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 Transcription factors (TFs) mediate transcriptional responses, allowing cells to respond to 

changing internal or external stimuli, including infection. The DNA sequences bound by TFs in regulatory 

regions are called motifs. Researchers employ Motif Enrichment Analysis (MEA) methods to study 

transcriptional regulation, which analyzes DNA sequences from regulatory regions and determines the 
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statistical overrepresentation of motifs in those sequences, allowing inference of relevant TFs for that set 

of regulatory regions.  

 However, most MEA tools feature oversimplifications of one or more pertinent axes of the data, 

obscuring potential insights into transcriptional regulation. 

 For example, most MEA require thresholding of DNA sequences into two sets in order to 

determine motif enrichment, thus oversimplifying the underlying biological scores that determine those 

sets, which can prevent biological discovery. We introduce Motif Enrichment In Ranked Lists of Peaks 

(MEIRLOP), a score-based MEA method that allows researchers to determine the enrichment of motifs 

within a dataset of scored regulatory region DNA sequences. MEIRLOP uniquely utilizes a logistic 

regression model that also accounts for lower order levels of sequence bias and other covariates. We 

demonstrate its utility on multiple ChIP-seq datasets, where it proves more capable (relative to other 

methods) of finding the enrichment of key transcription factor binding motifs, including the enrichment of 

binding sites key to immune response. 

 An overlooked axis in most MEA is the position of motifs relative to anchor features such as 

transcription start sites (TSS), which can be characterized at high positional resolution using capped short 

RNA-sequencing (csRNA-seq). We introduce Motif Enrichment Positional Profiling (MEPP), which uses 

specialized convolutional neural networks to create a profile that characterizes motif enrichment at 

different motif positions over a dataset of scored sequences. We also introduce Learning Motifs from 

Positional Priors (LMPP), which uses machine learning to perform the opposite of MEPP: Learning a motif 

whose positional enrichment resembles a target profile. We use both methods to analyze multiple TSS 

from csRNA-seq datasets, revealing the positional preferences of transcription factors key to antibacterial 

and antiviral responses. 

 Overall, this dissertation presents novel methods by which researchers may analyze 

transcriptional regulation in and beyond immune response. 

 

 

 



Introduction

Regulation of transcription, the process of converting DNA to RNA, is vital to multiple biological

processes, including immune response [1]. Key to transcriptional regulation are the actions of

transcription factors (TFs), which bind onto specific sequences in regulatory region DNA, called binding

motifs, whereupon they recruit other factors or transcriptional machinery, leading to induction or

repression of transcriptional activity [2,3]. This process coordinates changes in the transcription of

multiple genes across the genome, giving rise to host protective functions, such as the expression of

proteins that act to clear the host of pathogens [1].

Given the importance of transcription factors and their binding motifs to transcriptional regulation,

multiple bioinformatics methods have been developed to perform Motif Enrichment Analysis (MEA). MEA

methods analyze sets of regulatory region DNA sequences for motifs, and quantify the statistical

overrepresentation of motifs within those sequences [4,5]. Researchers can then use these motifs to

determine important regulatory region sequence features and infer which transcription factors mediate

transcriptional regulation under different conditions or comparisons of interest [6]. For example, to

determine TFs relevant to immune response, one could analyze the differential activity of regulatory

regions between infected and control conditions, then determine the motifs enriched in the set of

regulatory regions that appear more active during infection. The TFs that bind to those motifs could then

be implicated as potential therapeutic targets. However, by conceiving of MEA in this set-oriented way, we

ignore one axis of the data, while oversimplifying another, effectively fitting the data to the limitations of a

method.

The previous example demonstrates an issue with many MEA analyses: due to their formulation

of motif enrichment, they require researchers to potentially oversimplify one axis of the data. By

designating a subset of regulatory regions as being more active in one condition, a fundamental truth

about biology is ignored: the activity of regulatory regions (and biological activity in general) typically

follows degrees of response rather than discrete categories [7]. By oversimplifying these degrees of

1

https://paperpile.com/c/qwrRHm/CQFX
https://paperpile.com/c/qwrRHm/N5Hly+7dr6z
https://paperpile.com/c/qwrRHm/CQFX
https://paperpile.com/c/qwrRHm/hquBp+jiMyY
https://paperpile.com/c/qwrRHm/s65zp
https://paperpile.com/c/qwrRHm/KR108


response into discrete sets, researchers risk mischaracterizing motif enrichment along these degrees of

response, potentially leading to under-interpretation of their data and missed discoveries.

This issue is the main focus of our first chapter, on Motif Enrichment In Ranked Lists Of Peaks

(MEIRLOP), but it consistently carries through into subsequent chapters as well: The methods developed

in this dissertation all accept scored sequences from regulatory regions, preventing researchers from

oversimplifying the activity of regulatory regions into discrete sets and thus oversimplifying their data.

MEIRLOP in particular also pays special attention to covariates that may otherwise confound the process

of motif enrichment, and in turn, the inference of relevant transcription factors. We demonstrate the utility

of MEIRLOP on multiple ChIP-seq datasets, and find that its attention to degrees to transcriptional

response and controlling for covariates allows it to determine the enrichment of key binding motifs for the

biological processes under study, including the innate immune response.

While biological activity is an oversimplified axis in many analyses, many MEA methods including

MEIRLOP ignore a different axis altogether: Position. In many MEA that ignore position, motif enrichment

is characterized as a function of whether or not a motif is present, without accounting for where that motif

appears. While ignoring position may suffice for most analysis on lower-resolution assays of regulatory

region activity (e.g. ChIP-seq), other assays allow for profiling of transcription start sites (TSS): These

assays include CAGE-seq, PRO-cap, and the more recent csRNA-seq [8–10]. Position can be important

when analyzing regulatory region sequence anchored on TSS, because the location and presence of

motifs can determine where transcription is initiated [11]. Furthermore, motifs can be constrained relative

to other motifs, due to the interactions of TFs with each other and with transcriptional machinery [12–14].

There is thus a need for tools that allow the characterization of motif enrichment while accounting for both

motif position and degrees of transcriptional response.

Our second chapter on Motif Enrichment Positional Profiling (MEPP), presents a novel MEA

method to address this need. Rather than returning a single enrichment score for the enrichment of a

motif along a set of scored sequences, as MEIRLOP does, MEPP returns a series of scores comprising

an enrichment positionality profile, describing the enrichment of that motif at multiple positions

surrounding important anchor features, such as TSS. It also generates a transparent 2D heatmap

visualization of where motifs appear throughout both axes of sequence score and motif position. In this
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way, MEPP allows researchers to perform both qualitative and quantitative assessments of motif

enrichment across both axes. We demonstrate the utility of this method on multiple datasets, including

those relevant to pathways for detecting viral infection.

The methods previously described deal with enrichment of motifs whose sequence identity is

already known. However, the need to know all the motifs to analyze beforehand can limit the potential for

biological discovery. The final chapter, on Learning Motifs with Positional Priors (LMPP), extends MEPP

by effectively reversing its operation: Rather than obtaining an enrichment profile from the enrichment of a

known motif, LMPP instead uses machine learning to recognize motifs whose enrichment profiles

approximate a user-specified positional prior. We demonstrate this method’s capabilities in learning motifs

from multiple datasets, including an analysis of COVID-19 symptom severity, where we learn motifs that

are known or likely to be relevant to SARS-CoV-2 viral infection.

Overall, this dissertation presents a suite of methods intended to allow researchers to make

discoveries about TFs and their binding motifs, by more fully utilizing otherwise oversimplified or ignored

axes of their data. We have developed, demonstrated, and released these methods with the goal that

they may be used by the wider scientific community, to uncover further biological insights about

transcriptional regulation both within and beyond immune response.
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Chapter 1. MEIRLOP: improving score-based motif

enrichment by incorporating sequence bias

covariates

1.1 Abstract

1.1.1 Background

Motif enrichment analysis (MEA) identifies over-represented transcription factor binding (TF)

motifs in the DNA sequence of regulatory regions, enabling researchers to infer which transcription

factors can regulate transcriptional response to a stimulus, or identify sequence features found near a

target protein in a ChIP-seq experiment. Score-based MEA determines motifs enriched in regions

exhibiting extreme differences in regulatory activity, but existing methods do not control for biases in GC

content or dinucleotide composition. This lack of control for sequence bias, such as those often found in

CpG islands, can obscure the enrichment of biologically relevant motifs.

1.1.2 Results

We developed Motif Enrichment In Ranked Lists of Peaks (MEIRLOP), a novel MEA method that

determines enrichment of TF binding motifs in a list of scored regulatory regions, while controlling for

sequence bias. In this study, we compare MEIRLOP against other MEA methods in identifying binding

motifs found enriched in differentially active regulatory regions after interferon-beta stimulus, finding that

using logistic regression and covariates improves the ability to call enrichment of ISGF3 binding motifs

from differential acetylation ChIP-seq data compared to other methods. Our method achieves similar or

better performance compared to other methods when quantifying the enrichment of TF binding motifs

4



from ENCODE TF ChIP-seq datasets. We also demonstrate how MEIRLOP is broadly applicable to the

analysis of numerous types of NGS assays and experimental designs.

1.1.3 Conclusions

Our results demonstrate the importance of controlling for sequence bias when accurately

identifying enriched DNA sequence motifs using score-based MEA. MEIRLOP is available for download

from https://github.com/npdeloss/meirlop under the MIT license.

1.2 Background

Transcription factors (TFs) mediate transcriptional responses, inducing or repressing transcription

of genes by binding to DNA at regulatory regions and recruiting RNA polymerase or accessory factors [2].

Motif enrichment analysis (MEA) of regulatory sequences is a method used to identify over-represented

DNA sequence patterns (motifs) in regulatory regions [4,5]. Bioinformatics methods usually represent TF

binding motifs as position weight matrices (PWMs), which describe the DNA-binding specificities of

transcription factors, and can predict potential binding sites in regulatory regions [3,15]. Researchers use

the enrichment of TF binding motifs to infer which TFs may contribute to specific transcriptional responses

by binding those motifs in regulatory region sequences [6]. This enables the inference of which TFs

mediate a cell’s transcriptional response to a condition, such as infection or disease state, marking those

TFs as potential therapeutic targets.

When using most MEA methods, regulatory regions are typically scored by their biological

response in transcriptomic or epigenomic assays. For example, H3K27ac localization on chromatin

serves as a marker for active regulatory regions [16]. MEA on differential H3K27ac ChIP-seq data can

reveal which motifs and TFs regulate transcription in regions that change their activity in response to

stimulation [17]. Researchers typically filter these regulatory regions by a score threshold and place them
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into sets to yield contrasting categories (e.g., regulatory regions with higher activation levels after

stimulation vs. those with lower activation levels after stimulation) (Fig. 1.1A,B). Then, motif scanners

detect motifs in sequences within those categories, followed by set enrichment tests (e.g. the Fisher exact

test) which determine the overrepresentation of motifs in each category. This allows the imputation of

motifs and transcription factors that influence transcriptional response in those conditions (Fig. 1.1B). We

term this process set-based MEA, for its thresholding of sequences into categorical sets.
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Figure 1.1: Motif enrichment analysis can be based on discrete sets of sequences or scored
sequences.

(A) Diagram of inputs to a typical differential ChIP-seq binding experiment, consisting of replicates in
stimulated and unstimulated conditions, and an input experiment(s).

(B) Diagram of set-based motif enrichment methods. These methods receive significantly
differentially regulated subsets of regulatory sequences (e.g. peaks) and return a significantly
enriched subset of TF motifs.

(C) Diagram of score-based motif enrichment methods. These receive a list of scored sequences
based on differential signal between stimulated and unstimulated conditions, then return TF
motifs enriched towards the top or bottom of the scored sequences.

(D) Illustration of the potential output of a score-based enrichment method, featuring motif name,
motif logo, and a description of the enrichment of a motif towards the top or bottom of scored
sequences
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However, this thresholding ignores how the magnitude of a regulatory region’s response can

occur along a continuum, and removes relevant information from the score: For example, by collapsing

strongly activated and weakly activated regulatory regions into the same set of “activated regulatory

regions”, set-based MEA obscures potentially important differences between those two categories. In

addition, preset thresholds can lead to few regulatory regions being present in one or more sets, reducing

confidence in downstream enrichment results. Such sparsity can occur because of technical reasons: the

choice of underlying normalization and differential assay analysis influences the number of genomic

features that pass thresholds for differential expression/activation [18,19]. When this occurs, a researcher

may attempt to revisit the underlying scores, applying different thresholds to achieve a suitable

enrichment: However, after testing many thresholds, a significant enrichment can appear purely by

chance. This motivates the use of score-based MEA that uses the biological response scores of

regulatory regions directly.

Threshold-free motif enrichment asks: Given a list of TF binding motifs and a sorted list of

scored/ranked sequences, what motifs are enriched at the top or bottom of that list (Fig. 1.1C, D)? This

follows from the fact that most biological data, differential or otherwise, naturally lends itself to ranking [7].

While individual regulatory regions may not fulfill pre-set thresholding criteria for significantly differential

signal, motifs may appear in regulatory regions biased towards the top or bottom of a list, showing a

correlation with the quantities underlying any potential differential signal thresholds. This concept has

precedence in gene expression and ontology analyses: GSEA Prerank identifies significantly enriched

gene sets at the top or bottom of a differential ranking of genes [20].

Related work has developed multiple score-based MEA methods for inferring relevant TFs. A

handful of implementations share many similarities with set-based MEA, except that they determine a

data-driven partitioning threshold along the scored regulatory regions. The chosen threshold maximizes

the resulting enrichment from a Fisher exact test or hypergeometric test [21,22]. An alternative method is

to perform a rank-sum test, comparing the score ranks of regulatory regions that contain a motif against

those that do not. Other strategies involve finding the correlation between the strength of a motif in a
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regulatory region’s sequence against the score of the regulatory region, under the reasoning that stronger

instances of a relevant motif should contribute more to the score. The software package AME (from the

MEME suite) implements many of these strategies, including variable threshold Fisher exact tests,

rank-sum MEA, and correlation with Pearson coefficients for linear correlation, as well as Spearman

coefficients for rank correlation [4].

One complication that can arise when performing MEA is that a nonrandom distribution of

nucleotide or dinucleotide frequencies can lead to a bias in sequence content among sets of regulatory

region sequences. Thus, MEA methods that do not control for this effect may assign significance to a

motif that preferentially recognizes sequences favored by the biased sequence composition. For example,

CpG islands are present in promoter regions of genes, so a motif scanner is more likely to observe

GC-rich motifs there by chance. Similarly, dinucleotides found in the first two bases of codons may be

over-represented in DNA sequence sampled near coding exons, and thus can contribute to spurious

enrichment values for motifs over-represented near intron borders [23]. Multiple set-based MEA methods

control for this effect: AME and CentriMo from the MEME Suite allow specification of a control sequence

file for comparative motif enrichment, and can generate the control/background sequences by shuffling

dinucleotides from the target sequence set [4,5]. HOMER can automatically select sequences from a

reference genome that resemble the GC content of a target set of motifs, and can also re-weight a

sequence’s contribution to a contingency table to minimize differences in weighted dinucleotide frequency

between sets [24]. Methods such as Pscan/Pscan-ChIP, CLOVER, BiasAway, and GENRE generate or

retrieve background sequences to control for sequence properties of a target sequence set [6,23,25–27].

However, such control is absent in current score-based MEA methods that identify motifs through a PWM.

To provide a score-based MEA method more robust to covariate effects, we developed MEIRLOP

(Motif Enrichment In Ranked Lists of Peaks) [28]. MEIRLOP uses logistic regression to model the

probability of a regulatory region sequence containing a motif as a function of a regulatory region’s activity

score. To account for sequence bias, our method derives covariates from the dinucleotide frequencies of

the regulatory region sequences, and incorporates these into the logistic regression model. The
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regression model’s coefficient for the score then summarizes whether a motif is more likely to appear in

regulatory regions with higher or lower response scores. In addition, we avoid multicollinearity in the

logistic regression model by reducing the covariates into a set of principal components summarizing 99%

of the variance. This dimensional reduction maintains the stability of the regression model and improves

estimation of regression coefficients [29].

Although prior works have used logistic regression in motif analysis, these methods have not

used quantitative changes in regulation as the predictor variable. Keles et al. employ logistic regression

as another form of set-based MEA: They use the presence or absence of a motif as a predictor of

whether a sequence is in a target set [30]. Yao et al. set binding site presence or absence as outcome

variables of logistic regression. However, their method uses a predictive variable derived not from

sequencing coverage of regulatory regions, but from the overall count of motifs in a region’s sequence

[31].

MEIRLOP enables enrichment of biologically relevant TF binding motifs where other methods

may fixate on nucleotide or dinucleotide sequence bias. On differential H3K27ac data, it achieves

superior accuracy over other methods in identifying significant enrichment of motifs known to mediate

interferon signaling response. On ENCODE ChIP-seq data, it achieves improved performance relative to

other score-based MEA methods implemented in AME, but returns results over twenty times faster.

Finally, we demonstrate how MEIRLOP can be applied to a variety of different NGS profiling methods and

different activity scores to improve the identification and interpretation of functionally relevant TF motifs.

11

https://paperpile.com/c/qwrRHm/U23SW
https://paperpile.com/c/qwrRHm/qwSXa
https://paperpile.com/c/qwrRHm/ppVQi


1.3 Implementation

1.3.1 MEIRLOP motif enrichment procedure

MEIRLOP is based on a logistic regression model for motif enrichment. At minimum, it accepts a

list of scored sequences (in the AME scored FASTA format, with sequence headers consisting of a name

and score separated by a space), and a motif database (in JASPAR format). MEIRLOP’s novel motif

enrichment procedure is executed in three parts, described below:

1. Scanning sequences for motifs

2. Principal component reduction of covariates

3. Logistic regression for motif enrichment

1.3.1.1 Scanning sequences for motifs

To detect transcription factor binding motifs in genomic sequence, we use the MOODS motif

scanner to scan for sequence matching PWMs from the input motif set, which is provided to MEIRLOP in

the JASPAR format [15,32]. In our command lines, we refer to this motif set with the filename: “jaspar.txt”.

The MOODS motif scanner internally takes two parameters to determine if a subsequence matches a

motif matrix: a pseudocount and a p-value, which default to 0.001. MEIRLOP sets these parameters using

arguments ‘--pcount’ and ‘--pval’.

In this work we use the JASPAR 2018 CORE vertebrate non-redundant motif set, which consists

of 579 motifs [15]. We selected this motif set to limit redundancy between different versions of what are

essentially the same motif (i.e. avoid many motifs matching the same transcription factor), and to restrict

the motifs tested to those relevant for analyzing human data. In addition, this set of motifs is available in

formats compatible with AME, facilitating comparison of our method with AME.

1.3.1.2 Principal component reduction of covariates
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Although it is possible to directly input sequence-derived covariates into a logistic regression

model, when using the k-mer frequencies of sequences as covariates, the multicollinearity of these

frequencies (due to e.g. CpG islands) can lead to model instability and inaccurate parameter estimation

[29]. To account for this while preserving the ability to control for k-mer frequencies, we adapt the strategy

of Aguilera et al.: We reduce multiple k-mer frequency covariates into a lower-dimensional set of principal

components [29], converting the multicollinear predictors into a set of linearly uncorrelated predictors

explaining 99% of the variance. We use the PCA implementation available in scikit-learn [33]. We refer to

a single resulting reduced covariate as xc.

By default, MEIRLOP controls for dinucleotide frequency covariates, but this behavior can be

adjusted with the ‘--kmer’ argument to control for single nucleotide frequencies (‘--kmer 1’) or no

covariates (‘--kmer 0’). Additional experimentally derived covariates can be incorporated using the

‘--covariates’ argument.

1.3.1.3 Logistic regression for motif enrichment

Although prior work has previously applied logistic regression to the analysis of transcription

factor binding sites [30,31], we present a different logistic regression model that more closely follows the

example of linear regression as applied in AME [4], while controlling for the effect of collinear covariates

(e.g. short k-mer frequencies).

Let p be the probability of a sequence containing a given motif m, and let xs be the score

assigned to the sequence, e.g. H3K27ac ChIP-seq signal. We then model the log-odds of a sequence

with score xs containing motif m as:

𝑙𝑜𝑔( 𝑝1−𝑝 ) =  𝛽0 + 𝛽𝑠𝑥𝑠 + 𝑐
𝑛∑ 𝛽𝑐𝑥𝑐

Where xc refers to one of the n reduced covariates previously described, with βc being the

corresponding coefficient. After maximum likelihood estimation of the coefficients and bias term, βs can be

interpreted as the change in the log-odds of a sequence containing motif m, for a one unit increase in xs.
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To ensure that the maximum likelihood estimation converges, all predictor variables are standardized. The

significance of the coefficient βs is determined using the Wald test, as per the Statsmodels implementation

of logistic regression [34]. To control for multiple hypothesis testing across multiple motifs, we applied

Benjamini-Hochberg correction to the Wald test p-values [35].

This approach to motif enrichment allows controlling for sequence derived covariates such as GC

content and k-mer frequencies, allowing the model to compensate for sequence bias similarly to certain

set-based methods such as HOMER [24].

