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Summary: Insufficiency of surfactants is a core factor
in respiratory distress syndrome, which causes apnea
and neonatal death, particularly in preterm infants. Sur-
factant proteins are secreted by alveolar type II cells in
the lung epithelium, the differentiation of which is regu-
lated by Fgf10 elaborated by the adjacent mesen-
chyme. However, the molecular regulation of
mesenchymal Fgf10 during lung development has not
been fully understood. Here, we show that Pbx1, a
homeodomain transcription factor, is required in the
lung mesenchyme for the expression of Fgf10. Mouse
embryos lacking Pbx1 in the lung mesenchyme show
compact terminal saccules and perinatal lethality with
failure of postnatal alveolar expansion. Mutant embryos
had severely reduced expression of Fgf10 and surfactant
genes (Spa, Spb, Spc, and Spd) that are essential for
alveolar expansion for gas exchange at birth. Molecu-
larly, Pbx1 directly binds to the Fgf10 promoter and coop-
erates with Meis and Hox proteins to transcriptionally
activate Fgf10. Our results thus show how Pbx1 controls
Fgf10 in the developing lung. genesis 52:399–407, 2014.
VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Abnormalities in alveolar surfactant synthesis can cause
respiratory distress syndrome (RDS), which affects �1%
of the newborns and is the leading cause of death in

preterm infants (Ballard et al. 2003; Clements and
Avery, 1998; Rodriguez et al., 2002). RDS usually devel-
ops in the first 24 h after the birth of premature babies
with developmental insufficiency of pulmonary surfac-
tant synthesis and structurally immature lungs (Clem-
ents and Avery, 1998; Gower and Nogee, 2011;
Rodriguez et al., 2002; Yurdakok, 2004). Genetic abnor-
malities of producing surfactant proteins (Spa, Spb,
Spc, and/or Spd) can result in this syndrome (Beers
et al., 2000; Gower and Nogee, 2011; Nkadi et al.,
2009; Nogee, 2004).

Pulmonary surfactant is a surface-active lipoprotein
complex (phospholipoprotein) secreted by alveolar
type II cells in the lung (Hawgood, 2004; Nogee, 2004;
Whitsett and Weaver, 2002). The surfactant, comprised
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of proteins and lipids with hydrophilic and hydropho-
bic regions, reduces the surface tension of the alveoli
and thereby facilitate and maintain the expansion of the
lung (Cardoso, 2001; Halliday, 2008; Mendelson, 2000).
During lung development, the fibroblast growth factor
Fgf7 and Fgf10 are secreted from the mesenchyme to
activate the proliferation of adjacent alveolar type II
cells that express the surfactant genes (Spa, Spb, Spc,
and Spd; Cardoso et al., 1997; Chelly et al., 1999; Hyatt
et al., 2004; Mason et al., 2002; Ramasamy et al., 2007),
and the differentiation of lung epithelial progenitors is
also regulated by Fgf10 produced by the distal mesen-
chyme (Volckaert et al., 2013).

Our studies demonstrate that the transcription factor
Pbx1 functions within the lung mesenchyme to regulate
Fgf10 expression. Pbx1 belongs to the family of TALE
(three amino acid loop extension)-class homeodomain
transcription factors that cooperate with Hox and Meis
homeodomain proteins to regulate target gene expres-
sion (Chang et al., 1995, 1996). In embryos, Pbx1 part-
ners with Meis/Hox proteins to facilitate the patterning
of great arteries and cardiac outflow tract (OFT; Chang
et al., 2008; Stankunas et al., 2008b). Here, we show
that mice lacking Pbx1 in the lung mesenchyme display
neonatal death with inability of lung expansion and con-
sequent respiratory failure. Transcriptional regulation of
Fgf10 by Pbx1 regulates the crosstalk between lung
mesenchyme and alveolar epithelium during lung
development.

