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ABSTRACT

We calculate the branching rétio NG —>Z+E‘)/P(P —>TT) to
lowest contributing order.in quantum electrodynamics, with a vector
meson model for the bseudoscalar meson form factor. We treat the
processes 1 —ap+u‘; N - ete™; ,Kg —>u+u-; Kg —;e+e-; “O 493%6_'

Our results are compared with those of previous calculations.
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I. INTRODUCTION

The decays of neutral pseudoscalar mesons into leptbﬁ pairs
are of interest because the observation of high branching fatios to
these modes may indicate the existence of neutral lepton currents. A
reliable estimate of the branching ratios due to conventional mechanisms
is desirable, to give meaning to the notion of "high branching ratios".
A lower limit for the bfanching ratio T'(P —a£+£-)/P(P - YY) has been
given by Geffen and B.-L. Young.l This lower bound (sometimes called
the unitarity limit) is model-independent and depends only on the
assumption that the two-photon intermediate state dominates £he
unitarity sum for the absorptive part of the amplitude for P —>B+£_
(see Fig. 1). The scéle for the branching ratio is set by this
unitarity limit (mlO—5 for 1 —>p+p-)., But the actual partial decay
rate into lepton pairs may be an order of magnitude or more larger,
dependi;g on the size of the real part of the amplitude. Previous

calculations by Drell,2 Berman and Geffen,3 Sehgal,u and B.-L. Young5

-have, in fact, given some values very much larger than the unitafity

limit, depending on the cut-off parameters and other details of the
models.

Because of the interesf by éxperimenters in a plausible ’
theoretical estimate of the branching ratio I'(P —>Z+Z-)/F(P =77,
and because of the wide range in the previous theoretical éstimates,-
we bresentfyet another calculation, based on a vector-dominance model

of electromagnetic couplings. In the main we assume that there are no
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direst Pry or PVy couplings. All photon couplings.then occur via '
the 1ntermed1ary of vector mesons, as is shown for the relevant
processes in Fig. l, |
The form factor fof.the transition of a pseudoscaiar meson

of mass M into two virtual photons, k, and k,, F(ki, k2§ M2),
is therefore proportional fo [(mi + ki)(mg + kg)J-l, where m, and
m, are vector meson masses. In the process P Ny such a form
factor gives a rapidly convergent loop integral. In advance of the
detailed computation we may anticipate that our result should corres-
ponq.roughly to those of Drellg and Berman and GeffenB,provided‘their
cut-off parameters are taken around the vector meson mass. For compari-
son we also evaluate the branching ratio ‘with a single vector meson
propagator, correspsnalng to the existence of a PVy coupllng This
is the same calculation as was done by Sehgal,h repeated ‘here because
Sehgal gave no formulas'asd only numerical values for Kg decay for
three choices of cut-off mass.

. We compute the branching ratio (7 —>u+u-)/F(n ¥>YY) as a
function of vector meson mass. Thé model is also applied to the

. O + -
electronic decays of n, KO and ﬂo; and to the decay Ké SR Y .

2)
The resulting branching ratios are somewhat smaller than those obtained
. by previous-authors.?-5 To indicate the relative importance of the
processes here considered, we include in Appehdix C the predicted

branching ratios for the competing Dalitz pair and double Dalitz pair

decays.




et
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Part of our aim in this paper is frankly pedagogical. We
have included an appendix on our conventioné for the calculation of
Feynman amplitudes and on the evaluation of loop integrals over internal
four-momenta. In a second appendix we give some of the details of the

present calculation.
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IT. MODEL AND CALCULATION

We assume that electromagnetic decays of 1 proceed through
intermediate states of two identical vector mesons (V). The Feynman
‘diagramsvfor the processes' N>V -7yr and N —-VV ->z+z' are shown
in Fig. 1. A form factor‘for.the_ 7N 1is needed in the first place to
circumvent the logarithmic divergence in the amplitude for n _>z+z;,
which occurs in the limit of a point interaction. The use of identical
vector mesons is inspired by the SU(3) Hamiltonian for the nVV

vertex. The Hamiltonian l%VP = Tr(VéVéP)' contains the piece

00
(p o + ww - 299)7.

A. Radiative Decay

The Feynman amplitude for the proéess N =YYy is*

M .t SweuanE
T 2 WP+ uf)

where f/u ' is the 7VV coupling constant, G is the Vr coupling
constant, p is the mass of the vector meson, € is the polarization
 vector for the ith photon and ki its momentum. Therefore the
radiativé'deCay rate is

f2 Gh'M;

SR » o (2
FTY T 16xn u10 R o A (2)

where M is the 7 meson mass.

