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~ The Theoretical Analysis of Nuclear Reactions-Involving

Strongly Deformed Nucleil Using Phenbmenological Models

Raymond Stuart Mackintosh
Lawrence Radiation Laboratory

- University of California
Berkeley, California.

ABSTRACT

Stripping reactions, A(d,p) A+1, are studied for the

case where A is a strongly deformed nucleus. In the standarad

"treatment,-using DWBA, the possibility that the projeétilés

d énd p can set the nucleus in rotational motion is ignored.
We have studied in detail the importance of these inelastic

procesées'using'the coupled channel source-~term technique of

Ascuitto and Glendenning. We have shown this to be equivalent

to the coupled channel Born Approximation written down by

Penny and Satchler. We have also generalized a formal deriv-

‘ation of DWBA given by Greider and Dodd. We have discovéredv

“that for A~25 and for 10 and 12 MeV deuterons, inelastic

7/ . . .
processés are of vital importance -- that-relative_stréngths

of levels_may be greatly changed by their'inclusion'and.that'
',angﬁlar distributions may be significantly improved, although

- the gétailed shape 1is still not reproduced for these light

nuclei. This latter failing, therefore, seems to be character-

‘istic df any generalization for zero range DWBA to include
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.rotational excitations. For 12 MeV deutéroﬁé in:thé deformed
' rare earth region, the inclusion of inelastic prodesses
Will,_invgeneral, lead to substantial differences in valﬁes,
.extracted‘by comparison with experiment;.of-the amplitudes
ﬂwith which particular angular moﬁenta occur in the vafidus-
‘Nilsson states. “Angular distribﬁtions'of'weaker:leQelsiin a
band afe'often changed substantially and the change ih'strip—
| ping strengths of various levels:is quite comparable to.that -
»vwhich is a result of coriolis mixing (not included in‘our_v]
"calculafions). Qur calculations involvé purely macroscopic
'_rotational excitations and we further ignore trénsitioné
between members of differenf bands of the odd A residuai.

nucleus. '




I. INTRODUCTION
The usefulness of the deuteron stripping reaction
d+A — p+ (A |

treated as abdirect reaction is:well established as a éouree
Of‘SpeCtrQSCCpiC information. In particular, it has proven
very uSeful1 in élucidating the complex energy levei structure
of odd strongly deformed nuolei,ban'appliéation which is the
subject of the present work.

The level structure of the odd-A residual nuclei can

often be resolved into a sometimes quite striking array of

rotational bands, each based on a particular defocrmed intrinsic

state. Each intrinsic single pérticle state is characterized

by a set of amplitudes'cjl corresponding to -angular momentum.jf

In the customary treatment of stripbing reactions,'thé
stripping takes place Without‘pfe-excitation of the target
nuclegs by the deuteroh, and withouf coupling bétween‘stétes
of the rgsiduallnucleus induced by the interaction with

the outgoing proton. In this case, for even target nuclei

I's

L - 2 .
.(spin_Zero), as was first pointed out by Satchler,” the
- excitation of a state of spin I of a given:band canvprbceed

_on1y through the component of the intrinsic state of angular‘

momentum I (ampiitude'cIl), because the neutron must carry
all the angular momentum transferred in the reaction. The

cross. section thus factors:
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The cross sections for .transitions to the various

&

‘members.of the band measure the amplitudes of the angular
momenta that occur in the single-parficule state“on whicb the
band is built. Furthermore, as Qﬂ9) is independent of
‘nuclear structure, eq(2) can be used to study and compare
differenﬁ barids in different nuclei —-- perhaps to estimaﬁe.
.quasiparticle occupation factors (u&)for fhe deformedvsingle
pgrtigle.étates. .If the-ojl values for a given band are
considered known, the band based on this intrinsic state can
~ be identified by the characteristic péttern of stripping cross
~sections of its.various,memberé and traced”from_nucleus to
nucleus throughout the deformed fegion; These reactionsvare
révieWed'someWhat more fully in Chapter VIII, section B;
| :It i1s important that bands can be unambiguously identified

by the pattern of the intensities of the band membefs, and
that c2,oan=be reliably extracted from experiments. HoWeVer,
the Qﬁilectifity_of strongly deformed nuclei_may iﬁvalidafé
eq<2).f | | |

, -The rqtatioﬁal'staﬁes are coupled strongly by the inter- A
action.of a projectile with‘the deformation of the nuclear field, « .
sufficiéntly_strongly, in fact,.for'the higﬁer order processes
to bé'imbortant in inelastic scattering. This is the motivation

. for the present work in which we study the extent to which
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.

inelastic processes,bi.e. pre-excitation énd post excitation
of rotationai-levels’of the target and residual nuclei,
invalidate or modify band i(‘ientific‘ationsvandc2 measurements
based on the no-Scattering-factorization, eq(2).

Although we use coupled channel techniques entirely, our

calculation will be the equivalént of calculating an approximatkn

~ to the true transition matrix T of the reaction, in the

~ following form:

T

mode

| o< Coutgoing Wate| Vit | incoming ‘“"""?>". RN E

‘As far as the stripping interaction,\.j, is concerned, this

expression has the form of the first order term of avperturbatioh

(Born) series. In the past, this form has been employed with

~.the incoming and outgoing waves calculated according to a
'hierarchy'of approximations: plane wave‘Bornvapproximations
~ (PWBA), coulomb wave approximations, distorted wave Born

‘approximation (DWBA). For the case of rearrangement collisions,

the next approximation, still with \41-_taken to first order,

14}

is that employed herein: the coupled channel Born appfoximatioh,

 CCBA. 1In this, the entrance channel wavefunction contains not

only the elastic channel components ( as in DWBA; for an illustma-

ted example, see the appendix to this chapter) but also

i compOnénts corresponding to target states excited by the deuteron

before the stripping interaction takes place. Likewise, the

'outgoing wave is calculated with the statés of the~residuéi

nucleus . coupled togethef by the interaction'beﬁween the proton
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and théiA}1,§articlés. In each case, the wavefunctions are
calculated byvieans of the_(infinité order) coupled channel
»method using purely macroscopic excitation. These will be
modified not only by the inclusion}of inelastic’channelé; but @
: tﬁé elastic,channei components will be modified by virtué of
the change required for the optical potentiai and by the
_scatﬁering back into this channel. In our calculations we
ignore'ébupling'ﬁetween different bands of the residual nucleus
on‘ﬁhelgrOunds that the COrresponding single particle transition
_iéﬂghchAweaker than the intraband collective transitions.

vAn& reaction on a complex nucleus is a many body problém
_whi¢h is, in a real sense, honsolvable. Qf course, we do perform
"calculétions and obtain numbers that can be compared with
expérimehts,‘and our scheme must be justified to the extent
‘that itworks; the difference between‘wofking and seeminé to
work is not always'obvious, and the importance of the méﬁy
_approximafions that remain is not entirely clear. Our
replacément of the many body nuclear field by a one body locai
- pptical potential is only partialiy mitigatéd by the explicit

inclusiOnvof the strongly coupled nuclear states (excited by

.

meanlef a deformation!of this field) as far as our calculationaf . g

the projectile wavefunctions in the interaction region is - s
concerned. The effect of the non-rigorous treatment of rearrénge—
ment processes, and the closely related problem of the neglect

of other partitions is still largely unknown, although estimates



O

TR

—5- .

héve-beenfmadéHOf'specific aspects of this: inclusion of
the sffipping interaction to higher order and the pblarization
of the deuteron. The'éustomary”zero range apprdximétion

which facilitates the calculation of éertain integralsvand_

which -we use,is on a different footing and the extent of its

validity is fairly well known. To sum up: this work is'directed

to the sfudy of a single physical process that can affect the
- stripping reaction - the excitation of particulérly strongly"
excited states of the target and residual nucleus; othérwiéé'

we make standard approximations.

The initial aim of this work was simply to discover how im-

portaht these processes are and thus establish the validity

‘of the many analyses of experimental data that have been made

~without regard to them. However, we demonstrate how, in some

cases -studied, spectroscopic information may be obtained. For

a furfher'discussion of the general procedure_amioftheimﬁmtawe‘

of this work, see the last part of Chapter II. -

We have discussed the-variousvaspécts of this work in turn

;and tie the threads together at the end according to the

vfollowiﬁg scheme

Mindful, in the first place, that we are studying a stiripping
reactibn, we present in Chapter II the .customary definitions
and results of stripping theory'that we shall draw upon later.

We shall discuss the effects of the approximations that we

“have made‘that relate specifically to the stripping aspeété of
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thégproﬁlem. We discuss in more detail the overall approach
that ié required to fully delineate the influencé éf inelastic
.processes on stripping reactions, and we shall give an
AaCcqut of'fhe éffects we expect to see. |
l fn Chapter IIT we give a formal deriﬁation of the CCBA.
The calculation of the nuclear wavefﬁnétion is discussed
in Chapter IV together with an analysis of the various nuclides
‘treated and tabulations of the wavefunctions employed. We
" shall éhow that a correct calculation of the bound neutron
anefunctioAiof more importance than is sometimes assumed.
+In this work we ignore coriolis mixing. |
In Chapter V fhe formal results of Chapter III are 
_ éxpresSed in coupled channel form adaptable to a numerical
:procedure which is briefly indicated. e discuss here the
inelastic:scattering of the deuterons and protons in quél
ihdepéndeht terms.
in Chapter VI the various intefaction matrices.wthh
 enter.the scattering and stripping problems are evaluated in
terms of the.particular models used. In”section D, we:show how
_'éelection rules that apply to direct processés may be broken
in the presence of inelastic transitions. | |
| The procedure required tguobtain the "correét" optical
 potential is discussed in Chapter VII together with a tabulation
Vof the various optical potentials used.

The.stripping calculations are presented -and discussed in




A
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Chapter VIII. Section B of this chapter also contains a
brief reviewvof:stripping spectroscopy in the rare earth
region.

Finally we discuss'our‘conclusions in Chapter'IX and =
discuss what we feel to be important experimehts thaﬁ
should be carried out. - |

Previous discussions of various aspects of the method

‘used herein have been presented by a number of authors.3’4

The work of Ascuitto and Glendenning4iintroduced the source

term approach to stripping.



Appendix

Deuteron Stripping on Magnesium: an Example

As an example of the physical processes which are

‘included in our
5 _

stripping calculations, we consider -
I .

4Mg(d,p)25mg as illustrated in fig.>I.14.The spectrum of

SMg is given in Chapter IV. As we ignore inter-band cbuplihg

in the product nucleus, we need show only one band, for

'vexample, the [211) 1/2 vband. The j=7/2 component of the

[211]1/2+ state

is zero as Nilsson calculates it ( for a

 full discussion, see Chapter IV), but there will be small

amblitudesvpresent. The direct stripping amplitude to the

' 7/2+ level is very small in any case. ~The vertical arrows,

. up and down, signify the coupled-channel-calculated inelastic .

_scattering. The more or less horizontal arrows, in one direction

only, represent
'jorder;'(We note
7 which involve
‘will be smaller

excited by a Y,

the stripping'interaction which acts to first
that there are amplitudes that lead to state
only one scattering. One of these A —>W-—>7
than the others as the transition W—Z is not.

deformation. Thus the stripping amplitude of

'state Z can be considered to be the sum, to first order in

inelastic processes, of three amplitudes, and we shall find

that. they are éomparable in magnitude. It is clear Why'the_

- cross section for a state such as W,X,Y, or Z is no longer

linear in i etc., for each state depends on 02 for éverx

state to an extent that varies with the importance of the




ap

inelastic processes.
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Figure Captions for Chapter T

Fig. I.1 Stripping'on24Mg. Illustrating the multiplicity of

_ amplitudes which add coherently to give the total amplitude
for state W,X,Y, or Z when inelastic scattering (vertical
lines) is permitted among the states of the target and
final nuclei. The double lines denote the DWBA paths. The

DWBA amplitude for state Z is small enough to describe 7 as

"forbidden in DWBA."

g9
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II; _STRIPPING>REACTIONS .
In'thevfollowing, we give a brief account of the'genérél 
.propértiES-Of stripping reactions, and certain standafd |
results and definitions will be given dréWihg in part on thé»

6, Many of the approximations which we -

 reyiew afticles
make are shared with usual DWBA approach and are of quite
 well known ranges of validity; This is relevant if we wish to
consider our study as more than a series of model calcuiations}
| We then discuss the use of DWBA for light nuclei and find
'?fhat it cannot be counted on. to give good angular distributions
for magnesium. | |
A_cbnsistént procedure is then set forth for studyingvthe
 role of inelastic processes, and finally the earlier discuééion
is called upon in an ekpansion of the brief account givén
in the Introduction of the possible importance of inelastic
ProceSSés. | | | |

A. Stripping Theory Definitiong-

The reaction under consideration is d + A — P-f(A+0 '>"
'We_treat itvas'a direct reaction, in other words, one that
takes'piace in the short time characterizing the tranéit ofv> '
‘.a_nucleon,' This raises the possibility of a'perturbatibn:
treatment. In the customary DWBA treatment (see Introdubtion)
the neutron is dropped into the ground state of A to form some
’component of a particular stafe of (A*1)._ The spectroscopically

significant feature of this treatment is what might be called
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v the "1ncoherent separablllty" of the proton angular dlstrlbutlons,
The dlfferentlal cross- sectlon leadlng to some state. @ (Aﬂ)
of the residual nucleus (A+1) may in general be written

(neglecting spin-orbit interactions) as follows:5

— = [k\'ncmlic and »S“’aTisT\'mqucTovs] XZ IQJ;Z lB,ejmll 7-.' . -‘ (1)
8y} ™ .

~ Here Bj? (see equation (4) below) is a function of the |
i_scattering angle, distinctiiely‘characteristic of the orbitalt
~ angular momentum, 1, of the stripped neutronf It is the.
'amplitude for the direct transfertof a neutron into a bbund  t
orbital of angular momentum, j, for a particular momentum T
.transfer defined by the projectile energies and the scatterlng
».angle; The Bjp expreSses the?parentage of the state ’%1(A+ﬂ
of the residual nucleus on the coupled state [@ (A)(g_]_f_
where @ (A) is the ground state of the target nucleus and
(@ is the neutron associated with B . It turns out that
even with spin-orbit coupllng, the 1ncoherency in J remsins;7'
- The factors ﬂn_are commonly8 expressed as reduced_matrix’
elements of aj*_as follows: -
<—Jz Il q;”-f«> = "(%n)ja ﬁjg : . : (a)

‘using Racah's notation9 which is not that used by Bohr and
erottelson 8 ‘There are many variants of this definitionrin.

rthe l1terature, and the spectroscopic factor4g is often used

PR DIt RS
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The significance:of fhé factofization property of the ahgular '
"diStribution is that if one or‘a small-number of angular
'mqmentum transfers are present then these 1l's can be idehtified
 ahd tﬁeir relative stréngths determined. This would be . -
V difficult if‘ﬁhére were interferenée between the various 1l's.
jInithe éase of an even-even farget nucleus (spiﬁ zero), the’
bquéntum numbers of the transferred neutron are those ofjthe
residual nucleus. It is often possible, in this model, to.
itreat a limited rangé of nuclei ( say, the rare earths)_as
follows. Standard angular distributions for possible 1 values
are calculated together with tables of Q-dependence and A-
depéndenoe, The spectroscopic factors, Sl’ are now simbly'
obtainéd as multiplicative constants for matching any particular
angular distribution. The particular form Sjl takes in the case
of deformed nuclei has been alluded to in the Introdﬁction and
will be-derived in'Chapter VI. _

The incoherent separability of the angular distribution (1)
no longerbholds when inelastic prbcesses are present: the
’ stripping~amplitude is a coherent sum of amplitudes corresponding
to the stripping interaction taking place fhrough different
"routes." The quantum numbers of thé'transferred neutron are
no mongér those of the final state for a spin zero farget. The
‘amplitudes which may contribute to¢ the cross section of a
~particular state have been shown for a particular case in the -

appendix to Chapter I.°




&
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B. Custdmary Stripping Approximations

Within the framework of the usual treatmenf 6f stripping»
reactions (i.e. DWBA aﬁdvits present generalization CCBA) a
number - of approximatiohs are widely employed.- The érrors WhiCh
they‘engender are fairly well understood for the casé of DWBA
caléulations;.and we might suppose that these carry over, |

qualitatively at least, into CCBA calculations.

1. Zero Range Approximation

The féctor'Erwhich appears in eq(1) contains theifollowing

"~ integral:

N U i
8 (£ ) Kju{, H ) b V0 Y ’(é;,R) sodndi, ©

This is a six-dimensional integral over the proton and neutron

coordinates (for notation, see ref.s) and as such is very

difficult to -evaluate numerically(for a full discuSsion;'see 

10);

Austern et al In order to make stripping cross sections

~realistically calculébie, it has been customary to make the zero

) ~ - ~ .
range approximation in which the product Vnp(fnp) d)‘((ﬂ-p) =fon,) -

'is replaced by Do %(fi;) , where J), . can be given

various plausible values depénding on the mode - of deriVainng'

(e.g. from effective range theory). This approximation.corres;
- ponds to overemphasizing the high momentum components of the

:;1inear'momentum transferred between the deuteron and thé protbn.

The effect can be calculated exactly in the plane wave

- approximation where it results in a multiplicative factor .

depending on the momentum transfer such that the back angle
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cross~éecﬁion.@orreéponding to high momentum.trénsfer) is
attenuated. This attenuation will be 1ess;_however,'wheh .
distorting potentiais ére ihtroducéd; for,'in this case, oack
) angle profohs‘will bo generated largely'in_a stripping interaction *
of_relatively low_momenﬁum transfer._, _ N

The zero range approximation:tends to overéstimate the
v contribution of the interior_regioos to the source of protoos.
' The difficult exact finite range calculations have been
performed for some cases. Dickens et al ' compare the results
with those of "Local Energy Approximation" (LEA), which was
.introduced by Perey and Saxon.12 Here'the zero range "form
factorﬁ is multiplied by radial factor that depends on thej”
energies of the particlés involved at a given radios-(Local
‘Energy). It turns out that finite range effects are not.
negligable, that they are smallest for the most "phys1cal" of
the p0331ble deuteron optical potentials (discussed in Chapter
'VII);‘énd‘that thé LEA is a remarkably good approximation to
the exact calculation. Dickens et ai11 give a notably simple
procedure for the incorporation of the LEA into strlpplng.
Use is sometlmes made of sharp radial cutoff as a rough means
of_simulatlng this effect although it is not as good_as_LEA.
f.The caloulations of Dickens et al suggest that with weli chosen “
'Optical potentials, the overall normalization is the quantityi
ﬁmost influenced by this approximation.

13

It has been suggested, however, that LEA is iess adequate
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es a representation of finite range effects for lightrnuclei:

a hlgher order approx1mat10n than LEA is approprlate for -

25Mg g.S., & case we consider in Chapter VIII. The effect

is not 1arge.

We must note that in an approximation similar to LEA,

14

a finite range stripping interaction has been shown to

" have a very small effect on the angular distribution of protons

in 24Mg(d,p) for 1 transfer of zero or two.

