
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Explicit and implicit movement similarity and their applications in movement analysis

Permalink
https://escholarship.org/uc/item/1jz7k3tv

Author
Wan, Zijian

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jz7k3tv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Santa Barbara 

 

 

Explicit and implicit movement similarity and their 

applications in movement analysis 

 

 

A Thesis submitted in partial satisfaction of the 

requirements for the degree Master of Arts 

in Geography 

 

by 

 

Zijian Wan 

 

Committee in charge: 

Professor Somayeh Dodge, Chair 

Professor Konstadinos Goulias 

Professor Ambuj Singh 

 

June 2022



The thesis of Zijian Wan is approved. 

 

 _____________________________________________ 

 Konstadinos Goulias 

 

 _____________________________________________ 

 Ambuj Singh 

 

 _____________________________________________ 

 Somayeh Dodge, Committee Chair 

 

 

June 2022 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explicit and implicit movement similarity and their applications in movement analysis 

 

Copyright © 2022 

by 

Zijian Wan 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

To my parents,  

Guoqiao Wan and Bo Peng. 

 



v 

 

Acknowledgements 

 

My gratitude goes first to my advisor, Prof. Somayeh Dodge, for her invaluable advice and 

continuous support throughout my first years as a graduate student at UC Santa Barbara. My 

graduate program started in an unprecedently challenging time amid the COVID pandemic. Her 

support and thoughtfulness are the light that guides me through the darkness. It is my honor to 

work with Prof. Dodge.  

Also, my appreciation extends to my committee members, Prof. Konstadinos Goulias and 

Prof. Ambuj Singh, for their expert suggestions in helping me revise this thesis. 

Finally, I would like to thank my family, friends, and colleagues, especially all members 

of the MOVE Lab, for all their encouragement and support throughout my studies.  

 



vi 

 

Abstract 

 

Explicit and implicit movement similarity and their applications in movement analysis 

by 

Zijian Wan 

 

Movement similarity is a hot topic and the foundation of a plethora of methodologies in 

movement analysis. In this thesis, movement similarity is classified into two categories. The first 

category, explicit movement similarity, is defined as the closeness of trajectories in space and time. 

It is directly quantified along the path of individuals using a wide variety of trajectory similarity 

measures, such as Fréchet distance and dynamic time warping. On the other hand, the second 

category, implicit movement similarity, is defined as the consistency in movement and behavioral 

patterns of an individual or a group of moving entities. It can serve as a high-level representation 

of movement patterns of an individual or a group of moving entities and can be applied to solve 

many types of movement-related problems, such as trajectory prediction and interpolation. 

Surrounding the topic of movement similarity, this thesis investigates two methodologies based 

on the explicit and implicit movement similarity, respectively, to demonstrate their applications in 

movement analysis.  

Explicit movement similarity in this thesis is utilized to unravel the associations between 

migration paths and underlying environmental correlates influencing movement choices of 

migratory turkey vultures (Cathartes aura) in North America.  Multiple commonly used trajectory-

similarity measures including Fréchet distance, dynamic time warping (DTW), Hausdorff 

distance, longest common subsequence (LCSS), and edit distance are integrated into a hierarchical 
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clustering approach to identify variations in turkey vultures’ migration path choices over multiple 

seasons. At each hierarchy, the optimal clustering setting, i.e., a distance metric together with the 

number of clusters, is selected automatically based on the silhouette coefficient. Using 15 years of 

tracking data of turkey vultures during their fall and spring migration seasons, seasonal clusters 

are identified and then annotated with environmental variables for Kolmogorov-Smirnov (KS) test 

and Jensen-Shannon distance (JSD) calculation to examine the variation between clusters and the 

background and variation between clusters. 

In terms of the application of implicit movement similarity, this thesis proposes a trajectory 

interpolation model with an encoder-decoder architecture based on gated recurrent units (GRUs) 

to interpolate trajectory gaps (missing values). The proposed model is able to read a trajectory 

containing a gap in both chronological and reverse chronological orders. The information obtained 

from these two directions is fused to learn the implicit movement similarity contained in that 

trajectory, which is later used to reconstruct the complete trajectory with the original gap filled in. 

The proposed interpolation method is validated using turkey vulture migration trajectories. 

Interpolation results demonstrate that the proposed method is capable of capturing implicit 

movement similarity from trajectories for interpolation purposes, since without which, some gaps 

would be difficult to interpolate accurately using traditional interpolation methods.  

Movement similarity is a promising field in computational movement analysis and is often 

used as a foundation of other machine learning and modeling methodologies such as trajectory 

classification, behavioral model detection, and movement prediction. On the foundation of explicit 

and implicit movement similarity, researchers can build multifarious models for diverse moving 

entities, such as animals, humans, vessels, and vehicles. 
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Chapter 1  

Introduction 

Movement is a continuous phenomenon, while in general, it is recorded as discrete 

snapshots at a certain temporal resolution. Those snapshots, usually called tracking points, have 

three components: spatial information, e.g., longitude and latitude, timestamp, and other attributes 

of the moving entity or its behavioral and environmental context information. When the temporally 

adjacent tracking points of the same moving entities are connected, these snapshots are weaved 

together to become trajectories (see Figure 1 for an example), which are the fundamental building 

blocks of computational movement analysis (Laube, 2014; Tao et al., 2021). 

 

Figure 1. A schematic illustration of a trajectory 

The recent two decades have seen advances in tracking technologies as well as in 

techniques related to big data processing and storage. These advances result in the availability of 

geographic information recording the movement of moving entities (e.g., animals, humans, 

vehicles, vessels) with not only high resolution but also massive data volume (Laube, 2014). These 

relatively novel and naturally spatiotemporal movement data inherently hold big-data properties, 

including velocity, volume, value, variety, and veracity (Demchenko et al., 2014). With such 

sufficient data recording the movement of the same or similar moving entities over a period of 
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time, some inspiring questions that emerge intuitively are: How similar are the movements of two 

or more similar or related entities? How similar does an individual move in different time 

periods?... Pointing at movement similarity, these are important questions in geographic 

information science (GIScience) and in movement analysis in particular (Laube et al., 2007; 

Ranacher & Tzavella, 2014; Vlachos et al., 2004). Movement similarity is a promising field and 

research direction in computational movement analysis, and it is often used as a foundation of 

other machine learning and modeling methodologies, such as inferring movement patterns (M. 

Buchin & Wenk, 2020; Moayedi et al., 2019; C. Wang et al., 2021), interaction analysis (e.g., the 

follower-leader pattern can be abstracted from similar trajectories with a slight delay) (Konzack et 

al., 2017), clustering and abnormality detection (Djenouri et al., 2021; Mao et al., 2021), trajectory 

classification (Endo et al., 2016), behavioral mode detection (Bashir et al., 2007; Xiao et al., 2017), 

and movement prediction (Cheng et al., 2021; D. Choi et al., 2020). However, existing literature 

lacks a clear systematic review of how movement similarity is used explicitly as distance metrics 

and implicitly as the background knowledge to complete other movement-related tasks, e.g., 

movement prediction.  

In this thesis, movement similarity is classified into two categories. The first category is 

explicit movement similarity, which is the universally used category. It is defined as the closeness 

of trajectories in space and time. Explicit movement similarity can be directly quantified using a 

wide variety of similarity measures, such as Fréchet distance and dynamic time warping. The core 

of explicit movement similarity are similarity measures, i.e., distance functions. The rudimentary 

Euclidian distance is perhaps the simplest way to measure how similar two trajectories are. That, 

however, is often far from practical in reality, due to the lack of temporal information in 

consideration. Therefore, more suitable similarity measures are adopted from other fields, e.g., 
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dynamic time warping (DTW) (Cleasby et al., 2019; Yingmin Li et al., 2010), which is originally 

proposed to deal with time series (Berndt & Clifford, 1994), and edit distance (Zhu et al., 2021), 

which is initially used to compare string similarity (Levenshtein, 1966). Moreover, the past several 

decades have seen many improved similarity measures that are proposed dedicatedly aiming at 

movement and trajectory analysis. Dodge et al., (2012) proposed a modified version of edit 

distance named normalized weighted edit distance (NWED) to first segment a trajectory based on 

some specific movement parameters (e.g., speed). Accordingly, a trajectory is converted into a 

string sequence, which is then used for similarity measuring. Sharif & Alesheikh (2017) push the 

similarity measures closer to being practical in reality by including context-awareness, as 

movements are, to a great extent, influenced by internal and external contexts. 

On the other hand, the second category, implicit movement similarity, is defined as the 

consistency in movement and behavioral patterns of an individual or a group of moving entities. 

Although it is usually challenging for humans to directly interpret or detect implicit movement 

similarity, it can serve as the foundation to solve many types of problems. Some of these problems, 

such as trajectory outlier detection (Belhadi et al., 2021) and transportation mode inference (Dabiri 

& Heaslip, 2018; Nawaz et al., 2020), may still be solvable using traditional explicit similarity. 

However, it is the implicit similarity learned by models that make the solutions to other problems 

possible and effective. These examples include urban vehicle trajectory generation (S. Choi et al., 

2021) and trajectory prediction (D. Choi et al., 2020). Implicit movement similarity is learned from 

historical tracking data mainly using machine learning approaches. Classic machine learning 

methods, such as the decision tree (Quinlan, 1986) and random forest (Ho, 1995), remain effective 

in movement analysis (Xiao et al., 2017; Zhang et al., 2020) in the present day, especially when 

the training data size is relatively small and the movement patterns are not complex. However, 
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with the massive volume of data in the big-data era comes a rising demand for data-driven models 

to learn more complicated patterns, interactions, and relationships. This demand requires models 

to have more complex architecture. That is one of the primary reasons why recent years have seen 

an increasing number of approaches based on neural networks (Jäger, 2019; Yali Li et al., 2019; 

Mehri et al., 2021). Neural networks have better generalization capacity in many cases and have 

more flexible architecture, such as convolutional and recurrent neural networks (Lan et al., 2020).  

This thesis seeks to first review movement similarity and then apply methodologies based 

on that to solve problems regarding change detection and trajectory interpolation. The following 

chapter introduces the background and reviews literature related. Chapter 3 introduces the turkey 

vulture tracking dataset used in this thesis. After that, Chapter 4 presents a hieratical clustering 

framework based on explicit movement similarity to detect variations in animal movement and 

infer their drivers. On the foundation of implicit movement similarity, Chapter 5 proposes a 

trajectory interpolation method based on a recurrent neural network. Both proposed methods are 

experimented on the real-world tracking dataset. Finally, the thesis ends with discussions and 

conclusions. 
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Chapter 2  

Background 

This chapter first provides a brief introduction of the five similarity measures, including 

Fréchet distance, Hausdorff distance, dynamic time warping, longest common subsequence, and 

normalized weighted edit distance. This is followed by a comparison of different similarity 

measures in real application scenarios. Then, the background of movement path variation detection 

with the application of explicit movement similarity is given. Finally, Section 2.3 reviews 

trajectory interpolation and how implicit movement similarity can be incorporated.  

2.1 Movement similarity measures 

A trajectory is an ordered sequence of tracking points recorded by a location-aware 

technology, such as GPS devices, RFID tags, geo-sensors. Each tracking point is captured with 

information including the location, timestamp, and sometimes other attributes as in Equation (1)  

(Aghabozorgi et al., 2015; Laube, 2014). 

𝑝𝑖 = (𝑙𝑜𝑐𝑖, 𝑡𝑖, 𝐴𝑖 …)                                                                  (1)   

To quantify the similarity of trajectories, a variety of distance metrics have been studied. 

Among them, Fréchet distance, dynamic time warping (DTW), Hausdorff distance, and longest 

common subsequence (LCSS) are some of the basic metrics (Moayedi et al., 2019; H. Wang et al., 

2013). All these four commonly-used distance metrics evaluate trajectory similarity in terms of 

their geometric shapes by computing point-wise distance between two trajectories. From another 

perspective, the derived movement attributes, such as speed and acceleration, can also be important 
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in characterizing similar trajectories. Therefore, the normalized weighted edit distance (NWED) 

computed based on speed patterns is also considered here (Dodge et al., 2012).  

2.1.1 Fréchet distance 

Fréchet distance considers both the location and the order of the tracking points along two 

trajectories when measuring their similarity. It is often depicted vividly as the person-dog metric 

(K. Buchin et al., 2016; Gudmundsson & Valladares, 2015). As illustrated in Figure 2, imagine a 

person walking on trajectory 𝑇𝑖 and a dog walking on 𝑇𝑗, the Fréchet distance is the length of the 

shortest leash that ensures the connection from the beginning to the end. Note that neither the 

person nor the dog can walk backwards. Put formally, the Fréchet distance between two 

trajectories 𝑇𝑖 and 𝑇𝑗 in a Euclidean space can be computed by Equation (2-3) (Khoshaein, 2013). 

