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Abstract
Weseek to completely revise currentmodels of airborne transmission of respiratory viruses by providing never-before-seen atomic-
level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale
computationalmicroscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability
to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission.We demonstrate
how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and
aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial
scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.
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Justification

We develop a novel HPC-enabled multiscale research
framework to study aerosolized viruses and the full com-
plexity of species that comprise them. We present tech-
nological and methodological advances that bridge time and
length scales from electronic structure through whole
aerosol particle morphology and dynamics.

Performance attributes

Performance attribute Our submission

Category of achievement Scalability, Time-to-solution
Type of method used Explicit, Deep Learning
Results reported on the basis of Whole application including I/O
Precision reported Mixed Precision
System scale Measured on full system
Measurement mechanism Hardware performance

counters
Application timers
Performance Modeling

Overview of the problem. Respiratory pathogens, such as
SARS-CoV-2 and influenza, are the cause of significant
morbidity and mortality worldwide. These respiratory
pathogens are spread by virus-laden aerosols and droplets
that are produced in an infected person, exhaled, and
transported through the environment (Wang et al., 2021)
(Figure 1). Medical dogma has long focused on droplets as
the main transmission route for respiratory viruses, where
either a person has contact with an infected surface (fomites)
or direct droplet transmission by close contact with an
infected individual. However, as we continue to observe
with SARS-CoV-2, airborne transmission also plays a
significant role in spreading disease. We know this from
various super spreader events, for example, during a choir
rehearsal (Miller et al., 2021). Intervention and mitigation
decisions, such as the relative importance of surface
cleaning or whether and when to wear a mask, have un-
fortunately hinged on a weak understanding of aerosol
transmission, to the detriment of public health.

A central challenge to understanding airborne trans-
mission has been the inability of experimental science to
reliably probe the structure and dynamics of viruses once
they are inside respiratory aerosol particles. Single particle
experimental methods have poor resolution for smaller
particles (<1 micron) and are prone to sample destruction

during collection. Airborne viruses are present in low
concentrations in the air and are similarly prone to viral
inactivation during sampling. In addition, studies of the
initial infection event, for example, in the deep lung, are
limited in their ability to provide a detailed understanding of
the myriad of molecular interactions and dynamics taking
place in situ. Altogether, these knowledge gaps hamper our
collective ability to understand mechanisms of infection and
develop novel effective antivirals, as well as prevent us from
developing concrete, science-driven mitigation measures
(e.g., masking and ventilation protocols).

Here, we aim to reconceptualize current models of air-
borne transmission of respiratory viruses by providing
never-before-seen views of viruses within aerosols. Our
approach relies on the use of all-atom molecular dynamics
(MD) simulations as a multiscale “computational micro-
scope.” MD simulations can synthesize multiple types of
biological data (e.g., multiresolution structural datasets,
glycomics, lipidomics, etc.) into cohesive, biologically
“accurate” structural models. Once created, we then ap-
proximate the model down to its many atoms, creating
trajectories of its time dependent dynamics under cell-like
(or in this case, aerosol-like) conditions. Critically, MD
simulations are more than just “pretty movies.” MD
equations are solved in a theoretically rigorous manner,
allowing us to compute experimentally testable macro-
scopic observables from time-averaged microscopic prop-
erties. What this means is that we can directly connect MD
simulations with experiments, each validating and pro-
viding testable hypotheses to the other, which is the real
power of the approach. An ongoing challenge to the suc-
cessful application of such methods, however, is the need
for technological and methodological advances that make it
possible to access length scales relevant to the study of
large, biologically complex systems (spanning nanometers
to ∼one micron in size) and, correspondingly, longer
timescales (microseconds to seconds).

Such challenges and opportunities manifest in the study
of aerosolized viruses. Aerosols are generally defined as
being less than 5 microns in diameter, able to float in the air
for hours, travel significant distances (i.e., can fill a room,
like cigarette smoke), and be inhaled. Fine aerosols < 1
micron in size can stay in the air for over 12 h and are
enriched with viral particles (Fennelly 2020; Coleman et al.,
2021). Our work focuses on these finer aerosols that travel
deeper into the respiratory tract. Several studies provide the
molecular recipes necessary to reconstitute respiratory
aerosols according to their actual biologically relevant
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composition (Vejerano and Marr 2018; Walker et al., 2021).
These aerosols can contain lipids, cholesterol, albumin
(protein), various mono- and di-valent salts, mucins, other
surfactants, and water (Figure 1). Simulations of aerosolized
viruses embody a novel framework for the study of aerosols:
they will allow us and others to tune different species,
relative humidity, ion concentrations, etc. to match exper-
iments that can directly and indirectly connect to and inform
our simulations, as well as test hypotheses. Some of the
species under study here, for example, mucins, have not yet
been structurally characterized or explored with simulations
and thus the models we generate are expected to have
impact beyond their roles in aerosols.

In addition to varying aerosol composition and size, the
viruses themselves can be modified to reflect new variants
of concern, where such mutations may affect interactions
with particular species in the aerosol that might affect its
structural dynamics and/or viability. The virion developed
here is the Delta variant (B.1.617.2 lineage) of SARS-CoV-
2 (Figure 2), which presents a careful integration of multiple
biological datasets: (1) a complete viral envelope with re-
alistic membrane composition, (2) fully glycosylated full-
length spike proteins integrating 3D structural coordinates
from multiple cryoelectron microscopy (cryoEM) studies
(McCallum et al., 2021; Wrapp et al., 2020; Walls et al.,
2020; Bangaru et al., 2020) (3) all biologically known

features (post-translational modifications, palmitoylation,
etc.), (4) any other known membrane proteins (e.g. the
envelope (E) and membrane (M) proteins), and (5) virion
size and patterning taken directly from cryoelectron to-
mography (cryoET). Each of the individual components of
the virus are built up before being integrated into the
composite virion, and thus represent useful molecular-scale
scientific contributions in their own right (Casalino et al.,
2020; Sztain et al., 2021).

