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Abstract Choosing state variables in a state-space
representation of a nonlinear dynamical system is a
nonunique procedure for a given input–output rela-
tionship and therefore a potentially challenging task.
It can be even more challenging when there are
piecewise-defined restoring forces, as in bilinear hys-
teresis or Bouc–Wen models, which are just two of
many such engineering mechanics models. Using vari-
ous piecewise-smooth models, we make use of flow-
and effort-controlled system concepts, common to
bond graph theory, to initiate our state variable selec-
tion task, and we view numerical simulation as being
within the framework of hybrid dynamical systems. In
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order to develop accurate and efficient time integra-
tion, we incorporate MATLAB’s state event location
algorithm, which is a mathematically sound numerical
solver that deserves to be better known in the engi-
neering mechanics community. We show that differ-
ent choices of state variables can affect state event
implementation, which in turn can significantly affect
accuracy and efficiency, as judged by tolerance propor-
tionality and work–accuracy diagrams. Programming
details of state event location are included to facili-
tate application to other models involving piecewise-
defined restoring forces. In particular, one version of
the Bouc–Wen–Baber–Noori (BWBN) class of mod-
els is implemented as a demonstration.

Keywords Restoring force model ·Bilinear hysteresis
model · Bouc–Wen model · BWBN model · Hybrid
dynamical system · State event location algorithm ·
Bond graph theory · Flow-controlled system ·
Effort-controlled system

1 Introduction

1.1 Motivating example: state event location
algorithm

This study builds on previouswork developing accurate
and efficient numerical methods for simulating nonlin-
ear dynamical systems that include piecewise-defined
restoring forces [34]. Throughout this paper, the fol-
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lowing equation of motion is used based on Newton’s
second law:

mẍ + r = u (1)

where x = x(t) is the displacement of the mass m at
time t , ẍ is the acceleration, r is the restoring force
generated by the elements connected to the mass that
tends to restore it to its neutral position and u = u(t)
is an arbitrary excitation force applied to the mass. For
example, Eq. (1) could describe steady-state or tran-
sient dynamic response due to either force or base exci-
tation. For simplicity in this study, we set mass m = 1,
x(0) = 0, ẋ(0) = 0 unless otherwise specified.

In this study, r = r(x) is a piecewise function of
x , making the dynamical system a hybrid dynamical
system, meaning a system with interactions of both
continuous and discrete state/algebraic variables. We
assume that the displacement, velocity and restoring
force are continuous functions of time, meaning the
transition from one piece to the next is continuous, and
that they are differentiable within each piece. However,
the instantaneous stiffness, defined piecewise as dr/dx,
may change abruptly from piece to piece. As needed
herein, we will review ideas and supply the required
definitions as they apply to a specific hybrid dynamical
system (e.g., [11,30]).

In [34], we focused on the Ramberg–Osgood model
which has a piecewise-smooth algebraic form r =
r(x). In this study, more complicated models such
as bilinear hysteresis or Bouc–Wen models [4,6,7,31]
will be investigated, where r is defined piecewise in
either algebraic or differential format.

As amotivating example involving “state event loca-
tion” [27], we present results of a single-degree-of-
freedom (SDOF) simulation with the trilinear elastic
model shown in Fig. 1. The force–displacement rela-
tion, r versus x , is defined by three linear pieces joined
at two points (xy , ry) and (− xy , − ry), with xy = 0.75
and ry = 0.75 where xy denotes yield displacement
and ry denotes yield force. Thus, the slope of the cen-
tral piece defines a spring stiffness k = 1. The two
other pieces have equal stiffness values αk = 0.3.

We utilize the state event algorithm in [27] for accu-
racy and efficiency reasons. This algorithm ends time
stepping “exactly” (within an approximation error) at
each time when yield displacement occurs, such a
time being called an “event,” and then restarts there
with accurately calculated values of all time-dependent
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Fig. 1 Trilinear elastic model: central piece has stiffness k = 1;
the two other pieces haveαk = 0.3; this result comes fromSDOF
subjected to one cycle of sinusoidal excitation force u(t) (shown
at top of Fig. 2); simulation used “event option” underMATLAB
ode45 with RelTol = 10−3 and AbsTol = 10−12. Event Types
#1 and 2 are defined in Eqs. (2) and (3), respectively

quantities (displacement, velocity and restoring force
in this example). This algorithm was implemented by
combining the event option with ode45 in MATLAB.
For the trilinear elastic model in Fig. 1, the event option
needs to implement two event functions:

Event Type #1 : x(t) − xy = 0 (2)

Event Type #2 : x(t) + xy = 0 (3)

which are solved for the time instances when these
event functions are satisfied so that the numerical inte-
gration will stop and then restart at all time instances
that are discovered (i.e., not known a priori) in the pro-
cess of numerical simulation. These events are called
state events as they are functions of the state variables
(x in this case).

Figure 2 presents simulation results for the trilinear
elastic model. Time instances corresponding to the two
types of event are highlighted in both Figs. 1 and 2.
Although this is a simple model, with the excitation
force u(t) being the smooth sinusoid shown at the top
of Fig. 2, the seemingly simple idea of state event loca-
tion requires care to be taken before, during and after
any event occurs. The procedure was discussed in [34]
using both theRamberg–Osgood andBinghammodels,
and will be further elucidated in this study using other
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Fig. 2 Results from SDOF simulation with trilinear elastic
model shown in Fig. 1; simulation used sinusoidal excitation
force u(t) shown at top and “event option” under MATLAB
ode45 with RelTol = 10−3 and AbsTol = 10−12. Event Types
#1 and 2 are defined in Eqs. (2) and (3), respectively

more complicated models. More information concern-
ing the algorithm itself is given in Sect. 2.1.

1.2 Motivating example: choices of state variables

State-space representation has been the cornerstone
for both theoretical and numerical studies of nonlinear
dynamical systems. Loosely speaking, state variables
for a dynamical system can be used to model the sys-
tem as a set of first-order ordinary differential equations
(ODE) called state equations:

ẏ = f (y,u, t) (4)

where u is an input vector (includes initial conditions)
and y is a state vector containing all state variables.
For example, displacement and velocity are commonly

chosen as state variables when formulating the state
equations corresponding to Eq. (1):

y =
{

y(1)
y(2)

}
=
{

x
ẋ

}
(5)

ẏ =
{

ẏ(1)
ẏ(2)

}
=
{

ẋ
ẍ

}
=
{

y(2)
1
m (u − r(y(1)))

}
= f (y, u, t)

(6)

This choice of state variables and corresponding pair of
first-orderODEswas usedwhen implementing the state
event location algorithm for the example just presented.
In particular, the displacement x(t)wasused in defining
the two event functions, which satisfies a MATLAB
requirement, namely that event functions need to be
defined as (simple) functions of the state variables.

For piecewise restoring force models that are more
complicated, appropriate choices of state variables are
not always this straightforward. Reference [33] vividly
acknowledges this fundamental challenge concerning
state-space formulation: “It is, however, impossible to
deduce a priori, in physical terms, what will be the
state. This, indeed, is a very difficult problem even for
relatively simple systems, and it appears to be the cause
for much of the reluctance of introducing this concept
in physics.”

Table 1 offers motivating examples of four ways of
choosing state variables for two different basic (lin-
ear) dynamical systems: (a) a mass in series with a
Kelvinmodel (also calledKelvin–Voigt) and (b) amass
in series with a Maxwell model. A Kelvin model has
a spring and dashpot in parallel, whereas a Maxwell
model has a spring and dashpot in series.

