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Short communication 

Accuracy of a large language model in distinguishing anti- and 
pro-vaccination messages on social media: The case of human 
papillomavirus vaccination 
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A B S T R A C T   

Objective: Vaccination has engendered a spectrum of public opinions, with social media acting as a crucial 
platform for health-related discussions. The emergence of artificial intelligence technologies, such as large 
language models (LLMs), offers a novel opportunity to efficiently investigate public discourses. This research 
assesses the accuracy of ChatGPT, a widely used and freely available service built upon an LLM, for sentiment 
analysis to discern different stances toward Human Papillomavirus (HPV) vaccination. 
Methods: Messages related to HPV vaccination were collected from social media supporting different message 
formats: Facebook (long format) and Twitter (short format). A selection of 1,000 human-evaluated messages was 
input into the LLM, which generated multiple response instances containing its classification results. Accuracy 
was measured for each message as the level of concurrence between human and machine decisions, ranging 
between 0 and 1. 
Results: Average accuracy was notably high when 20 response instances were used to determine the machine 
decision of each message: .882 (SE = .021) and .750 (SE = .029) for anti- and pro-vaccination long-form; .773 
(SE = .027) and .723 (SE = .029) for anti- and pro-vaccination short-form, respectively. Using only three or even 
one instance did not lead to a severe decrease in accuracy. However, for long-form messages, the language model 
exhibited significantly lower accuracy in categorizing pro-vaccination messages than anti-vaccination ones. 
Conclusions: ChatGPT shows potential in analyzing public opinions on HPV vaccination using social media 
content. However, understanding the characteristics and limitations of a language model within specific public 
health contexts remains imperative.   

1. Introduction 

Vaccination continues to be a subject of intense public discussion, 
with a broad spectrum of viewpoints and beliefs, ranging from advocates 
praising its benefits to a skeptical faction (Yaqub et al., 2014; Sturgis 
et al., 2021; Blane et al., 2023:57–80.). Given that these diverse per-
spectives are tied to individuals’ health behaviors, understanding public 
perceptions of vaccination is of great importance for social scientists and 
public health professionals (Yaqub et al., 2014; Paul et al., 2021; 
Cruickshank et al., 2021). 

As digital platforms, particularly social media, have emerged as 
pivotal venues for discussions on health-related issues, researchers have 
turned to analyzing messages on these platforms to gain insights into 

public perceptions (Chou, 2009; Chou et al., 2020; Alipour et al., 2024; 
Valdez et al., 2023). At the core of various quantitative and computa-
tional approaches exploring the immense volume of online messages 
generated on these platforms lies the process of human evaluation. 
Often, multiple researchers or experts assess a subset chosen from a large 
dataset of online messages, and the insights drawn from the subset are 
then extrapolated to the entire dataset or to the broader population 
through statistical assumptions or machine-learning techniques (Hornik 
et al., 2022; Huang et al., 2014; Shapiro et al., 2017). However, the 
human evaluation process is inherently time-consuming and labor- 
intensive, demanding extensive collaboration among multiple 
individuals. 

Recently, the advent of large language models (LLMs) has opened up 
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new possibilities to reduce the burdens associated with human evalua-
tion. LLMs, such as OpenAI’s GPT (Generative Pre-trained Transformer) 
and Google’s LaMDA (Language Model for Dialogue Applications), are 
artificial intelligence models trained on a large volume of text data to 
generate human-like text based on the user input they receive (Brown 
et al., 2020; Thoppilan et al., 2022). LLMs have demonstrated consid-
erable capacity for human-level decision-making and logical processing 
(Katz et al., 2023; Liu et al., 2023). Furthermore, the increasing acces-
sibility and user-friendliness of these powerful LLMs are amplifying their 
impacts in various academic disciplines (Ziems et al., 2023; Heseltine 
and Clemm von Hohenberg, 2024). 

Therefore, the present research explores the feasibility of utilizing an 
LLM in investigating public perceptions based on digital platform data. 
Our primary focus is on ChatGPT, with a particular emphasis on its 
freely available and most unrestrained iteration powered by GPT 3.5 
(OpenAI, 2022). ChatGPT powered by GPT 3.5 also distinguishes itself 
as the most widely used chatbot service with over 100 million monthly 
users worldwide (Hu, 2023), while operating on one of the most high- 
performing LLMs available (Xu et al., 2023). These characteristics un-
derscore its potential as a feasible and effective tool accessible to a broad 
spectrum of researchers, including those without substantial financial 
resources and technical knowledge. 