We use the Pauli metric. A complete discussion of our conventions
is given:in- Appendix A. . : v '
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B. Leptonic Decay

~ For the process 7 —>z+z‘, The Feynman amplitude is

fham = 5 O e () Ov(g,) (3)
where
& L 1 | a' ppve 5P E) v lm - in(k - q,) Iy .
(200" J 02+ WD) - 07 + 1210 - 0200 - )2 + )

(4)

Here e is the lepton charge, 'u and v are respectively p&sitive—
and negative-energy Dirac spinors, m is the lepton mass, and nu a
Dirac matrix.

The evaluation of (3) and (4) is straightforward; the standard
techniques of quantum electrodynamics can be brought to bear. The

manipulatiohs are given in Appendix B.

Ci Branching Retio and Unitarity Limit

The branching ratio for P - g%g" to P ;>yv can be written

as
T,+,- 2 2 ,
£ 4 2 m i 2 2
T = 207 =\l - - [X° +Y°7] , (5)

3
=
=

where « 1is the fine structure constant. The quantities X and Y,
‘defined in Appendix B, are proportional to the dispersive and absorptive

parts of the matrix element, (3). The'absofptive part - Y i1s independent
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of the model chosen for the 1 form factor, depending only upon the
on-mass-shell amplitudes for 1 - 7yy and 7yv —>z+z'. Hence neglecting
X in Eq. (5) gives us an almost rigorous lower bound on the branching
ratio, as first observed by Geffen and B.-L. Young.l The value of Y

is (see Appendix B)

P EED

The unitarity limit for the branching ratio is thus

- 2 "‘/’F 2
Tote 2 g_ m (M + ) 1)

rr M 1---
M

We do not have an equally compact. expre351on for X; it is
necessary to perform.numerlcally the final one-dimensional 1ntegrat10n
(over an auxiliary Feynman parameter). These last integrals are written

down explicitly in Appendix B. The results are presented in Section IIT.

D. Another Model

Another possible model for the forh factor is a single vector
meson propagator, corresponding to a direct nVy coupling. This model
- provides a somewhat "harder" form factor and comparison of the results
of the two models will give some indication of the sensitivity of the
-branching ratio to the details of the assumptions about the vertex.

The two calculations are very analogous, the second one involving one
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less propagator in the denominator of (4). Details again are given in
Appendix B and the results-in Section III. Sehgalu caiculated the
branching ratio I‘(Kg -——>|J.+p‘)/I‘(Kg - vy) using this model. But his
paper only sketches the .éalculation and gives numerical values for jﬁst

three choices of cut-off (vector meson) mass.
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IIT. RESULTS OF THIS CALCULATION; COMPARTSON

WITH PREViOUS CALCULATIONS

A. 1 VY

The lower bounﬁ on the branching ratio‘is given;by Eq. (7)
as l.O7lx 10-5. Our results afe shown as a function of vector meson
mass in Fig. 2. The results of Drell2 and of Berman and Geffen3 for
the decay 2 sete” can be converted to 7 TR these are élso‘

shown in Fig. 2.

1. Behavior as a function of p; Comparisons with other results

We first consider the general behavior of the bfanching ratio
as a fﬁnction of vector meson mass. For the two models‘%mployed here
the real part of the amplitude has a zero for p/M» 1. This is
visible in Fig. 2 for the hVT model, but occurs at such a small
value of (u/M - 1) for the TVV model that it cannot be seen on
the scale of Fig. 2. TFor large values of u/M there is§a divergence
of the amplitude as gn u, corresponding to the logarith;ic divergence
which occurs for point coupling of 7yy. Explicitly, thé agymptotic
branching ratio for both models is

lm  Dghm 1807 ﬁ[zn(ﬁ)]g : (8
ﬁ>>l PYY‘ 2 M? m




-9- UCRL-18487

Berman and Geffen5 used the form factor
‘ 2
2 .24 _ v
F[kl, ke] - P N kE N kz s (9)
H 17 %o
whence
AL R %f wE
T - M ?
'Y"r.

N = [(tnM/m)? - 30 Wn - 3/2 in 12/202 + 2/12 - 9/8 + oM /u®) ]
“i[x fn M/m + O(m"/MP)] . (10)

It is perhaps not surprising that the Berman-Geffen result gives
numerical values lying between those of our two models, as shown in»
Fig. 2, since their form factor has characteristics intermediafe
between the nWV and nWy form factors. The limiting form of their
branching ratio can be seen from (10) to be the same as (8). |
Drell2 considered a dispersion relation (in the square of the
pseudoscalar meson mass) for thé form factor describing the décay
P —a£+z-. The imaginary part of the form factor is proportional to
our Eq. (6), times a form factor G(Qg) which describes the decay of

a pseudoscalar meson of mass V—Q? into two real photdné

[G(Qz) = F(0, O; —Qz), where F(ki, kgg M?) is our form factor].
Drell chose
2 2
2 l} "Q. < l-l
G(Q: ) = ) ’ ] (ll)