𝑑𝑖𝑠𝑡𝐹𝑟é𝑐ℎ𝑒𝑡(𝑇𝑖 , 𝑇𝑗  ) = min(‖𝑐‖, 𝑐 𝑖𝑠 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑇𝑖 and 𝑇𝑗)          (2) 

‖𝑐‖ = 𝑚𝑎𝑥𝑘=1
𝐾 𝑒𝑢𝑐(𝑝𝑖

𝑘, 𝑝𝑗
𝑘)                                                    (3) 

where 𝑇𝑖  and 𝑇𝑗  are two trajectories of length 𝑚 and 𝑛. 𝐾 = 𝑚𝑖𝑛(𝑚, 𝑛). 𝑝𝑖
𝑘  and 𝑝𝑗

𝑘  are the 𝑘𝑡ℎ 

tracking point of trajectory 𝑇𝑖 and 𝑇𝑗, respectively. 𝑒𝑢𝑐(𝑝𝑖
𝑘, 𝑝𝑗

𝑘) is the Euclidean distance between 

point 𝑝𝑖
𝑘 and 𝑝𝑗

𝑘. 

 

Figure 2. Illustration of Fréchet distance between two trajectories (shown in blue and red) 

(the largest pair-wise distance, shown in dark blue with arrows) 

2.1.2 Hausdorff distance 

Hausdorff distance is a metric for evaluating the similarity of the shapes of two trajectories 

or a subset of them without considering their direction (i.e., the temporal order of tracking points). 
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Hausdorff distance between two trajectories 𝑇𝑖  and 𝑇𝑗   selects the maximum unidirectional 

distance from 𝑇𝑖 to 𝑇𝑗 and from 𝑇𝑗 to 𝑇𝑖. Thus, it measures the maximum degree of mismatching 

between two trajectories. It does not require the input trajectories to have the same length and has 

low computational complexity (C. Wang et al., 2021). But it is also sensitive to noise in the data 

(Meng et al., 2019). Hausdorff distance between two trajectories 𝑇𝑖 and 𝑇𝑗 in a Euclidean space 

can be computed by Equation (5-7) (Sun et al., 2021). 

𝑑𝑖𝑠𝑡𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑇𝑖 , 𝑇𝑗  ) = 𝑚𝑖𝑛 (ℎ(𝑇𝑖 , 𝑇𝑗  ), ℎ(𝑇𝑗  , 𝑇𝑖 ))                               (4) 

ℎ(𝑇𝑖 , 𝑇𝑗  ) = max
∀𝑝𝑖∈𝑇𝑖

( min
∀𝑝𝑗∈𝑇𝑗

(𝑒𝑢𝑐_𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗)))                                       (5) 

ℎ(𝑇𝑗  , 𝑇𝑖 ) = max
∀𝑝𝑗∈𝑇𝑗

( min
∀𝑝𝑖∈𝑇𝑖

(𝑒𝑢𝑐_𝑑𝑖𝑠𝑡(𝑝𝑗 , 𝑝𝑖)))                                       (6) 

where 𝑒𝑢𝑐_𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗) is the Euclidean distance between point 𝑝𝑖 and 𝑝𝑗. 

2.1.3 Dynamic time warping (DTW) 

Dynamic time warping (DTW) measures similarity based on matching tracking points in 

trajectories, and the tracking points can be matched despite having different timestamps. To obtain 

a better match, trajectories are “compressed” or “stretched” non-linearly to measure similarity 

while allowing for different lengths or sampling rates. However, DTW is sensitive to outliers 

because every tracking point in a trajectory has to be matched with at least one point in another 

trajectory (Toohey & Duckham, 2015). Given two trajectories 𝑇𝑖 and 𝑇𝑗 of lengths 𝑚 and 𝑛, DTW 

distance between them in a Euclidean space can be computed by Equation (4) (Berndt & Clifford, 

1994; Yingmin Li et al., 2010). 
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𝑑𝑖𝑠𝑡𝐷𝑇𝑊(𝑇𝑖 , 𝑇𝑗  ) =

{
 
 

 
 

0,                                                                                    𝑚 = 𝑛 = 0
∞,                                                                             𝑚 = 0 ∥ 𝑛 = 0

𝑒𝑢𝑐(𝑝𝑖, 𝑝𝑗) + 𝑚𝑖𝑛(

𝑑𝑖𝑠𝑡𝐷𝑇𝑊(𝑅(𝑇𝑖) , R(𝑇𝑗) )

𝑑𝑖𝑠𝑡𝐷𝑇𝑊(𝑅(𝑇𝑖) , 𝑇𝑗  )

𝑑𝑖𝑠𝑡𝐷𝑇𝑊 (𝑇𝑖 , R(𝑇𝑗))

) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (7) 

where 𝑇𝑖 and 𝑇𝑗 are two trajectories of length m and n. 𝑝𝑖 and 𝑝𝑗 denote the initial tracking point 

of 𝑇𝑖 and 𝑇𝑗, respectively, and 𝑅(𝑇𝑖) and R(𝑇𝑗) indicate subsequences of 𝑇𝑖 and 𝑇𝑗 after removing 

the initial point, respectively, 𝑒𝑢𝑐(𝑝𝑖, 𝑝𝑗) is the Euclidean distance between point 𝑝𝑖 and 𝑝𝑗. 

2.1.4 Longest common subsequence (LCSS) 

Distinct from the point-wise distance metric mentioned above, the longest common 

subsequence (LCSS) distance is computed by obtaining the longest subsequence that is common 

in both trajectories. A common subsequence is a spatial alignment of tracking points that occurs 

in both trajectories given two deviation thresholds in the x-direction and y-direction. Therefore, it 

can still be effective when applied to trajectory data of low quality, which is usually due to factors 

such as device’s accuracy limitation and signal interference. For two trajectories 𝑇𝑖  and 𝑇𝑗  of 

lengths 𝑚 and 𝑛, LCSS distance is computed by Equation (8) (Rick, 2000). 

𝑑𝑖𝑠𝑡𝐿𝐶𝑆𝑆(𝑇𝑖 , 𝑇𝑗  ) =

{
 
 

 
 

0,                                                                                                        𝑚 = 𝑛 = 0

1 + 𝐿𝐶𝑆𝑆𝜎,𝜀 (𝑑𝑖𝑠𝑡𝐿𝐶𝑆𝑆(𝑅(𝑇𝑖) , R(𝑇𝑗) )) , |𝑝𝑖
𝑥 − 𝑝𝑗

𝑥| ≤ 𝜎, |𝑝𝑖
𝑦
− 𝑝𝑗

𝑦
| ≤ 𝜀

𝑚𝑎𝑥 (
𝑑𝑖𝑠𝑡𝐿𝐶𝑆𝑆(𝑅(𝑇𝑖) , 𝑇𝑗  )

𝑑𝑖𝑠𝑡𝐿𝐶𝑆𝑆 (𝑇𝑖 , R(𝑇𝑗))
) ,                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8) 

where 𝜎  and 𝜀  are the user-defined deviation thresholds in the x-direction and y-direction, 

respectively. The performance of this metric depends heavily on the choice of the two user-defined 

threshold parameters, and it is a challenging problem to figure out the optimal parameters (Meng 

et al., 2019; H. Wang et al., 2013). 
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2.1.5 Normalized weighted edit distance (NWED) 

The four similarity measures mentioned above all tackle the task of measuring trajectory 

similarity from the perspective of trajectories’ spatiotemporal geometry. Normalized weighted edit 

distance (NWED) introduced in Dodge et al. (2012), however, measures similarity from the 

behavior perspective, which is manifested by movement parameters (MPs), such as speed and 

acceleration. Given two trajectories 𝑇𝑖  and 𝑇𝑗 , the selected MP along the trajectory is first 

transferred into a sequence of symbolic representation based on the deviation from the mean value 

and sinuosity of the MP time series. Each symbolic representation denotes a MP class, which 

represents the frequency and amplitude of change of the behavior. That is, each class encodes, for 

example, how much the speed value deviates from the average speed, and how variable the speed 

profile is (e.g., high frequency variations versus low frequency variations). In this way, NWED is 

capable of quantifying the similarity of two trajectories from the perspective of MPs instead of 

geographic distance. That is its major difference from the four aforementioned spatial distance 

metrics. However, from another perspective, NWED considers only the MP but not the spatial path 

of the trajectories. Given 𝑃 and 𝑄 denoting the MP class sequence of 𝑇𝑖 and 𝑇𝑗, NWED between 

the two trajectories of lengths 𝑚 and 𝑛 is computed by Equation (9-10) (Dodge et al., 2012). 

𝐶𝑖,𝑗 =

{
 
 

 
 𝑗,                                                                                                 𝑖 = 0

𝑖,                                                                                                 𝑗 = 0
𝐶𝑖−1,𝑗−1,                                                        𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑃𝑖 = 𝑄𝑗  

𝐶𝑜𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝑃𝑖 , 𝑄𝑗) + 𝑚𝑖𝑛(𝐶𝑖−1,𝑗−1, 𝐶𝑖−1,𝑗, 𝐶𝑖,𝑗−1),   𝑜𝑡ℎ𝑒𝑟𝑠

                      (9) 

𝑑𝑖𝑠𝑡𝑁𝑊𝐸𝐷(𝑇𝑖 , 𝑇𝑗  ) =
2 × 𝐶𝑚,𝑛 

𝑚 + 𝑛 + 𝐶𝑚,𝑛
                                                  (10) 

where 𝐶𝑖,𝑗 denotes the element at the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the derived 𝑚 × 𝑛 dissimilarity 

matrix, and 𝐶𝑜𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝑃𝑖, 𝑄𝑗) denotes the element at the 𝑃𝑖
𝑡ℎ row and 𝑄𝑗

𝑡ℎ column of the cost 

matrix defined by Dodge et al., (2012). NWED can be used in conjunction with other 
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aforementioned geometric similarity measures to quantify both spatial and spatiotemporal 

trajectory similarity of trajectories. 

2.1.6 Comparison of different similarity measures in clustering 

Quantifying similarity is significant to a variety of trajectory analysis applications, such as 

clustering (K. Buchin et al., 2010; Vlachos et al., 2002), outlier detection and removal (H. Liu et 

al., 2019; Mao et al., 2021), and classification and characterization (Bashir et al., 2007; Juarez et 

al., 2011). This thesis focuses on trajectory clustering since that is the key and fundamental step to 

our goal of identifying variation in movement behavior and inferring environmental drivers. 

In a clustering application scenario, the distance metrics have different strengths and 

weaknesses when applied as trajectory similarity measures. A distance metric may have the best 

performance under a certain circumstance but not under another. The divergent characteristics of 

using various distance metrics include (but are not limited to) the following aspects: 

First, one salient difference worth noting is the characteristic of outlier tolerance. In 

general, distance metrics based on point matching together with the sum of distance, such as 

Fréchet distance, Hausdorff distance, and DTW, are more susceptible to outliers than others (Su 

et al., 2020). This is because noise and outliers usually contribute to the maximum pair-wise 

distance. On the contrary, LCSS, as a binary-threshold-based distance metric, has better capability 

of handling noise. If the distance between a pair of matching points from two trajectories exceed 

the predefined threshold, their distance will not influence the LCSS distance between the two 

trajectories. In addition, NWED utilizes a sliding window to capture the sequential MPs along a 

trajectory, thus diminishing the local influence of outliers. Therefore, among the distance metrics 

discussed above, LCSS and NWED are capable of quantifying similarity with the minimal 

influence of outliers, while others, especially Fréchet distance and DTW, are susceptible to 

outliers, and thus can be used for outlier and anomaly detection. While outliers are merely extreme 
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values with consistent patterns in the given dataset, anomalies usually refer to data with different 

patterns, e.g., distinct behaviors of animals or humans (Park, 2019).  

Second, in terms of efficiency, Fréchet distance has the highest computational complexity 

of 𝑂(𝑛𝑚 log(𝑛𝑚)), in which 𝑛 and 𝑚 denote the lengths of the two trajectories to compare, while 

that for all other dynamic programming-based distance metrics is 𝑂(𝑛𝑚) (Tao et al., 2021). 

Compared to other metrics, the original Fréchet distance is not recommended for dealing with 

large quantity of data or real-time analysis. But recent efforts have been made to improve its 

computational efficiency (Bringmann et al., 2019). 