We evaluated the accuracy of ChatGPT operating on GPT 3.5 in 
classifying the stances toward vaccination expressed in social media 
messages, by utilizing multiple datasets and comparing human and 
machine evaluations of the same data. Through this investigation, we 
aim to contribute to identifying methodological advances for re-
searchers in the fields of public health and social sciences, ultimately 
enhancing our understanding of public perceptions of health-related 
issues in the digital era. 

Among various issues that stimulate intense public discussion on 
vaccination, we focused on Human Papillomavirus (HPV) vaccination. 
Despite its pivotal role as a preventive measure against a spectrum of 
cancers (Shing et al., 2022), HPV vaccination encounters significant 
resistance and skepticism (Dunn et al., 2017; Sonawane et al., 2021). 
Understanding public perceptions about HPV vaccination and investi-
gating different beliefs that influence its acceptance or resistance is thus 
a public health priority. 

2. Method 

2.1. Data collection 

We retrieved messages related to HPV vaccination from two major 
social media platforms supporting different message formats: Facebook 
(long format) and Twitter (short format). Specifically, 141,479 messages 
were collected from Facebook, and employing the same search criteria 
used for Facebook, 676,193 messages were obtained from Twitter. This 
research was exempted by the Institutional Review Board of the Uni-
versity of California Davis, as a part of the application 2031428–1. The 
detailed procedure to create these two message pools is explained in 
Supplementary Online Material (SOM). 

2.2. Human evaluation 

Human evaluators assessed 1,200 long-form and 1,200 short-form 
messages selected from the message pools. The details of the selection 
procedure are provided in SOM. The selected messages were evaluated 
by a team of three human evaluators. Specifically, each message was 
independently assessed and classified by two evaluators, and in cases of 
disagreement, a third evaluator resolved the discrepancies. The inter- 
coder reliability among the evaluators was very high: Cohen’s Kappa 
scores were.938 and .885 for long-form and short-form messages, 
respectively. The primary focus of this research lies in the capability of 
LLMs, which are designed to generate human-like assessments, in 
accurately replicating human evaluations of opinions on a contentious 

public health issue (Refer to SOM for further explanation). 

2.3. Machine evaluation 

From the long-form messages assessed by human coders, we 
randomly selected 200 pro-vaccination, 200 anti-vaccination, and 100 
neutral messages. Similarly, from the human-evaluated short-form 
messages, 200 pro-vaccination, 200 anti-vaccination, and 100 neutral 
messages were randomly selected. The current research refers to these 
refined groups of messages as “machine evaluation sets.” All messages 
were then evaluated by GPT 3.5. We used the model’s latest version as of 
September 2023 (model name: gpt-3.5-turbo-0613). In order to compare 
the results from an extended number of iterations, we utilized an 
automated Python script based on OpenAI’s commercial API (Applica-
tion Programming Interface). The same tasks can be completed with 
ChatGPT by entering written prompts into its free web interface. This 
option is particularly advantageous for researchers seeking computa-
tional analysis of small or moderate-sized datasets who may lack tech-
nical knowledge, coding abilities, or financial resources, even though 
the API offers a more efficient, streamlined approach for evaluating a 
large amount of messages without the need for repetitive manual input. 

For each message in a machine evaluation set, a prompt was created 
and presented to the language model. The prompt included instructions, 
the content of the message, and the coding scheme, as presented in SOM. 
The instructions commanded the model to classify a message into one of 
the five categories based on the coding scheme and explain its decision: 
ANTI (anti-vaccination), PRO (pro-vaccination), NEU (neutral), MIX 
(mixed), and IR (irrelevant). Except for minor formatting adjustments, 
the instructions and the coding scheme were identical to those provided 
to the human evaluators. Considering that identical prompts may yield 
varying responses due to the probabilistic nature of language models 
(Jurafsky and Martin, 2009), we gathered 20 response instances for each 
message and thus a total of 20,000 response instances. It was done by 
initiating a new “chat” with the model, sending the prompt in the chat, 
receiving and storing its response, and repeating the process 20 times for 
each message. 

The language model’s decision for each message, termed “machine 
decision,” was determined by randomly selecting m out of the 20 
response instances with replacement and identifying the majority of 
answers. This approach considers the 20 response instances as a sample 
of possible evaluations generated by the model for a given message. To 
compare accuracy across different numbers of response instances, we 
varied m among values of 1, 3, 5, 7, 9, and 11. For example, the case of m 
= 3 emulates a scenario in which a user generates three response in-
stances and determines the majority among them. If a message received 
categorizations of ANTI, ANTI, and PRO with m = 3, the machine de-
cision would be determined as ANTI. When there was a tie, one addi-
tional response instance was randomly selected until the tie was 
resolved. m = 1 corresponds to “one-shot” determination, where one 
instance was generated and considered as the machine decision. 