2
0, -~ > p
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where p is now a cutoff paramter. This gives for the branching

ratio

{g_- . %)E l[zn(i-;) zn(ﬂ—g)]g ¥ [q zn(g)]g . (12)

Y m

Drell's result diverges much more rapidly as a function of p than

Eq. (8). We remark here that there is not a clear physical interpreta-
tion for the cutoff parameter p in Drell's (or even in>Berman and
Geffen's) calculation. In particular, there is no obvious correspondence‘
between the cutoff and our vector meson mass.' Consequently one should
not take too literally the graphs which give all results as a function

of the same mass parameter.

2. Branching ratio for realistic vector meson mass values

For the physical vector meson masses the numerical values of

the branching ratio for the 1VV model of the form factor are

1.13 m ,
P ow- -5 p : .
= = 1.17 ) x 10 for p = L (13)
v 1.2 . |
9 B

compared with the lower limit of 1.07 x 10_5. We note that the real
part(of the amplitude contributes only 10 to 20 percent in the rate.

The spread in the above values may be taken as an ihdication
of the variation expected from the breaking of su(3) symmetry.' But

it is of interest to consider the symmetry breaking from a SOmewhat_
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more basic point of view. The nonet model of PVV coupling gives é
Lagrangian density proportional to (popo + ww - 299)1, where the
space-time structure has been suppressed. For the present purposes we

assume that the couplings are of this form for the physical particles.

We assume that the photon transforms as

T ~ po + L wg = po + % w - 3§§‘ P, and that the vector meson~
5
photon coupling constants are of the "universal" form, Gi = em?/rv .
Then the X(p) of Eq. (5) and (B.14) is replaced by
X -20X(m) + £ x(m) - £ x(m)] . (14)
277 p 9 w9y

This gives a branching ratio,

T 4+ . -5

= = 1.08 x 10 s : (15)

Yy

even closer to the unitarity limit than the value found with
b= in (13).

The estimate just made included»symmetryvbreaking'in a very
special way (hadronic couplings unbroken,_photoﬁ—vector—meson coupling
of universal form, etc.). Clearly there are a myriad of other ways to.
break the symmetry, each one-éiving a different branching ratio. But
if Su(3) Symmetry is good to; say, 50% accuracy, it is difficult
to imagine the branching ratio lying outside the interval of from one
to two times theunitarity bound, at least in our vector doﬁiﬁante |

-model.
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Similar considerations about symmetry breaking can be made for
the nVy model of the form factor. It is clear from Fig. 2 that the
same conclusion will be reached, and that a result more than three
times the unitarity limit would be surprising, unless there are other

mechanisms at work.

3. Discuésioh of B.-L. Young's results

Exﬁensive.esfimates of the branching ratio have been made by
B.-L. Young.5 As a model for the 1 form factor, Young has a cutoff
function times a vertex function which is a linear combination of
Yy, 1y, and NVV contributions. The form factor is schematically
illustrated in Fig. 3. He uses physical masses of vector mesons and
SU(}) and empirical estimates for the coupling constants. Young has
several models for the cutoff function, but the résults are not sensitive
to these variations, provided different models are compared at equiva-
lent effective values of the cutoff parameter A. In Fig..h4we have
plotted the boundaries of Young's various curves which he calculated
with different values of f, g5 7 and T, (c.f. Fig. 3).

The range of values for:the branqhing ratio is, at first glance,
almost ununderstandably large. As a first remark we observe that, while
the nVy and nVV parts of the amplitude‘need no cut-off, the point
coupling Tnyy does. Thus Young's results diverge logarithmically with
his cut-off parameter (which has nothing to do with the mass of a

" vector meson) provided 1lim P(ki, kg) % O,apart from the cut-off

2.2
kl’kE—) o0
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function, i.e., his Loo + 0. The second point is that the detailed
behavior of F(ki, kg) for small or moderate k? depends on the
magnitudes and relative signs of the contributions from nyy, 1y,
and nNVV, and this behavior affects the magnitude of the branching
ratio. The largest values come from (a) the smalleét values of Ty
(obtained from Fbgn>/FO(ﬁé)<= ﬂ[% and ‘the »° lifetime); (b) choices
of signs of f, and 8 5 which make F(ki, kg) increase With

i, kg 4 0 until eventually damped by the cutoff function. His

k
"dipole model" has two cutoff parameters, one fixed and one variable,
and the behavior of the result is governed mainly by the fixed,

rélatively small cutoff. This produces the lower, flat curve in our

Fig. 4.
o) + o
B. K2——>pu

For this process the unitarity bound is 1.17 x 10-5. In
- this case,_thé motivation for our model is léss élearvsince the decay
‘KO 7 involves both weak and.electromagnetic interactions. But if
the elecﬁromagneticvpart is dominated by vector mesons the model
should provide a fair estimate of the real part of the.amplitude.