Often when modeling a dynamical system, numer-
ous choices of state variables are possible, although
many are not straightforward, nor even physically or
computationally convenient. The text and “AppendixA”
provide additional discussion and examples, particu-
larly Sect. 2.2 (flow- and effort-controlled systems) and
Sect. 4 (Bouc–Wen model), where the first and second
columns in Table 1 will be elaborated in Sect. 2.2.

1.3 Contributions and structure of this paper

This paper builds on previous work [34] promoting the
use of hybrid dynamical systems for nonlinear hys-
teresis modeling. The utilization of a state event loca-
tion algorithm is validated here for various piecewise-
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Table 1 Possible choices of state variables for basic (linear) dynamical systems

Choice State variable (a) Flow-controlled: mass + kelvin (b) Effort-controlled: Mass + Maxwell

m

k

c

u(t)
m

k c u(t)

1 (F) y1 =
[

x
ẋ

]
ẏ1 =

[
0 1

− k
m − c

m

]
y1 +

[
0
1
m

]
u ẏ1 =

[
0 1

− k
m − k

c

]
y1 +

[
0
1
m

]
u +

[
0
1
m

] ∫
udt

2 (E) y2 =
[

p
r

]
ẏ2 =

[
0 1

− k
m − c

m

]
y2 +

[
0
c
m

]
u +

[
0
k
m

] ∫
udt ẏ2 =

[
0 1

− k
m − k

c

]
y2 +

[
0
k
m

] ∫
udt

3 (M) y3 =
[

x
p

]
ẏ3 =

[
0 − 1

m
k − c

m

]
y3 +

[
1
m
c
m

] ∫
udt ẏ3 =

[
0 −1
k − k

c

]
y3 +

[
1
m
0

] ∫
udt

4 (M) y4 =
[

ẋ
r

]
ẏ4 =

[
0 − 1

m
k − c

m

]
y3 +

[
1
m
c
m

]
u ẏ4 =

[
0 −1
k − k

c

]
y4 +

[
1
m
0

]
u

defined constitutive models. Furthermore, bond graph
theory is introduced to directly benefit the implementa-
tion of the state event location algorithm. More specif-
ically, flow- versus effort-controlled system classifi-
cation is applied to systematically generate different
choices of state variables, which are further tested
through programming and quantitative measures of
computational efficiency. Even though the primary
focus is on the state event location algorithm, this study
not only exercises the flow- versus effort-controlled
systems classification, but also provides theoretical dis-
cussion of them. For both simulation and classifica-
tion, there exist nonunique choices of state variables
for piecewise-defined models.

Section 1, where a simple trilinear elastic model was
presented to illustrate state event location, serves as
an introduction. Section 2 discusses quantitative mea-
sures of computational performance (tolerance propor-
tionality, work–accuracy diagrams), flow- and effort-
controlled systems, and the essential elements in hybrid
dynamical system modeling that are relevant to this
study. Sections 3 and 4 focus on a comprehensive study
of bilinear hysteresis and Bouc–Wen models, respec-
tively. Section 5 is dedicated to guidelines on choices
of state variables. Section 6 concludes this study.

2 Theoretical issues

2.1 Discontinuity sticking correction and performance
measures for state event location algorithm

MATLAB’s ode45 uses a pair of Runge–Kutta formu-
las due to Dormand and Prince [8]. Numerical integra-

tion is done by computing a mesh of time points that
are generated adaptively, normally not at a fixed time
step. Great care and significant effort were taken to cor-
rect discontinuity sticking, which is a numerical prob-
lem caused by algebraic variable(s) not being updated
properly at a state event location [34].

Following [34], the accuracy of our numerical solu-
tions is assessed by studying the global error (GE) of
the displacement at a specific time tn :

GE(tn) = |x̂(tn) − x(tn)| (7)

where x(tn) is the exact displacement at tn and x̂(tn) is
the approximated displacement at that time. Since the
exact displacement is unknown (inmost cases), a highly
converged numerical solution is obtained by using a
very small value of the relative tolerance parameter
called RelTol in MATLAB. In order to control approx-
imation errors and assess accuracy in our numerical
work, we fix the value of AbsTol to a very small value
while allowing RelTol to take on a wide range of values
down to the fixed value of AbsTol.

The algorithm behind the event option under ode45
is considered quite robust according to some stud-
ies [9,21] and reviewed in [34]. For example, con-
tinuing our discussion of the trilinear elastic model in
Fig. 1, Fig. 3 shows results for a wide range of RelTol
values, with algorithmic robustness being evident for
RelTol < 10−3 (approx.) based on the identified num-
ber of Event #1 and #2 defined earlier and convergence
of the identified time of each event. The results in Fig. 2
correspond to RelTol = 10−3.
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Fig. 3 Number of state events and their event time values plotted
against MATLAB ode45 RelTol for the trilinear elastic model in
Fig. 1. Event Types #1 and 2 are defined in Eqs. (2) and (3),
respectively

Following our work in [34], tolerance proportion-
ality (TP) and work–accuracy diagrams are also pro-
vided here to demonstrate the computational stability
and efficiency of state event location. TP measures
the relationship between GE and RelTol for explicit,
adaptive Runge–Kutta time-stepping methods, while
work–accuracy diagram measures computational sta-
bility. For example, above the upper left plot in Fig. 4,
the TP slope is 0.965, obtained by a straight line fit to
the TP data. This slope is quite close to one, which
indicates very good computational stability for this
series of trilinear elastic model simulations. Also, the
work–accuracy diagrams for elapsed time, successful
and unsuccessful function evaluations (FE) are all quite
smooth, which again affirms good computational sta-
bility.

2.2 Flow- versus effort-controlled systems

The state variable alternatives in Table 1 are obtained,
first, by applying bond graph theory, especially recent
research on flow- and effort-controlled system classi-
fication (e.g., the memristor, memcapacitor and their
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Fig. 4 Tolerance proportionality (upper left) andwork–accuracy
diagrams (the rest) for the trilinear elastic model in Fig. 1, where
GE and FE stand for global error and function evaluation, respec-
tively

advanced systems, e.g., [24,25]). Following the format
of Fig. 1 in [29], Fig. 5 depicts Paynter’s tetrahedron
of state [22,23] for (a) electrical circuits, which can
be translated to mechanical systems using (b) force–
voltage analogy, and (c) force–current analogy.

For mechanical systems, a commonly chosen pair
of state variables is velocity (called flow in bond graph
theory) and displacement (the time integral of flow), as
in Eq. (5) or ChoiceNo. 1 in Table 1. An alternative pair
of state variables is restoring force r(t) (called effort in
bond graph theory) and corresponding “momentum” p
(e.g., [16]) where

p(t) =
∫ t

−∞
r(τ )dτ (8)

as in Choice No. 2 in Table 1. The name momentum
for p(t) is in accord with [16]. Not to be confused with
momentum mẋ , p will be renamed as “g-momentum”
herein, where “g” is short for “generalized” follow-
ing [22]. For the autonomous case (u = 0) of Eq. (1),
Eq. (8) holds with p = −mẋ if the system is initially
at rest but at a displaced position.