RESULTS

Islet1Cre; Pbx1f/f Mice Die at Birth

Pbx1-null (Pbx1
2/2) mice display defects in the sep-

tation of aorta and pulmonary artery (Chang et al.,
2008). To study Pbx1 function in cardiac progenitor
cells for aortopulmonary septation, we deleted Pbx1 by
crossing mice carrying a loxP-flanked allele of Pbx1

(Pbx1
f
) with mice harboring Islet1Cre, whose Cre

activity is present in cardiac progenitor cells of the sec-
ondary heart field essential for cardiac OFT develop-
ment (Cai et al., 2003). Mutant Islet1Cre;Pbx1

f/f

embryos developed grossly normal up to birth without
changes in weight, but the pubs died immediately after
birth (Fig. 1a–e; data not shown).

The Lungs of Islet1Cre;Pbx1f/f Mice Fail to
Expand at Birth

To determine the cause of lethality, we dissected the
newborn pubs at P0 and found that Islet1Cre;Pbx1

f/f

mice failed to expand the lungs and contained no air in
the lungs (Fig. 2a,b). Neither was there expansion of or
air in the lungs of Islet1Cre;Pbx1

f/f pups after caesarian
section at E18.5 (Fig. 2c,d). The casting of airways at
E17.5 showed that the airway structure was normal in
Islet1Cre;Pbx1

f/f embryos (Fig. 2e–h). These findings

suggest that the absence of gas exchange in the lungs of
mutant mice may contribute to the death of mutant
pubs. We then examined the development of embryos.
At E13.5, the cardiac OFT of Islet1Cre;Pbx1

f/f mice was
normally separated into aorta and main pulmonary
artery (Fig. 2i,j). Furthermore, there were no gross
abnormalities of brain, heart, kidney, liver, stomach,
intestine, esophagus, trachea, and thymus (data not
shown). These observations suggest a defect in lung
development that may lead to neonatal lethality of the
Islet1Cre;Pbx1

f/f mice.

Pbx1 is Essential for Lung Development

We examined the morphology and histology of lungs
of the Islet1Cre;Pbx1

f/f mice. At birth (P0), the lungs of
mutant mice had normal number of lung lobes (data
not shown) but were grossly smaller in size (Fig. 3a,b)
and didn’t have any air in the alveoli (Fig. 2a,b). At
E16.5, the lungs of mutant mice showed compacted ter-
minal saccules (Fig. 3c,d). However, the mutant lungs
were normal in weight (Fig. 3e).

We then asked if Pbx1 was absent in the lungs of
Islet1Cre;Pbx1

f/f mice and used immunostaining to
directly examine Pbx1 protein distribution in the lung
tissues of mutant mice. Interestingly, in the normal
E16.5 lungs, Pbx1 proteins were abundant in the lung
mesenchyme but absent in the epithelium (Fig. 3f). In
contrast, in the lungs of E16.5 Islet1Cre;Pbx1

f/f mice,
Pbx1 proteins were nearly absent in the lung mesen-
chyme (Fig. 3g), suggesting that IsletCre directs the
deletion of Pbx1 in lung mesenchymal cells and that
Pbx1 is essential in lung mesenchymal cells for alveolar
expansion at birth.

Because surfactant proteins produced by alveolar
type II cells are critical for forming a lipoprotein com-
plex in the alveoli to lower surface tension and enable
alveolar expansion for gas exchange (Mendelson,

FIG. 1. Islet1Cre;Pbx1f/f mice die after birth. (a–d) Gross
morphology of control (Islet1Cre;Pbx1f/1) and mutant (Islet1-
Cre;Pbx1f/f) mice at E12.5 (a,b) and P0 (c,d). Size bars for (a,b):
2 mm. Size bars for (c,d): 8 mm. (e) Frequency of live
Islet1Cre;Pbx1f/f embryos harvested at different embryonic and
postnatal dates.
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2000), we tested the expression of genes encoding the
surfactant proteins in the lungs. By RT–qPCR, we found
that the expression of surfactant genes2Spa, Spb, Spc,
and Spd2was reduced by 36–72% in the lungs of Islet1-

Cre;Pbx1
f/f mice (Fig. 3h). Western blot of these mutant

embryos also showed a dramatically reduction of all sur-
factant proteins in Pbx1 deleted lungs (Fig. 3i). Such
compound reduction of all surfactants provides an
explanation for the failure of postnatal alveolar expan-
sion in the mutant mice.