For each message, we iterated the random selection and majority 
determination process 1,000 times. After each iteration, a value referred 
to as “human–machine concurrence” was recorded as 1 if the machine 
decision matched the human evaluation of the message; otherwise, it 
was recorded as 0. This variable was then averaged across all iterations, 
resulting in a value referred to as “accuracy.” This accuracy value re-
flects the model’s accuracy for a specific message. Furthermore, we 
computed the average accuracy across all the messages within a ma-
chine evaluation set, denoted as Km. This provides an assessment of the 
model’s overall accuracy for the messages within that particular set. 

3. Results 

Average accuracy based on 20 response instances (K20) was notably 
high for anti- and pro-vaccination messages. When considering anti- and 
pro-vaccination messages together, K20 was .816 (SE = .018) for long- 
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form and .748 (SE = .020) for short-form messages. These results are 
particularly noticeable considering that machine evaluation was con-
ducted without any tailored pre-training or fine-tuning specific to HPV 
vaccination discussion. This highlights the large language model’s 
capability and efficiency in distinguishing stances toward vaccination. 
Specifically for anti-vaccination messages, average accuracy was even 
higher: K20 achieved .882 (SE = .021) and .773 (SE = .027) for long-form 
and short-form messages, respectively. 

Importantly, however, the language model exhibited lower accuracy 
for pro-vaccination messages than anti-vaccination ones in the long 
form: K20 was .882 (SE = .021) for anti-vaccination messages, whereas it 
was .750 (SE = .029) for pro-vaccination ones. The difference was sta-
tistically significant (Mann-Whitney U = 22779, p = .005). While the 
level of statistical significance diminishes as m decreases, a pattern 
linked to increasing variability induced by fewer response instances for 

majority determination (See SOM for the complete test results), the 
consistent gap in average accuracy can be observed in Fig. 1. For short- 
form messages, however, the difference in average accuracy between 
anti- and pro-vaccination messages was not statistically significant even 
with 20 response instances (U = 21038, p = .324). 

Furthermore, average accuracy for neutral messages was relatively 
low: K20 was merely .540 (SE = .045) for long-form and .541 (SE = .042) 
for short-form messages. These outcomes were significantly lower than 
those of anti-vaccination messages (long-form: U = 15455.5, p < .001; 
short-form: U = 14135, p < .001) and pro-vaccination messages (long- 
form: U = 13615, p < .001; short-form: U = 13615, p < .001). As 
visualized in Fig. 1, this decline in accuracy for neutral messages was 
consistent across different response instance counts and formats (See 
SOM for all test results). 

It is worth noting that considerable levels of accuracy could be 

Fig. 1. Machine Accuracy of Sentiment Evaluation by the Number of Response Instances for Majority Determination. Note. ANTI, PRO, and NEU indicate human- 
evaluated anti-vaccination, pro-vaccination, and neutral messages. m is the number of response instances generated. When m > 1, a machine decision was determined 
by the majority rule among m response instances. m = 1 corresponds to one-shot evaluations without majority determination. Bars indicate average accuracy, and 
error bars indicate mean ± s.e.m. 

Table 1 
Machine Accuracy of Sentiment Evaluation by the Number of Response Instances for Majority Determination.   

Facebook (Long format) 
m ANTI 

(n = 200) 
PRO 
(n = 200) 

NEU 
(n = 100) 

ANTI & PRO 
(n = 400) 

All 
(N = 500)  

Km (SE) Km / K20 Km (SE) Km / K20 Km (SE) Km / K20 Km (SE) Km / K20 Km (SE) Km / K20 

1 .770 (.019) 87.2 % .697 (.025) 93.0 % .468 (.031) 86.1 % .734 (.016) 89.9 % .681 (.015) 89.4 % 
3 .840 (.020) 95.2 % .729 (.026) 97.3 % .508 (.037) 93.4 % .785 (.017) 96.1 % .729 (.016) 95.8 % 
5 .860 (.020) 97.4 % .738 (.027) 98.4 % .521 (.040) 96.0 % .799 (.017) 97.9 % .743 (.017) 97.6 % 
7 .866 (.020) 98.2 % .741 (.028) 98.9 % .527 (.041) 97.1 % .804 (.017) 98.5 % .748 (.017) 98.3 % 
9 .872 (.020) 98.8 % .744 (.028) 99.2 % .531 (.042) 97.7 % .808 (.018) 99.0 % .752 (.017) 98.8 % 
11 .875 (.021) 99.2 % .746 (.028) 99.5 % .535 (.043) 98.4 % .811 (.018) 99.3 % .755 (.017) 99.2 % 
20 .882 (.021) − .750 (.029) − .540 (.045) − .816 (.018) − .761 (.394) −