In Fig. 5 we display our results for the branching }atio,
along with those of Drell and of‘Berman and Geffen for this %récess
as a function of vector_méson maés; Sehgal;s three valués,h-for
“/mK =1, 2, and 4 are 1.6, 2.0‘and 3.5, respectively, in units of
10™. fThe first value is considerably larger than our result of

- 1.26 x 1070 at “/mK = 1, but the other two values are in &grgement
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with our curve for the KVy model. The relations among the various
calculations as a fUnctiqn of vector meson mass or cut-off are quite
similar to those found for 1 decay, although details such as the
zero in the real part of the amplitude at some value of p are
different because. of the somewhat different kinematics.‘

Bég6 considered a specific model for decays involving both
weak and electromagnetic interactions. Although phrased in dispersion
relation language, the model is effectively equivglent to a current-
current Hamiltonian for thé hadronic part of the weak interactions with
AS = 0, 1 neutral currents. In particular, the AS= 0 vector
current has a contribution from ﬁhe po-meson field and the axial vector
current from the divergence of the ﬂO field. The decay Kg - £+£'
would then proceed mainly as Kg —anO via the AS =1 neutral hadronic
current, and 0 =YY, YT —~£%2" Dby one of the models discussed here.
Bég usés Drell’'s model with p = EmN, ‘and an upper limit for the
matrix element of Kg —ano, to give an approximate absolute upper limit
of P(Kg —ap+p') < 0.7 sec™t, Evidently Bég's value for the branching
ratio Fz+é_/PYY is Just that of the Drell model. Although not stricfly
relevant for the present'considerations,»it is perhaps of interest to

examine the experimental data on Kg - Yy so that Bég's absolute rate

can be converted into a branching ratio. The most recent and apparently

most accurate value for the rate of ng — vy is that of Banner et al.7
: - L
They find -P(Kg —ayy)/F(Kg —»all) = (4.68 £ 0.64) x 10 °, giving an

absolute rate of F(Kg -1r) = (8.9 +1.3) x 107 sec™t. Bég's upper

1imit then becomes an upper limit on the branching ratio of roughly
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8 x 10-5. From Fig. 5 we gee that Drell's model gives 2.8 x 10"5
for p = émN(u/mK = 5.8). "Within the framework of his model, this

means that Bég's estimate for the Kg -0 matrix element was too

large by a factor of V8/2.8 ~ 1.7, remarkably close considering

that it was called a "generous upper limit"!

C. N —see and Kg see”

For these extremely rare decay modes, the branching ratios are
again close to the unitarity bound, for reasonable masses of the vector

mesons. We therefore state 6nly the lowér bounds:
f:n e e” -9
n ;*YY) ‘ > kh.5 x 10 ;

I‘(Kg - e+e—)

. > 5.3 x 1077,
I‘(K2 - 7Y7)

0 +
D. n —ee

. The direct decay of the neutral pion into an electron-positron
pair was the process originally studied by*Drell,2 and by Berman and
Geffeﬁ.3 The predictions of Berman and Geffen, and of our calculation
are, as before, rathervihsehsitive to the value taken for the cutoff
or vector meson mass, while.Drell's expressionvis gquite sensitive to
the cutoff. The zero in the real part of the gmplitude ocecurs iﬁ-this

case for a rather large value of the cutoff, bepth for our models and
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for that of Berman and Geffen. Consequently, over the range of cutoff
masses corresponding to intermediate states p, w, ¢, the branching
ratio is decreasing. The predictions for this process are summarized

in Table I. Only our values for the #VV model are quoted.
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IV. SUMMARY
Our calcﬁlations indicate that for the vector domihahce,model
the branching ratios for the decays (P .>z+z') to (P -»yr) are

not much 1arger than the lower bounds given by unitarity. For the

decay 1. —p'p”, we therefore expect that

Detailed numerical values are given in Sectioﬂ IITA. TFor Kg decays
the branching ratio ‘P2+25/PTT is of the same magnitude as for 1
decay, but because of the smail fraction of decays Kg —>YT,7 the
process Kg -9u+p' Will.be much less common:
0 -
T(Ky, »up)

~ (0.5-1.0) x 1070

( Kg —all)

In both cases the decays toﬂeiectron pairs‘aré‘SuppreSSEd'by an
‘additiohél factor of about U4 x lO-h. Beqausg of the inséﬁsifivity
of our results to vector meson mass, neér;the physical masseé ﬁf
veétor'mesons, we believe‘our‘predictions-for the total branghing

ratios relisble within a factor of two.
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Brancﬁing Ratios for HO ~ete”