Pbx1 is Essential for Fgf10 Expression in the Lung
Mesenchyme

We next questioned how Pbx1 expressed in the lung
mesenchyme controlled the surfactant genes that are
expressed by alveolar type II cells (Mendelson, 2000).
During lung development, the growth factors of Fgf7
and Fgf10 are secreted from the mesenchyme to activate
the proliferation of alveolar type II cells that express sur-
factant genes (Spa, Spb, Spc, and Spd; Cardoso et al.,
1997; Chelly et al., 1999; Hyatt et al., 2004; Mason et al.,
2002; Ramasamy et al., 2007). Furthermore, localized
Fgf10 expression in the mesenchyme is essential for the
differentiation of lung epithelial progenitors in vivo

(Volckaert et al., 2013). In addition, the semaphorin-3a
protein (Sema3a) is expressed by the mesenchyme to
negatively regulate the size and shape of the emerging
saccules (Cirulli and Yebra, 2007; Ito et al., 2000). Given
that Fgf7, Fgf10, and Sema3a are expressed in the lung
mesenchyme (Cirulli and Yebra, 2007), we tested if the
mesenchymal Pbx1 was required for their expression.
By RT–qPCR, we found that Fgf10 showed a 65%
decrease of mRNA level (P< 0.0001) in mutant lungs;
the other two genes had no changes (Fig. 4a). Western
blot and immunostaining of Islet1Cre;Pbx1

f/f embryos
showed a severe reduction of Fgf10 proteins in Pbx1

deleted lungs (Fig. 4b–d). These findings suggest that
Pbx1 in the lung mesenchyme is essential for activating
Fgf10 expression in the lungs.

Pbx1 Cooperates with Hox and Meis Proteins to
Transcriptionally Activate Fgf10

To test whether Pbx1 directly regulated Fgf10

expression, we used chromatin–immunoprecipitation
and quantitative PCR (ChIP–qPCR) to examine the bind-
ing of Pbx1 to the Fgf10 promoter. With sequence anal-
ysis by TFSEARCH software (www.cbrc.jp), we
identified 5 regions (F1–F5) that contained potential
Pbx1 binding sites in the proximal 4 kb promoter of
mouse Fgf10 (Fig. 4e). ChIP–qPCR analyses of mouse
E16.5 lungs (about 10 embryonic lungs were required
for each ChIP experiments) using anti-Pbx1 antibody
(Chang et al., 1997, 2008) showed that Pbx1 proteins
were enriched within the F1–F5 regions, but not a nega-
tive control region (NC), of Fgf10 (Fig. 4f). There was
also no enrichment of Pbx1 in a negative control site on
the Admst1 promoter (Stankunas et al., 2008a; Fig. 4f).
The ChIP assay therefore demonstrates that Pbx1 pro-
teins are associated with Pbx1 binding sites in the prox-
imal promoter of Fgf10 in the lungs.

To study the transcriptional activity of Pbx1 on the
Fgf10 promoter, we cloned the full-length proximal
Fgf10 promoter (23905, 1246) into a luciferase
reporter plasmid pREP4 (Hang et al., 2010). The Fgf10

reporter plasmid and Pbx1, Meis1, and/or HoxB4
expressing plasmids (Chang et al., 1995, 1996, 2008)

FIG. 2. The lungs of Islet1Cre;Pbx1f/f mice fail to expand at birth.
(a–d) Air absorption in lung of control (Islet1Cre;Pbx1f/1) and mutant
(Islet1Cre;Pbx1f/f) mice at P0 (a,b) and E18.5 after C-section
(c,d). C-section, caesarean section. Size bars for (a,b): 2 mm.
Size bars for (c,d): 3 mm. (e–h) Airway casting of control
(Islet1Cre;Pbx1f/1; e,g) and mutant (Islet1Cre;Pbx1f/f; f,h) mice at
E17.5. Size bars for (e,f): 4 mm. Size bars for (g,h): 50 lm. (i,j) HE
staining of control (Islet1Cre;Pbx1f/1; i) and mutant (Islet1Cre;Pbx1f/