Twitter (Short format) 
m ANTI 

(n = 200) 
PRO 
(n = 200) 

NEU 
(n = 100) 

ANTI & PRO 
(n = 400) 

All 
(N = 500)  

Km (SE) Km / K20 Km (SE) Km / K20 Km (SE) Km / K20 Km (SE) Km / K20 Km (SE) Km / K20 

1 .679 (.023) 87.9 % .675 (.024) 93.3 % .448 (.026) 82.9 % .677 (.017) 90.5 % .631 (.015) 89.3 % 
3 .735 (.025) 95.1 % .702 (.027) 97.0 % .498 (.033) 92.0 % .718 (.018) 96.1 % .674 (.017) 95.4 % 
5 .751 (.026) 97.2 % .711 (.028) 98.3 % .514 (.036) 95.1 % .731 (.019) 97.7 % .687 (.017) 97.3 % 
7 .757 (.026) 98.0 % .713 (.028) 98.6 % .520 (.037) 96.1 % .735 (.019) 98.3 % .692 (.018) 98.0 % 
9 .762 (.027) 98.6 % .717 (.028) 99.1 % .525 (.039) 97.0 % .740 (.019) 98.9 % .697 (.018) 98.6 % 
11 .765 (.027) 99.1 % .719 (.029) 99.4 % .532 (.040) 98.4 % .742 (.020) 99.2 % .700 (.018) 99.1 % 
20 .773 (.027) − .723 (.029) − .541 (.042) − .748 (.020) − .707 (.018) −

Note. m is the number of response instances generated. When m > 1, a machine decision was determined by the majority rule among m response instances. m = 1 
corresponds to one-shot evaluations without majority determination. Km is machine accuracy averaged across n messages when m response instances were generated to 
determine machine decision. ANTI, PRO, and NEU indicate human-evaluated anti-vaccination, pro-vaccination, and neutral messages. 
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achieved with only a few response instances, underscoring the efficiency 
of using the language model for sentiment analysis, as shown in Table 1. 
Even when employing a relatively small number of instances, such as m 
= 1 and 3, the average accuracy did not experience a severe decline. For 
instance, across anti-vaccination, pro-vaccination, and neutral content 
in long-form, average accuracy with three instances (K3) reached 95.2 
%, 97.3 %, and 93.4 % of those of 20 instances, respectively. The 
average accuracy of one-shot determination (K1) also achieved 87.2 %, 
93.0 %, and 86.1 % of K20 for anti, pro, and neutral content in long-form, 
respectively. A similar pattern was found for short-form messages 
(Table 1). Average accuracy increased with the number of response in-
stances used for majority determination, albeit with diminishing returns 
as visualized in Fig. 1. K11 surpassed 98 % of K20 across all evaluation 
sets. 

4. Discussion 

The present research underscores the evidence of the potential of 
LLMs as tools for sentiment analysis of social media content about so-
cially contentious public health issues. The findings demonstrate that 
ChatGPT powered by GPT 3.5 exhibits considerable accuracy in evalu-
ating messages related to HPV vaccination. However, the research also 
highlights that the accuracy of LLMs can significantly fluctuate 
depending on the message content and format. The findings reveal that 
GPT 3.5 displays lower accuracy in identifying pro-vaccination mes-
sages compared with anti-vaccination ones for long-form messages. The 
language model also encountered difficulties in accurately replicating 
human evaluation decisions for neutral messages. Additionally, the 
model’s accuracy was lower for short-form messages than long-form 
ones, differing from findings in a study on political texts (Heseltine 
and Clemm von Hohenberg, 2024). 

These discrepancies pose substantial challenges in the practical 
application of the language model, necessitating additional techniques 
and procedures to assess, mitigate, or compensate for the in-
consistencies. This may also involve new approaches to crafting in-
structions and coding schemes that enhance machine accuracy for pro- 
vaccination messages, neutral content, or shorter messages. Re-
searchers must be aware of the characteristics and limitations inherent 
to LLMs to ensure the reliability and validity of research outcomes. 

This research is not without limitations. Most of all, the present study 
primarily focused on examining the accuracy of a widely used language 
model, in evaluating vaccine-related messages from the two major social 
media platforms. Additional discussions on the limitations are provided 
in SOM. 
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