Altogether in this work, we dramatically extend the
capabilities of data-driven, multiscale computational mi-
croscopy to provide a new way of exploring the compo-
sition, structure, and dynamics of respiratory aerosols.
While a seemingly limitless number of putative hypotheses
could result from these investigations, the first set of
questions we expect to answer are: How does the virus exist
within a droplet of the same order of magnitude in size,
without being affected by the air-water interface, which is
known to destroy molecular structure (D’Imprima et al.
2019)? How does the biochemical composition of the
droplet, including pH, affect the structural dynamics of the
virus? Are there species within the aerosols that “buffer”
the viral structure from damage, and are there particular
conditions under which the impact of those species
changes? Our simulations can also provide specific pa-
rameters that can be included in physical models of aerosols,

Figure 1. Overall schematic depicting the construction and multiscale simulations of Delta SARS-CoV-2 in a respiratory aerosol. (N.B.:
The size of di-valent cations has been increased for visibility.)

30 The International Journal of High Performance Computing Applications 37(1)



which still assume a simple water or water-salt composition
even though it is well known that such models, for example,
using kappa-Kohler theory, break down significantly as the
molecular species diversify (Petters and Kreidenweis 2007).

Current state of the art

Current experimental methods are unable to directly in-
terrogate the atomic-level structure and dynamics of viruses
and other molecules within aerosols. Here we showcase
computational microscopy as a powerful tool capable to
overcome these significant experimental limitations. We
present the major elements of our multiscale computational
microscope and how they come together in an integrated
manner to enable the study of aerosols across multiple
scales of resolution. We demonstrate the impact such
methods can bring to bear on scientific challenges that until
now have been intractable, and present a series of new
scientific discoveries for SARS-CoV-2.

Parallel molecular dynamics

All-atom molecular dynamics simulation has emerged as an
increasingly powerful tool for understanding the molecular
mechanisms underlying biophysical behaviors in complex
systems. Leading simulation engines, NAMD (Phillips
et al., 2020), AMBER (Case et al. [n. d.]), and GRO-
MACS (Páll et al., 2020), are broadly useful, with each
providing unique strengths in terms of specific methods or

capabilities as required to address a particular biological
question, and in terms of their support for particular HPC
hardware platforms. Within the multiscale computational
microscopy platform developed here, we show how each
of these different codes contributes different elements to
the overall framework, oftentimes utilizing different
computing modalities/architectures, while simultaneously
extending on state-of-the-art for each. Structure building,
simulation preparation, visualization, and post hoc tra-
jectory analysis are performed using VMD on both local
workstations and remote HPC resources, enabling mod-
eling of the molecular systems studied herein (Humphrey
et al., 1996; Stone et al., 2013a,b, 2016b; Sener et al.,
2021). We show how further development of each of these
codes, considered together within the larger-scale collec-
tive framework, enables the study of SARS-CoV-2 in a
wholly novel manner, with extension to numerous other
complex systems and diseases.

AI-enhanced WE simulations

Because the virulence of the Delta variant of SARS-CoV-2
may be partly attributable to spike protein (S) opening, it is
of pressing interest to characterize the mechanism and ki-
netics of the process. Although S-opening in principle can
be studied via conventional MD simulations, in practice the
system complexity and timescales make this wholly in-
tractable. Splitting strategies that periodically replicate
promising MD trajectories, among them the weighted

Figure 2. Individual protein components of the SARS-CoV-2 Delta virion. The spike is shown with the surface in cyan and with Delta’s
mutated residues and deletion sites highlighted in pink and yellow, respectively. Glycans attached to the spike are shown in blue. The E
protein is shown in yellow and the M-protein is shown in silver and white. Visualized with VMD.
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ensemble (WE) method (Huber and Kim 1996; Zuckerman
and Chong 2017), have enabled simulations of the spike
opening of WT SARS-CoV-2 (Sztain et al., 2021;
Zimmerman et al., 2021). WE simulations can be orders of
magnitude more efficient than conventional MD in gener-
ating pathways and rate constants for rare events (e.g.
protein folding (Adhikari et al., 2019) and binding (Saglam
and Chong 2019)). The WESTPA software for running WE
(Zwier et al., 2015) is well-suited for high-performance
computing with nearly perfect CPU/GPU scaling. The
software is interoperable with any dynamics engine, in-
cluding the GPU-accelerated AMBER dynamics engine
(Salomon-Ferrer et al., 2013) that is used here. As shown
below, major upgrades to WESTPA (v. 2.0) have enabled a
dramatic demonstration of spike opening in the Delta
variant (Figures 5 and 6) and exponentially improved
analysis of spike-opening kinetics (Russo et al., 2022).

The integration of AI techniques with WE can further
enhance the efficiency of sampling rare events (Noe 2020;
Brace et al., 2021b; Casalino et al., 2021). One frontier area
couples unsupervised linear and non-linear dimensionality
reduction methods to identify collective variables/progress
coordinates in high-dimensional molecular systems
(Bhowmik et al., 2018; Clyde et al., 2021). Such methods
may be well suited for analyzing the aerosolized virus.
Integrating these approaches with WE simulations is ad-
vantageous in sampling the closed→ open transitions in the
Delta S landscape (Figure 5) as these unsupervised AI
approaches automatically stratify progress coordinates
(Figure 5(D)).

