidities in each section of the ducts. The water-side of the two
AHUs was served by a small chiller and boiler, shared by the two cells
(Fig. 1). The flow rates and inlet and outlet temperatures in each AHU
coil were measured to calculate heat flows transferred to the thermal
zones. Power consumption of the heating and cooling equipment was
estimated using these measured heat flows multiplied by a fixed ef-
ficiency (chiller COP = 3.0 and boiler efficiency = 0.95). Each room
had six ceiling-mounted light fixtures, six plug-load stations (i.e., desks
with desktop computers), six heat-generating mannequins that emulate
occupants, and multiple environmental sensors measuring temperature,
indoor light levels, and relative humidity (Fig. 2). The DERs comprised
a 3.64 kilowatt (kW) photovoltaic system and a Tesla Powerwall battery
storage with a capacity of 7.2 kWh and peak power output of 3.3 kW
(Fig. 3) for each cell. Each sensor in FLEXLAB collected data every 10 s
or less and it was aggregated to 1 min for analysis. The DRL controller
was deployed in Cell B, while the baseline controller was deployed
in Cell A. The FLEXLAB control system allowed users to change the
setpoint of the supply air temperature (SATsp) and the supply air flow
rate (SAFsp) of the AHU directly or to influence them by setting the
zone air temperature heating and cooling setpoints (ZAThsp, ZATcsp)
using a standard control sequence. In addition, the charge/discharge
setpoint of the battery was controllable (batterysp).

Three different scenarios were tested, based on demand-side man-
agement strategies commonly referred as: (1) Energy Efficiency (EE),
(2) Shed, and (3) Shift [3]. In the EE scenario, the controllers were
compared based on the amount of energy purchased from the grid; in
the Shed scenario, the comparison was based on the ability to reduce
energy purchases in a specific time window; and in the Shift scenario,
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Fig. 2. Room set up inside FLEXLAB: heat-emitting mannequins or equivalent thermal
generators, desktop computers, and overhead light-emitting diode (LED) lights with
multiple environmental sensors [51].

the two controllers were evaluated based on their ability to shift energy
purchases from one time window to another one. Different electricity
prices were set to produce a desired effect on the electricity purchase
(i.e., higher prices would drive reduced purchase from the grid).

In the first experiment, which ran for seven days in July, the
electricity price was kept constant (0.13$/kWh). The Shed experiment
involved two tiers of prices: a low price (0.13$/kWh) throughout the
day, and a high price between 4 pm and 9 pm (1.33$/kWh). The
Shift experiment included an additional price tier: high price (4 pm–
9 pm) at 0.16$/kWh; medium price (2 pm–4 pm and 9 pm–11 pm)
at 0.13$/kWh; and low price (11 pm–2 pm) at 0.11$/kWh. These
prices were selected based on current commercial tariffs used in Cal-
ifornia [54] at the time of the experiment. New research on demand
response [55,56] have suggested using prices for reflecting grid require-
ments and for initiating responses from building equipment, instead
of using traditional demand-response events. The constant prices that
were used in the EE experiment, along with the objective to minimize
total energy costs, discourage any shifting of loads from one period to
another and incentivize an overall reduction in energy consumption
by optimizing the operations of the building equipment. The tiered
prices used in the Shed and Shift experiments were used to trigger
load reduction during the high price times and in the case of Shift, to
encourage a corresponding additional increase in load during the lower
price periods as well, thereby achieving a load shed and load shift.

For simplicity, the tariff only accounted for variable cost of elec-
tricity (i.e., kWh) and not for maximum demand (i.e., kW). Both the
baseline and the DRL algorithm were tasked to minimize the energy
cost while maintaining a zone air temperature deadband of 21 ◦C–24 ◦C
6

during the HVAC operational hours (7 am–7 pm) and 15 ◦C–29 ◦C dur-
ing the remaining hours of the day. The experiments were conducted
during the cooling season, at the end of July and early August of 2020,
with each experiment spanning 7–8 days, with a total testing period of
slightly more than three weeks.

3.2. Performance metrics

In each scenario, the performance of the controllers was evaluated
using the following metrics:

1. ENERGY CONSUMPTION
Since the DER system is composed of local generation and
storage, the energy consumption is defined in terms of energy
purchase from the grid, which correspond to the difference
between the PV generation and the building load adjusted by
the change in state of charge of the battery. The building load is
a summation of power consumption by HVAC systems (chiller,
fans, pumps), lighting, and plug loads. We call this net load.

𝙴𝚗𝚎𝚝 = ∫

𝑇

0
(𝙿𝚋𝚕𝚍𝚐 + 𝙿𝚋𝚊𝚝𝚝 − 𝙿𝚙𝚟) 𝑑𝑡 (6)

(a) ENERGY SAVINGS
The energy savings are the difference between net energy
consumption in Cell A (baseline) and Cell B (DRL). They
are expressed in kWh for the whole testing period of each
scenario:

𝙴𝚜𝚊𝚟𝚒𝚗𝚐 = 𝙴𝚋𝚊𝚜𝚎𝚕𝚒𝚗𝚎 − 𝙴𝙳𝚁𝙻 (7)

(b) % ENERGY SAVINGS
The % savings correspond to the energy savings divided
by the baseline:

% 𝙴𝚜𝚊𝚟𝚒𝚗𝚐 =
𝙴𝚋𝚊𝚜𝚎𝚕𝚒𝚗𝚎 − 𝙴𝙳𝚁𝙻

𝙴𝚋𝚊𝚜𝚎𝚕𝚒𝚗𝚎
× 𝟷𝟶𝟶% (8)

2. ENERGY COST
The energy cost is the product of Enet and energy price, that
differ by scenario and time period.

(a) COST SAVINGS
Similar to energy savings, cost savings are defined as
the difference between cost in Cell A (baseline) and Cell
B (DRL). They are expressed in $ for the whole testing
period of each scenario.

(b) % COST SAVINGS
The % COST corresponds to the cost savings divided by
the baseline:

$𝚜𝚊𝚟𝚒𝚗𝚐𝚜% =
$(𝙴𝚋𝚊𝚜𝚎𝚕𝚒𝚗𝚎) − $(𝙴𝙳𝚁𝙻)

$(𝙴𝚋𝚊𝚜𝚎𝚕𝚒𝚗𝚎)
× 𝟷𝟶𝟶% (9)
Fig. 3. Distributed Energy Resources installed in FLEXLAB [51].
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3. THERMAL COMFORT
Thermal comfort is measured in terms of violations of the indoor
or zone air temperature (ZAT) from the comfort band during
building occupancy (between 8am – 6pm). The thermal comfort
range is defined as 21◦C – 24◦C.

