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ARTICLE

Human-lineage-specific genomic elements are
associated with neurodegenerative disease and
APOE transcript usage
Zhongbo Chen1,2,3, David Zhang1,2,3, Regina H. Reynolds 1,2,3, Emil K. Gustavsson 1,2,3, Sonia García-Ruiz1,2,3,

Karishma D’Sa1,2,3, Aine Fairbrother-Browne1,2,3, Jana Vandrovcova1, International Parkinson’s Disease

Genomics Consortium (IPDGC)*, John Hardy1,4,5,6,7, Henry Houlden 8, Sarah A. Gagliano Taliun 9,10,

Juan Botía1,11 & Mina Ryten 1,2,3✉

Knowledge of genomic features specific to the human lineage may provide insights into brain-

related diseases. We leverage high-depth whole genome sequencing data to generate a

combined annotation identifying regions simultaneously depleted for genetic variation

(constrained regions) and poorly conserved across primates. We propose that these con-

strained, non-conserved regions (CNCRs) have been subject to human-specific purifying

selection and are enriched for brain-specific elements. We find that CNCRs are depleted from

protein-coding genes but enriched within lncRNAs. We demonstrate that per-SNP heritability

of a range of brain-relevant phenotypes are enriched within CNCRs. We find that genes

implicated in neurological diseases have high CNCR density, including APOE, highlighting an

unannotated intron-3 retention event. Using human brain RNA-sequencing data, we show the

intron-3-retaining transcript to be more abundant in Alzheimer’s disease with more severe

tau and amyloid pathological burden. Thus, we demonstrate potential association of human-

lineage-specific sequences in brain development and neurological disease.
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Humans are perceived to be particularly vulnerable to
neurodegenerative disorders relative to other primates on
both a pathological and phenotypic level1–5. This is

exemplified in Alzheimer’s disease, in which a similar phenotype
is not seen in ageing non-human primates, nor are the char-
acteristic neurofibrillary tangles on pathological examination1,6.
Likewise, Parkinson’s disease does not naturally occur in non-
human primates, whose motor deficits do not respond to levo-
dopa administration and a Lewy body pathological burden is not
present5,7. This has led to the hypothesis that the same evolu-
tionary changes driving encephalisation which have steered the
development of characteristic human features may predispose to
disorders that affect the brain2,5,6. In the case of Alzheimer’s
disease, it is postulated that the accelerated evolution of intelli-
gence, brain size and lifespan predisposes to selective advantages,
which in later life have deleterious effects on cognition through
the very same pathways8. Therefore, identifying the genomic
changes unique to the human lineage may not only provide
insights into the evolution of human-lineage-specific phenotypic
features but also into the pathophysiology underlying uniquely
human diseases.

Previous studies attempting to identify human-lineage-specific
variation and functional elements in the human genome have
focused on genomic conservation as calculated by aligning and
comparing genomes across species. But, conservation measures
alone do not fully identify regions with evidence of human-
specific purifying selection. This is because a large part of the
genome is evolving neutrally and sufficient phylogenetic distance
is required to detect these changes9. Furthermore, alignment
methods do not reliably detect substitutions that preserve
function9. Conversely, some genes such as those implicated in
immune system function may be subject to rapid evolutionary
turnover even among closely related species9. For these reasons,
analysing conservation alone has limited capacity to capture
human-specific genomic elements9.

The increasing availability of whole-genome sequencing
(WGS) has opened new opportunities to address this issue. Using
intra-species whole-genome comparisons10,11, we are better able
to appreciate sequence differences between individuals of the
same species, and identify genomic regions in humans containing
significantly fewer genetic variants than expected by chance,
designated as constrained genomic regions. This form of analysis,
which is based on the assumption that most selection is negative
or purifying (i.e. those that remove new deleterious mutations),
has been crucial for classification of exonic variation and attri-
bution of pathogenicity12. However, many genomic regions
would be expected to be both constrained and conserved; such
regions have been maintained by natural selection across species,
including humans. This means that metrics reflecting constraint
alone cannot identify human-specific elements as the same
regions could also be conserved in other species.

This has led previous analyses to combine these metrics of
sequence constraint and conservation to identify genomic regions
with evidence for human-specific selection13,14. Ward and Kellis
successfully applied this approach to demonstrate that a range of
transcribed and regulatory non-conserved elements showed evi-
dence of lineage-specific purifying selection14. However, this
analysis was limited by the availability of WGS data and metrics
on human genetic variation were derived from the 1000 Genomes
pilot data, which sequenced with only two to six times coverage15.
Advances in sequencing technology have increased the feasibility
of deep sequencing of human populations leading to a much
more detailed understanding of genetic variation between
humans10. In fact, the recent sequencing of the genomes of
10,545 human individuals at a coverage of 30–40 times identified

150 million single-nucleotide variants of which 54.7% had not
been reported in dbSNP16 or the most recent phase 3 of the 1000
Genomes Project17. The availability of this information has
already enabled more accurate identification of relatively con-
strained regions of the genome, which has led to the development
of the context-dependent tolerance score (CDTS)11. CDTS is
derived from estimating how the observed genetic variation
compares to the propensity of a nucleotide to vary depending on
its surrounding context using the high-resolution profiles deter-
mined from deep sequencing data11. Yet, this information has not
been combined directly with improved conservation data to
identify regions with evidence for human-specific selection.

In this study, we make full use of these resources to develop a
novel, granular genomic annotation which efficiently captures
information on intra-species constraint and inter-species con-
servation simultaneously and identifies constrained, non-
conserved regions (CNCRs). We use this annotation to test the
hypothesis that CNCRs are not only specific to the human line-
age, but given the encephalisation of humans, that CNCRs will be
enriched within brain-specific functional and regulatory elements
as well as risk loci for neurological disease. We show that these
regions are enriched for SNP heritability for a range of neuro-
logical and psychiatric phenotypes. Furthermore, by calculating
CNCR density within the boundaries of known genes, we develop
a gene-based metric of human-specific constraint. This analysis
highlights APOE and leads to the identification of an intron-3
retaining transcript of APOE, the usage of which is correlated
with Alzheimer’s disease pathology and APOE-ε4 status. This
approach provides direct support for the role of human-
specific CNCRs in brain development and complex neurological
phenotypes.