Dynamical non-equilibrium MD

Aerosols rapidly acidify during flight via reactive uptake of
atmospheric gases, which is likely to impact the opening/
closing of the S protein (Vejerano and Marr 2018;
Warwicker 2021). Here, we describe the extension of dy-
namical non-equilibrium MD (D-NEMD) (Ciccotti and
Ferrario 2016) to investigate pH effects on the Delta S.
D-NEMD simulations (Ciccotti and Ferrario 2016) are
emerging as a useful technique for identifying allosteric
effects and communication pathways in proteins (Galdadas
et al., 2021; Oliveira et al., 2019), including recently
identifying effects of linoleic acid in the WT spike (Oliveira
et al., 2021b). This approach complements equilibrium MD
simulations, which provide a distribution of configurations
as starting points for an ensemble of short non-equilibrium
trajectories under the effect of the external perturbation. The
response of the protein to the perturbation introduced can
then be determined using the Kubo-Onsager relation
(Oliveira et al., 2021a; Ciccotti and Ferrario 2016) by di-
rectly tracking the change in atomic positions between the
equilibrium and non-equilibrium simulations at equivalent
points in time (Oliveira et al., 2021a).

OrbNet

Ca2+ ions are known to play a key role in mucin aggregation
in epithelial tissues (Hughes et al., 2019). Our RAV sim-
ulations would be an ideal case-study to probe such com-
plex interactions between Ca2+, mucins, and the SARS-
CoV-2 virion in aerosols. However, Ca2+ binding energies
can be difficult to capture accurately due to electronic
dispersion and polarization, terms which are not typically
modeled in classical mechanical force fields. Quantum
mechanical (QM) methods are uniquely suited to capture
these subtle interactions. Thus, we set out to estimate the
correlation in Ca2+ binding energies between
CHARMM36m and quantum mechanical estimates enabled
via AI with OrbNet. Calculation of energies with sufficient
accuracy in biological systems can, in many cases, be ad-
equately described with density functional theory (DFT).
However, its high cost limits the applicability of DFT in
comparison to fixed charge force fields. To capture quantum
quality energetics at a fraction of the computational ex-
pense, we employ a novel approach (OrbNet) based on the
featurization of molecules in terms of symmetry-adapted
atomic orbitals and the use of graph neural network methods
for deep learning quantum-mechanical properties (Qiao
et al., 2020). Our method outperforms existing methods
in terms of its training efficiency and transferable accuracy
across diverse molecular systems, opening a new pathway
for replacing DFT in large-scale scientific applications such
as those explored here. (Christensen et al., 2021).

Innovations realized

Construction and simulation of SARS-CoV-2 in a respiratory
aerosol. Our approach to simulating the entire aerosol
follows a composite framework wherein each of the indi-
vidual molecular pieces is refined and simulated on its own
before it is incorporated into the composite model. Simu-
lations of each of the components are useful in their own
right, and often serve as the basis for biochemical and
biophysical validation and experiments (Casalino et al.,
2020).

Throughout, we refer to the original circulating SARS-
CoV-2 strain as “WT,” whereas all SARS-CoV-2 proteins
constructed in this work represent the Delta variant
(Figure 2). All simulated membranes reflect mammalian
ER-Golgi intermediate compartment (ERGIC) mimetic
lipid compositions. VMD (Humphrey et al., 1996; Stone
et al., 2016a), psfgen (Phillips et al., 2005), and CHARMM-
GUI (Park et al., 2019) were used for construction and
parameterization. Topologies and parameters for simula-
tions were taken from CHARMM36m all-atom additive
force fields (Guvench et al., 2009; Huang and Mackerell
2013; Huang et al., 2017; Klauda et al., 2010; Beglov and
Roux 1994; Han et al., 2018; Venable et al., 2013). NAMD
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was used to perform MD simulations (Phillips et al., 2020),
adopting similar settings and protocols as in (Casalino et al.,
2020). All systems underwent solvation, charge neutrali-
zation, minimization, heating, and equilibration prior to
production runs. Refer to Table 1 for Abbreviations, PBC
dimensions, total number of atoms, and total equilibration
times for each system of interest.

Simulating the SARS-CoV-2 structural proteins. Fully glyco-
sylated Delta spike (S) structures in open and closed con-
formations were built based on WT constructs from
Casalino et al. (Casalino et al., 2020) with the following
mutations: T19R, T95I, G142D, E156G, Δ157–158,
L452R, T478K, D614G, P681R, and D950N (McCallum
et al., 2021; Kannan et al., 2021). Higher resolved regions
were grafted from PDB 7JJI (Bangaru et al., 2020). Ad-
ditionally, coordinates of residues 128–167—accounting
for a drastic conformational change seen in the Delta variant
S—graciously made available to us by the Veesler Lab,
were similarly grafted onto our constructs (McCallum et al.,
2021). Finally, the S proteins were glycosylated following
work by Casalino et al. (Casalino et al., 2020). By incor-
porating the Veesler Lab’s bleeding-edge structure
(McCallum et al., 2021) and highly resolved regions from
7JJI (Bangaru et al., 2020), our models represent the most
complete and accurate structures of the Delta S to date. The
S proteins were inserted into membrane patches and
equilibrated for 3 × 110 ns. For non-equilibrium and
weighted ensemble simulations, a closed S head (SH,
residues 13–1140) was constructed by removing the stalk
from the full-length closed S structure, then resolvated,

neutralized, minimized, and subsequently passed toWE and
D-NEMD teams. The M-protein was built from a structure
graciously provided by the Feig Lab (paper in prep). The
model was inserted into a membrane patch and equilibrated
for 700 ns. RMSD-based clustering was used to select a
stable starting M-protein conformation. From the equili-
brated and clustered M structure, VMD’s Mutator plugin
(Humphrey et al., 1996) was used to incorporate the I82T
mutation onto eachMmonomer to arrive at the Delta variant
M. To construct the most complete E protein model to-date,
the structure was patched together by resolving incomplete
PDBs 5X29 (Surya et al., 2018), 7K3G (Mandala et al.,
2020) and 7M4R (Chai et al., 2021). To do so, the trans-
membrane domain (residues 8–38) from 7K3G were
aligned to the N-terminal domain (residues 1–7) and resi-
dues 39 to 68 of 5X29 and residues 69 to 75 of 7M4R by
their Cα atoms. E was then inserted into a membrane patch
and equilibrated for 40 ns.