MEIRLOP displays logistic regression results using an interactive HTML table powered by

Datatables.net, with motif logos generated by Logomaker [36].

1.3.2 Differential analysis of IFN-β stimulation against control

We started with cell culturing and ChIP-seq for data acquisition. This was followed by differential

ChIP-seq bioinformatics analysis comparing stimulated samples vs. unstimulated controls. Finally, we ran

motif enrichment analysis on the differential ChIP-seq peaks using MEIRLOP and AME in different

configurations.

We conducted the data acquisition in two parts, described below:

1. Cell culture and treatment

2. ChIP-seq and Crosslinks

The data analysis and comparison was conducted in three parts, also described below:

1. Differential ChIP-seq analysis (preprocessing)

2. Motif enrichment analysis (running MEIRLOP & AME)

3. Motif enrichment accuracy evaluation
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1.3.2.1 Cell culture and treatment

HCT116 CMV-osTIR1 RAD21-mAC cells were obtained from Masato T. Kanemaki [37] and

cultured in McCoy’s 5A medium supplemented with 10% FBS. Cells were grown in a 37 °C incubator with

5% CO2. Cells were treated with 0.1% final DMSO for 6 h and then treated with either IFN-β (1000

unit/ml) for one hour or not further treated.

1.3.2.2 ChIP-seq and crosslinking

Crosslinking and ChIP-seq was performed as described in Heinz et al., 2018 with few

adjustments [38]. Briefly, cells were fixed directly by adding formaldehyde into media to a final

concentration of 1% formaldehyde for 10 min at room temperature and quenched with 125 mM Glycine.

Cells were then pelleted at 300 g for 5 min at 4 °C, washed twice with cold PBS (with 0.5% BSA), snap

frozen in liquid nitrogen and stored at − 80 °C.

ChIP-seq was performed on 500,000 cells as described in Heinz et al., 2018 [38]. H3K27ac

antibodies were obtained from Active Motif (cat#:39133). Libraries were single-end sequenced for 84 bp

to a depth of 5.5–8.6 reads on an Illumina NextSeq500 instrument.

1.3.2.3 Differential ChIP-seq analysis

After sequencing and adapter trimming with FastP [39], 5.5 M - 8.6 M reads per library were

aligned to the GRCh38 reference genome using bowtie2 at overall alignment rates of 98.5–99.5% [40].

For each stimulation (n = 2) and control sample (n = 2), MACS2 was used to call peaks of median length

1kbp relative to a background input sample (of 16 M reads) [41]. DiffBind was used to call differentially

acetylated peaks between stimulated and unstimulated conditions [42]: Internally, DiffBind counts reads

from each sample within each peak, then uses DESeq2 to calculate differential statistics such as log 2

fold change while accounting for library size and replicate/batch effects.

In order to obtain scores for these peaks and their sequences, we used the log2 fold change for

each feature as called by DiffBind as the score. For each peak, the sequence +/− 500 bp of each feature’s
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center was extracted. The motif enrichment analysis methods we evaluated then received these scores

and sequences for input, in the scored FASTA file “deseq2-ifnb.diff-peaks.scored.fa”.

1.3.2.4 Motif enrichment analysis

When evaluating MEIRLOP with dinucleotide frequency covariates, we used the command:

“OMP_NUM_THREADS=25 $(which time) --verbose python -m meirlop --jobs 25 --kmer 2
--pcount 0.01 --pval 0.001 --html --scan --fa deseq2-ifnb.diff-peaks.scored.fa jaspar.txt
{meirlop_output_directory}”.

The argument “--kmer 2” sets MEIRLOP to use dinucleotide frequency covariates. The file

“deseq2-ifnb.diff-peaks.scored.fa” is available in the “data” directory of the MEIRLOP Github repository.

When evaluating MEIRLOP without covariates, we used the command:

“OMP_NUM_THREADS=25 $(which time) --verbose python -m meirlop --jobs 25 --kmer 0
--pcount 0.01 --pval 0.001 --html --scan --fa deseq2-ifnb.diff-peaks.scored.fa jaspar.txt
{meirlop_output_directory}”.

The argument “--kmer 0” sets MEIRLOP to use no k-mer frequency covariates.

MEIRLOP gives positive enrichment values for motifs overrepresented in sequences with higher

scores, while AME gives positive enrichment values for motifs overrepresented in sequences with lower

scores. Due to this difference in scoring/enrichment conventions we must transform the input sequence

scores for AME relative to those used by MEIRLOP: we multiplied scores by -1 prior to input for AME and

its implemented methods [4]. AME version 5.0.2 was used unless otherwise specified [4].

1.3.2.5 Motif enrichment accuracy evaluation

To assess motif enrichment results across multiple methods, we adopt the strategy previously

used to assess different motif enrichment methods in AME [4]. We reduce motif enrichment scores to the
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percentile rank of the motif enrichment score. The formula for this percentile rank accuracy (PRA) metric

is reproduced below from eq. 8 of McLeay & Bailey 2010 [4]:

𝑃𝑅𝐴 = 𝑅𝑘𝑁
Where Rk is the rank of the target motif Mk within a method’s enrichment results, and N is the

total number of motifs in the database. Since true positive results are expected to have larger positive

enrichment scores in these method comparison experiments, Rk is higher for more highly positive scores

and reflects a better result for a method.

Exclusion from the results table of any method defaults to a rank score of 0, and ties resolve to

the lowest applicable rank. This penalizes methods that do not provide results for the correct motif, or that

simply assign many motifs the same high enrichment score. For methods implemented in AME, the rank

is higher the earlier the motif appears in AME’s result table. For our method, the rank is correlated with

the logistic regression coefficient of regulatory region score against motif presence. To obtain percentile

ranks, the rank is divided by the number of motifs in the reference motif database.

We use the percentile rank accuracy metric to assess the accuracy of both AME and MEIRLOP,

so this calculation is not implemented in MEIRLOP itself, but is instead evaluated after running both AME

and MEIRLOP.

1.3.3 Comparison of MEIRLOP and AME on ENCODE ChIP-seq data

We started by selecting ENCODE ChIP-seq experiments and extracting scored FASTA files for

input into MEIRLOP and AME. Then, we ran MEIRLOP and AME to analyze motif enrichment in the

scored sequences in these FASTA files and evaluated each method’s performance using the percentile

rank accuracy metric previously described.

This comparison was conducted in three parts, two of which are described below:

1. ENCODE ChIP-seq experiment selection and sequence extraction (preprocessing)
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2. Motif enrichment analysis on ENCODE ChIP-seq data (running MEIRLOP & AME)

3. Motif enrichment accuracy evaluation (as previously described)

1.3.3.1 ENCODE ChIP-seq experiment selection and sequence extraction

In order to determine the performance of logistic regression with covariates on other ChIP-seq

datasets, we used MEIRLOP on scored ChIP-seq peaks from 582 ENCODE ChIP-seq TF binding

experiments, summarized in supplementary Table 1.S3 [43,44]. These were assays on human cell lines

for which the ChIPed TF could be matched to a TF binding motif in the JASPAR 2018 non-redundant

motif database by gene name. These experiments were selected to exclude those with severe (red flag)

audit categories. From each experiment, approximately 300K peaks were obtained, with peak scores

assigned by SPP. Peaks were obtained prior to filtering for IDR in order to obtain enrichments across a

range of peaks including those lacking high affinity binding motifs. Motif enrichment was restricted to

sequence within +/− 200 bp of the peak center.

1.3.3.2 Motif enrichment analysis on ENCODE ChIP-seq data

MEIRLOP was run with covariates controlling for sequence dinucleotide frequencies. MEIRLOP

was invoked multiple times on data for different ENCODE accession numbers. E.g., for ENCODE

accession ID “ENCSR976TBC”, MEIRLOP was run using the command line:

“OMP_NUM_THREADS=25 $(which time) --verbose python -m meirlop --jobs 25 --html --pcount

0.1 --pval 0.001 --kmer 2 --fa scored_fastas/ENCSR976TBC.fa jaspar.txt

meirlop_outputs/ENCSR976TBC”.

We parallelized AME runs using GNU Parallel [45]. As described previously, sequence scores

were inverted for use with AME.

1.3.4 Differential csRNA-seq analysis
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We started by extracting sequences and scores for differential TSS data previously generated as

described in Duttke et al. [10]. We then ran MEIRLOP on the scored TSS sequences.

This analysis was performed in two parts, described below:

1. TSS sequence extraction and scoring (preprocessing)

2. MEIRLOP analysis of TSS

1.3.4.1 TSS sequence extraction and scoring

Differential TSS were found from murine BMDMs as described in Duttke et al. [10]. We performed

enrichment for motifs found within +/− 150 bp of the TSS, and scored sequences by the differential log 2

fold change between KLA stimulated and unstimulated control conditions as computed by HOMER

getDiffExpression.pl (which wraps DESeq2 to calculate differential statistics while accounting for library

size and replicates).

1.3.4.2 MEIRLOP analysis of TSS

MEIRLOP was run with covariates controlling for sequencing dinucleotide frequencies. We ran

MEIRLOP with the command line:

“OMP_NUM_THREADS=30 $(which time) --verbose python -m meirlop --jobs 30 --kmer 2

--pcount 0.001 --pval 0.001 --html --scan --sortabs --bed differential_tss.bed --fi genome.fa

jaspar.txt differential_tss.meirlop”.

Using MEIRLOP with input bed files this way requires bedtools version 2.29.0 [46,47]: Later

versions (specifically 2.29.2) have incompatible behavior for the “bedtools getfasta” subcommand. The file

“differential_tss.bed” is available in the “data” directory of the MEIRLOP Github repository.

1.3.5 Analysis of DHS scored by histone ChIP-seq ratios
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We started by retrieving DNase-seq and histone ChIP-seq data from ENCODE, then extracting

sequence, coverage, and signal data [43,44]. These were converted into scored sequence FASTA files

and a covariate file, where each entry in these files corresponded to one DHS. We then ran MEIRLOP on

the scored DHS sequences and their covariates.

This analysis was performed in two parts, described below:

1. DHS sequence extraction

2. MEIRLOP analysis of DHS

1.3.5.1 DHS sequence extraction, scoring, and covariates

DHS for K562 cells were taken from ENCODE DNase-seq experiment accession ENCSR000EOT

[43,44]. We used the narrowPeak BED file ENCFF821KDJ for the BED intervals [43,44]. DHS were then

resized to +/− 75 bp around the DNase-seq peak center. To score DHS by DNase-coverage scores as a

covariate, we converted the ENCODE DNase-seq bam file ENCFF156LGK into a coverage bigwig using

deeptools bamCoverage, then ran deeptools multiBigwigSummary to obtain the mean values across the

DHS [43,44,48]. To score DHS by histone-ChIP-seq, we downloaded alignments for H3K27ac,

H3K27me3, H3K4me3, and H3K4me1 ChIP-seq from ENCODE, corresponding to ENCODE biosamples

ENCBS639AAA (isogenic replicate 1) and ENCBS674MPN (isogenic replicate 2) [43,44]. Details on these

downloaded files are available in supplementary Table 1.S4. We obtained bigwigs corresponding to log2

ratios of histone ChIP-seq coverage (H3K27ac over H3K27me3, and H3K4me3 over H3Kme1) for each

replicate using bamCompare [48]. Then, we ran bigwigCompare to obtain a single bigwig for each log2

ratio summarizing the mean across both replicates. Finally, multiBigwigSummary was used to obtain the

mean values for these log2 ratios across genomic ranges +/− 500 bp of the center for each DHS. DHS

were assigned scores from the mean histone log2 ratios corresponding to their centers.

1.3.5.2 MEIRLOP analysis of DHS

MEIRLOP was run to analyze these scored DHS sequences with covariates controlling for

dinucleotide frequencies and DNase-seq coverage for each DHS. MEIRLOP was invoked multiple times
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for each histone ratio. E.g., for sequences scored by log2 ratio of H3K27ac over H3K27me3, while

controlling for dinucleotide frequencies and DNase-seq signal as a covariate we used the command line:

“OMP_NUM_THREADS=45 $(which time) --verbose python -m meirlop --jobs 45 --kmer 2

--covariates dhs.dnase.covariates.tsv --pcount 0.001 --pval 0.001 --html --scan --sortabs --fa

dhs.h3k27ac_over_h3k27me3_mean.scored.fa jaspar.txt

{h3k27ac_over_h3k27me3_meirlop_output_directory}”.

A “walkthrough” Jupyter notebook for this analysis, starting from ENCODE downloads, is

available on the MEIRLOP Github repository. To perform the analysis without the custom DNase-seq

signal covariate, we ran a similar command but without the “--covariates” argument.

1.4 Results

1.4.1 MEIRLOP uses covariates to accurately call enrichment of relevant
TF motifs

To show the utility of our method, we performed a differential motif enrichment analysis of

regulatory elements modulated by interferon beta (IFN-β) treatment in HCT116 cells as measured by

H3K27ac ChIP-seq. IFN-β treatment stimulates the type I interferon pathway, which ultimately leads to the

activation of STAT and IRF family transcription factors to stimulate the expression of genes with antiviral

activity [49]. While the type I interferon pathway is responsive in most cell types, HCT116 and other cell

lines often exhibit a limited response to IFN-β treatment relative to primary myeloid cells [38], making their

analysis more challenging. MACS2 found initial H3K27ac peaksets in each H3K27ac replicate and

condition relative to input; then diffBind found 20,087 total H3K27ac peaks of median length 1kbp in

HCT116 cells after controlling for coverage in an input experiment, and merging adjacent peaks across

IFN-β- and mock-treated (control) conditions. Using diffBind’s DESeq2 analysis to find differentially

acetylated peaks, we found only 2 peaks with significantly increased H3K27ac signal after stimulation and
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accounting for library size and replicates (adjusted p-value < 0.05, log 2 fold-change > 1.0) (Fig. 1.S1). As

a result, set-based MEA on this small set of 2 peaks failed to return results for two known IFN-β response

relevant motifs.

MEIRLOP uses logistic regression and does not rely on thresholding of regulatory region

sequences into sets. We extracted the central 1K bp sequence of each peak and scored the response of

each regulatory region by the log2 fold-change of the H3K27ac signal with and without IFN-β stimulation.

PCA yielded 11 covariates summarizing 99% of the variance in dinucleotide frequencies across these

sequences. When accounting for PCA-based covariates derived from dinucleotide frequency, our method

can identify significant enrichment of known relevant motifs in the top 10 results: These are the motifs for

IRF9 and the STAT1::STAT2 heterodimer, which together bind to interferon-sensitive response elements

to activate pathways in the innate immune response [49]. Upon ranking the enrichment scores of these

two relevant binding motifs compared to 577 others present in the motif database, we find that the IRF9

motif achieves a percentile ranking of 99.6 (rank 577 out of 579, just below similar IRF motifs), while the

STAT1::STAT2 motif achieves a percentile ranking of 97.4 (rank 564 out of 579) (Fig. 1.2A). Thus, our

method can call enrichments of relevant TF binding motifs in differential ChIP-seq analysis, even when

the difference between conditions is subtle and difficult to quantify with conventional approaches such as

diffBind [50].
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Figure 1.2: Logistic regression with covariates recovers motifs mediating IFN-β stimulation
response in differentially acetylated ChIP-seq peaks.

(A) Ranks of the motif enrichment scores for motifs bound by TFs activated by IFN-β across
score-based MEA methods. Higher percentile ranks indicate the motif considered more
significantly enriched relative to other motifs in the results of each method. Motifs excluded from
enrichment reports are assigned a rank of 0.

(B) Reproducibility of logistic regression accuracy of MEIRLOP when calling enrichment of the
STAT1::STAT2 binding motif, with and without controlling for dinucleotide frequency covariates.
Each point represents enrichment results on a bootstrap sample of the same dataset.

(C) Swarm plot depicting the distributions of score ranks for peaks with and without STAT1::STAT2
binding motif instances. Each point represents a scored peak.
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To establish the effect of sequence bias on the analysis, we repeated the enrichment without

controlling for covariates derived from dinucleotide frequencies. While it slightly improved the enrichment

for the IRF9 motif (percentile rank 99.8; rank 578 out of 579), the STAT1::STAT2 motif no longer appeared

in the top ten enrichment results (percentile rank 80.5; rank 466 out of 579) (Fig. 1.2a, Fig. 1.S2A).

Instead, more AT-rich homeobox transcription factors appeared ahead of the STAT1::STAT2 motif,

comprising most of the top results (Fig. 1.S2A).

To determine whether the covariate-dependent difference in enrichment of the STAT1::STAT2

motif was because of chance, we created 500 bootstrap samples of 20,087 scored regulatory region

sequences by sampling the original scored sequences with replacement, and performed motif enrichment

on these with and without covariates. We found that the change in the rank of the STAT1::STAT2 motif

enrichment was significant (Wilcoxon p-value 1.33e-83), with an average rank of 553.7 with covariates,

and 471.5 without (Fig. 1.2B). When performing a limited enrichment controlling only for GC content, we

found that GC content negatively correlated with the probability of a regulatory region sequence

containing the motif (logistic regression coefficient − 0.90, Wald test p-value < 0.01), consistent with the

GC-poor composition of the motifs that appear ahead of the STAT1::STAT2 motif in the enrichment

results. Despite the effect of GC composition, STAT1::STAT2 appears more frequently in the sequences

of higher ranked peaks than in lower ranked peaks (Fig. 1.2C). Thus, controlling for sequence bias allows

our logistic regression-based method to accurately call the enrichment of TF motifs relevant to IFN-β

stimulation.

1.4.2 MEIRLOP outperforms other score-based MEA in differential

ChIP-seq analysis

To evaluate the performance of our method relative to multiple approaches to score-based MEA,

we applied multiple methods implemented in AME to the analysis of the 20,087 regulatory region

sequences scored for IFN-β response. We found that most of the top enriched motifs found by these
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methods were homeobox transcription factors, consistent with the results of MEIRLOP when not

controlling for sequence bias (Fig. 1.2A, 1.S2A,B). IRF9 and STAT1::STAT2 motifs never obtained

enrichment scores past percentile rank 86.3 (rank 500 out of 579) (Fig. 1.S2C). Thus, multiple

score-based motif enrichment methods that do not control for sequence bias cannot accurately call the

enrichment of relevant TFs in our differential ChIP-seq analysis in their top results.

1.4.3 MEIRLOP achieves similar or better accuracy on TF ChIP-seq data

To determine the relative accuracy of our method compared to more commonly used MEA

implementations across a wide range of experiments, we analyzed scored genomic regions from a set of

23 ENCODE TF ChIP-seq experiments on H1 human embryonic stem cells (H1-hESCs) [43,44] that

analyzed TFs with known motifs in the JASPAR 2018 motif database [15]. From these scored regions, we

extracted 200 bp sequences from the center of the peak for motif enrichment testing, yielding

approximately 300,000 scored sequences per experiment. To evaluate the accuracy of similarly

implemented MEA methods, we compared our method’s accuracy against the accuracy of AME’s

implementations on the same datasets of scored regions. Similar to the differential ChIP-seq analysis, the

evaluation metric was the rank of the enrichment score of the known motif for the ChIPed TF.

Our method (meirlop --kmer 2) achieved an average percentile rank of 95.9 (rank 555.2 out of 579) when

recovering the motif corresponding to the true ChIPed TF (Fig. 1.3A). Scored MEA using Pearson

correlation coefficients achieved an average percentile rank of 95.4 (rank 552.5 out of 579), not

significantly different from our method’s performance (Wilcoxon p-value = 0.09). Other MEA methods

achieved lower average ranks (Fig. 1.3A). Thus, logistic regression can achieve accuracy similar to or

better than existing score-based MEA methods on scored sequence data from TF ChIP-seq experiments.

However, MEIRLOP is multithreaded and takes less time to achieve similar accuracy compared to other

methods, taking an average of 10.8 min per experiment, while the Pearson correlation method in AME

took 21.9 h on average.
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Figure 1.3: Logistic regression with covariates accurately calls motifs for ChIPed TFs in
ENCODE experiments.

(A) Plot of the rank for the enrichment score of the ChIPed TF’s motif in 23 ENCODE H1-hESC
ChIP-seq experiments, across multiple score-based MEA.

(B) Plot of the rank for the enrichment score of the ChIPed TF’s motif across multiple ENCODE cell
lines. Only cell lines with more than 10 experiments analyzed are represented, as well as a
separate category summarizing all cell lines.

(C) Bar plot of Fisher exact test significance for enrichment of ENCODE warning flags among 36 (out
of 582 eligible) experiments for which logistic regression with covariates failed to call the true
ChIP-ed TF as significant, showing partial characterization of ChIP-seq antibodies as a
significantly enriched warning term (Fisher exact test p-value = 6.8e-5, FDR = 1.563e-3)
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To determine the performance of our method on TF ChIP-seq for other cell types, we used

MEIRLOP to measure the enrichment of motifs in scored ChIP-seq peaks from 582 ENCODE ChIP-seq

TF binding experiments on human cell lines. On average, our method achieved a percentile rank of 93.3

(rank 540.1 out of 579), placing the motif for the ChIPed TF towards the top 90% of enrichment results

(Fig. 1.3B).