2. Bffects Due to Non-locality of One Body Potentials

The most physical one body potential for either bound or

~scattering states is non-local. The antisymmetrization of

the total wavefunction and the consequent exchange ihtegrals,

together with the need to account for the effect of virtual

_excitatioﬁs in a one body model are responsible. It turns

out (Perey effect) (see Austern15) that the wavefunction of
an attfactive non-local potential is always iess.within‘the-
nucleus than the wavefunction determined by the equivalent
(energy dependent) local potential This means that lecal op4_

tical potentlals found by matching elastic scatterlng are

‘bound to overemphasize the contribution from the nuclear -

interior. This is interesting from our point of view in that

' Eaft of the non-locality in an elestic scattering optical

potentiallis due to the excitation and deexcitation of the

'strongly coﬁpled-statesf To'some extent then, for reasons

explained in Chapter VII, we expect'that explicit inclusion



-18-

of such states would, other effects éside, reduce the back

angle éross section by virtue of the changed elastic channel

-

wavefunctions. This change is in the same directibn‘aS.LEA,
We mightvsuppdse that the effect of non-locality of fhe one - "
boay pptential could, like the fiﬁite{range effect, be simuléted
by a suitablybchosen radial cutoff°

Our program has provision for an arbitrary radial cutoff,
but this feature was seldom invoked. The extensive test of

40 16

DWBA for Ca(d,p) carried out by Lee, Schiffer et al =

'sﬁggests that although some angular distribﬁtion shapes were
improved by,thé use of a radial cutoff (possibly due to énforced'.
_'neglect of unsatisfactory wavefunctions in the nuclear in#eribr),
“the -spectroscopic factors could not be consistently extracted.

The proton angular distributions were fitted quite well for

.calcium.

3. Deuteron ﬁ-state

The consequences of the customary neglect of the deuteron -
d-state for stripping calculations has been studied by Johnsonjj

'The numerical results °

‘indicate that a contribution to the
Vj-dependénce occurs which is quite iarge for cases where the

1 transfer is as large as three. The effect on l=0.transitioné
is_quite'small. This calculation accounts for the tensbr‘ .
compoﬁents in the stripping interaction,\/nP ’ (the potehtial :

that binds the deuteron) simply by incorporating the correct,_

d-state admixture; a property of the DWBA method (JohnsOn)o‘
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- different stripping theory

1o~

4. EXChange Effects

The effect of neglecting the exchange integrals increases

with decreasing A,19 but is probably small even for’light

_ nucleizo except perhaps for levels forbidden by some selection“

rule.

C. DWBA in Light Nuclei

Among'the approximations made in the customary DW3A

_approach'we might have listed the neglect of the polarizability

of the deuteron. Some discussion of this phenomenon will be

-given in Chapter VII, but it seems that to give a full, consistent
“description of the role played by this and associated phenomena

"in stripping reactions it is probably necessary to go Outsidé.

the framework of the DWBA altogether. TFor nuclei as light as

carbon_(See, for example, Schiffer et 3121) or oxygen (see,_fér

 example, Alty et 3122), the customary DWBA does not give good

angular distributions in the bvackward hemisphere, nor'eyeﬁ fit

the shape'of the stripping peak very well, and LEA does not

seem to give a cénsistent improvement. We take this to imply

that-wé should not expect perfect angular distributions for .

'stripping on mégnesium. The basic assumption that stripping'
_ may,be,adeqaately-described by considering only the centre of
'mass motion of the deuteron tends to fail when the nucleus is

of comparawle'dimensions to the large, loose deuteron. A quite

23 has been introduced in which'fhé

proton and neutron propagate independently in the field of the
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nucleus; it has had censiderable euccess in earbon, for example.
: 51 somewhat‘different departure from the customary DWBA

is embodied‘in the<caleulationsOf Rawitscher24.who employs
coupled channel techniques to‘ineludelthe stripping:interaction
to higher order. Significant changes’are found in strongly
‘excited levels of 41Ca. Referriné to the specific case of
v_magnesium, we note that the d5/2 stripping amplitude, for
-exemple,nie split among three 5/2+ levels: it is not altogetner

clear that one can argue from therelative weakness of the

cross section of one of these states (compared with the very

‘strong levels of calcium) to the smallness of the effect under
discussion in stripping on magnesium. In fact,'as we shall see
in Chapter YII, the whole process of deuterons interacting with
24Mg is poorly understood. One aspect of the general problem

- of applying DWBA to light nuclei is the difficulty of determlnlng
sultable optical potentials. Because of resonance phenomena

that may oc¢cur, optical potentials averaged over a range of

21).

With these the angular distributions are, as mentioned above,

nuclei are often found necessary (for example, see ref.

often quite poor. In particular ‘they are too low in the backward
‘hemisphere. Accordingly, a number of stripping analyses25’26’68
.have been made in which the optical potential is adjusted to
fit the stripping reaction itself, and it is found that the

absorption required is usually considerably less. In fact, we

have. found that the deuteron optical potentials used in refs?iﬁ;
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gave a very bad representation of elastic scattering - the

absorptive pért was about half of what might have been eXpectéd. '

-Thi§ is'poséibly related to the deuteron pOlariZatidn phénomenon:

the optical potential expresses the absorption of ground state

" deuterons from the beam. Some are absorbed into compound

nucleus states, but some into excited deuteron states (which

represeﬁt.the fact that the deuteron becomes smaller in the

~nuclear interior) which may still undergo stripping.

D. Consistent Study of Inelastic Processes

It is perhaps remarkable that in spite of all the_strictufés

- that have been raised againt it, zero range DWBA sometimes
. works remarkably well. Certainly, there are many parametefs;

~ involved, and it is true that often optical potential parameters

are required which are not suitable for deuteron or proton
scattering. As an example of a particularly successful zero

range distorted wave (i.e. DWBA) calculation, we note the

“work of Bjorkholm, Haeberli and Mayer27 who find rather good

agreement between experiment and the customary DWBA theory

for the angular distribution, analysing pdwer and polarization

of the (d,p) stripping reaction on the moderately?3 collective.
52

Cr leading to the ground state of the residual ﬁucleus;"The

“point is that the deuterons and protons are treated conSisténtly_
b'matching the (d4,d) and (p,p) cross section and polarizaﬁionvdéta

‘at the. appropriate energies and thus fixing the optical

potentials for the stripping calculation. This is a model of
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what we wéuld»like-to do when we have included the inelastic
‘processes in the calculation; new optical potentials would be

found_which would reproduce all of the deuteron and proton

elastic<and inelastic data wifh,gg calculations.

There femains the possibility fhat ﬁhe agreement found
~in such caléulations:as the above: fqr one¥* sfété, at one
energy 1is fortuitous. 4 stronger test 6f either DWBA or CCBA,
vtheh, would be that avsimilar agreement should be‘obtainéd:
over é range of energies with continuoﬁsly varying optical
.parameters. The coupled channel stripping calculations
should also be carriéd out for a-serieslof energies. As the
‘inelastic processes are expeéted to be energy ‘dependent (we o
shall sée that they might be éxpected to absorb some of.thé.
energybdependenCe of the optical{potential); this is expected
‘;to provide a moré rigorous test of the stripping mechénismA‘
.common to both approaches. |

The experlmental data requlred for a program such as thls
- is considerable; it is never available in all its detail for
 fnuclei'we may wish to-studylb Whét is available varies from'

case to case, but in general our calculations are model

caléuiétions; We shall discuss the optical potentials iﬁ

*Anticipating one of our findings: entrance channel inelastic

effects in magnesium can alter the relative strength of two
‘levels rather markedly with only a moderate change in angular
distribution.

~
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Chapter ViI,'but We'mentidn that spin-orbit interactionS'are
often chosen for physical feasonébleness rather than from

any fit t§ polarization data. Where wevtreat energy dependence,
“we must follow a médei calculation.by'assuming an energy

; depéndence for the optical potential. Cases of this are
déscribed'in-Chapter VII, and their use in particular stripbihg
reactions is discussed in Chapter VIII. | |

“E. Ihelastic Processes in Stripping Reéctions—Bummary of Problems

- Raised

The fbfegoing'discuséion of stripping reaétions allows us
to enuméraﬁe in more detail what we hope to learn from thfs
gfétudyf‘ |

1. We muét be able to demonstrate  the validity or otherwise
of the gustomary measurements of theﬂNilsson factors gj.based
on the factdrizatibn eq(2) of Chapter I which depends on'the‘
neglect of inelastic pfoc’esses° That is, we should'be able to 
determine the extent to which a calculated cross section is
,propprtibnai to 02 and the extent to which the proportionéiity'
constant can be reliably calculated from nucleus to'nucleué.

2. We should déterminevthe degree to which the poor anguléf g
v,distributiqns calculated for light nuc1ei using DWBA may be _ ‘
.repaired b& the inclusion of inelastic processes of the{kind-- 
described here. To the extent that we fail, then DWBA and its'T 
predictions are in sbme doubt. We hope to settle the quespioﬁ 

of the need for radically different stripping and scattérihg

4
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.optlcal potentlals.:

3. Related to (1) and (2) is the’ question of the effect on the'
angular ‘distributions of 1nelastlc'processes and the rellablllty
of the common practise of determining ¢ in the rare earth

region from measurements at, perhaps, .four angles. Connected

-with.but distinet from (1) above is the question of."jedependence"
~which is not accounted for in Mg by the use of spin-orbit
" interactions. |
f»4.5We_Sheuld hope to demonstrate the basis of the findinés
~ of Siemesen and Erskine.,z8 that the moet satisfactory optiealv v
fpotentiais for stripping onto tungsten were "average pdtentials"
::over thevrare earths rather than potentlals which optlmally
’7:f1t elastic scatterlmg on tungsten.
5. It turns out that when coupled channel calculations. of

~inelastic scattering are oarried out, it is often pessible'to

telI whether a process was populated directly from.the ground_

.state ortwhether.a multistep process was involved in the
exeitetien. A direct excitation has, as in the case of:stripping,
-an'angular distribution cheracteristic of the angular momentﬁm
ttransferred‘. If a state of knewnlspin corresponds to an;' |

angular distfibution which 1is markedly less forward peaked:or
f'markediy eugmented at badcengles than-would be expected_fer:a"
'direct excitation, then we may suppose multistep processes

.16 be important. This device has been used29 to make deductions

ebout-certain gamma band states in Erbium, for example. Now,




“the claim has been made

25

30 that some property of this kind holds

-for sfripping also; the claim is that one may supﬁose inelastic

processes to be significént where the angular distribution is

distinctly augmented at vack angles, in comparison with the

'DWBA result. It is important that,ﬁe test'this plausib1e:v

“hypothesis.
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III. FORMAL THEORY OF NUCLEAR REACTIONS-
[ _

APPLICATION TO STRIPPING

In order to justify the formal results that we employ in
calculating stripping dross sections, We first‘give a brief
account of some relevant aspects bf reaction theory.' In view

of thefspecial problems associated with réafrangément collisions-
. %he ég égg‘quality of the customaryﬁassumptions,'for exéhple—-'
‘we have felt it necessary to point out some of the_fundamental_
._Weaknesses of our approach which, as we shall show, is a v 
generalization of the usual DWBA étripping theory. While not .
intended to be a full critical analysis of rearrangemént I |
| _collision theory, we hope the following makes clear thei:'f
limitations of our calculation.

" A. General Formulation

As a consequence of the finite raﬁge character of nuéleér  
forces (and, in effect, of shielded e.m. forces) it is‘poséiﬁlé
to divide a pafticulaerany body system into pértitionsjsubh- |
.. that ah asymptotic region may be defined for each partitibﬁ; the
: Variousbcomponents which define the partition are non—inferacfing.
‘ A partition is defined by the nucleons in each componeﬁt, not .

- by the étates of the components. . |
| In a fime depehdent picture, é nuclear reaction takes'blacé
»7 when the components of a two-component partition come within :

range of the nuclear interaction. The nuclear interaction, in
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general; couolesvthe "incomingvstefeh to'ail the Statésiof the_
 total hamiltonian. We may have a speciel'interest:inv
A+a ——» B+b B : | (15)

for example, but a whole series of reactions

| —s  C+cC -
4 4 (1)

—> D+d ' - etc.

voannot be ignored in the complete solution.* Energy
veconserﬁation will, of course, dictate that all the wavefunctions
‘for many partitions will decay exponentially in the asymptotio
region. However, all of these states are part of the oomplefe
vsolution S{ of the total hamiltonian, H

(H-E)Y =0 - @

We see that in stripping reactions where‘states of only

- two partitions are of interest, we are actually involved

in a_many'body problem of overwheiming complexity. It turns

out, however, that it is just certain aspects of this complexity
that make it possible to give a phenomenological represenfation

of many body effects through the use of such constructs as

the optlcal potential (whose absorptive powers are well known')

IanleW of the various partitions which potentlally may

*The quéﬁtum mechanical 3-body problem was solved only when the
importance was appreciated of inzorporating all the communlcat—
1ng channels into the problem in a symmetric manner.
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enter our discuesion (see (1a),w(1b));pWe introdnoevthe
following notation. We shall speek‘of partition3L, where
L=1,2,3. ;,!_ ‘Normally, 1 and 2 will correspond to the
1ncom1ng -and outg01ng partltlons of interest, respectlvely
'As we can almost alwgys speak (1n two- component partltlons)
~of a»"partlcle" (in general, composite) and a "nucleus;" we
- may label the oomponents of partition L as p; and n .
It is oonvenient to define an asymptotic hamiltonian;HL

 for Partition L in the following way:
H=H_+T_+V. S | .
L L L o A ‘ ‘ (3)

_where VL is the interaction which vanishes asymptotioally in}

: Ly and]TL is the 0~m-.relative kinetic energy of the components
~of LQ_ The separation of the centres of mass of these components
L’ : ,

We also define the hamiltonians which correspond to the

“internal;energy of the components.of partition L, as follows:

L-—Hi 1% | _ | .('48}5;

- where Hi and Hg are the projectile and nucleus internal
- hamiltonians having eigenfunctions in the mnemonic notation;

(Fﬁf~ 519)713; =0 S ;' K“E?M

-y, ~ o
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where, for example,‘v? is the ith

eigenfuhction of the "nucleus"
in the L parﬁition. | | | |
The completé sets T and Y, contain states belonging to the
continuum. ‘We shall indicate below how the influence of the

continuum states can be accounted for by means of an optical

potential.
The eigenfunctions of HL are given by
(v _ 5
(h- €)Y, =o (5
" where the channel label, ot , subsumes 1 andvj. We define
‘plane waves @wﬁaﬁof momentum . ‘4d’;bwhere
_ L
E - 0. T
: 2 M

'where /u;:is the L partition reduced mass. They_afe solutions’

of the non-interaction equation: -

(H+T -E)F (2) =0 ()

where
. -

| ikor,

- A YL
@d,_(‘rb) = '\t”' €
Although the internal structure'Wavefunctiohs are properly
. orthon¢rmal, <‘hLl'ﬂ$;f>: %&p; , 1t is important:to  
.observe that <@u| @,sm7 ‘ is; never, ‘in‘ generalv, zerg -a
‘difficulty that propagates throughout reaction theory.

We can now write down the well known formal solution of .

“eq(2) for’Q’, the total wavefunction:
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e

e i o I o o
\k. = QLL-r 'Eﬂ'Fﬂ_\JL \%;L (g)

Here; fu;:) is the solution with‘plang waves in channel

of partition L, and outgoing (respectively, ingoing) waves in
all other‘parfitions)and Ei==EIi£_' .. Thé "post" and "prior"
“forms of the exact transition amplitude for channel g in parti-
"tion“2.with incoming waves in channel & are; nespectivély,
31-p-.197)_

(see, for example, Goldberger and Watson,

+

. | “
T;« = <CP/32 , V, Iﬁ"}'d), > ' @a)
and :

T = <YVl

Note thét*T+=Tf only on the energy shell where

BIVIEY = LBI1d>

fUrthérmore eq(9a) involvinngtf derives its usefulness frbm_the
fact that 'q#%an never be known exactly - if it were, thereﬂ
would bé no need for (9a), This equation, however, is:thé'basis
~of the ﬁsual perturbation-approximations, which leads us into
our difficulties: the kernel for the perturbation éerieé (in |
'plane;wave Born, or DWBA) is sihgﬁmaf (see, for example,.Greidér
_32) _

~and Dodd . Moreover, the rearrangement form of the Lippmann-

Schwinger equation, with the m-partition outgoing Green function




discussion of these points, see Brezin
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va(ﬂ | 4+  ". o v ' o
‘\l}l- = E'- Hm VM Y/L e |

is homogeneous'and does not have uniqde soiutions. (For a:
33 and Greider and Dodd).
The same problem‘occurs'ih the simplest rearrangement process -

the three body pfoblem. What does this imply about stripping

reactions? Clearly, the fact that they are vastly more complex
in other respects may mask specific three body effects; yet,

certain results of an exact three body treatment* should.givé 

us pause.
| Numerical solutions are difficult but have been carried
out with simple separable potentials. These calculations

suggest'(Brezin) the importance of the symmetric treatment

'involving_all the.physical partitions and that the simple'

approximation schemes involving only transitionsibetween

particﬁlar channels of interest are inadequate for n-d scatter-

'ing and breakup: it would appear to be"more important to

treat the three body mechanisms exactly than to have a Very

detailed two body force and to treat the three body dynamics

v-approximately."(Brezin)

We shall follow the usual road in ignoring these fundamental

difficulties.

. #For a lucid account of the motivation, solution énd propertieé

of the Fadeev-Lovelace equations, see Brezin.
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" B. Approx1mate Transfer Amplltude

‘At this point we have quoted the formal expressions
| (eq(9a), ( 9b)) for the trans1tlon matrix, T, whlch could in-
| principle be calculated.

Clearly, in the face of the'absQlute unattainability of
o‘/, some'approximation procedure will have to be involveo'if
we are'ever to calculate numbers to compare with a measured
flux of pfotons at angle 2] .‘ OQur program is to provide sucﬁ
a comparison through the use of a coupled-channel generalizafion
of DWBA in which the"distorted waves" become solutions of an’
~ inelastic scattering problem containing excited states of the
_Tnuolei. We shall not discuss the coupled-channel theory of
.'_inelastic'scattering here, and we shall use.standard_resﬁlts

~ from Peshbach's unified theory of nuclear reactionsv(Eeshbech34).

"The,technique has -been presented in detail by Glendenning.'35

This article contains all the results we shall need and we shall
;quote results from it without proof.,
In order to obtain solutions of equat10n(2), we may expand

the total wavefunctlon in the states of the various partltlons

.ﬁas follows (see(4b),(4c)):

\J g TV, ) =50 G

(ith)

fl

1

I
:Ga

ST,V 5k =2
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and similérly,incﬁher partitions; let us considervonly parti-
tions 1 and 2»explicitly. The expansion coefficients |
are the relative (centre of mass) radial wavefunctions for

partition-L with centre of mass separation RL' Naotice that

| we havé‘alternative expansions of the wavefunction, so that

the natural géneralizationvof the derivation of the coﬁpled~
channel equations for inelastic scattering (using expahSions _
(11a) and (11b) together with an ad hoc stripping 1nteractlon)
will be incorrect to the extent that <1? IM’ 7#F0  ror i

~and j within whatever projected spaées might be appropriate.*

In fact, it will be seen that this noﬁ-orthonormality problem
reappears in our formal result.

The projection operators required are defined as follows

.for'partition L:

I, <, | | RN

le_érojects onfo the ground state of the projectile_in L;
for L=1 this is the ground state of the deuteron. For L;Z
(profon) it is 1. These operators will bé useful to us When
we come to discuss the general problem of the composite particle

optical potential. The nucleus projection operatofs are:

*ie aéve an over-complete set. A rigorous coupled-channel

derivation would involve a Schmidt orthogonallzatlon procedure -

and be prohibitive.
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P’ = 2 [V, ><v;, | e ;
Ef projects onto some subset, which we:shall'also refer to ” .