Kelvin and Maxwell models, the two systems in
Table 1, form a dual in the sense that the connectivity
of elements in parallel and series corresponds, respec-
tively, to flow- and effort-controlled classification of
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Fig. 5 Planar depiction of Paynter’s tetrahedron of state for the four fundamental a electrical circuit elements following Fig. 1 in [29],
b mechanical system elements using force–voltage analogy and c mechanical system elements using force–current analogy

systems. In (a) flow-controlled system, a mass plus a
Kelvin model, the natural state variables are displace-
ment x and velocity ẋ . These state variables should
be solved (or calculated) first from force equilibrium,
which is typically expressed as an ODE involving these
state variables. In contrast, in (b) effort-controlled sys-
tem, a mass plus a Maxwell model, the natural state
variables are g-momentum p and restoring force r .
These state variables should be solved (or calculated)
first from deformation compatibility, which is often
expressed as anotherODE involving the state variables.
These two choices, which are labeled as (a) and (b) in
Table 1, are from the perspective of flow- and effort-
controlled classification, and are so indicated by (F)
and (E), respectively.

There is a well-established procedure under bond
graph theory on how to assign and then (if possi-
ble) reduce state variables in writing up system equa-
tions for numerical simulation (or even skipping system
equations) [16,22,23]. The key idea in bond graph the-
ory is to identify energy storage elements, masses and
springs, in a system, and then assign energy storage
variables, namely g-momenta and displacements for
masses and springs, respectively, before other details
are carried out. Thismeans that the first choices for state
variableswould be the integral of the internal forces and
displacements, a mixture of effort- and flow-controlled
variables.Hence, this choice of state variables leads to a
so-calledmixed (M) system. Returning to the examples
in Table 1, the state variables would be g-momentum p
and displacement x , which is Choice No. 3 in Table 1.

Choice No. 4, which is used, for example, in the Bouc–
Wen model [3], does not fit naturally into bound graph
theory in the form given, and is a mixed (M) sys-
tem. However, the Bouc–Wen model can be written
in effort-controlled form, consistent with bond graph
theory [24].

The motivating examples in Table 1, albeit being
linear, reveal that various possibilities do exist to select
state variables and their corresponding state equations.
In particular, there are alternatives to displacement and
velocity which are often used in practice.

To complement Table 1, additional examples of
nonunique state-space representations are given in
Tables 2 and3 in “AppendixA.”For brevity, derivations
for all these expressions are not provided in this paper;
however, key technical details start with manipulating
Eq. (1) as follows:

mẍ = u − r �⇒
∫

mẍdt =
∫

(u − r)dt
m = a constant�⇒

mẋ(t)︸ ︷︷ ︸
momentum

= mẋ(0) +
∫

udt
︸ ︷︷ ︸
impulse

−
∫

rdt
︸ ︷︷ ︸

g-momentum

(9)

Equation (9) indicates that p, a kinetic quantity,
and ẋ , a kinematic quantity, are related (principle
of impulse–momentum) and so are not independent,
which has two implications:

1. A state variable vector y does not need to have
all four vertices in Paynter’s tetrahedron of state,
x, ẋ, p, r , the fact of which can be verified in
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Tables 1, 2 and 3. To obtain state equations with
full rank, one cannot have ẋ and p coexisting in
one state variable vector as long as Eq. (1) holds.

2. All state equations in Table 1 can be made equiva-
lent. We have the following pairs:

Choice #1 (F) ↔ #3 (M) by replacing ẋ with p
Choice #2 (E) ↔ #4 (M) by replacing p with ẋ
Choice #3 (M) ↔ #4 (M) by adjusting the order

of state variables

With the equivalency of these pairs in place, it can be
seen that Choices #1 (F) and #2 (E) can bemade equiva-
lent, leading ultimately to the equivalency of all choices
in Table 1, meaning that the solution of any choice is
mathematically the same as any other. However, for
nonlinear models, one choice of state variables may be
superior to another, based on physical reasoning, inter-
pretation of experimental results, and even on numeri-
cal convenience (including accuracy and efficiency).

2.3 Proposed components for hybrid systems

Hybrid dynamical systems, or hybrid systems in short,
deal with the interaction between continuous and dis-
crete time variables. Different research communities
approach hybrid systems from different angles and
with different agendas. In [30], a hybrid automaton is
defined formally by a septuple and includes the use
of differential–algebraic equations (DAEs). The def-
inition in [11], on the other hand, seems simpler and
involves six components with differential inclusion uti-
lized. We will focus on the following components for a
typical hybrid dynamical system by applying the defi-
nition in [11] but with some amendments:

1. Mode A piecewise-defined r = r(x) model corre-
sponds to a collection of discrete characteristic sta-
tuses that the model has, called modes. For exam-
ple, in the trilinear elastic example, one can say that
there are twomodes when either k = 1 or αk = 0.3
applies. Normally, a transition diagram is used to
illustrate the relationships among multiple modes.

2. Domain Within a mode, there are state variable(s)
and perhaps algebraic variable(s). A domain is a
region where the time evolution of the state vari-
able(s) and perhaps algebraic variables’ values are
given by a specified mode.

3. Flow map Within a mode, the state variables are
continuous and smooth when the state equation(s)

are the governing equation. This state equation
is called a flow map. Algebraic equation(s) may
be needed as well so the flow map consists of
differential–algebraic equations (DAEs).

4. Event Anevent iswhen themodemakes a transition
from one status to another. It is also called an edge,
or a jump. It is normally a state event defined by
state variables—sometimes, algebraic variable(s),
as well.

5. Event Function An event function defines a crite-
rion for an event’s occurrence. It is also called a
guard. It is defined by using state variables—and
sometimes, algebraic variable(s), as well.

6. Reset MapAresetmap definesmathematically how
the process of reset takes place right after an event.
In general, a reset map can include both state and
algebraic variables.

These components are applied to both bilinear hys-
teresis and Bouc–Wenmodels in Sects. 3 and 4, respec-
tively.

3 Bilinear hysteresis model

3.1 Bilinear hysteresis model: analysis

Bilinear hysteresis models (e.g., [6,7]) are popular for
modeling plastic deformation. The four modes, I to IV,
defined in [15] are illustrated first by using a simulated
example in Fig. 6a to replace the cartoon in Fig. 1(a)
in [15], and also by amode transition diagram extended
slightly from Fig. 1(b) in [15]—with details substanti-
ated in Table 4 in “Appendix B.” These details closely
follow the hybrid system components elaborated above
so that the hybrid system concept directly facilitates the
understanding and programming. The four algebraic
equations given in Eq. (2) in [15] are rewritten in a
slightly more general form as follows:

Mode I: r = k(x − x0) (10)

Mode II: r = αkx − (1 − α)ry (11)

Mode III: r = k(x − x0) (12)

Mode IV: r = αkx + (1 − α)ry (13)

where k, ry and α are system properties similar to the
trilinear example in Fig. 1, and x0 = x0(t) is a quan-
tity that changes as the simulation proceeds, starting
with x0(0) = 0. It is the reset map that updates the
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Fig. 6 Bilinear hysteretic
model following a
flow-controlled formulation.
a Illustration of hysteresis
loops using a simulated
result. bMode transition
diagram; see Table 4 for 1©
to 8© Displacement
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value of x0 through the memory parameters Hl , Hu

and O in programming, details of which are given in
“Appendix B.”

As shown in Fig. 6a,Modes II and IV are the low and
high envelope as defined in Eqs. (11) and (13), respec-
tively. Modes I and III, however, cannot be grasped
comprehensively from Fig. 6a, which does not cover
all possible behaviors of these two modes.