(a) % TIME OUTSIDE COMFORT BAND
This metric captures the relative duration of violations
compared to the testing period.

𝜂𝚘𝚟𝚎𝚛𝚜𝚑𝚘𝚘𝚝% =
𝜂𝚘𝚟𝚎𝚛𝚜𝚑𝚘𝚘𝚝
𝜂𝚝𝚘𝚝𝚊𝚕

× 𝟷𝟶𝟶% (10)

(b) MEAN AND STANDARD DEVIATION OUTSIDE
COMFORT BAND
The mean and standard deviation of the violation of com-
fort measure the intensity and variability of such events.

𝜇𝜈 =
𝜂𝑡𝑜𝑡𝑎𝑙
∑

0

𝚖𝚊𝚡(𝟶, 𝚉𝙰𝚃 − 𝟸𝟺 ◦𝙲) + 𝚖𝚊𝚡(𝟶, 𝟸𝟷 ◦𝙲 − 𝚉𝙰𝚃)
𝜂total

(11)

𝜎𝜈 =

√

∑

([𝚖𝚊𝚡(𝟶, 𝚉𝙰𝚃 − 𝟸𝟺 ◦𝙲) + 𝚖𝚊𝚡(𝟶, 𝟸𝟷 ◦𝙲 − 𝚉𝙰𝚃)] − 𝜇)2

𝜂total

(12)

(c) DEGREE HOUR OUTSIDE COMFORT BAND
Degree hour is a metric used to evaluate the performance
of the controllers. It is defined as the integral of ZAT over-
shoot beyond 24◦C over the duration of the overshoot (T)
and undershoot below 21◦C. The factor of 0.25 in Eq. (13)
represents 15 minute time interval of each timestamp.

𝜁𝜈 =
𝜂𝑡𝑜𝑡𝑎𝑙
∑

0
(𝚖𝚊𝚡(𝟶, 𝚉𝙰𝚃 − 𝟸𝟺 ◦𝙲) + 𝚖𝚊𝚡(𝟶, 𝟸𝟷 ◦𝙲 − 𝚉𝙰𝚃))×

𝟶.𝟸𝟻𝚝

(13)

where t = number of timestamps when ZAT is
outside the comfort band

𝜁𝜈 𝚙𝚎𝚛 𝚍𝚊𝚢 =
𝜁𝜈

# 𝚝𝚎𝚜𝚝 𝚍𝚊𝚢𝚜
(14)

4. SHED and SHIFT METRICS
The differential load shed (W/ft2) during peak price time is
defined as the difference in the average demand intensity be-
tween the baseline and DRL controller during the high price
period [57].

𝛥𝚜𝚑𝚎𝚍𝚑𝚙 =
𝙿𝚋𝚊𝚜𝚎𝚕𝚒𝚗𝚎,𝚑𝚙 − 𝙿𝙳𝚁𝙻,𝚑𝚙

𝚊
(15)

Demand shifted during the test can be evaluated using two
metrics: a demand reduction metric during the high price period
(identical to the demand shed metric) and a demand increase
metric during the rest of the day (take period). Demand in-
crease is considered negative and demand decrease is considered
positive, as per conventions from traditional demand response
programs.

𝛥𝚝𝚊𝚔𝚎𝚕𝚘𝚠+𝚖𝚎𝚍 𝚙 =
𝙿𝚋𝚊𝚜𝚎𝚕𝚒𝚗𝚎,𝚕𝚘𝚠+𝚖𝚎𝚍 𝚙 − 𝙿𝙳𝚁𝙻,𝚕𝚘𝚠+𝚖𝚎𝚍 𝚙

𝚊
(16)

.3. Baseline control strategy

Lighting, plugs, and occupants (i.e., mannequins) were set on a
ime-based schedule and operated identically in the two cells. The AHU
n the baseline cell implemented Section 5.18 of ASHRAE Guideline
6 (Single Zone VAV Air-Handling Unit) [58]. However, a supervisory
ule-based controller that generated the zone temperature setpoints
7

able 1
aseline control strategies for the EE test.
Equipment Control/Parameters Time

HVAC ZAThsp = 21 ◦C; ZATcsp = 24 ◦C 7 am–7 pm
ZAThsp = 15 ◦C; ZATcsp = 29 ◦C All other times

Battery if(Ppv>Pbldg):
charge battery (max: 90%)

else:
discharge battery (min: 10%)

Table 2
Baseline control strategies for the SHED test.

Equipment Control/Parameters Time

HVAC ZAThsp = 21 ◦C; ZATcsp = 24 ◦C 7 am–4 pm
ZAThsp = 15 ◦C; ZATcsp = 26 ◦C
(load Shed during high prices)

4 pm–7 pm

ZAThsp = 15 ◦C; ZATcsp = 29 ◦C All other times

Battery charge battery (max: 90%) 7 am–4 pm
discharge battery (min: 10%) 4 pm–7 pm

Table 3
Baseline control strategies for the Shift test.

Equipment Control/Parameters Time

HVAC ZAThsp = 21 ◦C; ZATcsp = 24 ◦C 7 am–7 pm
ZAThsp = 17 ◦C; ZATcsp = 20 ◦C
(pre-cooling during low prices)

12 pm–2 pm

ZAThsp = 16 ◦C; ZATcsp = 22 ◦C
(pre-cooling during medium prices)

2 pm–4 pm

ZAThsp = 15 ◦C; ZATcsp = 26 ◦C (load
shed during high prices)

4 pm–7 pm

ZAThsp = 15 ◦C; ZATcsp = 29 ◦C All other times

Battery charge battery (max: 90%) 7 pm–2 pm
if (Ppv<Pbldg): 2 pm–4 pm

discharge battery (min: 50%)
discharge battery (min: 10%) 4 pm–7 pm

(ZAThsp, ZATcsp) for the AHU was used in the shift and shed ex-
periments to implement ‘‘pre-cooling’’ (for an appropriate compari-
son to the advanced DRL controller). A similar rule-based battery
charge/discharge setpoint (batterysp) generator was also imple-
mented for all three experiments. The rules for both these controllers
are tabulated in Tables 1, 2, and 3. Similar to the DRL controller, these
rule-based supervisory baseline controllers generated new setpoints for
the AHU and the battery every 15 min.