Results
Genomic regions with high constraint, but not conservation,
were enriched for regulatory, non-coding genomic features.
CNC scores, which combine information from CDTS and
phastCons20, were used to capture evidence of disparity between
constraint and conservation within a genomic region (Fig. 1). We
investigated the relationship between CNC scores and known
genomic features within the most constrained portion of the
genome (top 12.5%). This analysis demonstrated clear patterns of
enhancement and depletion for genomic elements across CNC
scores, which significantly differed from similar analyses per-
formed using constraint metrics alone11 (Fig. 2a). Among con-
strained genomic regions with the highest CNC scores (90 to 100
decile, signifying high constraint but low conservation), we saw a
depletion for coding elements of 27-fold relative to genomic
regions with the lowest CNC scores (chi-squared p < 2.2 × 10−16).
This contrasts with the pattern using constraint metrics alone
where the most constrained genomic regions are highly enriched
for coding exons11. On the other hand, promoter, promoter-
flanking and non-coding RNA features were overrepresented in
the highest compared to the lowest CNC deciles by 4.7- (chi-
squared p < 2.2 × 10−16), 1.9- (chi-squared p < 2.2 × 10−16) and
1.5-fold (chi-squared p < 2.2 × 10−16) respectively. Thus, genomic
regions with high CNC scores are enriched for regulatory, non-
coding genomic features.

Genes with the highest density of CNCRs are enriched for long
non-coding RNA. Next, we applied a CNC score cut-off of ≥1
(signifying a twofold higher ranking in constraint than con-
servation) to the 12.5% most constrained genomic regions to
define a set of genomic regions that were constrained, but not
conserved (termed CNCRs). We wanted to investigate whether
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CNCRs could be used to identify specific genes of interest. With
this in mind, we used CNCR density, the proportion of CNCRs
within a gene (defined in Supplementary Fig. 1), to identify gene
sets which might be expected to contribute most to human-
specific phenotypes. Consistent with the findings above, we found
that as the CNCR density threshold was increased to define
the gene sets of interest, there was a marked reduction in the
proportion of protein-coding genes (β-coefficient between pro-
portion and CNCR density=−1.061 and false discovery rate
(FDR)-corrected p= 0.00162), and an increase in the proportion
of long non-coding RNA (lncRNA, β-coefficient 0.385 and FDR-
correctedp= 0.0161) and microRNA-encoding genes (miRNA,
β-coefficient 0.394 and FDR-corrected p= 0.00116) (Fig. 2b).
Interestingly, this relationship was not clearly observed when
considering unprocessed snRNA and other RNAs (Fig. 2b). In
order to determine whether the relationship between CNCR
density and gene biotype was driven by sequence constraint or
conservation, we also generated comparator gene lists based on
constrained-only and non-conserved regions alone. Importantly,
lncRNA and protein-coding gene proportions do not follow the
same directionality with increasing density when constraint or
non-conservation alone is considered (Fig. 2b). Thus, this analysis
highlighted the specific importance of lncRNAs as compared to
other classes of non-coding RNAs in driving human-specific
patterns of gene expression.

Significant enrichment of heritability for neurologically rele-
vant phenotypes. Given the enrichment of regulatory features
within genomic regions with a high CNC score, we postulated
that such regions could also be enriched for disease risk. In order
to study this, we investigated CNCRs for evidence of enriched
heritability for a range of complex neurologically relevant phe-
notypes (Supplementary Table 4). After Bonferroni correction for
multiple testing, we found that CNCRs exhibited significant
enrichment in heritability for intelligence test performance
(coefficient p= 4.19 × 10−24); Parkinson’s disease (coefficient
p= 4.65 × 10−5); major depressive disorder (coefficient p=
2.95 × 10−8) and schizophrenia (coefficient p= 5.26 × 10−19), but
not for Alzheimer’s disease (Fig. 3). While a significant enrich-
ment in heritability for intelligence test performance, major
depressive disorder and schizophrenia were also observed in the
constrained regions alone (and to a lesser extent, non-conserved
regions), we noted that the regression coefficient for CNCRs was
at least twofold larger for the CNCR annotation compared to the
constrained annotation (Supplementary Table 4). Similarly, sig-
nificant enrichment in heritability for Parkinson’s disease was
only observed in CNCRs. SNP heritability for Alzheimer’s disease
did not show significant enrichment although there was a trend
for enrichment in terms of the regression coefficient and coeffi-
cient p value within CNCRs. Thus, by combining metrics for both
constraint and conservation in our annotation, we derived an

Fig. 1 Workflow of study and schematic demonstration of annotation groups. The workflow depicts the processes involved in creation of the annotation
with set parameters for each of the three groups of annotations generated and the processes involved in hypothesis-testing. CNC scores: constrained, non-
conserved scores; CNCRs: constrained, non-conserved regions: CNCRs are defined as genomic regions that were first among the 12.5% most constrained,
then with a CNC score of ≥1 (i.e. a twofold higher ranking in constraint than conservation). Constrained regions are defined as the regions within the 12.5%
most constrained of the genome irrespective of conservation score. Non-conserved regions are defined as relatively non-conserved genomic regions with
a conservation rank determined by the rank of the first quartile phastCons20 score at a CNC score of 1 (rank≤ 25,623,592) (irrespective of constraint
score). CDTS is the context-dependent tolerance score. Minus CDTS score is used as a lower score of CDTS corresponds to a more constrained region.
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independent annotation that shows a higher level of enrichment
in heritability for neurologically related phenotypes than anno-
tations based on constraint or conservation alone.