The comprehensive depiction of Modes I and III is
in Fig. 6b in conjunction with Table 4. Mode I can both
stem from ( 8©) and return to ( 1©) Mode IV; however,
Mode I can only jump to ( 2©) Mode II but Mode II
cannot jump toMode I.WhenMode I has an unfulfilled
return to Mode IV, an internal loop (still on the same
straight line) forms ( 3©). Conversely,Mode III can both
stem from ( 4©) and return to ( 6©) Mode II; however,
Mode III can only jump to ( 5©) Mode IV but Mode
IV cannot jump to Mode III. When Mode III has an
unfulfilled return to Mode II, an internal loop (still on
the same straight line) forms ( 7©). Therefore, Modes I
and III are not the same – even when Eqs. (10) and (12)
appear the same (where x0 is actually being reset).

It is tempting to think that these four piecewise-
defined formulas for r(t) could be readily embedded in
a flow-controlled setting with displacement and veloc-
ity as state variables, such asEqs. (5) and (6), and imple-
mented as was done for the Ramberg–Osgood model
in [34]. However, bilinear hysteresis has more com-
plicated events, event functions (for MATLAB imple-
mentation) and reset map, leading to an implementa-
tion similar in kind, but not in detail, to the Ramberg–
Osgood model. Due to this complexity, we examined
several formulations and ultimately implemented two:
(1) a flow-controlled formulation (F) and (2) a mixed
flow- and effort-controlled formulation (M), herein

called “partially effort-controlled.” The two formula-
tions have their own state variables, event functions,
flow map and reset map, but the modes and events are
the same for the same applied force u(t). The partially
effort-controlled scheme is simpler to implement and
more efficient in performance.

Regarding the mixed (M) formulation, the bilinear
hysteresis model can be treated as a “Jenkin’s ele-
ment” and a linear spring connected in parallel, whose
response is illustrated in blue in Fig. 7a and decom-
posed in Fig. 7b. The linear spring is used to capture
the hardening effect (whose response is plotted in red
in Fig. 7b), while the Jenkin’s element is another linear
spring and a Coulomb damper connected in series, an
effort-controlled device (whose response is plotted in
black in Fig. 7b). Thus, the bilinear hysteresis model
can be implemented as amixed device (flow- and effort-
controlled mixture), called partially effort-controlled.

When the bilinear model is treated as a “Jenkin’s
element” and a linear spring (for hardening effect) con-
nected in parallel, we have:

r = r1 + r2 = r1 + αkx (14)

where r1 and r2 represent the contribution to the restor-
ing force from the Jenkin’s element and linear spring,
respectively.

3.2 Bilinear hysteresis model: programming

Equations (5) and (6) are rewritten into the following:
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Fig. 7 Bilinear hysteretic model following a partially effort-controlled formulation. a Illustration of hysteresis loops using a simulated
result. b An equivalent sum for hysteresis loops. c Mode transition diagram; see Table 4 for 1© to 8©

yF =
{

yF(1)
yF(2)

}
=
{

x
ẋ

}
, (15)

ẏF =
{

ẏF(1)
ẏF(2)

}
=
{

ẋ
ẍ

}
=
{

yF(2)
1
m (u − r)

}
(16)

where r = r(x, x0) and the subscript F is for flow-
controlled. To complete the flow map, the algebraic
equations corresponding to Eqs. (10)–(13) are given
in Table 5 in “Appendix B,” using tag2, a mode indi-
cator established in [34], and O , a programming nota-
tion for one of the memory parameters in this study
(see “Appendix B”).

For themixed (M) formulation, the flow map is given
by:

yM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yM(1)
yM(2)
yM(3)
yM(4)
yM(5)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
ẋ
p = p1 + p2
r1
r2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (17)

ẏM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏM(1)
ẏM(2)
ẏM(3)
ẏM(4)
ẏM(5)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ
ẍ
r = r1 + r2
ṙ1
ṙ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yM(2)
1
m (u(t) − yM(4) − yM(5))
yM(4) + yM(5)
(1 − tag2)(1 − α)kyM(2)
αkyM(2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(18)

where tag2 is the same mode indicator explained in
Table 5 with the differential equations corresponding
to Eqs. (10)–(13).

For bilinear hysteresis, three types of events and
event functions are needed, two of which involve dis-
placement x(t) while the third type is a so-called
velocity-turning point, meaning a time when the veloc-
ity is zero:

Event Type #3 : ẋ(t) = 0 (19)

The F and M events (including Event Types #1 and #2
that are not presented here), event functions and reset
maps are given in Table 4 in “Appendix B” covering all
allowedmode transitions, from I to II, I to IV, II to III, III
to IV, III to II and IV to I. The columns “direction” con-
tain the information on domain for programming. The
F andM reset maps aremore complicated than the reset
map for the trilinear elastic model. In the mixed (M)
formulation, the switching values of tag2 are fewer and
the reset map is significantly simpler (without involv-
ing updating the memory parameters Hl , Hu and O
as indicated in † in Table 4), in comparison with the
flow-controlled (F) formulation.

For both the F and M formulations (flow-controlled
and partially effort-controlled) and as illustrated in
Fig. 8, main.m runs the ode45 solver, where the option
of “options” is activated so that Events.m and Out-
putFcn.m are invoked. The three event functions are
defined inside Events.m, while all outputs are recorded
by using OutputFcn.m whenever there is a successful
time step under ode45. For the F formulation, the right-
hand side of Eq. (16) including the piecewise algebraic
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Fig. 8 Illustrations of the interactions among all MATLAB m-files. a Flow-controlled. b Partially effort-controlled

equations given inTable 5 in “AppendixB” is computed
in myfun.m. For theM formulation, the right-hand side
of Eq. (18) is computed in myfun.m.

As an adaptive time-stepping scheme, ode45 in
MATLAB does not have fixed time steps. Control of
time stepping is done through specifying RelTol—
and—MaxStep and InitialStep via odeset. While the
former has been investigated using tolerance propor-
tionality (TP), the effect of the latter two become
essential when simulating more complicated transient
response of the bilinear hysteresis model, e.g., Fig. 22
in [15].

For both formulations, the system parameters are
m, k, α, xy and ry (with ry = kxy). Additional pro-
gramming details are given in “Appendix B” using the
programming jargon and notation established in [34].

3.3 Bilinear hysteresis model: comparison between F
and M formulations

The choice of state variables is straightforward for the
flow-controlled formulation (F), although enabling the
event functions and resetmaps under the existingMAT-
LAB ode45 setting turns out to be nontrivial, as illus-
trated in Fig. 8a.

For the flow-controlled formulation (F), there is
strong coupling among all fourMATLABm-files,mak-
ing the programming somewhat challenging. Figure 8a
uses arrows to show the data flow. In contrast, the pro-
gramming of the partially effort-controlled formulation
(M) is simpler than the flow-controlled formulation (F).
There is no strong coupling among all four MATLAB
m-files, making the programming straightforward. Fig-
ure 8b uses arrows to show the data flow.

Two numerical examples with their performance
measures are presented in Figs. 9, 10, 11 and 12. It
can be seen that the partially effort-controlled formula-
tion (M) reduces computational time, while other per-
formancemeasures are similar, showing computational
robustness in both cases.

4 Bouc–Wen model

4.1 Bouc–Wen model: analysis

The formula for the Bouc–Wen model is given as fol-
lows:

ṙ = Aẋ − γ |ẋ ||r |n−1r − β ẋ |r |n = h(ẋ, r) (20)

where A, γ , β and n are model parameters (see
Eq.(5.24) in [13], which is based on [32]). Note that
any elastic term, such as kx , added to r just adds k to
A in Eq. (20) and so can be absorbed in A without any
loss of generality. Because the absolute-value expres-
sions |ẋ | and |r | in Eq. (20) induce discontinuities, they
are treated as state events ẋ(t) = 0 and r(t) = 0 in this
study. For comparison purposes, we also present simu-
lation results where these discontinuities are ignored—
by omitting state event coding—leading to reduced
accuracy and computational efficiency.