Third, the performance of some distance metrics depends heavily on the parameter setting 

(e.g., deviation thresholds 𝜎 and 𝜀 for LCSS) while others, such as DTW, Fréchet, and Hausdorff 

distance, are parameter-free. Thus, when comparing trajectories of different categories of moving 

objects (e.g., when applied with the goal of classification and identification), parameter-dependent 

metrics need to be tuned with regard to the application scenarios, while parameter-free ones can 

be applied directly.  

2.2 Movement path variation detection and environmental driver inference 

Intentional movement, defined as the change of spatial locations of individuals over time, 

is fundamental to ecological and human systems. As movement is arguably the most significant 

way by which animals and humans respond to changes in their surrounding environment, it can 

serve as an instrument for environmental response and understanding movement can elucidate the 

relations between environmental drivers of behavior and demography (Eikelboom et al., 2020; 

Nathan et al., 2008). In movement ecology, for example, the recent development and 

popularization of satellite tracking with significant increase in positioning accuracy, e.g., solar-

powered GPS collars, have enabled researchers to track the movement of animals over large 
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distances and long periods. With the emerging data-driven movement ecology paradigm, high-

frequency animal movement data provide us with new and effective ways of revealing behavioral 

changes and environmental response through movement patterns.  

The abundant animal movement data offer opportunities for new and effective ways of 

understanding the internal and external factors affecting animal movement and, one step further, 

their behavioral ecology. Nearly all animals show some variation in movement patterns induced 

by the environment (Kranstauber, 2019). The variation in animal movement, however, have not 

been fully explored in past studies to infer the environmental influence (Eikelboom et al., 2020). 

In previous studies, inferring environmental drivers is often accomplished through relating 

movement attributes, such as animal activity space and speed and turning angles, to a set of 

environmental variables (Dodge et al., 2014; Eikelboom et al., 2020; Patterson et al., 2009). In 

these studies, movement is described through multiple perspectives including geometry 

(movement paths) and dynamics (movement attributes). Although these multi-dimensional 

attributes offer a way to capture more information, they also add to the complexity of the study, 

especially with regards to long-term tracking data of animals representing multi-seasonal 

migratory behaviors, and they require more computational resources as well.  

On the other hand, movement path variations can be detected utilizing spatial and 

spatiotemporal similarity measures. Similarity analysis can help to aggregate subsets of tracking 

data representing similar movement behaviors, and hence, it can reduce the complexity of large 

datasets by breaking them down into simpler structures that may better reveal important patterns 

captured in the data. For instance, Cleasby et al. (2019) applied five commonly-used similarity 

measures individually to compare animal movement trajectories, and meanwhile, to evaluate the 

performance of those measures.  
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This thesis explores an alternative approach for studying movement path variation. Chapter 

4 of this thesis aims to propose an integrated trajectory-similarity-based hierarchical clustering 

framework that combines different similarity measures. The clustering results are then used to 

infer the environmental correlates of animal’s migration path choices.  

2.3 Trajectory interpolation  

Tracking devices sample the location of moving entities with mostly regular intervals as 

sequences of timestamped locations, named trajectories. However, many factors (e.g., battery 

outage, signal loss) may lead to the interruption of the tracking data recording, which results in 

missing data (points) in a tracking dataset. A series of consecutive missing tracking points is 

termed as a gap in this thesis. A gap in tracking data may originate from intentional or unintentional 

artificial factors. Many GPS-enabled collars attached to animals, for example, turn off tracking 

devices during the night, since they are solar-powered and GPS sensors consume quite a lot of 

power (Hirakawa et al., 2018). But many animals do not stop moving immediately after the sun 

goes. This temporal inconsistency leads to gaps in the tracking datasets. However, there is a special 

case where sometimes sensors shut down to save battery when the animal is not moving. The gap 

here is only temporal but not spatial, as the animal remains in the same location. This kind of gaps 

are usually harmless and can be easily detected and differentiated from other ordinary gaps. In 

terms of gaps in human tracking data, a GPS-included travel survey in three Scottish towns shows 

that a non-negligible part of participants return with unusable tracking data due to data missing 

(Siła-Nowicka et al., 2016). On the other hand, the gaps or missing data in trajectories may result 

from non-manufactured and incidental factors, such as tracking device malfunction and signal 

communication failures. Gaps originated this way often create a more significant problem since 

they may appear stochastically. Hence, they are the primary targets that need to be dealt with.  
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Problems can arise when trajectories containing gaps are utilized in further movement 

analysis. For example, gaps might influence the calculation of animal home range and daily 

movement patterns (Wentz et al., 2003). And in both animal and human movement analysis, 

studying joint movement patterns can be negatively impacted by gaps in trajectories (Benkert et 

al., 2008). It is worth noting that the problems of gaps cannot be alleviated by increasing sampling 

rates or positioning accuracy, as they arise from innate reasons of tracking devices, entities being 

tracked, and signal transmission. 

There are in general two types of approaches to deal with gaps in trajectories. The first type 

is passively throwing away trajectories containing gaps or dividing the trajectories where the time 

interval between two consecutive tracking points exceeds a predefined threshold. This is 

straightforward and computationally simple, but it is at the risk of decreasing data volume and 

even potentially removing implicit long-term patterns if a complete trajectory is divided. The 

second type of approaches, on the contrary, actively filling in the gap by estimating the locations 

and other attributes of the missing tracking points from the valid observed ones along a trajectory. 

This process is termed trajectory interpolation in this thesis. It can be viewed as a special case of 

trajectory prediction, since in both interpolation and prediction, the goal is to estimate the unknown 

tracking points according to those valid observed ones. Nonetheless, prediction in many cases 

refers to extrapolation, meaning that observed tracking points only exist on one end, while in an 

interpolation task, observed tracking points exist on both ends. Trajectory interpolation not only 

preserves or even increases the volume of a dataset but also preserves the patterns hidden in a 

complete trajectory, both of which might be crucial for further analysis. Therefore, trajectory 

interpolation remains a significant problem in both movement ecology and human mobility 
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demanding further attention and study to better utilize real-world tracking data in computational 

movement analysis (Parent et al., 2013; Ren et al., 2021; Zheng et al., 2014). 

The classic and most straightforward trajectory interpolation method is linear interpolation. 

This method assumes that the entity is moving at a constant speed and heading in the interpolated 

area, which is not realistic since it underestimates the complexity (tortuosity) of real trajectories 

(Rowcliffe et al., 2012). The real trajectory is often not a straight line segment between the origin 

and destination or between two tracking points where interpolation is needed. One important 

reason behind it is that some extent of stochasticity exists in movement. Thus, some researchers 

model movement as a probabilistic random process, e.g., random walks (Rowcliffe et al., 2012; 

Technitis et al., 2015), or with uncertainty—a potential path area (PPA) from the field of time 

geography (Ahearn et al., 2017; Hägerstrand, 1970; Miller, 2005), for example. Linear 

interpolation can be considered a special circumstance of a random walk model. It represents the 

shortest and most-likely path between the start and end points if no other information, especially 

no other observed tracking points, are taken into account (Winter & Yin, 2010). In general, random 

walk interpolation models have the capability to capture and utilize random movement patterns, 

thus successfully modeling the stochasticity of movement (Technitis et al., 2015; Wentz et al., 

2003). Nevertheless, one major challenge is precisely parameterizing the probabilistic rules, which 

is no easy task and often requires sufficient domain knowledge of the moving entity. Alternatively, 

the knowledge needed to interpolate a gap can be unraveled from the valid observed tracking data, 

especially the very trajectory that contains the gap. In view of trajectories’ geometrical 

characteristics, researchers have explored various interpolation methods based on curve fitting, 

such as cubic splines, Bézier curves, and polynomial curves (Kolendo & Śmierzchalski, 2016; 

Tremblay et al., 2006; Yu & Kim, 2006). The principle behind these approaches is that a trajectory 
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is viewed as a curve whose shape can be represented mathematically. However, they focus on the 

spatial features only but neglect the temporal or spatiotemporal features, such as time and speed, 

implied in trajectories. To incorporate spatiotemporal features, Long (2016) and S. Guo et al. 

(2021) put forward interpolation methods based on kinematic information extracted from the 

observed tracking points. But this kind of interpolation methods are sensitive to sampling rate and 

the speed of moving entities. In general, they need tracking datasets of fast-moving entities with 

high sampling rates to achieve a satisfactory performance. Therefore, there is a need to design 

interpolation methods with broader applicability and better robustness. 

Recent years have seen the versatility and effectiveness of machine learning methodologies 

proven in an increasing number of domains and fields. In movement analysis, machine learning 

approaches have been used to predict animal behavior states (Michelot et al., 2016; Patterson et 

al., 2008), simulate animal personality related to movement preferences (Spiegel et al., 2017), 

extract road network information by modeling vehicle trajectories (Yang et al., 2022), and classify 

transportation modes (Nawaz et al., 2020). As for trajectory prediction, Gupta et al. (2018) and 

Sadeghian et al. (2019) utilize generative adversarial networks (GAN) to predict physically and 

socially acceptable pedestrian trajectories according to pixel-based pedestrian tracking datasets 

captured by cameras. In terms of tracking data recorded by GPS-enabled devices, many researchers 

tend to use recurrent neural networks (RNNs), the improved variations of the classic RNNs in 

particular, long short-term memory (LSTM) and gated recurrent unit (GRU) (Cho et al., 2014; 

Hochreiter & Urgen Schmidhuber, 1997). RNNs are naturally suitable for dealing with sequential 

data, especially time series, to which category trajectories happen to belong. The classic RNNs 

suffer from problems of vanishing and exploding gradients, but these problems are successfully 

overcome with LSTM and GRU by introducing gates in the recurrent unit to control the 
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information learned from the input, stored in memory, and output by the model. Qin et al. (2021) 

proposes a trajectory prediction model based on LSTM and Kalman filter. The outputs of LSTM 

are first restricted to a reasonable range and then refined by Kalman filter to produce the final 

prediction results. In terms of trajectory interpolation in particular, Rew et al. (2019) use a random 

forest method to interpolate the missing tracking points one at a time along a trajectory. The 

applicability and accuracy of that method are limited, since it neglects the implicit movement 

patterns contained in trajectories that need to be extracted sequentially. Considering all trajectories 

as a whole, Hirakawa et al. (2018) learns a reward (preference) map through inverse reinforcement 

learning (IRL) from the observed tracking data. Then, a trajectory containing a gap can be 

reconstructed to a complete one according to the reward map. However, with the same pair of start 

and end points to interpolate, their method always produces the interpolation result. Because the 

individuality is not considered when the whole tracking dataset is used to learn a highly integrated 

reward map.  

To address that, Chapter 5 of this thesis proposes a GRU-based trajectory interpolation 

model with the encoder-decoder architecture to learn both joint and individual movement patterns. 

It learns joint movement patterns as it is trained on historical tracking data composed of multiple 

trajectories of different individuals. When interpolating the gap, the model first encodes that very 

trajectory containing the gap to learn individual patterns, and then decode the complete trajectory 

with the gap filled in.  
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Chapter 3 

Turkey vulture tracking dataset 

The turkey vulture (Cathartes aura) data used in this thesis was originally obtained from 

Bildstein et al. (2014) and was continuously collected through 2021 (Bildstein et al., 2021; Mallon 

et al., 2021). The dataset is archived and available on Movebank1 (Kranstauber et al., 2011),  an 

online platform that help researchers manage, share and analyze animal movement data. Turkey 

vultures are the most widely distributed, as well as the most abundant obligate avian scavenger in 

North America (Dodge et al., 2014). Based on the time of year and location, the collected tracking 

points in the dataset have been segmented to four phases: breeding grounds in Canada, non-

breeding (or wintering) grounds in Venezuela, fall migration from Canada to Venezuela, and 

spring migration from Venezuela to Canada.  

The original dataset is collected from 13 turkey vultures with a total time span of 

approximately 15 years. However, the time span over which each bird has been tracked varies (see 

Figure 3). The mean tracking time span per individual bird is 876.1 days (2.4 years) with a standard 

deviation of 1284.7 days (3.5 years). The mean time interval for tracking is 1.8 hours with a 

standard deviation of 5.2 hours. Since this thesis focuses on movement processes, only tracking 

points representing the migratory phases, i.e., fall and spring migrations, are used in the analysis. 

Here, the time interval threshold, 𝑡𝑖𝑚𝑒_𝑡ℎ, is empirically set to 720 hours (roughly 1 month) to 

divide the trajectory of a bird into multiple trajectories recording different migration events. 