f; j) mice at E13.5. Ao, aorta; MPA, main pulmonary artery. Size bars:
200 lm.
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were cotransfected into a human lung carcinoma cell
line H1299 for transient transactivation of reporter activ-
ities. By measuring the luciferase activity driven by
Fgf10 reporter, we found that Pbx1 modestly increase
the Fgf10 promoter activity by 30%. However, in the
presence of Pbx1’s partners Meis1 and HoxB4 (Chang
et al., 1995, 1997), Pbx1 enhanced the Fgf10 promoter
activity by 8.14-fold (Fig. 4g), suggesting synergistic
interactions among Pbx, Meis, and Hox transcription fac-
tors in the activation of Fgf10. These results, together
with the ChIP analysis, indicate a direct transcriptional
activation of Fgf10 by Pbx1 and its cofactors.

DISCUSSION

By using Islet1Cre to delete Pbx1, we serendipitously
found that Pbx1 is essential in the lung mesenchyme to

transcriptionally activate the expression of Fgf10,
which encodes an essential factor for the differentiation
of epithelial progenitors (Volckaert et al., 2013; Fig.
4h). Our studies suggest that Pbx1 cooperates with
Meis and Hox proteins to control Fgf10 expression in
the lung mesenchyme. Disruption of Pbx1 in the lung
mesenchyme interrupts the Pbx1–Fgf10 pathway, caus-
ing failure of alveolar expansion at birth and subsequent
neonatal lethality.

Although Islet1 is a marker of cardiac progenitor cells
derived from the second heart field (Cai et al., 2003),
Islet1 is not restricted to second heart field progenitors.
It also labels the neural crest and lungs, including the
lung mesenchymal cells. The expression of Islet1 in
those tissues has been documented by lineage tracing
using Islet1Cre with a Rosa26

lacz reporter allele (Eng-
leka et al., 2012; High et al., 2009; Yu et al., 2010).

FIG. 3. Pbx1 is essential for lung development. (a) Lung morphology of control (Islet1Cre;Pbx1f/1) and (b) mutant (Islet1Cre;Pbx1f/f)
mice at P0. Size bars: 2 mm. (c) H&E stained transverse lung sections of control (Islet1Cre;Pbx1f/1) and (d) mutant (Islet1Cre;Pbx1f/f) mice
at E16.5. H&E, hematoxylin and eosin. Size bars: 700 lm. (e) Quantification of lung weight and body weight ratio of control
(Islet1Cre;Pbx1f/1) and mutant (Islet1Cre;Pbx1f/f) mice at E16.5. (f) Pbx1 immunostaining (brown) in transverse lung sections of control
(Islet1Cre;Pbx1f/1) and (g) mutant (Islet1Cre;Pbx1f/f) mice at E16.5. Arrow: Pbx1 staining. Arrow head: epithelial cells. Counterstain: hema-
toxylin. Size bars: 50 lm. (h) Quantitation of surfactant proteins (Spa, Spb, Spc, and Spd) mRNA expression levels by RT–qPCR in control
and mutant lungs at E16.5. P-value: calculated by Student t-test. Error bar: standard error of the mean. (i) Western blot analysis of the pro-
tein levels of Spa, Spb, Spc, and Spd in lung samples prepared from control or mutant mice at E16.5. Gapdh was used as the internal
control.
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Furthermore, the unexpected normal heart morphogen-
esis of Islet1Cre Pbx1

f/f mice could be the result of the
following factors. First, Pbx1 may not function in the
secondary heart field for regulating aortopulmonary
septation. Pbx1 may work in cell types not labeled by
Islet1Cre. Second, because a time delay exists between
Cre expression and gene deletion, the deletion of Pbx1

by Islet1Cre may occur after the major actions of Pbx1
in cardiac progenitor cells have completed, thereby
generating no cardiac phenotype. Further studies using
other Cre lines to define the site and the time of Pbx1

action for heart development are essential to under-
stand the cardiac function of Pbx1.