‘symbolically as P , of the states of the nucleus in L. Using .

these, we define total projection operators

o |
P, = A" P, | o G

with o . : _ R
PG =t ' (e

It follows from Feshbach's«theory (see GlendenningBS) thaf

2' those parts of the exact total wavefunction , that lie

. within the subspace Py i.e. Iijy , can be calculated.from_the;_

. following effective interaction:
| _ . 15)
U‘_ = P (VL o VL_QL B -Q.HQ, (. V")P'- ( :

ThiS'is‘a'formal result and TJ: ,'a éomplex, non—local functibn
involvihg.all the nuclear'coordinates;.cannot be calculated
exactly ffom it. However,.the diagonal matrix elements (and»vﬂ
ﬁon—diaédﬁaly in a macroscbpié collective model) are often. i
35

repreéented by the optical potential. In the usual treaﬁménf
the second half is assumed negligablé. Let us assume wé,ha#e ' e
‘some |/[ . Ve shall discuss our médel for it in Chapter VI.

We can define the following Green functions in terms-df—wllg—:
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3 = F-aVi | “
O . =t G
%1.- o ) E—“H'z—vv" : o

- : . =
Note that the incoming wave Green function, 9,

, involves the
- complex interaction _V; .
From these, the projected wavefunctions with piane waves 1in

‘channel o or [z may be caléulated_using the Feshbach theory
35) ‘

results (see Glendenning

&)

lg)qar = QL E&l (1e)

(¥ (+)

Pl 11/(*) = Xo(l = (, + %l'
K " o _ | o
(V) Ex,;; = (1 ﬁi)m,f)@m% w(z)é’pz (19

Theée;equgtions are exact. The tilde on‘i:[drawS attentioﬁfto
thé_fact that it has been calculated from the complex conjugate
'of the effective interaction. iWhen we'wiSh to indicate that |
we are éalculating Xﬁ from a phenbmehological representation‘
of'V: kg;g. the optical potential, 12.') we shall write them
jz,wft?L\ﬁﬁ *., for_example.'EWe shall now show how a cqupledf
‘éhannel,Born approximation can be.derived by a generalization
:of}the proof of the DWBA gi#en.ﬁy%Greider and Dodd.- 2

Thé'G:een function for the entire system is given by
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“ ST ﬁ S 1
C\__ = [E*_H] ‘ (’2;0)

. o ) ' ' + - .
and the wave operators Jlr ;:J22 | are defined in terms

of the'exact; mény bbdy potentials, V. and V2 , as follows:
ﬂl = i+ (X‘ V', (2.(‘1)
© o V.o | o)
| 1, =1L Vo (2
"They have the action »
(+) . |
PP e, )
;'which'is'equivaleht to eq(8).
From equations- (8) and (9) we may write down the transition

matrix element for a transition from channel « in partition 1.

| ‘to channel p in partition2 as follows:

_l;(: = <<p/5a'\/¢ Va (IMV “5«|>

S Ul 8y e
[PRREYCRNRNA

={0ul U 18,,> (W
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These are the "post" and "prior" expressions: for T, respective-

: f-) ‘
ly. Consider the operator U,,” defined in eq(23b)
' (= (4 SNt
U2,=\/,+V2Cv_V.= 2 'vu
(_—)+ @ ‘(—)+ ..V— &) V @_M
=.ﬂ’z (ijf,)“, - y) (l_(\/t" a)%, ) { .
This last form is an identity derived from the preceding,

{+) ’
using the definition (eq(18)) of W. and rearranging terms -

we shall show that the second half vanishes between plane

nwaves._ U31ng the identity

u

A" -6 = AT (8-AVG B - Gs)
we find that |

| ‘ (+ B
Gm_ ﬂm) _ Cv(ﬂ(VL—‘UZ)%L) _ (29

t

_ - o
Using this, the second term of (l ? in eq(24) becomes.

ot = '(;’*a W=v)a® )
VST (B9,

if

= Vo« (o) (W7 1)

: . () ‘
where we have used the definition of UJ: . Now, using this

again, together with the expliclt form for 3fﬂ s we obtain:

s.t. = (E~ Lf:—Hq)(w("’—n)

nInSerting the.plane wave eigenﬁeotors §2 of H1 y WEe find'that

between plane wave states the following holds:

s_t - (¢ (w(+)_,)
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In all_céées that will concern us, ﬁhisfexpressioh vanishes'~
vin_the limit £—> 0. We have defined |/, to allow scattering
oniyfwithin P.ﬂ ,’in 6ur particular caée, the deuteron ground
state. Forvthis réason, it does not génerate an outgoing flux
in‘the 2" channels; that is to say, ! uuG°I@'7 hés out-
going flux iﬁ a finite number of channélé for which_<§}“&ﬁqél>-
is finite. Hence | |
i e <ETLPIE,7 =0

(If “Vf did not have this propérty,_&Jﬁ)could be rearranged
to have a part with an»putgoing Gfeen function for "2”’éhannels
}which'would cancel ( E-féi - Hq %).

Finally, we have

G

). (+) .
u2( = A (\/.“*VT)(AL ‘ (7.7) .

The well known relationship of Gell-Mann and_Goldberger relating_
 Green functions for partial potentials becomes, in this case;i
. (using éq(17): . »

RS AR 1A B

.InSertiﬁg.fhis'in~eq(27), we get |
- 5 ) (4 S . |
Uy = W8 [V + (BTGP (- w ] ee)

~ where Tﬂaand Tﬂiare complex; note that the conjugate of
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appears in Greider and Dodd's version of eq(28) and of eq(30)

below. "This corresponds to the following transition matrix‘
~(-) R (t) —al
_ Following the same procedure,‘we can derive the post—interacfion

Too =CEalvA) ()P u 18> 6

Equations (28) and (30)‘can be used for real,calculations

- only after a number of further approximations heve been made.

In the first place, the term involving (iuis dropped; being
.computationally intractable. This amounis to recognizing that"
'V1 and V2 nave fwo actions: they causebinelastic excitafions

in the appropriate partition, and they cause rearrangement;

‘i.e. transitions, between partitions. Roughly speaking, dropping
the Gﬂterm in (30) involVes keeping VZ in its inelastic excita-
“tion capacity to all orders, and to first order. as a stripping
interaction. Raw1tscher24 has carried out calculations in whmch
the stripping interaction is included to higher orders and the
effect is appreciable. We should note also that Rawitscher's'
calculétion involved stripping reactions in whichvfhe first
order term ( and so, cross section) was signifcantly larger than
in the cases we consider. However, in Chapter II we argued in

general terms that this does not mecessarlly-imply that for Mg,

~at least, the higher order terms are negligable. Greider-andi
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Dodd show_that equation (27) can be rearranged into the form .

of an ihtegral equation:

e et N et v (_
UQ = W (-T)W W (er)G  (ay
(where - G, = [E™-H,] )y for which the kernel is diver-

gent. (It is a reemergence of the dlvergence which: ne09531tated
Fadeev's treatment.) Thus our statement that we have treated
stripping to firsf order must be qualified: we are not takihg
the first order term of a convergent eipansion. Just whaﬁ.thlé_

means is unclear though Dodd and Greider36

claim* to have refbrm-
ulated the series in a convergent form. .

We shall choose eq(30) as the basis for our calculations,
our cfiteria being calculational.tractability and physiCQIl&_.
:.reasonable results in the analogous DWBA calculatlons. lWe".

further approximate by replacing :XL_by X, calculated us1ng

vphenqmenological potential i} ' : ' ‘ ;
- KRN (a1 G

We shall refer to this as the coupled-channel Born approx1mat10n,

CCBA, expression for T.

C. Stripping Reaqtions

The particular reaction to which we shall apply this general

*This writer has not studied their solution. As seems 1nev1table,
their solution is a special case of the Fadeev—Lovelace equatxnm
A calculable form of this work is due to Rihan.37
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‘result is deuteron stripping:
d +4 —> p + (A+1) o (2%

Replacing'our 1 and 2 suffixes by d and p, respectively, we

have ‘ '
A ' '
AV (/G ARAVEATS] B
(=) _ Lo '
SERVARERVARE | (3uh)
2 N ' o
Ve = V(&-f) -V | (354)
= V., + Vo o (38b)
f . ‘ -
.Thevstripping interacxtén \A¢,?‘\A‘ VVC a becomes
e 1, | ,
Vi, = V.,*V - ,V; ' ’(_3‘) _
It is customary to retain only the Voe  term. The neglect

" . ? , : o
of the" \/-'VE . term has been a matter of pragmatics as it

is ~rather difficult to calculate and it has seemed that

. reasonable results are obtained without it. Recent caiculations

... 8 » v '
by Smith E suggest that this term, -in particular the imaginary
part (seé below), may be importart for nuclei as light as
silicon. It is possible, however, to argue that in general

its effect is small. Consider |/, . While it is an optical

‘potential, it is, after all, an approximation to an effective
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1nteraction, and, as such, must be constralned to have the'
bsame property, viz. ﬂJ; ?.W[ P . Hence, to the extent
that PP, % O, <’X ]VIX >==o (remember,.Pi includes -
a projection onto the ground state of the deuteron). Note also
that Tt,' iS'an A+1 particle operator,|or a one particle approxi—
"mation to it (in the diagonal matrix elements,' or iﬁ a L
~_macroscopic model). On the other hand, \[ is an A partlcle
(real) operator and does not contain a projectlon-operator o
" which projects onto the proton plusrthe low lying states of
the A+1 particle system. In spite of this, conSideration of
‘\/rsuggests that its action will be small for much the same
__reason that that of -V’ is small: there ls stlll need fpr an_
overlap between a neutron bbund ln a deuteron'and a neUtron.
lbound 1n a nucleus, as the neutron coordlnate does not enter

this" term of \A*r . In a partlcular nuclear model, then, 1t

- ocan usually be. argued that \/ and'\r w1ll have very 31mllar

actlons, and that the difference can be ignored, although 1t
- is qulte conceivable that the difference could have the same l
border of magnitude as either term. The cancellation w1ll never

be'perfect;*Ethe whole question is'clouded by our dubmous

*Within the collective model, consider the following decompo-
sition (see Chapter IV) of a stdte in a band of the (A%1)
- particle nucleus.

[my 2 22 GFECTCE D2 I ¢ )00

Clearly, thls contains several states D , 1067 belonging to Pys
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procedure-of regafding the scaftéring ihteraction ahd stfippiﬁg'
interactions separately, and including the one to ail orders
and the chér to first order, and subtracting them. As‘we_have
suggested, a rigorous solution to fhis problem can only be
obtained when a complete orthogonalized basis is employed.

We can state, however, that the effect of (V —WG)depends on
the nuclear model and on P, and Bz, and it is possible that

89

it is more important for CCBA than fof DWBA. We calculate

the stripping transition matrix:
o ) '
<x | Vol X 4 - (37)

having simplified our»notation,_ It looks.: much like DWBA and,

in fact, was written down by analogy to DWBA.3

D. Coupled Channel Procedure for Stripping Amplitude

The calculation of the transition matrix T foom eq(37) is
still a difficult technlcal problem A purely coupled chahnel
method of calculating stripplng amplltudes has been dev1sed

by Ascuitto and__Gle_ndennmg.4 e shall show formally that‘lt.

‘80 malezMng§> based on a different intrinsic state, K .-
Now, it can be_eaSily shown that exCiting only the core of =

- this, i.e. D"J67 — fZa ‘ ]d>

~that we can excite states of the K;band, and, in pr1n01ple wmng
bands. This, then, is a clear difference between V® which
operates only on the core by deflnitlon and ﬂz which acts
only within a band by definition. , '
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givésfprecisely the strippingjahplifude of eQ(37).»2

In‘oﬁtline,'the deuteron coupled channél wavefunctions
>¢?are calculated and then incorpgratéd:in the "source" term'
of ah iﬁhomogeneous'coupled channel equation for protonsj

This latter‘calcuiation fequires littre more effort than the

" calculation of X. , yet the transition matrix can be extracted

_:directiy'without the complication of evaluating T by integrating
eq(37).

Consider the set of coupled inhomogeneous equations implied
by”the.following'ansatz:

’ ” - . T v B
(Ter Ve —EB-X’P =~V Xd7 | L (39)

The superscript I emphasises that we have the solution to an
inhomogeneous equation. The deuteron wavefunctions, X4 , are.
lsOlutiohs,of-the coupled homogeneous equations:

L, ()

hl o

(U e K=o
 The boundary cOnditiQﬁ is that X;a contains a plane wave of
1deutefons.in the target ground state channels, and outgoing
' waveé Ohly in other channelé. The effective interaction
‘will be takén to opefate iny within some.subSet of the nuclear
states. vThesé will normally be the states which couplé‘most-
strongly to the ground state of the target nucleus. The |
relative motion wavefunction of a‘deuferon inbité ground state

‘and the strongly coupled target states given schematically
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(fof details of angular momentum coupling, see Chapter Vi) -
by : ‘ - ] . L | ,
X = S WA U (Ra) O woy

& ' | :

Similarly,.mg is defined within some specified set P of

| targetvstates which are strongly coupled together (not

necessarily to the ground state). A formal solution of equation

_.(38) may be written down as the following homogeneous

integralvequation » : N

an X +)

I

’;(? = E -*ﬁfjf

)

‘There is no plane wave component .in X;j .- This can be

'vrearrahged,using identity, eq(25), into the form

Iee) __L_ [ \ ‘]\J " ' S ;
X‘, = E+_ Hp |+ -—v‘; E+_HP_—V!; np /L4l (Cﬂ) »
We notice that [f*'Wﬂﬂ is the bare Green function with the.ﬁ

outg01ng wave boundary condltion (compare usual derlvatlon of;

_eq(9a) startlng from eq(10)) which leads by a stardard.

1procedure to the following expression for T:

Tap = <Qﬁetf'% EV; ;tfrjxf ]\AFIXQ*)>

Hl Vmﬂ] 3 S R

' . L : : . '
where we define <<Xf)l as the conjugate of

~ e + |
X = 0+ =av VW b (uy)
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"This is preciseiy'the wavefunction defined in eq(19) and
appearing in éq(32) and eq(37) invol&ing the conjugated effectivé‘
interaction. Thus we see that the T-matrix extracted from thé
éolution_of eq(38) with outgoing proton boundary conditions is
just that_of_eq(}?) which we called thé CCBA approximation to
T ) : : . ) b3 . |
It has'been shown by Ascuitto and Glendenning4 that in the
DWBA limit, the simple coordinate space representation of the

Green function \

where’V}‘ corresponds to a space of one nuclear state, can

be used to prove our formal result explicitly. This proof

.Would apply also to the case of coupléd incohing channels leading
to the hybrid cc-dw calculations of Iano, Penny and Driskd.3

E. Sﬁmmarx |

| We have deriwed a @1ausib1e generalization of the DWBA
:stripping.amplitude in which no assumptions béyond those which .
- are cusﬁomary are made; However, it‘does include the effects
of inelastic transitions which have been previously neglected.
It is well kndwn that the éonVentional #featment of stripping
reactions has defects which are quite independent of any coh-Aj'
‘sidération of inelastic effects.  'This will be partiCula:ly
true when we make additional simplifiéatioﬁs such as the'zeronﬁég
approximation. Thus in fitting experiments there is a 1imit
to whét'we can expect, particularly at backwards anglési Our

théory includes nothing of antisymmetrization effects.
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APPENDIX

Use of Source Term for Ifielastic Scattering

Comment should be made that source term methdds'might well -
be useful for a large ciass of non-rearrangement inelastic
scattering reactions. The time necessafy for a coupled channel

inelastic scattering calculation increases almost exponentially

‘with the number of channels included. There is, furthermore,

a naturél limitation to the number of channels that can be

‘included. Under certain circumstances the source term procedure

is a suitable technique for'alleviating this problem. It may

“occur that the states of a nucleus fall into two subsets: one:

group being strongly excited and the other relatively weakly.
While transitions between states within a set are important, the

influence of the weak group upon the strong group may be negli-

:gable. 'Such a circumstance occurs, for instance, when the
‘inelastic excitation of the ground band and gamma band of a
vdeforméd nucleus are calculated together. 1In this case, we

" calculate the ground band wavefunctions

(H- E)\?Csfaomx: © o (L',g)'

' and then the weakly excited levels

| . | . _ .v |
(H-e) Ewenn = ’\'/"‘-Psm_o&& : a (Le)
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':’If a séafch for certain parameters aeécribing the weak levélé_
is to be'made, "?smuﬁould be stored and reused with considerable

computational savings.




-49-

IV. NUCLEAR WAVEFUNCTIONS

A. Introduction

'Thisistudy is concerned with deformed nuolei‘wnich can
' ,be seét into rotation in some scattering process. - It is now
believed that nuclear non-sphericity.oocurs in a wider* range
of nuclei_than those nuclei the spectra of'Which are clearly
rotational (with A425,'A=150—19O, and many acti,nide‘nuolei)°
HOweVer,.we shall confine ourselves to strongly deformed nnclei
 because these nuclei will not only exhibit most strongly the
phenomena which wevare studying, but the model commonly |
employedtfor their description is most likely_to be valid.for,
large deformations. | |
In the flrst place, the large deformation is reflected in
a large quadrupole moment of_thevlntr1n51c structure, which’
‘within the framework of the rotational model results in lérger
values of B(E2) for ;ntraband gamma trans1tlons Thie in
turn means that the low lying levels of the ground band ‘may be
very strongly excited by inelastic scattering and 1t is thls

‘which may'prove to be important for stripping reaotions,

*The phase transition from spherical to deformed at N=90 _

. is by no means as sharp as the spectra might suggest; Hartree-
Fock calculations predéct considerable deformation throughout
the p and s-d shells; “Be reveals a rotational spectrum in
x—q,scattgrlng and even the ground state of the closed shell’
nucleus O has definite rotational properties in the
coexistence model. The "ideal" shell model nucleus 18O has.
rotational propertles underlying its spectrum.
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B A large defofmatibn is necessary in}order for the ﬁddel
we Pse to be vaiid. We define an intrinsic state Xw‘(célculatéd
perhaps using some deformed potential we1l) so that our total
wavéfunctibn factors into a producf b)Q where D is a rotational
"wavefunction. Undeflying thisjseparaﬁion is the adiabatic |
picturé: a nucleus with a large deformation.i;e., a largé
- moment of inertia, will rotate sufficiently slowiy, compared
to the velocities of the single particle motion, thaf'thé éffect
_of the coriolis interacfion'can be ‘treated in pefturbation |
theory; It can be shown that the product wavefﬁnction D
is a good approximation if the intrinsic wavefunction is neesrly
orthogonal to the same intrinsic wavefunction at a smalli |
?angulai displacement. The extent to which this holds will
‘depend on the'deformatidn. We should hote that a given
deformation for é nucleus of A~25 will not mean the same as

38 nas recently called into question.

it does for A~160. Ripka
the adisbatic model for the s-d shell, although 2%Mg, for
‘example, has a very large deformation indeed. The extent to
.which thevcollective transitions are enhanced is also smaller’
in this'region.

The nuclei we consider should have a well-defined
fequilibrium shape, thus excluding such possibly deformed‘_

150

‘nuclei as Sm (which is so soft fhat the zerb—point motion

152

is comparable to the mean deformation) and sm for which =~

an added neutron may change the deformation.
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Ideally, we should have available defoxmétioﬁ'paraméters

“which can account, in terms of some self consistent theory,

for both inelastic scattering aé well as the 1eve1‘ordering 6f~
odd»nuclei,and‘the'eQuilibrium shape of even nuclel. In'A |
practice, we shall have to use déformations obtained ffom
scéttéring expériments when we wish tcﬁdescribe the scattering:
process, and deformations that aécount'for‘ievel Ordering

and neutron separation energies when we‘wish to calculate

the neutron wavefunction. A typical even-even rotational
spectrum 1s that of 166Er. TheA2¥ level ét .787 Mévtis the
bandhead of a rotational gamma band-(see”fig.'lv.é)._Figures

IV.1, IV.3 and IV.4 show odd nucleus rotational spectra..