The proportion of enriched gene sets with neurologically
related GO terms increases in genes with the highest density of
CNCRs. To investigate these findings further, we defined gene
sets based on their CNCR density (the proportion of CNCRs
within a gene) and analysed their GO term enrichment. We
assessed gene sets defined across a range of CNCR densities (>0.0
to ≥0.5 at 0.1 increments). We found that the proportion of
neurologically associated GO terms with significant enrichments
(g:SCS-corrected p < 0.05) increased among gene sets with
increasing CNCR gene densities (Supplementary Fig. 2). Impor-
tantly, a similar analysis of gene sets defined by constraint alone
or non-conservation alone did not contain any neurologically
enriched GO terms (Fig. 4). We identified the gene set with the
highest proportion of nervous system-related terms at a CNCR
genic density of 0.3 (Supplementary Fig. 2). The only GO terms
specific to a tissue process were related to the nervous system
(Fig. 4, Supplementary Table 5) and spanned terms such as
neuronal development (GO:0048663, corrected p= 5.46 × 10−7)
and spinal cord differentiation (GO:0021515, corrected p=
3.64 × 10−7). The remaining significantly enriched GO terms
related to ubiquitous processes including protein targeting
(GO:0045047, p= 9.93 × 10−4) and DNA binding (GO:0043565,
p= 4.81 × 10−4). Of note, analysis of gene sets defined on the
basis of constraint alone revealed no enrichment of neurologically
associated terms, but instead significant enrichment of vascular
system-related GO terms (GO:0048514 blood vessel morpho-
genesis, corrected p= 3.96 × 10−37 and GO:0072358 cardiovas-
cular system development, p= 8.53 × 10−36). As might be
expected based on the rapid and potentially divergent

evolutionary pressures, the analysis of gene sets defined
on the basis of non-conservation alone demonstrated the
significant enrichment of immune and skin-related GO terms
(GO:0002250 adaptive immune response, p= 4.02 × 10−10 and
GO:0043588 skin development, p= 2.33 × 10−4). Taken together,
these results demonstrate that using CNCR density, genes
important in nervous system development and implicated in
neurological disease can be identified.

CNCR annotation highlights an intron-3 retaining transcript
of APOE. Next, we investigated the distribution of CNCR density
across Mendelian genes associated with a neurological pheno-
types (as defined within Online Mendelian Inheritance in Man
(OMIM)18) and genes implicated in complex brain-relevant
phenotypes (as defined within Systematic Target OPportunity
assessment by Genetic Association Predictions (STOPGAP)19).
We noted that the median CNCR density was significantly
higher in OMIM genes with a neurological phenotype compared
to all other genes (median CNCR density of neurological OMIM
genes= 0.0924, IQR= 0.0567− 0.143; median CNCR density of
all other genes= 0.083, IQR= 0.043− 0.153; Wilcoxon rank sum
test p= 1.8 × 10−6). While genes associated with complex brain-
relevant phenotypes did not have a significantly higher CNCR
density when compared to all other genes, we still identified 31
genes with a CNCR density of greater than 0.2 and 7 genes with a
CNCR density of greater than 0.3 (APOE, PHOX2B, SSTR1,
HCFC1, HAPLN4, CENPM and IQCF5). Of these genes, APOE
had the highest CNCR density with a value of 0.552.

Given the high CNCR density of APOE, its importance as a
disease locus for Alzheimer’s disease and other neurodegenerative
diseases20 and the long-standing interest in its lineage
specificity8,21 (specifically the differences in the ɛ4 allele between
humans and non-human primates1), we chose to focus on this

Fig. 2 Genomic territory and biotype proportions of constrained, non-conserved regions. Composition of the constrained genome, partitioned by
constrained, non-conserved (CNC) scores (a) and proportion of biotypes of genes in our annotation (constrained, non-conserved regions: CNCRs) and in
the comparator annotations (constrained regions and non-conserved regions) (b). The description for each genomic feature is shown in Supplementary
Table 1. The barplot in a shows the genomic features for the 12.5% most constrained regions with CNC scores partitioned by decile, such that the highest
decile (90–100) represents the most constrained and least conserved regions. Description of gene biotypes in b is taken from Ensembl42. The heatmap
demonstrates the proportion of genes of a certain biotype within the three separate annotations within each genic CNCR density cut-off. CNCR density is
defined as the proportion of CNCRs within a gene taking into account the gene size. Protein coding is defined by a gene that contains an open reading
frame. The subclassified components of long non-coding RNA (lncRNA) found in the annotations are: Antisense—has transcripts that overlap the genomic
span (i.e. exon or introns) of a protein-coding locus on the opposite strand; lincRNA (long interspersed ncRNA)—has transcripts that are long intergenic
non-coding RNA locus with a length > 200 bp; non-coding RNA is further subclassified into miRNA (microRNA); siRNA (small interfering RNA); snRNA
(small nuclear RNA) and miscellaneous RNA (includes snoRNA (small nucleolar RNA) and tRNA (transfer RNA)). Pseudogenes are similar to known
proteins but contain a frameshift and/or stop codon(s) which disrupts the open reading frame. These can be classified into processed pseudogene—a
pseudogene that lacks introns and is thought to arise from reverse transcription of mRNA followed by reinsertion of DNA into the genome and
unprocessed pseudogene—a pseudogene that can contain introns since produced by gene duplication.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22262-5

4 NATURE COMMUNICATIONS |         (2021) 12:2076 | https://doi.org/10.1038/s41467-021-22262-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 3 Stratified-linkage disequilibrium score regression (s-LDSC) analysis across five traits comparing constrained, non-conserved regions (CNCRs)
with its constituent constrained and non-conserved annotations. a The regression coefficient. b The regression coefficient −log10(p value) with the
dotted line showing the Bonferroni-corrected p value of 0.00333 for 15 conditions. GWASs were as follows: Intelligence2019: intelligence test
performance GWAS, AD2018: Alzheimer’s disease GWAS, PD2019.ex23&Me: Parkinson’s disease GWAS without 23&Me data, MDD2018: major
depressive disorders GWAS and SCZ2018: schizophrenia GWAS (Supplementary Table 2).