Cutoff or Vector Meson Mass

Source (Units of pion mass) P(“o _;e+e-)/P(nO =)
Unitarity -- h.7 x 1078
Drell 1.0 3 x 1078
Drell 6.95 12 x 1078
Drell 113.90 22 x 1078
Berman and Geffen '=5;16 6.7 x 1078
Berman and Geffén 9.8 5.7 x lO-8
This Calculation - 5.7 (p) 6.4 x 1070
This Calculation 7.6 (o) 6.1 x 1070
This Calculation 10 8

h.9 x 10
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APPENDIX A: CONVENTIONS, NOTATION, BASIC FORMULAS

AND FEYNMAN INTEGRALS

1. Metric and Dirac Matrices

The notation for L-vectors is Ale = (é, Ah = iAO), so that
~scalar products are A-B = A-B - AOBO. The spinor notation is that
‘of Pauli's Handbuch article, with Hermitean y-matrices and Ty,

diagonal. Explicitly,

0 -ig ,L 0 ' 0 -1
=y ) n=( ) w0 )

. Nio 0 P \o a1 2 -1 o
The spin tensor is cdv = 57 (YMYVHYVY“). The spinors are normalized
according to (uwu) = 2m, (vv) = -2m. They satisfy the free-particle
equations, (iy.p +m) u(p) =0 and (iy'p - m) v(p) = 0. For an
antiparticle of momentum P and helicity A it is sometimes conven-
)x-l/z

ient to use VK(R) = (-1

r5u_>\(},3) .

2. S-Matrix Formulas

The invariant amplitude.7h7 is related to the S-matrix through

the relation;

Spo - _a}éa 1(20)"s") (5, - ) Mo/ VT @) (a.1)

where « and B are the initial and final state labels and the produet

of factors (2Ei) is over both initial and final states. For a decay
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process o - (1,2,-++,n) the transition probability is

I Y o LT DTN
(=0 2EO£ po i (23‘[)5(2E1) 1 n a
(A.2)
For a two-particle final state,
1 2 Pau™en
dw = —— l I ——— (A.B)
pa 52n2 776& mO? ’
where
D e m o+ m. N\A . cm a2
Py _ 1 [1 () Hl (B ]
5 = % m o m
ma (04 a

3, The Evaluation of Feynman Integra.ls8

In general, the integral over the undetermined loop momentum

k in a Feynman diagram takes the form

L

. d'k Flk; p.s m.
== a, a, ' & : S
(2r) 172 n : S |
where
2.2
a‘i = (k - Si) "T‘m..

i
s. 1is a linear combination of external momenta P;
m, are the (internal and external) masses in the

problem, and

?

F is a polynomial in the components of k.
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To evaluate such an integral, it is convenient to introduce auxiliary

parameters ,8 through one of the following identities.

- 1 1
E = = = (ﬁ - 1) dz, **" dz
n - & ag °°° an ' 1 n
) 0 -0
n
6(1_1 z; - l> -
X [}Ii_ = (4.5)
a,z
G T n-2
e, = (n-1)! f dzl[ dz, f dz _,
0 0 0
; ) ‘ . _ e _ . -n
X [Zn—l(an B a'n-l) +'Zn-2(an-l . a‘n-2>+ .-le_(az 8'l) * 8'l]
» 1 1 1 (8.6)
, : n-2 [ n-3 . . .
€, . (n - 1) [ Z dzlf Zpy dz, f dz _,
. _ 0 "0 (O '
B R A L T VA > zp(8y = 83) reoed 8]
(A.7)
Some other useful relations are
1 o
1 j Xn-l dx . . (A 8)
n. n+l ? :
nA"'B ~

[A}; + B(1 - x)]
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1 1 n(A-B)
- = - dx . A.9
oot .[ [(a - B)x + 8" (8:9)

An integral of the form (A.4) can always be brought to the

schematic form

r(12;)1 | I f fd - F(k,ep L ) . (A.10)

[(k - + a ]

(one-dimensional
integrals)
The exact form will depend on which of the above identities one chooses
to employ. If the k~-space integral.is at worst logarithmically diver-

gent, we can make a change of variable,

1

kK = k-R , | (A.11)

without changing the value of the integral (nor adding any finite
number for the case of a logarithmié divergence). Hence we can always

bring the k~space integral to the form
dl‘kF(kJrR-p-m)
i |

k° + a2]"

(lA.l2)‘

Because of the symmetry of the range of integration, the odd powers of
kH in P do not contribute. To get to the final, usable form we

must average over ku, which amounts to the substitutions
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1 o
Kk, = 8k
: 1 .22 . .
kkkk, = Bt [8wap ot 8,0, aucavp]

ete. ’

Therefore we need only evaluate integrals of the form

g - a (A2 4P m-1) (n-m-1):
) [k2 +'a2]n (a2)n-m o (n - 1) ?