B. Rotational Wavefunctions

The use of adiabatic wavefunctions for rotational nuclei

is standard and we merzly set out our conventions and definitions

here. They are similar to those used in the review articles
of Nilsson.>?

The symmetrized rotational wavefunction of a state of

: Spln d, based on an ax1ally symmetric 1ntr1ns1c state for whlch

(the projection of angular momentum on - the 3 (intr1n31c)

ax1s) has eigenvalue K, is

MK

]4} B ='f%' giﬁ (¢ 1_ _ .‘) )( j)Mu- -_ (U‘»

The 1ntr1n31c wavefunction,7(Kw1ll be dlscussed in detall

below.
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'_we definé' (folloWing Nilsson: this is not universal) f' |
R tny, - - | ‘
where Rivrepresents a rotation of M about the intrinéic

2-axis which, with a suitable phase convention, is equivalent

T . - ' v
to time reversal; Re1 acts on the rotation operator:
l T+K Y .

O RDN = & D, | N )

The symmetrized wavefunction thus becomes:

- wmx: I.__..,S;T‘l { X D, o X DM_K} (%)

For the case of K=0, the nprmalized rotational wavefunction is

N T i : o

‘WM'—‘- Eg— Xo ijo . | )
‘“These wavefunctions would have to be quified.in the case
'bbf a nucleus that was not axially sjmmeﬁric:v)Q4would be
- replaced by a sum over X such that jlé'j'. of the stéte ih
- question. | : D |
“ In the present calculations, we use a single particle or
1single quasiparticle model for the odd nucleﬁé}of thé stripping

reaction; the target nucleus states considered will have the

“form (5) which we now write

[TMOY = |25 loy DZO | o ‘(55')

"and the product nucleus will have the odd-neutron wavefunction,




@

'"example,
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R
ITMKr' o éq“l°7Dmn ;”TKQ4J°7Dik} (9

where |o7 and 107 represent the intr1n31c state of the core

nuCleons in the target nuclei, and ak creates a (cuasi-)

neutron with '<J3> =K. Other quantum numbers are implicit.

.- If the intrinsic state |07 is sufficiently "soft", (as for

1525m is soft in the W;odegree of freedom) thé

-_additlon of another nucleon can change the equilibrium deform-

_dtlon, or, through "blocking" effects, etc alter oy sufflclently

for <&Jo) to be markedly less than unity. Although <ayo>v is

~-an input parameter for our calculations, and’may-be 1nterest1ng
~in the samarium transition region, we usually assume .that 1t :
,1s 1.0. 1In fact this will turn outrto be a good assumptlon

even for magnesium where the probable deformation may be changed

by as-much as from ﬁz=-4 to ﬁ;z.} by the 25th particle.  In :f

~ this case<b)o7still turns out to be greater than 0.9.

One exception to wavefunctlon (4‘) will be considered,

namely an odd nucleus gamma band. The general odd~nucleus_ﬁ

~gamma band has an intrinsic state, J3=_ﬂ,, coupled to a'gammé'
phonon excitation of the core for total K= 2 +2, fo-2] .

For the case K= S -2, for exampie
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‘TM K> = i %‘l}- g Q;lt ‘Gcamnapkonon) k= ‘7> DN?K '
. o : kT = : J | e |
o ' . -+ (—)T “a ) lG(amMa ,P‘\onon)‘&=1> -DM~K } (6)

As_an example'of this, we shall carry out a model
calculation in which we treat the K= 3/2+ band at 532 KeV
' in 167Er as being purely a gamma band it is poss1bly

40

largely'of this character. In this case, we shall consider :

the excitation of this band by way of the excitation of the K=2
_gaﬁma bandhead at 787 KeV in °°Er. |
Qur“calculationsjigndre the presence of coriolis admixedi
'~impurities in these wavefunctions In order to study the
fimportance of inelastic effects, we avoid the compllcatlon »
| and the ambiguities of band mixing. Most cases we treat
-are those;in whichvthis mixing should be small:'we try'to'
Tavbid cases Where.there are nearby bands with X differing.byv
unity; for example. There is no real problem in extending
this work to include band mixing. We remark that the drastic
efféctsﬁthat the coriolis interaction can have on the level
oiEérigéfof bands with K=1/2 should not affect the purity
of the states within these bands.

cC. The_single Particle Intrinsic Wavefunctions

- The single particle intrinsic wavefunctions, being_thé,'
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- eigenfunctions of a hamiltonian that does not have spherical

symmetry, have components of various angular momenta.

41

For many purposes Nilsson's wavefunctions for a

deformed harmonic oscillator are adequate:

LA

where, using standard notation,
CJUZ“ } C/\S.D- ,QQA("Q) | ' (‘3)

- We have omltted here any label on ;le based on asymptotic
quantum numbers. The C(Jl) and a( J2) are expansion coefflclents,
of spherical oscillator wavefunctions with a given 0301llatorf
'constant and within some subspace of fixed total quantum
number'x=2(n—1)+l. We shall use the result (ef. equation‘(é));
X, ERX, Z " e DXy _p @

in the ¢éalculation of the form fawtor ( )ijlis sometimes

V vdef1ned dlfferently)

These wavefunctions are clearly unéatisfactory for
stripping reactions for two reasons. The characteristic:

asymptotic radial form of the oscillator wavefunctions makes
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.them‘inadequate for.a reaction such as stripbing whiéh ié'v
very sensitive to therwavefunptibn ét fhe nﬁclear sﬁrfacé;
We prefer not to use the method of matching to a Hankel
fﬁnctibnztéil detéfmined by the intrinsié.neufroﬁ.éeparafibn-
%ﬂer%yvbécauSe of'ambiguities thaf-arfSe,in_separating ouf' B
éhe rotational.enefgy. As‘Nilsson points out,'fof examplé,
for an_sj/z particle:added to a rotor, a=1 and all the
i rotational energy is in the' core. |

The other reason for seeking mbré féaliétic_infrinsiqﬁ
wavefunctions is that A N=2 admixtures (discussed'in section' 
E below),_while ignored in Nilsson's calculations, éan not |
'necessarily be neglecfed in certain_caSés wheré selection
.rulésiare involved. For example, 1l=4 admixtures in thé'lbﬁi-:'
lyiﬁg bands of 25Mg would provide alternétive modes of
“excitation of the two "forbidden" 7/2+ levels, the excitation -
of Whi¢h by means of inelastic scattering processes wiil be‘
of'particular interest to us.

D. Energy of the Intrinsic Single Particle States

Ih‘order to calculate appropriate intrinsic single particle
wavéfuhctions; we must know the separation energy of the‘néutron
| from;the deformed well. We can calculate this from the Q value
of the (d,p) reaction, for example, together.with the foildwing_’
relationship between the experimenfal energies, EJ, within

a band, K, and the intrinsic energies, € :
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s = 6 () [Ty -2kt 15, a0 B 09
_ j k)'/’ v . ’
| Thé moment of inertia, 2 , and the‘decoupling constant, a,
for;a'given.band, may be determined by using this result to |
fit the energies within the band.

Unfdrtunately, the resulting energies are ouasiparticle
energies and will not be those of the single particle
wavefunctions that determine the radial shépe. If pairing
is imbdrtant, the low lying energies are "compressed" around
the fermi energy. | -

E. Calculation.of the Single Particle Wavefunctions

Two pfograms.have been made available to us which
calculéte the eigenfunctions of a single particle moving 
in a-déformed Woods~-Saxon potential. 1In order to.use these
to determine the éorrect wavefunctions, we must determine.
the deformation and potential parameters. We éhould not
regard deformation parameters measured by inelastic scattering
experiments; for example, as necessarily appropriatevfof'
Vthis probiem.' Ideally we should determine all of these |
_‘parameters by demanding that all the energies ¢, , (corrected‘
;for the eﬁérgy displacement of lqw lying levels arising from -
_pairihg effects) and, for the case of K=1/2 bénds, the decoupling
parameters can be fitted sim@itaneously._ It may be necessary
to use a range of deformatiggs for various bands in order to

"do this. When we discussfﬁhe details, we shall see that our
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' form factor calculations fall short of this ideal. .
Both programs finally give wavefunctions of the following

form:

nj2

ﬁheré_Rntaré:the radial solutions of a 3-dimensional
\'harmonic‘oscillator defined in an appendix. This form is very
convénient for computational purposes, and we have tabulated

' icnj&  for all the cases we have treated.

'~ Because the particular characteristics of the défdrméd'l
FWOOds-Saxon prdgrams have materially'affécted‘the'course of
‘this work, we shall discuss them briefly.

42 first expand fhe wavefunctions bf

a spherigal Woods~Saxon potential'in terms of spherical
- harmonic oscillator (h.o.) wavefunctions. The eigenfuﬁﬁtioﬁs
are theﬁ'identified'by the radial guantum number n of-the'
sphéfiéalyh.o. component with the largest amplitude. Wave-
'functions of fixed N=2n+l are then used‘as a basis for-a .
' calculation of the intrinsic wavefunctions of given defOrmétioh.
This follows the procedﬁre of Nilsson's original calculations
,?where the truncated space Was”alsb confined to a fixed tétalv;
oscillator quantum number N=2n+l. As 1 must change by two, |
:four, .« « « by virtue of parity conservation; then oscillafdr.
'components, N', which could be admixed with the levels undef
- consideration, must have N-N' =2, 4, . . . etc. Nilsson argued

that the corresponding 2 hwenergy denominators would méke.tﬁe

mixing small, and he had the freedom to redefine the deformation -
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pafémé¥éfé such that within this ﬁew5reprééentation,thié
miXinguaCtuélly'vanishes. No such freedom exists forvthe_,
»‘_Wdodé;SQXOn'potential.f Moreover, our priméry*cbncefn is not the -
energy;whiCh is ihsensitive to such admixtures; but the |
wavéfunction.itself.and O N=2 éomponents are potentially
imﬁortént for'ouricélculétions. The energy denominaﬁor
argumentfis not convincing for large deformations where _:
'pérticﬁlar lévels'coming‘down from a higher major shell can
‘exchange their identity with a léveltrising from a shell ‘

A N=2 lower. The Faessler program, as it stands,.does not
inélude-provision for'a'Y;vdeformafion,-although the eXiétencé'
of deformations with this multipoiarity is well established_

43 and even 20Ne.44'

in the rare earths The modification
ﬁeeded to ipclude this would be yuite straightforward.
The.prbgram calculates the wavefunctions, energies and -
ﬁhé'K:T/z band ‘decoupling constants for all the levels of a,
given major shell for a serieé of values of g, thexﬂodeformation:
g = .1,42,.3,.4. For a precise definition'of'p and of their
surfaceiparameterization see ref.42 and Appendix II of this
;.chaptef. We employ only their "B" parameterization as it
seems more closely related to the optical potential. The
:;prbgram has been updated since the published account of it{: )
the more,expandea radial basis is actually essential for

meaningful angular distribution calculations: The added center

- of mass correction changes the energies but not the wavefunctions
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.(significantly) in the A~25 région.

| The progrém has one great advahtage:,it is rapid enough

to carrybout a séaréh o#er many sets of well parameters.
Unfortunateiy, the compOnents missing‘from'their basis'are of
potehtiél importance preciselyvar‘our‘calculation. Mdredver,
:ievels which are weakly bound for a:spherical well (-for ¢xample,
‘the d3/2 leVei for A'VZS) carry eXceséive largevnvcomponents
into étrdngiy deformed wavefunctions,f_This shortcoming:seems 
to be fatal in some cases: important components of the77/2+[633]
:sfate'inv167Er are unbound and this intfinsic'étate pahhbt be
. ‘'caleculated by the program as‘it stands. |

2. A muCh'more inclusive set of basis stétes and a far more

- flexibly defined nuclear deformation are the features of the

V-j‘progfam SAXOND written‘by N.K. Glendenning. It has=providedf

g wavefunétions where Faegsler's program failed; Because the
more sophisticated calculation takes much longer, it is not
possible to search.for parameters which éccurately reprbduCe 
the empirically determined intrinsic energies, £, . Our |

_procédure has been to choose an “"optical-modei—plausible"{ -
set of parameters that works reasonably well in the particulai

" cases discussed below. The spin-orbit strength was found to
i“be dpfimally a little less than that employed by Blomquist aﬁd-
.'Wahiborn.AS” - o

| Throughout this work, we shall cbhtinue_tb refer to levels

- by their Nilsson asymptotic quantum numbers. There are few
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cases of mistaken identity that might arise. SAXOND
'calculates' Angp from which we calculate ®n1j. We shall -
give these together with cjl calculated from

_Cdg_: (g Cné'; )l/z X (S(gn of ‘0(6391- Cn“\ | (l’l)_'i‘ o

- This is the amplitude for the component of the wavefunction
with quantum numbers jl.

It is often useful to compare these with the tabulation

of cjl prepared by Vergnes and Sheline46

41

using equation (8)

= above together with Nilsson's tabulation of a

1n -’
In the following section we should bear in mind the.résult
' (démonstrated in chapter VI) that the strength of the éirect,
transition to the state j of some band of the odd neutron

residual nucleus is proportional to the sguare of thé-amplitudé,

‘cjngr'the appropriate intrinsic state.
" P. Wavefunctions for the Various Nuclides Studied

- The low lying.spectrum of ZSMé éan be well deséfibed in-
terms @f'tnree rotational bands based on the [202]5/2+,
'[21T]1/2+ and [200]1/2+ Nilsson states; this is illustrated  .
in fig. IV.1. The absence of éulow lying K=3/2+ band suggests_
that first ordef coriolis induced admixtureé are smallg This
spectrum readily yields the data ( we make use, in ﬁart;of‘thé
‘analysis of Mottelson and Nilsson) which is présented_in Table

47 24

IV.1. It is known ' that T=0 pairing plays a role in “"Mg;
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vfhe'possible role that pairing may play in deflecting the

vsingle particle levels of ?5

Mg is more obscure. We shsll
ignore this factor and attempt‘tb £it the separation energies |
given»in this table. 1In Tablé IV.? and Table IV.3 we present
.the'Wavefunctions for the éingle peutron'deformed statesi
v[21{]1/2+ and-[202]5/2+ respectively.‘ The parameters are
listed in Table IV.13, but we comment that these‘wavefﬁnctibns
~ were dalculatéd at a single deformation that fitted best the
eﬂergies of the three imtrinsic'sfates considered. Howéver,._
',the'variedrmoments of inertia, thé strbng dependanée of the

85 and, as we shall see, the -

- [202] 5/2+ level on deformation,
'stripping results themselves all suggest that these.bandszin-‘

fact have different deformations; It must be regarded ?robabie
 fhat'thé [211}1/2+ wa#efunctidn, at least, which was used fbr

~ stripping calculations corresponds to an eicessively small |

deformation and that c is too large.

3/2+

Other wavefunctions have been used for 25

Mg stripping
calculations. They were calculated using SAXOND and are given 
in Tables IV.4 and iV.S. It is clear that the 1=4 components
have small amplitudes and we shall find reason to ask if they -
may not in fact be larger. Recently de Swiniarski et 3144'
have.inferpreted inelastic scattering experiments in termsv
"of a small (small, that is, for the s-d shell), negative
 deformation in 24Mg: ﬁé =-~,05. We found that by'increasing

pf2. and introducing reasonable B, deformations that the 1=4
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émplitﬁdes could be at‘moét doubled. For ﬁhe effecf of
vincreésihg B2, compare Table IV.4 ‘with Table IV.6 discﬁssed.
below;"'This is relevant because if Will'ﬁurn out that the
i=1/2+ states of 25Mg‘are conéiderably underpopulated by our -
stripping theory. We found that the introduction of axiéll |
"aéymmétry tends to depress 1=4 amplitudes and éomment thaf
the very interesting question of such asymmetry could well
+ be explored using SAXOND wavefunctions and a "sufficient"
'stripping theory. 7 | , _
.Finally, the [21{]1/2+ wavefunction has been calculated -
“with /31%.4, probably appropriate for this band, and a
vstronger spin orbit interaction. After subtracting the c.m.
energy correction estimated by F.S. with and without it, this
wavefunction correspondé to the correct separation energy,-6{8
MeV and is given in Table IV.6a. Other wavefunctions weré‘uéed -
f@r isolated calculations. e give only one, shown in Table'.
. IV.6. ‘The parameters for these last two wavefunctions‘diffef
:Only-by a difference in the real well depth of 1.2 MeV, yet
:there'is-a considerable difference in the admixture of.cbmpoﬁénts
‘with large n. We shall later find that this can lead to an ap-
.preciable‘effect on the cross section. This should alert“‘ﬁs
 to the possible errors that might be present ( see Appéndixff;
'7ito this chapter) should we have chosen various potential and
“deformation pérameters unwisely. e note, for:instance, thet

"ﬁntreeAFock solutions can be found that have a matterchsaﬂuﬁbn
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”thaf'is'certainly not~describable as purely.quadrﬁpole—_

deformed§ in fact, the matter deformation in the centre may
‘be oblate while the nucleus és-a whole is prolate.48
2. 167Er

167

1

 The low lying spectrum of '“'Er is shown in Pig. IV.3.

The interpretation of the levels shown is due to Harlan and

 _She1ine.4O

The [63317/2+ Band |
| The ground band based on the Nilsson leVel.[633]7/2+.
_is parficulariy interesting to us. The ébsence of nearby.baﬁds
of K#5/2+»or K=9/2+ should, in the first place, ensure |
reiatively small amﬁlitudes for coriolis admixed impurities,_ 
1More importantly, however, the ground state is éxpected to be
..weakly ﬁoﬁulatedvby the direct stiipping reaction beéauée of'
“the small amplitude of the j=7/2 éomponent in the {633]7/2+
::state.- Thus the relatively large cross section of thiszlevell
  must Be a consequence bf inelastic processes togethervpérhaps_
 'with a relatively long tail on the radial wavefunction.*
The Faessler-Sheline code was unable tg provide a solution -
'for this.band. The wavefunction used appears in Table iV.? .‘
and was calculated by SAXOND using parameter sét D. The

~calculated intrinsic enefgy was =5.95 compared with that

obtained from (ea. 10) (using Q=4.209) of -6;397. The

*{Je shall see that both factors are indeed important.
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-.difference is roughly comparable to the pairing énérgy N

displacement. Most of the strength is in the 9/2+ and 1324
leveis,r The 7/2+ component has a recurrent property of weak
éompdnénts and oné that may not appear in Faessler—Shelineﬂ
calculati§ns: the relatively large amplitude of at'leést 6ne
radial component of “large" n. The n=3 07/2; component; |
alfhough‘it raises the total c7/2+‘relative1y_slightly, could
havg a quite disproportionate effect in a stripping reaction.
The‘proportionality of the cross-section to le2 for abgivén 1 
doeslnot-hold if thé radial wavefunctions are very differént,
andvthis is the basis of our comment above. Thus, although

the c;, calculated from eq (11) should be comparable to that

1

of Vergnes and Sheline (because many properties are indépendent

of the radial detéils of the wa#efunction) we expect'that

very weak components, by virtue of relatively large amplitudeé_'

at the nuclear surface, may give cross sections in DWBA much

larger than expected from cjz. This is independent of inélastic

effects‘ We remark that these components are probably quite -

~ sensitive to the separation energy.