Fig. 4 Summarised enriched gene sets for terms specific for neurological gene sets, other non-neurological-specific tissues and non-tissue-specific as
defined by Gene Ontology (GO). Plot comparing annotation of interest (CNCRs) and comparator annotations which only use constraint or non-conserved
metrics. Frequency, derived from REViGO49, represents the percentage of human proteins in UniProt which were annotated with a GO term, i.e. a higher
frequency denotes a more general term.
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gene to further validate our annotation. We tested whether
intragenic analysis of APOE could identify specific regions or
transcripts of interest. We compared CNCR density, constraint
and conservation scores across the length of the gene showing
that CNCRs provide a highly granular annotation (Fig. 5). Using
this approach, we identified the region with the highest CNCR
density in APOE to be within intron-3 (Supplementary Fig. 3),
coinciding with the annotated region’s boundaries. Furthermore,
the intron-3 region had a higher coverage compared to introns
1 and 2 based on the mean coverage provided by Genotype-
Tissue Expression Consortium (GTEx) hippocampal tissue
indicating that this is likely to represent an intron retention
event (Supplementary Fig. 3E). This coverage was calculated as
the mean across all GTEx samples normalized to a target library
size of 40 million 100 base pair (bp) reads (mean coverage seen in
Fig. 5)22. Thus, in conjunction with the highest intragenic CNCR
density localised to intron-3, these coverage data provided further
justification for our analysis of the intron-3 retention event.

Although no intron-3 retaining transcript is currently anno-
tated in Refseq and Ensembl, an intron-3 retention event has
previously been reported and implicated in the regulation of
APOE expression21,23,24. To validate the existence of this
transcript, we performed Sanger sequencing of poly-A-selected
RNA derived from human hippocampal tissue. This demon-
strated the existence of a transcript containing the full-length
intron-3 sequence was flanked by both exon 3 and exon 4
(Supplementary Fig. 4a). Using a non-RT control, we showed that
this could not be explained by genomic DNA (gDNA)
contamination (Supplementary Fig. 4b).

We noted that transcripts retaining intron-3 of APOE are
unannotated by Ensembl for humans and chimpanzees (Supple-
mentary Fig. 5a). However, reads aligning to intron-3 were

observed for the three human transcriptomes but do not occur in
abundance for the three chimpanzee samples (Supplementary
Fig. 5b, c). We also noted that there was a trend for lower
expression of intron-3 within chimpanzees compared to humans
(Supplementary Fig. 6). However, this analysis was limited by the
inherently small sample sizes and so comparing the coverage of
intron-3 normalised for the total coverage of APOE within the
samples did not identify statistically significant differences in the
expression of intron-3 across species. Nonetheless, these data
would suggest that intron-3 retaining transcripts are more
commonly expressed in humans, and likely to be largely absent
in chimpanzees.

In order to obtain further insights into the biological
significance of the intron-3 retaining APOE transcript, we
leveraged publicly available RNA-sequencing data covering 11
regions of the human central nervous system provided by the
GTEx v.725. Using an annotation-independent approach to
identify genomic regions producing stable transcripts26,27, we
identified a region of significant expression encompassing intron-
3 of APOE and the flanking coding exons in all brain tissues
(Fig. 6a). These data not only support the existence of an intron-3
retaining APOE transcript that is not entirely attributable to pre-
mRNA transcripts or driven by background noise in sequencing
but also provide a means of estimating its usage across the human
brain.

Thus, in order to compare usage of this transcript across
different CNS regions, we calculated the ratio of normalised
intron-3 expression (a measure of intron-3 retaining transcripts)
to the normalised expression of exon 3/exon 4 spanning reads
(a measure of transcripts splicing out intron-3). We see that there
is evidence of the usage of the intron-3 retaining APOE transcript
in all central nervous system regions from GTEx data (Fig. 6a).

Fig. 5 Annotation with constrained, non-conserved regions (CNCRs) is highly granular and shows APOE to have a high density of CNCRs throughout
its length especially in association with an intron-3 retention event in the human hippocampus. The first track represents the genomic location of APOE
within chromosome 19. The second track shows the known transcripts, currently within annotation in Ensembl v.92. The mean coverage (MC) (log10 scale)
in the hippocampus shown here is greater than zero (denoted by the grey shaded area) across intron-3 highlighting an intron-3 retention event (mean
coverage data derived from GTEx v.7). In the fourth track, CNC scores above the black dashed line and shaded in red fulfil criteria for a constrained, non-
conserved region (CNCR) are shown. The intron-3 retention event has the highest CNCR density among all intronic regions of APOE. The fifth track labelled
“CNCR” depicts regions fulfilling criteria for CNCR. PC20 represents the mean phastCons20 score. The black dashed line within this track represents a
mean phastCons20 score of 0. CDTS represents the context-dependent tolerance score as a measure of constraint with the black dashed line showing a
CDTS of 0. Within the CDTS track, the blue dotted line represents a region with no CDTS annotation.
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However, there are also significant differences among brain
regions (Kruskal–Wallis p < 2.2 × 10−16) (Supplementary Table 6:
pairwise Wilcoxon rank sum test p values) with the usage of the
intron-3 retaining event being highest in the spinal cord,
substantia nigra and hippocampus (Fig. 6a).

In summary, we confirmed the existence of an unannotated
human-specific non-coding transcript of APOE and identified
differential usage of this transcript across the human brain. In this
way, we demonstrated the utility of combining CNC scores with
transcriptomic data, which we have made easier through the
visualisation platform vizER (https://snca.atica.um.es/browser/
app/vizER). Furthermore, this direct visualisation allows identi-
fication of isolated intragenic regions of functional importance in
genes with highly variable CNCR density.

Usage of the intron-3 retaining transcript of APOE correlates
with Alzheimer’s disease pathology and APOE genotype. We
noted that among the brain tissues with the highest usage of the
intron-3 retaining transcript of APOE are those that show
selective vulnerability for neurodegeneration, namely the hippo-
campus in the context of Alzheimer’s disease, the substantia nigra
in the context of Parkinson’s disease and the spinal cord in the
context of amyotrophic lateral sclerosis (pairwise comparisons
between brain regions shown in Supplementary Table 6).