Our method failed to call significant enrichment of a motif for the true ChIPed TF in 36 of 582

experiments. To diagnose these failure cases, we retrieved ENCODE audit warning flags for each of the

582 experiments. From these warning flags, 26 of the 582 experiments had the “partially characterized

antibodies” warning. Of the 36 experiments that our method failed, 8 had this warning flag present and

enriched (Fisher exact test p-value = 6.8e-5), with the enrichment remaining significant after multiple

testing of 22 other warning flags (adjusted p-value = 1.767e-3) (Fig. 1.3C). Thus, the antibodies used in

these ChIP-seq experiments may not have been specifically targeting the proper TFs, leading to a failure

to identify the expected known motif.

1.4.4 MEIRLOP identifies motifs of TFs mediating KLA response from

csRNA-seq

Score-based MEA is well suited to analyze changes in regulatory states by incorporating the

magnitude of transcriptional change into the motif enrichment calculation. To demonstrate our method’s

efficacy when analyzing changes in transcription with diverse data types, we applied MEIRLOP to the

analysis of capped short (cs)RNA-seq data generated in macrophages activated by TLR4-agonist KLA for

1 h or mock-treated controls. csRNA-seq is an approach that isolates initiating transcripts at both

promoters and enhancers to directly assess the transcriptional activity of regulatory elements

genome-wide [10]. We analyzed 90,857 transcription start sites (TSS) from csRNA-seq profiling of murine

bone-marrow derived macrophages (BMDMs) activated by Kdo2-lipid A (KLA), as previously analyzed in

Duttke et al. [10]. We searched for motifs within +/− 150 bp of the TSS, and scored them by their log2 fold

change of csRNA-seq signal between KLA stimulation and control. MEIRLOP readily identified

enrichment of motifs for the NF-κB and JUN/AP1 TF families in KLA-induced TSS (Fig. 1.4) [10]. These

29

https://paperpile.com/c/qwrRHm/ylwOf
https://paperpile.com/c/qwrRHm/ylwOf
https://paperpile.com/c/qwrRHm/ylwOf


TFs are known to mediate KLA response [51]. In KLA-repressed TSS, MEIRLOP identified enrichment of

motifs for PU.1/SPI1 (ETS), MITF (bHLH), and the MEF2 TF family (Fig. 1.4). These findings are

consistent with previous literature indicating lipopolysaccharide (LPS) -induced downregulation of these

TFs [52,53].
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Figure 1.4: Logistic regression with covariates finds motifs for TFs mediating KLA response.
Bar plot of significant logistic regression coefficients for select motifs on csRNA-seq TSS scored

by differential nascent transcription signal between KLA stimulated and control conditions
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1.4.5 MEIRLOP identifies enriched TF binding motifs in DNase I

hypersensitive sites

To further demonstrate the flexibility conferred by scored-based MEA, we used MEIRLOP to

assign regulatory functions to TF motifs found enriched in DNase I Hypersensitive sites (DHS). Extensive

chromatin profiling from ENCODE provides key information about the regulatory states at each DHS,

although the levels of each chromatin modification are often correlated with the DNase hypersensitivity

signal, which reflects the relative fraction of cells with open chromatin at that site in the population of cells

[43,44]. To identify DHS that are associated with specific epigenetic profiles independent of

hypersensitivity levels, we computed composite scores across 235,220 DHS in K562 cells based on the

log2 ratios of ChIP-seq coverage for the following scores: H3K27ac (active promoters and enhancers)

over H3K27me3 (polycomb, repressive), reflecting active vs. repressed regulatory regions [16]; And

H3K4me3 (promoters) over H3K4me1 (enhancers), reflecting DHS with promoter vs. enhancer

characteristics [54]. Composite scores were derived from histone ChIP-seq coverage +/− 500 bp from the

peak centers. To account for correlation of these scores with DNase hypersensitivity signal, we

incorporated DNase-seq coverage +/− 75 bp from the peak centers as a covariate. We searched for

motifs +/− 75 bp from the peak centers.

MEIRLOP analysis of the H3K4me3/H3K4me1 composite ratio identified motifs for several TFs

with known roles in promoters or enhancers. MEIRLOP found the motifs for ELF1, NRF1, and YY1 in the

top 10 significant enrichments for more promoter-like DHS with a greater ratio of H3K4me3 over

H3K4me1 (Fig. 1.5a). This finding has precedence in a larger study by Anderson et al., which also found

motifs for these TFs significantly enriched in promoters compared to enhancers [55].The transcription

factor ZNF143 also acts as a promoter-bound transcriptional activator, suggested to bind next to POL2

[56,57].
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1.4.6 MEIRLOP identifies enriched TF binding motifs in DNase I

hypersensitive sites

To further demonstrate the flexibility conferred by scored-based MEA, we used MEIRLOP to

assign regulatory functions to TF motifs found enriched in DNase I Hypersensitive sites (DHS). Extensive

chromatin profiling from ENCODE provides key information about the regulatory states at each DHS,

although the levels of each chromatin modification are often correlated with the DNase hypersensitivity

signal, which reflects the relative fraction of cells with open chromatin at that site in the population of cells

[43,44]. To identify DHS that are associated with specific epigenetic profiles independent of

hypersensitivity levels, we computed composite scores across 235,220 DHS in K562 cells based on the

log2 ratios of ChIP-seq coverage for the following scores: H3K27ac (active promoters and enhancers)

over H3K27me3 (polycomb, repressive), reflecting active vs. repressed regulatory regions [16]; And

H3K4me3 (promoters) over H3K4me1 (enhancers), reflecting DHS with promoter vs. enhancer

characteristics [54]. Composite scores were derived from histone ChIP-seq coverage +/− 500 bp from the

peak centers. To account for correlation of these scores with DNase hypersensitivity signal, we

incorporated DNase-seq coverage +/− 75 bp from the peak centers as a covariate. We searched for

motifs +/− 75 bp from the peak centers.

MEIRLOP analysis of the H3K4me3/H3K4me1 composite ratio identified motifs for several TFs

with known roles in promoters or enhancers. MEIRLOP found the motifs for ELF1, NRF1, and YY1 in the

top 10 significant enrichments for more promoter-like DHS with a greater ratio of H3K4me3 over

H3K4me1 (Fig. 1.5A). This finding has precedence in a larger study by Anderson et al., which also found

motifs for these TFs significantly enriched in promoters compared to enhancers [55].The transcription

factor ZNF143 also acts as a promoter-bound transcriptional activator, suggested to bind next to POL2

[56,57].

33

https://paperpile.com/c/qwrRHm/kz84G+bqRoN
https://paperpile.com/c/qwrRHm/4Xypb
https://paperpile.com/c/qwrRHm/5qD15
https://paperpile.com/c/qwrRHm/mUZ6f
https://paperpile.com/c/qwrRHm/HvRTG+NEPbf


Figure 1.5: Logistic regression with covariates finds motifs for TFs associated with the ratios of
different histone modifications over DHS.

(A) Bar plot of enrichment coefficients for the top and bottom 10 most significantly enriched motifs
associated with DHS scored by the log2 ratio of H3K4me3 over H3K4me1. Error bars represent
the standard deviation of the enrichment coefficients.

(B) Bar plot of enrichment coefficients for the top and bottom 10 most significantly enriched motifs
associated with DHS scored by the log2 ratio of H3K27ac over H3K27me3. Error bars represent
the standard deviation of the enrichment coefficients
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In contrast, different sets of motifs were identified in enhancer-like DHS. Rye et al. previously

found that NFE2 preferentially mapped to genomic regions marked with H3K4me1 compared to those

marked with H3K4me3 [58]. DNA binding activity of GATA1 is correlated with H3K4me1, a histone marker

for enhancers [55,59]. However, the enhancer activity of DNA bound by GATA1 is associated with TAL1

co-binding [60,61]. In keeping with these combined roles, MEIRLOP found a motif associated with binding

of both TFs significantly enriched in DHS with greater ratios of H3K4me1 over H3K4me3 signal

(enrichment coefficient = − 0.51, adjusted p-value < 0.01) (Fig. 1.5A). Significant enrichments for other

GATA1-like motifs were also found enriched in DHS with greater H3K4me1 over H3K4me3 signal (Fig.

1.5A).

Analysis of H3K27ac/H3K27me3 identifies the motifs of TFs that may contribute to highly active

(high ratio) or repressed (low ratio) regions of chromatin. The high score for the ATF4 motif at active

regions is consistent with the evidence that ATF4 recruits histone acetyltransferase [62]. At the other

extreme, MEIRLOP found a binding motifs for CTCF and REST significantly enriched in more repressed

DHS with higher levels of H3K27me3 over H3K27ac (enrichment coefficients ~ − 1.5, adjusted p-value

< 0.01) (Fig. 1.5B). CTCF is an important factor in establishing 3D chromatin structure, while REST is a

TF known to silence gene expression through chromatin remodeling [63,64].

KLF13 (also known as BTEB3) represses transcription through interaction with histone

deacetylases (HDACs) and competes with Sp1 for DNA-binding [65]. Notably, while MEIRLOP finds

enrichment for a KLF13 binding motif associated with transcriptionally silenced chromatin (enrichment

coefficient = − 0.33, adjusted p-value <1e-8) (Fig. 1.5B), it requires the additional DNase-seq signal

covariate to do so: Running MEIRLOP with only dinucleotide-based covariates does not find a significant

enrichment of this motif (enrichment coefficient − 4.8e-2, adjusted p-value = 0.18). This change in

enrichment values is consistent with the moderate correlation of DNase-seq coverage and H3K27ac over

H3K27me3 ratios across DHS (Spearman correlation coefficient = 0.51).
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Overall, MEIRLOP found enrichments for TF motifs associated with key functional processes by

analyzing DHS scored as a function of multiple sequencing assays, while also controlling for dinucleotide

sequence bias and the quality of the DHS as a function of DNase-seq coverage. These enrichments are

consistent with previous findings in the literature and known roles of the TFs binding to these motifs.

1.5 Discussion

By incorporating covariates derived from low-level sequence bias (GC content, dinucleotide

frequencies), MEIRLOP enables accurate score-based MEA that achieves accurate enrichment results.

These results recapitulate the transcription factors involved in regulating transcriptional response to IFN-β

stimulation. When applied to ENCODE TF ChIP-seq data, we find that our method performs just as well

or better compared to multiple score-based MEA methods in recovering significant enrichment of the

binding motif for the ChIPed TF. Combined with the faster execution of our implementation, this allows the

application of our method in situations where researchers must analyze thousands of scored regulatory

regions for motifs and TFs that can explain transcriptional regulation in differing conditions. Using a

logistic regression model means that our method can also be extended to integrate covariates other than

sequence composition, allowing researchers to control for variation in sequence length, batch effects, or

systematic coverage biases found in control experiments.

Set-based MEA can remain applicable when the biological signal quantified across conditions for

regulatory regions is bimodal, or when the signal can be thresholded into sizable sets of sequences.

However, in scenarios where the list of significantly differentially regulated regions is small or the

magnitude of regulation is weak, we demonstrated that score-based MEA can be sensitive enough to

properly identify differential motif enrichment. But even where other score-based MEA methods may

apply, we found that uneven distribution of GC content in the sequences analyzed obscured known

biology from being recovered: If a researcher took results from methods that did not account for

covariates at face value, then absent other evidence, they might conclude that homeobox transcription

factors (with their GC-poor motifs) are more significant to transcriptional regulation of IFN-β response

compared to interferon regulatory factors or STAT transcription factors.
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We find that our method achieves accuracy similar to existing regression-based MEA methods on

non-differential TF ChIP-seq data. TF ChIP-seq data quantifies the binding affinity of TFs to genomic

regions, and so directly mirrors the assumption in AME’s regression-based methods that stronger binding

motifs correlate with stronger binding. But even when applied to data that better reflects AME’s regression

model, MEIRLOP remains competitive in both accuracy and runtime. Runtime improvements may result

from: The use of a faster motif scanning algorithm provided by MOODS [32]; and the use of

multithreading. However, the generalizability of the method may stem from its hybridization of set-based

and score-based approaches: MEIRLOP treats motif presence as a Boolean variable and regulatory

region activity as a continuous variable, rather than treating both as Boolean variables (as per a Fisher

exact test) or both as continuous variables (as per regression). Since MEIRLOP takes arbitrary scores for

regulatory region activity, it is able to analyze motif enrichments from novel sequencing methods, such as

the recently developed csRNA-seq. However, reducing motif presence to a Boolean outcome variable can

lead to loss of accuracy where motif matches may be inexact, e.g. where a modified TF does not bind as

well to its canonical motif. Here, de novo motif finding methods can recover the true binding motif, then

MEIRLOP can determine enrichment of this motif, as performed in Bloodgood et al. [66].

We demonstrated the flexibility of MEIRLOP in situations where the genomic regions quantified

were scored using experimental assays that were different from those used to identify them: We found

motif enrichments within DHS scored using composite measurements, as log2 ratios of histone ChIP-seq

coverage across the DHS. MEIRLOP found multiple enriched motifs consistent with previous findings

from the literature and with known roles of TFs corresponding to those motifs. This illustrates that

MEIRLOP can determine motif enrichments along diverse scores of regulatory region activity, even where

these scores may not have intuitive pre-defined thresholds due to their composite nature or relation to the

genomic regions being analyzed. Furthermore, because MEIRLOP offers two-sided hypothesis testing, it

enables researchers to investigate motifs enriched towards either extreme of such ratios in a single pass,

instead of having to run a motif enrichment analysis tool twice to investigate both extremes. MEIRLOP’s

ability to incorporate customized covariates also offers researchers further power to detect enrichments

38

https://paperpile.com/c/qwrRHm/ZgiBx
https://paperpile.com/c/qwrRHm/xMqCv


that are otherwise obscured by factors such as the quality of a DHS site, while also accounting for

sequence bias. The combined flexibility from score-based motif enrichment and covariate control also

serves MEIRLOP well when analyzing data from more recent sequencing strategies, including

csRNA-seq. These examples indicate how MEIRLOP can serve researchers when performing

motif-based analyses on data from newer techniques, where rule-of-thumb thresholds for set-based motif

enrichment may not be fully established, enabling new findings.

1.6 Conclusions

We have demonstrated that MEIRLOP can determine enrichment of sequence motifs where

sequence bias or other covariates may confound other methods. To use MEIRLOP, researchers need

only score genomic regions across a continuum of biological interest. These scores are flexible, and

MEIRLOP’s two-sided enrichment can identify motifs enriched towards either extreme of log-ratios

assembled from multiple sequencing experiments. Although MEIRLOP is confined to scoring the

enrichment of a known motif library, future work will explore the de novo identification of motifs that

maximize for enrichment based on MEIRLOP.

1.7 Availability and requirements

● Project name: MEIRLOP.

● Project home page: https://github.com/npdeloss/meirlop

● Operating system(s): Linux.

● Programming language: Python 3.

● Other requirements: Conda for installation and dependency management.

● License: MIT License.

● Any restrictions to use by non-academics: MIT License terms.
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1.8 Availability of data and materials

The ENCODE TF ChIP-seq datasets analysed in this study are available in the ENCODE

repository, at https://www.encodeproject.org/ (doi: https://doi.org/10.1038/nature11247.). Detailed listings,

including experiment accession IDs, download URLs, and the names of labs where the data were

generated, are available in supplementary Table 1.S3.

Other ENCODE DNase-seq and histone ChIP-seq datasets in this study are also available in the

ENCODE repository, at https://www.encodeproject.org/ (doi: https://doi.org/10.1038/nature11247.).

Detailed listings, including experiment accession IDs, download URLs, and the names of labs where the

data were generated, are available in supplementary Table 1.S4.

JASPAR 2018 CORE vertebrate non-redundant motif set file used in this study is available from

the JASPAR 2018 archive download page, at http://jaspar2018.genereg.net/downloads/ [15].

The differential stimulation H3K27ac datasets used and/or analysed during the current study are

available under GEO accession GSE147707.

The code for MEIRLOP is available from its Github repository at

https://github.com/npdeloss/meirlop, and can be installed through the Anaconda software distribution

platform (for 64-bit Linux systems) with the command: “conda install -c bioconda -c conda-forge -c

npdeloss meirlop” [28].
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Chapter 2. MEPP: More transparent motif

enrichment by profiling positional correlations

2.1 Abstract

Score-based Motif Enrichment Analysis (MEA) is typically applied to regulatory DNA to infer

transcription factors (TFs) that may modulate transcription and chromatin state in different conditions.

Most MEA methods determine motif enrichment independent of motif position within a sequence, even

when those sequences harbor anchor points that motifs and their bound TFs may functionally interact

with in a distance-dependent fashion, such as other TF binding motifs, transcription start sites (TSS),

sequencing assay cleavage sites, or other biologically meaningful features. We developed Motif

Enrichment Positional Profiling (MEPP), a novel MEA method that outputs a positional enrichment profile

of a given TF’s binding motif relative to key anchor points (e.g. transcription start sites, or other motifs)

within the analyzed sequences while accounting for lower-order nucleotide bias. Using transcription

initiation and TF binding as test cases, we demonstrate MEPP’s utility in determining the sequence

positions where motif presence correlates with measures of biological activity, inferring positional

dependencies of binding site function. We demonstrate how MEPP can be applied to interpretation and

hypothesis generation from experiments that quantify transcription initiation, chromatin structure, or TF

binding measurements. MEPP is available for download from https://github.com/npdeloss/mepp.

2.2 Introduction

Transcription factors (TFs) coordinate cellular transcriptional responses to external or changing

signals [17]. Motif enrichment analysis (MEA) allows researchers to infer the TFs responsible for altering

gene expression or chromatin state in response to internal or external stimuli. MEA achieves this through

quantifying the enrichment of TF binding motifs in regulatory element sequences that exhibit a

measurable biological response of interest, such as chromatin opening, histone modification, TF binding
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or transcription. Methods such as ATAC-seq, ChIP-seq, or csRNA-seq quantify these responses and are

widely used to study transcription regulation [10,67,68].

Most MEA methods analyze biological sequences for the simple presence or absence of a motif

without regard to the motif’s position within the sequence. However, the position of TF binding motifs can

play important biological roles [69]. For example, some transcription factors play a role in directing the

selection of TSS, or preventing ectopic TSS utilization [11]. The position of TF binding motifs relative to

other motifs can also be important for establishing functional regulatory modules and TF co-binding, as

reflected in regulatory motif grammars [12–14].

Recent sequencing advances allow the definition of TSS and TF binding sites at base resolution,

thus enabling analysis of the functional aspects of motif positioning. PRO-cap or csRNA-seq assays

reveal and quantify nascent transcription start sites, providing high-resolution transcription initiation data

in both genomic and temporal axes [10,70]. Similarly, methods such as ChIP-exo and ChIP-nexus

pinpoint TF binding locations at high resolution [67,71]. Other assays, such as ATAC-seq and MNase-seq,

define cleavage sites in open chromatin or at nucleosome boundaries [68,72]. Proper analysis of these

high-resolution measurements of biological or functional features can provide a more precise

characterization of nearby motif positions and their regulatory functions.

There is a need for methods that visualize and quantify the spatial relationships between TF

binding motifs and biologically relevant anchor points such as TSS. CentriMo [73] and TFEA [74] provide

bin- and quartile- based approaches to analyzing these relationships, but there remains an unfulfilled

need for a method that uses score information directly. To fulfill this need, we have developed Motif

Enrichment Positional Profiles (MEPP). MEPP identifies sequence motifs enriched at positions relative to

biologically meaningful features, thereby integrating position as an additional layer of information. This

provides the user with knowledge about which motif positions are optimal for context-specific binding site

functions, in the form of a positional profile. Because this profile correlates relative positions of predicted

binding sites with biological function, it can narrow down a search for the most functional binding sites

from hundreds of base pairs to a local neighborhood: This refinement directly addresses the concerns of

Wasserman and Sandlin’s futility theorem, which states that almost all predicted binding sites lack

function [75].

45

https://paperpile.com/c/qwrRHm/g8ega+qDHvw+ylwOf
https://paperpile.com/c/qwrRHm/53tAw
https://paperpile.com/c/qwrRHm/GvU1M
https://paperpile.com/c/qwrRHm/F1bis+pN1mO+tkXGB
https://paperpile.com/c/qwrRHm/ylwOf+vmiMk
https://paperpile.com/c/qwrRHm/g8ega+BvNrb
https://paperpile.com/c/qwrRHm/qDHvw+mIwzV
https://paperpile.com/c/qwrRHm/gvFv2
https://paperpile.com/c/qwrRHm/Y3aLj
https://paperpile.com/c/qwrRHm/kOis3


Input for MEPP comprises scored genomic sequences of uniform length. Scores for these

sequences can come from a biological readout (e.g. transcription level measured by a sequencing assay).