It should be noted that the equipment in the baseline-controlled cell
was programmed with a preheating mode that did override these super-
visory setpoints. This is a common strategy that building managers use
in many building systems and it was implemented by default in the
test cells. While the test was conducted in summer, heating triggered
during several days, because in the local climate (Berkeley, CA) it is
not uncommon to have large diurnal temperature swings with outdoor
temperature dropping to around 12◦C at night. This resulted in heating
events in the early morning hours during the actual experiments.

4. DRL control algorithm

The DRL control algorithm developed uses a model-free learning
approach, namely an actor–critic technique called DDPG, which is
suitable for continuous control problems. While the controller does
not need a model, it needs data to be trained on. Sometimes, building
operational data from an existing building is insufficient to represent all
possible system states. In our case, the historical building operational
data available was generated using a single control logic and did not
explore all possible control actions. In contrast, since DRL needs a trial-
and-error approach, i.e. testing different control logic, to figure out
which one performs the best, a building simulation model was used
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to train the DRL controller. A training framework that uses a physics-
based simulation component was implemented to learn end-to-end
optimal control policy to manage the charge and discharge of battery
storage and HVAC setpoints. We calibrated the simulation model using
operational data from the testbed, and we are confident that this model
can emulate the real environment (FLEXLAB) reasonably well.

4.1. Simulation environment

4.1.1. Software stack and modeling choices
The EnergyPlus™ simulation tool [59] was used to model the build-

ing and HVAC system. The physical parameters of the FLEXLAB enve-
lope were selected based on the materials in the construction drawings.
For the HVAC system, we developed a water-based primary loop and
air-based secondary loop HVAC model, as shown in Fig. 4, which
represents the FLEXLAB configuration used for the test. We assumed
constant boiler efficiency (0.95) and chiller COP (3.0) because climate
at the test site is mild.

The battery and PV panels were simulated using the Smart Control
of Distributed Energy Resources (SCooDER) library [60]. SCooDER
is a Modelica library developed to facilitate the simulation and op-
timization of photovoltaics, battery storage, smart inverters, electric
vehicles, and electric power systems [60]. SCooDER depends on the
Modelica Standard Library and Modelica Buildings Library. The inter-
action between the DRL controller and the four simulated components
(i.e., building envelope, HVAC system, battery, PV generation) is a
typical co-simulation problem, since multiple software packages are
involved. After a review of existing simulation frameworks, we selected
the Functional Mock-up Interface (FMI) [59], a standard that defines a
container and an interface to exchange dynamic models using a combi-
nation of XML files, binaries, and C code zipped into a single file [59].
As an open-source standard, the FMI is used in both academia and
industry, and currently supported by more than 100 tools. By using the
FMI, the building envelope, PV, and battery model were all exported
in accordance to the FMI standard as Functional Mock-up Unit (FMU).
The DRL controller was implemented in a Python environment using
the package PyFMI [61] that enabled the interaction with the exported
FMU. The FMUs for the different models were further wrapped into an
OpenAI Gym environment, to run the building simulation in parallel
with the DRL algorithm, developed in PyTorch.2 To allow others to
reproduce the analysis or test other DRL algorithms, the simulation and
control framework were packaged into a Docker container including all
the dependencies needed. The software is distributed as an open-source
library and can be found at https://github.com/LBNL-ETA/FlexDRL.

4.1.2. Model calibration
The simulation model was calibrated with experimental data gath-

ered during a calibration test performed before the experiment. We first
calibrated the envelope model by comparing the indoor temperatures
of the physical building to the indoor temperatures reported by the
simulated model. To accurately measure the stratification and nonuni-
form distribution of temperatures, we deployed four sensor trees with
seven temperature sensors in Cell A and Cell B. In a detailed physics-
based model with hundreds of parameters, such as the one developed
in EnergyPlus used in this paper, there are different combinations of
variables that produce the same results, therefore their calibration is
challenging. To select the best parameters needed for calibration we
followed best practices in the literature. Zhang et al. (2019) [62] used
the sensitivity analysis proposed by Morris (1991), [63] to identify four
key parameters, which are found to significantly influence the simula-
tion errors and need to be calibrated. The identified parameters include
the (1) thermal insulation, (2) total area of radiant heating/cooling
surfaces, (3) internal thermal mass multiplier, which is defined as

2 https://pytorch.org/.
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Table 4
Summary of calibration measures and CV-RMSE.

Cell Calibration measures CV-RMSE

Cell A Raw model, developed from design document 11.2%
Tuning thermal insulation 7.6%
Tuning thermal insulation & infiltration rate 4.0%
Tuning thermal insulation infiltration rate &
thermal mass multiplier

2.8%

Cell B Raw model, developed from design document 10.9%
Tuning thermal insulation 6.3%
Tuning thermal insulation & infiltration rate 2.9%
Tuning thermal insulation infiltration rate &
thermal mass multiplier

2.1%

the ratio of total interior thermal mass to the thermal capacitance of
the air in the volume of the specified zone, and (4) infiltration rate,
i.e. air changes per hour. We tuned the three parameters that are
found to be the most effective in Zhang et al. (2019) [62] and relevant
to our experiment settings: thermal insulation, internal thermal mass
multiplier and infiltration rate to minimize the difference between the
measured and simulated temperature. We measured the indoor temper-
ature at 1-minute intervals and up-sampled it to 15 min, to match the
simulation time step. We calculated the Coefficient of Variation of Root
Mean Square Error (CV-RMSE) between the 15-min interval measured
and simulated temperature. By adjusting the internal thermal mass
multiplier and infiltration rate, we achieved a CV-RMSE of less than
3% with the internal thermal mass multiplier of 6 and the infiltration
rate of 2. We summarized the improvements of CV-RMSE during the
model calibration process in Table 4.

In addition, we calibrated the power consumption of the fan, which
is another major energy consumer in air-based systems. We used a cubic
polynomial curve to model the fan energy behavior and achieved a
CV-RMSE of 7% for the fan in Cell A and 8% for fan in Cell B when
comparing the air flow values recorded at 15-min intervals. Then we
used the regressed coefficients to develop the fan model. Since the
chiller and boiler serve both the baseline and the DRL cell, and they
use a secondary loop with storage, it was impossible to calibrate the
power curve of each cell independently, and default values were used.
In this study, we set COP to 2.5.