In embryos, active chloride and fluid secretions across
the airway epithelium are essential for normal lung mor-
phogenesis (Blaisdell et al., 2000). The compacted lungs
of Islet1Cre Pbx1

f/f embryos suggest that Pbx1 may also
regulate chloride and fluid secretion during lung devel-
opment. Further studies are needed to elucidate the
mechanism. In contrast, the neonates require surfactants
to allow the expansion of alveoli at birth. Surfactant pro-
teins are lipoproteins that serve a key role in the

FIG. 4. Pbx1 activates Fgf10 in the lung mesenchyme during lung development. (a) Quantitation of Fgf7, Fgf10, and Sema3a mRNA
expression levels by RT–qPCR in control and mutant lungs at E16.5. P-value: calculated by Student t-test. Error bar: standard error of the
mean. (b) Western blot analysis of Fgf10 protein level in lung samples prepared from control or mutant mice at E16.5. Gapdh was used as
the internal control. (c) Fgf10 immunostaining (brown) in transverse lung sections of control (Islet1Cre;Pbx1f/1) and (d) mutant (Islet1-
Cre;Pbx1f/f) mice at E16.5. Arrow: Fgf10 staining. Counterstain: hematoxylin. Size bars: 20 lm. (e) Schematic of the Fgf10 locus for potential
Pbx1 binding sites by sequence analysis. Potential Pbx1 binding regions (brackets F1–F5) and a negative control region (bracket NC) were
further analyzed by ChIP. The DNA positions are denoted relative to the transcriptional start site (11). (f) qPCR quantification of control IgG
and Pbx1 antibodies-immunoprecipitated chromatin from E16.5 mouse embryonic lung samples using primers targeting Fgf10 promoter
(F1–F5, NC) and Admst1 promoter. Signals were standardized to percentage of input DNA. P-value: calculated by Student t-test. Error bar:
standard error of the mean. (g) Luciferase reporter assays of Fgf10 promoter (23905, 1246) in H1299 cells cotransfected with plasmids
expressing the indicated transcription factors. P-value: calculated by Student t-test. Error bar: standard error of the mean. (h) Working
model of how Pbx1 in lung mesenchymal cells activates the expression of Fgf10. Pbx1 in the mesenchymal cells may form a negative feed-
back loop with Shh secreted by alveolar cells to control the level of Fgf10 in the developing lung.
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adsorption and spreading of fluid at the alveolar air–liq-
uid interface (Veldhuizen et al., 1998). Surfactants
include four proteins, Spa, Spb, Spc, and Spd (Mendel-
son, 2000), the abnormalities of which in mice or
patients can cause RDS, which affects �1% of the new-
born and is the leading cause of death in preterm infants
(Ballard et al. 2003; Clements and Avery 1998; Rodriguez
et al., 2002). The lungs of Spa2/2 mice were suscepti-
ble to infections (Ikegami et al., 1998), and human SPA
was shown to be anti-inflammatory (Lee et al., 2010),
suggesting that Spa is important for immune defense
within the alveoli. Furthermore, both Spb2/2 mice
(Clark et al., 1995) and SPB-deficient infants (Nogee
et al., 1993) displayed RDS phenotype. Interestingly,
with the Spb deficiency, Spc is abnormally processed
and immature, resulting in an additional reduction of sur-
factant function with consequent severe RDS phenotype
(Vorbroker et al., 1995). These studies indicate the
necessity of Spb and Spc for alveolar function. In con-
trast, Spd2/2 mice developed a progressive accumula-
tion of surfactant lipids within the alveoli, suggesting a
critical role of Spd in surfactant homeostasis (Botas
et al., 1998).