(a.13)

which exist, provided n > m > O. | |
Quite clearly the major task in the evalugtion of Féynman
- integrals is the computation of the integrals over the auxiliary

parameters.
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APPENDIX B: DETAILS OF THE CALCULATION

We begin with Egs. (3) and (4) of Section II. Use of the
Dirac equation for the leptons and various identities allows us to

write the effective value of (& in the form,

Q’: —i—F f a' %— (ma + iBy-k)ré'v s (B.1)
where

A = W -2kp, B = M +2kp (B.2)
and

w]
I

The evaluation of E(ql)(fyv(qg) in the helicity representation leads

to a matrix element,

where

1 [duk (MQA + 2k.pB)' 4 fduk rMEk2 + (k-p)g]
Iy D - L D
(2r) (2n)
(B.4)
The quantities X and Y, appearing in Egq. (5) of Section II for the

branching ratib, are related to I by

202 + 120 - BP0 - 1P + P10k - 0y)® + 00T

(B-B'E)_
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ZEX+:'LY=1831M2(5[-:)M I . ' (B.5.‘)

The evaluation if I is straightforward, but the‘presence of
five denominators necessitates some manipulation. As a preliminary we
remark that the change of variables, k —p -~ k, leaves the numerator
in (B.L4) invariant and leaves D unchanged except for 4y 9 -
Furthermore, in the frame where 5’: 0, the transformation E--K

2 2 . S 2 2
causes (k - ql) - (k - qg) , while leaving k= and (p - k)
invariant. These two dhanges of variable can be used to simplify the

integrand in (B.4), as follows:

]

%[Mgkz v (0)?) = EA® ¢ D+ (o - K)2 - KPP

- %{M“ + hMEk?-nu 2 (p = k)° - k1 + [(p - K)° - k°1°) .

The third term in the curlyv_brackét gives zero contribution to the
integral, as cah be seen by the above changes of variable. The last

term can be written

[(p - k)2 -‘k2]2 _ i 1 j 1 . ‘1 1 ’” X
-0 _<k2 (o - k)2)<k2 R I u2>

X - ->-2—< L . L > L -
(s - a)2 +07] ¥ N2+ ® (0 -1)% + 0¥ [k - qp)? + 0]

Similar use of parﬁial fractions and the above changes of variables
can be uged to reduce I to a sum of terms involving only three

denominators. The result can be written as
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©, 0) - 2( 2 - 1 Y 300, W
J(0, 0) - 2 -1Y J(o,

(EE_E_ 1) ( ) L L‘..e.
- Jlu, w) - . L,
¥ WU RAE

(B.6)

joo)
=
1
}_l.
N
=ic
.
=
H
i

where

I(my my) = -(-;-F fa“k[(k? +_m§)[(p -2 4wl - @)F ¢ 0]
(B.7)
and

5
L o= B fdukfkg(kg + ) - )f w1}t . (B.8)
T 1

The simpler integral I can be evaluated immediately using

Feynman parameterization. The result is

hm?
2 > L+t -7
&-z(ﬂ) E = (B.9)
L = n - - . .
m? m 2m2

hm' '
l—,\\l-—-e—-
"

In passing we note that for large vector meson mass (b/m>> 1), L

has the asymptotic value,

L—eﬂn(ﬂé>+ o) . . (8.10)
m .

The remaining integral J(m1; mE) can, by means of the
Feynman parameterization, be expressed as a double integral, the
“first of which can be performed in terms of elementary funcétions.
¢ N

The resultant is
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R T T
J(ml:m ) = _}— f dx '—]'-"""ﬂl’l (ml 2 (.‘[Z+ MEX) s
2167 Voo led -u0)® - (Va-vn? ) T

(B.11)

A = (@ +md - Px)2 - in‘ns - WPnc(1 - x)2 . (3.12)
- The remaining integral over x is most conveniently done numericglly
for the specific (ml, m2) values needed in (B.6). '
Before displaying the final forms suitable for numerical
computation it is of interest to consider the question of the unitarity
1imit [Eq. (7)]. This bound comes from the existence of a model-
indepgndent absorptive part from physically allowed two-photon inter-
mediate states in Fig. l(b%. This abéofptive part can be caleulated
directly fibm unitarity éqﬁations and the physical amplitudes for
N -yy and yr _>z+zf, as in Ref. 1, or by replacing the propagators
by delta functions, as discussed by Sehg&l.u Alternatively, it must
emerge directly from any model calculation. If it is aésumed that the‘
vector meson mass is large enough that neither yV nori VV “inter-
mediate.states are physical, then in the expression (B.é), only
‘J(O, 0) can give rise to an absorptive (imaginar&) paré. This 18
because J(ml, mz) qorresponds to & simple spinless triangle gfaph
of the form of Fig. i(b) with the diagonal internal legs having masses
m