4.2. Design of the DRL algorithm

4.2.1. State and actions
The variables of the state vector 𝑠𝑡 were selected as: time of the

day, outdoor temperature, outdoor relative humidity, solar irradiation,
zone temperature, net power, net energy, battery state of charge, PV
generation power, and electricity price look ahead. The DRL controller
ran every 15 min and generated three actions (i.e., three setpoints):
supply air temperature of the AHU; supply air flow rate of the AHU;
and charge/discharge rate of the battery. These actions were mapped
to model variables in the simulation, as well as to actual controllable
points in FLEXLAB (respectively SATsp, SAFsp, and batterysp).

4.2.2. Reward function
The goal of DRL control algorithm was to find an optimal policy

that minimizes the cost of the electricity purchased from the grid
while maintaining a good level of thermal comfort. In other words,
the objective was to efficiently consume the electricity locally pro-
duced by the PV panels and manage the battery while maintaining
the indoor zone temperature within a desired range. The considered
reward function was composed of three parts: (1) the penalty due to
the energy consumption 𝐸𝑐𝑜𝑠𝑡 (replaced by energy cost in the Shed and
Shift scenario), (2) the penalty due to the violation of the temperature
comfort zone 𝐶, and (3) the penalty due to the violation of the battery
physical limits 𝜆. This reward function is defined as:

𝑟 = −𝛼𝐸 (𝑎 , 𝑠 ) − 𝛽𝐶(𝑎 , 𝑠 ) − 𝜆(𝑎 , 𝑠 ) (17)
𝑡 𝑐𝑜𝑠𝑡 𝑡 𝑡+1 𝑡 𝑡+1 𝑡 𝑡+1

https://github.com/LBNL-ETA/FlexDRL
https://pytorch.org/
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Fig. 4. HVAC system schematics in the test facility and Energyplus model.
with

𝐶(𝑎𝑡, 𝑠𝑡+1) = 1−𝑒𝑥𝑝(−0.5(𝑇𝑡+1−𝑇𝑚)2)+0.2([𝑇𝑡+1−𝑇𝑈 ]++[𝑇𝐿−𝑇𝑡+1]+) (18)

and

𝜆(𝑎𝑡, 𝑠𝑡+1) =

⎧

⎪

⎨

⎪

⎩

−20, if 𝐸𝑏(𝑡 + 1) < 0 and |𝐸𝑏(𝑡 + 1)| > 𝑆𝑂𝐶𝑚𝑖𝑛

−20, if 𝐸𝑏(𝑡 + 1) > 0 and (𝐸𝑏(𝑡 + 1) + 𝑆𝑂𝐶(𝑡)) > 𝑆𝑂𝐶𝑚𝑎𝑥

0, otherwise.

(19)

where 𝑇𝑡+1 is the zone temperature at time 𝑡 + 1 (i.e., after action
𝑎𝑡 was applied), 𝑇𝑚 is the average desired temperature, and 𝑇𝐿 and
𝑇𝑈 are (respectively) the desired lower and upper bound for the zone
temperature. 𝐸𝑏(𝑡 + 1) is the total energy that the battery has been
charged (𝐸𝑏(𝑡+1) > 0) or discharged (𝐸𝑏(𝑡+1) < 0) between 𝑡 and 𝑡+1.
𝑆𝑂𝐶(𝑡) is the state of charge (SOC) of the battery at 𝑡, 𝑆𝑂𝐶𝑚𝑖𝑛, and
𝑆𝑂𝐶𝑚𝑎𝑥 are respectively the minimum and the maximum battery state
of charge that is allowed. To ensure that the equation is homogeneous,
the units of 𝛼, 𝛽 and 𝜆 are set accordingly.

Using an approach introduced in [38], the penalty due to the viola-
tion of the temperature comfort zone 𝐶 was defined as shown in Fig. 5.
Within the red bars (temperature comfort boundaries), the reward is
shaped like a bell curve that has a maximum reward (i.e., equal to
0) when 𝑇𝑡 is equal to 𝑇𝑚, and rapidly decreases as the temperature
moves away from 𝑇𝑚. Outside the red band we imposed a linear
decay (i.e., trapezoid shape) of the reward. We found that adding
the bell curve component to the thermal penalty, as shown in Fig. 5,
significantly improved the stability of the control algorithm, especially
when the cost of energy was equal to 0 (i.e., during the periods when
all the load was covered by the PV generation).

The reward component that penalized the violation of the battery
physical limits 𝜆(𝑎𝑡, 𝑠𝑡+1) was designed to keep the battery from mak-
ing charging/discharging decisions that violate the system’s physical
9

Fig. 5. Thermal comfort penalty function. The vertical axis correspond to the penalty
due to the violation of the temperature comfort zone 𝐶 and the horizontal axis
correspond to the zone temperature in degree Celsius.

constraints. This is achieved by adding a high penalty on actions that

violate the constraints. This approach allows the actor to easily limit the

space of actions where the optimal value is searched. However, our tests

showed that it is important to select the proper penalty value (i.e., −20

in this work) because if the penalty is too high the actor may avoid

any control action on the battery (i.e., the controller converged to a

local maximum), because they consider these actions too risky (i.e., the

cumulative reward can be too negative).
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4.2.3. DRL algorithm hyperparameter tuning
The simulation framework developed was used to tune several

hyperparameters of the DRL controller, to achieve a good control
policy:

• mini-batch size: number of transitions (i.e., (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)) sam-
ples used by the gradient-based optimizer.

• actor and critic learning rate: optimization parameter that con-
trols how strongly the network weights are updated while moving
toward the minimum of the loss functions.

• neurons number: the size of the two layers that constitute each
network.

• discount factor 𝛾: parameter used in critic loss function to con-
trol up to what extent future rewards have an impact on the
return at time 𝑡. In other words, how many future time steps the
agent is considering to select an action.

• OU parameters: 𝜃 the reversion rate and 𝜎 the standard devia-
tion, which are two parameters of the OU process that will control
level of the state space exploration.

• reward function weights: weights that control the importance
of electricity cost vs. the thermal comfort.

• electricity price look ahead: the number of following hours of
electricity price.

The performance of the DRL policy depends significantly on these
parameters. A manual selection approach is extremely time consuming,
requires significant DRL expertise, and the interaction of the hyper-
parameters can be counterintuitive. Thus, we adopted a random search
grid [64] approach to tune the parameters. This method randomly
selects combinations of hyper-parameters from a uniformly distributed
search space. To limit the computational cost, we fixed the number of
combinations selected to 25 for each test batch. The hyper-parameters
that obtained the highest reward, estimated using the data from the
test year (see next section), were selected as the best parameters. A
common problem with DRL approaches is the high variability of the
resulting policies when different random seeds are used for the same
combination of hyper-parameters. To deal with this challenge, seven
additional policies using a different random seed were trained for each
best tuned combination (one for each test batch). The policies that were
deployed in FLEXLAB were selected from among those eight policies as
the ones that produced the highest reward using the test year. Note
that a more robust approach would have been to include the random
seeds as hyper-parameters to be tuned and to test all the considered
seeds for each hyper-parameter combination. However, this approach
is very costly in term of computational complexity, therefore it was not
pursued in this work.