Constructing the SARS-CoV-2 Delta virion. The SARS-CoV-2
Delta virion (V) model was constructed following Casalino
et al. (Casalino et al., 2021) using CHARMM-GUI (Lee
et al., 2016), LipidWrapper (Durrant and Amaro 2014), and
Blender (Blender Online Community 2020), using a 350 Å
lipid bilayer with an equilibrium area per lipid of 63 Å2 and
a 100 nm diameter Blender icospherical surface mesh
(Turonova et al., 2020). The resulting lipid membrane was
solvated in a 1100 Å3 waterbox and subjected to four rounds
of equilibration and patching (Casalino et al., 2021). 360 M

dimers and 4 E pentamers were then tiled onto the surface,
followed by random placement of 29 full-length S proteins

Table 1. Summary of all systems constructed in this work. See Figure 3 for illustration of aerosol construction.

asystems bAbb c(Å × Å × Å) dNa
e (ns)

fM dimers M 125 × 125 × 124 164,741 700
fE pentamers E 123 × 125 × 102 136,775 41
Spikes
f (Open) S 206 × 200 × 410 1,692,444 330
f (Closed) S 204 × 202 × 400 1,658,224 330
g (Closed, head) SH 172 × 184 × 206 615,593 73μs
Mucins
fshort mucin 1 m1 123 × 104 × 72 87,076 25
fshort mucin 2 m2 120 × 101 × 72 82,155 25
flong mucin 1 m3 810 × 104 × 115 931,778 23
flong mucin 2 m4 904 × 106 × 109 997,029 15
flong mucin 3 m5 860 × 111 × 113 1,040,215 18
fS+m1/m2+ALB SMA 227 × 229 × 433 2,156,689 840
fVirion V 1460 × 1460 × 1460 305,326,834 41
fResp.Aero.+Vir RAV 2834 × 2820 × 2828 1,016,813,441 2.42
Total FLOPS 2.4 ZFLOPS

aM, E, S, SH, and Vmodels represent SARS-CoV-2 Delta strain. bAbbreviations used throughout document. cPeriodic boundary dimensions. dTotal number
of atoms. eTotal aggregate simulation time, including heating and equilibration runs. fSimulated with NAMD. gSimulated with NAMD, AMBER, and
GROMACS.
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(9 open, 20 closed) according to experimentally observed S
protein density (Ke et al., 2020). M and E proteins were
oriented with intravirion C-termini. After solvation in a
1460 Å waterbox, the complete V model tallied >305
million atoms (Table 1). V was equilibrated for 41 ns prior
to placement in the respiratory aerosol (RA) model. The
equilibrated membrane was 90 nm in diameter and remains
in close structural agreement with the experimental studies
(Ke et al., 2020).

Building and simulating the respiratory aerosol. Respiratory
aerosols contain a complex mixture of chemical and bio-
logical species. We constructed a respiratory aerosol (RA)
fluid based on a composition from artificial saliva and
surrogate deep lung fluid recipes (Walker et al., 2021). This
recipe includes 0.7 mM DPPG, 6.5 mM DPPC, 0.3 mM

cholesterol, 1.4 mM Ca2+, 0.8 mM Mg2+, and 142 mM Na+

(Vejerano and Marr 2018; Walker et al., 2021), human
serum albumin (ALB) protein, and a composition of mucins
(Figure 3). Mucins are long polymer-like structures that are
decorated by dense, heterogeneous, and complex regions of
O-glycans. This work represents the first of its kind as, due
to their complexity, the O-glycosylated regions of mucins
have never before been constructed for molecular simula-
tions. Two short (m1, m2,∼5 nm) and three long (m3, m4, m5

∼55 nm) mucin models were constructed following known
experimental compositions of protein and glycosylation
sequences (Symmes et al., 2018; Hughes et al., 2019;
Markovetz et al., 2019; Thomsson et al., 2005; Mariethoz
et al., 2018) with ROSETTA (Raveh et al., 2010) and
CHARMM-GUI Glycan Modeller (Jo et al., 2011). Mucin

models (short and long) were solvated, neutralized by
charge matching with Ca2+ ions, minimized, and equili-
brated for 15–25 ns each (Table 1). Human serum albumin
(ALB), which is also found in respiratory aerosols, was
constructed from PDB 1AO6 (Sugio et al., 1999). ALB was
solvated, neutralized, minimized, and equilibrated for 7ns.
Equilibrated structures of ALB and the three long mucins
were used in construction of the RAV with m3+m4+m5
added at 6 g/mol and ALB at 4.4 g/mol.