Using Eq. (9) and the sign function (sgn), Eq. (20)
can be rewritten as follows:

ṙ = (
A − [

γ sgn(ẋr) + β
] |r |n) ẋ,

ẋ = 1

m

[∫ t

0
u(τ )dτ − p

]
+ ẋ(0), where p =

∫ t

0
r(τ )dτ

(21)
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Fig. 9 Bilinear hysteresis model with k = 1, α = 0.3 and
ry = 0.75 subject to different excitations and simulated using
the “event option” underMATLABode45,whereRelTol = 10−3

and AbsTol = 10−12: time histories. The flow-controlled results

(F) are presented here; the partially effort-controlled results
(M) are the same. Event Types #1 to 3 are defined in Table 4
in “Appendix B.” a One cycle of sinusoidal excitation. b An
amplitude-modulated sine excitation

Thus, ṙ is now expressed as a function of p and r .Writ-
ten this way, it is evident that the Bouc–Wen element
can be viewed as an effort-controlled device.

Following [25], we have the following pair of equa-
tions:

x =
∫

1

A − γ |r |n−1r − β|r |n dr + x+(0)

� F+(r) + x+(0), when ẋ > 0 (22)

x =
∫

1

A + γ |r |n−1r − β|r |n dr + x−(0)

� F−(r) + x−(0), when ẋ < 0 (23)

where F+(r) and F−(r) are the integrals with zero ini-
tial conditions. A qualitative discussion of the pair of
Eqs. (22) and (23) is given as follows:

– A load versus displacement (r vs. x) plot of the
Bouc–Wen model can have a piecewise definition
following the sign of ẋ . The stiffness is entirely a
function of r . This implies first the following fact:
At any point on the loading path (x0, r0), the stiff-
ness is always calculated by either Eqs. (22) or (23)
depending on the sign of ẋ . This means that there
are only two stiffness values for (x0, r0): one for all
loading paths and the other for all unloading paths.
This also implies that parallel loading or unload-
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Fig. 10 Bilinear hysteresis model with k = 1, α = 0.3 and
ry = 0.75 subject to different excitations and simulated using the
“event option” under MATLAB ode45, where RelTol = 10−3

and AbsTol = 10−12: hysteresis loops. The flow-controlled

results (F) are presented here; the partially effort-controlled
results (M) are the same. Event Types #1 to 3 are defined in
Table 4 in “Appendix B.” a One cycle of sinusoidal excitation.
b An amplitude-modulated sine excitation
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Fig. 11 Bilinear hysteresis model with k = 1, α = 0.3 and
ry = 0.75 subject to different excitations and simulated using
the “event option” underMATLABode45,whereRelTol = 10−3

and AbsTol = 10−12: tolerance proportionality (TP) and work–
accuracy diagrams. The results from flow-controlled (F) and

partially effort-controlled (M) simulations are compared here,
where GE and FE stand for global error and function evalua-
tion, respectively. a One cycle of sinusoidal excitation. b An
amplitude-modulated sine excitation

ing paths are within the same range of r but for
different ranges of x .

– The original Bouc–Wen formula has now been
rewritten into a piecewise expression for the stiff-
ness plus ẋ = 0 �⇒ ṙ = 0. This means that,
essentially, the Bouc–Wen model represents a non-
linear spring whose stiffness is piecewise-defined
with the velocity being the switching mechanism.

– There are no viscous damping terms, linear or non-
linear. Having said this, the Bouc–Wen model is
rate-independent, which is often used in conjunc-
tion with viscous damping, i.e., to combine with
rate-dependent components. Rate independency of
the Bouc–Wen model is consistent with what is
claimed in [20].
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Fig. 12 Bilinear hysteresis model with k = 1, α = 0.3 and
ry = 0.75 subject to the amplitude-modulated sine excitation
and simulated using the “event option” under MATLAB ode45,
where AbsTol = 10−12: number of state events and their event

time values plotted againstMATLABode45RelTol. Event Types
#1 to 3 are defined inTable 4 in “AppendixB.” a Flow-controlled.
b Partially effort-controlled

4.2 Bouc–Wen model: programming

One way of programming the Bouc–Wen model with
no state events considered at all is as follows, a version
of which is denoted by “A” herein:

yA =
⎧⎨
⎩

yA(1)
yA(2)
yA(3)

⎫⎬
⎭ =

⎧⎨
⎩

x
ẋ
r

⎫⎬
⎭ ,

ẏA =
⎧⎨
⎩

ẏA(1)
ẏA(2)
ẏA(3)

⎫⎬
⎭ =

⎧⎨
⎩

ẋ
ẍ
ṙ

⎫⎬
⎭

=
⎧⎨
⎩

yA(2)
1
m (u(t) − yA(3))
A yA(2) − γ |yA(2)||yA(3)|n−1yA(3) − β yA(2)|yA(3)|n

⎫⎬
⎭

(24)

When considering state events, the modes and
domain are illustrated in Fig. 13:

Mode 1

Mode 2Mode 1

Mode 2

ẋ > 0, r > 0

ẋ < 0, r < 0

Event Type #1

Event Type #2

Ev
en
tT

yp
e
#3

Ev
en
tT

yp
e
#3

r

ẋ

Fig. 13 Modes and domains for the Bouc–Wen model to be
associated with Eq. (26)
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Equation (21) indicates that only p and r are needed
as state variables. Assuming y(1) = p and y(2) =
r , the state event associated with r can then be taken
care of easily, whereas the state event associated with
ẋ would meet a challenge by utilizing Eq. (9):

ẋ = 0 �⇒ 1

m

∫
(u − r) dt = 0 �⇒ y(1) =

∫
udt

This, however, goes beyond the allowed forms of event
functions in MATLAB’s state event location algorithm
according to [27]. Having said this, ẋ will be included
as a state variable instead. The last state variable x
is simply added to obtain the displacement. The pro-
posed revision is given as follows, an option of which
is denoted as “B” herein.

The flow map under Option B is given as follows:

yB =
⎧⎨
⎩

yB(1)
yB(2)
yB(3)

⎫⎬
⎭ =

⎧⎨
⎩

x
ẋ
r

⎫⎬
⎭ , ẏB =

⎧⎨
⎩

ẏB(1)
ẏB(2)
ẏB(3)

⎫⎬
⎭ =

⎧⎨
⎩

ẋ
ẍ
ṙ

⎫⎬
⎭

=

⎧⎪⎪⎨
⎪⎪⎩

yB(2)
1
m (u(t) − yB(3))
A yB(2) − γ tag2 yB(2)(tag3 yB(3))n−1yB(3)

−β yB(2)(tag3 yB(3))n

⎫⎪⎪⎬
⎪⎪⎭
(25)

with the events, event functions and reset map given as
follows:

⎧⎨
⎩
Event Type #1 : yB(3) = 0 when yB(3) is ascending tag3 = 1
Event Type #2 : yB(3) = 0 when yB(3) is descending tag3 = − 1
Event Type #3 : yB(2) = 0 when yB(2) is either ascending or descending tag2 = − tag2

(26)

One drawback in automation is to assign initial val-
ues to tag2 and tag3.Note that tag1 is used for correcting
discontinuity sticking, which will not be used for state
variables.