. »
The [512)5/2- Band

The wavefunction, as calculated by SAXOND with the same“

:’parametérs as above, is given in Table IV.8. The intrinsic

energy £€e=_5’57 cbmpared with tﬁe_embirical -6.074.
The 3/2- Gamma Band at 532 KeV !

The 3/2- band a 532 KeV is treated as a gamma ban§'¢onsisting
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of a K=2 phonon coupled to the'f633]7/2+ Nilseon state.

'The relevant wavefunction is discussed above.

E 155

The level structure of the odd—A 1sotopes of samarium has

been studled by Kenefick and Shellne,49 their 1nterpretat10n

f 55Sm in terms of Nilsson orbltals

-bof the low lying levels o
is given'in fig. IV.4. The A=154 core can probably be-

_regarded as outside the very narrow transition region and the
 overlap <c>ui> is probably large in this nucleus.. This 0verlap-

1525m(d,p), though the effect on

is conceivably lower for
' stripping may be obscured by changing quasiparticle populatien
factors (u2). The [521]3/2- and [525]5/2- bands must be
mixed by the coriolis 1nteract10n. We shall, however, study the

- [521) 3/2- band, treating it as pure, commenting firstly that

—most of the levels are more strongly populated in stripping:than'

.thbse‘ef the [523]5/2;_band and secondly that in view Of-the 
‘stripping strength of the 5/2- level of the [523] band, the weak-
“‘ness of the 5/2- level of the [521] band suggests that fhe*
‘mixing between these bands méy not be great..A seareh was
'fconducted using Faessler's code.to.fit the neutron.separation 
1fenergies for the single neutron Nilsson states [521]3/2— B
B23)5/2-, and[521]1/2- which are respectively -5.786, -5. 4245
"end'—4;984. The decoupling parameter for the last ievel is .

. a=.35, The parameter set D gives reSpectively -5.72, -5.416,
"—4.63 together with a=.485 for the [521] 1/2- level. The
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» parametérs RO and aowere not varied infthezsearch.' Thé
éorrespondiggfwavefunction isylisted in Table IV.9. The

| va‘lu'e.of'Vso (=10.) used by Faessler and Sheline is tooigreat.
vThevvaiue’of‘cs/z; ié_very sensitive fo this paraméter;_vsoilo.
| WOuld imply a value of C5 /5. SO great as to imply ée?ious.dis-
agreement with the Kenefick aﬁd Sheline stripping results.
VSO=8‘is compatible with the valué used by.Blomquist and
_Wahlborn45 but various optical model analysesso Suggest that

'_1t is somewhat large, as does the c listed in the

| 5/2-
tabulatlon which is large enough to account for the cross
section of this level without inelastic effects contrlbuting;"
In Tables IV.10, IV.11 we give the wavefunction calculated by

SAXOND firstly with the same parameters and then with'VsO

'chénged;to 7.0 Noficé that the n=1 component.fof 1=3 3%5/é 

is halved as V., is reduced from 8, to 7. We shall use.botn

these sets of wavefunctions for our stripping Qalculatiéhs. ;i

.~ The deformation g,=.3 does not include the well established
Y, défqrmation; these SAXOND wa#efunctibns were calculated i@
ﬁhe fifst place for comparison wifh'the Faessler wavefunctions_

where no Y, deformation can be included. The X4O deformation

4
was included for the case of the very similar nuclide 15744,
4. 754

- The low energy spectrum of 15_7Gd shown iﬁ fig. IV.5 has

‘been elucidated by Tjpm and Elbek.”’' It is rather similar to

that of 155Sm; in this region adding a pair of protons has a
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smaller effect on the nuclear structure than adding a pair of

|
!

neutrons.

157

‘The wavefunction for the [521]3/2- level in Gd is

given in Table. IV.12. Tha parameters used in SAXOND to

obtain this were set.F of Table IV.12. These are the same

155

as those used for Sm but for the addition of‘a Y, deformation.

4
Apart erm the slight change in radius ,RO'/RO=(157/155)1/3’,

the difference apparent in this wavefunbtion as compared with

that of Table IV.11, c.,,_ has been halved, must be due to

| 5/2
_the Y40 deformaﬁion,

G..Conclusion

In‘manyCases our calculated wavefunctions contain components
for which le | S
region may be comparable to the surface amplitude of components

is smali but for which the amplitude in the surface’

of lafge 4 These cbmponentsrcorrespondrto levels that aféi
weakly.bound for a spheriCai potential. We shall show in the |
'appendix which follows that the truncation of.the radial

- wavefunction when represented as a sum of components wiﬁh
.different numbers of radial oscillator quanta, has a‘strongvv
effect on the sﬁripping cross section. Thus we ﬁust expect that
j cqmpbnents with large surface amplitudes ( that is, relatively
large amplitudes4of the high n componéﬁts) will have direct
transition cross sections considerably greater than suggested

by the overall c An actual case is discussed in Chapter VIII

jl.

where the large n=3 j=7/2+ component of the [633]7/2+ wavefunctionF’




(see Table IV.7) of

167

_6o-

Er is found to result in a cross =

- section three times that predicted by proportionality to

Cs o



70—

Appendix I

. Truncation of the Radial Wavefunction

In M6ét of the examples of radial wavefunctions tha?
we have been presented‘above,_there ié for each (31) one;
ﬁredominating radial quantum number, the. others having much
smaller amplitudes in general. Nevertheless the‘amplitudes of
‘fhese compdnents do not usually appear té:converge very welil.
‘before about the eighth compdnent. The number of radial .
.components to be included in the calculation is an importént_.
plahniqg consideration for the programming as each’rédiél o
component requires the provision of considerable memory space;
We considered it important to test the effect of varied
truncations using the DWBA program TRANS.* The angular .
distribution of protons corresponding to the ground state of
25Mg resulting from the stfipping of 10.1 MeV deuterons was
caiculated using a Faessler wavefunction. The amplitudésvof o
:the'radial componehts'of the appropriate 1=2 wavefunctibﬁ'are;
taken to be (for n=0»,1',[.' .. 5) | N

-.9915 .0933 . -,0682  .0538  -.0156 .0154

The calculation was carried out with respectively the first

four, the first five, and finally all of the components included.

‘The angular distributioms for these three cases are shown

“* 1 am gfateful to N.X. Glendenning for the use of this
program. '

? Fiwe -
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in fig. IV.6 with arbitrary>bﬁt constant hormalizaﬁidn.
The increase in forward angle cfoss secfion as the smail
amplitude large-n components are added to the caléglation
is réther‘striking,vas is the apparent lack of con&ergence. B
This férward angle enhancement corresponds to a reaction
involVihg deuterons with large impactvparameters andergoing‘
strippihé at the nuclear surface. Ih most of our calculations
Wé have used seven ( a check on our program with inelaétic
> processes "switched off" by comparing with TRANS is possible
fér a haximum of_séven components) or eight ( the maximum
for our'program)_components. We have found an appreciablé
difference, especially for the 1=0 state dn 25Mg at small ’
as the number of fadial components 1is increaséd from seven td,
.eight.‘ |
| The sensitivity of the cross section td the radia17 
_ wavefunction is revealed in a comparison of the 12.3 MeV
f_DWBA stripping cross sections for the two low lying 5/2+
ievels-in Mg. With the form factors given in Tables IV.4
1énd IV.5, the ratio of the cross sections normalized to the
'Vsaﬁe °j12 is about 2:1 in favour of the [202]5/2+ level.
':This result is due to the much longer tail of the more Weakly:'
5bound 5/2+ ground state j=5/2 component (cf. eq(11) anév@ablé
IV.1). Although,.as can bé seen frbm these‘tables, the |
-amplitude of the principallcomponent for the ground state is

" about twice that for the excited 5/2+'state,'the amplitudesf 
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of the components of higher n are three to four.timesvgréater.

i(This,differenCe}im therwavefunctibns may no longer be true
if the [211] 1/2+ level were calculated with a more realistic
ﬁ;=;4}) ‘ , v . : v
As iong aé‘oﬁr primary object is an understanding of
the'imﬁortaﬁce of ineléstic processes in'stfipping, eigh£
radialtéqmponents(yield a ﬁeaningful model célculation. We

bear inimind, of coufse, that in any case the form factor is-

not exactly the anefunction of a Woods=Saxon well. We remark

‘that as long as uncertainties in the .nuclear model make the
- neutron separation energy uncertsain, then the cross section is
unCertain to a greater degree than one might gather from the

literéture.
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Appendix I1

" Parameterization for the Potentials

e have employed wavefunctions calCulated'dsing’a
Woodsfséxon potential and we have quofed the COrréSpohdinge
B values Qf ﬁhe parameters which definetthisspotential. For .
'ereference we show how these parameters are defined.'Faessier 

‘and Sheline define the following real potential

\/(r) = \/g(r) + C, (1 4)-—-—"‘g(v’)2ﬁ5

42

_Eqaations'(1) and (7) of Faessler and Sheline do not agree;-

e(7) appears to correspond to the program.* We haVe_used'VsozseCO :
| . o , - _
$eo) = [l +<’-XP[<f—R°A/’)/aoﬂ
The deformatlon of the nuclear surface is parameterlzed accordlng

t6 F. and S. method B as

= K [' - Z P ) + E/QMYM(Q):I

_ This‘iﬁcludes volume conservatioﬁ, but their expansion of_the.’.
‘“surfece is carried out only to second order. The parameteriZafionl
‘used by SAXOND is similar‘aﬁart from slightly different ?alues.‘
fof" for examble, the spin'orbiﬁ constant. We take'advantagee .
fof t&eprov1slon for the expanslon of the surface to be carrled

- to much higher order.

*We are grateful to Professor Shellne for forwardlng thls
program to us. :
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Appendix'III  ~

Harmonié'Oscillator Wavefunctions

We use the sign convention of Talmi_quotedfin de-Shalit

22 the wavefunctions have the same sign at the

and Talmi;
_ ofigin.- This is contrary to the Nilsson'convention in whiéh
the édiﬁtions have.the‘same éign at infinity. Our fadial
quantum nﬁmbers start at zero so that the energy

| = ety Jhe = [N*3p]hw
*where n= number of nodes excludlng those at the orlgln and. aﬁ

1nf1nity, .We shall always use hw =414 -1/3 MeVv. With: these

convenfions, together with the radial normalization

1 R@u)}“r*dr =1

~and the. definition 7 = Muvég (twice that defined by Talml)

R ] QQ— +1 .Q+/1 (u+2r\-r|)" ) .—%r-,_.. l,
v ﬁ[mﬂ)!g AT T e T U vl

we have

_where~:'L;1 is the polynomial
k ksny (32+0) K
x) = _ —— X
U':[) ; ) 2 ,(K)(zﬂufk-&;)]{ :
: 5

our Rnl_thus differs by a factor of r from that of Talmi.
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Table IV.1. Neutron separatlon energies E for the th*ee o

lowest intrinsic states of 25Mg. - The flrsg four columns are - -
taken from Mottelson_and-Nilsson,85 and the fifth is calculated.
using eq (10). The sixth is calculated on the basis of a

ground state to ground state neutron separatlon energy of
7.331 MeV, v _

Orbital B;_ w44 a €. Fg
[202] 5/2+ 0.0 23 0 .862 ~6.469
[21131/2+ 0.58 . 165 -2 .5057 - -6.8253

[200]1/2+ 2.56 .15 ~.42  2.4445  -4.8865
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of cpjl for’ the 11]1/2+ band of 25Mg. Calculated using the.
F.-S. program using parameter set A of Table IV.13. These

parameters were found after many trials, and the deformation .
was found by graphlcal extrapolation. This wavefunction '

- was used for a series of model calculations but is criticized

 1n the text. Note the slow convergence (i.e. ;1 does not ) .
'~ rapidly become small for large n, as-far as strlﬂplng is: concernﬁ) ’
haracterlstlc of 1=0 wavefunctions, . and the fact that the
3/2+ component, which is nearly unbound for B, =0, is more
slowly convergent than the 5/2+ component. -

B n\\\\j\\ | /24 | 3/2+ 5/2+

-0 -. 033973 ~.70383  -.45113
1 -.508747. . 08642 04245
2 . 108067 207797 -.03103
3 -.070755 . .05019 ©.02448
4 053742 -.02306 - . -.007098
5 -.02528 .01969  .007007
6 .01982 -.01181  -.003958
7 -.013091 .00852 .oo2188
8  .00858 Z.00456 -.001865
c, . -.530 LTe s
¢’ .2809 : 5126 .2070 ‘
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Table IV 3 Wavefunction for the single neutron level '
[202]5/2+ for 25Mg. Calculated using parameter set A of
~Table IV.13 and F.-S. program. (See captlan to. Table Iv.2. )

'5/2{.‘
0 -.9915
R L0933
2 ~-.0682
3 .0538
‘s -.0156
5 .0154
6 - -.0087
Cspp 7T
o

®ss2 . 1.
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Sgble IV.4. Neutron wavefunction fer [2Ti11/2+ level in

Mg. Calculated by SAXOND using parameter set B. The 1=4 |
components, though giving rise to small direct stripping
amplitudes can have a significant effect when the direct
amplitudes are added coherently to indirect amplitudes.

< —

‘n \\i;, /24 3/2+ 5/2+ 1/24 9/2+ '
0 .04408 7496 L4532 .0838 L0641 !
1 » ;426d -.1242  -.0269 .00026 . 00607 é
2. +,69678 06134 03087~ .00369 L0034 1 |
3 .05116  -.04387  -.02358  -.00411  -.00513 O
4 -.03969  .01821 .00595  .000096  -.00081 |
5 .01752  -.01262  -~.00681 -.00092  -.00112 :
6 -.01230 .00741 .00344  .00036 -.00005
7 .i;oo756- -.00382 -.00158  .00007 - .00004
e, L dsan 7639 .4558 0839 0646

e % 19749 .58358 .20772 00705 00417 ¢
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Table IV.5. Neutron state [202] 5/2+ calculated by SAXOND
‘using parameter set B. (See caption to Table IV.4.) -

| :S\<1 Cos/2+ o T/ee 9/2+

0 -.983%21. 03645 .08713

T .10896 | .00308  -.00742
2 -.08834  .00272 -.00608
3 .05943 ~.01496 . .00384
4 ~.02268  -.000i2 00047

5 -.01952 -.00063 = .00153

6  -.01034 -~ .00001  -.00002

7 .00573 -.00005 .00007

c;  -9955 L0367 L0877

c® 99095  .00135 .00770
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25

.00077

Table IV.6. Wavefunction for [211] Y2+ level in Mg
Calculated by SAXOND using parameter set C.
oV /ee o 3/2 5/2+ 7/2+ 9/2+
O -.05296  -.67461  -.44307 -.09696 -.08797
1 -.51501 - 15404 .01888 .00656 -.00788
> 14136 -.06976  =-.03005 -.00017 =-.00077
3 -.07549  .04623 .02398  .00512  .00466
4 -.05423  -.02294  -.00576 =.00112  .00110
5 -.02718 01412 .00668  .00096  .00165
6 - .01784 -.00777 ~.00307-  -.00072 =.000002
7 01002 . .00347 0. 0. |
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S . ) ’
Table IV.6a. Wavefunction for [211] 1/2+ level in 25mg.
Calculated by SAXOND using parameter set Cx.

1/2+'_ 3/24 . 5/24 /24 L 9/24

0 .04945 .68838 44232  .09972  .0889

1 .50643 ~. 14501 -.01236 © -.00513  .00907

2 -.12809  .06510 .02814  .00433  .00468
3 06765  -.04333 -.02232  -.00501 5.06449'

4 -.04877 02057 .00455  .00091 -.00125
5 .02330 ~.01271  -.00606 =-.00093 =-.00165

6  -.01539 L00690  .00262  .00068 ~.00005

7 00852 -.00306  -.00057 0. 0.

¢ L2831 .5016 L1971 .010-  .008 -



-82- i

Table IV.7. Neutron [633)7/2+ state for A=167. Calculated
by SAXOND with parameter set D. - -

LT/ 9/2+ 11/26 13/24

o -.01057 21947 —.0816F§ .921002

1/ .o2i815  -.29894 .0084057 053239

2 '-.004832  -.012672  .003687 -.034945

3 -.018951  .023293 .002841 -.052152

4 -;061935 f .031126  -.001737 -.001732

5 ,:.00111355 .0028593 00071303 -, 005644

6 .000635 _.00317 .0003314 ~. 008598
cj: 031 O _s1 . -.os23 .923
c.2  .000961 1392 .00677  .8519

J - 0
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Table IV.8. Neutron state [512]5/2- for A=167. Calculated

by SAXOND using parameter set D. The c ‘1 shown were calculated
and normalizd by the stripping program F4om a . The c's

- ghown were normalized without thewlm7<00mponen%g, and the

- 1=3 and 1=5 componénts shown are about 1% larger than used .

in the calculation with the complete wavefunction. e quote 46 -

for reference the cj values tabulated by Vergnes and Sheline.

5/2-  T/2- 9/2- 11/2- 13/2-  15/2-

0  -.016067 -.01695  .37247 =-.25568  .08464 -.10656

1 .08101 . 8700 .08396  -.13232 .01886 -.02961

-.01277  .01360  .01089 =-.01048  -.000958  .001528

.00061 =-.00722 =-.01973  .02028 =-.007102  .01106

.00252 -.00486 -.00332

2
3

4 =.006299 07329  -.00968  .01688 -.00334  .00585
5 ‘ 00332 -.00109  .00187
6

| -.000022 .00484 . 00136 .001598 - .002014  -.00219

o

- 65 ©.083 -.873 .383 -.289 .087 . —.111
o;f L0069 762 .ia7 0835 0076 .0123

c(V&S) .1

.8867 - .376 - -.25
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Table IV.9. Neutroh wavefunction [52f]3/2— calculated by

F-S using parameters D.

Note the large value of cg/,_ compared
with the Vergnes and Sheline value also shown. A;1§§.v

;\\i;vv' 3/25:

7/2-

L7271

5/2- 9/2- 11/2- - .
0 .0214 .0011  =.0509 .5689  -.3263
1 ..0221 1638 -.6512 .0894  -.0228
2 L3119 -.0015 .0085 .0184 L0134
3 -.0362 ~.0106 .0033  -.0287 .0183
4 .0186 .01725  .0588  -.0099 .0029
5  -.0423 -.0019  -.0034  -.0058  -.0016
6 .0121 .0041 .0022 -.0029 . -.0031
7  -.0085 -.0037  -.0113 .0018  =.0012
53 23194 . 1652 .6560 577 -.3279
»052 .1018 0273 .430% .3529 .1076
Coy(vas).3234  -.001 .5045  -.3349

*
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Table IV.10. Neutron state EBZU 3/2-. Calculated for A=155 by
SAXOND using parameters D. They are truncated with N=2n+l1 < 13
according to the capacity of the strlpplng program at the time
of calculatlon

; ;?\Q\ 3/2-  ' 5/2-  1/e- . 9/2- 11/2-

0  .01872  -.06601 -.02644  .55926  -.2728

1 -.11053  -.1658  -.66526 = .03143  —.10994

2 .3i720  -.02244  .06989  .00260  .001522
3 -.02607 .00403  .00658  -.02317 02214
4 -.00749  .01599  .04966 -.00366  .01389
5  -.03311  .00445 -.01129 0. . 0.