4.2.4. DRL controller training
Given the availability of five years of local weather data, four years

were used to train the DRL controller, using the simulation framework
described in Section 4, and one year was used for validation. For
each test scenario (i.e., EE, Shed, and Shift) we trained DRL models
separately using the corresponding price signal. Since the state vector
consisted of various physical features that have different units with
significant differences in value ranges, we scaled the state observations
to the range [−1,1]. Adam was used as a gradient-based optimizer [65].
The replay buffer size was fixed to 1.5 million transitions. Both actor
and critic networks had the same size and had two layers. The energy
cost reward function weight 𝛼 was fixed to 1. For all three scenarios the
selected hyperparameters were: batch size = 128; weight of thermal
comfort 𝛽 = 3; actor learning rate = 0.00005; critic learning rate =
0.0001; discount factor 𝛾 = 0.98; and OU 𝜎 parameter = 0.3. Addition-
lly, the first and second network layer sizes were respectively: 450
nd 400 for EE; 400 and 400 for Shed; and 400 and 350 for Shift.
he OU 𝜃 parameter was 0.2 for EE and Shed, and 0.15 for Shift. The
lectricity price look ahead was two hours for Shift and three hours
10

or Shed. Note that we defined each episode as one calendar year, thus
able 5
etrics: DRL vs. baseline controller.
Test Metric Value

EE % Energy savings 0.6%
% Cost savings 0.6%

Shed Differential shed during high price 0.25 W/sq.ft. (50%)
% Cost savings 29.4%

Differential shed during high price −0.34 W/sq.ft. (−97%)
Shift Differential take during low + medium price 1.1 W/sq.ft. (49%)

% Cost savings 39.6%

Table 6
ZAT Overshoot % and parameters for DRL vs. Baseline controlled cells.

Controller % of time intervals
outside comfort band
and violation rate

During the overshoot
period (above 24 ◦C)

𝜇𝜈 (◦C) 𝜎𝜈 (◦C) 𝜁𝜈 per day
(◦C-h/day)

EE baseline 4 0.3 0.21 0.33
EE DRL 13 0.3 0.20 0.99
Shed baseline 25 1.0 0.98 4.92
Shed DRL 15 1.3 0.81 3.68
Shift baseline 15 0.7 0.53 2.48
Shift DRL 14 0.3 0.29 1.27

one episode contains 35,040 time steps. Lawrencium3 computational
cluster resources have been used for training the controllers, and more
specifically we have used nodes with INTEL XEON Gold 5218 (i.e., 32
cores central processing unit). Each training experiment (i.e., specific
hyperparameters set) took about 3 days to converge.

5. Results

The performance of the controllers was evaluated using the fol-
lowing metrics: reduction in cost (all tests), differential load shed
during peak price time (shed and shift tests) or differential load take
during low and medium price periods (shift test), and thermal comfort
violations (all tests). Equations for these metrics are detailed in Sec-
tion 3.2. The DRL algorithm reduced energy costs across all the three
tests as compared to the baseline control strategy and the results are
summarized in Table 5. These costs are based on the tariffs described
in Section 3.1. In the Shed test, the DRL shed 0.25 W/sq.ft. (50%) more
than the baseline controller during the high price period. However,
during the Shift test, the DRL algorithm shed 0.34 W/sq.ft. (97%) less
than the baseline strategy during the high price time and drew more
power, 1.1 W/sq.ft. (49%) more than the baseline during the remaining
day, while still reducing cost. This behavior was contrary to what we
expected and it is discussed in detail in Section 6.3.

In terms of thermal comfort, neither the DRL nor the baseline
control strategy were able to maintain thermal comfort in the cells at
all times. Due to high internal and external loads and limited HVAC
capacity, the temperature exceeded the upper threshold (i.e., 24◦C)
several times during each test. During the EE test, the overshoot during
the occupied hours (8 am–6 pm) averaged over the test days was higher
for the DRL (0.99◦C-h) than the baseline (0.33◦C-h), thus pointing to
a poorer performance by the DRL controller. However, for both Shift
and Shed tests, the DRL controller performed significantly better than
the baseline controller, as summarized in Table 6.

5.1. Energy efficiency test

Fig. 6 shows the details about the EE test. As the cost of energy is
fixed throughout the day, the expectation on DRL during the EE test is

3 http://scs.lbl.gov/home.

http://scs.lbl.gov/home
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Table 7
SHED TEST comparison of the DRL vs. baseline controllers’ demand and total cost of
energy consumed during different price periods.

Metric Baseline DRL

Mean demand in low price 594 W 655 W
Mean demand in high price 242 W 121 W
Mean daily energy consumption 12.5 kWh 13.1 kWh
Cost of energy consumed $ 3.13 $ 2.46

to minimize the energy consumption. In our experimental set up, this
would mean that the DRL-controlled cell should either consume less
energy than the baseline cell while providing similar thermal comfort
or consume a similar level of energy while providing better thermal
comfort. While the aggregated energy consumption and cost of the
two controllers was similar, the baseline controller used more energy
for heating (Fig. 6c), while the DRL controller used more energy for
cooling, especially during the days with mild outdoor temperatures
(Fig. 6b). This also impacted the internal temperature profile (Fig. 6d).
The baseline controller kept consistently lower temperatures in the test
cell, but that strategy caused more heating in the morning, after the
room was unoccupied and exposed to relatively cold outdoor tempera-
tures at night (between 13◦C and 19◦C). The temperature violations, all
above the comfort band, were slightly higher in the DRL cell (Table 6).
The DRL controller seemed unable to reduce the indoor temperature
fast enough at the peak of internal and external heat gains. The batter-
ies were not significantly utilized by either controllers, remaining close
to their minimum charging level for most of the time (Fig. 6a). Since
the cost of electricity was constant in the EE test, the energy and cost
performance were aligned.