To achieve a better understanding of the importance
of all state events, we intentionally ignore the first two
restoring force events. When we do so, we have the
following option denoted as “C”:

yC =

⎧⎪⎨
⎪⎩

yC(1)

yC(2)

yC(3)

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

x

ẋ

r

⎫⎪⎬
⎪⎭ ,

ẏC =

⎧⎪⎨
⎪⎩

ẏC(1)

ẏC(2)

ẏC(3)

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

ẋ

ẍ

ṙ

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

yC(2)
1
m (u(t) − yC(3))

A yC(2) − γ tag2 yC(2)|yC(3)|n−1yC(3) − β yC(2)|yC(3)|n

⎫⎪⎬
⎪⎭

(27)

with an event function as follows:

yC(2) = 0 (28)

when yC(2) is either ascending or descending, belong-
ing to the third type of state event, and tag2 = − tag2.

4.3 Bouc–Wen model: results and comparisons

Figures 14 and 15 present a set of simulation results
under Option B. The same amplitude-modulated sine
excitationwas used. All three types of state events were
detected.

A comparison is made among three options: A. no
state events considered at all, B. all three types of
state events considered, and C. only one out of three
types of state events considered; the results are pre-
sented in Fig. 16 using tolerance proportionality and
work–accuracy diagrams. It can be seen that, first,
the utilization of state event location algorithm does
improve computational accuracy and reduce compu-
tational effort measured by both number of function
evaluation and computational time—when compared
to omitting the state event location algorithm. This is
the very motivation of our work. It can be seen that,

next, when not all types of state events are considered,
the TP and work–accuracy diagrams may not change
obviously from those—except with small GE values—
when all types of state events are correctly considered.
This indicates the importance of having a good under-
standing and doing a thorough job when implementing
state event location algorithm because mistakes made
may not be easy to detect.
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Fig. 14 Bouc–Wen (BW) model with A = 0.5, γ = 0.25,
β = 0.25 and n = 1 subject to identical amplitude-modulated
sine and simulated underOptionBusing the “event option” under
MATLAB ode45, where AbsTol = 10−12 and RelTol = 10−3:
time histories. Event Types #1 to 3 are defined in Eq. (26)

4.4 Bouc–Wen–Baber–Noori Model

The Bouc–Wen–Baber–Noori (BWBN) model has
been popular. There are slightly different versions used
and here we follow that in [10], where the model is
considered to be a parallel connection between a linear
spring with stiffness αk and a hysteresis model. The
total restoring force is thus a sum of the linear spring
restoring force αkx and the nonlinear restoring force
of the hysteresis model, the latter of which is scaled by
using the coefficient (1 − α)k, as shown in Eq. (29).

r = αkx + (1 − α)kz (29)

where α and k are model parameters with fixed values.
z is a state variable having the same physical unit as the
displacement:
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Fig. 15 Bouc–Wen (BW) model with A = 0.5, γ = 0.25,
β = 0.25 and n = 1 subject to the amplitude-modulated sine
excitation and simulated underOptionB using the “event option”
under MATLAB ode45, where AbsTol = 10−12 and RelTol =
10−3: hysteresis loops. Event Types #1 to 3 are defined inEq. (26)

ż = h(z)

{
ẋ − ν

(
β|ẋ ||z|n−1z + γ ẋ |z|n)

η

}
(30)

where the quantities h, η and ν are time varying and
defined further using equations to be incorporated later
on, while β, n and γ are model parameters with fixed
values. It should be noted that, for historical reasons,
the β and γ parameters in this subsection, starting at
Eq. (30), are reversed from those of the Bouc–Wen
model in Sect. 4.1, starting at Eq. (20).

Connecting a BWBN model to a mass to form a
SDOF system, an elegant choice is to formulate the
equations as differential–algebraic equations (DAEs)
specified below. Equation (31) is a state equation, while
Eq. (32) is a coupled algebraic equation—both are in
vector form.

y =

⎧⎪⎪⎨
⎪⎪⎩

y(1)
y(2)
y(3)
y(4)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

x
ẋ
z
ε

⎫⎪⎪⎬
⎪⎪⎭

, ẏ =

⎧⎪⎪⎨
⎪⎪⎩

ẏ(1)
ẏ(2)
ẏ(3)
ẏ(4)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

ẋ
ẍ
ż
ε̇

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y(2)
1
m (u(t) − w(1))
w(7)
w(2)

[
y(2) − w(3)

(
β tag2 y(2)(tag3 y(3))n−1y(3)

+γ y(2)(tag3 y(3))n
)]

(1 − α)ky(2)y(3)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(31)
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Fig. 16 Bouc–Wen (BW)
model subject to identical
amplitude-modulated sine
excitation and simulated
under Options A–C in terms
of tolerance proportionality
(a) and work–accuracy
diagrams (b, c), where GE
and FE stand for global
error and function
evaluation, respectively.
Only time histories under
Option B are presented in
Fig. 14
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w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(1)
w(2)
w(3)
w(4)
w(5)
w(6)
w(7)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r
η

ν

zu

ζ1
ζ2
h

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αkx + (1 − α)kz
1 + δηε

1 + δνε(
1

ν(β+γ )

) 1
n

ζ10
(
1 − e−pε

)
(�0 + δ�ε) (λ + ζ1)

1 − ζ1e
−[zsgn(ẋ)−qzu ]2

ζ22

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αky(1) + (1 − α)ky(3)
1 + δη y(4)
1 + δν y(4)(

1
w(3)(β+γ )

) 1
n

ζ10
(
1 − e−py(4)

)
(�0 + δ� y(4)) (λ + w(5))

1 − w(5)e
−[y(3)tag2−qw(4)]2

w(6)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

where ε stands for hysteretic energy, defined as ε(t) =
(1−α)k

∫ t
0 z(τ )ẋ(τ )dτ ; r stands for restoring force; η

and ν are time-varying stiffness and strength degrada-
tion parameters, respectively, and h is a pinching func-
tion, which requires time-varying quantities zu , ζ1 and
ζ2 to define it. Overall, α, k, β, n, γ , δη, δν , q, ζ10 , p,
�0, δ� , λ are system parameters.

In terms of implementing this model under MAT-
LAB ode45 solver, all codes for the BW model under
Option “B” canbe adopted as is, except for twoupdates:
First, Eq. (31) is keyed into myfun.m after Eq. (32).
Discontinuity sticking is corrected as verified. Next,
following the recommendation in MATLAB, it is of
critical importance to put the algebraic variable w at
the end of the argument lists of the four m-files as
follows:

[t,y,te,ye] = ode45(@myfun,[tstart,tfinal],y0,
options,w)

[value, isterminal, direction] = Events(t,y,w)
ydot = myfun(t,y,w)
status = OutputFcn(t,y,flag,w)

Figures 17 and 18 present a set of simulation results
using the system parameter values in Fig. 10(b) of [10]
except for k. Their performancemeasures are presented
in Figs. 19 and 20. Defining MaxStep becomes essen-
tial in this numerical example.