6 .00403 0. 0. o, a 6,



.00484
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Table IV.11. Neutron state [521]3/2-. See Table IV.10 for
_comment. Pérameters E.
;\i\ 3/2- 5/2-~ 7/2- 9/2- 11/2-
0 .02177 .05323  —.02479 .48819  -.3094

1 .12254 .07953  -.69447  .03796 -.117453
2 3600 .02829 L07759  .000929  .00230
3 —.03215. .00367 .00598 -=.02156 .02440
4 <.00817 .00959  .05111  =-.00415  .01452
5 -.0574 .00507 -.0124 0.

6 0.




Table IV.12.
‘with parameters F.

Neutron wavefunction [52i]3/2u for”A;157. SAXOND was used

;\<i 3/2-

9/

5/2-  7/2- 11/2- 13/2- 15/2-
0 =-.02148 .04376  .02096 .47416 .3238 -.1133 .08916.
1 -.09099 03827 .70259  -.05374  .1386 ~.01624 .03418
2 -.32581 02974 -.07396 -.00142  -.00407 00464 .00126
3 03286 -.00380 -.00218  .02268 -.02733 .00874  -.01095
4 00485 ~.00620  =.05279  .00507  -.01597 .00252 .00629 .
5 03429 -.00491  .01293  .00164  -.00036 .00008 .00169
6 -.00617 ,00033  -.00189 ~ -.00212  .00370  -.00182 .00286
7 00080 .00099  .00859 | 0. .
c. 1172 00434 .5026 .2283 . 1251 .0093

L0132

Ava8+



Table IV.13. Parameters used in various calculations of the neutron bound
state wavefunctions. : - ‘ _

B Identifier V R

a0 ., S0 -1 so B2 ‘ﬁ?
A ~48.7 1.25 .65 -4.5 1.25 .65 24 0
B -48,7 1.25 .65 -45 i.25 .65 3 0.
c ~47.0 1.25 .65 7.0 1.25 .65 4 0.
Cx -48.2  1.25 .65 -7.0 1.25 .65 4 0.
D 45.5 1.25 .65 -8.0  1.25 .65 3 o.
E 5.5 1.25 .65 -7.0  1.25 65 .3 0.
7 J45.5  1.25 .65 =7.0 1.25 - .65 3 . 05
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Figureoﬂéptionsufor'Ohapter IV

25Mg.

Fig. IV.2  Low lying spectrum of 166Er showing the ground
band and the gamma band. The ground band follows the I(I+1) .
energy ‘spacing about as well as that of most nuclei. The
gamma band, however, follows this spacing extraordlnarlly
closely (see Mackintosh 29).

Pig. IV.1  Low lying levels of

Fig. IV.3  Partial level<ﬁagram for 167Er The 3/2- band
at 532 KeV has been interpreted as a K-2 ¥-band coupled

to the [633]7/2+ 81ngle particle state and mlxed with [651]3&%[-

'and 4oz]3/2+.

Flg IV.4 ~ The low lying spectrum of 15SSm. The asslgnment
of Nilsson asymptotic quantum numbers, shown beneath each
bandhead, is that of Kenefick and Sheline.49 There is a
1/2~ band at .824 MeV and many unassigned levels, some
strongly fed in (d,p) reactions, beglnnlng at .364 MeV.
The relative stripping 1ntens1ty at 650 1s shown in parenthe&ﬁ.

Fig. IV.5 Part of the low energy spectrum of 157 . The -
separation between the (521 3/2- and the, §525]5/2-»bands"
is somewhat greater than is the case for Sm and suggests
‘somewhat less coriolis mixing ( see Tjom and Elbek>1). The
large cross section?lto the .435 MeV level is, however,
somewhat anomalous when compared with the results of Kenefick
and Sheline. This level is not (ref.49) unusually sensitive
to deformation.

Pig. IV.6 A study of the effect of varying the number of
radial harmonic oscillator components in the formfactor of
the 1=2 neutron on the stripping of 10.1 MeV deuterons
leading to the ground state of <5Mg.



3399

-90-

976 3,*

5% vt
N7 Y*

Fig. IV.1

)

A
.
A
[
S
{
1
3

- ™




-91-

37
-3 5—. _ 7t
[215 ot
) . . ‘ . 6
L9110 gt e -
| : 187 +
v " K:l 2
Sk et
226kq A
- 08056 41*
0-0 *



573 -5/’4
~-532 . +
~IRA - —=%

. ~'}QD : ‘ZI’

79 l/;

079

o+

/A

—g92-

o ' 538
~ Ly -
' — % _up
b . :
%
%0
. 5,
290 o {51213,
203 3~ 12
7
-A0g Ty~
: 2

sud}”

Fig. IV.3

W=
>~

%

.‘7{

-

%




Yy -(.'2) g~

%

Jzﬁ.ﬁrsi) _ Zf
053 (-06) %
0.0 (1D ) -
A

5]y,

~93-

4o [-07)

426 (-22)

‘338 (-o4)
[523]%

Sl (24) . q
29,

(-0% /5
EA

.9'15 CO(I) i 5/ +
[eu2] %t 72

Fig. IV.4



229 ‘%;
2133 ' "A"
‘053 5/;
. 0-0 : ‘)/;

'[52;]3/;

=94~

or7 % " |
, . 5’3 . /3
5 [6237 9~ "
;zuL________wf'
jvs/ a2::
s , Al
.o(,gféulj_s/: 5/; v

Fig. IV.5




-95-

S - 24 25 |
= ~ Mgl(d,p) Mglgs)
-  Ey=10.0 Mev |

Cross section _(arb.uh_its)

Kﬁ'
- —— Six radial components
e Five n :
L secsrnesnn Four .' " 11}

T T T T T
O 20 40 60 80 1I00 120 140 160 180
o Ghnl - o

XBL 701-213

Fig. IV.6



-96~ ',

V;'COUPLED»CHANNEL CALCULATIONS OF
"STRIPPING CROSS SECTION:'
In chapter‘III it was shown how inelastic tranéifions
could be incorporated into the description of stripping

reactidné-by solving the problem defined by the equations

('HAJ\;JJ;—E)XzLo o
(A,,*T ~ 7V, - E)X V )CM‘, &

“subject to the bouhdary con&ftion:fhat ;K;) contains incdming

waves in the target channel, whereas F;X;” contains only out;:'

. going waves. In this chapter we show how these can be SOlvéd; 
»_The discuSsion in'fhis Chaptéf is indépendentvof the detailsb

of the nuclear models. Although_vv and fvﬁ are model interactlons

. we omlt the tilde 1ntroduced in Chapter ITT to dlstingulsh |

:model quantltles. ‘The reactlon A(d,p)a+1 1s understood.. through—
out. |

A. Deuteron Channels

 The channel enumeration could be glven for spin s partlcles,
but certaln features of the deuteron case warrant special '
attent;on. ‘In our calculations we con31der only the ground
state of the deuteron, and the mo%ibn of its.center of mass.
The model hamiltonian of the targeét nucleus we denote by H

A

and 1ts eigenstates by (? (A) « The label « sufflclently
AXk v
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labels.the state, but we may eppend the spin of ﬁhe stete, A
‘Thus we write : : o "e .
(W, - E, )<§ j | (3)
The parffy of Q& we denote by T« . In general,‘the .
wavefunction QL(A) involves the coordinates of the A nucleons;
in the case where H, is somebcollectiVe hamilfonian, only the -
’appropriate collective coordinates appear. The total model

hamiltonian of the system may be written, appropriately to

the "asymptotic deuterons" partition, as.

.where Id is the deuteron-nucleus c;m. kinetic_energy, and
Vd is“the'asymptotically vanishing model interaction'repfesenfing
the‘effective interaction. 1In ouf case, it is a deformed |
.opticaltpotential involving the coordinates of the deuteron c;m.,
Ty aﬁd the nuclear collectiVe.eoordinates. The total
wavefunction of this system is thus the solution of

| (H - E>'\£(v‘4 A) =
i.e. equatlon (1) above.
The 1nteraction‘V‘ contains within ifs.definitibn'e speeifi—.
catlon of a truncated basis Pd ' Given-the‘nuclear states |
belonging to P, we must now enumerate all of the channels
correspondlng to the same values Of the conserved quantum_‘ .
. numbers I and M ’ where I is the total angular momentum of the

gystem and T ,'the parity. The number of these states we



-98-

shall refer‘to as Ny and will depend on (I,ﬂ ). ln.oraer to
facilitate the use of a spin-orbit interaction for the
projectile, we couole thevangular momenta as follows. First
‘the spin and. the orbital angular momentum, lc .of the deuteron

in channel "c" are coupled to total orbltal angular momentum

j.r | )
»C _ | : y M, . [ Y/K‘C;A), Xi(d)]. v | B (5)
B Lel)e

The 1 subscrlpt refers to the deuteron spin; we denote by

X,M) the spln-one deuteron wavefunctlon. The bracket denotes
angular momentum coupllng in the usual way. These spin;orbitf
functions, 31 ’ are coupled to the nuclear state to form)

avefunctions of total angular momentum I and parlty'ﬁ :
M.

(pcnr (r4,A) = [‘l} i) @ (&)
o : ’ zatl’.)c AcTe I ' _}
Thus we have coupled according to -3 3-*3 =-0l*l)
' The parlty, T = GJ C T4 , and I define those channels which
must be considered together as a solution of the coupled equations.
- The label ¢ which labels u? in eq(6) is used to summarize the
set of quantum numbers appearlng on the r.h.s. We use T to |
denote any set which contalns the ground state of the target

The total wavefunction for given (I, ) is now

cIm B A
’Q? = — :2 Li (fw) (@C,nl (ra,p) 'C7)
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In this equation, the wavefunction is labelled by T
corresponding to the fact that the coupled system of‘equatiohst.
thst the u's satisfy is solved‘sccording to the boundaryr
condition that only g.s. ehannels ¢ have incoming waves. In
ﬁhe case of deuterons;(I, ﬂ) do not determine the channel
parameters for‘tﬁe incoming waves, as they would for pfotons
incident on a spin zefo'target. For.nuclear‘state L, with
spin Jc, we have |

lI Jcl - ) vI*“)c

go= i, 5o, et
of these three values of l,» the value 1,=j, 6 has parity' |
 oppos1te to that of the other two 80 that l may have elther "
one or. two values for specified (1, ﬂ ) consistent w1th |
~(ﬂ T ‘ B In this work we shall always have deutefons

vlncldent on even targets so that the entrance channels always‘v
have nuclear spin and parity 0 .- In this case 1, vdefines'thev.
,parity of the ehannel and I—j the total angular momentum of

the deﬁteron.‘ For a given I, the channels d1v1de 1nto two
groups of opp051te parlty, v1z., those with T = L) _‘, for
whlch 1 =3 =I in the entrance channel, and those with T = 691*'_>
for which we have entrance channels of 1,=I-1 and I+1, so that
the entrance chsnnel is no longer specified, in general by

(I, ). This results in considerable compllcatlonﬁnot only for

the (d,d}) caleulation, but for the entire stripping,problem,"
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Just how we handle this is discussed later in this chapter.

B. Proton Channéls

" Given I and T of the system, we must specify the coupling
of the proton channels, Np in number. The coupling scheme is

the sémé:

qj;&. [Y(rﬁ X,/(r)} A - | | '(8).

) - .

: <€cn1 (r"JA“) = [g} (AH)] '(q)
o I B .

C .

’£C = ']-‘-12 )v» J(“'I," >/0
4
LIRS O

For.étfipping caiculated accbrding to our method, we needvnbt
consider incoming waves of protons. Although a (p,p') calculatlon
'1nvolv1ng even nuclei is more straightforward than (4, d ),
we would be involved with (p,p') on o0dd nuclei, if the most
consistent procedure was being fdllpwed; In this case, the
calculation would entail an obvidus extension of thé procedure

 employed for (d,d') that is described below.




we muét first calculate the deuteron wavefﬁnctidns ‘N
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C. Coupled Chénnel:SOIution of Stripping

_ Thevfollpwing‘is a .general formulation of the COupled

channel method of calculating stripping reaction cross sections.

Programming details are not given here though the block

diagram of the arrangement of the programs, (fig.V.1) and its

-caption might clarify what follows.

In order to calculate the proton wavefunctions from the

stripping equation (c.f., eq.(2)) |
' \ ) (ﬁ v . o
(E’ - }_I\‘\}lf = Vv\ph\t})d (10)
€3] '

(These are calculated'by the program SCATERD, together with the

'(d,d°) S-matrix elements which may, if desired, be used to

calculate the appropriate (d,d') cross section in program

CROSSD. ) |
The"program SCATERD solves the following coupled differéntial

" equations, defined for given values of the conserved quantitiés,

.. I, the total angular momentum of the system, and U , the pgzity.

5 ¥, AUa) Yy e
_“_&_.4 | )ﬁ-%g “5 U,

Bq" rd"_ ¢ (fd)

1

I Y, : | : v   
..Zv \/“,(rm) U () o (

C#C
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Where E -E-E
The notation is 81m11ar to that found in ref. 35 Equatlon(11)
is a partlal wave decompos1t10n of" eq(1)

We shall ‘need

\/ <cam<m]\f(,d A),(p nm A)> S

and the channel momentum

4 2 E

It is 1mportant in our case, to réﬁaih the € label on
(AZ";, as the 1ncom1ng channel, g, is not spe01f1ed by I ﬂ m:
as explained above. | |
In the ‘agymptotic region, the solution of equat10n(6) in

_ channel c ‘becomes

uCInE g c(_ I ({_m) - ("‘\ 0 (é ‘fd) L

b Tl - () U0t

where | ' ' ' m | :;
:.I;‘ = Oz = Gj-f L FI — MP[-( (&I- ’Yl,(nh&()—!%-f();ﬂ. (Iq)

‘where F and G are the regular and irregular (real) coulomb

wavefunctions, 7= M ZZ'¢* [k ke and o 1is the
coulomb phase shift. This bouﬁdary condition may be applied
“to eq(11) according to the method described in ref.4

For the

case of n=

X" SCATERD stores the matrix of trial
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solutions ‘and applies the boundary condition eq(13) for the
tWo channels c successively. The matfix inversion that provides

us w1th the (d,3') matrix U. fbalso”specifies the appropriate

¢
‘boundary - condition at the origin Wthh permits equation (11) to

~ be reintegrateq so that the wavefunctions uf?ﬁu with
jasymptotic form eq(13) may be obtained for r_ from near Zzero %ot
external region The proton wavefunctions, X#) ’ corresponding
to our particular model are solutions of the inhomogeneous
Schroedinger eqdation, eq(2) above,where 'U?» is the model
effective 1nteraction(in our case, a deformed complex optical
potential) similar to HU] . We can make a partial wave |
decomposition of equation (2) and obtain for the radiai*channel

+)
- wavefunctions of )C (see eq(9)) the following set of

1nhomogeneous coupled differential equations

e v " . (ﬂ,+0 . Y | - ﬁ—:
E (d N - ) \/c'c’ - EC' 3 u('l ?r,')

/4 (-IZ

| 6#('

}V Cfr)UHEr, ; S | ,,:,”E(m)v

S e

The sum on the r.h.s. is over the N, deuteron channels. The

C superscript on the proton wavefunction is defined by the
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incoming deuteron.ohénnel corresponding'to tne deuteron
wavefunctions which appear in the "source term",S. Ve shall
,_refer_to SZTuas the "source term factors "

.Aé for a given I and T ; there are alternately one or two
.inoominé channels c; for half tho (I,j1) duals, eq(15) must
bé.sOlVed twice, though the time oonsuming homogeneous
' integrétionvneed only be carried out once. By imposing the
boundany oondition_ | : o

™mi. ‘\.]»-"(’d). ho o 17 |

V. (p)

on the solutions of eq(15) we are able to extract all of the
In
7scattering'matrix elements,.L( requlred to calculate the
. cross section; The momentum-in;the deuteron_channels 1s‘g1ven'

We notice that radial coordinate r ' appears in eq(15).

This is defined by

Mp = o
- -3 P .

= - -_— : .o
e ‘e M | U

" In the zero range approximation where
— . -7
V(?—F) (fd(r,,--r’,.\ - :Do %(Q’FA
we find from eq(13) that

Ye= Yo CA*' N YH(A+) ' | | (m)

' The source term factors appearing in eq(11) are given by
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T
S,. =

e

B I A FE A |
= j _(@c,n:(r‘,'/a,ﬁﬂ) V.. A ('()c.”nz ('O,A)A:ﬂ?, d_;?:d.s.rﬁ ) (1)

z . B L
The matrix g - 1is independent of c¢. The particular form
'of‘S for our model will be discussed in Chapter VI.

D. General’EXpressidn for Reaction Cross Section

The S-matrix elements (122. are sufficient to calculate
the reaction angular distribution, polarization or any of the
depolafizatiqn functions associated with possible deuteron
polarization. We Shali derive the angular distfibutiqn and
polarization for any reactidn,‘inéluding inelastic scatterinv

The central physical property involved in the basic super-
pos1t10n pr1n01ple of quantum mechanlcs' given a solution of
the Schroedinger equation with, for example, incoming waves
in sdme particular channel, then ‘any éuperposition of such
solutions is also a solution.

The asymptotic wavefunction eq(7) méy be written in the

form

“Kf“'——»—— _ce m[s ¢ L) (lv’-) u”o (& ]

(1!1

(10)
= ;% cnz { (C(IE—C%) | : .
o heeuow]

»\‘
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where_the-cf channels will include the proton channels. We

‘muet now determine the superposition coefficients, A, in the -

- _expansion of the total wavefunction

'\P EA LIT’ | - (22)

(71

in such a way that there is a plane, or coulomb distorted

plane wave in the target (nuclear ground state) channels -'. 

’__Let the 1ncoming partlcles, having 8pin s, be represented by

the spinor 'X h . Con81der the coulomb distorted wave

’\P“"‘ ‘l’da("”‘ }(w})k‘ Lo, Qi:_l'i Sﬂovl_‘ .(-_'.U)

Coul ) ’)."f‘A'f

LS QO i R T

omm M M M_*"' ¢nr
231
(see eq(5) and (6)) Czd,4j2 - where o, 1is the target
_goundfstate; Substituting eq(21) and (22)-and comparing with
(24) we determine the superposition amplitudes, A: |

Mewt : 255 371 Rt B
A- = -— (. C:q,\mm ((H‘ﬂ) e o ,(75),.'

SN 2 ke oMM

With the help of equations (25),(8) and (9) (though we conmsider

? outgoing particles here of spin 82 ) we find that the_scattered

' wave»part of (21) becomes
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. .\PMJM

\

—’Fz exp[( (&'r%?z'fn(z.ﬂ?):[ X
a's, T ' S
M'm' _ R

X @ y“) (26)

ATISMHM, X _J' M'm

| where the scattering;émplitude, f, is given by

I _ 2 22 y (W)é' |
AIMUM S, &' T sy m&' O axe Ll Vo) X

(.)c
ey’
C In ) S
' ' n Litm M ™' (W -
X (gc'c"' uclci) \(Z' (b'na)o. (17)
‘where we define . |
| W A0Sy AT g's'y A'TI
_ | . | (23
( Co moam C"" Mtim /“ M'/‘“MI C/‘“‘"M'M*x"{ ( )

and M= Mam - M-m'

| Fof the case of elastic scattering, we must add the analyticaily

_ known‘éoulomb amplitude. ine sum over icjc extehds to 511 -

_ channels:bf given I,'N-¢orresponding to the gfound state d}];{.

'  Theée'eqﬁat1ons apply to (d,d') and(d,p) using the appropfiaté
part of U™ as calculated by SCATERD or STRIPDP. Théﬁv‘cro'-é__sw}. o

~section may be calculated in the usual way
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«53,-—70(53.