To contextualize the position of motifs, the sequences should be centered on a biologically meaningful

position, for example the location of TSSs, cleavage sites, other sequence motifs, or other meaningful

features. Rather than calculating a singular enrichment score for a motif, like standard MEA methods,

MEPP calculates a position-dependent enrichment profile for each motif. In this profile, highly positive

values at a position correspond to a stronger positive correlation of the motif presence with the biological

score assigned to each sequence. By contrast, more negative values at a position correspond to a

stronger negative correlation with the biological score. The resulting profile thus reveals positions of

motifs that are most likely to activate or repress the scored biological features. In addition, MEPP

visualizes the distribution of the motif across the input dataset as a 2D heatmap of the motif’s strength

and presence across both motif positions and sequence ranks (based on the assigned biological score).

These results help identify not just relevant motifs, but the positional constraints of motifs that delineate

context or position-dependent function. The score-based principle of this enrichment method further

avoids issues with arbitrary threshold selection, while controlling for sequence bias.

2.3 Materials and Methods

2.3.1 MEPP Implementation

In order to visualize and quantify local enrichment of motifs, we developed and employed Motif

Enrichment Positional Profiles (MEPP). The typical execution of MEPP occurs in 5 parts:

1. Input data and pre-processing

2. Motif heatmap generation

3. Positional profile computation

4. Per-motif visualization

5. Motif dataset visualization
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Figure 2.1: MEPP visualizes and quantifies core promoter motifs near Drosophila melanogaster
transcription start sites.
(A) Motif logo for the Drosophila Initiator motif
(B) Visualization of smoothed motif counts over each position across the 400 bp sequence, centered

on the TSS quantified by csRNA-seq.
(C) Line plot relating the sequence score (log-transformed csRNA-seq coverage) to the rank of the

sequence score. Sequences are arranged in order of descending score in the dataset.
(D) 2D motif heatmap summarizing motif occurrences across the whole dataset, with the horizontal

axis indicating motif position, and the vertical axis indicating the rank of the sequence score. Each
black spot represents a motif occurrence, with darker spots for stronger/more motifs in a
downsampled neighborhood.

(E) Line plot summarizing smoothed density of motifs across sequences in the dataset, with the
vertical axis representing sequence score rank.

(F) Visualization of the partial Pearson correlation values of motif strength/presence with score,
quantified at each possible motif position surrounding the TSS, after controlling for sequence GC
content. A 95% confidence interval is shaded in gray.

(G) Partial screenshot of MEPP’s interactive table output. Motifs are identifiable in MEPP’s interactive
table by motif ID and sequence logo.

(H) Motif positional profiles are summarized using a sparkline visualization, allowing exploration of
profiles at a glance. Pictured are the Initiator motif, TATA Box motif, and DPE motif.

(I) Extremes (minima, maxima) of motif positional profiles are summarized, including the values and
where they occur relative to the sequence center.
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2.3.1.1 Input data and pre-processing

MEPP accepts input comprising a series of uniform-length scored DNA sequences in the scored

FASTA file format, where the sequence score follows after the sequence header, separated by a space.

The score for each sequence resembles the score column of a bed-file, with its meaning dependent on

the assay in question. For example, when analyzing csRNA-seq, the user may assign the score to TSS

usage/csRNA-seq signal, or the log2 fold change in TSS usage between two experimental conditions (Fig.

2.S1A). To simplify the generation of input data, we include a helper script, ‘mepp.get_scored_fasta'

which generates a scored FASTA file from a scored BED file and a reference genome FASTA file.

Degenerate sequences, sequences from repetitive regions, and sequences sampled from

overlapping genomic intervals can negatively affect the interpretation of the MEPP results. We describe

optional steps to filter out these sequences in the Supplemental Methods.

2.3.1.2 Motif heatmap generation

Position weight matrices (PWMs) represent TF binding motifs as a matrix of nucleotide

specificities. The match of a given DNA subsequence to a PWM occurs at variable strengths, quantified

as the log-odds score of the match between subsequence and PWM [32,76,77]. PWMs usually

accompany a log-odds score threshold above which a subsequence is determined to be a match to the

motif PWM [32].

MEPP accepts a list of motifs in JASPAR format [76]. For each motif j, MEPP creates a

convolutional model function fj that accepts a one-hot encoded DNA sequence Si and outputs log-odds

match scores to the given motif (Fig. 2.S1E). All sequences S are expected to have the same length.

Using functions from the Motif Occurrence Detection Suite (MOODS) [32], we calculate a log-odds score

threshold bj describing the minimum threshold log-likelihood match score for motif j under a given

nucleotide background, pseudocount, and p-value threshold (Fig. 2.S1E). Thus, given a motif j and

sequence i, MEPP computes a heatmap row vector as:𝐻𝑖,𝑗 = ℎ𝑗(𝑆𝑖) = 𝑝𝑎𝑑(𝑚𝑎𝑥(0,  𝑓𝑗(𝑆𝑖) − 𝑏𝑗))
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Where pad is a 0-value padding function that ensures Hi,j and Si have the same length. When

considering both orientations of a motif, MEPP will instead compute the row Hi,j as:𝐻𝑖,𝑗 = 𝑚𝑎𝑥(ℎ𝑗(𝑆𝑖),  𝑟𝑒𝑣𝑒𝑟𝑠𝑒(ℎ𝑗(𝑟𝑒𝑣𝑐𝑜𝑚𝑝(𝑆𝑖))))
Where reverse(X) reverses an array of motif scores, and revcomp(Si) computes the reverse

complement of one-hot sequence Si. When all sequences S are sorted according to score, the matrix of

all rows Hi,j over sequence indices i is the motif score heatmap Hj for motif j. The central plot generated by

MEPP displays the heatmap Hj (Fig. 2.1D) with the horizontal axis corresponding to motif position, and

the vertical axis corresponding to each of the input sequences sorted in descending order based on their

sequence scores. Motif position is measured from the center of sequences in S to the center of motif j.

Rendering of the motif heatmap has additional considerations described in the Supplemental Methods.

To account for inexact motif positioning, we later optionally apply average pooling with a stride of

1 to the rows of the motif score heatmap Hi,j. The size of the pooling window w can be modified to adjust

the resolution of the positional profiles, and is computed as w=1+2m, where m is a user-defined

motif-margin. For high-resolution datasets that describe features at single nucleotide resolution, such as

TSS found with csRNA-seq, the motif margin used should be small, usually 2 bp, but for lower-resolution

datasets where the definition of the anchor may be less precise, such as the position of ChIP-seq peaks,

a higher motif margin (e.g. 10 bp) may increase sensitivity.  We apply 0-value padding to the data so that

convolution and average pooling operations result in tensors matching the dimensions of the original

one-hot encoded sequence. For simplicity, we refer to the smoothed form of row Hi,j as Hsmoothed,i,j

2.3.1.3 Positional profile computation

To calculate local motif enrichment at each sequence position across the dataset, at each position

column X of the motif heatmap Hsmoothed,j, we calculate the partial Pearson correlation pXY·Z of the motif

score matrix against the vector of sequence scores Y, while controlling for the vector of sequence-wide

GC ratios Z. The resulting vector PXY·Z of positional correlation coefficients describes the enrichment of the

motif across all positions. We term a motif’s vector PXY·Z the positional profile or positional Pearson

correlation for that motif. This enrichment method is comparable to that used by Analysis of Motif
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Enrichment (AME) [4], which by default calculates enrichment as the correlation between average motif

match scores across each sequence and the sequence scores. For each motif, the positional profile PXY·Z

is plotted across the same motif position axis as the central heatmap (Fig. 2.1F).

In order to determine statistical significance, we use permutation testing to calculate positional

profiles on multiple null permutations of the data. The permutation test shuffles sequence scores to break

the relationship between motif position/presence and score. The resulting null enrichment profiles are

used to derive confidence intervals and p-values for the scores in the positional profile. Confidence

intervals are shaded in gray beneath the positional profile (Fig. 2.1F).

We also calculate the count of motifs at each position summed up across the datasets. A rolling

average with window size w smooths these values, which our method plots above the central motif

heatmap of the MEPP visualization (Fig. 2.1B).

2.3.1.4 Per-motif visualization

For each motif, MEPP creates a plot with multiple subplots visualizing different aspects of the

motif enrichment. These include the central heatmap (Fig. 2.1D), positional profile (Fig. 2.1F), and

smoothed motif counts over positions (Fig. 2.1B) previously described, as well as the motif logo

generated by Logomaker (Fig. 2.1A) [36]. In addition, the left-hand-side plot displays the relationship

between the rank of the sequence score vs. the score (Fig. 2.1C), helping diagnose issues caused by

non-normal score distributions that may throw off the correlation metrics. To contextualize the results a

user might expect from non-positional score-based MEA, the right-hand-side plot displays the density of

motifs as they occur along the dataset, smoothed along the sequence score rank axis for display (Fig.

2.1E).

2.3.1.5 Motif dataset visualization

MEPP also provides an interactive table for navigating to the profiles generated for each motif in

a dataset (Fig. 2.1G,H,I). For each motif, MEPP renders the positional profile and its confidence interval in
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a sparkline format (Fig. 2.1H), alongside an illustration of the motif matrix itself (Fig. 2.1G). The method

identifies the extreme values of the positional profiles (Fig. 2.1I) and records them alongside their

confidence interval and associated p-values. To control for false positives, the Benjamini-Yekutieli [78]

correction adjusts p-values by correcting across all positional p-values and all motifs; We use the

correction implemented by statsmodels [34]. MEPP renders the resulting table in HTML, augmented with

interactive sorting and filtering features using the DataTables Javascript library (https://datatables.net/).

To aid in data exploration, MEPP renders a custom HTML output (Fig. 2.3B-E), placing the motif

matrices next to a heatmap and dendrogram displaying the positional profiles and their clustering

hierarchy; This custom interactive clustermap displays motifs along the vertical axis. To keep output

legible, we use interactive CSS to expand rows of the heatmap on mouseover.

MEPP clusters the motifs by their positional profiles using UPGMA hierarchical agglomerative

clustering (https://doi.org/10.1007/978-1-4020-6754-9_17806) with a correlation clustering metric. The

clustering assignments of each motif profile follow the defaults for scipy’s ‘dendrogram’ function (Fig.

2.3B) [79].

Both the table and clustermap HTML output generated by MEPP allow users to navigate to the

individual MEPP plots for each motif through hyperlinks.

2.3.2 Public data used and analyzed

We used MEPP to analyze multiple public datasets. For each dataset, we sample sequences surrounding

measured events from the relevant sequencing assay, and score these sequences according to either

normalized read count coverage or the log2 fold change when comparing conditions. We then input the

resulting scored sequences to MEPP. For convenience, these analyses are summarized in Table 2.1,

while full analysis details are provided in the Supplemental Methods (See Appendix A.2). Access

information and lab attribution for public data used from other studies is recorded in Supplemental Table

2.S4.
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Table 2.1: Public data used in this study
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2.4 Results

2.4.1 MEPP visualizes and quantifies positions of core promoter motifs

To demonstrate the utility of our method in identifying known positional dependencies for DNA

motifs, we analyzed transcription start sites (TSS) in Drosophila melanogaster embryo cells. Using

capped small (cs)RNA-seq, we identified 44,877 high confidence TSSs (read count >3 while controlling

for background input, repetitive DNA content, and overlapping sites, see Supplemental Methods). We

extracted sequences covering +/-200 bp from each TSS and scored them by the log-transformed

csRNA-seq coverage of their TSS centers, where higher scores correspond to TSS with higher rates of

initiation. We then ran MEPP using a library of motifs previously found to be enriched in Drosophila

promoters [80], focusing on the positioning of the TATA-box, Initiator (Inr), and Downstream Promoter

Element (DPE) motifs, which are expected to appear upstream, on, and downstream of TSS, respectively.

MEPP visualizes a motif’s occurrences in a scored sequence dataset in one figure comprising

multiple plots with aligned axes (Fig. 2.1). The central 2D motif heatmap allows more direct visualization

and qualitative evaluation of motif distributions across the dataset: The presence of the Inr motif on the

TSS, in the sequence center, is clearly visible and is more well defined for TSS with greater transcriptional

activity (Fig. 2.1D). The right-hand plot of motif density over sequence ranks also reflects the association

of pronounced Inr motifs with greater TSS activity, and resembles the data as it would appear to a motif

enrichment method using the zero-or-one-occurrence per sequence (ZOOPs) model (Fig. 2.1E).

However, it is the enrichment positional profile plotted at the bottom that summarizes the positionality of

this enrichment (Fig. 2.1F): This plot illustrates that the association of Inr motif strength/presence with

TSS strength is most positively correlated at the sequence center, on the TSS itself, which matches

expectations. Similarly, the TATA-box motif profile peaks upstream of the TSS at -28 bp, while the DPE

motif profile peaks 25 bp downstream of the TSS (Fig. 2.S2A,B). Positions are reported using the

distance from the center of the motif to the center of the sequence (which is defined here to be the TSS).

MEPP performs an analysis of multiple motifs for a dataset and summarizes them in an

interactive table (Fig. 2.1G,H,I). The top 2 results for the most extreme positional profile values
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corresponded to profiles for the Inr and DPR motifs, while 4th result corresponded to the profile for the

TATA-box. The results table also describes the location of these extreme values across sequences

centered on the TSS (as determined by the position of the largest absolute values in the profile). As

expected, maximum correlation of the TATA-box motif with transcriptional initiation occurs upstream at -28

bp relative to the TSS, while the DPE’s maximum correlation occurs downstream at +25 bp relative to the

TSS. This is consistent with the known positioning characteristics of these core promoter elements

[81,82]. Thus, we demonstrate how MEPP’s multiple readouts recapitulate ground truths about promoter

organization from a high-resolution nascent transcriptional assay.

2.4.2 MEPP visualizes ChIP-seq peaks

To demonstrate our method’s ability to visualize known motif content in more general sequencing

assays with less exact positioning, we analyzed ChIP-seq peak summits for GATA1 in K562 cells. We

used MACS2 on ENCODE GATA1 ChIP-seq alignment files and the corresponding Control ChIP-seq

alignment files to extract over 5K non-overlapping sequences sampled +/- 200bp from GATA1 ChIP or

Control ChIP summits and scored by the log2 fold change between GATA1 ChIP and control. MEPP

analysis on these scored sequences found centrally positioned enrichment of the GATA1 motif correlated

with higher coverage in GATA1 ChIP over control, as expected (Fig. 2.2).

Unlike the previous analysis, this enrichment profile reflects positional sequence matches

regardless of the orientation of the GATA1 motif. The maximum correlation signal in the positional profile

provided by MEPP is less sharp compared to the analysis of core promoter elements relative to single

nucleotide-resolution TSS, reflecting the less positionally specific nature of the ChIP-seq assay compared

to the csRNA-seq assay. Similar to the previous result on TSS, this demonstrates that MEPP can identify

known motif distribution patterns correctly, even when the assay in question has less distinct positional

landmarks. This marks its utility in characterizing such assays as a visualization and quality control tool.
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Figure 2.2: MEPP visualizes and quantifies the GATA1 binding motif in GATA1 ChIP-seq binding
sites.

MEPP plot for the GATA1 motif, on sequences +/- 200bp of GATA1 ChIP-seq peak centers
sampled from the hg38 reference genome, which are scored by differential ChIP-seq coverage (Log2
Fold Change of GATA1 ChIP-seq vs. input Control).
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2.4.3 MEPP visualizes cell-type specific TF binding motif spacing

To demonstrate MEPP’s ability to identify cell-type specific regulatory grammars, we analyzed the

occurrence of motifs surrounding GATA1 binding motif sequences in K562 and HCT116 cells. Instead of

using features of NGS profiling to determine analysis anchors (e.g. TSS, ChIP-seq peak summits), here

we anchor our analysis on GATA motifs and analyze how the presence of other nearby TF motifs are

associated with regulatory element activity. Over 500K GATA1 binding motifs appear in the human

genome, but these are not in equally accessible chromatin, especially across cell types. To determine if

increased cell-type specific chromatin accessibility associates with a spacing preference between GATA1

and other motifs, we used MEPP to analyze the positions of other binding motifs surrounding GATA1

binding motifs. We extracted genomic sequence +/-100 bp around GATA1 binding motifs, then scored

these sequences by the log2 fold change of chromatin accessibility between HCT116 and K562 cell types;

High scores corresponded to higher accessibility in HCT116 than in K562, as measured using ATAC-seq.

These scored sequences comprised our input to MEPP for this analysis.

The transcription factor GATA1 plays a key role in hematopoiesis and erythroid gene expression

[83]. The heatmap for the SCL motif (also known as TAL1) indicates preferential positioning of this motif

around 12 bp upstream of the GATA1 motif, as measured from the center of SCL motif to the 5’ end of the

GATA motif (Fig. 2.3A). This is consistent with the approximate requirements for binding of a complex

assembled by Lmo2 including SCL and GATA1 [83], and is consistent with previous reports characterizing

composite GATA:Ebox motifs bound by the factors during erythroid maturation [84]. The enrichment

profile generated by MEPP indicates that this positioning of the SCL motif has enrichment surrounding

GATA motif sites with greater chromatin accessibility in K562 cells, but not HCT116 cells (Fig. 2.3A), as

indicated by the negatively scored valley in the profile at that upstream position. This is consistent with the

erythroleukemia origin of K562 cells, where GATA1 and SCL/TAL1 transcription factors play important

roles in hematopoietic differentiation of the erythroid lineage. Although the motif heatmap indicates that

this profile derives from motifs in a relatively small section of the heatmap (Fig. 2.3A, yellow squares),

these sections still reflect motifs present in thousands of the most extremely scored sequences.
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Figure 2.3: MEPP visualizes and quantifies the SCL/TAL1 binding motif near GATA1 binding
motif locations
(A) MEPP plot for the SCL/TAL1 binding motif, on sequences +/- 100bp of GATA1 ChIP-seq peak

centers sampled from the hg38 reference genome, which are scored by differential chromatin
accessibility score (Log2 Fold Change of HCT116 over K562, by ATAC-seq). Yellow boxes
indicate extrema of the heatmap where SCL motif presence contributes to the enrichment
profile’s minima.

(B) Dendrogram illustrating cluster membership of motifs characterized by enrichment positional
profiles

(C) Motif logos represented in compacted form alongside enrichment profiles, with full logos visible
on mouseover

(D) Heatmap visualizing motif enrichment profiles as rows of color bars, with red, white, and blue
coloration signifying positive, zero, and negative correlation with sequence score

(E) Motif names with hyperlinks to full MEPP plots, with enlarged font scaling on mouseover for
readability
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In order to evaluate the behavior of another method for evaluating local motif enrichment, we also

analyzed this dataset with CentriMo [73]. Because CentriMo takes contrasting sets of sequences as input,

rather than continuously scored sequences, we submitted the top 10% of scored sequences as the

“positive” set for enrichment, and the bottom 10% as a contrasting “negative” set. The resulting local

enrichment plot (Fig. 2.S3) yields a profile that does not differentiate between a motif being simply

prevalent at a position, or more enriched in the “negative” set of sequences. Instead, this profile has two

positive peaks, consistent with the peaks in MEPP’s plot of motif counts over positions across sequences

(Fig. 2.S3).  While a second profile is plotted as a dashed line reflecting enrichment in the negative set of

sequences, its interpretation relies on the selection of the negative set of sequences, and comparison

against the profile for enrichment in the positive set (Fig. 2.S3). This underscores a key difference in

MEPP’s enrichment profile output from current methods like CentriMo: Rather than only quantifying a

motif’s positional prevalence in a thresholded selection of a dataset, MEPP, quantifies motif’s positional

relevance towards a higher or lower scoring sequence, as measured by the local correlation of motif

score and sequence score. In addition, CentriMo only accounts for the position of the best match to the

motif within a sequence, while MEPP quantifies and visualizes all motif instances within a sequence.

MEPP visualizes and clusters the profiles generated for multiple motifs as an interactive HTML

clustermap (Fig. 2.3B-E). This allows users to determine regimes of positional dependencies shared by

similar motifs. For example, the SCL motif clusters with similar basic helix-loop-helix binding motifs.

Unlike conventional non-interactive heatmaps, our approach to visualization allows users to expand motif

logos and text, as well as to click through hyperlinks to the full MEPP profile. This allows for determination

of profile similarities across a full motif set at a glance, rendering no singular row permanently unreadable.

This combination of novel interactive visualization techniques and positional, score-based motif

enrichment is unique to MEPP’s approach, and enables users to identify cell-type specific regulatory

grammar.

61

https://paperpile.com/c/qwrRHm/gvFv2


2.4.4 MEPP identifies helical spacing for motifs associated with cooperative

Nanog binding

To demonstrate MEPP’s ability to identify complex relationships between motifs that have roles in

cooperative TF binding, we performed an analysis of Nanog binding in mouse embryonic stem cells

(ESC). The Nanog motif is relatively common in the genome, but not all instances of this motif are bound.

The Nanog motif instances that are bound often have varying rates of association with Nanog as

measured by ChIP-seq. To identify other motifs near Nanog motifs that have positional specificities in their

ability to influence Nanog binding, we performed a MEPP analysis of Nanog motif sites across the mm10

reference genome. We scored Nanog motif sites by their Nanog binding activity as quantified by Nanog

ChIP-seq in mouse embryonic stem cells (mESCs) [85]. The analysis processed over 3M sequences

sampled +/- 200bp of Nanog motif sites, after cluster deduplication and filtering out sequences containing

50% repetitive or degenerate bases as annotated byRepeatMasker.