Constructing the respiratory aerosolized virion model

A 100 nm cubic box with the RA fluid recipe specified
above was built with PACKMOL (Martı́nez et al., 2009),
minimized, equilibrated briefly on TACC Frontera, then
replicated to form a 300 nm cube. The RA box was then
carved into a 270 nm diameter sphere. To make space for the
placement of V within the RA, a spherical selection with
volume corresponding to that of the V membrane + S crown
(radius 734 Å) was deleted from the center of the RA. The
final equilibrated V model, including surrounding equili-
brated waters and ions (733 Å radius), was translated into
the RA. Atom clashes were resolved using a 1.2 Å cutoff.
Hydrogen mass repartitioning (Hopkins et al., 2015) was
applied to the structure to improve performance. The
simulation box was increased to 2800 Å per side to provide
a 100 Å vacuum atmospheric buffer. The RAV simulation
was conducted in an NVT ensemble with a 4 fs timestep.
After minimizing, the RAV was heated to 298 K with
0.1 kcal/mol Å2 restraints on the viral lipid headgroups, then
equilibrated for 1.5 ns. Finally, a cross-section of the RAV
model—including and open S, m1/m2, and ALB (called the
SMA system)—was constructed with PACKMOL to
closely observe atomic scale interactions within the RAV
model (Figure 4).

Parameter evaluation with OrbNet

Comparison to quantum methods reveals significant po-
larization effects, and shows that there is opportunity to
improve the accuracy of fixed charge force fields. For the
large system sizes associated with solvated Ca2+-protein
interaction motifs (over 1000 atoms, even in aggressively
truncated systems), conventional quantum mechanics
methods like density functional theory (DFT) are imprac-
tical for analyzing a statistically significant ensemble of
distinct configurations (see discussion in Performance
Results). In contrast, OrbNet allows for DFT accuracy with
over 1000-fold speedup, providing a useful method for
benchmarking and refining the force field simulation pa-
rameters with quantum accuracy (Christensen et al., 2021).
To confirm the accuracy of OrbNet versus DFT (ωB97X-D/
def2-TZVP), the inset of Figure 4(E) correlates the two
methods for the Ca2+-binding energy in a benchmark dataset

Figure 3. Image of RAV with relative mass ratios of RA molecular
components represented in the colorbar. Water content is
dependent on the relative humidity of the environment and is thus
omitted from the molecular ratios.
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of small Ca2+-peptide complexes (Hu et al., 2021). The
excellent correlation of OrbNet and DFT for the present use
case is clear from the inset figure; six datapoints were re-
moved from this plot on the basis of a diagnostic applied to
the semi-empirical GFN-xTB solution used for feature
generation of OrbNet (Christensen et al., 2021).

Figure 4 presents a comparison of the validated OrbNet
method with the CHARMM36m force field for 1800
snapshots taken from the SMA MD simulations. At each
snapshot, a subsystem containing a solvated Ca2+-protein
complex was extracted (Figure 4(E)), with protein bonds
capped by hydrogens. For both OrbNet and the force field,
the Ca2+-binding energy was computed and shown in the
correlation plot. Lack of correlation between OrbNet and
the force field identifies important polarization effects,
absent in a fixed charge description. Similarly, the steep
slope of the best-fit line in Figure 4(E) reflects the fact that
some of the configurations sampled using MD with the
CHARMM36m force field are relatively high in energy
according to the more accurate OrbNet potential. This
approach allows us to test and quantify limitations of
empirical force fields, such as lack of electronic
polarization.

The practicality of OrbNet for these simulation snapshots
with 1000+ atoms offers a straightforward multiscale
strategy for refining the accuracy of the CHARMM36m

force field. By optimizing the partial charges and other force
field parameters, improved correlation with OrbNet for the
subtle Ca2+-protein interactions could be achieved, leading
to near-quantum accuracy simulations with improved
configurational sampling. The calculations presented here
present a proof-of-concept of this iterative strategy.

AI-WE simulations of delta spike opening

While our previous WE simulations of the WT SARS-CoV-
2 S-opening (Sztain et al., 2021) were notable in generating
pathways for a seconds-timescale process of a massive
system, we have made two critical technological ad-
vancements in the WESTPA software that greatly enhance
the efficiency and analysis of WE simulations. These ad-
vances enabled striking observations of Delta variant S
opening (Figures 5 and 6). First, in contrast to prior manual
bins for controlling trajectory replication, we have devel-
oped automated and adaptive binning that enables more
efficient surmounting of large barriers via early identifi-
cation of “bottleneck” regions (Torrillo et al., 2021). Sec-
ond, we have parallelized, memory-optimized, and
implemented data streaming for the history-augmented
Markov state model (haMSM) analysis scheme
(Copperman and Zuckerman 2020) to enable application to
the TB-scale S-opening datasets. The haMSM approach

Figure 4. SMA system captured with multiscale modeling from classical MD to AI-enabled quantum mechanics. For all panels: S protein
shown in cyan, S glycans in blue, m1/m2 shown in red, ALB in orange, Ca2+ in yellow spheres, viral membrane in purple. A) Interactions
between mucins and S facilitated by glycans and Ca2+. B) Snapshot from SMA simulations. C) Example Ca2+ binding site from SMA
simulations (1800 sites, each 1000+ atoms) used for AI-enabled quantum mechanical estimates from OrbNet Sky. D) Quantification of
contacts between S and mucin from SMA simulations. E) OrbNet Sky energies versus CHARMM36m energies for each sub-selected
system, colored by total number of atoms. Performance of OrbNet Sky versus DFT in subplot (ωB97x-D3/def-TZVP, R2=0.99, for 17
systems of peptides chelating Ca2+ (Hu et al., 2021)). Visualized with VMD.
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estimates rate constants from simulations that have not yet
reached a steady state (Suarez et al., 2014).