_(do') R §
. \dn - (2540(IL+0

whee o Fe(H)S

The method we have followed in calculating the Cross

section is a little different,'as it enables us to calculate

the polarization of the outgoing (protons) with no real cost

in computing time.

Using the spherlcal harmonlc addltlon theorem, we can

vr.eplace‘ Y; in eq(17) by 2 (w) Y (1‘/1,9)7/ (771))

The spin quantizatlon axis is here taken to be perpendlcular

to the scattering plane. We may rewrite the scatterlng amplltﬁde

in the following form:

Fo 20 Mepitran () (s UL) X

ﬂJ,
2') , :
InF\ /“ (l;)
><\{. ) (U@ ) C )
2 Y
S ' A®
,whare we now define the product by
D g iT I 993 C
() = “mmad V@ MM+R ww"' s

. _ : - )
where R =M™ mz MR- M -

}u

(3 0)

'Gﬂ),-

- (32)
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. The calculatlon of the. cross sectlon is the same; the
polarlzation P(d 9) of protons correSpondlng to final state

' is for outgoing protons, simply

'P(o(;/a) = Mnm va E‘Hdﬂmomlfz | } a(MmdM—I/I L (33)_
S Mo

P4Arfm'_
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Figure Caption for Chapter V

Pig. V. 1 Three programs communicating by tape or disk file
are used to calculate a stripping cross section according to
 the following scheme. File T46, output from SCATERD contains
first the parameters of the (d,a") calculation, .then

successively

" ((a) I, T and the quantum numbers of incoming wave, T -\ 3 sets
(b) The enumerated deuteron channels : for
(c) The deuteron wavefunction in each of these each I
(a) New set of I,m, Cc C
(b) Deuteron channels correspondlng to (I m,C)
(o) Wavefunctions corresponding to (I, m,
(a)
(b)
(c)

and S0 on

As STRIPDP reads (a), it enumerates the proton channels, as it
reads (b),it calculates the rélevant source term factors. _As mt
reads (c), it calculates the (d,p) S-matrix elements Uz
These, together with the enumeration of the channels, are employed.
" by CROSSDP to calculate the cross section.

The (d4,d') cross section may be calculated by program CROSSD
if de51red.




e e o
|
|
{
- | | N
SCATERD T45 9| CROSSD
R
|
l.
|
746 |
L e e o o o e e e e e -
STRIPDP
T55
CROSSDP

Fig.v.1

W T R
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VI. FORMULATION OF SPECIFIC MODELS

 The codpled-channel equations‘preéented in the previous
chaper were independent of any particular nuclear model: 1In
this chaper we shall calculate the source term‘explicitly
.using'thé zero range approximation and.the rotational model
of Chapter IV. From the explicit form of the source term,
we can show how selection rules arise and how they can be
broken by inelastic scaftering processes. In order to | ‘
calculate the matrix elememts V., in eq(12) of Chapter V,
‘we discuss first the genergl problem of scattering from a .
vcollectivé field and thén the particular problem. of scattering
_'from‘ah odd nucleus.

A.‘Zero'Rahge Source Term

We.wish to calculate

'a

In ' |
5% '
. - A r 3A 3
'Sc’c" (66 ;e o;Aﬂ)Vpn >y (P[,,H(q,A) AJZ,:A de,

'usinggthé zero range approximation

Vf”‘ (rf'—(:n) (PJ(;p‘Fn) = I'>o S(;{’-;ﬁ§ , (1)
~where Qﬁ' . is the s-state component of the internal deuteron

"wave function.




S35

Let us make a'general parentage expansion of the (A+1)

particle nucleus in the form_ (éee Chapter II):

O an) ZB(umﬁ[@(A)“(p ] 3).'

_“’l’ ' )R
so that

v") ol J,/

Y, [0 6,3,]0

. n | 7N -
c?['ﬂz = [?} ) @' _(AH)] - (u) o
' 2's'y’ z ‘ L

Similarly, the deuteron wavefunctions can be written

(,,Pf:"_%";'(?d) HY X ) o u ]

fﬁ (), [‘gfr,,) Is, §]]] cﬁ (4)] q>( ')

Where $P'and'§; are the spinors for the proton and neutron

respectively, and we have writter: the deuteron wavefungtion f_

X. (d), : [ Yo[;ﬂ‘; {S P,S»]J; d’.\ ) f_;fiﬁ [gf’;s"]/ 4),.(("") E [585,,],(6, (r’")
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where U’ is the wavefunctlon appearlng in eq(2) We now

observe that the proton ~-channel wavefunction (4) may be

M

é BOE ZB(xf,o(Je)HY (S J i, Mﬂ ,'(?,m(ﬁ\_]ir']z

AjL

rearranged as ﬁollows.

(

Z‘B("(r')"(al)[[ ,I) SP]J‘ ) [QJJ [\f(r,) S] ] ] ; ((,)v.
)L : :
'vwhere §v n)is the néutron radial anefunctlon

b eIt d )
53@‘0"‘31? (TJ) o ({33 g 5}}

X[[[Y(r,,)s,,] [Ym, ﬂ) ]

t/+ ! é :)('
= 28(«,,@2)263 j)’i_” ”c'z(’f Jﬁ [ . j
L Jﬂﬂ. j- I j

o XHMK;”) f(a)] ) [sfjsn]l]jmc?ﬂ ]I” @ o

X

Substituting (5) and (7)into the integral (1), using eq(Vv.18)
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in (2) and various orthogonality relationships, we find
that the source term factor coupling_deuferon Qhénhel'c”

to protoﬁ channel c¢’1is

-‘5:'3(” :'j '/2 | Q('/eﬂ." “)(’11“]‘/
Sm A+/?EB(°( dﬂ[ Z—,;T] C, o o @ X
iy T ko
et ) Jer ¢ ¢
S ERES IP RN EAC T @
. o LA
j-c I-:y( /((” 1 J(”

and we observe that the complete source term is, in terms of

I
the final state proton coordinate, fp , given by

. o - b -
’SZ((P')' i} 2 Sc ‘et ( ‘e ) uf" ( ) O |
| " | o S

Care must be taken to ensure that the deuteron program_and

the stripping program which reads the deuteron wavefunctions

Al
Fahis

employ radial meshes which bear the correct a

scaling
- relationship to each other.

B. Rotational Model Spectroscopic Factor

The original derivations of the spectroscopic factors for
single nucleon stripping on deformed nuclei were due to. -

Satchler and Sawicki. o

We shall derive the explicit results
‘we need ihcluding the terms involving stripping into én

" excited state (ground band or gamma band) of the target nucleus.
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We want to calculate the reduced matrix‘eiements' ‘
(3;kJ|a}2H3]k>.where_J2 is the spin of some state_in-a band of
intrinsic ™4 =k, of the residual nucleus, and J1 is the
spin of a state of the térget nucleus. USually-we have K, =o -
except in the case in which we excitefthengamma band‘of the
target nuéleus, in which case Ky =2

Consider_then the case Qf._k,:o . Ve employ equations. (4')

and (9) of Chapter IV.

ALY aw 17 k,n.>

35V p* .
= (‘EZ") {m* jg M,K, EC <aJ1?J - 2(*17‘)(;1 ngX

K ;? I;iz é§;z15>‘1ifo Ciiﬂ‘ : | . - (“9

We denote* by /« the argument of the rotation matrices énd.‘

. . - , =~ ' b -f
] aw,> - a’lf(z‘ Ty N (d acts in the ody 1xed
- frame) and ,aﬁﬂ4 (1lab. frame) 2? JI&
We have used the fact that j;+j is integral. ' L ,;

.Thé right hand side of eq(10) becomes

Ji

~ *The digamma, /0 , had fallen from use as a Greek letter by’
' the classical period. It can often be seen on seventh century BC
Corinthian vases. ' . :
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(whére' (6]@7'18 the bverlap of the cores)

(B3 acowr [2pfi7 3, ¥ AR Dj'}

M,}—k, ,q/-k, 0

| ~Ma Yy m,
X ;g;g(g)} (1:)

Hence, after some manipulation, we arrive at the following

: ~ J,\ ,: hD 3', -J;J_5;> My~ 7,1~J4m,+k ¥ /
“(‘32‘]) 3n’CJz<° °>§("1=/4m. ko )0 —0) ; ) T)x

; form for the reduced matrix element

< % 135 = -1z C_TI:) G <Glo? Conn = %J"(I)“ B
Uéing'the definition and conventions of Chaptef IT, section A,

we obtaln,'us1ng eq(3) ab0ve

'B_(.(‘).,(,',g) ( ) G <3lo> CT' JJZ (13) |

o

By a similar procedhre, one may obtain the expression for
the case of a neutron being stripped into ‘the states of a

(gamma) bad %16 form a band &k, . W, find

s I0\s T 9T
r,. _ Y " , 2 :
Biwie) = () GG () sy @
.:where | 4%"1 k, 12/ | | v | B
‘Flnally, we write the radial "form factor" in (8) (for the_'

‘case of K =o ) in the form
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| B(d”zo‘"ffl) §30()

AL PRV IR A T S )
R L@ famnn
The amplitudes ng(é) are explained and tabulated in
Chapter IV and Kne , the oscillator radial wavefunctions are
: definéd in Appendix 3 of Chapter'IV. This gives us the.(

‘following form for the source term factors

SI’WH = D r<0‘0>(—J(’ tT+ 3;12[3_ J( "(ﬁ]% (-,e('}f(,,/\/

ROV A+/ _ an.xﬂ, s
J-(" J 'J—e-l J j(” f(/ % J(: ' | v |
6 kk j:-u T J, } ? J:) ? (w(/() ﬁ,,l(r)v(/é) |

et n - : N

-The square bracket denotes the usual LS-JJ coupling coefficient.
2(n- l))
.

'In practice, we expand ﬁmg as a polynomial /Qr (g+(v‘+--
“to form a 3-dimensional array for each Im

ST oL SGIL 7T -1 "(-',;U

. « cc'y
e y .

W

C. Selection Rules for Stripping and Inelastic PrbcesSes

We can see from eo(13) above that in the absence of inelasticx
,: processés:selection rules might arise. The spectroscoplc factor
“for stripplng from the ground state of an even- -even nuclues to

.members of a rotatlonal band, of 1ntr;ns1c spin proaectlon,7k,

is for neutron spin j,

503, 030) = mm Gi(4) S5, N
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This Simﬁly expresses the obvious fact, stated in Chapter II,
that wherevthere‘are ne inelastic processes and the target is
spin zero, the angular momentum of.the transferred‘neutronA
is that of the state of the residual nucleus under consideration. .
Selection rules}may arise if particular values of Cﬁl are very
small. Fof example, in the usual Nilsson model, the intrinsic
stetes df.the three lowest lying bends.are'composed entirely

of 1=0 or 1;2 componenfs.» Thus the 7/2+ and 9/2+ levels eannot
be excited directly un1ess there are small 1=4 components
not~iﬁ¢luded invthe Nilsson calculation. We see that such
selection rules may be broken by inelastic processes. If
the'2+'state of24Mg is excited-by the deuteron before stfipping

takes place, then:the non-vanishing of the amplitude

3 (%, 259) f(/fy)'/"‘cum i, 7

for j=5/2 and J2=7/2,v9/2 assures that the 7/2+ and 9/2+ levels
in 25Mg_can be populated. ,Additional'amplitudes for these
states will occur as a result of the scattering of the proton

as it leaves the residual nucleus.

A similarswlection rule is exemplified by the 7/2+ ground

167

gtate of Er (see Chapter IV for numerical details). It

turns out that.c7/2+v for the ground band is extremely weak-

to the-ektent that it would lead to an almost unmeasurable

167

population of the ground state of Er in the absence of
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~inelastic effects. 1In fact, we shall find in this case, that
‘this statement needs to be quallfled owing to the relative
bstrength of the j=7/2+ radlal wavefunctlon in the nuclear
surface.

It should be observed that ineféstib processes.have the
potentiality to change angular distributions of states
'cbrresponding'to smaller C}X as amplitudes corresponding to
“the transfer of different angular momenta become importaht{

D. Macroséopic Approach to Inelastic Scattering

The most direct approach to inelastic scattering between
states of a rotational band, i.e. states whlch have essentlally
the same intrinsic structure, is to deform the optical potentiel.
The interaction'between this non;spherical optical poteﬁtial‘j |
.aﬁd the projectile willAinduce.fotational excitations in
- the nueleus. The underlying concept is the self consistency
between the nuclear shape and the nuclear field. The method
can alsoAbe extended to collective vibrations where the.self'
conéisfeﬁ£ field approach has been successful (see Baranger
53) '

As the method is based on the optical potential using
empiricaily determined parameters, many effects which are net
explicitly taken account of, euch as exchange'effects, ere.tei
some extent allowed for implicitly. Be thie as it may, we believe

that macroscopically derived coupled-channel wavefunctions which
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fit the inelastic scatfering data must be "better" than
thosé where nb inelastic effects are included. How much
“better".remains to be seen., The details of the parameter-
iéation.of the surface expansion of the deformed optical

55 and the

potential have been reviewed by Glendenning
extension to vibrational wavefunctioné of deformed nuclei
by Glendenning and Mackintosh.54 Some;account of it will
be given when wé'discuss the optical pofential in a later

chapter.

- If the nuclear field is deformed, then one can write

Vs V@ 2 V.0 Y, (80a')

L2

in the intrinsic frame. The transformation to the lab frame gives .

V(6860) = V)

| ¥ -
S Y6 S LG D (19
' ko 4

LM 1+ Sxp

where - \/ﬁQ is spherically symmetric.. There will, in genefal,
be an L=0 spherically symmetric compdnent in the second term

of eq(jé) associated with the change in geometric parameters:
'reqﬁired for an optical potential when the elastic scattering

is calculated with a deférmed potential. This form embodies

the usual collective model convention for the rotation matrices

and differs somewhat from that in ref.35 by the conjugated



-122- o S i

rotation matrix. It also differs in the (-)F factor which

arises from ‘VL_k = (’)kVLK which we can show always holds.
The ﬁossibility of odd X (e.g. for vibratioﬁs with L=3, k=3)
cannot definitely be excluded.55 The spherical coordinates of the ¢ :
proaectile are (9 ) in Space flxed axes, and the orlentatlon_' |

of the nucleus is represented by A, the argument of the | N
rotation matrices. We observe that (19) may be rewritten:
VI, 60,0) = Viry  + | |
' k L o
Dk, D
“m, K o
o S Ym(W)\/ Cr) e ” iy - (R

* Sico

k7/o ‘
Note: L will be integral. In nearly any case of interest k-
o | M | - N
will be even, as will M, but the (-) allows us ‘to write eq(20)

as follows for the case of even k:

V (v, 9«’,{\) OV o+

—k : 2
§ \/Lk(r) Y ( s ) ) ( )
L+ Sxo
k7/o .
This scalar product form (we remind the reader that it dlffers
"by a multiplicative factor from the usually defined zero order
tensor)fwill be very useful to ug; it reflects the fact that A
depends only on r and the anguler displacement between the

projectile and the nucleus.

| - _In o
We wish to evaluate \C () where c,, and ¢, denote
. 2y _ )
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channels of particles of general spin %S¢

9

: brw R - | | P
’\Vfc'(r) ® \/(()siac, i* T = ' .‘(11)5 v

where

LAl L §
M \ DJK, -«-j}_k M
<w<nz } 5 VLR(() r.( _— ) I (Q(,,I > (23)
L ) l"%;(o ‘ ' ‘
Now by recoupling equations (6) and (9) of Chapter V, we get

Q*(,' . ] N
@ = et J‘.[[sf,f,]-k) )CJIM | (%)

- €A1

A SR 2 Sl 43T
= (—)ﬂt 59 é( éc)/(~)5 ¥ [ [/Qc _S—JA
'

| . S( lc ;)L v
X - (25)
’é*yc I A)] -
. oo "f")(»; 3C|*3Cr 3(2 / /a (S 1{,)(‘}{5 ’gcf JQ
..1: = ;? ( g, r,> 3% I AT T X
' AxXL
o k0 :
.b' v S A T sz : oy
xé C u ™M C,« ) <D<"r_.\\/Lk"o(c‘.>><

x" <m,;]”|Y (’**'D'“) | 143, T, > (2]

Notesfﬂ1. The scalar product, being 1nvarlant, is a constant 1n

’ /
v/a s and implies that A =X ,
sA I S AT |

hence, the sum over M > Z?C. MM
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'-Q;ilf Jq’ J;Z cérrespoﬁd to the same intrinsic state,
" ~then : -
.<°(_c1 \ VLk ‘O(c,> = \/Lk
fHéwever,'if'this is not the case (for instance
,: ﬁay be a state of a gammé band) then V. contains

not merely shape paramaters; the o), and SL;

bﬁust be interpreted’in terms of creation operators.
mahdv<dfrlvu'rdg> is the intrinsic state transition
.matrix._ o |
FWe rewpit¢ eq(26);as‘
1= (\ G )".*3‘: Jes 2 by (3:,3(,)}& 2{;}1’ ); g {; f[r’ ;“2 X

AL
k2o

x<dq|vw|o<¢,> <m, )(,},L (P + D ) [1,,'5(,] >
(27)

"hence, using standard results

e el < g ron k(S A Jc,} gs 26 3a { A Te, 4,
I =0 | L% “ 7\ (3(’ )(t) -ch Jea 1 A L ’e"l ‘j(. .
Kz«o . ' ‘ : o
X </€(.,,” ”ﬂq) <°(t,‘VLk{dc.> <:)Cz kq“ :S Y b ” I‘ “(' > (12)
“3(2"&,*]};*1(, oL fr. Lﬂc, L, L /, S 2o )e,
=(-)A 1.% e A(J(')") © ['—Z—f'] o oor>({‘5 ER g
k2o : '
X. » SI( :)( L Ic,.‘,ec Ll( Lu o » )
X z 2 z v
:‘;1 T )-2 {1 —-rc; j(_.% \/Csz BC—;(, . : : ‘ (2—‘7)
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where - -

B | <3-¢'zkc,” . ‘k ” Tc, K¢,> v, | (30'4)

ac
e | | ' | | |
\/Acz'c. = <°(61 ‘ \/:k l.d(, ? . (Zo b)

o Lk | | |
The calculation of \  will be given in Chapter VIT.
Now using equation (6.2.12) of Edmonds’ (p.97), and

“rearranging, we get

IS

. - =
\/‘ (r) \/(r) %M :r 3¢,+7.3¢, s( 5“ )(’ Q(’Qc’) X

X E(L) @ f“é ff) Bc,c, | CL: fi ﬁ fcg % lf]% NS

Lkyo _ _ _

For s=0, this agrees with eq(6.19) of.Glendennitig.35 This

result’hes been used to calculate the (d,d') scettering,ih |
the entrance chahnels andb(p,p') scattering in the exit channels.. .
We note in passing that a striking simplification takes

place for s:1/2.> The 1 dependence appears in the factor
d Vg £| »0 J 1’ I" T
g(fl)ﬂz) (QI ﬂz) 6 o O ) f APERY 1_1 .