Adjacent tracking points with a time interval greater than 𝑡𝑖𝑚𝑒_𝑡ℎ should not be connected since 

 
1 https://www.movebank.org/ 
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the interval is too large to model the trajectory path choice between the two points. The trajectories 

after preprocessing are visualized in Figure 4. 

 

Figure 3. Tracking time span for each turkey vulture after preprocessing. On the y-axis are 

the turkey vulture names. Colored points represent timestamps at which tracking data were 

collected. 

 

Figure 4. Turkey vulture migration trajectories 
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Chapter 4  

Animal movement path variation detection and driver 

inference: a movement-similarity-based framework 

As movement is arguably the most significant way by which animals respond to changes 

in their surrounding environment, it is important to detect variations of movement paths based on 

trajectory similarity and infer the latent environmental drivers. Given the strengths and weaknesses 

of different trajectory similarity metrics, as stated in Chapter 2, this study proposes an integrated 

framework that exploits the relative strengths of every distance metric so that distinct clusters can 

be revealed.  

4.1 Methodological framework 

Figure 5 illustrates the proposed framework. In this framework, trajectory data are first 

preprocessed and enriched with environmental variables. Then, trajectory-similarity analysis is 

performed based on a hierarchical clustering framework that integrates the five aforementioned 

similarity measures to find the latent clusters of trajectories based on similarity between trajectory 

shapes and movement parameters. Next, the obtained clusters of trajectories are characterized by 

environmental variables. Then, the distribution of environmental variables of each cluster is 

analyzed to infer the ones that might influence the trajectory path choice of animals. This 

framework is flexible to employ any number of similarity measure using a hierarchical clustering 

approach. The strength of this framework as compared to only applying one similarity measure is 

that it is able to produce the most distinct clusters at each hierarchy according to the most salient 

features captured by different similarity measures.  
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Figure 5. Workflow of the hierarchical clustering framework 

4.1.1 Trajectory preprocessing and enrichment 

For each tracked animal (identified uniquely by different tags or names), the tracking points 

in its trajectory dataset are connected in chronological order to form a trajectory. This study only 

focuses on GPS tracking points that represent migration behaviors. Since migration is a periodic 

activity representing a frequently occurring pattern, the trajectory of each tracked individual is 

segmented based on the time intervals of the migration season (e.g., fall or spring migration). After 

preprocessing, each tracking point is enriched with a series of environmental variables identified 

as potentially effective factors based on domain knowledge. The environmental variables can be 

obtained through a trajectory enrichment process by interpolating and integrating remote sensing 
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and weather reanalysis models data with movement data, for example, using the Env-DATA 

service in movebank.org (Brum-Bastos et al., 2016; Dodge et al., 2013).  

4.1.2 Trajectory similarity analysis and clustering 

After preprocessing and enrichment, trajectory-similarity analysis is performed based on a 

hierarchical clustering framework to find the latent trajectory clusters. Hierarchical clustering is 

an approach that derives a series of hierarchies of clusters using agglomerative (bottom-up) or 

divisive (top-down) algorithms. In this study, the proposed framework takes the form of divisive 

hierarchical clustering. It starts by creating the “root” of the hierarchical cluster “tree” and 

continues by dividing the entire dataset into clusters, i.e., subsets of similar objects.  

At each hierarchical level of the framework, this study performs clustering by choosing the 

optimal distance metric together with the optimal number of clusters. In theory, this framework 

can be applied to any kind of clustering algorithms. However, clustering results might vary with 

different clustering algorithms. This study applies the agglomerative clustering with average 

linkage, a widely used algorithm in trajectory clustering (Dodge et al., 2012; Y. Guo et al., 2016; 

Miller, 2008). Agglomerative clustering is a bottom-up clustering approach that searches for 

partitions of similar entities. It starts from the initial partition that treats every object as its own 

cluster. Then, based on a linkage criterion, it partitions data in a way that maximizes the difference 

between clusters and minimizes the distance within clusters. Average linkage, which quantifies 

the similarity between two clusters as the average distances between all pairs of observations of 

the two clusters, is probably the most popular metric to evaluate similarity between clusters in 

agglomerative clustering (Moseley & Wang, 2017). In a nutshell, herein this study proposes a 

divisive hierarchical framework, at each level of which an agglomerative clustering is applied. 

Since labeled trajectories are often unavailable and the goal of the proposed method is to 

find latent clusters, external validation indices, such as accuracy and purity, cannot be used. 



23 

 

Therefore, the silhouette coefficient (𝑆𝐶) is used as an internal validation index to evaluate the 

result of a clustering configuration, i.e., the distance metric together with the number of clusters. 

𝑆𝐶 is a metric that quantifies how similar are objects within each cluster compared to those in other 

clusters. 𝑆𝐶 ranges from -1 to 1, where a higher 𝑆𝐶 indicates a better clustering result. An 𝑆𝐶 of 1 

indicates that clusters are well apart from each other and clearly distinguished, an 𝑆𝐶 of 0 means 

that the distance between clusters is not significant, and an 𝑆𝐶 of -1 suggests that clusters are 

wrongly assigned. 𝑆𝐶 can be calculated with any distance metric and is often used to figure out 

the parameter configuration for a clustering task (F. Liu et al., 2021). The 𝑆𝐶 of a clustering result 

can be computed by Equation (11) (F. Liu et al., 2021; Rousseeuw, 1987). 

𝑆𝐶 =
1

𝑛𝑐
∑

𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)

𝑛𝑐

𝑖=1

                                                           (11) 

where 𝑛𝑐 is the number of clusters, 𝑎𝑖 denotes the mean distance from each object to all other 

objects in cluster 𝑖, and 𝑏𝑖 denotes the mean distance from each object to all objects in the next 

nearest cluster.  

In the proposed framework, the optimal clustering configuration is chosen at each hierarchy 

that leads to the highest 𝑆𝐶. This clustering process is recursive, and the recursion continues until 

the stop criterion has been met. This study sets the stop criterion at each hierarchical level as 𝑆𝐶 <

 𝑆𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Because a low 𝑆𝐶 indicates that the clustering process at that hierarchical level 

no longer contributes much to obtaining distinct and meaningful clusters from the trajectory 

dataset, and thus should be abandoned. 

4.1.3 Cluster characterization based on environmental variables 

The next step after obtaining the trajectory clusters from the dataset is to interpret the 

clustering results in order to infer the environmental drivers of animals’ migration-trajectory path 
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choice. To test whether an environmental variable makes a significant effect on the trajectory, this 

study compares the environmental variable distribution of each cluster against the background 

distribution of that variable. The background distribution is assumed as the null distribution of that 

variable. The hypothesis is that an environmental variable distribution within a trajectory will not 

be different than the background if animals choose their migration-trajectory path without any 

information or preference with regard to that environmental variable (Bohrer et al., 2012). For 

every trajectory cluster, a Kolmogorov-Smirnov (KS) test is run (implemented using SciPy, a 

Python package (Virtanen et al., 2020)) on each environmental variable distribution against its 

background distribution. To prevent pseudo-replication due to the arbitrary high number of 

trajectory points in high frequency GPS data, this study sets the degree of freedom in the KS tests 

equal to the number of trajectories in that cluster, and not the number of location points following 

Bohrer et al. (2012). Finally, a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 5% is used as the significance threshold for the effect 

of environmental variable. 

4.2 Data 

4.2.1 Trajectory dataset 

As shown in Figure 4, most of the variation among trajectories are manifested in North 

America (from Saskatchewan, Canada to Texas, USA), whereas all trajectories converge over 

Central America, and trajectories below 30N (from Texas, USA to Venezuela) are almost identical 

as the birds seem to follow the narrow available land corridor. Because this study is interested in 

identifying and characterizing variations in the migration paths of these birds, only the variable 

portion of the trajectories are focused on. Therefore, the trajectories are truncated at latitude 30N. 

After the preprocessing and truncation, the turkey vulture dataset consists of 62 trajectories from 
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13 turkey vultures with 17,118 tracking points (as in Figure 6) and the properties are illustrated in 

Table 1. The numbers of fall and spring migration trajectories are 37 and 25, respectively. 

 

Figure 6. Turkey vulture migration trajectories truncated at latitude 30N. Each trajectory 

representing a bird during one season is shown by a unique color. 

Table 1. Properties of the turkey vulture trajectory dataset after preprocessing ( 𝒔𝒕𝒅 

represents standard deviation). 

4.2.2 Environmental variables 

This study selects the environmental variables that were previously identified as effective 

external factors that impact turkey vulture movements (Bohrer et al., 2012; Dodge et al., 2014). 

The environmental data are obtained and annotated to trajectories using Movebank’s Env-DATA 

toolpack (Dodge et al., 2013). A brief definition to each environmental variable used in this study 

is provided as follows: 

 
Time interval 

(ℎ) 

Speed  

(𝑘𝑚/ℎ) 

Trajectory length 

(𝑘𝑚) 

Tracking time 

span per trajectory 

(𝑑𝑎𝑦𝑠) 

𝑚𝑒𝑎𝑛 1.6 7.3 2510.5 18.2 

𝑠𝑡𝑑 5.4 15.5 777.1 7.4 
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Movebank Thermal Uplift (from ECMWF) (m/s): Velocity of the rising air as it is 

heated by solar radiation during the day. It is an Env-DATA-derived variable, calculated using 

weather data from ECMWF Global Atmospheric Reanalysis based on equations provided in 

Bohrer et al., (2012). 

Movebank Orographic Uplift (from ASTER DEM and ECMWF): Velocity of the 

rising air formed when sloping terrain forces horizontal winds to higher elevation (Bohrer et al., 

2012). It is calculated based on the elevation data from the ASTER ASTGTM2 30-m DEM and 

weather data from the ECMWF Global Atmospheric Reanalysis. 

MODIS Land Vegetation Indices 250m 16d Aqua NDVI: The Normalized difference 

vegetation index (NDVI) is a measure of live green vegetation based on remote sensing 

reflectance. Higher values represent more live green vegetation.  

ECMWF Interim Full Daily SFC Temperature (2 m above Ground): Air temperature 

at 2 meters above the earth’s surface. It is calculated based on the interpolation between the lowest 

level of the model and the earth’s surface, with atmospheric conditions taken into account. 

ECMWF ERA5 SL Total Precipitation: Accumulated amount of precipitation over the 

past hour. Values represent the depth of the water if it is spread evenly over a grid box. 

Tailwind: Velocity of the wind in the direction of travel of a moving entity. It is computed 

based on ECMWF ERA5 SL Wind (10 m above Ground U Component) and ECMWF ERA5 SL 

Wind (10 m above Ground V Component), which are east-west component and north-south 

component of the wind at 10 meters above the earth’s surface, respectively. 

Crosswind: Velocity of the wind that is perpendicular to the direction of travel of a moving 

entity. It is computed based on ECMWF ERA5 SL Wind (10 m above Ground U Component) and 
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ECMWF ERA5 SL Wind (10 m above Ground V Component), which are east-west component 

and north-south component of the wind at 10 meters above the earth’s surface, respectively. 

4.3 Results 

In this section, first, a comparative evaluation of the performance of various distance 

metrics on trajectory similarity analysis is provided. Then, using the hierarchical clustering 

framework proposed above, this study obtains the trajectory clusters and characterize them with 

environmental variables to infer the ones leading to variation in movement path. 

4.3.1 Initial clustering and outlier detection 

Pair-wise distances between trajectories are computed using all five distance metrics 

including Fréchet distance, DTW, Hausdorff distance, LCSS, and NWED based on the speed 

profile. For each clustering configuration, i.e., a distance metric together with the number of 

clusters 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠  obtained using the silhouette coefficient (𝑆𝐶 ) to evaluate the clustering 

performance (see Figure 7). For Fréchet distance results, the 𝑆𝐶  decreases as 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

increases, which indicates that there is no need to test on larger 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠. According to the result 

shown in Figure 7, the internal validation suggests that 2 is the optimal number of clusters for 

Fréchet and Hausdorff distance and NWED, and 3 for DTW and LCSS. 
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Figure 7. Silhouette coefficient (𝑺𝑪) of initial clustering results using different trajectory 

similarity measures.  