Our WE simulations generated >800 atomically detailed,
Delta variant S-opening pathways (Figures 5(B) and 6) of
the receptor binding domain (RBD) switching from a
glycan-shielded “down” to an exposed “up” state using 72
μs of total simulation time within 14 days using 192
NVIDIA V100 GPUs at a time on TACC’s Longhorn su-
percomputer. Among these pathways, 83 reach an “open”
state that aligns with the structure of the human ACE2-
bound WT S protein (Benton et al., 2020) and 18 reach a
dramatically open state (Figure 6). Our haMSM analysis of
WT WE simulations successfully provided long-timescale
(steady state) rate constants for S-opening based on highly
transient information (Figure 5(C)).

We also leveraged a simple, yet powerful unsupervised
deep learning method called Anharmonic Conformational
Analysis enabled Autoencoders (ANCA-AE) Clyde et al.
(2021) to extract conformational states from our long-
timescale WE simulations of Delta spike opening
(Figures 5(A) and (D)). ANCA-AE first minimizes the
fourth order correlations in atomistic fluctuations from MD
simulation datasets and projects the data onto a low di-
mensional space where one can visualize the anharmonic
conformational fluctuations. These projections are then
input to an autoencoder that further minimizes non-linear

correlations in the atomistic fluctuations to learn an em-
bedding where conformations are automatically clustered
based on their structural and energetic similarity. A visu-
alization of the first three dimensions from the latent space
articulates the RBD opening motion from its closed state
(Figure 5(D)). It is notable that while other deep learning
techniques need special purpose hardware (such as GPUs),
the ANCA-AE approach can be run with relatively modest
CPU resources and can therefore scale to much larger
systems (e.g., the virion within aerosol) when optimized.

D-NEMD explores pH effects on delta spike

We performed D-NEMD simulations of the SH system with
GROMACS (Abraham et al., 2015) using a ΔpH=2.0 (from
7.0 to 5.0) as the external perturbation. We ran 3200-ns
equilibrium MD simulations of SH to generate 87 config-
urations (29 configurations per replicate) that were used as
the starting points for multiple short (10 ns) D-NEMD
trajectories under the effect of the external perturbation
(ΔpH=2.0). The effect of a ΔpH was modeled by changing
the protonation state of histidines 66, 69, 146, 245, 625,
655, 1064, 1083, 1088, and 1101 (we note that other res-
idues may also become protonated (Lobo and Warwicker
2021); the D-NEMD approach can also be applied to ex-
amine those). The structural response of the S to the pH

Figure 5. Delta variant spike opening from WE simulations, and AI/haMSM analysis. A) The integrated workflow. B) Snapshots of the
“down,” “up,” and “open” states for Delta S-opening from a representative pathway generated byWE simulation, which represents ∼
105 speedup compared to conventional MD. C) Rate constant estimation with haMSM analysis of WE data (purple lines) significantly
improves direct WE computation (red), by comparison to experimental measurement (black dashed). Varying haMSM estimates result
from different featurizations which will be individually cross-validated. D) The first three dimensions of the ANCA-AE embeddings
depict a clear separation between the closed (darker purple) and open (yellow) conformations of the Delta spike. A sub-sampled
landscape is shown here where each sphere represents a conformation from the WE simulations and colored with the root-mean
squared deviations (Å) with respect to the closed state. Visualized with VMD.
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decrease was investigated by measuring the difference in the
position for each Cα atom between the equilibrium and
corresponding D-NEMD simulation at equivalent points in
time (Oliveira et al., 2021a), namely after 0, 0.1, 1, 5, and 10
ns of simulation. The D-NEMD simulations reveal that pH
changes, of the type expected in aerosols, affect the dy-
namics of functionally important regions of the spike, with
potential implications for viral behavior (Figure 7). As this
approach involves multiple short independent non-
equilibrium trajectories, it is well suited for cloud com-
puting. All D-NEMD simulations were performed using
Oracle Cloud.

How performance was measured

WESTPA. For the WE simulations of spike opening using
WESTPA, we defined the time-to-solution as the total
simulation time required to generate the first spike opening
event. Spike opening is essentially impossible to observe
via conventional MD. WESTPA simulations were run
using the AMBER20 dynamics engine and 192 NVIDIA
V100 GPUs at a time on TACC’s Longhorn
supercomputer.

NAMD. NAMD performance metrics were collected using
hardware performance counters for FLOPs/step measure-
ments, and application-internal timers for overall simulation
rates achieved by production runs including all I/O for
simulation trajectory and checkpoint output. NAMD
FLOPs/step measurements were conducted on TACC
Frontera, by querying hardware performance counters with
the rdmsr utility from Intel msr-tools1 and the “TACC stats”
system programs.2 For each simulation, FLOP counts were
measured for NAMD simulation runs of two different step
counts. The results of the two simulation lengths were
subtracted to eliminate NAMD startup operations, yielding
an accurate estimate of the marginal FLOPs per step for a
continuing simulation (Phillips et al., 2002). Using the
FLOPs/step values computed for each simulation, overall
FLOP rates were computed by dividing the FLOPs/step
value by seconds/step performance data reported by NAMD
internal application timers during production runs.

GROMACS. GROMACS 2020.4 benchmarking was per-
formed on Oracle Cloud Infrastructure (OCI)3 compute
shape BM.GPU4.8 consisting of 8×NVIDIA A100 tensor
core GPUs, and 64 AMD Rome CPU cores. The simulation

Figure 6. WE simulations reveal a dramatic opening of the Delta S (cyan), compared to WT S (white). While further investigation is
needed, this super open state seen in the Delta S may indicate increased capacity for binding to human host-cell receptors.
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used for benchmarking contained 615,563 atoms and was
run for 500,000 steps with 2 fs time steps. The simulations
were run on increasing numbers of GPUs, from 1 to 8, using
eight CPU cores per GPU, running for both the production
(Nose-Hoover) and GPU-accelerated (velocity rescaling)
thermostats. Particle–mesh Ewald (PME) calculations were
pinned to a single GPU, with additional GPUs for multi-
GPU jobs used for particle–particle calculations. Perfor-
mance data (ns/day and average single-precision TFLOPS,
calculated as total number of TFLOPs divided by total job
walltime) were reported by GROMACS itself. Each

simulation was repeated four times and average perfor-
mance figures reported.