The expression of surfactant genes in the develop-
ing lungs is regulated by many factors, including
cyclic AMP, glucocorticoids, retinoids, insulin, growth
factors, and cytokines (EGF, TGF, TNF, IFN, and Inter-
leukin) (Mendelson, 2000; Mendelson et al., 1998).
Furthermore, Fgf10 is critical for the proliferation of
alveolar type II cells that secrete Spa, Spb, Spc, and
Spd (Mason et al., 2002; Ramasamy et al., 2007), the
reprogramming of mouse tracheal epithelium to
express Spc in vitro (Hyatt et al., 2004), as well as the
regulation of lung epithelial progenitors in vivo

(Volckaert et al., 2013). The expression of Fgf10 is
regulated by both Pbx1 (this studies) and Shh
(Bellusci et al., 1997b; Murone et al., 1999; Pepicelli
et al., 1998). Pbx1 in the mesenchymal cells is
required for Fgf10 expression, whereas Shh secreted
from the alveolar epithelium binds to its receptor
Patched on the mesenchymal cells to suppress Fgf10
expression. Absence of Pbx1 in mesenchymal cells or
overexpression of Shh driven by Spc enhancer/pro-
moter in embryonic lungs resulted in Fgf10 reduction,
compaction of terminal saccules, and neonatal lethal-
ity (this studies; Bellusci et al., 1997a). In contrast to
mice lacking Pbx1, mouse embryos deficient in Shh
had enhanced expression of Fgf10 in the lung (Pepi-
celli et al., 1998). Shh and Pbx1 therefore appear to
form a negative feedback loop between alveolar and
mesenchymal cells to regulate the level of Fgf10 in the
developing lung (Fig. 4h). Further analyses of the
interactions between Shh signaling and the Pbx–Fgf10
pathway will be crucial to provide a deeper insight
into the molecular mechanisms underlying lung mes-
enchymal and epithelial development.

Our studies have clinical implications. Mice with
deletion of Pbx1 in the lung mesenchyme can provide
an animal model to study the mechanisms that underlies
RDS. Recently, two single nucleotide genetic mutations
in PBX1 were observed in women with Mullerian
duct abnormalities (Ma et al., 2011). It will be inter-
esting for future investigations to determine whether
PBX1 mutations could also underlie RDS in some
patients.

METHODS

Mice

Pbx1
f/f (Koss et al., 2012) and Islet1Cre (Cai et al.,

2003; Yang et al., 2006) mice have been described pre-
viously. The date of observing a vaginal plug was set as
E0.5, and embryonic development was confirmed by
ultrasonography before sacrificing pregnant mice
(Chang et al., 2003). The use of mice for studies is in
compliance with the regulations of Stanford University
and National Institute of Health.

Histology, Immunostaining, and Airway Casting

Histological analysis and immunostaining were per-
formed as described (Chang et al., 2004, 2008). All
these procedures were performed on 7 mm paraffin sec-
tions of the lungs which were freshly prefixed by 4%
PFA. Hematoxylin and eosin (H&E) stain was performed
according to standard protocols. The following primary
antibodies were used for immunostaining: anti-Pbx1
antibody (41.1, a gift from Dr. M. Cleary, dilution
1:100), anti-Fgf10 (AF6224, R&D systems, dilution
1:40). Airway casting with an acrylic resin (Batson no.
17) containing blue dye (Methyl Methacrylate Casting
Kit, Polyscience) was performed as described (Chang
et al., 2008).

RNA Isolation and Reverse Transcription–
Quantitative Polymerase Chain Reaction
(RT–qPCR)

Total RNA was extracted using TRIZOL followed by
RNase-free DNase I treatment (NEB) to avoid genomic
contamination. Total RNA (1 mg for each sample) was
reverse transcribed by iScript (BioRad, Hercules, CA) and
quantitative real time PCR analysis was performed using
SYBR Green supermix (BioRad, Hercules, CA) or Taqman
reagents (Applied Biosciences) according to manufac-
turer’s recommendations. Murine Pbx1 and Gapdh were
by Taqman probes (Applied Biosciences, Foster City,
CA). The other primer sets used were tested to be
quantitative:

� Murine Tf2b F: CTCTGTGGCGGCAGCAGCTATTT
� Murine Tf2b R: CGAGGGTAGATCAGTCTGTAGGA
� Murine Spa F: GAGAGCCTGGAGAAAGGGGG
� Murine Spa R: GGATCCTTGCAAGCTGAGGA
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� Murine Spb F: CCAAGTGCTTGATGTCTACC
� Murine Spb R: CTGGATTCTGTTCTGGCTTA
� Murine Spc F: GTAGCAAAGAGGTCCTGATG
� Murine Spc R: CCTACAATCACCACGACAA
� Murine Spd F: GAGCCTGACAAACAGAGGT
� Murine Spd R: CTGTACAAGCAAGACAAGCA
� Murine Fgf7 F: GAAGACTGTTCTGTCGCACCC
� Murine Fgf7 R: AACTGCCACGGTCCTGATTTC
� Murine Fgf10 F: AAGCCATCAACAGCAACTAT
� Murine Fgf10 R: ATTGTGCTGCCAGTTAAAAG
� Murine Sema3a F: TGCTCACAGAGATGGTCCCAA
� Murine Sema3a R: TGTGGAGTCAAATCCGCCAAA

Chromatin Immunoprecipitation–Quantitative
PCR (ChIP–qPCR) The ChIP procedure was
described previously (Hang et al., 2010; Stankunas
et al., 2008a). Chromatin from E16.5 lungs (about 10
embryos for each ChIP) was sonicated to an average
length between 200 and 500 base pairs, and immuno-
precipitated using anti-Pbx1 antibody (41.1, a gift from
Dr. M. Cleary), or control IgG; 5% of the pull down was
taken for subsequent qPCR analysis. ChIP–qPCR signals
of individual ChIP reaction was standardized to its own
input qPCR signals. PCR primers for the potential Pbx1
binding regions on Fgf10 promoter: F1-F GTC
CCTGATTTCATTTGCGCC, F1-R CTCGCTTCCGTTG
CTGAAGTA; F2-F GGGAGTGTTGGGCTGAAGAAG, F2-

R AGTTTGGGGTTTCTTTACACTGGA; F3-F ATGT-
CAGCTTTTCCTTTGGGCA, F3-R GCAATGTTTGA
GGGTTCCCGA; F4-F CGTCGAATTTAACAGCAGCT-
TACC, F4-R GCTGTCTGTCTCTTTCATCCGA; F5-F TT
CCTATGGCTGGGTTGCCTA, F5-R ATCAACCACGTTG-
GAGCTCAG. Control primers for the region without
potential Pbx1 binding site on Fgf10 promoter: NC-F

CCAGAACACAGATGTCTAACT, NC-R TGAGTACCAGA-
GATCATTTCC. Control primers for promoter of
Admst1 were described previously (Stankunas et al.,
2008a). The DNA positions are denoted relative to the
transcriptional start site (11).

Cloning and Luciferase Reporter Assay

The reporter assays were previously described
(Chang et al., 2008; Hang et al., 2010; Wu et al., 2007).
Full length of intergenic Fgf10 promoter which span
(23905, 1246) was cloned into pREP4-Luc reporter
plasmid (Liu et al., 2001). These constructs were then
transfected into a human lung carcinoma cell line
H1299 with lipofectamine 2000 (Invitrogen, Carlsbad,
CA) along with pREP7-RL as a transfection efficiency
control, Pbx1, Meis1, and HoxB4 expression vectors
(Chang et al., 2008) with the appropriate empty vector
control. Luciferase activity was measured and normal-
ized to a cotransfected Renilla luciferase construct
using the Dual-Luciferase Reporter System (Promega,
Madison, WI).

Western Immunoblot Analysis

Mouse E16.5 lungs were collected and washed once
with ice-cold PBS and lysed with SDS buffer. After boil-
ing, the supernatants were collected. The blots were
reacted with antibodies of anti-Spa (ab115791, Abcam,
dilution 1:500), anti-Spb (ab3282, Abcam, dilution
1:100), anti-Spc (ab90716, Abcam, dilution 1:1000),
anti-Spd (ab17781, Abcam, dilution 1:10000), anti-Fgf10
(AF6224, R&D systems, dilution 1:100), anti-Gapdh
(G9545, Sigma, dilution 1:10000), followed by HRP-
conjugated secondary antibodies (Jackson ImmunoRe-
search Laboratories, West Grove, PA). Chemilumines-
cence was detected with ECL Western blot detection
kits (GE).
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