To interpret the initial clustering result, the obtained clusters are characterized using the 

optimal 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 for each distance metric as an external validation. As shown in Table 2, the 

properties of each cluster are characterized by the number of tracking points, trajectory length, fall 

migration counts, and spring migration counts. Fall/Spring migration counts are the number of 

trajectories in each cluster that depict fall or spring migration trajectories, respectively. It is 

important to note that a large portion of the tracking points in this dataset, specifically those that 

are collected before 2013, are already manually labeled with their migration seasons by the data 

owner and field experts based on the dates and the overall direction of the movement path (Bohrer 

et al., 2012; Dodge et al., 2014). As mentioned earlier, turkey vultures migrate south in the fall and 

return north in the spring. Therefore, in general, distance metrics that take direction into account, 

such as Fréchet distance, DTW, and LCSS, are capable of differentiating the fall migration 

trajectories from those representing the spring migration as long as the trajectories have similar 

lengths.  
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Table 2. Properties of trajectory clusters obtained using the optimal configuration (𝒔𝒕𝒅 

represents standard deviation). 

Distance 

metric 
Cluster 

Number of tracking 

points per trajectory 

(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑) 

Trajectory length 

(𝑘𝑚) 

 (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑) 

Fall 

migration 

count 

Spring 

migration 

count 

Fréchet 

distance 

1 283 ±  190 2291.5 ± 739.3 37 0 

2 266 ± 137 2834.5 ± 716.0 0 25 

DTW 

1 278 ± 186 2399.6 ± 598.6 35 0 

2 266 ± 137 2834.5 ± 716.0 0 25 

3 358 ± 229 400.4 ± 243.1 2 0 

Hausdorff 

distance 

1 273 ± 168 2580.8 ± 684.6 35 25 

2 358 ± 229 400.4 ± 243.1 2 0 

LCSS 

1 278 ± 186 2399.6 ± 598.6 35 0 

2 266 ± 137 2834.5 ± 716.0 0 25 

3 358 ± 229 400.4 ± 243.1 2 0 

NWED 
1 280 ± 169 2534.8 ± 759.6 36 25 

2 27 ± 0 1026.0 ± 0 1 0 

 

Some trajectories in the dataset are outliers, which mainly consist of incomplete trajectories 

and those significantly deviate from the general migration corridor. The outliers probably result 

from tracking anomalies, such as signal loss or interrupted data collection. In the first stage of 

clustering these outliers can be detected automatically and removed before further analysis. 

However, if any such anomalous tracks remain in the data, as shown here, the proposed 

hierarchical clustering framework can be used to identify and remove them automatically. In terms 

of trajectory outlier detection, DTW, Hausdorff distance, and LCSS agree on two detected outliers 

(shown in red in Figure 8), while NWED identifies another trajectory as the only outlier (shown 

in orange in Figure 8). NWED is the most special metric in this study. It focuses on the similarity 

in the movement parameter (MP) profile derived from the trajectories, the speed profile in this 
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study, while all other metrics focus on the trajectory shape and the spatial location of tracking 

points. Therefore, when applied to detect outliers, NWED is good at detecting outliers that 

manifest conspicuously different patterns in the MPs selected, which is especially helpful if those 

patterns are not well revealed in spatial locations or the shape of trajectories. However, NWED 

performs poorly if the goal is to detect trajectory outliers that deviate spatially from the 

mainstream. Fréchet distance, on the other hand, fails to detect any outliers from the dataset when 

choosing the 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 with the highest SC. That is probably because Fréchet distance mainly 

considers the maximum distance between matched tracking points without considering the length 

of trajectories. Interestingly, none of the measure identifies the single trajectory that deviates to 

the east (trajectory ID: 48) as an outlier. That is because that the difference between that trajectory 

and the mainstream is much smaller than the difference between the outliers detected and the 

mainstream.  
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Figure 8. Outliers detected by DTW, Hausdorff distance, and LCSS (in red), and by NWED 

(in orange). 𝑻𝒓𝒂𝒋𝑰𝑫 represents trajectory ID. 

4.3.2 Hierarchical clustering results 

Based on the initial clustering results, the outliers detected in the first clustering stage are 

removed before further hierarchical clustering as these outliers do not represent a complete 

migration behavior. Hierarchical clustering is performed on the first two clusters of Fréchet 

distance, DTW and LCSS, and the first cluster of Hausdorff distance and NWED, respectively. In 

this study, the stop criterion is set to 𝑆𝐶_𝑡ℎ = 0.5 since clustering results with 𝑆𝐶s above that 

value are often considered satisfactory (Agarwalla & Minz, 2018; Dos Santos et al., 2011; Eler et 

al., 2015), and moreover, after multiple experimentation on this dataset, it was found that 𝑆𝐶_𝑡ℎ =

0.5  is capable of capturing the inherent characteristics of each cluster without dividing the 

trajectories into too fine clusters (the extreme scenario is only one trajectory in each cluster). With 
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the proposed hierarchical clustering methodology, even though initial clustering results vary 

among different metrics, almost the same final clustering result can be reached following similar 

sequences of clustering configurations at each hierarchical level (see Appendix for detailed 

hierarchical clustering results). The outliers with trajectory ID 1 and 2 (shown in red in Figure 8), 

which have not been detected by Fréchet distance at the initial clustering step, are successfully 

detected and separated from the mainstream through the hierarchical clustering. To achieve that, 

based on the 𝑆𝐶  computed, the methodology selects DTW with 2 as 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠  at the first 

hierarchy. Then, for the following hierarchies, the result starting from Fréchet distance follows the 

same sequence of clustering configurations as DTW and LCSS. Results starting from Hausdorff 

distance and NWED are two special cases. Since Hausdorff distance is not direction-sensitive, its 

initial clustering result can only be used to remove outliers but cannot differentiate fall migration 

trajectories from spring ones. At the next hierarchical level, fall and spring migration trajectories 

are separated, as Fréchet distance together with 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 2 is selected. Finally, it reaches the 

same final result as DTW and LCSS. The NWED result is the most interesting one. Even though 

the two outliers (with trajectory ID 1 and 2, shown in red in Figure 8) are detected and separated 

at the second hierarchy, the trajectory detected and removed as an outlier by NWED in the initial 

step (with trajectory ID 20, shown in orange in Figure 8) affects the final result of hierarchical 

clustering. That is probably because the numbers of trajectories in the final clusters are usually 

small, and thus missing one trajectory significantly affects the similarity between one cluster and 

another. 

In this study, the common hierarchical clustering result shared by Fréchet distance (after 

removing the outliers detected at the first hierarchy), DsTW, Hausdorff distance and LCSS is 

adopted as the final clustering result to perform further analysis and interpretation. Figure 9 
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visualizes the trajectory clusters obtained. Interestingly, for fall migration (southbound), most 

trajectories fall into a major cluster (cluster 1). Since the stopping criterion is based on the 𝑆𝐶 

threshold, it means that none of the distance metrics applied in this study are able to find distinct 

sub-clusters for cluster 1. This indicates that when the birds migrate south in the fall, turkey 

vultures usually follow similar spatial paths. For the northbound spring migration, however, 

distinct clusters have been identified, which manifests more variability in their migration paths 

(see Figure 9b). 

 

                           (a) Fall migration                                            (b) Spring migration 

Figure 9. Final trajectory clusters obtained from the hierarchical clustering (common result 

shared by Fréchet distance (after removing the outliers detected at the first hierarchy), 

DTW, Hausdorff distance and LCSS) 

Next, the hierarchical clustering result is characterized and interpreted with trajectory 

properties. After the outliers are removed, there are 35 fall migration trajectories and 25 spring 
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migration ones. The detailed information of each cluster of fall and spring migration trajectories 

is presented in Table 3 and Table 4, respectively, and the boxplot of trajectory lengths for the 

clusters is presented in Figure 10. The trajectory length seems to be a determining factor in 

clustering, especially for the fall clusters. Turkey vultures named Leo, Steamhouse1 and 

Steamhouse2 share similar trajectory paths, possibly indicating that they share similar movement 

patterns in terms of their path choice.  

Table 3. Trajectory properties for the fall migration clusters (𝒔𝒕𝒅  represents standard 

deviation). 

Cluster 
Trajectory 

ID 
Individual name 

Migration 

year 

Trajectory length 

(𝑘𝑚) 

1 

0 Sill 2005 2368.4 

3 Ranger 2007 3015.4 

4 Mac 2007 2666.7 

11 Leo 2009 2893.9 

15 Leo 2011 2948.2 

17 Leo 2012 2871.2 

19 Leo 2013 2788.5 

24 Steamhouse 1 2011 2540.6 

25 Steamhouse 2 2009 2674.1 

29 Steamhouse 2 2011 2354.2 

31 Steamhouse 2 2012 2511.4 

33 Steamhouse 2 2013 2232.5 

34 David 2013 3083.8 

36 David 2014 2626.4 

42 Ricky 2013 3259.5 

43 Harriet 2013 3241.6 

45 Harriet 2014 3149.2 

46 Ozzie 2013 2346.1 

49 Leo 2014 2941.3 

51 Leo 2015 2423.2 

53 Leo 2016 2810.2 

55 Leo 2017 2925.4 

59 Leo 2019 2954.1 

2 

7 Leo 2007 1693.4 

13 Leo 2010 1958.3 

22 Steamhouse 1 2010 1711.6 



35 

 

3 20 Steamhouse 1 2009 1026.0 

4 
57 Leo 2018 1666.2 

61 Leo 2020 1561.6 

5 
6 Mac 2008 1636.2 

9 Leo 2008 998.0 

6 27 Steamhouse 2 2010 2134.5 

7 38 David 2015 1859.6 

8 41 David 2017 1952.6 

9 48 Tommy 2014 2170.7 

 

Table 4. Trajectory properties for the spring migration clusters (𝒔𝒕𝒅 represents standard 

deviation). 

Cluster 
Trajectory 

ID 
Individual name 

Migration 

year 

Trajectory length 

(𝑘𝑚) 

1 
54 Leo 2017 3146.5 

60 Leo 2020 3809.6 

2 
40 David 2017 2957.5 

47 Ozzie 2014 3013.6 

3 

10 Leo 2009 3473.1 

21 Steamhouse 1 2010 2882.7 

44 Harriet 2014 2909.5 

4 

8 Leo 2008 3158.3 

12 Leo 2010 3040.8 

30 Steamhouse 2 2012 2796.2 

5 
50 Leo 2015 3369.3 

56 Leo 2018 3179.5 

6 
18 Leo 2013 2948.2 

52 Leo 2016 3399.1 

7 
14 Leo 2011 3330.7 

23 Steamhouse 1 2011 2824.3 

8 16 Leo 2012 3333.4 

 32 Steamhouse 2 2013 3571.3 

9 
28 Steamhouse 2 2011 2378.3 

58 Leo 2019 3128.9 

10 39 David 2016 2789.2 

11 
5 Mac 2008 1656.9 

26 Steamhouse 2 2010 1409.5 

12 
35 David 2014 876.6 

37 David 2015 1480.4 
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                       (a) Length of fall migration                            (b) Length of spring migration             

Figure 10. Boxplot of trajectory lengths for all clusters 

4.3.3 Clustering result characterization and interpretation 

To explore the potential relationship between environmental variables and the paths choice 

of turkey vultures, the distributions of environmental variables of each trajectory cluster (i.e., 

environmental conditions observed at tracking locations of the turkey vultures, hereafter referred 

to as ‘used conditions’) and those of the background (i.e., environmental conditions available in 

the general study area, hereafter referred to as ‘available conditions’) are compared. This study 

randomly sample the background, representing an area and time period for the ‘available 

condition’, in a bounding box with the most peripheral tracking points (north, south, west, east) as 

the boundary during the tracking duration (Bohrer et al., 2012). This bounding box is used to 

compute the distribution of ‘available conditions’ for each environmental variable. Even though 

the total time span of the trajectory dataset is approximately 15 years, the tracking points recording 

migrations only cover a smaller proportion of the data (see Figure 3). That is why when generating 

background samples for the ‘available conditions’, this study only randomly selects from the time 

range where there are tracking data (marked with colors in Figure 3), and more importantly, each 

cluster is only compared with the background sample from the same years and same migration 

season (fall or spring) in which the trajectories in that cluster were recorded. The reason is because 

environmental conditions in different years and different seasons may vary. Since turkey vultures 
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do not migrate at night (Bohrer et al., 2012), only daytime timestamps were used for background 

sampling. The total number of random samples selected is 17118, the same number of 

preprocessed tracking points. These points are then annotated with environmental variables such 

as thermal uplift, NDVI, and temperature, using the Env-Data system. Most of these variables are 

directly derived from remote sensing data. However, tailwind and crosswind are special as they 

are computed based on movement headings instead. To compute these variables at the selected 

points, the distribution of turkey vulture headings of fall and spring migrations is modeled, 

respectively. That is, at each sample point a random heading is taken from the distribution of fall 

and spring migration to compute tailwind and crosswind of the background. 