MEPP analysis showed that motifs bound by pluripotent transcription factors often revealed

helical spacing preferences to Nanog motifs bound by Nanog in mESCs. The MEPP plot for enrichment of

Sox2 motifs surrounding central Nanog motifs reveals periodicity in the enrichment positional profile with

a period of approximately 10 bp (Fig. 2.4). This periodicity is less visible when simply plotting Sox2 motif

counts over positions relative to Nanog (Fig. 2.4). Positive peaks in the enrichment positional profile

represent a stronger local correlation of Sox2 motif strength/presence with Nanog binding at those

periodically spaced positions, suggesting that cooperative binding of Sox2 and Nanog depends on a

helical syntax that preserves the relative rotational positions of the factors along the DNA. Other

approaches leveraging machine learning models have also found helical binding periodicities between

Nanog and Sox2 motifs [86,87]. However, our method does not require the training or interpretation of

machine learning models, but yields concordant results. Importantly, due to the cluster deduplication step

in the data preprocessing, our results do not reflect repetition of the Nanog motif around itself, ensuring

that these findings are not due to e.g. a single Sox2 motif appearing near multiple Nanog motifs that are

spaced periodically with each other, as might occur in unannotated repetitive genome sequence. By
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combining MEPP with careful preprocessing, we demonstrate the ability to identify properties of motif

spacing more complex than single peaks of positional enrichment.
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Figure 2.4: MEPP visualizes and quantifies the Sox2 motif near bound Nanog motif sites.
MEPP plot for the Sox2 motif, on sequences +/- 200bp of GATA1 ChIP-seq peak centers sampled

from the mm10 reference genome, which are scored by log-transformed Nanog ChIP-seq coverage.
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2.4.5 MEPP visualizes differing positional specificities of TF binding assays

To demonstrate the effect of assay type positionality on the positional profiles derived by MEPP,

we analyzed ChIP-nexus and ChIP-seq Nanog binding assays in mouse embryonic stem cells, as carried

out by Avsec et al. [86]. ChIP-nexus assays use exonucleases to precisely map the locations where

crosslinked proteins protect the DNA, suggesting that ChIP-nexus peaks should provide greater precision

than ChIP-seq peaks with respect to binding motifs [67]. MEPP analyzed 39K Nanog ChIP-nexus peaks

and over 28K Nanog ChIP-seq peaks, using sequence sampled from +/-200bp of each peak summit and

scores taken from the signal values in the MACS2 narrowpeak calls. To account for the lack of strand

specificity in ChIP-seq, MEPP correlated sequence scores against both forward and reverse orientations

of each motif.

As expected, the Nanog motif positional profiles derived from Nanog ChIP-nexus peaks showed

greater positional specificity, with the positional profile indicating a positive peak centered directly on the

peak summit (Fig. 2.5C). In contrast, the Nanog motif positional profile from the Nanog ChIP-seq

experiment indicates a broader, less well-defined central peak that does not rise as far above the 95%

confidence interval (Fig. 2.5A). Additionally, positional profiles for the Oct4-Sox2-TCF-Nanog composite

motif follow a similar pattern, with the Nanog ChIP-nexus derived profile having enough granularity to

resolve two peaks on either side of the peak summit, as opposed to the broader profile reflected from the

Nanog ChIP-seq experiment (Fig. 2.5B,D). The motif heatmap visualization offered by MEPP enables

researchers to visualize the underlying two-dimensional distribution of motifs surrounding each

experiment’s peak summits, providing further feedback on the positional properties of each dataset. Thus,

MEPP results capably reflect the positional specificities of different sequencing assays, allowing both

quantitative and qualitative feedback on sequence features enriched in the surrounding assay peak

summits.
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Figure 2.5: MEPP differences in positional specificity between ChIP-seq and ChIP-nexus
(A) MEPP plot for Nanog binding motif, on sequences +/- 200bp of Nanog ChIP-seq peak summits

sampled from the mm10 reference genome, scored by MACS2 signal value for each peak.
(B) MEPP plot for Oct4-Sox2-TCF-Nanog composite binding motif, on sequences +/- 200bp of Nanog

ChIP-seq peak summits sampled from the mm10 reference genome, scored by MACS2 signal
value for each peak.

(C) Same, as (A), but for sequences sampled and scored from Nanog ChIP-nexus peak summits.
(D) Same, as (B), but for sequences sampled and scored from Nanog ChIP-nexus peak summits.
(E) Same, as (A), but for sequences sampled and scored from Nanog ChIP-nexus fragment 5’ ends

found and scored using an alternate HOMER analysis pipeline adapted from use on csRNA-seq.
(F) Same, as (B), but for sequences sampled and scored from Nanog ChIP-nexus fragment 5’ ends

found and scored using an alternate HOMER analysis pipeline adapted from use on csRNA-seq.
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The positional specificity visualized by MEPP is further enhanced using analysis methods that

leverage the positional information provided by the ends of the reads, such as those developed for

csRNA-seq. To demonstrate, we re-analyzed the ChIP-nexus data that follows the example of

csRNA-seq, by identifying and scoring prominent ChIP-nexus 5’ protection boundaries from the 5’ ends of

the Nanog ChIP-nexus reads. This alternative analysis identified 48K potential binding sites, scored by

the (DESeq2) rlog-transformed coverage of the Nanog ChIP-nexus 5’ read ends [88]. MEPP was used to

analyze sequence +/-200 bp of these binding sites for motif enrichment. The resulting profiles for the

Nanog motif and the Oct4-Sox2-TCF-Nanog are similar to the previous Nanog ChIP-nexus experiment

(Fig. 2.5E,F). However, the enhanced specificity and data density appears as visible vertical striations of

motif presence on the central motif heatmaps, which provides a clearer profile peak center in the case of

the Nanog motif profile (Fig. 2.5E). Thus, MEPP results reflect specificities from both assay types and

analysis approaches, providing both quantitative and qualitative feedback to researchers developing or

refining methods for assay or analysis.

2.4.6 MEPP yields concordant profiles for assays of differential LPS

response

To demonstrate the applicability of MEPP to multiple types of sequencing experiments, we performed a

differential analysis of TSS measured by csRNA-seq and cleavage sites from ATAC-seq and MNase-seq

experiments. These experiments compared the state of mouse bone marrow-derived macrophages

(BMDMs) before and after 1 hour of LPS stimulation [10,89]. which activates innate immunity pathways by

triggering Toll-like receptor 4 (TLR4) signaling. In each experiment, sequences were sampled from +/-

200 bp of genomic coordinates taken from the 5’ ends of reads: in csRNA-seq, these represent TSS,

while in ATAC-seq and MNase-seq, these represent cleavage sites for accessible DNA by the assay’s

respective enzyme (Fig. 2.6A,B, adapted from Tsompana & Buck 2014) [68,72,90]. In the case of

MNase-seq, digested chromatin was further ChIPed for H3K27ac, reflecting transcriptionally active

nucleosomes [89]. All TSS/cleavage sites and their associated sequences were scored by log2 fold

change comparing pre- and post- stimulation coverage as calculated by DESeq2.
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Figure 2.6: MEPP Plots summarize NF-kB motif enrichment across csRNA-/ATAC-/MNase-seq
TSS/Cleavage sites
(A) Diagram illustrating read coverage from csRNA-seq (Green), ATAC-seq (Blue), and MNase-seq +

H3K27ac ChIP (Red) experiments. Adapted from Tsompana & Buck 2014 [90]. csRNA-seq
assays nascent TSS from 5’ capped short RNA transcripts, while ATAC-seq and MNase-seq
assay open chromatin. MNase-seq from Comoglio et al. includes immunoprecipitation of
H3K27ac.

(B) Integrated Genome Browser visualization of coverage from 5’ ends of csRNA-seq, ATAC-seq,
and MNase-seq reads near the Irf1 transcription start site in mm10.

(C) MEPP plot for NF-kB binding motif, on sequences centered on csRNA-seq derived TSS, and
scored by differential TSS nascent transcription between 1h LPS stimulation vs. 0h control.

(D) Similar as (B), but for sequences centered on ATAC-seq cleavage sites, and scored by differential
5’ read coverage between 1h LPS stimulation vs. 0h control.

(E) Similar as (C), but for sequences centered on H3K27ac MNase-seq cleavage sites.
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The transcription factor NF-kappa B (NF-kB) is known to induce strong changes in transcription in

response to activation of TLR4 by LPS [91]. Thus, MEPPs for the NF-kB binding motif all feature

concordantly positive peaks. In the csRNA-seq derived MEPP analysis of this motif, there is a clear

positional peak 58bp upstream of TSS implying NF-kB binding to this position potently initiates

transcription after activation (Fig. 2.6C). Similarly, in the H3K27ac MNase-seq analysis, the MEPP for the

NF-kB binding motif exhibits a positive peak at 81bp upstream of the MNase cleavage site (Fig. 2.6E),

indicating NF-kB binding likely increases histone acetylation on nucleosomes or repositions acetylated

nucleosomes with their edge approximately 80 bp from of the NF-kB motif. Notably, this peak is distinct

from the location where the same motif is most prevalent in sequence, just downstream of the cleavage

site. Such a distinction underscores the ability of MEPP to distinguish motif relevance to biological signal,

as opposed to motif prevalence across a set of sequences agnostic to biological signal.

Unlike the profiles for TSS and nucleosome edges, ATAC-seq derived MEPP analysis of the

NF-kB binding motif revealed a strong preference approximately 45 bp downstream of the Tn5 cleavage

site, generally placing NF-kB-DNA contacts on the fragments isolated in the ATAC-seq assay. There is

also a positive association of NF-kB binding just upstream of the cleavage site, suggesting NF-kB binding

may enhance the accessibility of sizable regions surrounding the NF-kB motif. (Fig. 2.6A,B,D) [92].

Similarly, there is positive motif enrichment both up and downstream of the central cleavage site,

reflecting ATAC-seq read coverage surrounding a TF binding footprint. However, these profiles are still

concordant with increased enrichment of the NF-kB motif in regulatory regions more accessible after LPS

stimulation and its role in innate immune response. Thus, while peaks in the NF-kB motif profiles have

concordant characteristics, differences in the profiles still reflect meaningful distinctions between the

reads selected and sequenced for each assay. Such distinctions would not appear in analyses that report

enrichment scores for motifs that do not take motif position into account, highlighting an advantage of

MEPP’s positional approach to motif enrichment.
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2.5 Discussion

MEPP correlates the log-odds scores of a motif  with biologically relevant measurements as a

function of the motif’s position to identify spatial relationships in regulatory DNA. In contrast, many MEA

methods such as MEIRLOP and HOMER treat motif presence within a sequence under a

zero-or-one-occurrence-per-sequence (ZOOPs) model: For enrichment, a motif is either present or

absent [24,93]. This ignores how a motif may occur at multiple positions within a sequence and leads to

methods that cannot describe positional dependencies of binding site function. Such positional

dependencies may hold relevance when an experiment samples sequences from the genome

surrounding biologically significant features, such as transcription start sites. By correlating motif

presence at multiple positions in the sequences surrounding relevant features, MEPP enables positional

profiling of motif enrichment alongside a structured visualization system that illustrates motif prevalence in

the dataset. These results recapitulate known relationships such as the positioning of core promoter

elements surrounding drosophila melanogaster TSS, and are capable of revealing more complex

relationships including periodicities in motif positioning where a scatterplot/heatmap visualization does not

provide enough clarity.

When applied to sequences surrounding GATA1 motifs, we find that our method recovers the

positional relevance of SCL-to-GATA1 motif spacing to K562 cells, a result supported by the previous

characterization of ternary complex formation on a composite GATA:E-box motif [84]. We demonstrate the

ability of MEPP to summarize the positional enrichment of all motifs in a dataset, and present them in a

novel interactive clustermap format. The clustermap allows the identification of locally co-enriched motifs,

such as those with similar consensus sequences, or those that may comprise sub-motifs for binding a

larger cis-regulatory mechanism, such as the GATA-SCL motifs for an Lmo2-bridged binding complex.

Thus, MEPP’s ability to visualize correlated positional relevance of motifs at a glance allows researchers

to quickly observe transcriptional regulation mechanisms beyond single motifs, and to better contextualize

results for single motifs.

When applied to multiple sequencing assays that present biologically relevant positioning

features, such as csRNA-seq, ATAC-seq, or MNAse+ChIP-seq, we find that MEPP yields concordant
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profiles whose differences reflect the biochemical specificities of the assays analyzed. Each of these

assays produce reads describing biological phenomena such as nucleosome edges or transcription

initiation at single nucleotide resolution that MEPP can leverage to investigate the roles that transcription

factors play in regulating these phenomena. This can prove invaluable when describing multiple functions

of regulatory sequences.

We find that unlike CentriMo or HOMER, which can plot the prevalence of a motif in a dataset of

sequences, MEPP plots the positional relevance of motifs along a continuous score. The use of signed

enrichment coefficients with a signed score allows researchers to investigate regulatory region sequences

that vary between two extremes quantifiable by an assay-based score, such as those exhibiting cell-type-

or stimulation- specific expression. While users could run similar analyses by analyzing quantiles or

otherwise stratified bins of regulatory region sequences, these still require the user to select thresholds to

partition the sequences according to best practices, which are not guaranteed when analyzing novel

measures of biological activity. MEPP's motif heatmaps can assist in this task, allowing researchers to

visualize motif presence along two dimensions of position and assay-based score, while avoiding

overplotting effects. This transparency mitigates the risk of being misled by non-specific local motif

prevalence. Similarly, MEPP plots the relationship between assay scores and sequence ranks, avoiding

the risk of selecting non-informative thresholds for a score distribution. Thus, when taken together, all

elements of a MEPP plot remain powerful in informing decisions for subsequent analyses.

We have demonstrated MEPP as a novel means of quantifying and visualizing the positional

relevance of a motif across multiple centered genomic sequences. Similar to our previous work with

MEIRLOP, MEPP is usable by scoring genomic regions across a continuum of scores reflecting two

extremes of biological interest. Unlike other methods of performing positional motif enrichment, MEPP

identifies local motif enrichments towards either extreme, with the sign reflecting a motif’s association with

higher or lower scores. MEPP currently functions with a fixed motif library. However, the underlying

convolutional network architecture lends itself easily to future work for recognizing and assembling de

novo motifs based on correlated positional profiles.
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Chapter 3. Learning Motifs with Positional Priors

3.1 Abstract

Functional transcription factor binding motifs can be positionally constrained around other

features and transcription start sites. By using data-driven positional priors that inform these positional

constraints, we can direct the discovery of these positionally constrained motifs, without knowing those

motifs beforehand. Here we present a method for Learning Motifs from Positional Priors (LMPP), a novel

machine-learning based approach that allows researchers to incorporate data from otherwise disparate

experiments and reference frames, in order to direct the discovery of positionally enriched motifs relative

to key anchor points (e.g. transcription start sites, binding sites) across a set of sequences scored

according to biological signal. By using the enrichment positional profiles of known motifs as ground

truths, we demonstrate the ability of LMPP to effectively recover motifs from their positional enrichment

towards either extreme of a dataset of scored sequences. We also demonstrate the applicability of our

method to discovery of motifs relevant to COVID-19 symptom severity, integrating data from both

genome-wide association studies (GWAS) and high resolution nascent transcriptional assays. LMPP is an

extension to our previous method, MEPP, and is available for download from

https://github.com/npdeloss/mepp.

3.2 Background

Transcription factors (TFs) are key to transcriptional regulation in response to stimuli such as viral

infection: By recognizing and binding to sites in regulatory region DNA sequence, they recruit

transcriptional machinery across multiple genes, giving rise to feedback loops and host protective

functions [94].

The sequence specificities of these TF binding sites are characterized as patterns in DNA,

termed motifs. Typical motif enrichment analysis (MEA) enables researchers to compare the binding sites

present between two extremes of regulatory regions, quantify the relative enrichment of those binding
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sites between those extremes, and thus infer the transcription factors that constitute an explanatory

mechanism for differences in regulatory region activity between those extremes [4].

Standard MEA requires that the binding site motifs to be analyzed must be known ahead of time,

limiting the potential for discovery. In contrast, de novo motif discovery methods determine new motifs

from overrepresented sequence content within regulatory region sequence, without the prior need for a

set of known motifs. Interpretation is facilitated by comparing the discovered motifs against known motifs

for transcription factors binding sites, but the search space is not confined by prior knowledge of binding

site sequence specificities.

However, such de novo MEA methods are in practice confined by prior knowledge of binding site

sequence positions, which we term a positional prior: These positional priors are typically broad criteria,

such as searching for motifs within e.g. 500 bp upstream of annotated gene transcription start sites (TSS).

This is due to many MEA methods generalizing motif presence in a binary manner, only considering

motifs as having “zero or one occurrence per sequence” (ZOOPS) [95]. However, such a generalization

cannot be accepted lightly: The distance between different binding sites and the TSS can affect TF

binding and TSS activity, imposing constraints on the locations of functional binding sites within a

TSS-proximal reference frame [13,14]. Motif enrichment positional profiling (MEPP) allows us to visualize

the locations of functional binding sites relative to TSS, given a set of differentially scored TSS. However,

it requires a set of known motifs as input before characterizing their positional enrichment. In this work,

we will remove that requirement, by incorporating positional priors that can be driven by other data of

interest, such as a GWAS study on infectious disease.

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has varying

severity of symptoms across individuals: These symptoms can range from flu-like symptoms and loss of

smell, to severe lung injury requiring hospitalization and shortness of breath that persists long after the

initial infection. In order to determine the mechanisms for such varied symptoms and severities across

individuals, several GWAS studies have been conducted, quantifying associations between genotype and

viral response phenotypes. The results of these studies are available from the Genome-Wide Repository

of Associations Between SNPs and Phenotypes (GRASP) [96]. Among these are GWAS results

comparing over 8.9 million single nucleotide polymorphisms (SNPs) for association with patients who
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developed severe respiratory symptoms from COVID-19 (n=269), and those who contracted COVID-19

but were not hospitalized (n=688) [97].

While these studies utilize genotypes for millions of SNPs, not all of this genetic variation is

directly observed: Direct observations for these studies came from genotyping arrays that assayed

around 800 thousand markers, including SNPs, and indels [98]. The rest of the genotypes are imputed,

taking advantage of how alleles for genetic variants can co-occur in linkage disequilibrium (LD), as

observed from reference panels [99]. As a result of this use of linkage disequilibrium, a genotyped SNP

may be reported for its indirect association with the true disease-causing SNP [100,101]. Thus, reported

lead SNPs corresponding to loci from a GWAS study may correspond to “near misses” correlated with

neighboring causal SNPs within regions of high linkage disequilibrium, potentially obscuring insight into

mechanisms behind increased disease risk, e.g. disruption of binding sites for key transcription factors for

disease response.

Due to issues with linkage disequilibrium and indirect association between SNPs, significant SNP

associations from GWAS studies should not be assumed as precise locations of causal variants and

disrupted transcription factor binding motifs within a genome-wide reference frame [100]. However, the

positional constraints of functional binding in TSS-proximal reference frames present an opportunity: Just

as functional binding motifs can be positionally constrained, so too may the SNPs that affect them (as well

as nearby indirectly associated SNPs in LD). By marking positions within the TSS-proximal reference

frame by a function describing the presence of nearby highly associated SNPs, we can construct a

heuristic positional prior. We can then use this heuristic positional prior to search for positionally enriched

transcription factor binding sites affected by either highly associated SNPs or a nearby indirectly

associated causal SNPs. To ensure that the GWAS and enriched motifs are germane, the TSS should be

scored according to differential or correlated expression towards phenotypes analyzed in the GWAS, e.g.

severe lung injury vs. no lung injury.

Superficially, the use of positional priors for motif discovery resembles an approach implemented

in Multiple EM for Motif Elicitation (MEME), which allows users to specify a “position-specific prior” for

each input sequence to direct motif discovery [102]. However, similar to the score-based approaches

employed with Motif Enrichment in Ranked Lists of Peaks (MEIRLOP) and MEPP, we have developed a
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method to utilize positional priors for differential motif discovery across a dataset of scored sequences,

rather than relying on set-based motif discovery methods such as Gibbs sampling or MEME’s expectation

maximization. This avoids previously described issues with set-based motif enrichment methods, such as

the arbitrary setting of thresholds, and takes advantage of the fact that most biological data, differential or

otherwise, is more naturally analyzed by ranking or scoring [7]. In addition, LMPP’s interoperability with

MEPP allows transparent visualization of the distribution of learned sequence features across both axes

of the data (sequence score and motif position).

This use of positional priors for differential motif discovery across a set of scored sequences is

the premise behind our method, which we term Learning Motifs from Positional Priors (LMPP). LMPP

utilizes positional priors and specialized machine learning to direct the search for positionally enriched de

novo motifs, whose enrichment positional profiles resemble the positional prior. LMPP is an extension to

MEPP and its positional priors effectively describe a target enrichment positionality profile for discovered

motifs (Fig. 3.1A).
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Figure 3.1: LMPP inverts MEPP’s motif-to-profile process by learning motifs from positional
priors

(A) LMPP accepts a positional prior (i.e. a target enrichment positional profile) and a set of scored
and centered sequences, then outputs a learned motif. LMPP’s input scored sequence format is
identical to MEPP’s. Similar to MEPP, sequence anchors may be features such as TSS or binding
events.