Given that APOE is one of the most important genetic risk
factors for Alzheimer’s disease, we leveraged publicly available
RNA-sequencing data from the Religious Orders Study and

Memory and Aging Project (ROSMAP) studies to quantify the
usage of the intron-3 retaining transcript of APOE in post-
mortem dorsolateral prefrontal cortex brain tissue derived from
individuals with Alzheimer’s disease (n= 222) and mild cognitive
impairment (MCI) (n= 158) compared to control individuals
(defined as the final clinical diagnosis blinded to pathological
findings, n= 202). Prior to our analyses, we assessed the impact
of batch effects within this dataset. After finding that our analyses
were robust to the removal of an outlying batch (batch 7,
Supplementary Fig. 7), we incorporated all batches into the
analyses. Using this approach, we found that the proportion of
the intron-3-retaining transcript was higher (p < 2.2 × 10−16) in
dorsolateral prefrontal cortex tissue from individuals with
clinically diagnosed Alzheimer’s disease and MCI patients versus
control participants. Partitioning this further on the basis of
pathology, we see an increase in intron-3 retaining transcript
usage with more severe Braak and Braak pathology for
neurofibrillary tangles (adjusted r2 0.678, p < 2.2 × 10−16)
(Fig. 6b). Consistent with these findings, we also found a
significant increase in transcript usage with higher amyloid
plaque pathology as defined using CERAD staging (adjusted r2

0.673, p < 2.2 × 10−16). Finally, we investigated the relationship
between presence of the ε4 allele in APOE and usage of the
intron-3 retaining transcript. We found a significant positive
correlation between ε4 allele load and the proportion of intron-3
retaining transcript (adjusted r2 0.673, p < 2.2 × 10−16)
(Fig. 6c). This association remained significant after partitioning

Fig. 6 Quantification of APOE intron-3 retaining transcript usage. Quantification of intron retention usage by its normalised coverage to junction ratio
across brain tissues within GTEx (a). Normalised coverage to junction ratio of the APOE intron-3 retention event in bulk RNA-sequencing data of post-
mortem dorsolateral prefrontal cortex tissue samples from 634 individuals recruited within ROSMAP studies across Braak and Braak staging (b) and APOE
ɛ4 allele status (c). In a, red dashed horizontal line presents the median normalised intron retention coverage to junction ratio within central nervous
system tissues in GTEx. Number of samples within each of the tissue groups was as follows: amygdala—72; anterior cingulate cortex—84; caudate—117,
cerebellar hemisphere—105; frontal cortex—108; hippocampus—94; hypothalamus—96; nucleus accumbens—113; putamen—97; spinal cord—71;
substantia nigra—63. The Kruskal–Wallis p value show results from comparison of the differences in the normalised intron retention coverage to junction
ratio between the different brain regions with pairwise regions comparisons shown in Supplementary Table 6. In b and c, the blue line represents the linear
regression fit with the grey shaded area representing ± 95% confidence interval. Braak and Braak staging is a measure of severity of neurofibrillary tangle
based on location. To improve the power of the study, we merged Braak and Braak stages I and II to “Braak mild stage”, Braak and Braak stages III and IV to
“Braak moderate” and Braak and Braak stages V and VI to indicate “Braak severe” stage. For number of APOE ɛ4 alleles, a heterozygous state is represented
by “1” and homozygous state by “2”.
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APOE-ε4 status by disease and accounting for tau and amyloid
burden, showing that this association is likely to be independent
of disease state.

Taken together, these findings could suggest that usage of the
intron-3 retaining transcript may be regulated by APOE-ε4 status
and may be involved in mediating the effect of APOE genotype,
supporting a role for the presence of this lncRNA in disease risk
and progression, although it is also feasible that Alzheimer’s
disease pathology could drive intron-3 retention

Discussion
The core aim of this study was to test the hypothesis that cap-
turing human-lineage-specific regions of the genome could pro-
vide insights into neurological phenotypes and diseases in
humans. We generated and used an annotation based on existing
knowledge of sequence conservation and sequence constraint
within humans, which we termed CNCRs. We used this anno-
tation to prioritise genomic regions, genes and transcripts based
on a high density of human-lineage-specific sequence as deter-
mined by our CNCR annotation. We demonstrated the utility of
this approach by showing: the genomic regions we identified are
enriched for SNP heritability for intelligence test performance
and brain-related disorders; the genes we identified are enriched
for neurologically relevant gene ontology terms and genes causing
neurogenetic disorders and the existence of an intron-3 retaining
transcript of APOE, the usage of which is correlated with Alz-
heimer’s disease pathology and APOE-ε4 status.

A major finding of this study is that CNCRs are enriched for
regulatory, non-coding genomic regions. This is consistent with
analyses performed by Ward and Kellis14, and highlights the
potential functional importance of non-conserved and thus evo-
lutionarily recent non-coding regions subject to constraint. Fur-
thermore, these findings suggest that CNCRs could provide a
means of prioritising and potentially aiding the assessment of
non-coding variants, an area of significant interest, given that
88% of GWAS-derived disease-associated variants reside in non-
coding regions of the genome28. We found evidence to support
this view through heritability analyses for intelligence test per-
formance, Parkinson’s disease, major depressive disorder and
schizophrenia with SNP heritability not only enriched within
CNCRs, but to a greater extent than would be expected using
either conservation or constraint annotations alone. Considering
heritability for intelligence test performance, this phenotype is
already known to also be enriched within annotations of brain-
specific tissue expression and among several regulatory biological
gene sets29, including neurogenesis, central nervous system neu-
ron differentiation and regulation of synapse structure or
activity28. These findings support our hypothesis that CNCRs
identify genomic regions of functional importance with relevance
to human brain phenotypes.