5 Discussion

5.1 Guidelines

Some guidelines concerning choices of state variables
are summarized here and will be further validated in
future work:

1. To apply Paynter’s tetrahedron of state using
energy/power variables, we have the following two
chains of kinematic and kinetic variables aligned
with each other:

acceleration, ẍ
∫
dt−→ velocity,

ẋ
∫
dt−→ displacement, x

∫
dt−→ absement, a (33)

rate of change in restoring force,

ṙ
∫
dt−→ restoring force, r

∫
dt−→ g-momentum, p∫

dt−→ time integral of g-momentum, ρ (34)
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Fig. 17 Bouc–Wen–Baber–Noori (BWBN) models with α =
0.1, k = 1, β = 1.5, n = 1, γ = −0.5, δη = 0.05, δν = 0.005,
q = 0.1, ζ10 = 0.97, p = 1,�0 = 0.2, δ� = 0.002 and λ = 0.1
subject to an amplitude-modulated sine and simulated using the
“event option” under MATLAB ode45, where AbsTol = 10−12,
RelTol = 10−3 and MaxStep = 10−1: time histories. Event
Types #1 to 3 are defined in Eq. (26)

where absementa and time integral of g-momentum
ρ are not used in this study. Subsequently, the equa-
tion of motion can be integrated step-by-step as fol-
lows:

m
...
x = u̇ − ṙ

∫
dt−→ mẍ = u − r

∫
dt−→ mẋ =

∫
udt − p

∫
dt−→ mx =

∫ ∫
udtdt − ρ

∫
dt−→ ma =

∫ ∫ ∫
udtdtdt −

∫
ρdt (35)

We make the following additional comments:

– The variable with the lowest order time deriva-
tive in the system dynamics that we care about
inmodeling should be included in the state vari-
able vector.

– The variable with the highest order time deriva-
tive in the system dynamics that we care about
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Fig. 18 Bouc–Wen–Baber–Noori (BWBN) models with α =
0.1, k = 1, β = 1.5, n = 1, γ = −0.5, δη = 0.05, δν = 0.005,
q = 0.1, ζ10 = 0.97, p = 1,�0 = 0.2, δ� = 0.002 and λ = 0.1
subject to an amplitude-modulated sine and simulated using the
“event option” under MATLAB ode45, where AbsTol = 10−12,
RelTol = 10−3 and MaxStep = 10−1: hysteresis loops. Event
Types #1 to 3 are defined in Eq. (26)

inmodeling should be included in the state vari-
able derivative vector.

– When we utilize the state event location algo-
rithm, we need to make the variable that defines
the event function a state variable—not a time
derivative of a state variable. This means that
we cannot utilize the variable with the highest
order in the system dynamics to define an event
function.

– Whenever ẋ is a state variable, then p does not
need to be a state variable, and vice versa. This
comes from Eq. (9) which shows that ẋ and p
are not independent state variables, based on
Newton’s second law in Eq. (1).

2. It is important to reiterate the need to effectively
address discontinuities in a model, whenever appli-
cable. Velocity ẋ is often required for the state event
location for piecewise-defined loading and unload-
ing branches in the r−x plane.GivenEq. (9),when-
ever there is only one mass connected in series with
the rest of the assembly, ẋ and p cannot coexist in
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Fig. 19 Number of state events and the event time errors plotted
against MATLAB ode45 RelTol for the BWBNmodel in Fig. 18,
where there are three, three and 24 Types #1, 2 and 3 events
throughout, respectively, to make a total of 30 events throughout.
Event Types #1 to 3 are defined in Eq. (26)

the state variable vector for the state equations to
be independent, so p will be replaced with ẋ and
thus will not appear in the state variable vector in
models with discontinuity. This explains, to some
extent, why p is not popular for the choice of state
variables.

3. The force-state mapping comes in handy for flow-
controlled systems to map some kinematic quan-
tities to some kinetic ones. When there is a need
for the inverse map (kinetic quantities to kinematic
ones) as in effort-controlled systems, it would not
be rational if the force-state mapping technique is
still adopted. Similarly, when dealing with mixed
systems, mapping kinematic and kinetic quantities
into each other, it may not be proper to use the
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Fig. 20 Tolerance proportionality (upper left) and work–
accuracy diagrams (the rest) for the BWBN model in Fig. 18,
where GE and FE stand for global error and function evaluation,
respectively

force-state mapping alone due to the mismatch of
the nature of the inputs and outputs.

4. Conversions of state variables can be carried out as
follows:

[
x
ẋ

]
Eq. (9)−→

[
x
p

] d
dt−→
[

ẋ
r

]
Eq. (9)−→

[
p
r

]
(36)

implies that if ẋ and r can serve as state variables,
then the flow-controlled system can be considered
effort-controlled. To do so, as indicated in the equa-
tion above, the rate of change seems essential for
this system, given the use of time differentiation for
state variables.

[
p
r

]
Eq. (9)−→

[
ẋ
r

] ∫
dt−→
[

x
p

]
Eq. (9)−→

[
x
ẋ

]
(37)

implies that if x and p can serve as state variables,
then the effort-controlled system can be considered
flow-controlled. To do so, as indicated in the equa-
tion above, a memory effect seems essential for this
system, given the use of time integral for state vari-
ables.

5. If an algebraic variable is needed to define an event
function, then the algebraic variable may be imple-
mented via a global variable under MATLAB. All
algebraic variables should be made into an alge-
braic vector that is carried over through all MAT-
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LAB m-files as demonstrated in Sect. 4.4 for the
BWBN model.

5.2 The ṙ = h(ẋ, r) formulation

First, some review of the history is given here: [1,2]
especially [3] using the Bouc–Wen and a “slip-lock”
model to capture pinching hysteresis are frequently
cited for the origin of this formulation. In fact, the
theoretical justification cited in [3] is [5], which actu-
ally gives a more general formulation making ṙ a
function of x , ẋ , r and a dynamic internal variable
vector used to capture the path dependency of the
model.

One major application of ṙ = h(ẋ, r) is the Bouc–
Wen model. A review paper [17] on system identifica-
tion for nonlinear systems introduces this formulation
for the Bouc–Wenmodel. In this study, we showed that
theBouc–Wenmodel is an effort-controlledmodelwith
p and r as its state variables, but it has two types of dis-
continuities, leading to selecting ẋ as an additional state
variable. Given the dependence between ẋ and p shown
in Eq. (9), the necessary state variables for the Bouc–
Wen model then become ẋ and r . Consequently, the
governing state equation is in the form of ṙ = h(ẋ, r).
This is one rationale behind the ṙ = h(ẋ, r) formu-
lation of the Bouc–Wen model. Another explanation
follows from bond graph theory, which says to use x
and p. Instead, we differentiate them once and use ẋ
and r as state variables.

A more general application of ṙ = h(ẋ, r) may be
deduced as follows using the pair of flow- and effort-
controlled formulations:

Force-state mapping r = f (x, ẋ) (38)

Formulation under discussion ṙ = h (ẋ, r) (39)

[
ẋ
ẍ

]
= f

([
x
ẋ

]
, t

)
, flow-controlled (40)

[
r
ṙ

]
= g

([
p
r

]
, t

)
, effort-controlled (41)

By using Eq. (1), it can be seen that Eq. (38) is con-
sistent with the flow-controlled formulation Eq. (40).
By using Eq. (9), it can be seen that Eq. (39) is consis-
tent with Eq. (41). Equation (21) is such an example.
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Fig. 21 To reveal the insight to the peculiar point in Fig. 3 and
as a counterpart for Fig. 2; simulation used sinusoidal excita-
tion force u(t) shown at top and “event option” under MATLAB
ode45 with RelTol = 0.00077426 and AbsTol = 10−12. Event
Types #1 and 2 are defined in Eqs. (2) and (3), respectively

5.3 Complications with state event location algorithm

Examination of Fig. 3 shows that a particular value
of RelTol caused the number of state events to reduce
by two. For this RelTol value (0.00077426), the time
histories are presented in Fig. 21 showing the loss
of two Type #1 events. One remedy is to introduce
MaxStep = 0.1. As Fig. 3 shows, this loss of two
events did not happen with other selected values of
RelTol, larger or smaller. To be studied in future work,
this is an example of a numerical difficulty analogous
to grazing bifurcation, mentioned in [34].