1
consider (B.11) and (B.12) with m =m, = 0. We have

and m, . To see explicitly how the imaginary,part emerges,

e
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(B.13)

where, for the moment, the sign of the argument of the logarithm should

be considered as not yet certain because of the ambiguity in

zn(fe) = 2£n(if). To ascertain the proper sign we note that for M < 0
there can be no physically allowed intermediate state and hence no absorp-
tive part. By inspection of (B.13) as it stands it is easily verified

that J(0,0) is real for M° < 0. Now we can consider W > 0. The

square root in (B;lB)‘is now real and less than x for (:gﬁ + lj)-l< x<1
and imagingry for O < Xx < (g———m + l>-l. This means that the integral
receives a real contribution over the whole range of integration and an

-1
imaginary contribution for x on the range, (%If_n + l) <x<1l:

1
8 » Im J(0,0) = - ' dx 12
1 2 .M - x)P
M M
Eﬁ' + 1

Evaluation of this integra} leads directly to the expression Y in
Eq. (6) of Section II..

The reader who finds the explicit evaluation of the imaginary
part of .J(0,0) too specific can consider the analytic properties of
the triangle graph represented by (B.7) or (B.11), using techniques
deveioped for arbitrary Feynﬁan diagrams.l3

We now return to the task of exhibiting the final forms of

J(ml,mg) needed in (B.6). The features of the integrand of J(0,0),
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noted above, imply that the logarithm becomes an arctangent over part
of the range of integration. For J(0, u) the log form holds over .
" the whole range, while for J(u, p) the arctangent. The complete

expression for X = Re Z 'from (B.6) is

}X:Al+2(M2-l)A2-<2-l>A3'- 5 Ay 5 (B.14)

where

A= “i‘[ dx > 1)(. : “) [arctan <§'\[(a-x)(b+x)> ]
0 EV(a - x)(b + x

+_1_f ax 1 zn[x+§Wx-a)(x+b)]
" X £V (x - a)(x + b) x-ﬁ'\/_(x-a)(x+b)

1 ‘E;- (x -t V(e - x)(a - X)>2

A _ l__ dx 1 : in M)_'.
2~ gﬂfo O e e Do)
M

[t (eWe NG n). ]

- 3

s
1
a i

j dx———-————-——-———-—-—-' l
o V(e-x)(f+x)

LS
=
1
R
erzm
~
B
N
BI=
~—
A
. ol o ’
l....l
I .
= &
Sk
x>
= .
H =
1 +
*._I
]
= fc
A
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and

ues
]

=
¥

o
il
N
|
+
[
-
o’

i
N
l=
1
=
\_/

n

f:”g——‘—*[\/ - 22+p,)-|- -u2+2m2].

In Al and A the arctangents ‘are to be chosen on the interval

The calculation for the second model, with a single vector
meson propagator (nVy coupling, instead of 1VV) closely parallels

the previous one. The denominator (B.3) is replacedas follows:

o 2 2 2 2

. l[k +p+(p-k) +p]

2 D D
2

[l ko
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Here, fdr.convénience,_we:have’written a form explicitly symmetric
in k° and (p - k)e and have included a factor of u_?; USe'of
the same transformatlon of varlables as dlscussed below (B. 5) ylelds

an 1ntegrand to replace that in (B.4t) of the form:

. : 7 Mgu ';)2
: = -1
WMES + (kp)°] . 1 ' t _ 1 _( u2

D 2 2 2. 1 &k 2 2
K[(k-q)" +n7] Ju (»-k) (p-k)
. ME'+ |
2 ,
Rt e
RPN
kT p(k" + p7)
Only the last term gives a.hew“integral, not present in the first
model. The expression replacing (B.6) is therefore
z' B , A B .
= J(0,0)—( -l>'J(O, w) - . L<l+-—>
8nM? A ' M? } l6n2M? a A “2
L2 s
- . L, - (B.15)
8n2M? M? :
where-
L - _}2__ fduk s (..p.k) . . o (B.l6)
7o K2k + pAN(k - ) e

Explicitly we have

L' o= ME [L - en<L- ) - l] . | o (B.17)

hm
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The final result for X in this model is

X! -;—v Al +(E—

where the integrals

2

W

Ay

1>2 | 2M2 Au(l +M2 +ﬂ-§>

" i 2[£n(.2>+l]
‘m m .

are defined below (B.1kh).

UCRL-18487
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- APPENDIX C: RATES FOR COMPETING PROCESSES

The branching ratios for the Dalitz pair and double Dalitz
pair decay modes of the 1 meSqn have been calculated by Jarlskog
and Pilkuhn,9 using standard methods of QED. Applying their results

to the'decays of 1, Kg, and no, we obtain the following branching

ratios.