(B) MEPP accepts known motifs (e.g. from HOMER or JASPAR) and a set of scored and centered
sequences, then outputs a motif heatmap and an enrichment positional profile. MEPP accepts
JASPAR-formatted motifs, including LMPP’s de novo motif output format. LMPP and MEPP are
interoperable on the same datasets.
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3.3 Methods

3.3.1 LMPP Implementation
In order to learn de novo motifs while incorporating priors from positionally relevant signals, we

developed and employed a novel technique, termed Learning Motifs With Positional Priors (LMPP). The

typical execution of a de novo motif analysis with LMPP occurs in 6 parts:

1. Input data and pre-processing

2. Scaling positional profile by sequence scores.

3. Convolutional neural network training

4. De novo motif extraction and amplification

5. Positional profile generation and comparison

6. Comparison against known motifs

3.3.1.1 Input data and pre-processing

As a heuristic inversion of MEPP, LMPP uses the same scored sequence data inputs as MEPP,

as described previously (Chapter 2, Fig. 3.1A). Briefly, LMPP accepts scored sequence data in the form

of a series of uniform-length sequences from a FASTA file format, where the sequence header is

annotated with an assigned sequence score. Similar to MEPP, these sequences are expected to be

sampled surrounding an interpretable feature, e.g. transcription start sites assayed from csRNA-seq.

Degenerate sequences, sequences from repetitive regions, and sequences sampled from overlapping

genomic intervals are similarly handled using protocols from MEPP.

Unlike MEPP, LMPP has the additional option of masking out motifs from an existing

JASPAR-formatted motif file from the input sequence. This step is optional and allows users to filter out

previously discovered motifs in order to recover more unique motifs in subsequent invocations of LMPP.

LMPP recovers the positions of these “masking motifs” using MOODS [32], then replaces the bases with

the special “blank” character “_”. This blank character serves as an exception to one-hot-encoding of the

sequence, and is interpreted as an all zero vector at that position.
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In order to compensate for the influence of GC bias on motif finding, we use least squares linear

regression to regress out the effect of sequence GC content on the input sequence scores, retaining the

residual as the GC-corrected sequence scores for the purposes of later steps. This step is optional and

can be turned off.

3.3.1.2 Scaling positional profile by sequence scores

While MEPP accepts known motifs and outputs novel information in the form of positional

enrichment profiles, LMPP reverses this process, accepting a target profile P to discover de novo motifs

that have positional enrichment resembling P (Fig. 3.1A,B). Each position in P thus corresponds to a motif

position in each input sequence Si, similar to the positional profiles generated by MEPP. To ensure that

positional information is incorporated into the training of the convolutional neural networks that LMPP

uses to encode motifs, we convert each sequence score yi into a scaled positional profile Y’i:𝑌'𝑖 =  𝑃 * 𝑦𝑖
For best results, values in the positional profile P must range from -1 to 1. Similar to the positional

profiles in MEPP, positive values target positive enrichment at a given position, while negative values

target negative enrichment at a given position. Values closer to zero indicate diminishing target

enrichments.
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3.3.1.3 Convolutional neural network training

To learn positional motifs, LMPP makes heavy use of a specialized convolutional neural network

(CNN). Users specify the motif length k and a target number of motifs to learn, n. Similar to MEPP, users

may also specify a motif margin m to account for loose tolerances in motif positioning. The network is

then comprised of the following layers (Fig 3.2):

1. Input layer (IL) (one-hot encoded sequence)

2. Dinucleotide convolutional layer (DNCL) (kernel size 2, 32 kernels)

3. Motif convolutional layer (MCL) (kernel size k-1, n kernels)

4. Dropout layer (dropout rate 0.1)

5. Average pooling layer (window 2m+1, stride 1)

6. Zero padding (pad to input layer length)
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Figure 3.2: LMPP learns motifs using a specialized convolutional neural network
Diagram of LMPP’s internal neural network, from right to left, consisting of two convolutional

layers followed by auxiliary non-trained layers. Neural network inputs and outputs are indicated.
TSS-centering is assumed here, although any centering feature may be used, similar to MEPP. Motifs are
extracted from the second convolutional layer, where motifs are recognized.
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Data fed into to the input layer consist of one-hot encoded DNA sequence, similar to MEPP or

other machine learning tools that operate on DNA sequence. Similar to MEPP, all sequences are

expected to share the same length and a common center feature, typically the TSS (Fig. 3.2). Exceptions

to the one-hot encoding are: The degenerate nucleotide “N”, represented by a vector of even probabilities

of all bases at 0.25; And the special motif-masked symbol ‘_’, which is represented by a vector of all

zeroes.

The DNCL allows the network to account for dinucleotide presence and positional

interdependence between adjacent bases of motifs. Meanwhile, the MCL is the principal layer where

motifs are captured: activation values from this layer reflect motif recognition at valid positions from the

input sequence. Both the DNCL and MCL use rectified linear (ReLu) activation functions, which are

similar to linear functions, except that values below zero output to zero: This construction allows motifs

that below a recognition threshold to be ignored, similar to log-odds detection thresholds for traditional

motifs.

To prevent network accuracy from being too dependent on the positional recognition of any

singular motif, the dropout layer randomly drops inputs received from the MCL to zero, at a rate of 0.1.

The average pooling layer allows the network to tolerate deviations in the position of a motif: the motif

margin m, may be set higher if applying LMPP to a lower resolution assay such as ChIP-seq. The zero

padding layer allows for dimensional compatibility of network outputs and the scaled profiles, and sets the

interpretation of motif positions relative to the center of the motif.

For learning motifs from data that lack strandedness information, e.g. ChIP-nexus, LMPP adjusts

the network to account for dual motif orientations. Layers 1-3 are evaluated twice: once for the input

sequence as-is to obtain verbatim motif recognition values, and once for a reverse complementation of

the input sequence. The second output is then reversed, so that positional indices remain consistent,

yielding motif recognition values for reverse complemented motifs from the MCL. Finally, a max pooling

layer selects the maximum value for each motif at each position in the MCL from either the verbatim motif

recognition values, or the reverse complemented motif recognition values. This renders the network

internally invariant to reverse complementation.
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In order to learn motifs that describe the input data while reflecting enrichment distributions from

the positional prior, this network is trained to infer the scaled positional prior Y’i from one-hot encoded

input sequence Si. The network is trained using an Adam optimizer to minimize the mean squared error

(MSE) between its own output and the scaled positional prior Y’i. By default, LMPP trains for a maximum

of 1000 epochs, with an early stopping procedure that stops training when the MSE remains at a stable

minimum for a set number of epochs (10 by default).

Because the goal of LMPP is to describe motifs within the input dataset rather than create a

robust predictor from it, all input data is used for training, analogous to how all sequences of interest are

passed to de novo motif learning algorithms such as HOMER.

3.3.1.4 De novo motif extraction and amplification

In order to recover usable position frequency matrix (PFM) format motifs from the trained CNN,

we first evaluate layers 1-3 of the CNN on one-hot encoded sequences, recovering the indices and values

of maximum motif recognition. We then extract the maximum activating one-hot encoded subsequences

for each motif for each sequence, and scale them by their activation values (thus preventing poor

contributions from ). This weighted contribution is then summed on a per-motif basis, yielding

non-normalized, weighted PFMs. These PFMs are then normalized so that values at each position sum to

1.

To increase Shannon information content (IC) from the normalized motifs, we calculate the IC for

a PFM using Logomaker’s transform_matrix function, then scale the normalized PFM so that the

maximum IC on at least one position of the PFM approaches 2 [36]. This results in less degenerate motifs

without modifying the CNN architecture or training.

Due to the dropout layer, some kernels may not return motifs with any information content. These

are omitted from the output motifs.

LMPP packages the normalized and amplified motifs in a JASPAR-formatted motif PFM format,

for compatibility with other bioinformatics tools including MEPP and MEIRLOP [103]. For ease of use,

users may specify a custom prefix for motif IDs.
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3.3.1.5 Positional profile generation and comparison

Because LMPP outputs motifs in JASPAR PFM format, and shares a scored sequence input

format with MEPP, we can use MEPP to characterize the distribution of de novo motifs within the data. By

running MEPP on the same scored sequence inputs as were submitted to LMPP, we can create MEPP

heatmaps of where there de novo motifs appear, as well as enrichment positional profiles for these de

novo motifs (Fig. 3.1B). This affords transparency as to where and how the discovered motifs appear in

the dataset, rather than relying on black box machine learning interpretations.

To quantify the similarity between the target profile and the enrichment positional profiles of de

novo motifs, we use the Pearson correlation coefficient of the profile values across all positions.

3.3.1.6 Comparison against known motifs

While LMPP can be executed without a dataset of known TF binding motifs, effective

interpretation of de novo motifs should be grounded against known references. To this end, we

re-implemented similar motif comparison methods used in versions 3.3 onwards of HOMER: We align de

novo and known motifs against each other at multiple offsets and in both relative orientations (forward

and reverse-complemented). At each alignment, we evaluate the Pearson correlation coefficient where

the motifs overlap, and report the alignment with the greatest coefficient.

3.3.2 Ground truth motif recovery

One of the premises behind LMPP’s implementation is that it can reverse the

motif-to-enrichment-profile transformation achieved by MEPP (Fig 3.1A,B). To verify this premise, we ran

MEPP on scored sequence datasets with known relevant motifs, and created positional priors from the

enrichment positional profiles for those motifs, to test if LMPP could reconstruct the known relevant motif

from its enrichment profile.

The testing procedure was performed in 4 parts, which were executed separately for each

dataset:

1. Ground truth dataset generation

2. Known motif positional profile generation
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3. Two-pass known motif recovery

4. Recovered vs. known motif comparison

Each ground truth dataset had its recovered ground truth motifs discovered and evaluated

separately.

Table 3.1: Datasets for ground truth dataset generation

Ground Truth
Dataset

Motif
Margin Strand Oriented Motif to

Recover
GEO
Accession Notes

fly-tss 2 Yes

INR

GSE203135

Delos Santos et al.
2022 (Reproduced in
Chapter 2; Manuscript
under review)

DPE

TATA

siRNA-nrf1-tss 2 Yes NRF1
GSE199431

Duttke et al. 2022
(Manuscript Under
Review)siRNA-yy1-tss 2 Yes YY1

siRNA-nfy-tss 2 Yes NFY GSE115110 Oldfield et al. 2019 [11]

nanog-chip-nexu
s 5 No Nanog

GSE137193 Avsec et al. 2021 [86]oct4-chip-nexus 5 No Oct4

sox2-chip-nexus 5 No Sox2

klf4-chip-nexus 5 No Klf4
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3.3.2.1 Ground truth dataset generation

We first created a series of scored sequence datasets from csRNA-seq, Start-seq, and

ChIP-nexus experiments, for which relevant motifs are known. These datasets are summarized in Table

3.1, including references for their data generation methods.

For ChIP-nexus datasets, the scored sequences were generated as described in the

supplemental methods for the previous chapter, MEPP. Briefly, we use data from the MACS2 [104]

narrowpeak calls to locate the peak summits and peak signal values, then extract sequence +/- 200 bp of

the peak summits. Sequences from peaks were scored by their corresponding peak signal values. A motif

margin of 5 is used to account for less positional specificity in ChIP-nexus.

3.3.2.2 Known motif positional profile generation

We then ran MEPP on each dataset of scored sequences, profiling enrichment of known motifs,

including the relevant target motifs. For most experiments here we use the same JASPAR-formatted

HOMER motif dataset as we used for MEPP. The exception is ground truth analysis on Drosophila TSS,

for which we use a JASPAR-formatted conversion of core promoter motifs from Ohler et al [80].

For compatibility with LMPP, the enrichment positional profile for each dataset’s relevant motifs

was converted into a positional prior by scaling the magnitude of the most extreme maximum or minimum

to an absolute value of 1. We term the resulting profile a ground truth positional prior.

3.3.2.3 Two-pass known motif recovery

For each scored sequence dataset, we used LMPP to learn motifs while incorporating the

previously generated ground truth positional prior. Because these positional priors were specific to a

single motif, they recovered multiple similar de novo motifs. To explore more diverse outputs, we

performed a second pass to learn more motifs with LMPP, this time masking out the motif whose

enrichment positional profile was most correlated with the ground truth positional prior. LMPP Each pass

with LMPP was configured to learn a maximum of 10 motifs 10 bp long, over a maximum of 1000 epochs

with early stopping.
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3.3.2.4 Recovered vs. known motif comparison

Upon completion of both LMPP passes, we then derived MEPP profiles for the de novo motifs,

then recovered the de novo motif with the enrichment profile most correlated with the ground truth

positional prior. We compared the similarity of this recovered motif against the known ground truth motif,

using the motif comparison procedure previously described.

3.3.3 GWAS-informed de novo motif discovery from COVID-19 TSS data

To demonstrate the ability of LMPP to integrate biomedical data, we performed a de novo motif

analysis of transcription start sites found from csRNA-seq of COVID-19 patients [105]. In order to focus

the motif search on sequence features relevant to COVID-19 induced lung damage, we incorporate a

positional profile derived from a COVID-19 GWAS study comparing respiratory symptoms after infection.

3.3.3.1 COVID-19 csRNA-seq analysis

We used csRNA-seq data from whole white blood cells isolated from blood samples drawn from

COVID-19 patients, as collected, generated, and described by Lam et al. [105]. Our analysis proceeds

after read alignment and tag directory generation for downstream analysis with the HOMER suite. No

identifiable sequence data was processed, and de-identified donor codes were used.

Starting from the generated tag directories, we used the HOMER script “getTSSfromReads.pl” to

identify individual TSS from all csRNA-seq samples, after controlling for potential false positives using

csRNA-seq input control samples, requiring a minimum raw coverage of 7 5’ read ends to call a TSS.

We then quantified the called TSS for all samples, using HOMER’s “annotatePeaks.pl” script,

itself a wrapper around DESeq2. We derived both raw counts and quantifications normalized using

DESeq2’s variance-stabilizing transformation [88].

To mitigate severe outlier TSS, analysis proceeded only with TSS possessing at least 10 reads in

10 samples. In order to remove the effect of confounding variables, including batch effects,

VST-normalized quantifications were further processed using PEER [106,107], accounting for donor

codes sequencing date batch effects.
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3.3.3.2 Correlation of csRNA-seq TSS with lung health

Using data from Lam et al., csRNA-seq samples were annotated with lung injury severity data for

the patient around the date of sampling, quantified as a Modified Murray Lung Injury Score (MMLIS), as

previously described by Lam et al. [105]. In order to determine the extent by which transcription from a

TSS increased or decreased with COVID-19 induced lung damage, we scored TSS by the Spearman

correlation of its expression and MMLIS across all infected samples.

We sampled sequence +/- 300 bp of each correlation-scored TSS from the hg38 human

reference genome, then converted these scored TSS sequences into a scored FASTA format compatible

with MEPP and LMPP, where sequence headers consist of the TSS ID and the correlation score,

separated by a space.

3.3.3.3 Positional prior generation from GWAS SNPs

In order to incorporate positional information on functional sequence features disrupted by

genetic variation, we constructed a positional prior using GWAS SNP data from the COVID-19 Host

Genetics Initiative, as provided from GRASP [96,97] (Fig. 3.3A). For parity against our correlation-scored

TSS, we used GWAS results comparing individuals with very severe COVID-19 respiratory symptoms

against individuals who were not hospitalized for COVID infection. This ensured that both the scored TSS

and the positional profile characterized features COVID-19 induced lung injury.

To construct a TSS-centric centric positional prior, we calculated the positions of SNPs relative to

each scored TSS, accounting for the strand orientation of the TSS (Fig. 3.3B). Thus, SNPs upstream of

the TSS consistently had a negative relative position assigned, while SNPs downstream of the TSS

consistently had a positive relative position assigned. For each TSS-centric position within +/- 300 bp, we

summed a significance-weighted contribution from each SNP’s GWAS p-value p, calculated as -log10(p) if

p <= 0.05, 0.0 otherwise. We smoothed the profile using a 3rd-degree polynomial Savitzky-Golay filter

with a window size of 29. To retain only parts of the profile with high signal, we used a high-pass filter that

set below-average profile values to 0. The final GWAS-based positional prior was then scaled so that the

maximum of absolute values from the profile was equal to 1, for compatibility with LMPP (Fig. 3.3C).
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Figure 3.3: Schematic for creation of a positional prior from GWAS SNPs
(A) Manhattan plot of GWAS SNPs found within +/- 300 bp of TSS
(B) Orientation and alignment of TSS-proximal SNPs within TSS-proximal reference frames
(C) A GWAS-informed positional prior created using summed contributions from GWAS SNPs at

each TSS-proximal position, weighted by the significance of their association in the GWAS study.
The final profile is smoothed using a SavGol filter and normalized to a maximum absolute value
of 1.0
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3.3.3.4 De novo motif discovery from GWAS positional prior

To search for positionally enriched de novo motifs, we ran LMPP on the dataset of

correlation-scored TSS sequence, using the GWAS-based positional prior to optimize for enrichment at

TSS-centric locations impacted by SNPs associated with severe respiratory symptoms after COVID-19

infection.

We ran LMPP in two passes. For each pass, we trained the CNN to learn a maximum of 10

positionally enriched motifs 10 bp in length, after masking out motifs learned in previous passes from the

sequences. To characterize the positional enrichments of these learned motifs, we ran MEPP using the

same scored TSS sequence dataset. We also compared the learned motifs against known motifs from

HOMER.

3.3.4 Characterization of positional prior effects

In order to confirm that the choice of positional prior affects the motifs LMPP learns from data, we

created six stereotypical synthetic positional priors, each describing broad positional preferences. These

profiles are described in Table 3.2, and are generated as linearly interpolated line segments between the

tabulated positions and heights. We then ran LMPP using each synthetic positional prior in two passes to

learn a maximum of 10 positionally enriched motifs 10 bp in length. In the second pass, LMPP learned

motifs after masking out motifs learned from the first pass from the sequences.

To characterize the motifs learned by MEPP using each synthetic positional prior, we compared

the learned motifs against known motifs from HOMER. For each synthetic positional prior, we filtered for

motif matches exceeding a correlation of 0.8, then counted the number of matched unique known motifs

from each HOMER-annotated motif family. We then normalized these counts by the number of motifs in

each motif family. The use of broad motif families prevents subtle nuances in learned motifs from being

overinterpreted, accounting for the similarities between motifs within a family.
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Table 3.2: Numerical description of synthetic positional priors

Profile Name Start
(TSS-relative)
(bp)

End
(TSS-relative)
(bp)

Locations
(TSS-relative) (bp)

Profile
Heights

linear_up_down_wide_600bp -300 300
-300,-100,0,1,100,30
0 0,0,-1,1,0,0

linear_up_down_narrow_600
bp -300 300 -300,-25,0,1,25,300 0,0,-1,1,0,0

square_up_down_600bp -300 300
-300,-100,0,1,100,30
0 -1,-1,-1,1,1,1

linear_down_up_wide_600bp -300 300
-300,-100,0,1,100,30
0 0,0,1,-1,0,0

linear_down_up_narrow_600
bp -300 300 -300,-25,0,1,25,300 0,0,1,-1,0,0

square_down_up_600bp -300 300
-300,-100,0,1,100,30
0 1,1,1,-1,-1,-1

3.4 Results

3.4.1 LMPP recovers motifs from positional enrichment profiles

In order to demonstrate that LMPP learns motifs that have positional enrichment corresponding to

the input positional prior, we tested its ability to recover known motifs from positional priors derived from

their enrichment positional profiles. Overall, we tested 3 known Drosophila core promoter motifs from

Drosophila TSS, 3 binding motifs for knocked down TFs from differential transcription initiation

experiments, and 4 binding motifs for ChIPped TFs from ChIP-nexus experiments.
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Figure 3.4: LMPP can recover known motifs from their enrichment positionality profiles
(A) The first two columns display the ground truth case name and the logo of the de novo motif

recovered by LMPP.
(B) Double sparkline plot comparing the positional prior (in orange) and the enrichment positionality

profile (in blue, generated by MEPP) of the de novo motif recovered by LMPP. For legibility, both
profiles have been scaled to the same minimum and maximum, and the area between each
profile and the line y=0 has been shaded. In addition, the 95% confidence interval of the
enrichment positionality profile has been shaded in gray.

(C) The ID of the known ground truth motif LMPP was tasked to recover. This enrichment positionality
profile of this motif (as generated by MEPP) was scaled to provide the positional prior input to
LMPP.

(D) Dual motif alignment logos of the known ground truth motif (top), and the de novo motif recovered
by LMPP (bottom).

(E) Table rows corresponding to results for recovering the motifs of Drosophila core promoter
elements from their enrichment positional profiles surrounding Drosophila TSS. The TSS were
scored by their transcription signal as measured by csRNA-seq.