5.4 Physically consistent models

Nonlinear constitutive models are notorious for allow-
ing physically inconsistent solutions to dynamic prob-
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lems, with nonuniqueness being just one of the under-
lying issues [26]. Various authors have addressed phys-
ical inconsistencies in the Bouc–Wen family of mod-
els; e.g., [12–14,18,28]. Before embarking on compu-
tations, with or without state event location techniques,
it is crucial to start with a well-posed model since oth-
erwise the resulting simulations will have no practical
predictive value.

6 Conclusions

The need for a sufficient and efficient problem formu-
lation of a system’s dynamics is of critical importance
in many engineering mechanics applications, e.g., sys-
tem identification, damage detection and earthquake
response simulation, among many others. Two char-
acteristics of some commonly used models have not
been researched thoroughly: One is their flow-/effort-
controlled nature and the other, discontinuity in their
state questions.

These two characteristics are coupled in numeri-
cal simulation of these models. Normally, one would
decide the state variables based on the flow-/effort-
controlled nature, when algebraic variables might exist
as well. The “switching rules” and “switching timing”
(i.e., the state event locations) can be decided efficiently
when we properly treat the discontinuity in the sim-
ulation. Without a good understanding of these two
characteristics, inefficiency, inaccuracy and incorrect-
ness in problem formulation of a system’s dynamics
and model class building can be experienced. This is
the motivation for us to study these two characteris-
tics. In particular, the proper treatment of discontinu-
ities has been explored by us starting with [34]. We
also explored the flow-/effort-controlled nature of some
models in [24,25].

Choices for state variables are not unique as demon-
strated in this study. This is not often made clear in
applying state-space representations. Computationally,
some choices are better than others in order to imple-
ment the state event location algorithm. There are two
questions of particular interest to us:

– How can we select state variables that are not only
theoretically sound but also computationally fruit-
ful? Herein, a successful application of the state
event location algorithm and the ode45 solver has
been presented for some challenging piecewise-
defined restoring force models.

– Does the choice of state variables for these models
imply a classification of these models, or should it
be vice versa?

There is no simple or one-size-fits-all answer to
these fundamental questions. Different facets of these
questions have been demonstrated through case stud-
ies provided in this work and general guidelines are
also provided. The Bouc–Wenmodel and other models
discussed herein (and elsewhere) can be implemented
without the state event location algorithm by choos-
ing the algorithmic time steps to be sufficiently small.
A key conclusion from our work is that the option
of implementing the state event location algorithm is
beneficial in reducing the computational burden while
providing the same level of accuracy. In the spirit of
reproducible computational research [19], the MAT-
LAB code used in this work will be available upon
request to the first author.
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A Appendix for Sect. 2.2

Tables 2 and 3 list nonunique state-space represen-
tations of three- and four-parameter linear models,
respectively.
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Table 2 State variables for the three-element models each connected with a mass

(a)

m

k2

c2

u(t)k1
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u(t)
k1

(c)

m
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u(t)
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(a) Standard solid model #1 connected in series with a mass
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ẍ
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ṙ

⎤
⎦ =

⎡
⎣ 0 − 1

m 0
0 0 1

k1k2
c2

− k1
m

k1+k2
c2

⎤
⎦
⎡
⎣ x

p
r

⎤
⎦+

⎡
⎣

1
m
0
k1
m

⎤
⎦∫ udt

(b) Standard solid model #2 connected in series with a mass
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r
ṙ
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(c) Standard fluid model #1 connected in series with a mass
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Alternatively in an entirely effort-controlled form
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(d) Standard fluid model #2 connected in series with a mass
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Table 2 continued

Alternatively in an entirely effort-controlled form
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Table 3 State variables for the four-element models each connected with a mass
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(a) A generalized Maxwell model connected in series with a mass
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(b) A generalized Kelvin chain connected in series with a mass
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(c) Two Maxwell models connected in parallel—before being connected in series with a mass
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Table 3 continued

Alternatively by replacing ẋ with p equivalently
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(d) Two Kelvin models connected in series—before being connected in series with a mass
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B Appendix for Sect. 3

For the F formulation (flow-controlled) and according
to the programming framework in [34], our previous
work, global variables are utilized for passing values of
restoring force r , memory parameters Hl , Hu and O ,
and tags tag1 and tag2 among different MATLAB m-
files. In particular, thememory parameters are obtained

and updated by tagging the entire solution history H
in order to switch according to the correct logic and
to correct discontinuity sticking. Hl , Hu and O are for
the lower (Mode II), upper (Mode IV) bound values in
the event functions as in Table 4, and a constant in the
algebraic equations as in Table 5, respectively. tag1 is
used to mark each state event for correcting disconti-
nuity sticking, while tag2 is an indicator for the mode.

Table 4 Events, event functions and reset maps for F and M formulations

Transition Event Type Flow-controlled formulation (F) Partially effort-controlled formulation (M)

Event function Direction Event function Direction

1© I → IV 1 yF(1) − Hu(end) = 0 + 1 yM(4) − (1 − α)ry = 0 + 1

2© I → II 2 yF(1) − Hl (end) = 0 −1 yM(4) + (1 − α)ry = 0 − 1

3© I → I 3 yF(2) = 0 0 yM(2) = 0 0

4© II → III 3 yF(2) = 0 0† yM(2) = 0 0

5© III → IV 1 yF(1) − Hu(end) = 0 + 1 yM(4) − (1 − α)ry = 0 + 1

6© III → II 2 yF(1) − Hl (end) = 0 −1 yM(4) + (1 − α)ry = 0 − 1

7© III → III 3 yF(2) = 0 0 yM(2) = 0 0

8© IV → I 3 yF(2) = 0 0† yM(2) = 0 0

†Need to reset Hl , Hu and O

Table 5 Algebraic and state equations in flow maps obtained from piecewise restoring force expressions for F and M formulations,
respectively

Mode Flow-controlled (F) Partially effort-controlled (M)

I r = k(yF(1) − O(end)), with tag2 = 1 ẏM(3) = (1 − tag2)(1 − α)kyM(2)) + αkyM(2), with tag2 = 0

II r = −ry + αk(yF(1) + xy), with tag2 = 2 ẏM(3) = (1 − tag2)(1 − α)kyM(2)) + αkyM(2), with tag2 = 1

III r = k(yF(1) − O(end)), with tag2 = 3 ẏM(3) = (1 − tag2)(1 − α)kyM(2)) + αkyM(2), with tag2 = 0

IV r = ry + αk(yF(1) − xy), with tag2 = 4 ẏM(3) = (1 − tag2)(1 − α)kyM(2)) + αkyM(2), with tag2 = 1
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In terms of variables, x(t), ẋ(t) and r(t) are continuous
variables, while Hl , Hu , O , tag1 and tag2 are discrete
variables.

For the M formulation (mixed, partially effort-
controlled) and as in our previous work, a global vari-
able is utilized for passing values of tag2 among differ-
ent MATLABm-files. tag2 is an indicator for the mode
and is the only discrete variable to be taken care of.
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