Our analyses of CNCR density within genes are consistent with
these findings, highlighting both non-coding genes and those
implicated in neurologically relevant processes and diseases.
Interestingly, CNCR annotation specifically highlighted lncRNAs
as opposed to other non-coding RNAs. In particular, we observed
a proportional increase in lncRNA enrichment with higher genic
CNCR density, which could not be replicated using measures of
sequence constraint or conservation alone. This observation is in
keeping with previous studies that have shown most lncRNAs are
tissue-specific with the highest proportion being specific to
brain30 and highly relevant to neurodegenerative diseases31.
Similarly, the enrichment for nervous system-related pathways
within CNCRs, which is representative of recent purifying
selection, is in keeping with the lowest proportion of positively
selected genes being present in brain tissues from previous studies

of mammalian organ development32. We also find enrichment of
spinal cord-associated genes that may relate to the uniquely
human monosynaptic corticomotoneuronal pathways implicated
in human-specific dexterity and digital motor control33,34, the
disruption of which may lead to amyotrophic lateral sclerosis35.

We noted that APOE was among the genes with the highest
CNCR density across the genome and carried the highest CNCR
density of all genes implicated in complex brain-relevant phe-
notypes (defined within the STOPGAP database19). Given that
genetic variation within this gene and specifically APOE-ε4 status
is not only the principal genetic risk factor for Alzheimer’s
disease36 but also associated with risk for other neurodegenerative
disorders, stroke and reduced lifespan20, this finding provides
evidence for the value of CNCR annotation. We thus further
studied APOE to validate our annotation. Within APOE, the
CNCR annotation highlighted an intron-3 retention event of high
coverage and CNCR density, not currently within annotation but
which has been previously reported to be associated with neu-
ronal regulation of APOE, with splicing out of the intron-3-
containing mRNA following neuronal injury in neuronal cell lines
and human APOE knock-in mouse models21,23,24. Using Sanger
sequencing of cDNA derived from control human hippocampal
tissue, we confirm the presence of an intron-3 retaining APOE
transcript. We estimated the usage of the transcript from short-
read RNA-sequencing data and found variable levels across dif-
ferent brain tissues within GTEx25 with the highest usage in the
spinal cord, substantia nigra and hippocampus, reflecting central
nervous system regions most susceptible to selective vulnerability
in disease. Using human dorsolateral prefrontal cortex RNA-
sequencing data, we found that the intron retention event was
significantly more abundant in patients with Alzheimer’s disease
than controls and in those with more severe Braak and Braak
pathology and amyloid burden as characterised by CERAD
pathology. Furthermore, we saw a dosage-dependent increase in
the intron retention event with the APOE-ε4 allele that was
independent of disease status. Although our findings do not
elucidate the function of the intron-3 retention event, they are
consistent with previous studies that have shown general
increases in intron retention events as a feature of Alzheimer’s
disease and ageing with implications for post-transcriptional
regulation37. We propose that this novel transcript may be a
means of regulating APOE in a disease state or could itself be
driven by Alzheimer’s disease pathology.

Given that we use existing measures of constraint and con-
servation to identify CNCRs, this analysis is fundamentally lim-
ited by the quality of these data. While the constraint metrics we
used were derived from high-depth sequencing, this is still
restricted given the relatively high number of private genetic
variants we each carry. In addition, analysis was limited to
the high-confidence regions covering ~84% of the genome,
amounting to 12.2% of all genes that remained unannotated with
CDTS metrics11. Thus, on balance, it is difficult to predict the
impact of these missing data on our findings. Similarly, our study
of the relationship between CNCRs and known genomic features
is limited by the annotation quality in existing databases. We have
endeavoured to overcome some of these problems by creating a
more detailed annotation combining both GENCODE and
Ensembl data as used by di Iulio et al. in their work generating
CDTS11. The SNP heritability estimates using stratified-linkage
disequilibrium score regression (LDSC) analysis are limited by
the quality of linkage disequilibrium (LD) information under-
pinning the heritability calculations38 and the sample size of
the GWAS.

Despite these limitations, we have been able to demonstrate the
utility of CNCRs specifically in the identification of functionally
important non-coding regions of the genome, genes and
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transcripts. We find that CNCRs across all forms of analyses
highlight the significance of human-lineage-specific sequences in
the central nervous system and in the context of neurological
phenotypes and diseases. We release our annotation of CNC
scores and CNCRs via the online platform vizER (https://snca.
atica.um.es/browser/app/vizER) to allow CNCRs to be viewed at a
granular level. Thus, the CNCR annotation we generate has the
potential to provide additional disease insights beyond those
explored within this study and as we anticipate the release of
increasing quantities of WGS data in humans will only improve
in quality and value.

Methods
Generation of an annotation for the identification of CNCRs. We generated a
combined annotation to capture information on intra-species constraint and inter-
species conservation simultaneously, using CDTS together with phastCons20 scores
(Fig. 1). The previously validated map of sequence constraint (http://www.hli-
opendata.com/noncoding) generated using 7794 whole-genome sequences11 was
used to assign a single CDTS score to each non-overlapping 10 bp region throughout
the genome (build GRCh38, 248,925,226 bins). The phastCons20 score, which cal-
culates the likelihood ratio of negative selection based on the total number of sub-
stitutions during evolution of an element between species39, was used as a measure of
inter-species conservation (http://hgdownload.cse.ucsc.edu/goldenPath/hg38/
phastCons20way/)39. PhastCons20 was used as it compares the human genome to
the genomes of less divergent species (16 other primates and three mammals). For
each 10 bp bin, we assigned the corresponding mean phastCons20 score. Bins
without a conservation score due to insufficient species in the alignment were not
considered (0.218% of the genome), nor did we consider bins without a CDTS score
(16% of the genome, equating to 12.2% of all genes). We found that 10.9% of the
unannotated regions of the genome were within the ENCODE list of problematic
regions (https://github.com/Boyle-Lab/)40 with the remainder accounted for by
incomplete sequencing from the 10,000 Genomes Project10. We recognise that this is
a limitation of this study and of the previously reported analysis11. For the remaining
248,381,744 bins, we ranked both CDTS and mean phastCons20 scores across the
whole genome such that the highest ranks represented the most constrained and
conserved regions, respectively. We calculated the log2 ratio of the rank of constraint
to the rank of conservation for each 10 bp bin (termed constrained, non-conserved
score, CNC score). This resulted in scores with a distribution centred at 0 signifying
no fold change between the ranks of the two metrics (Supplementary Fig. 1). Finally,
we defined CNCRs as genomic regions that were first among the 12.5% most
constrained, then with a CNC score of ≥1 (i.e. a twofold higher ranking in constraint
than conservation). We used this definition for CNCRs throughout this study to
capture regions that were among the most constrained, but less conserved genome.