5.2. Shed test

The objectives of the DRL controller are to minimize both energy
costs and the thermal discomfort. The anticipated behavior of the DRL
controller during the high price period (4pm–9pm) of the Shed test
was to reduce consumption by relaxing the comfort band. While there
was no expectation to consume more energy any other time, we also
expected the controller to pre-cool the zone before this period, since
this strategy would allow the HVAC system to idle during the high price
period, leading to cost savings and a reduction in thermal discomfort.
Additionally, we expected the battery to be charged as much as possible
before the high price period to be available for discharge when the
cost of electricity is higher. Fig. 7 shows that DRL reduced cost signifi-
cantly during the Shed test, while it reduced energy consumption only
marginally. As noted earlier in Table 5, the differential load shed during
the high price time is 0.25 W/sq.ft. In Fig. 7, each set of bars represents
a day during the testing period, and their height measures the total
energy consumption for that day. The lighter color of each bar depicts
the amount of energy consumed during off-peak hours, while the darker
color represents energy consumption during peak hours. Even though
on some days the total energy consumed by the DRL controller is higher
than the baseline, the energy consumed during high price periods is
significantly lower (50%). This behavior leads to a large reduction
in overall cost (29%). The demand and cost values are summarized
in Table 7. It is important to note that the baseline strategy is also
shedding load using a rule-based algorithm, therefore the difference
between DRL and the baseline can be read as extra-shed/differential
shed.

Fig. 8 shows the detailed experimental results for the Shed exper-
iment. The vertical gray bars in each panel represent the period with
peak prices. Both controllers discharged the batteries during the peak
price period, though the DRL controller discharged the battery more
rapidly and by a larger amount. On average, at the end of the high price
period, the DRL battery was left with less than 20% of its maximum
charge, while the baseline battery was still at 50% (Fig. 8a). Further
11
Table 8
Shift test comparison of DRL vs. Baseline controllers’ load demand and total cost during
different price periods.

Metric Baseline DRL

Mean of demand in low price 870 W 412 W
Mean of demand in medium price 207 W 129 W
Mean of demand in high price 170 W 334 W
Mean of daily energy use across all test days 14.21 kWh 8.21 kWh
Cost of energy consumed $ 1.62 $ 1.03

analysis revealed that the battery operation was largely responsible for
the cost reduction of the DRL algorithm compared to the baseline.

Both controllers managed to reduce the chilled water consumption
to zero for the duration of the peak prices, but the DRL engaged in more
pre-cooling between 2pm – 4pm (12.4 kWh for the whole test) before
the onset of the peak price period compared to the baseline (8 kWh)
(Fig. 8b). The baseline controller also produced very sharp heating
spikes which occurred all but one day around 7am, with different mag-
nitude (Fig. 8c). In comparison, the DRL controller produced smaller
morning heating spikes but caused some unexpected heating to happen
during the interval corresponding to the peak price (Fig. 8c). This unex-
pected phenomenon is explored further in the Discussion in Section 6.2.
Overall both controllers behaved poorly when it came to maintaining
thermal comfort in the building during the peak price period (Fig. 8d),
despite the relatively mild outdoor conditions (temp between 10.5 ◦C
and 25.5 ◦C). The degree hour of temperature violations averaged per
day was much higher for the baseline (≈ 4.92◦C-h) than for the DRL
controller (≈ 3.68◦C-h). Further, when no heating was supplied by the
DRL controller during the peak price period (on August 5, Fig. 8d),
the indoor temperature was kept within the comfort band, suggesting
that eliminating the unexpected heating during the Shed window would
also improve comfort of the DRL cell. Active pre-cooling by DRL before
the onset of the high price signal manifested as a sharp dip in the cell
temperature right before the high price period.

An interesting behavior of the DRL controller emerged during the
second day of the test (August 5). Since the day was foggy and PV
generation was low, the DRL controller decided to charge the battery
more than average, just before the Shed event. Hence, the additional
availability of battery power allowed the DRL controller to reduce grid
purchases during the high price window. In contrast the baseline did
not foresee the issue and did not engage in any additional charging.
Also, from Fig. 7, we can see that the DRL controller consumed less
energy than the baseline cell on August 9. This can be attributed to
the higher outdoor air temperatures and the strategy pursued by each
controller. Both cells required a significant amount of cooling in the
pre-event period, however the DRL compromised more on comfort
and saved more energy compared to the baseline cell, relative to
what happens during the other days. In these two days (08/05 and
08/09) the DRL controller is able to make better decisions than a rule
based algorithm consistently reducing energy costs as well as power
throughout the day.

5.3. Shift test

In the Shift experiment, the DRL controller was expected to increase
the energy consumption and store thermal and electrical energy during
the low (preferred) and medium price periods via pre-cooling and
battery charging. Table 5 shows that, in the Shift experiment, the
DRL controller reduced both cost and energy consumption compared
to the baseline strategy, as anticipated. Table 8 summarizes the mean
daily cost and average demand by the two controllers for different
price periods. However, contrary to the expected behavior, the DRL
controller consumed more energy during the peak period (i.e., it shifted
less energy than the baseline strategy) but still reduced overall energy

cost, because it significantly reduced the energy consumption during
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Fig. 6. EE test: (a) PV generation (gold), SOC of the battery in the baseline cell (light green) and SOC of the battery in the DRL cell (dark green); (b) chilled water power in the
baseline cell (light blue) and the DRL cell (dark blue), dry bulb outdoor air temperature (yellow, right axis); (c) hot water power in the baseline cell (light red) and the DRL cell
(dark red); (d) indoor dry bulb temperature in the baseline cell (light purple) and the DRL cell (dark purple).
Fig. 7. Daily energy consumption for different prices for the baseline and DRL controller for the SHED control test.
the lower price periods. This result is interesting because the DRL
algorithm achieved its objective of reducing cost, but it failed the
implicit objective of shifting energy out of the peak period. These
findings are further discussed in Section 6.3.