Performance results

Table 2.

NAMD performance. NAMD was used to perform all of the
simulations listed in Table 1, except for the closed spike
“SH” simulations described further below. With the ex-
ception of the aerosol and virion simulation, the other

Figure 7. D-NEMD simulations reveal changes in key functional regions of the S protein, including the receptor binding domain, as the
result of a pH decrease. Color scale and ribbon thickness indicate the degree of deviation of Cα atoms from their equilibrium position.
Red spheres indicate the location of positively charged histidines.

Table 2. MD simulation floating point ops per timestep.

MD Simulation Code Atoms aFLOPs/step

Spike, head AMBER, GROMACS 0.6 M 62.14 GFLOPs/step
Spike NAMD 1.7 M 43.05 GFLOPs/step
S+m1/m2+ALB NAMD 2.1 M 54.86 GFLOPs/step
Resp. Aero.+Vir NAMD 1B 25.81 TFLOPs/step

aFLOPs/step data were computed by direct FLOP measurements from hardware performance counters for NAMD simulations, or by using the
application-reported FLOP rates and ns/day simulation performance in the case of GROMACS.
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NAMD simulations used conventional protocols and have
performance and parallel scaling characteristics that closely
match the results reported in our previous SARS-CoV-2
research Casalino et al. (2021). NAMD 2.14 scaling per-
formance for the one billion-atom respiratory aerosol and
virion simulation run on ORNL Summit is summarized in
Tables 3 and 4. A significant performance challenge as-
sociated with the aerosol virion simulation relates to the
roughly 50% reduction in particle density as compared with
a more conventional simulation with a fully populated
periodic cell. The reduced particle density results in large
regions of empty space that nevertheless incur additional
overheads associated with both force calculations and in-
tegration, and creates problems for the standard NAMD
load balancing scheme that estimates the work associated
with the cubic “patches” used for parallel domain decom-
position. The PME electrostatics algorithm and associated
3-D FFT and transpose operations encompass the entire
simulation unit cell and associated patches, requiring in-
volvement in communication and reduction operations
despite the inclusion of empty space. Enabling NAMD
diagnostic output on a 512-node 1B-atom aerosol and virion
simulation revealed that ranks assigned empty regions of the
periodic cell had 66 times the number of fixed-size patches
as ranks assigned dense regions. The initial load estimate for
an empty patch was changed from a fixed 10 atoms to a
runtime parameter with a default of 40 atoms, which re-
duced the patch ratio from 66 to 19 and doubled perfor-
mance on 512 nodes.

WESTPA performance. Our time to solution for WE simu-
lations of spike opening (to the “up” state) (Figure 5) using
the WESTPA software and AMBER20 was 14 μs of total
simulation time, which was completed in 4 days using 192
NVIDIA V100 GPUs at a time on TACC’s Longhorn

supercomputer. For reference, conventional MD would
require an expected ∼5 orders of magnitude more com-
puting. The WESTPA software is highly scalable, with
nearly perfect scaling out to >1000 NVIDIA V100 GPUs
and this scaling is expected to continue until the filesystem
is saturated. Thus, WESTPA makes optimal use of large
supercomputers and is limited by filesystem I/O due to the
periodic restarting of trajectories after short time intervals.

AI-enhanced WE simulations. DeepDriveMD is a framework
to coordinate the concurrent execution of ensemble simu-
lations and drive them using AI models Brace et al. (2021a);
Lee et al. (2019). DeepDriveMD has been shown to im-
prove the scientific performance of diverse problems:
from-protein folding to conformation of protein-ligand
complexes. We coupled WESTPA to DeepDriveMD,
which is responsible for resource dynamism and concurrent
heterogeneous task execution (ML and AMBER). The
coupled workflow was executed on 1024 nodes on Summit
(OLCF), and, in spite of the spatio-temporal heterogeneity
of tasks involved, the resource utilization was in the high
90%. Consistent with earlier studies, the coupling of
WESTPA to DeepDriveMD results in a 100x improvement
in the exploration of phase space.

GROMACS performance. Figure 8 shows GROMACS par-
allelizes well across the eight NVIDIA A100 GPUs
available on each BM.GPU4.8 instance used in the Cluster
in the Cloud4 running on OCI. There is a performance drop
for two GPUs due to inefficient division of the PME and
particle–particle tasks. Methods to address this exist for the
two GPU case Páll et al. (2020), but were not adopted as we
were targeting maximum raw performance across all eight

Table 3. NAMD performance: Respiratory Aerosol + Virion, 1B
atoms, 4 fs timestep w/HMR, and PME every three steps.

Nodes Summit Speedup Efficiency
CPU + GPU

256 4.18 ns/day ∼ 1:0 × ∼100%
512 7.68 ns/day 1.84× 92%
1024 13.64 ns/day 3.27× 81%
2048 23.10 ns/day 5.53× 69%
4096 34.21 ns/day 8.19× 51%

Table 4. Peak NAMD FLOP rates, ORNL Summit.