(F) Table rows corresponding to results for recovering the binding motifs of knocked-down
transcription factors from their enrichment positional profiles surrounding. The TSS were scored
by their differential transcription between knockdown and control conditions.

(G) Table rows corresponding to results for recovering the binding motifs of ChIPed transcription
factors from their enrichment positional profiles. The TSS were scored by their ChIP-nexus peak
signal scores.
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We used LMPP to recover the INR, DPE, and TATA-box motifs using their enrichment profiles as

positional priors across over 40K Drosophila TSS (Fig. 3.4E). LMPP analyzed 44.9K TSS from

Drosophila embryos, learning a maximum of 20 motifs (2 passes of 10 motifs) of length 10 bp, and

returning the motif with an enrichment profile most correlated with the positional prior. Overall, the

recovered motifs bear a strong resemblance (r > 0.94) to the ground truth motifs via correlation of their

motif matrices (Fig. 3.4A,D). In addition, the positional profiles of these recovered motifs correlate with the

positional priors (r > 0.80) (Fig. 3.3B).

We repeated the procedure to recover binding motifs for NRF1, YY1, and NFYA, from differential

transcription initiation experiments characterizing the siRNA knockdown of their respective transcription

factors (Fig. 3.4F). We used the enrichment profiles of each TF’s binding motif across the TSS as a

positional prior for LMPP. For NRF1, and YY1, these were data from csRNA-seq assays, while for NFYA,

this was a Start-seq assay [11]. Similar to the previous results on Drosophila TSS, we find that the

recovered NRF1 and YY1 motifs match their ground truth counterparts (r > 0.97) (Fig. 3.4D). However,

recovery of the NFYA motif from its enrichment profile only returned a limited resemblance (r = 0.77).

Similarly, enrichment profiles for the recovered NRF1 and YY1 motifs are highly correlated with the

positional priors (r > 0.97), the enrichment profile for the recovered NFYA motif does not fully reflect that

of the original known motif (r  = 0.64) (Fig. 3.4B).

The previous ground truth recovery tasks demonstrate motif recovery from TSS profiling data,

and included strand information to orient sequences and motif distributions. In order to test the capability

of LMPP to recover motifs from data that does not include strand information, we used LMPP to recover

the binding motifs of ChIPed transcription factors from ChIP-nexus data (Fig. 3.4G). In this mode, the

LMPP convolutional neural network was configured to recognize motifs in a strand-invariant manner.

Recovery of Nanog, Sox2, and Klf4 binding motifs from their enrichment profiles across ChIP-nexus

summits was successful, with high correlation between known and recovered motifs (r > 0.91) (Fig. 3.4D).

Oddly, while the recovered Nanog binding motif matched the known motif (r = 0.95), its enrichment profile

did not match that of the known motif strongly (r = 0.59) (Fig. 3.4B). The Oct4 binding motif, on the other
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hand, had a more qualified resemblance to the known motif, in both the motif matrix (r = 0.87), and the

enrichment positional profile (r = 0.85).

These results demonstrate the LMPP is capable of recovering motifs from their positional

enrichment profiles in almost all cases, indicating that it reverses the operation previously described for

MEPP. Thus, we validate LMPP from ground truths as a form of de-novo positional motif enrichment,

indicating its capabilities in recovering positionally constrained motifs from user-defined data.

3.4.2 LMPP recovers motifs relevant to COVID-19 infection

To identify motifs whose modification by natural variation could impact COVID-19 respiratory

symptoms, we proceeded to use LMPP to determine motifs positionally enriched around both TSS and

relevant GWAS SNPs. Our analysis was performed on sequences extracted +/- 300 bp from over 175K

TSS, which we scored by the correlation of their expression against patient lung injury (as measured by a

modified Murray score): Higher scores indicated TSS that correlated with increased lung injury, while

lower scores indicate TSS correlated with decreased lung injury. In order to direct the motif search

towards the TSS-relative positions of relevant GWAS SNPs, we derived a positional prior from the

contribution of 3274 SNPs found +/- 300 bp of over 175K TSS. We weighted the contribution of these

SNPs to the positional prior by the significance (-log10 P-value ) of their association against whether

subjects experienced severe COVID-19 respiratory symptoms, or did not require hospitalization for

COVID infection.

LMPP analyzed both the set of scored TSS sequences and the GWAS-derived positional prior.

LMPP’s neural network was trained to recognize at least 20 motifs (10 motifs each pass, for 2 passes)

that maximized enrichment following the positional prior, directing motif enrichment around more

significant GWAS SNPs.
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Figure 3.5: LMPP discovers the ISRE motif using a GWAS SNP-based positional prior
(A) Motif logo for the de novo ISRE motif discovered by LMPP.
(B) Partial MEPP plot of the ISRE- motif discovered with LMPP. The motif count over position, motif

heatmap, and enrichment positional profile are shown in that order. X-axis coordinates are
relative to the TSS. TSS are scored by increasing vs. decreasing transcription correlated with
lung injury.

(C) Dual motif alignment logos displaying similarity between the de novo motif and other binding
motifs in the IRF family, including the ISRE.
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The most positionally enriched (adjusted p-value < 0.001) motif recovered by LMPP strongly

matched (r = 0.98) that of the interferon stimulus response element (ISRE) (Fig. 3.5A,C). As expected

from the positional prior, this motif is positively enriched upstream of the TSS (Fig. 3.5B), in a direction

associated with higher transcription with increased COVID-19 induced lung injury. The ISRE is a known

binding site for multiple factors, such as IRF3 and ISGF3 [108]. IRF3 is known to bind to ISRE in

response to TLR3 activation upon recognition of viral double-stranded RNA. The SARS-CoV-2 spike

protein interacts with IRF3, inhibiting this response [109]. Meanwhile, ISGF3 is activated by type I

interferon signaling, and its binding to ISRE gives rise to multiple antiviral responses [110]. Among these

responses is the transcriptional upregulation of MxA, which encodes a protein known to sequester viral

components [94,111]. Thus, we find that LMPP’s neural network has identified a motif known to play

important roles in antiviral response, which if disrupted by natural variation, can lead to differential health

outcomes.

Another positionally enriched (adjusted p-value < 0.001) motif identified by LMPP, which does not

resemble binding to IRF-family transcription factors, instead resembles binding motifs for the E2F family,

mainly E2F4 (r = 0.78) (Fig. 3.6A,C). The positive enrichment of this motif, which occurs slightly

downstream of the TSS, is consistent with increased transcription COVID-19 lung injury increases (Fig

3.6B). E2F cell-cycle related targets were also previously found to be an enriched set of genes when

comparing gene expression between COVID-19 patients with and without cancer [112]. The discovery of

E2F motifs from this data is corroborated by the analysis of Lam et al., which also found enrichment of

E2F motifs in regulatory regions associated with increased lung injury [105]. This corroborated enrichment

could be explained by transcriptional regulation of the cell cycle to affect immune cell populations in

response to infection [105]. However, the resemblance of the de novo motif is limited, potentially as a

result of attempting to match multiple E2F family motifs at once: While the correlation of this motif is

highest against the E2F4 motif, the information content more closely resembles that of the E2F6 motif.

This reflects a potential weakness of our method when identifying smaller numbers of motifs in a single

pass: A single motif may be diluted when generalizing to multiple subsequences within a family of

relevant motifs. However, this still reflects LMPP’s ability to learn motifs that are likely to be relevant to

viral activity and immune response.
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Figure 3.6: LMPP discovers an E2F binding motif using a GWAS SNP-based positional prior
(A) Motif logo for the de novo E2F-like motif discovered by LMPP.
(B) Partial MEPP plot of the E2F-like motif discovered with LMPP. The motif count over position, motif

heatmap, and enrichment positional profile are shown in that order. X-axis coordinates are
relative to the TSS. TSS are scored by increasing vs. decreasing transcription correlated with
lung injury.

(C) Dual motif alignment logos displaying similarity between the de novo motif and other binding
motifs in the E2F family, including the E2F4 and E2F6.
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To verify that SNPs associated with differences in COVID-19 induced respiratory symptoms

landed either on or near these motifs (as either causal SNPs or potentially indirectly associated SNPs),

we proceeded to scan for these motifs in sequence samples +/- 10 bp of the SNP locations. For the

ISRE-like motif, 14 SNPs (with nominal p-values < 0.05) were identified having this motif within +/- 10 bp,

with 10 direct hits. For the E2F-like motif, there were 21 SNPs (with nominal p-values < 0.05) identified

with the motif within +/- 10 bp, with 18 direct hits. Overall, these results indicate that LMPP is able to

identify motifs likely to be relevant to SARS-CoV-2 infection, given the construction and use of a positional

prior to direct the learning process in a data-driven manner. Variants on and around these motifs could

present targets for specialized genotype arrays for predicting COVID-19 symptom severity and risk

factors, enabling fine mapping studies to be informed by otherwise disparate genotyping and

transcriptomic data.

3.4.3 Positional priors direct motif discovery

Due to the deliberately limited nature of LMPP’s neural network architecture, we expect that the

positional prior is an important input to discover relevant families of binding motifs, and that the choice of

positional prior affects the motifs discovered. To verify this expectation, we created a set of six

stereotypical positional priors, with pairs of these positional priors being inverted versions of each other.

One pair corresponded to positional priors approximating Heaviside step functions, while the other two

pairs described rising zig-zag patterns of varying width. We invoked LMPP in a two-pass process to

discover motifs from the same COVID-19 TSS dataset analyzed previously, but using each stereotypical

positional prior rather than only using the GWAS-based one. To avoid over-interpreting minute changes in

learned motifs, we counted the number of similar (r >= 0.8) motifs learned from each motif family,

normalized by the total number of motifs in each family. We used the HOMER known motif dataset as the

basis for known motifs, and to annotate the relationship between motifs and motif families.
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Figure 3.7: LMPP discovers different motif families when given different positional priors
(A) A clustermap of the amount of motifs from each motif family learned, when LMPP is given

different stereotypical positional priors. The number of motifs learned from each family is
normalized by the number of motifs in that family. The IRF motif family is highlighted in red boxes.
Motifs were learned from a dataset of TSS scored by their correlation against increased lung
injury.

(B) Line plots of each stereotypical positional prior. Note that motifs from the IRF family were learned
by LMPP only for positional priors featuring a strong upstream positive enrichment target.
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We find that each positional prior yields a different amount of motifs learned from each family. In

particular, only two of the stereotypical positional priors used allowed LMPP to learn motifs resembling

those of the IRF family (Fig 3.7A), despite the importance of IRFs to viral response and the phenotype

analyzed in this dataset [113]. However, we note that the two positional priors that direct for broad positive

enrichment upstream of the TSS do recover IRF family motifs, similar to the GWAS-based positional prior

(Fig 3.7B). Yet, there was little correlation between motif families learned from each positional prior

(maximum Spearman r = 0.50).

Overall, we find that by substituting different positional priors and recovering different families of

motifs, LMPP does utilize these positional priors to direct the process of learning motifs. This implies that

selection of data-driven positional priors would allow researchers to use LMPP to perform novel queries

for de novo motifs within their data.

3.5 Discussion

By incorporating a positional prior, LMPP enables researchers to use other data within

TSS-proximal reference frames to determine positionally enriched de novo motifs. LMPP effectively

reverses the enrichment positional profiling operation performed by MEPP: While MEPP takes a known

motif and creates a profile describing its enrichment in a dataset of scored sequences across different

positions relative to e.g. TSS; LMPP will take a positional prior and search for motifs in a dataset of

scored sequences, maximizing motif recognition in the locations and correlations specified by the prior.

When applied to ground truth datasets to recover a known motif from its enrichment profile, we find that

LMPP can recover the known motif in most cases, demonstrating its inversion of the operation performed

by MEPP. Our results demonstrate this motif recovery operation on a suite of ground truths, including the

positions of Drosophila core promoter elements, differential transcriptional assays of TF knockdown,

ChIP-nexus assays for TF binding.

LMPP departs from other methods of de novo motif discovery in a manner similar to MEPP and

MEIRLOP, by using biological sequence scores directly, rather than requiring that researchers simplify

biological signal into boolean sets to satisfy the requirements of Gibbs sampling or expectation

maximization models. In addition, while LMPP outputs motifs in JASPAR format for compatibility with
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other downstream tools, LMPP’s neural network incorporates dinucleotide interdependencies between

adjacent nucleotides in its internal motif model, reflecting the need to control for dinucleotide sequence

content as previously demonstrated by MEIRLOP. In addition, while de novo motif finding tools such as

HOMER search for motifs enriched in a fixed direction without regard for their position, LMPP allows

researchers to drive the discovery of new motifs using other data that can describe their positional

enrichment.

We demonstrate this potential for discovery by translating GWAS SNPs into a TSS-proximal

reference frame. This created a positional prior that directs motif discovery towards TSS-proximal loci

associated with differences in the severity of COVID-19 induced respiratory symptoms. We find that by

using this positional prior, LMPP learned motifs with known roles in antiviral response and replication. We

also found that these motifs were found in proximity to GWAS SNPs with nominal associations to

COVID-19 respiratory symptom severity. These results indicate LMPP as a promising means of

identifying binding motifs for causal inference of GWAS SNPs. The motifs discovered by LMPP using

GWAS-informed positional priors could be used to guide the creation of specialized genotyping arrays, to

facilitate fine mapping studies and the creation of genetic risk scores.

We further demonstrate that the ability of LMPP to recover relevant motifs is a function of the

constructed positional prior. In doing so, we find that not all positional priors can recover the IRF family of

motifs relevant to the scored TSS from COVID-19 patients: This indicates the specificity of those motifs in

our results to the component of our positional prior that specifies increased positive enrichment of motifs

upstream and near the TSS. Thus, researchers can expect data-driven construction of the positional

priors to guide LMPP to discover relevant motifs, allowing the integration of otherwise disparate datasets.

In doing so, researchers may better direct the identification of disease-relevant transcription factors and

regulatory networks by leveraging multiple positional priors derived from previous studies, e.g. related

GWAS or ChIP-seq experiments: This would better contextualize the discovered motifs and their

positional constraints, allowing for better interpretation of binding motif grammars and their associated

networks of transcriptional regulation for diseases under study.

LMPP’s limited convolutional neural network architecture is intended to encode a more

transparent representation of the sequence features it learns. This property is enhanced by MEPP’s
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heatmap visualization of the distribution of motifs within a dataset of regulatory region sequences,

allowing researchers to directly visualize where discovered motifs occur. This presents the opportunity for

future work to employ these methods to simplify and visualize the rules of regulatory region motif

grammar as learned by more involved machine learning methods, such as generative adversarial

networks for synthetic promoter design [114]. This would allow such generative systems to represent less

opaque “black boxes” to researchers, presenting the roles of motif grammar in a manner more amenable

to hypothesis generation.

3.6 Conclusion

Taken together, we find that LMPP is a novel application of machine learning that allows

researchers to find de novo motifs by incorporating sequence and positional data from otherwise

disparate datasets. Similar to our previous work with MEIRLOP and MEPP, LMPP retains the ability to

analyze sequences from genomic regions that have been scored across a continuum of two extremes of

biological interest. Unlike many other de novo motif enrichment methods, LMPP does not search for

motifs that are globally enriched towards either extreme, but instead uses the positional prior to specify

targeted local motif enrichments. While MEPP previously relied on a fixed motif library, LMPP removes

this restriction, taking advantage of a similar yet distinct convolutional neural network architecture to learn

positionally enriched motifs. As such, we have made it available as an extension to MEPP.
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Conclusion

We have presented a series of three novel bioinformatics methods for motif enrichment analysis

(MEA), and demonstrated their utility on datasets relevant to immune response. These methods address

oversimplifications or omissions of key axes of interest to MEA: MEIRLOP expands on score-based MEA,

allowing researchers to use biologically derived scores to characterize regulatory regions, rather than

oversimplify those scores into threshold-based sets. MEPP transparently visualizes and profiles the

enrichment of motifs within regulatory regions in two axes: biologically derived scores, and position

relative to relevant anchor points such as TSS. Finally, LMPP inverts the paradigm presented by MEPP,

by allowing users to discover de novo motifs whose positional enrichment follows a positional profile that

can be informed by otherwise disparate datasets.

Although we demonstrate these methods on datasets that involve immune response pathways,

these tools remain broadly applicable to studying other aspects of human health and biology. MEIRLOP

itself has seen use in other published research efforts both before [66] and after [115] its own standalone

publication. This is owed to the flexibility and verisimilitude afforded by the fact that users need not

threshold biologically relevant scores into discretely thresholded sets in order to determine motif

enrichment, preserving the underlying truth of degrees of biological response.

Although currently in review, MEPP itself is already being used as part of a larger ongoing effort

to characterize how multiple transcription factors can mediate varying levels of transcriptional activation or

repression depending on their distance to transcription start sites, giving rise to a spatial grammar of

transcriptional regulation (Duttke et al. 2022, manuscript in review). In that same work it is used as both a

data visualization and hypothesis generation tool: In particular, its profiling of the relationship between

motif distance and TSS activity has been corroborated using a massively parallel reporter assay that

captures transcription start site activity across synthetic promoters, called “TSS-MPRA” (Duttke et al.

2022, manuscript in review). We expect that when combined with LMPP to discover de novo motifs that

approximate a target relationship between motif distance and TSS activity, the potential for hypothesis

generation and discovery should only increase.
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MEPP and LMPP both internally leverage convolutional neural networks, but in a much more

constrained manner than larger deep learning models such as DeepBind or DeepSEA [116,117]. This use

of machine learning components is not incidental: Combined with their visualization of motifs within a

datasets, MEPP and LMPP’s architectures derive from the goal of combining unbiased data mining

methods with less opaque interfaces to help researchers understand the sequence features and patterns

mined. Looking forward, we aim to leverage the transparency gained through MEPP and LMPP as a

foundation to better understand and visualize the rules of regulatory region sequence grammar learned by

more complex methods, such as generative adversarial networks for synthetic promoter generation [114].

Taken as a whole, we have crafted the methods presented in this work to empower researchers

in making further discoveries, by making use of otherwise oversimplified or neglected axes of motif

enrichment in their data, while maintaining the transparency required to drive interpretation of those motifs

and their roles in transcriptional regulation. With MEIRLOP, we used biological scores directly, avoiding

assumptions that compress these scores into thresholded sets. In the process, we have created a flexible

MEA method used in multiple studies. With MEPP, we profiled the effect of position on motif enrichment

and transcription, taking advantage of new transcription initiation profiling protocols that allow better use

of TSS position. In the process, we no longer oversimplify MEA to ignore positional effects. And finally,

with LMPP, we use both scored sequences and positional data to inform the discovery of de novo motifs,

reducing reliance on complete motif datasets, and allowing researchers to incorporate information from

otherwise disparate data.
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Appendix

A.1 Supplemental Material for Chapter 1
Below we have reproduced supplemental figures and tables for Chapter 1, on MEIRLOP. The

exception is supplemental Table 1.S3, which is 600 rows long and so cannot be directly included.
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Figure 1.S1: Differential ChIP-seq of HCT116 cells before and after stimulation yields very few
significantly differential peaks.

(A) Volcano plot depicting Log2 fold change (Fold) and significance (negative of log p-value,
neglogpval) of 20,087 peaks found using MACS2 and DiffBind for HCT116 cells with (n = 2) and
without (n = 2) IFN-β stimulation. Peaks matching significantly differential criteria (FDR < 0.05, log
2 fold-change > 1.0) are highlighted in orange (n = 2).
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Figure 1.S2: Logistic regression with covariates finds enrichment of IRF9 and STAT1::STAT2
binding motifs ahead of AT-rich homeobox binding motifs.

(A) Top 10 significant enrichment results from our method, with and without covariates. Motifs
are ordered as they appear in the HTML enrichment report output.

(B) Top 10 significant enrichment results from other score-based MEA methods. Motifs are
ordered as they appear in the HTML enrichment report output.
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Table 1.S3: Table of ENCODE ChIP-seq datasets used.