Fig. 9 shows details about the experiment. The vertical gray bars
in each panel represent the mid peak (half gray bar) and high peak
(full gray bar) periods. Both controllers discharged the batteries during
the mid peak and peak periods (Fig. 9a), but the baseline controller
discharged the battery by a larger amount. This is the first reason that
explains the reduced shift in energy by the DRL controller, described
above. The baseline controller used more chilled water and produced
higher chilled water peaks than the DRL controller (Fig. 9b). On
12
average, the DRL controller started cooling earlier, compared to the
baseline, and continued cooling throughout the high peak period, caus-
ing an increase of demand during this period, but saving total energy
and cost (Table 8). This is the second effect that limited the amount
of energy shifted by the DRL algorithm. As it pertains to heating, the
baseline controller created sharp spikes every early morning (Fig. 9c).
In comparison, the DRL algorithm never used heating during the testing
period. The DRL controller also provided better thermal comfort com-
pared to the baseline (Fig. 9d), with 3.2 ◦C-h of temperature violations
per day compared to 4.3 ◦C-h for the baseline. In addition, most of
the comfort violations happened during the high price periods for the
baseline cell, while they happened outside of that period for the DRL
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Fig. 8. Shed test: (a) PV generation (gold), SOC of the battery in the baseline cell (light green), and SOC of the battery in the DRL cell (dark green); (b) chilled water power in
the baseline cell (light blue) and the DRL cell (dark blue), dry bulb outdoor air temperature (yellow, right axis); (c) hot water power in the baseline cell (light red) and the DRL
cell (dark red); (d) indoor dry bulb temperature in the baseline cell (light purple) and the DRL cell (dark purple).
controller (Fig. 9d). Overlaying the comfort and chilled water profiles
it is evident that DRL engaged in cooling during high price periods to
maintain thermal comfort, in contrast to the baseline controller. This
behavior suggests that DRL places a higher value on thermal comfort
over cost savings during this period.

6. Discussion

6.1. Instability and variance of trained policies

Variation in trained policies across different random seeds is a
common problem in DRL. Policies trained with different random seeds
may generate a significant gap in performance and produce unstable re-
sults [66]. To investigate this variability, the performances of eight DRL
agents, each trained with the same combination of hyper-parameters
but with eight different seeds, were evaluated for each experiment.
As described in Sections 4.2.3 and 4.2.4, the hyper-parameters were
identified using the random search grid approach. For the Shift and
Shed experiments, even out of these eight, only four converged to a
realistic solution. While this in itself provides evidence of the significant
impact of the random seeds, all the other controllers that had converged
during training were evaluated further. The controllers were deployed
in a simulated model of the building for (1) the duration of the actual
FLEXLAB tests and (2) a whole year.

Fig. 10 shows the net energy consumption from the grid for the
duration of the three experiments (EE, Shift, and Shed). While the green
dots represent the actual energy consumed during the field experiment
in FLEXLAB, the red dots are the energy consumption values estimated
in the simulation environment using the same controller that was
13
deployed in FLEXLAB (the best performer identified in the tuning
process). Finally, the black dots represent the simulated energy con-
sumption values using the policies that were generated using different
random seeds during the training process. The actual energy consump-
tion (in green) is significantly different from the energy consumption
of the simulated model used for training the DRL controller (in red).
Additionally, the random seeds seem to have a much higher impact
in the EE experiment than for the Shift and Shed experiments. Our
hypothesis for this effect is that it is likely due to the fixed price of
electricity in EE test that make the algorithm converge more easily to
some local optimal solution. In the EE test the difference between the
best model (i.e., policy selected for the testbed) and the worst model is
significant (≈ 400 kWh). However, the small variability of the results for
Shift and Shed may be misleading, as it is important to remember that
only half of the experiments had converged. Fig. 11 shows the annual
net energy purchased from the grid using the same controllers identi-
fied above, performing EE, Shed, and Shift experiments respectively.
While the differences in values are not as prominent as in Fig. 10, it is
clear that the seed has a significant impact on the actions taken by a
DRL controller.

6.2. Mismatch between modeled and actual control behavior

When the trained DRL controller was deployed in the building, the
actions generated by the controller differed from those taken during the
simulation. Some of these occurred due to: using the wrong sensors,
issues with mismatched units of measurement, or other factors, and
they were able to be diagnosed and fixed immediately. However,
there were more variations in the actions that produced significant
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Fig. 9. Shift test: (a) PV generation (gold), SOC of the battery in the baseline cell (light green), and SOC of the battery in the DRL cell (dark green); (b) chilled water power in
the baseline cell (light blue) and the DRL cell (dark blue), dry bulb outdoor air temperature (yellow, right axis); (c) hot water power in the baseline cell (light red) and the DRL
cell (dark red); (d) indoor dry bulb temperature in the baseline cell (light purple) and the DRL cell (dark purple).
Fig. 10. Net energy consumption from the grid for simulated and test models.
differences in the relevant metrics (e.g., energy consumption, costs
incurred), and upon further inspection it was determined that these
happened due to inconsistencies between the simulated building en-
ergy model and the actual building. Such variations in actions were
not present when the trained DRL controller was being trained and
tested in the simulation environment and hence it was noticed only
when it was deployed in the actual building. For example, the power
consumption pattern of the supply air fan during cooling and the actual
charge/discharge rate of the battery given a certain setpoint proved
to be wrongly represented in the simulated building model. Once this
issue was identified, the supply air fan was better characterized and the
14
energy model was updated in the simulation (this, of course, meant
retraining the DRL controller). However characterizing the stochastic
battery charge/discharge behavior with respect to a given setpoint
turned out to be quite challenging, and the DRL controller was used
with this particular flaw built in. A more detailed evaluation of the
impacts of these embedded inconsistencies has been presented in [67].

Similar inconsistencies that were overlooked during the model cali-
bration also affected the results of our experiments. For example, in the
EE test, we noticed that the DRL controller was unnecessarily heating
the cell during early morning hours. Similarly during the Shed test,
while the DRL controller performed well during the test, the actions
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Fig. 11. Energy purchased from the grid for different simulated models for the entire year.
it generated produced diminished savings as the AHU started heat-
ing the zone during the high price period, reducing thermal comfort
and increasing energy costs (Section 5.2). Upon further investigation
(conducted after the testing), it was hypothesized that the modeling
inconsistencies could be the most likely reason for this abnormal be-
havior. To gather evidence supporting this train of thought, the trained
DRL agent was used to generate actions for the FLEXLAB simulated
model used for training, subjected to the same external conditions
(i.e., weather, occupancy, internal loads) of the actual Shed test. During
the high price period, the agent generated similar supply air tempera-
ture and supply air flow rate setpoints as it did in the actual FLEXLAB
test. However, the heating power required in the simulation, close to
zero, was significantly lower than what was actually required in the
real test. In other words there was an error in mapping the setpoints to
the actual heating supplied by the equipment, probably due to simpli-
fications in modeling the actual control sequences implemented in the
underlying FLEXLAB infrastructure. The DRL agent expected the HVAC
system to idle during the Shed period with the setpoints it generated,
but that action, instead, caused significant heating to happen. This
inconsistency in the heating energy model that the DRL agent was
trained on negatively impacted the DRL controller’s performance. The
mismatch between HVAC and control operation in simulation models
and real systems is common, therefore it is advisable to carefully map
and calibrate the simulation with the actual behavior of the control
system. In our case, we realized that the set of conditions we calibrated
the building on did not adequately cover what was subsequently expe-
rienced during the tests. However, such calibration issues have major
implications for practical scalability of DRL-based controllers.