= ?nu:u;};;“-) ~ 6x107

; ‘

(noppee) L x 1070

(n-7yr)
SR e
Lg_ze_s.gl - 1.6 x 10

it

0 + = 4 =y '
(Ky =»uppp) .
2 ~ 6x10°%

(K) —77)

0] + = 4 -

4 x 100

(Kg -77)

(Kg —>e+e_r)

— = 1.6 x 10
(K =77) S
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(Kg —>e+é-e+e-)

5 = 6.3 x 1077
(X5 = 7)
0 + -
(x O"e ex) _ 1.19 x 1073,
(" =77) |
. 10 -2
Experiment : 1.17 + 0.04% x 10
o + - + =
(x" e ecece 3.5 x 1079,

0
(x~ = ¥r)
. 11 -5
Experiment : 3.18 + 0.30 x 10

" The single Dalitz pair formation is perhaps of most interest
because of its possible presence as & background for the p+u— decay
mode. We calculate the branching ratio p = I'(n —>u+u—Y)/P(n > YY) s
using our model for the 1 form factor. The process in the numerator
is Dalitz pair production N - 7YY —>u+u-Y; we ignore contributions
from inner Bremsstrahlung 1 —>p+p- —>M+H_T- The latter process is
suppressed by a factor»of about a’ compared with 1 —>u+p_. We

find

M2

: i
p = e .[ %(S + 2m2)(l - hmg/s)%(l - S/Mz)3 ——2}}'———"5 ’
. >n Mm? 8 (u° - s)

(c.5)
where s 1is the effective-mass-squared of the lepton pair, and other

symbols have been defined previously. This is Eq. (13) of Kroll and

> L, 2 2, .
Wads,? with the additional factor u'/(n” - )7 in the integrand.
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The spectrum in s 1is strongly peaked towards small. 8, corresponding
to "aimost real” intermediate photons converting into the lepton pair.
Hence the presehce or absence of the vector meson propagator is of
little consequence.

Using a p-meson intermediate state, we find for n-decay,
o=7.8x 1o'u; and for Kg decay p = 5.6 x 1o'u. These branching.
ratios are ~50 times the branching ratio for the direct decay
,n ~>u+u- of experimental interest. However, high effective masses
of the u+u- system are strongly suppressed, so that an expefiment
with reasonable mass resolution can minimize the contamination. To
show this quantitatively, we plot in Fig. 6 the fraction of Dalitz
pairs with effective mass-squared greater than minimum accepted valueé
of mass-squared. For examéie, an experiment with resolution of
Ot5(M2 - hme) ~ 0.08 Gevz 'in the effective mass squared, would accept
about 1 Dalitz pair for every 2 directly—produced pairs.

Finally ﬁe note that "inner Bremsstrahlung" gives rise to a
tail on the mass~square distribution of the directly-produced pairs,

1k

which can easily be treated separately.




Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
fig. 5.
Fig. 6.
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FIGURE CAPTIONS

Peynman diagrams for the decéy processes.

(@): n-yrs  (0): n 27

Branching ratio Ih*u'/fvr for eta decay as a function of
vector meson or cutoff mass. Dotted line: Drell; Dashed
line: Berman and Geffen; Solid line: Present nMVV model;
long dashes: Present 1Vy model; Dot-dashed line: ILower
bound ffom unitarity.

Schematic rebresentation of Young's form factor.

Range of branching ratios obtained by Young versus his cutoff
parameter.

Branching ratio Iﬁ*u‘/P%Y for Kg decay as a function of
vector meson or cutoff mass. (Same labels as Fig. 2.)
Fraction of Dalitz pairs in 17 —)Tp+u- with effective mass~-
squared > lower limit accepted by experiment, 5o+ Multiply

right-hand scale by 0.72 . for Ko

o decay.
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Cutoff mass, units of eta mass (Not vector meson mass)

Fig. 4. XBLE89-6812
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Lower bound (unitarity)

{ 5 10 50 100
Cutoff mass or vector meson mass, units of KS mass

Fig. 5. XBL689-6813




UCRL.-18487

-44 .

Og < paionbs-sspw
Yim sijod-1 oy (AL<b) g/ (L A by oyps Buiyouniq (x 4O

© o @« 0 ~ o - . © ®
_ _ _ [ _ _ _ T _ =
N
e 1€
. <
1 _ _ | | | | _ _ | T
Q @ @ N0 0 m N - ©
- l®) o o o o o - e o o

°S < pasonbs-ssow ypm siod-m z40g O U010

So minimum accepted mass-squared

of w-pair

XBlL689-6814

Fig, 6.




This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