Investigating the relationship between CNCRs and existing annotation. To
investigate the relationship between CNC scores for genomic regions and genomic
features, we calculated the distribution of CNC scores across genomic features
defined by GENCODE v.5341 and Ensembl v.9242. We restricted our analysis to the
12.5% most constrained regions only (31,115,616 ten bp bins) and segregated these
regions into equally sized deciles ranked on the basis of CNC scores such that the
highest decile (90–100 decile) represented a high CNC score containing the most
constrained and least conserved sequences. Each 10 bp region was then assigned a
single overlapping genomic feature. To avoid conflicts arising from overlapping
GENCODE and Ensembl definitions, we preferentially assigned a single genomic
feature to a given region by prioritising features as used by di Iulio et al.11

(described in Supplementary Table 1). In order to compare the enrichment of
existing annotations within the proportions of the different genic regions, we used
chi-squared test with Yate’s continuity correction, implemented in R v.3.6.1.

Enrichment of common-SNP heritability in brain-related phenotypes for
CNCRs. Stratified-LDSC was used to assess the enrichment of common-SNP
heritability for a range of complex diseases and traits within our annotation38,43.
Stratified-LDSC makes use of the increased likelihood of a causal relationship in a
block of SNPs in LD to correct for confounding biases that include cryptic relat-
edness and population stratification in a polygenic trait43. Using established pro-
tocols (https://github.com/bulik/ldsc/wiki), we tested whether SNPs located within
our annotation contributed significantly to SNP heritability after controlling for a
range of other annotations described within the baseline mode (v.1.2). This analysis
generates a coefficient z-score, from which we calculated a one-tailed coefficient
p value. Stratified-LDSC regression analyses were also run to incorporate back-
ground SNPs defined as all SNPs in the genome that include a CDTS and phast-
Cons20 annotation, to avoid overestimation of the contribution to SNP heritability.
We assessed the annotation for SNP heritability enrichment in complex brain-
related disorders and phenotypes of intelligence test performance29, Alzheimer’s
disease44, Parkinson’s disease (excluding 23&Me participants)45, schizophrenia46

and major depressive disorder (excluding 23&Me participants)47 (Supplementary
Table 2). We considered SNPs within CNCRs and its two constituent groups

(Fig. 1) which fall either into constrained-only or non-conserved only annotations
as defined respectively by: (i) CNCRs annotation: SNPs falling into CNCRs; (ii)
constrained annotation: SNPs located within the 12.5% most constrained regions of
the genome irrespective of conservation score and (iii) non-conserved annotation:
SNPs located within relatively non-conserved genomic regions with a conservation
rank determined by the rank of the first quartile phastCons20 score at a CNC score
of 1 (rank ≤ 25,623,592) (irrespective of constraint score). We provided Bonferroni-
correctedp values, which account for the number of annotation categories and
GWASs tested (total of 15 conditions).

Generation of a gene-based metric for CNCRs and gene set enrichment
analysis. To generate a metric of human-specific constraint, which could be
applied to a gene rather than a 10 bp region, we calculated the density of CNCRs
within each gene, the length of which was defined by the transcription start and
stop sites for that gene (GRCh38.v97). The CNCR density was defined as the
proportion of the length of a gene containing CNCRs (Supplementary Fig. 1d). In
this way, we were able to normalise for the effect of gene size on our metric.
Therefore, the higher the gene density, the larger the proportion of the total length
of the gene was covered by CNCRs.

In order to compare the relationship between the change in CNCR density and
the proportion of a genic biotype (defined by Ensembl v.92), we used linear
regression and applied FDR-correctedp values in R v.3.6.1.

We used g:ProfileR (R Package)48 for gene set enrichment analysis. We used the
three sets of tested annotations incorporating genes that fell into CNCRs,
constrained regions and non-conserved regions in the gene set enrichment analysis
as previously described for LDSC annotation and as defined in Fig. 1. The
background gene list in all analyses comprised 49,644 genes from all regions of the
genome with a CDTS and phastCons20 annotation. The correction method was set
to g:SCS to account for multiple testing48. We used REViGO49 to summarise the
significant GO terms, and to derive the term frequency, which is a measure of GO
term specificity.

To further characterise CNCR density within genes associated with disease, we
first studied phenotype relationships of all Mendelian genes within the OMIM
catalogue (http://api.omim.org)18. We compared the CNCR density of all
neurologically relevant OMIM genes to all genes within CNCR annotation.
Secondly, in order to investigate the CNCR density within genes associated with
complex disorders, we used the STOPGAP database, a catalogue of human genetic
associations mapped to effector gene candidates derived from 4684 GWASs19. We
selected for genes associated with SNPs that surpassed a genome-wide significant
p value of 5 × 10−8 and which fulfilled medical subject heading for associated
neurological/behavioural diseases. We used these sets to identify potential genes of
interest associated with brain-related disorders which carry a high CNCR density.

Sequencing of APOE transcripts in human brain. Focussing on a region with
high CNCR density identified within APOE from the preceding analyses, we used
Sanger sequencing of cDNA reverse transcribed from pooled human hippocampus
poly-A-selected RNA (Takara/Clontech 636165) to support the presence of the
intron-3 retention event identified within APOE (GRCh38: chr19:44907952-
44908531). For the reverse transcription, we used 500 ng of input RNA, with
10 mM dNTPs (NEB N0447S), VN primers and strand-switching primers (Oxford
Nanopore Technologies SQK-DCS109), 40 units of RNaseOUT inhibitor (Life
Technologies 10777019) and 200 units of Maxima H Minus reverse transcriptase
with 5X reverse transcription buffer (Thermo Fisher EP0751). PCR amplification of
the cDNA was performed using primer pairs designed to span across intron-3 and
exon 4 (P2-4) and intron-3 alone (P5) of APOE (ENST00000252486.9) (Supple-
mentary Table 3). PCR was performed using Taq DNA polymerase with Q-
solution (Qiagen) and enzymatic clean-up of PCR products was performed using
Exonuclease I (Thermo Fisher Scientific) and FastAP thermosensitive alkaline
phosphatase (Thermo Fisher Scientific). Sanger sequencing was performed using
the BigDye terminator kit (Applied Biosystems) and sequence reactions were run
on ABI PRISM 3730xl sequencing apparatus (Applied Biosystems). Electro-
pherograms were viewed and sequences were exported using Sequencher 5.4.6
(Gene Codes). Sequences were aligned against the human genome (hg38) using
BLAT and visually inspected for confirmation of validation.