The Kolmogorov-Smirnov (KS) test is used to test the distribution difference of 

environmental variables between each cluster (i.e., used conditions) and their background (i.e. 

available conditions). To remove the effect of pseudo-replication in the tracking data, the D 

statistic and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of the KS test are calculated with a degree of freedom based on the number 

of trajectories in the cluster and not the number of data points (Bohrer et al., 2012). The p-values 

of the KS tests of fall and spring migration trajectory clusters are shown in Table 5 and Table 6, 

respectively. At 5% significance level, a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 less than 0.05 indicates that the environmental 

variable distribution of that cluster is significantly different from that of the background.  

Table 5. 𝒑 − 𝒗𝒂𝒍𝒖𝒆s of Kolmogorov-Smirnov (KS) tests of fall migration trajectory clusters 

against the background.2  

Cluster 
Thermal 

uplift 

Orographic 

uplift 
NDVI Temperature Precipitation Tailwind Crosswind 

1 <. 𝟎𝟎𝟏* 0.332 𝟎. 𝟎𝟎𝟐* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟎𝟐* <. 𝟎𝟎𝟏* 

2 0.058 0.611 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟒𝟒* 𝟎. 𝟎𝟏𝟎* 

3 0.679 𝟎. 𝟎𝟒𝟎* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 0.442 0.625 0.532 

 
2 Trajectories in cluster 4 and 8 are missing environmental variables, and thus those clusters are not presented in the 

table. 
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5 𝟎. 𝟎𝟑𝟎* 0.487 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 0.082 0.057 

6 𝟎. 𝟎𝟑𝟓* 0.348 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟎𝟐* 0.215 0.065 

7 <. 𝟎𝟎𝟏* 0.449 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟐𝟗* 𝟎. 𝟎𝟎𝟐* 0.057 

9 <. 𝟎𝟎𝟏* 0.802 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 0.102 𝟎. 𝟎𝟎𝟕* 

* denotes that the environmental variable distribution of that cluster is significantly different 

from that of the background at 5% significance level. 

Table 6. 𝒑 − 𝒗𝒂𝒍𝒖𝒆s of Kolmogorov-Smirnov (KS) tests of spring migration trajectory 

clusters against the background.3 

Cluster 
Thermal 

uplift 

Orographic 

uplift 
NDVI Temperature Precipitation Tailwind Crosswind 

2 0.370 0.123 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 0.336 𝟎. 𝟎𝟎𝟓* 0.220 

3 𝟎. 𝟎𝟎𝟑* 0.116 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟎𝟐* 

4 <. 𝟎𝟎𝟏* 0.235 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟎𝟔* 𝟎. 𝟎𝟎𝟒* 

5 𝟎. 𝟎𝟎𝟑* 0.930 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 0.059 <. 𝟎𝟎𝟏* 0.097 

6 0.092 𝟎. 𝟎𝟐𝟕* <. 𝟎𝟎𝟏* 0.072 0.335 𝟎. 𝟎𝟎𝟐* 𝟎. 𝟎𝟎𝟑* 

7 𝟎. 𝟎𝟎𝟏* 𝟎. 𝟎𝟏𝟎* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟒𝟖* 0.486 

8 <. 𝟎𝟎𝟏* 0.881 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 0.168 0.129 

9 𝟎. 𝟎𝟒𝟗* 0.297 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟏𝟔* 𝟎. 𝟎𝟏𝟔* 𝟎. 𝟎𝟒𝟑* 

10 𝟎. 𝟎𝟐𝟖* 𝟎. 𝟎𝟏𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 

11 <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟎𝟐* <. 𝟎𝟎𝟏* / <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟎𝟓* 0.732 

12 𝟎. 𝟎𝟑𝟖* 0.272 <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* <. 𝟎𝟎𝟏* 𝟎. 𝟎𝟎𝟒* <. 𝟎𝟎𝟏* 

* denotes that the environmental variable distribution of that cluster is significantly different 

from that of the background at 5% significance level. “/” represents the lack of enough data to 

yield a result. 

To further evaluate how the environmental variables influence turkey vultures’ migration 

path, the environmental variables are correlated with the movement speed of the birds 

corresponding to the tracking points in each cluster using a linear regression. The results suggest 

that movement speed is significantly associated with thermal uplift, temperature, tailwind, and 

 
3 Trajectories in cluster 1 are missing environmental variables, and thus those clusters are not presented in the table. 
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crosswind during the fall migration, and with thermal uplift, NDVI, temperature, and tailwind 

during the spring migration. This suggest that both wind and thermal uplift are important drivers 

assisting turkey vulture flights. Further investigation is needed to identify the influence of NDVI.  

The distributions of environmental variables of each trajectory cluster in fall and spring are 

demonstrated in Figure 11 and Figure 12, respectively. Striking between-cluster differences can 

be observed. This demonstrates that the preferences for environmental variables, especially 

temperature and NDVI, are disparate among different clusters representing different birds in 

different seasons. This is confirmed by pairwise KS tests, in which for temperature and NDVI, 

almost all clusters are distinct at the 5% significance level.  
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Figure 11. Fall cluster characterization with environmental variables4 

 

(b) Spring migration 

Figure 12. Spring cluster characterization with environmental variables5.  

Moreover, from the hierarchical clustering results (see Table 3 and Table 4), one can tell 

that the migration trajectories of the same turkey vulture over different years could fall into 

different clusters. For example, Steamhouse 2’s spring migration paths vary over different years: 

cluster 11 in 2010, cluster 9 in 2011, cluster 4 in 2012, and cluster 8 in 2013. Steamhouse 1’s 

spring migration paths fall into cluster 3 in 2010 and cluster 7 in 2011. For Leo, the turkey vulture 

 
4 Trajectories in cluster 4 and 8 in fall migration are missing environmental variables in the Env-DATA system on 

Movebank, thus not plotted. 
5 Trajectories in cluster 1 in spring migration are missing environmental variables in the Env-DATA system on 

Movebank, thus not plotted. 
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with the most observations, the spring migration paths are associated with cluster 1 in 2017 and 

2020, cluster 3 in 2019, cluster 4 in 2008 and 2010, cluster 5 in 2015 and 2018, cluster 6 in 2013 

and 2016, cluster 7 in 2011, cluster 8 in 2012, and cluster 9 in 2019. The migration paths for the 

same turkey vulture over different years could fall into different clusters, which demonstrates 

different NDVI and temperature experienced along the paths. This outcome indicates that even for 

the same turkey vulture, its preference for certain environmental variables is not strictly consistent 

in different years, which leads to spatial variability in its migration path.  

To further investigate this, the Jensen-Shannon distance (JSD) is utilized to analyze the 

distributional difference of NDVI and temperature with respect to those three turkey vultures. JSD 

is a metric used to measure the similarity between two probability distributions (e.g., two clusters 

in this case) (Seideman et al., 2014). The smaller the JSD, the more similar two distributions are. 

This metric is used to quantify the between-cluster differences, and to investigate whether the same 

bird would preserve a similar preference of environmental variables compared to those in other 

clusters. To do so, the pairwise JSD between clusters containing migration paths of the same bird 

is compared to the average between-cluster JSD (see detailed JSD values in Appendix) using 

Equation (12-13). This analysis is performed on NDVI and temperature corresponding to the 

spring migration trajectories of Steamhouse 1, Steamhouse 2, and Leo. Because first, those three 

turkey vultures have the most tracking data in the dataset. Second, spring migration trajectories 

show more diverse clustering results than fall. Third, NDVI and temperature demonstrate the most 

between-cluster differences. The results are shown in Table 7. 

𝐽𝑆𝐷̅̅ ̅̅ ̅ =
∑ ∑ 𝐽𝑆𝐷(𝑐𝑖, 𝑐𝑗)

𝑘
𝑗=1,𝑗≠𝑖

𝑘
𝑖=1

𝑘(𝑘 − 1)
                                                       (12) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
∑ ∑ ⟦𝐽𝑆𝐷(𝑐𝑏𝑖, 𝑐𝑏𝑗) < 𝐽𝑆𝐷̅̅ ̅̅ ̅⟧𝑞

𝑗=1,𝑗≠𝑖
𝑞
𝑖=1

𝑞(𝑞 − 1)
× 100%                         (13) 
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where k denotes the number of clusters in spring migration. Let {𝑐𝑏1, 𝑐𝑏2, … , 𝑐𝑏𝑞} denote clusters 

containing trajectories of bird 𝑏. q denotes the number of clusters corresponding to bird 𝑏. ⟦∗⟧ is 

an Iverson bracket. ⟦𝑃⟧ = {
1,  𝑖𝑓 𝑃 𝑖𝑠 𝑡𝑟𝑢𝑒
0,  𝑖𝑓 𝑃 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

. 

Table 7. Results of individual preference analysis based on Jensen-Shannon distance (JSD) 

Turkey vulture NDVI Temperature 

Steamhouse 1 100% 100% 

Steamhouse 2 50% 83% 

Leo 86% 81% 

4.4 Discussion 

This section discusses and interprets the results presented in the previous section. From 

Table 5 and Table 6, we can tell that the orographic uplift distributions of almost all fall and spring 

migration trajectory clusters are remarkably similar to the distribution of the background. This 

indicates that turkey vultures do not follow a specific pattern of orographic uplift during migration. 

However, for most clusters, almost all other environmental variables have a different distribution 

compared to that of the background. This suggests that the turkey vultures’ choices along their 

migration trajectories may be intended instead of random, and all those environmental variables 

except orographic uplift might have contributed to their migration trajectory choosing. In both fall 

and spring migration seasons, about half of the trajectory clusters suggest that their distributions 

of crosswind are significantly different from random samples of the background. For tailwind, 

however, the test results are inconsistent in fall and spring. About half of the fall trajectory clusters 

yield a significant result, while, interestingly, almost all spring trajectory clusters (except cluster 

8) do. This might suggest that slight variation exists in preferences of the environmental conditions 

in different migration seasons. More significant test results related to tailwind in spring are 
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consistent with the finding that turkey vultures migrate faster on return versus outbound migration 

(Dodge et al., 2014). The potential reasons behind it include that there is less feeding time as fewer 

food resources are available in spring (Dodge et al., 2014), and that return (spring) migration 

includes only experienced birds but no first-time migrants (Bildstein, 2006). Meanwhile, it might 

also indicate that crosswind is less important than tailwind for turkey vultures. The KS test results, 

in general, indicates that turkey vultures might vary their migration paths over different years 

intentionally based on their surrounding environment and in turn, proves the effectiveness of the 

proposed trajectory clustering framework.  

The results of JSD analysis suggest that 50% of the JSDs between each pair of clusters 

containing Steamhouse 2 are smaller than the average JSD in terms of NDVI and 83% in terms of 

temperature. All JSDs between each pair of clusters containing the migration paths of Steamhouse 

1 are smaller than the average JSD in terms of NDVI and temperature, respectively. 86% of the 

JSDs between each pair of clusters containing Leo’s migration paths are smaller than the average 

JSD in terms of NDVI and 81% in terms of temperature. In general, these percentages are high. 

These results indicate that even though turkey vultures manifest diverse preferences for some 

environmental variables and even though the preference of the same turkey vulture is not strictly 

consistent over different years, each individual tends to preserve a more similar preference over 

different years, compared to the preferences of other turkey vultures. 

One major limitation of the study is that even though 15 years of tracking data are used, 

the total number of trajectories is not very large, and that many turkey vultures only appear in one 

or two years in the dataset. This study could be extended by incorporating more sufficient tracking 

data collected over a long period. 
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Chapter 5  

Trajectory interpolation: filling in the gaps in 

movement data using machine learning 

On the foundation of implicit movement similarity, Chapter 5 introduces a GRU-based 

trajectory interpolation model with the encoder-decoder architecture to learn both joint and 

individual movement patterns. A gap contained in a trajectory is to be filled in based on both these 

joint and individual movement patterns. 

5.1 Trajectory interpolation in a raster space 

In many cases, trajectories may contain gaps, i.e., missing tracking points in the middle, 

which need to be interpolated before further movement analysis. Figure 13 presents a schematic 

illustration of trajectory interpolation. In a typical interpolation scenario, valid tracking points are 

observed at both ends of a trajectory, while in between, there exists a gap with missing data. The 

goal of trajectory interpolation is to interpolate those missing tracking points as close to the reality 

as possible. Note that the ground truth of missing tracking points and trajectory segment to 

interpolate is shown in Figure 13 for explanatory purposes, while in reality, it is unknown as the 

corresponding tracking data are missing.  
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Figure 13. A schematic illustration of trajectory interpolation. The magenta line and points 

represent linear interpolation as an example interpolation method. 