6.3. Relative weight of cost and comfort and magnitude of price signal

During the Shift test, the DRL controller reduced the HVAC load sig-
nificantly during the medium price period, which resulted in additional
cooling (albeit for short periods) in the high price period, to reduce
the thermal comfort penalty. This counterintuitive behavior was the
result of the specific combination of the weights penalizing cost and
comfort violations defined in the reward function (Section 4.2.2). The
behavior was also indirectly affected by the prices selected for each
period, since they determined cost. The DRL controller was successful
in minimizing the total energy costs ($1.03 vs. $1.62 of the baseline
controller) and obtained better comfort; however, it did not shift energy
from the high price period to the other two periods, compared to the
baseline Shed strategy. Since its behavior was driven by the magnitude
of the prices, it is clear that the absolute value of the high price
signal was not high enough to trigger the expected response, resulting
in extra cooling load during the peak hours. As some utilities are
moving toward dynamic pricing, this example highlights the challenges
in designing price schemes that produce the desired grid response in
a target building, particularly when the building employs algorithms
15
Table 9
Comparison of metrics between shed test and shed test with higher penalty on thermal
comfort.

Test 𝜇𝜈 𝜎𝜈 % of overshoot 𝜁𝜈 per day Cost of daily
energy

DRL (regular shed) 1.3 0.81 15 3.68 $ 2.46
DRL (more emphasis on
thermal comfort)

1.25 0.58 6 1.88 $ 2.65

that are unknown or unpredictable to the grid. In our example the DRL
algorithm was successful in reducing cost for the building owner, but
did not shift energy compared to the rule-based system.

To understand the impact of the weight on thermal comfort, we
conducted a test with a higher penalty being placed on thermal comfort
violation, using the Shed test pricing. Results of this test are presented
in Table 9. On this day, the DRL-controlled cell saw lower ZAT over-
shoot (1.88 ◦C-h) as compared to 3.68 ◦C-h overshoot during regular
shed test days. However, this caused an increase in cost of energy
purchased ($2.65) compared to cost of energy during regular shed
days ($2.46). The experiment suggests that different trade-offs between
comfort and cost can be achieved by tweaking the hyperparameters of
the model.

6.4. Challenges and future work for deploying DRL-based controllers in
buildings

The recent advances in DRL algorithms offer a unique opportunity
to optimize the operation of complex building systems. However, there
are still several challenges in developing, deploying, evaluating, and
scaling DRL control algorithms in building systems.

First, training DRL controllers is a difficult task. Training DRL
algorithm by directly interacting with real building systems may cause
comfort issues and equipment damage and may take an unreasonable
amount of time [68]. At the same time, developing a simulation model
that adequately approximates the system is time consuming to develop,
difficult to calibrate, and not scalable. And simpler models, such as
gray-box models used in MPC [69], may be unable to fully capture
the complex dynamic of real building systems. Thus, it is essential to
develop DRL methods that require less training data and that use real
historical data to ensure the scalability of this approach. Additional
studies should investigate the minimum amount of data that needs to be
collected to train such algorithms before deployment. Future research
should also look into using transfer learning, imitation learning and
also online learning techniques to address this challenge.

Second, as discussed in Section 6.1, the high variability of trained
policies with different random seeds for the same combination set of
hyper-parameters is a common problem for DRL algorithms. This issue
is common while training neural networks and it is particularly relevant
when dealing with incomplete observations of the states of a complex
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system or reward functions that are hard to optimize. Future work
should develop more stable DRL algorithms that improve the robustness
to hyper-parameter tuning, as well as investigate the effectiveness of
the random search grid as an approach for auto-tuning DRL parameters.
In addition, including the random seed in the tuning process can
enhance the selection of optimal policies.

Third, a proper definition of the reward functions is key to suc-
cessfully finding a good control policy. Inadequate reward functions
can result in unstable training and/or inappropriate policy. Therefore,
more research is needed to analyze the impact of different definitions
of reward functions (that optimize the same objective). This will help
provide a more standardized definition of reward function that is well
adapted for DRL frameworks.

Fourth, to promote adoption, the policies and behavior of the algo-
rithm need to be easy to explain, particularly in the cases where the
policy provide a nonstandard and unexpected solution to control the
system. In addition, understanding the reasons behind control errors is
important, to be able to create control algorithms that are robust to
failures and thus reassure stakeholders, which is an essential step to
increase the adoption of this technology.

Fifth, standardized building benchmarks are needed to properly
evaluate the developed DRL methods. It is crucial to have standard
environments where the DRL algorithms can be trained, to have well-
defined metrics to quantify the performance of trained policies, and
to have baseline DRL models against which the new algorithms can
be evaluated. These benchmarks will help to speed incremental im-
provements and to evaluate the generalization of the proposed solutions
to different buildings systems. By releasing and open-sourcing the
environment and the DRL algorithm that was developed for this work,
our aim is to provide the research community a benchmark for building
systems that involves small commercial buildings with PV and battery
storage. In the future, more of these benchmark will be needed to cover
more applications (i.e., buildings systems and control objectives).

Lastly, future research should overcome the limitations of this study
and extend its results by comparing different DRL algorithms and
testing different control variables (e.g., controlling ZAT setpoints or
chilled water valve position) in addition to the setpoints controlled in
this experiment. Better comfort models, should be explored, to take
advantage of more realistic assumptions about comfort adaptation.
Additional field testing should be performed in a variety of building
systems to make sure the results are generalizable.

7. Conclusion

This paper explores the use of a DRL approach to control a behind
the meter DER system that consists of a proxy of a small office building
with local PV solar generation and a battery unit. A simulation-based
training framework was developed and used to train a DRL algorithm.
This trained controller was then deployed in a testbed to evaluate its
performance under three load flexibility modes (EE, Shift, and Shed).
The results of this work, and prior published efforts show that DRL can
be a promising solution for DER systems. As the research community
transitions from simulation-based DRL research to field demonstra-
tions, the results and the challenges described in this paper can be
used to accelerate the efforts of future researchers and practitioners.
The next steps in this research include improving the DRL training
methods, evaluating different reward functions and testing alternative
algorithms. These can help develop portable and scalable solutions that
enable easier deployment of DRL in different buildings.
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