To reduce the risk of gDNA contamination, the human hippocampus poly-A-
selected RNA (Takara/Clontech 636165) had undergone selection by two rounds of
oligo(dT)-cellulose columns. Furthermore, the Maxima H Minus reverse transcriptase
buffer contains a double-strand-specific DNase to specifically remove gDNA. Lastly,
we used poly-A selected RNA sample as a no-reverse transcriptase control in
comparison with cDNA to show that there is no contamination with gDNA. A total
of 100 ng poly-A-selected RNA and 100 ng cDNA was used for each reaction in a
total volume of 10 µl using the same PCR conditions. PCR amplification of cDNA and
RNA was performed using primer pair P2 using Taq DNA polymerase (Qiagen
protocol) with 30 s of denaturation and 30 s of annealing at 57 °C.

Quantifying differences in intron-3 retention between different species. In
order to investigate species differences in the human APOE intron-3 retention
event identified with chimpanzees, we leveraged existing bulk RNA-sequencing
data derived from chimpanzee and human hippocampus reported in Khrameeva
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et al.50. We used data from the hippocampus and downloaded FASTQ files (NCBI
Gene Expression Omnibus; https://www.ncbi.nlm.nih.gov/geo/, accession number
GSE127898) from the three available human samples (SAMN11165674,
SAMN11165673, SAMN11165737) and three available chimpanzee samples
(SAMN11166008, SAMN11165613, SAMN11165949). All bulk RNA-sequencing
FASTQ files were aligned using STAR51 with a reference index generated for the
relevant species. Given the small number of samples, direct visualisation of the
aligned BAM files in Integrative Genome Viewer52 across APOE was carried out.
Furthermore, for all samples, the total coverage of intron-3 was normalised for the
length of intron-3 in each species and also for the total APOE coverage accounting
for sequencing depth and APOE expression differences to allow cross-species and
cross-sample comparisons. The co-ordinates for the regions were taken from
Ensembl for human GRCh38 and chimpanzee Pan_tro_3.0.

Analysis of public RNA-sequencing data. We used publicly available short-read
RNA-sequencing data from human brain post-mortem samples provided by GTEx
v.7.125 and the ROSMAP Study53 and to quantify the intron-3 retention event in
APOE highlighted by our analysis. For GTEx data, we used pre-aligned files
available from recount2 (https://jhubiostatistics.shinyapps.io/recount/)54. Both
studies within ROSMAP are longitudinal clinicopathological cohort studies of
aging and/or Alzheimer’s disease. We downloaded BAM files for ROSMAP bulk
RNA-sequencing data from the Synapse repository (https://www.synapse.org/#!
Synapse:syn4164376) for analysis. To quantify the intron-3 retention event, we
calculated the coverage of intron-3 expression normalised for the coverage across
the entire APOE gene, as defined by the transcription start and end sites. To
quantify splicing of intron-3, we calculated the number of exon 3 to exon 4 junc-
tion reads (defined as reads mapping with a gapped alignment), normalised for all
APOE junction reads detected and currently within annotation. We used a ratio of
the normalised coverage to normalised junction count over intron-3 as an estimate
of the proportional use of the intron-3-retaining transcript, such that a high ratio is
associated with a higher usage of intron retention within both GTEx and ROSMAP
data. Normalisation of the intron-3 event for APOE gene expression (directly
proportional to the canonical transcripts) was used to show independent effects of
the intron-3 event from the canonical transcripts. Comparisons between the two
groups were performed by comparing the mean values of this normalised measure
using Wilcoxon rank sum test, taking two-tailedp values < 0.05 to be significant.
Based on existing ROSMAP results55 and principal component analysis of frag-
ments per kilobase million data, we incorporated covariates to account for the
effect of batch, RNA integrity number, post-mortem interval, study index, ethni-
city, age at death and sex on estimates of intron-3-retaining transcript usage. Using
the resulting linear regression model, we compared the intron-3 retention nor-
malised coverage to junction ratio across clinical disease states, pathological states
and APOE-ɛ4 status in 634 post-mortem brain samples.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We release our annotation of CNC score as an interactive visualisable track via online
platform vizER: (https://snca.atica.um.es/browser/app/vizER) and provide a publicly
downloadable table of CNCR density for genes within our annotation (under the
“Download” Tab).
Publicly available datasets used are:
CDTS metrics: http://www.hli-opendata.com/noncoding.
phastCons20 metrics: http://hgdownload.cse.ucsc.edu/goldenPath/hg38/

phastCons20way/.
ROSMAP studies BAM files: https://www.synapse.org/#!Synapse:syn4164376.
OMIM API: http://api.omim.org.
STOPGAP database: https://github.com/StatGenPRD/STOPGAP/blob/master/

STOPGAP_data/stopgap.bestld.RData.
GTEx portal: https://www.gtexportal.org/home/datasets.
Ensembl v92: https://www.ensembl.org/index.html.
GENCODE: https://www.gencodegenes.org/pages/data_access.html.
ENCODE list of problematic regions: https://github.com/Boyle-Lab/.
Chimpanzee and human bulk RNA-sequencing data: NCBI Gene Expression

Omnibus; https://www.ncbi.nlm.nih.gov/geo/, accession number GSE127898).
Source Data are provided with this paper.
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