While there are vector-based approaches to trajectory interpolation, this study focuses on  

trajectory interpolation in a raster space with a constant grid cell width 𝑤. The raster space is 

widely adopted in movement modeling (Ahearn et al., 2017; Grant et al., 2018) and in trajectory 

interpolation and prediction particularly (Hirakawa et al., 2018; Qin et al., 2021; Rew et al., 2019). 

The primary advantage is that using rasterized trajectories significantly reduces the computational 

complexity. At each time step, the moving entity moves to one of the eight neighborhood grid cells 

of its previous location (see Figure 13). In this way, the location interpolation is converted to a 

classification problem, while the interpolation of other attributes, such as time, speed, and heading, 

remains a regression problem. Another advantage of using the raster structure is that the model 

can be further enhanced and informed by environmental variables deriving movement as 

environmental data often are available in a raster format. 

5.2 Method 

In trajectory interpolation, to make well informed predictions, the most important 

knowledge comes from implicit movement similarity in the observed tracking points of that very 

trajectory as well as of other trajectories for the same or similar moving entity. On that foundation, 
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this study proposes a trajectory interpolation model with an encoder-decoder architecture based on 

gated recurrent units (GRUs) (Cho et al., 2014). Figure 14 demonstrates the architecture of the 

proposed sequence-to-sequence trajectory interpolation model, including a spatiotemporal feature 

extraction module, an encoder, a decoder, fully connected layers, and finally, a tracking data 

retrieval module. 

 

Figure 14. Architecture of the proposed trajectory interpolation model based on GRU 

The spatiotemporal feature extraction module converts a rasterized trajectory composed of 

tracking points 𝑇 = {𝑝1, 𝑝2, … , 𝑝𝑁}  into a sequence of spatiotemporal feature vectors 

{𝑓1, 𝑓2, … , 𝑓𝑁}  that can be processed by the encoder. Feature vector 𝑓𝑖  (1 ≤ 𝑖 ≤ 𝑁)  stores 

information concerning the cell location, time step, speed, and heading corresponding to tracking 
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point 𝑝𝑖. In this study, movement is represented as the relative locational change with respect to 

the previous point in the raster, which is an approach commonly used in movement modeling 

(Hirakawa et al., 2018; W. Li et al., 2019; Qin et al., 2021). Using relative locational changes helps 

the model focus on the movement patterns instead of the absolute coordinate values themselves, 

thus giving the model better prediction capacity. The first component of 𝑓𝑖 (1 < 𝑖 ≤ 𝑁) represents 

the relative locational change of 𝑝𝑖 with respect to 𝑝𝑖−1. The eight types of possible locational 

changes {𝑁𝑊,𝑁,𝑁𝐸,𝑊, 𝐸, 𝑆𝑊, 𝑆, 𝑆𝐸}  are mapped into vectors using one-hot encoding (see 

Figure 15). Since the first point in a trajectory has no previous points, its corresponding locational 

change vector has zeros only. The second component of 𝑓𝑖  (1 ≤ 𝑖 ≤ 𝑁) is time step, which is 

calculated based on the time elapsed since the first point of that trajectory. Note that information 

regarding the relative time internal between consecutive tracking points is preserved in this way, 

because an RNN model reads data sequentially. The third and fourth components 𝑓𝑖  (1 ≤ 𝑖 ≤ 𝑁) 

are speed and heading, respectively. Note that all components except the first relative locational 

change are normalized before input into the encoder.  

 

Figure 15. One-hot encoding of relative locational change 

The core module of both the encoder and the decoder is GRU. Specifically, the encoder 

consists of stacked bidirectional GRU layers, while the decoder is a single unidirectional GRU 

layer with fully connected layers attached. Figure 16 illustrates the structure of GRU, where 𝑥𝑡 
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and  ℎ𝑡 are the input and output of GRU at time 𝑡, respectively, and 𝑟𝑡, 𝑧𝑡 denote the vectors of the 

reset gate and update gate. GRU works based on the following mechanism (Cho et al., 2014). 

When an input 𝑥𝑡is passed to a GRU, it first goes through the reset gate together with the previous 

hidden state ℎ𝑡−1 to calculate vector 𝑟𝑡 as in Equation (14). The reset gate helps determine which 

past information is to forget and reset with the current input. Similarly, the input 𝑥𝑡 goes through 

the update gate together with the previous hidden state ℎ𝑡−1  to calculate vector 𝑧𝑡  following 

Equation (15). The update gate helps determine the amount of information from the previous 

hidden state that needs to pass along to the current one. Finally, the current hidden state ℎ𝑡  is 

calculated based on all these vectors as in Equation (16-17). The reset gate captures short-term 

dependencies, while the update gate captures long-term dependencies. In this way, GRU possesses 

the same ability to capture both long-term and short-term dependencies as LSTM, but GRU is able 

to do so with fewer gates and fewer parameters.  

𝑟𝑡 = 𝜎(𝑊𝑟) ⋅ [ℎ𝑡−1, 𝑥𝑡]                                                      (14) 

𝑧𝑡 = 𝜎(𝑊𝑧) ⋅ [ℎ𝑡−1, 𝑥𝑡]                                                      (15) 

ℎ̃𝑡 = tanh(𝑊 ⋅ [𝑟𝑡⨂ℎ𝑡−1, 𝑥𝑡])                                             (16) 

ℎ𝑡 = (1 − 𝑧𝑡)⨂ℎ𝑡−1 + 𝑧𝑡⨂ℎ̃𝑡                                             (17) 
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Figure 16. A schematic illustration of a gated recurrent unit (GRU), as proposed by Cho et 

al. (2014) 

The encoder sequentially processes the feature vector sequence {𝑓1, 𝑓2, … , 𝑓𝑁}, some of 

which represent missing values, to learn the implicit movement similarity, which will later be used 

by the decoder to reconstruct the complete feature vector sequence without missing values. Note 

that the encoder consists of stacked bidirectional GRU layers. The first GRU layer reads 

{𝑓1, 𝑓2, … , 𝑓𝑁} chronologically, while the second GRU layer reads it reversely. In the encoder, all 

inputs of GRUs come from the feature vector sequence directly, and all GRU output hidden states 

{ℎ1, ℎ2, … , ℎ𝑁} and {ℎ′1, ℎ′2, … , ℎ′𝑁} except the last ones are discarded. The last hidden states of 

those two stacked layers ℎ𝑁 , ℎ′𝑁 are fused to be the initial hidden state of the decoder ℎ′′0, based 

on which, the decoder decodes the complete feature vector sequence {𝑓′1, 𝑓′2, … , 𝑓′𝑁} without 

missing values. In specifics, the output of a decoder GRU cell ℎ′′𝑖  (1 ≤ 𝑖 ≤ 𝑁) is passed to two 

modules of fully connected layers (see Figure 17). Based on ℎ′′𝑖, the first module predicts the 

relative locational change in the one-hot encoding form and second module predicts other 

spatiotemporal attributes including time step, speed, and heading. The predictions from these two 

modules are concatenated to be the final predicted feature vector 𝑓′𝑖. Note that the input and output 
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feature vectors 𝑓𝑖 and 𝑓′𝑖 have the same form. The only difference is that some feature vectors in 

the input sequence represent missing values, while no values in the output sequence are missing. 

In this way, the gap in the trajectory is interpolated. 

 

Figure 17. Illustration of the decoder GRU output 

The proposed model needs to be trained on trajectories with manually created gaps, and 

thus the ground truth of the missing values is known during the training process. Once the model 

is sufficiently trained, it can be applied to trajectories with real gaps. During the training process, 

both cross-entropy loss and mean-squared-error loss are used. Because the proposed trajectory 

interpolation model is doing both the classification to predict the relative locational change and 

regression to predict spatiotemporal attributes including the time step, speed, and heading. 

5.3 Experiment 

5.3.1 Trajectory dataset and preprocessing 

For tracking point 𝑝𝑖, its speed is calculated according to the spatial length of vector 𝑝𝑖𝑝𝑖+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   

and the corresponding time interval. The unit of speed in this study is km/h. The heading of 𝑝𝑖 is 

defined as the clockwise angle between due north and vector 𝑝𝑖𝑝𝑖+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . Note that the speed and 

heading are calculated prior to rasterization to preserve accuracy. The average speed of the 

migration tracking points is 8.2 𝑘𝑚/ℎ with a standard deviation of 15.0 km/h. Therefore, the 

trajectories are transformed into the raster space with a constant grid cell width 𝑤 = 10 𝑘𝑚. A 

minimal-area rectangle is created according to the minimum bounding box of the tracking points, 

representing the boundary of the area that turkey vultures travel in. In order to allow for a certain 



51 

 

level of uncertainty, the boundary of the raster cells is defined based on the minimum bounding 

box with a 5 km buffer. When trajectories are transformed into the raster space, each tracking point 

is mapped to a raster cell according to spatial proximity. If multiple successive tracking points of 

the same trajectory are assigned with the same raster cell coordinates, only the last tracking point 

in that cell is preserved. This guarantees that each trajectory consists of distinct cell positions. 

Meanwhile, the stopover behavior is still preserved in the trajectory, as one can tell from the time 

elapsed. In contrast, if two consecutive tracking points in a trajectory are not in adjacent cells, 

tracking points are interpolated based on a least-cost random walk model (Squires et al., 2013). 

This step is necessary to ensure that after preprocessing, each tracking point (except the first one) 

is in the one of the eight neighborhood cell of its previous point in the trajectory (Hirakawa et al., 

2018). Trajectories with fewer than 200 tracking points are eliminated since the input sequence 

length of the trajectory interpolation model is empirically set as 𝑠𝑒𝑞𝐿𝑒𝑛 = 200. It is worth noting 

that the proposed trajectory interpolation model works with a sliding window mechanism. It means 

that the model can still work on trajectories longer than 𝑠𝑒𝑞𝐿𝑒𝑛. If it is a long trajectory with only 

1 gap, a typical approach is to only input the trajectory segment, whose length is 𝑠𝑒𝑞𝐿𝑒𝑛 , 

containing the gap. Analogously, the proposed model can even work on a long trajectory with 

multiple gaps as long as these gaps are not adjacent to each other. The time step of each tracking 

point is calculated based on the time elapsed since the first point of that trajectory. After 

preprocessing, there are 61 trajectories with 43683 tracking points (see Figure 18 for visualization).  
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Figure 18. Rasterized trajectories of turkey vulture migration.  

5.3.2 Training and evaluation of the proposed model 

To train and evaluate the proposed trajectory interpolation model, this study uses trajectory 

samples containing gaps that are manually created. To simulate the stochasticity of gap lengths, 

the number of missing tracking points contained in a gap is sampled from a normal distribution 

with 𝜇 = 55  and 𝜎 = 10  to generate a reasonable range of lengths of gaps that are possibly 

contained in trajectory samples with sequence length 𝑠𝑒𝑞𝐿𝑒𝑛 = 200 (see Figure 19). For example, 

if 100000 gaps are generated, the minimum length is 12 while the maximum length is 99. Since 

the topic of this study is trajectory interpolation instead of extrapolation, there need to be some 

valid observed tracking points at both ends of a trajectory sample. In this study, the number of 

observed tracking points at each end is set to 50, while a gap with the length drawn from the normal 

distribution can start anywhere in between. In this way, 80300 trajectory samples are created based 

on the actual turkey vulture tracking data. Following the machine learning tradition, the trajectory 
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samples are split into training set, validation set, and test set according to a ratio of 0.8:0.1:0.1. 

The training set, validation set, and test set contain 64240, 8030, and 8030 trajectory samples, 

respectively.  

 

Figure 19. Gap lengths sampled from a normal distribution with 𝝁 = 𝟓𝟓 and 𝝈 = 𝟏𝟎 

The proposed trajectory interpolation model is implemented using PyTorch (Paszke et al., 

2019), which is an open-source artificial neural network library written in Python. The loss 

function used to train the model is designed as the summation of the cross-entropy loss, which 

deals with the location change classification, and the mean-squared-error loss, which deals with 

the attribute regression. The model is trained with the Adam optimizer with an adaptive learning 

rate from 1 × 10−3 to 1 × 10−5 using the AMSGrad algorithm (Kingma & Ba, 2015; Reddi et al., 

2018). To determine the optimal hyperparameter setting of the proposed model, multiple 

combinations of hyperparameter settings are experimented on. The hyperparameters of the final 

model, which has the smallest final validation loss 1.0726 after 100 training epochs, are as follows. 