Contains detailed listings of ENCODE datasets used in results section “MEIRLOP achieves

similar or better accuracy on TF ChIP-seq data”, including experiment accession IDs, download URLs,

and the names of labs where the data were generated. Because this table is over 600 rows long, it cannot

be directly included in this document in a feasible manner. In lieu of direct inclusion, a hyperlink

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493370/bin/12859_2020_3739_MOESM3_ESM.csv) is

included to the table in CSV format, as hosted by PubMed Central [93].
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Table 1.S4: Table of ENCODE DNase-seq and histone ChIP-seq experiments used.

accession_id source_url dest_filename lab_name

ENCSR000EOT https://www.encodeproject.org/
files/ENCFF156LGK/@@down
load/ENCFF156LGK.bam

dnase.bam John
Stamatoyannopoulos@
UW

ENCSR000EOT https://www.encodeproject.org/
files/ENCFF821KDJ/@@down
load/ENCFF821KDJ.bed.gz

dnase.bed.gz

ENCSR000AKU https://www.encodeproject.org/
files/ENCFF633WWH/@@do
wnload/ENCFF633WWH.bam

h3k4me3_rep1.bam Bradley
Bernstein@Broad

ENCSR000AKU https://www.encodeproject.org/
files/ENCFF777LZD/@@down
load/ENCFF777LZD.bam

h3k4me3_rep2.bam

ENCSR000AKS https://www.encodeproject.org/
files/ENCFF778EZR/@@down
load/ENCFF778EZR.bam

h3k4me1_rep1.bam

ENCSR000AKS https://www.encodeproject.org/
files/ENCFF580LGK/@@down
load/ENCFF580LGK.bam

h3k4me1_rep2.bam

ENCSR000AKP https://www.encodeproject.org/
files/ENCFF301TVL/@@down
load/ENCFF301TVL.bam

h3k27ac_rep1.bam

ENCSR000AKP https://www.encodeproject.org/
files/ENCFF879BWC/@@dow
nload/ENCFF879BWC.bam

h3k27ac_rep2.bam

ENCSR000AKQ https://www.encodeproject.org/
files/ENCFF190OWE/@@dow
nload/ENCFF190OWE.bam

h3k27me3_rep1.bam

ENCSR000AKQ https://www.encodeproject.org/
files/ENCFF692KQZ/@@dow
nload/ENCFF692KQZ.bam

h3k27me3_rep2.bam

117



A.2 Supplemental Material for Chapter 2

A.2.1 MEPP Supplementary Methods

A.2.1.1 Filtering of degenerate and repetitive sequences

To filter out degenerate sequences, we remove sequences which possess more than a

user-selectable threshold percentage of degenerate sequence content (not strictly A, C, G, or T). The

resulting thresholded sequences are then one-hot encoded for use with convolutional models later in the

analysis.

When used with soft-masked genomes that use lowercase bases to annotate repeats, MEPP

considers these lowercase bases equivalent to the degenerate nucleotide code “N”. Users may bypass

this behavior by processing the input file with awk’s toupper function.

A.2.1.2 Cluster deduplication to filter genomically overlapping sequence

If sequence from multiple overlapping genomic intervals is input into MEPP, this can lead to

artificially inflated motif periodicities, as the same genomic subsequence that matches a motif can be

repeated multiple times at shifted positions in the dataset. An example of this occurs when analyzing

sequence sampled from +/- 200bp of TSS, when multiple TSS appear clustered less than 200bp from

each other. To remedy this, we use bedtools cluster [118] to label clusters of overlapping genomic

intervals, then only select the most informative interval from the cluster; this is typically the interval with

the most coverage from the assay, e.g. the strongest of multiple neighboring TSS. We then extract

sequences and scores for this “cluster deduplicated” set of intervals, and input these scored sequences

into MEPP. Cluster deduplication may be undesirable when studying effects that rely on a feature’s

overlapping nature, e.g. spacing of a motif with neighboring instances of itself. In these scenarios, users

must avoid over-interpretation of artificial periodicities stemming from overlapping features.
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A.2.1.3 Motif heatmap downsampling

Naive downsampling of the motif heatmap to compress the vertical axis would render motif

instances invisible: Pixels containing positive matches for a motif would become averaged with

surrounding pixels containing no matches for a motif. To counter this, MEPP uses a local maximum

function to downsample the original dimensions of the motif heatmap (N sequences x M positions) to

MEPP’s display resolution.

A.2.1.4 Analysis of Drosophila melanogaster TSS

To identify TF binding motifs with position-dependent functions associated with transcription

initiation, we performed csRNA-seq to map initiating transcripts in Drosophila melanogaster embryos. We

started with cell culturing and csRNA-seq for data acquisition. This was followed by a csRNA-seq

bioinformatics analysis comparing TSS with more vs. less nascent transcription. Finally, we ran motif

enrichment positional profiling on these TSS using MEPP.

We conducted the data acquisition in two parts, described below:

1. Fly cell culture and treatment

2. Library prep and csRNA-seq on fly cells

We conducted the data analysis in three parts, also described below:

1. Core promoter element motif library compilation

2. TSS quantification from csRNA-seq

3. MEPP analysis of fly core promoter elements

A.2.1.4.1 Fly cell culture and treatment

Canton S wild-type Drosophila melanogaster flies were grown at 25˚C at 70-80% humidity in

population cages. The embryos were collected on molasses-agar plates covered with yeast.

A.2.1.4.2 Library prep and csRNA-seq on fly cells

CsRNA-seq was performed on embryonic (0-12h) Drosophila melanogaster cells as previously

described [10]. Small RNAs of ~20-60 nt were size selected form 2-5 µg of total RNA by denaturing gel

electrophoresis. A 10% input sample was taken aside and the remainder enriched for 5’Caped RNAs with
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3’-OH. Monophosphorylated RNAs were selectively degraded by Terminator 5´-Phosphate-Dependent

Exonuclease (Lucigen). Subsequent 5’dephosporylation by CIP (NEB) followed by decapping with RppH

(NEB) augments Cap-specific 5’adapter ligation by T4 RNA ligase 1 (NEB). The 3’ adapter was ligated

using truncated T4 RNA ligase 2 (NEB) without prior 3’ repair to select against degraded RNA fragments.

A.2.1.4.3 Core promoter element motif library compilation

We transformed the Drosophila core promoter motifs from Ohler et al. from log-odds space to

probability space [80], then exported the motifs in JASPAR motif format.

A.2.1.4.4 TSS quantification from csRNA-seq

First, 3’ adapters were cut using the the following command:

homerTools trim -3 AGATCGGAAGAGCACACGTCT -mis 2 -minMatchLength 4 -min 20

{reads.fastq.gz}

Where {reads.fastq.gz} stands in for the actual read file.

Then the trimmed reads were aligned to the dm6 reference genome using the STAR aligner, with splice

junctions informed by the corresponding Ensemble Genes GTF file available from UCSC [119,120]. The

read alignments were converted into tag directories using HOMER. A HOMER script,

getTSSfromReads.pl, was then used to identify individual TSS from the assay from the 5’ ends of the

aligned reads, and score them by their coverage (using “-min 3” to accept only TSS with a minimum count

of 3 reads).

The resulting TSS file was converted to a scored bed file using awk, and coverage scores were

transformed using the function log2(x+1), where x was the original score. Cluster deduplication was

performed for clusters of TSS within 200 bp of each other and on the same strand, selecting the most

highly covered TSS within a cluster. Sequence +/- 200 bp of each TSS was extracted from the dm6

reference genome, and scored by csRNA-seq coverage. We proceeded with these scored sequences for

downstream analysis with MEPP.
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A.2.1.4.5 MEPP analysis of fly core promoter elements

We ran MEPP on the resulting dataset using 200 permutations for profile permutation testing, and

filtered out input sequences that were over 50% degenerate. The effective command line invocation was:

mepp --fa {scored_sequences.fa} --motifs {motifs.txt} --out

{output_filepath} --orientations +,- --perms 200 --batch 200 --dgt 50 --jobs 20

--gjobs 10 --nogpu --dpi 100 &> {logfile}

A.2.1.5 MEPP analysis of GATA1 ChIP-seq

We started by retrieving alignment files for a GATA1 ChIP-seq experiment from K562 cells

(ENCODE experiment ENCSR000EFT), as well as corresponding input experiments from ENCODE

(ENCODE experiment ENCSR000EHM) [43,44].

In order to obtain differential scoring information, we first derived coverage bigwig files from the

alignment files using deeptools bamCoverage defaults [48]. We then used wiggletools to compute two wig

files [121]: one containing the sum of coverage across all replicates, and one containing the log2 fold

change of the mean coverage (plus one) between GATA1 ChIP-seq and input control. We calculated the

log2 fold change such that higher scores indicated greater sequencing coverage in the GATA1 ChIP-seq

experiments. Conversions between wig and bigWig formats were performed using bigWigToWig and

wigToBigWig [122].

We then used macs2 callpeak to call peak summits on each bam file [104]. We concatenated

all unique peak summits, finally using bedtools slop to expand +/-100bp from the summits. Using the

bedops utilities wig2bed and bedmap [123], we annotated these summits with scores from the previously

generated log2 fold change bigWig files. We ran the bedmap command in --wmean mode, so that each

interval (surrounding a summit) acquired a score equivalent to the mean of overlapping bigWig intervals,

weighted by the percentage of overlap. A similar operation assigned a sum of coverage score to each

summit from the previously generated bigWig files.

We then performed cluster deduplication of the motif-centered intervals, keeping only the

highest-covered interval among clusters of overlapping intervals, and additionally ensuring a minimum

total coverage of 5 reads at each interval. Finally, we extracted scored sequences (sampled from the
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hg38 reference genome) from the deduplicated intervals, and submitted these to MEPP. The effective

command line invocation was:

mepp --fa {scored_sequences.fa} --motifs {motifs.txt} --out

{output_filepath} --orientations +/- --margin 5 --perms 100 --batch 200 --dgt

50 --jobs 15 --gjobs 15 --nogpu --dpi 100 &> {logfile}

A.2.1.6 Analysis of differential chromatin accessibility between cell types

We started by retrieving alignment files for ATAC-seq experiments on K562 and HCT116 cells

from ENCODE [43,44]. Specifically, we used replicate alignment files from experiment ID ENCSR483RKN

on K562 cells, and experiment ID ENCSR872WG on HCT116 cells [43,44].

In order to obtain differential scoring information, we first derived coverage bigwig files from the

alignment files, then calculated a log2 fold change bigWig file comparing coverage between HCT116 and

K562 cells (using the same methods described above for GATA1 ChIP-seq). We calculated the log2 fold

change such that higher scores indicated greater chromatin accessibility in HCT116 cells than in K562

cells. Similarly, we calculated the summed coverage across all samples as a bigWig file.

We then scanned the hg38 human genome for instances of the GATA1 binding motif (as stored in

HOMER’s motif library under gata.motif) using the HOMER scanMotifGenomeWide.pl command

[24]. The effective command line was:

scanMotifGenomeWide.pl homer_motifs/gata.motif hg38.fa -bed -5p >

gata.scans.bed

This yielded a BED file of genomic intervals +/-100bp centered on the 5’ end of GATA1 binding

motifs, and standed according to motif orientation. We annotated these genomic intervals with scores

from the log2 fold change bigWig files, as described for the GATA1 ChIP-seq analysis above.. We also

repeated this process to annotate the genomic intervals with their overall summed coverage (to support

cluster deduplication).

Then as in previous analyses, we performed cluster deduplication of the motif-centered intervals,

keeping only the highest-covered interval among clusters of overlapping intervals and additionally

ensuring a minimum total coverage of 5 reads at each interval. Finally, we extracted scored sequences
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(sampled from the hg38 reference genome) from the deduplicated intervals, and submitted these to

MEPP. The effective command line invocation was:

mepp --fa {scored_sequences.fa} --motifs {motifs.txt} --out

{output_filepath} --orientations +,- --perms 100 --batch 200 --dgt 50 --jobs 20

--gjobs 10 --nogpu --dpi 100 &> {logfile}

A.2.1.7 Analysis of Nanog motif binding in Mus musculus

First, we scanned the mm10 mouse reference genome for matches to the Nanog binding motif.

Using the scanMotifGenomeWide.pl script we obtained a motif scan bed file of intervals +/- 100bp of

the motif 5’ end. We reproduce the effective command line below:

scanMotifGenomeWide.pl nanog.motif mm10.masked.fa -bed -5p >

mm10.nanog_motif_scans.bed

As a source of Nanog binding signal, we used the normalized Nanog ChIP-seq read signal from

GSM4291126, available through GEO Series GSE144577 [85]. The signal came from a GEO download

in the bigWig format, under the file name “GSM4291126_WT_Nanog.bam.bw”. To map this Nanog

binding signal data to our motif scans, we first converted the bigWig file to bed file with a combination of

bigWigtoWig and wig2bed [122,123]. We then used the bedmap to assign coverage scores from the

converted bigWig file to the motif scan bed file, using the ‘wmean’ operation. After filtering out motif scans

with zero coverage and performing cluster deduplication, we recovered the sequences (sampled from the

mm10 reference genome) within +/- 200bp of the motif 5’ ends. To determine enrichment of motifs in

HOMER’s vertebrate TF motif collection, we submitted these scored sequences to MEPP for downstream

analysis.

A.2.1.8 MEPP Analysis of Mouse ChIP-nexus and ChIP-seq

We started by retrieving MACS2-generated narrowpeak files from GEO accession GSE137193,

corresponding to peaks called from ChIP-nexus and ChIP-seq binding assays of transcription factors

Nanog, Oct4, and Sox2 on mouse embryonic stem cells [86,104]. For each interval in each narrowpeak

file, we relocated both start and end positions to the peak summit (using the peak value in column 10), set
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the score to the signal value (column 7), and the strand to positive, outputting the resulting scored peak

summits into a bed file. We then extracted scored sequences +/-200bp of each scored peak summit, and

analyzed these scored sequences using MEPP. To account for the less positionally specific nature of

ChIP-seq, we used a wider motif margin of 5. To account for the lack of strand specificity in the MACS2

ChIP-seq peak calls, we correlate against the higher motif match score of either motif orientation.

We further demonstrate results from an alternative analysis method for ChIP-seq. Following

analysis steps as detailed in GEO accession GSM4072778, we started from the reads for the Nanog

ChIP-nexus and patchcap experiments, beginning with barcode trimming via nimnexus trim, including

alignment, until aligned read deduplication using nimnexus dedup. We converted the resulting alignments

into tag directories. The HOMER getTSSFromReads.pl script was used (in a similar manner to its use in

csRNA-seq) To enumerate stranded 1bp binding sites from the 5’ ends of each tag in these tag directories

we used the HOMER getTSSFromReads.pl script, ensuring at least 4 reads were counted per site

(-minRaw 4), while controlling for 5’ ends from the patchcap experiment. We then used the HOMER

annotatePeaks.pl command to count 5’ ends of strand-matched tags from both tag directories at each

enumerated site, as well as to normalize these counts using DESeq2’s rlog method. The resulting 1bp

binding sites were scored by the rlog-normalized coverage of tag 5’ ends from the Nanog ChIP-nexus

experiment, expanded by 200bp in each direction then cluster deduplicated (favoring sites with higher

coverage). Finally, we converted the scored and expanded binding sites into scored sequences (sampled

from the mm10 reference genome), which we analyzed using MEPP, carrying over parameters from the

previous ChIP-nexus analysis.

A.2.1.9 Differential csRNA-seq analysis

csRNA-seq data from mouse bone marrow derived macrophage cells treated with KLA was

downloaded from GSE135498 [10]. Subsequently, we ran TSS identification and differential TSS analysis

between the KLA-stimulated and control samples.

The data analysis was conducted in three parts, described below:

1. TSS quantification from csRNA-seq on mouse BMDM cells

2. Differential TSS analysis and scoring
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3. MEPP analysis of differential TSS

A.2.1.9.1 TSS quantification from csRNA-seq on mouse BMDM cells

TSS quantification proceeded as described above for fly cells, with the exception that alignment

was to mm10 references, and with a minimum read count of 5 (-minRaw 5). Using HOMER’s

annotatePeaks.pl command, we then quantified 5’ end read counts. We reproduce the effective

command line below:

annotatePeaks.pl tss.txt genomes/mm10/mm10.fa -strand + -fragLength 1

-raw -d mm10_csrna_raw_kla_0min_replicate_1/

mm10_csrna_raw_kla_0min_replicate_2/ mm10_csrna_raw_kla_50min_replicate_1/

mm10_csrna_raw_kla_50min_replicate_2/ > tss.counts.txt

A.2.1.9.2 Differential TSS analysis and scoring

We performed differential csRNA-seq analysis on the previously generated TSS read count

quantifications using HOMER’s getDiffExpression.pl script, (a wrapper around DESeq2) [88]. The

comparison found log2 fold change values comparing TSS transcriptional signal in KLA-stimulated vs.

control, after controlling for replicate batch effects.

A.2.1.9.3 MEPP analysis of differential TSS

We scored TSS by their log2 fold change values, then performed cluster deduplication, selecting

the TSS from each cluster with the highest read coverage. We then extracted sequence +/- 200bp around

the TSS, and input the resulting scored sequences into MEPP, to analyze enrichment of motifs in

HOMER’s vertebrate TF motif collection.

A.2.1.10 Differential cleavage site analysis

We started by retrieving ATAC-seq and H3K27ac MNase-seq data for BMDM cells treated to 1

hour of LPS stimulation vs. control, from the work of Comoglio et al., available under GEO Series

GSE119693 [89].  We then trimmed adapters from reads using Trim Galore, then aligned the reads to the
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mm10 reference genome using bowtie2 [40,124]. After converting the read alignments to HOMER tag

directories, the rest of the analysis proceeded as described above for differential csRNA-seq analysis.
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Figure 2.S1: MEPP uses pre-weighted convolutional kernels to derive motif heatmaps and
positional correlation profiles
(A) Typical differential sequencing experiment with replicates, yielding peaks scored by a function of

coverage (e.g. normalized or log 2 fold change coverage).
(B) Scored sequences are extracted from scored peaks, centered on some feature of interest, e.g.

TSS. Motif locations marked in orange.
(C) Local motif enrichments yield positional correlations of the motif with sequence score.
(D) Input to MEPP consists of a set of scored, one-hot encoded DNA sequences
(E) A known motif is input to form the weights of a convolutional kernel, which evaluates the log odds

matching score of a one-hot encoded sequence to the motif. The detection threshold for the motif
inverted to form the kernel’s bias. The resulting activation value is fed through a ReLU function.
The motif’s GC% is also evaluated.

(F) The entire set of scored sequences is convolved, forming rows of a motif heatmap. Rows are
sorted in descending order from the score of the corresponding input sequence.

(G) Local correlations of motif match scores and sequence scores are calculated for each motif
position, controlling for GC% skew using a partial Pearson correlation.
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Figure 2.S2: MEPP visualizes and quantifies the TATA-box and DPR motifs near Drosophila
melanogaster transcription start sites.
(A) MEPP plot for TATA-box motif (from the HOMER motif collection), on sequences +/- 200bp of D.

melanogaster TSS quantified by csRNA-seq, scored by log-transformed csRNA-seq coverage.
(B) Same as (A) but for the DPR motif (from the HOMER motif collection)
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Figure 2.S3: CentriMo visualizes motif prevalence over sequence positions
Local enrichment plot for SCL binding motif locations surrounding GATA1 binding motifs as

generated by CentriMo, using default visualization smoothing parameters. Enrichment was performed
contrasting the top 10% of scored sequences with the bottom 10% of scored sequences.
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Table 2.S4: Public Data accessions and attributions used in this study

Dataset
accession (s)

Sample/File accessions Sample Title Producing Lab

ENCSR000EFT ENCFF844WTT.bam GATA1 ChIP-seq rep 1 Michael Snyder,
StanfordENCSR000EFT ENCFF729MTL.bam GATA1 ChIP-seq rep 2

ENCSR000EHM ENCFF769RAH.bam Control ChIP-seq rep 1

ENCSR000EHM ENCFF147YPF.bam Control ChIP-seq rep 2

ENCSR483RKN ENCFF512VEZ.bam K562 ATAC-seq rep 1

ENCSR483RKN ENCFF987XOV.bam K562 ATAC-seq rep 2

ENCSR872WG ENCFF724QHH.bam HCT116 ATAC-seq rep 1

ENCSR872WG ENCFF927YUB.bam HCT116 ATAC-seq rep 2

GSE144577 GSM4291126_WT_Nanog.bam.b
w

WT_Nanog_ChIP Xiang Sun, Sun
Yat-sen University

GSE137193 GSM4087827_mesc_Nanog_chip
seq.idr-optimal-set.narrowPeak.gz

Nanog-ChIP-seq Julia Zeitlinger,
Stowers Institute
for Medical
Research

GSE137193 GSM4072778_mesc_nanog_nexu
s.idr-optimal-set.narrowPeak.gz

Nanog-ChIP-nexus

GSE137193 SRX6827272 Nanog-ChIP-nexus

GSE135498 GSM4012734 BMDM notx csRNA-seq r1 Christopher
Benner, UCSDGSE135498 GSM4012735 BMDM notx csRNA-seq r2

GSE135498 GSM4012736 BMDM notx csRNAinput r1

GSE135498 GSM4012737 BMDM notx csRNAinput r2

GSE135498 GSM4012738 BMDM KLA1h csRNA-seq r1

GSE135498 GSM4012739 BMDM KLA1h csRNA-seq r2

GSE135498 GSM4012740 BMDM KLA1h csRNAinput r1

GSE135498 GSM4012741 BMDM KLA1h csRNAinput r2

GSE119693 GSM3380863 ATAC_LPS-1h_rep1 Gioacchino Natoli,
Humanitas
University
(Hunimed)

GSE119693 GSM3380864 ATAC_LPS-1h_rep2

GSE119693 GSM3380865 ATAC_LPS-1h_rep3

GSE119693 GSM3380875 ATAC_UT_rep1

GSE119693 GSM3380876 ATAC_UT_rep2

GSE119693 GSM3380877 ATAC_UT_rep3

GSE119693 GSM3380878 H3K27ac_LPS-1h_rep1

GSE119693 GSM3380879 H3K27ac_LPS-1h_rep2

GSE119693 GSM3380886 H3K27ac_UT_rep1

GSE119693 GSM3380887 H3K27ac_UT_rep2
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