NAMD
Simulation Atoms, B Nodes Sim rate Performance

Resp. Aero.+Vir 1 4096 34.21 ns/day 2.55 PFLOPS

Figure 8. GROMACS performance across 1–8 A100 GPUs in ns/
day (thicker, blue lines) and the fraction of maximum theoretical
TFLOPS (thinner, green lines); production setup shown with solid
line, and runs with the GPU-accelerated thermostat in dashed.
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GPUs. Production simulations achieved 27% of the peak
TFLOPS available from the GPUs. Multiple simulations
were run across 10 such compute nodes, enabling the en-
semble to run at an average combined speed of 425
TFLOPS and sampling up to 1μs/day. We note that the
calculations will be able to run 20%–40% faster once the
Nose-Hoover thermostat that is required for the simulation
is ported to run on the GPU. Benchmarking using a velocity
rescaling thermostat that has been ported to GPU shows that
this would enable the simulation to extract 34% of the peak
TFLOPS from the cards, enabling each node to achieve an
average speed of 53.4 TFLOPS, and 125 ns/day. A cluster of
10 nodes would enable GROMACS to run at an average
combined speed of over 0.5 PFLOPs, simulating over
1.2 μs/day.

A significant innovation is that this power is available on
demand: Cluster in the Cloud with GPU-optimized GRO-
MACS was provisioned and benchmarked within 1 day of
inception of the project. This was handed to the researcher,
who submitted the simulations. Automatically, up to 10
BM.GPU4.8 compute nodes were provisioned on-demand
based on requests from the Slurm scheduler. These simu-
lations were performed on OCI, using Cluster in the Cloud
Williams (2021) to manage automatic scaling.

Cluster in the Cloud was configured to dynamically
provision and terminate computing nodes based on the
workload. Simulations were conducted using GROMACS
2020.4 compiled with CUDA support. Multiple simulta-
neous simulations were conducted, with each simulation
utilizing a single BM.GPU4.8 node without multinode
parallelism.

This allowed all production simulations to be completed
within 2 days. The actual compute cost of the project was
less than $6125 USD (on-demand OCI list price). The huge
reduction in “time to science” that low-cost cloud enables
changes the way that researchers can access and use HPC
facilities. In our opinion, such a setup enables “exclusive
on-demand” HPC capabilities for the scientific community
for rapid advancement in science.

OrbNet performance. Prior benchmarking reveals that
OrbNet provides over 1000-fold speedup compared to DFT
(Christensen et al., 2021). For the calculations presented
here, the cost of corresponding high quality range-separated
DFTcalculations (ωB97X-D/def2-TZVP) can be estimated.
In Figure 4(E), we consider system sizes which would
require 14,000–47,000 atomic orbitals for ωB97X-D/def2-
TZVP, exceeding the range of typical DFT evaluations.
Estimation of the DFT computational cost of the 1811
configurations studied in Figure 4(E) suggests a total of
115M core-hours on NERSC Cori Haswell nodes; in
contrast, the OrbNet calculations for the current study re-
quire only 100k core-hours on the same nodes. DFT cost
estimates were based on extrapolation from a dataset of over

1M ChEMBL molecules ranging in size from 40 to 107
atom systems considering only the cubic cost component of
DFT (Christensen et al., 2021).

Implications

Our major scientific achievements are

1. We showcase an extensible AI-enabled multiscale
computational framework that bridges time and
length scales from electronic structure through
whole aerosol particle morphology and dynamics.

2. We develop all-atom simulations of respiratory
mucins, and use these to understand the structural
basis of interaction with the SARS-CoV-2 spike
protein. This has implications for viral binding in
the deep lung, which is coated with mucins. We
expect the impact of our mucin simulations to be far
reaching, as malfunctions in mucin secretion and
folding have been implicated in progression of
severe diseases such as cancer and cystic fibrosis.

3. We present a significantly enhanced all-atom model
and simulation of the SARS-CoV-2 Delta virion,
which includes the hundreds of tiled M-protein
dimers and the E-protein ion channels. This
model can be used as a basis to understand why the
Delta virus is so much more infectious than the WT
or alpha variants.

4. We develop an ultra-large (1 billion+) all-atom
simulation capturing massive chemical and bio-
logical complexity within a respiratory aerosol.
This simulation provides the first atomic-level
views of virus-laden aerosols and is already serv-
ing as a basis to develop an untold number of
experimentally testable hypotheses. An immediate
example suggests a mechanism through which
mucins and other species, for example, lipids, which
are present in the aerosol, arrange to protect the
molecular structure of the virus, which otherwise
would be exposed to the air-water interface. This
work also opens the door for developing simulations
of other aerosols, for example, sea spray aerosols,
that are involved in regulating climate.

5. We evidence how changes in pH, which are ex-
pected in the aerosol environment, may alter dy-
namics and allosteric communication pathways in
key functional regions of the Delta spike protein.

6. We characterize atomically detailed pathways for
the spike-opening process of the Delta variant using
WE simulations, revealing a dramatically open
state that may facilitate binding to human host cells.

7. We demonstrate how parallelized haMSM analysis
of WE data can provide physical rate estimates of
spike opening, improving prior estimates by many
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orders of magnitude. The pipeline can readily be
applied to the any variant spike protein or other
complex systems of interest.

8. We show howHPC and cloud resources can be used
to significantly drive down time-to-solution for
major scientific efforts as well as connect re-
searchers and greatly enable complex collaborative
interactions.

9. We demonstrate howAI coupled to HPC at multiple
levels can result in significantly improved effective
performance, for example, with AI-driven
WESTPA, and extend the reach and domain of
applicability of tools ordinarily restricted to smaller,
less complex systems, for example, with OrbNet.

10. While our work provides a successful use case, it also
exposesweaknesses in theHPC ecosystem in terms of
support for key steps in large/complex computational
science campaigns. We find lack of widespread
support for high performance remote visualization
and interactive graphical sessions for system prepa-
ration, debugging, and analysis with diverse science
tools to be a limiting factor in such efforts.
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