Both the encoder and the decoder GRU cells have a hidden size of 128, meaning that the number 

of features in the hidden state is 128. The encoder consists of stacked bidirectional GRU layers, 
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while the decoder is a single unidirectional GRU layer with fully connected layers with a hidden 

size of 512 attached. The dropout probability is set to 0.5 to alleviate the overfitting problem 

(Srivastava et al., 2014). Layer normalization is utilized before the fully connected layers to obtain 

smoother gradients, and it is helpful for faster training and better generalization capabilities (Xu 

et al., 2019).  

Figure 20 demonstrates the interpolation results of several example trajectories in the test 

set using the proposed GRU-based model. The results suggest that the proposed GRU-based 

interpolation model is capable of learning implicit movement similarity contained in a trajectory, 

since without which, some gaps would be difficult to interpolate accurately using traditional 

interpolation methods. For example, in Figure 20(a), the trajectory segment in the gap has an 

unusual geometric shape, thus making the interpolation extremely challenging, but the proposed 

model successfully learns enough information to reconstruct it. However, these interpolation 

results also suggest that the proposed GRU-based model is underestimating the sinuosity and 

stochasticity of trajectories. Take Figure 20(c) as an example. In the gap area, the turkey vulture 

first moves southeast for a while, then its heads east, and finally it moves northeast a little till the 

end of the gap. The general geometric shape of the interpolated results follows that patten, but the 

model uses mostly straight line segments, leading to oversimplification of the geometry with 

respect to the interpolated trajectory segment. Another problem is that the model tends to 

exaggerate some patterns. In Figure 20(b), for instance, the object does not head towards the gap 

end point directly but lingers in an area west to the gap end point. This lingering behavior is 

successfully predicted by the model, but there is quite a deviation in the prediction of the lingering 

location. Similarly, in Figure 20(d), the turkey vulture does not head southeast directly but first 

flies southwest for a short time and then goes back. These suggest that the model is inclined to 
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exaggerate the magnitude of a behavior that drives the moving entity away from the beeline 

between the start and end points of a gap. The same inclinations can also be found in Figure 20(e-

f). In a word, the performance of the model is not very stable. It can generate surprisingly 

satisfactory results, while it may also fail with large deviations from the actual path. These 

discussed problems may suggest that the proposed model needs a better training strategy including 

adding other variables (e.g., path tortuosity and environmental variables) and probably a larger 

trajectory sample to increase its effectiveness and robustness. Due to the complexity that comes 

with the architecture of the proposed GRU-based trajectory interpolation model, training this 

model requires more attention and further study, as with many deep neural network models (Cyr 

et al., 2020; Glorot & Bengio, 2010; Han et al., 2018).  

 

(a) Test trajectory sample with id 1 
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(b) Test trajectory sample with id 212 

 

(c) Test trajectory sample with id 4944 
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(d) Test trajectory sample with id 4236 

 

(e) Test trajectory sample with id 28 
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(f) Test trajectory sample with id 2110 

Figure 20. Interpolation results of several example trajectories in the test set. In each 

subfigure, the ground truth is shown the left, while the interpolation result using the 

proposed model is on the right. The observed parts, visualized in grey, exist on both ends of 

a trajectory, since this is an interpolation task. The yellow triangle denotes where the gap 

starts, and the green circle denotes where the gap ends. 

5.4 Discussion and future work 

The proposed trajectory interpolation model is capable of reading a trajectory containing a 

gap in both chronological and reverse chronological orders. The information obtained from these 

two directions is fused to learn the implicit movement similarity contained in that trajectory, which 

is later used to reconstruct a complete trajectory without the gap. The capability of the proposed 

interpolation model primarily comes from this architecture. One aspect of the future work is to 

incorporate context information, as it is an important driver that influences the movement path 

selection in both animal movement and human movement. This includes environmental context 

(e.g., preferences, physical constraints) and social context (e.g., interactions with other individuals 

nearby) (Bohrer et al., 2012; Dodge et al., 2014; Gupta et al., 2018; Sadeghian et al., 2019; Shi et 

al., 2019). This requires a more powerful model that is capable of processing multiple trajectories 
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simultaneously and modeling agent interactions. And the model needs to be parameterized and 

validated on tracking data from different types of moving entities, such as animals, humans, and 

vehicles. 

One major limitation of the proposed trajectory interpolation method is that transforming 

tracking data from the vector space to the raster space decreases the data precision, the extent of 

which depends on the chosen grid cell width 𝑤. The larger the 𝑤, the higher the precision decrese. 

However, the computational cost increases dramatically if a smaller 𝑤 is chosen. Because it means 

that the study area is divided into considerably more cells with finer resolution. This is a trade-off 

between computational cost and precision. With the development of modern computational 

resources, one future direction of this study is to refine the proposed methodology to make it 

suitable for large-scale parallel and distributed computing. 

Gated recurrent unit (GRU) is a newer generation of the recurrent neural network (RNN) 

compared to long short-term memory (LSTM). GRU gets rid of LSTM’s cell state and use only 

the hidden state to transfer information. By doing so, it decreases the number of gates and 

parameters needed, which makes it easier to train and it can have a similar or even better 

performance compared to LSTM, especially with a sample size that is not very large (Cho et al., 

2014). However, it is still worth further study whether and to what extent the tracking dataset size 

influences the performance of the models based on GRU vs. models based on LSTM. With the 

rapidly development of tracking technology and the widespread of tracking devices, tracking data 

do come in enormous volume in many cases. 

Moreover, when transforming trajectories from the vector space to the raster space, grid 

cells are used, since grid cells are the most widely adopted cell shape in rasterization. But more 
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attention could be paid to whether and how changing the shape, to hexagon for example, influences 

the interpolation effectiveness and efficiency.  
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Chapter 6  

Conclusion 

Movement similarity, classified into explicit and implicit movement similarity in this 

thesis, is a promising field and research direction in computational movement analysis. In terms 

of explicit movement similarity, this thesis explores an integrated hierarchical clustering 

framework to analyze movement ecology. Multiple commonly-used trajectory similarity measures 

including Fréchet distance, DTW, Hausdorff distance, LCSS, and NWED, a special kind of edit 

distance, are utilized collectively. At each hierarchy, the optimal clustering setting, i.e., a distance 

metric together with the number of clusters, is chosen automatically based on silhouette coefficient 

(SC). Then, the environmental drivers that lead to variation are inferred by comparing tracking 

data samples against random samples collected from the study area.  To assess the applicability of 

the proposed framework, this study investigates similarity patterns in long-term trajectories of 

migratory turkey vultures (Cathartes aura) in North America using tracking data during 15 years 

of fall and spring migrations seasons and infer the environmental drivers that contribute to turkey 

vulture’s migration path choosing. While orographic uplift is not critical to turkey vultures, all 

other environmental factors including thermal uplift, temperature, vegetation, wind patterns, and 

precipitation seem to matter. However, various clusters of migration trajectories manifest that 

turkey vultures might not be following the same pattern of specific environmental factors. 

Understanding how animals respond to environmental factors when choosing migration paths is 

critical to both animal conservation and trajectory prediction with predicted environmental 

conditions taking into account (Shamoun-Baranes et al., 2010). Moreover, it may in turn provide 
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insights into evaluating and predicting certain environmental conditions based on animals’ 

ecological responses. 

As for implicit movement similarity, this thesis proposes a trajectory interpolation model 

with an encoder-decoder architecture based on gated recurrent units (GRUs) to interpolate 

trajectory gaps (missing values) in the raster space. The capability of the proposed interpolation 

model primarily comes from this architecture, enabling it to outperform several existing 

interpolation methods. A trajectory containing a gap is first converted into a multi-dimensional 

feature vector sequence before input into the encoder. The encoder consists of stacked bidirectional 

GRU layers, and thus is capable of reading the trajectory containing a gap chronologically and 

reversely. And the structure of GRU allows it to capture both long-term and short-term 

dependencies. The information obtained from these two directions is fused to learn the implicit 

movement similarity contained in that trajectory, which is later used to reconstruct the complete 

trajectory without the gap.  

In a nutshell, on the foundation of explicit and implicit movement similarity, researchers 

can build multifarious models for diverse moving entities, such as animals, humans, vessels, and 

vehicles. However, there still remain many challenges and opportunities for future work to 

consider in this area. Examples include incorporating context information in either explicit or 

implicit movement similarity and considering both joint and individual movement patterns. 
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Appendix 

The hierarchical clustering framework (proposed in Section 4.1) is applied to initial results 

of each similarity measure obtained in Section 4.3.1 to test the robustness of the methodology, i.e., 

whether starting from different initial results would significantly influence the final clustering 

outcome. Figure 21 illustrates the hierarchical clustering results with various starting measure. 

Between the adjacent hierarchies, the distance metric used for clustering together with the optimal 

𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 and the corresponding 𝑆𝐶 computed is presented.  

 
(a) Fréchet cluster 1 (fall migration) 

 
(b) Fréchet cluster 2 (spring migration) 
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(c) DTW cluster 1 (fall migration) 

 
(d) DTW cluster 2 (spring migration) 

 
(e) Hausdorff cluster 1 (fall and spring migration) 
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(f) LCSS cluster 1 (fall migration) 

 
(g) LCSS cluster 2 (spring migration) 

 
(h) NWED cluster 1 (fall and spring migration) 

Figure 21. Hierarchical clustering results. The title of each subplot indicates the initial cluster 

obtained previously (see Section 5.1) on which the hierarchical clustering starts. 𝑺𝑪 denotes 

the silhouette coefficient and 𝒏_𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 denotes the number of clusters. 
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The detailed between-cluster Jensen-Shannon distance (JSD) values for spring migration 

paths in terms of NDVI and temperature are presented in Table 8 and Table 9. JSDs are computed 

using the SciPy library (Virtanen et al., 2020) with the default logarithm base 𝑒. 

Table 8. Between-cluster Jensen-Shannon distances (JSDs) for spring migration paths in terms of 

NDVI6 

           Cluster       
Cluster 2 3 4 5 6 7 8 9 10 11 12 

2 0 0.430 0.423 0.471 0.428 0.507 0.489 0.633 0.560 0.653 0.723 

3 0.430 0 0.387 0.442 0.364 0.371 0.442 0.480 0.521 0.560 0.691 

4 0.423 0.387 0 0.427 0.345 0.410 0.416 0.514 0.503 0.514 0.654 

5 0.471 0.442 0.427 0 0.392 0.473 0.444 0.592 0.518 0.591 0.672 

6 0.428 0.364 0.345 0.392 0 0.388 0.402 0.530 0.480 0.542 0.659 

7 0.507 0.371 0.410 0.473 0.388 0 0.488 0.511 0.503 0.566 0.701 

8 0.489 0.442 0.416 0.444 0.402 0.488 0 0.555 0.472 0.528 0.555 

9 0.633 0.480 0.514 0.592 0.530 0.511 0.555 0 0.580 0.558 0.654 

10 0.560 0.521 0.503 0.518 0.480 0.503 0.472 0.580 0 0.514 0.549 

11 0.653 0.560 0.514 0.591 0.542 0.566 0.528 0.558 0.514 0 0.545 

12 0.723 0.691 0.654 0.672 0.659 0.701 0.555 0.654 0.549 0.545 0 

Table 9. Between-cluster Jensen-Shannon distances (JSDs) for spring migration paths in terms of 

temperature1 

Cluster       
Cluster 2 3 4 5 6 7 8 9 10 11 12 

2 0 0.357 0.390 0.543 0.353 0.345 0.438 0.488 0.578 0.492 0.565 

3 0.357 0 0.222 0.389 0.215 0.232 0.273 0.382 0.385 0.296 0.498 

4 0.390 0.222 0 0.356 0.207 0.257 0.237 0.370 0.341 0.265 0.509 

5 0.543 0.389 0.356 0 0.376 0.410 0.345 0.424 0.340 0.321 0.473 

6 0.353 0.215 0.207 0.376 0 0.279 0.258 0.406 0.387 0.343 0.526 

7 0.345 0.232 0.257 0.410 0.279 0 0.302 0.393 0.458 0.375 0.561 

8 0.438 0.273 0.237 0.345 0.258 0.302 0 0.362 0.335 0.288 0.531 

 
6 Trajectories in cluster 1 in spring migration are missing environmental variables in the Env-DATA system on 

Movebank, thus not shown in the table. 
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9 0.488 0.382 0.370 0.424 0.406 0.393 0.362 0 0.475 0.460 0.592 

10 0.578 0.385 0.341 0.340 0.387 0.458 0.335 0.475 0 0.349 0.520 

11 0.492 0.296 0.265 0.321 0.343 0.375 0.288 0.460 0.349 0 0.465 

12 0.565 0.498 0.509 0.473 0.526 0.561 0.531 0.592 0.520 0.465 0 
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