It turns out for =4, 2}

Y N |
q“d \\,L~Iz,/

hr

(which, of course, is true in our case) that

fu ) -(02)
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- The prOQf’is not trivial but Hardly worth feproducing here.*
vThis means that prdvided 11 and 12 are allowedAand have
correct_ parity [ (ﬁ' :,"Z’) Z0 J , then eq(31) is
independent of them despite appearances. No such simplification'.
oécurs in the deuteron case. For even nuclei in which

K) 1be1 are integral, the expressions for the reducea
' matrix_elements BLk given by Glendenni_ng35 are éppropriate
(for l(;v | “even)-

L L
D, +D

B:’: v <j‘(’” ,*S’ID—K” j‘ka2>

G (T52)8xe . i Kkeig=o
(2ifﬂ Zﬁﬂf’) Sxe , if_&:o);gfp
(3. 7,5 ’ Jou/ T LTy )
=" (37, T LT LT T Tk Ta )
( L+ S}) ; e Kki) +("" ".‘“1) *O (""' “"_"1)1 |
KO : . . ‘ ,

i§ k #0, Ma#0 S
| (32)
These;are employed in the deuteron scattering in the entrance
channels: in fact, except where we consider the gamma fand,in
 Erbium, we need only the first of these relations. We must
examine the case of half integral-spin nucleiAmore closely.
‘Let us cbnsider only axially symmetric optical potentials for -

which k=0. AS stated previously, we permit only intraband

*The author "discovered" this "well-known" fact by accident
when debugging the program!
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transitions for which k;=k,. The matrix eiemenﬁ,

LTk M Y, D5 Tk will be studied,
and its collectlve model factorizatlon jB(u \Qﬁz
elucidated; |

In general; v&o may be an OPsrator expression, but in

any base Will be expressed in terms of collective coordinates.

Consider

(T kM| Vi, D, | Tyl 2>

2 ANk T+
: = (—_‘:{_) j( M X, ?('kp : Dﬂ -k "f ) v D"o X

- lenz

( mk Xy, * jﬂhpm_k’ ke, )0{/(‘ d{(In"?rnal (oofols)

"";'/z T I
c {flf Do D 3 Lo, Ny X, >

16 771_' MK, “m0

T92 (R L N2 3 | '
) ZJDP"W‘\’, D"'v R,'k, A /?\ <X—‘\'-)Vl-ox‘\'.>
..+ VI“'feﬁ{a,Q 1'¢ <xt{') VLO x—k‘> 'f' IIATCSIO‘JA’ (’K.-_k,j VL.OXI(‘>

Gw

The last two terms are zero.

. . :Y,‘\’J' + 1k . ~ .
We have used (=)' =(ﬂ3‘3'( Y2 1o get the second term.

We observe that confinlng ourselves to macroscopic ex01tat10n
is tantamount to making the following identification from the

microscopic picture:

Ly, EVo La(mx > _\/Lom 69
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.which.is just X, Vo X x> as we have defined it
where V., is é c-number function. However, it is not true
that the microscopic model quantity
<X-K,) 2 VL, r;)\ﬂm(ﬁc)xg) = (/,_Mv

~vanishes in general.‘ Thus, T, compohent in the interaction
can flip the intrinsic state of a k=1/2 baﬁd, and fY;,component
for a k=3/2 band, etec. These terms can only be calculafed
in a microscopic model: outside the province of the presenf
:.work. Fufthermore, they are of thejorder of one parficle
ffstréngth, wheréas the collective term is 6f the order of A
particle Strehgfhs.' This rough statement is less useful in
the A=25 region where Crawley and Garvey56 reporf empirical.
interband-transitioné which are nOt.so much weaker than (i.e.
transiﬁion amplitudésrabout.bne qgartér of) those'within>ai
‘band - ﬂﬁs suggests that the A particle versﬁs’one particlé
strength argument 1is less than fully valid in-this region. ‘e
shall simply state that the Srd_and 4th‘térms of eq(34) ‘
disappear, that <7c,r') Vi, x‘k,>=_ <7‘--§,)VL° ?c_k,> v ,
where Vio 1is obtained from a surface expansion of the optical
potential ana finally that particular care should be exérciéed
in'intérpreting our findings in particularly unfaVorable cééeé-
such as k=1/2 bands in 25Mg. Hean .y R .

CTkMmIDE Voo [ Tak Y = VL,,“'-EJ’{c-)"""' TG hR)

-M M ML

‘ Kl 0o "ku

TTa Mt T LT ToL T2 NL :
L Y i ) )} Go)
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To derive this, we use
3 L oL T ' -k, T

] 1 3 M-k /D, LT‘;) v L 3—1_>
/nz‘gD ]?‘IOD"‘Ikl d/‘ = (—) -ry M Mz, - kK (»] AK|' .

8 My

'(a formula which is true in fhe'quite different conventions

of Edmonds9 and Preston,57 for example). We have shown that

the féctorization at issue is good if we remain within. the
macroscbpic picture. Using Racah's definition and facforingf
the V,, + we get for B"° as defined préviously:
B v '

3 3kl DS Iy = Ml Pael Tk D

i %o 11272 ()T M 13 L Ta )

“My M My

v A L T, T L T Al
= (T&‘I,)‘&g -k o kb) [Leven)'
-0 (L edd) . Gy

'Equation (37) is not an obvious generalization of eq(32).
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VII. OPTICAL MODEL

A, Introduction

The use of the optical.model forvelaSticAscattering (see,
_for'exémple, P;E;indgsonsg) from ﬁuclei and for nuclear
-reactions ié well known. 'Howevér; this phenomenological[
model:merits diécussion-here because the determination of
the parameters is intimately connected With our -overall
procedﬁfé,'and our calculations can be expected to depend
qﬁite'strongly on how they are chosen. Aithough the optical B
potehti;l-mﬁsf uitimatély‘be regarded as empirically determinéd
'(sée;.hbwever, Greenlees, Pyle,‘ahd Tang60 for a recent essayf
towards making this statement less frue), the formal derivation
from the Feshhach theory which we have'employed in Chapter III,
makes it possible'to'exhibit certain general'prqperfieSftﬁéti
. a "physical" optical potentiai should havé; The non—trivial 

'problem_of the optical potential for composite parti@leé is
.fhen discussed, and in Appendix II we show how a special.casei

of the~Greenlees model can be applied to composite particles -
| and defprmed nuclei in arsimple_way. |

All‘the optical potentials used in the stripping calculations
are discuésed in detail at the end of this chapter together |
with some 1nelastlc scattering results.

In the flrst appendix to this chapter we have set out the

'.deflnition of the optical potential parameterization for the =
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éphefiéaiﬁcase_and thenkdefined the parameters by which thé"
}defbrmation is‘described. Finally, we have given a general-
'izatioh of the standard Taylor expansion df the surface leadihg’
to an explicit expression for a deformed optical potential.
These results will be uéed throughout the chapter,’and they
‘may be referred to for a definition of surface thickness, etc;

B. Formal Considerations

1. The Effective Interactlon and the thlcal Potential

The following dlscussion employs the notation of Chapter ITT
together-with aspects of Feshbach's reaction theory introducéd
';there. Consider an arbitrary partition L and a subspaée |
defined within it corresponding to projection operator Pi
with PL+QL=1 (as before, we shall speak of.subspace PL’A'
corresp§nding to projection operator-P ). Then that paft of
the exact‘solution '? , belonging to this subspace P'ﬂ’ viS

a solution of the Schroedlnger equation
<E'HL'—V:>,PL‘\1’ =0 o m

where ;lcv is the effective interaction, complex and noﬁ—local,

'deflned by

/x[- 1.fﬁ;(VL_+ :.VQ(& EF??@;HZ;GZ,VL){%V‘  (2):,1
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The dptical potential;wr, ié a complex, phenomenologiéal,

parametrized approximation to —V: , determined by the chdition

~

‘that Y , defined within P, and calculated from v :by

meéns’bfvfhe equation | ' —_—
(E-H- VDY =o | e
is a cidsevapproximation to PV in the asymptotic
region, where 27? can be regarded as known provided there
-exists sufficiently‘accurate experimentaltdata, That is,'vf
~reproduces certain scattering data. In this discussion, we
assume that the energy is'abo?e that with large excitation
fluctuations. We shall refer to r@"and - referring;tb
Py projecting onto the elastic chgnnel'only as “ﬁ znui 1£ .
The effective interaction, V| , will depend on the states
included in Pre The contribution td Vo due to the méjérity'of
. the large number of states in QL will normélly vary slow1y with
A howéver, particular strongly colleéti?e states are found td
have‘an:influence upon WC which is not submerged in the3§ast
_number_of,more weakly excited states. The nature of thé'cdliec—
f%ve specfrum may vary widely in a small range of A, buﬁ provided
- the vefy étrOng collective states are included within P,
~a smoothly varying optical potential can bé found.' This has
been strikingly demonstrated for alpha particle scattering in f
the samarium_fransition region ﬁy Glendenning; Hendrie and |
'Jarvis;61

The optical potential appropriate to a rotation band
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calculated using (3) (i.e., in a coupled-channel "cc" calculation)

differs frbm that )NC) found when the ground state alone is

included (i.e., a distorted Wave fdw" calculation; elastic

or inelastic) primarily in two respects:'geometricallyvf the
surface thickneee is reduced; and in the abeorptioh'- this

being reduced from that in the elastic case where it must.
vaccount’for the flux lost to the collective inelastic channels.
Empirically, we have also found, in eVery case‘examined>hereiﬁ;e v
that the product V G1is greater for cc than for dw calculetlens.
The elastic channel wavefunction will clearly depend on the;*
definition of PL. The following c¢onsideration suggests how.
'As we have said, the true effective interaction,_vf, giveh'by 
(2) is nen—local. However, almost invariably "ﬂ?'is taken to

be local and thus must be energy dependent. In fact,-hdn-loeal
optical potentials can be found which are very nearly energy
independent. To the extent that certain (collectlve) states
individually play a significant role in determlning the elastic
scattering, the inclusion of them in P will constitute“an |

L
explicit representation of some part of the non-locality

(equivalently, energy dependence) required of-i; . Td this.l
‘same extent the wavefunction.{? -will, in the elastic bhannel;
depart from EK_ calculated from a local elasfic\seatfering |
thical-poteﬁtial in a somewhat similar fashion that a wavee_

function determined by a non-local potential departs from the

wavefunction determined by an equivalent (i.e., with wavefunctions



“134-

the same in the,external‘region) local potentiél; The theorem
discusséd by Austern15 states that for attractive-potentiélé_
the former’wavefunctibn will always be less than the latter
Within the interaction regioﬂ. Hence, we expect that the
deexcifation of collective states:back into the elastic qhannel
will cofréspohd to amplitudes that add destructively with

the elaéfic channel wavefunctibn)somewhat, within the nucleus,
reducing the probability density of deuterons in the nuclear?v
ihteribr., |

2. Optical Potential for Composite Particles

"In the event that the "projectile" in partition 1 is
composite, QL will contain the excited states of fhe pfbjectile
which may all be unbound. TIn order to sketch the formal
implications of this in the specific case of the deuteron, let
'us write equation (11) of Chapter III in the following fofm;
where wé labei the nuclear and particle states separatély

- g VLA T (60 S, (R) W
&M

where R-..__is the deuteron centre of mass. Such an expansion can

always be made: what is not immediately clear is how many terms

M are needed. If an adequate representation of YP can be
~obtained by including only the déuteron ground state (M =0)- by
~means of absorbing the effect of the other states into an
~optical potential, then we have effectively uncoupled'the

- deuteron centre of nass motion. The somewhat surprising
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succeéé Of the deuteron optical potential (see Hodgson62)
shows-that the&symptotic wavefunctions can be described in
these terms. It is stlll not obv1ous how good a simple product
wavefunction is in the region of the nucleus. We shall.
indlcate one formal approach to this problem. Consider the
»s1mp1est case of the elastic scattering of deuterons for which
RS P P . Then Mukhergee63 shows that the s1ngle

partlcle optical potentlal for the deuteron can be wrltten,_-

where  E, is the nucleus_ground state energy, as:

VR = <M | Vo 7.7

CmINGR @, ?T""Q Yot "

(5)

bwheré, in the notation of eq.'s 3,4,5 of Chaptef ITI ( in which

equations we have identified L =d), we have defiﬁed:

and

 'V (fvu o)z <Vs | pov(vﬁ* Vr’) P"v ‘VD»

+<V0‘Po(,‘ln"\l)@° Exu a Q (\] '\Vp P \\7>
, (&)

‘Mukherjee then shows that

\/({.\) fo) = ‘Vo;.,(f.‘) t ~\/‘;(,»f(fp) + hgher grdec terms
_ e
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i'e;, the sum of the proton and neutronroptioal potentials,at
':the approprlate energy, together with hlgher order terms
vThus, the optical potent1a1 for a deuteron may be written
V(R)= <TI°,\/”,~({,,)-\—\}° f(’p)\ﬂo7 + hlgher order terms.
Thls'last form, eq(8) .might have been written down 1mmediat;f§
However, various estlmates can be made of the hlgher order
terms in various approx1mat10ns, and the important polnt is
~that such studies by Mukherjee and 5y Testoni-and Gomos6
and others suggest that the first term of (8) is by far the ;
most important: this allows us to‘ohoose between widely
differing alternative sets of deuteron optioél parameters..

16 found that the

It is noteworthy that Lee, Schiffer et al
most "physical" (that nearest to the first term of‘(8))'optical
potential was the only one of several éltérnatite deuteron
optlcal potentials that was satlsfactory for strlpplng conflrm—
ing earller speculatlon.es-We remark that Testoni and Gomes
give in their work an interesting phyéical picture,'albeit
based on the, somewhat dubious adiabatic approximation, of'the-

: polarization phenomena a déuteron'undergoes as it approaoheo a
nucleuo;. Their importaﬂ;results,foliowing from the smaliness_
of the higher order terms, are (a) that the skin‘thicknéss for
the deuteron optical potential is greater than forba nﬁoleon-'
owing.to the finite size of the déuteron; (b)'therradius
parameters should be somewhat smaller; (c) with surféce absorp—

-tion in the nucleon potentials, the imaginary depth is not
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much incfeased - absorptive regionvis thickened. With

 volume absorption, thevimaginaryrpart is about equal to

the sum of the imagiﬁary parts of the nucleon potentials.

(d) The spln -orbit term has the same geometrlcal parameters

as the central term and about the same strength as the nucleon
spin-orbit potential. 'Thesg'conclusions are to be regarded

in the first place as a guide amongst the ambiguous potentials

“which will fit elastic scattering.

3.Spin-orbit Potential for Deformed Nuclei

The rigorous extension of the Thomas form (for the parti-
cularly simple spherical fofm, see eq(2) of the first éppendik
to this_chapter) to the case of a deformed field is quite
complex. There is no & Erlor reason to expect a Thomas
form (espe01ally in view of the fact that in the spherlcal
lcase, the_radius parameter is optimally not that of the»centfal
field), although Sherif and'Blair,66 and also Sherif and
deSWiniaréki67 have found %hat‘impboved polarization calcuiafions
are possible with it, as opposed to the simpler forms. :Thesé
latter*ére (a) simply a spherical spin—orbit pdtential as
given in eq(2) of Appendix I, or (b) the followiﬁg hermitian -

form

| \/;o; 2 (%(Y 2’ N0 & E& N Y S z l ...(fv.ﬁ}
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where Nu is essentially the derivative of 'VQ‘ in
equation (11) of the appendix which, for the case of expansion

of (, only, becomes

o2 " . nt
. ~ (%) (n) ] 2 S
- N_Lh(r) ::»Z —ﬁr st 'F )ﬁf“ﬂ \/50'5((, {;9_6(50 +

n=1 .
+ L VJSD ‘;(f) FfoJE‘SD)) . (IO)

Note that in this equation we have, for COnveniehce, used

r, as ah operator taking values (3 énd ;e - In the
calculations we have almdst'ehtirely cbhfined ourselves to
a spherical spinéorbit poteﬁtial. We have performed some
calcuiations using the form given by (9) and (10), but

the effect of deforming thevspin¥orbit potentials has provén

slight in the cases we have donsidered (q.v. Chapter VIII).
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C. The Proton Optical Potentials-- Specific Cases

We will find that the determination of a suitable
optical potential for any particular case involves its own
chéracféristic problems which mustvpé diécussed separately.
Itlwill.become apparent that the'particulaf'approaches'we
have used in certain cases constitute further reasons beyond,
those afising fpom the pictures wefembloy for the Stripping
proéess and for the_nuclear}strucfure, that our calculatioh
‘must be regarded as having a distinct model calgulation'
character. We alﬁéys ﬁavelin mihd deuterons incident on‘an
| e?en nucleus., |

Ih fhe first place, where iﬁelastic.scattering data 6n
an odd nucleus is available, by necessity, it is only the

scattering within the ground band = that is useful to us. There

'may be scattering to other_bands by means of single particle"
transitions,:but this is ndt‘within the scope of our model to
study. It is by no means clear that the deformation will |

'25Mg it almost certainly .

be the same within each band; for
varies considerably between bands. Furthefmore, the number

of states we may wish to include in the calgulétion_wili vary
from,bénd‘to band. The approprtateness of our macroscopic
picture of intraband scattering will vary with the K of the
band conéidéred; idealiy any inaécuracy in our picture might " 
- be abéOrbed within éﬁ appropriate optical potential togetherr?

-with appropriate deformation parameters, identifying,‘as usual,
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the beSt wa%efunction in the asymptotic région.' Thus, a
.k=1/2-band.may require ‘quite a different optical potential -
than a k=1/2 band in the same nucleus for reasons discussed
Iin the previous chapter, where we mention that the validity
?of the @acroscopic model will be expected to depend dn ﬁhe k
of the band being treated. |

The problem is compounded by the fact that for light
nuclei, there appears to be‘a‘large difference between the
'optimum elastic scattering optical potehtiai and thevopfiﬁum

- stripping optical potential (see Smith and Ivash,25

also Cujeé6$
for .a discussion of this). This could in principle be the |
result of attempting to simulate stripping amplitudes Which
contain‘jﬁst'the inelastic components that are under study.by-'
manipﬁlating‘the parameters of the potentialsf It would seeml 
bthat this can be no more tﬁan parﬁ of what is involved. . A‘reél
failure of a stripping theory in which the stripping amplitude
varise§ from Vﬂp acting in Born approximation seems to be the
case;  1in anj event, greatly reduced imaginary parts are often
useful in_fitting the stripping into the backward hémisphere.
The required enhancement of the contribution of the nuclear
interior is quite the reverse of the expected effect of renormale
izing the elastic channel'wayefunbtion in the nuclearvinteriorz
by including ihelaétic effects -- the effect of the other

channels is not so obvious. We recall from Chapter II that

- the usual procedures whereby the finite range of _V;, is
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accounted for reduce the effect of the interior.

TWo other problems are correctable in principle.' The
protOn-scattering wavefnnctions JC_ are calculated by'the‘
stripping program; 'no program was written specificélly.for
(p,p')on odd nuclei, althongh scéttering on an even;even :
nucleus ;n the absence of a spin-orbit interaction mayﬁbé
calculated using the available spin-zero program., In some
cases (rare earths) where pérametefs'are expooted to be stable,
it was thought reasonable to study a similar; nearby, evén—
‘even nucleus_omitting \Lo « This lattor could be_added'with t
a reasonébie strength for both thevDW and CC optical botentiais
for compériSon,'if'desired. We note'in_connectionnwitn‘%o_ ,
the extréme paucity of polarization data available at snitable
energiés;. Pinally, we might'justify'this procedure'in'terms 

of the findings of Siemssen anc:'{‘lﬂ]'rskine:"28

that average_optioal_
potentials give betterﬁStripping‘results in the .rare earth
region than those optimised for individual_nuclei. |
1. Magnesium _

We desire an optical potential for the system P+ 5Mg.
At 10 1 MeV deuteron energy, we have adopted as the Dw optlcal
potentlal that found by Smlth and Ivashzs to be suitable in
‘this nucleus for 1=0 transitions. As we must use one potential
for all states of a_band in CC calculations, we hnve done the-
‘'same for the corresponding DW-CalCuiations. This potential'ié

j‘labelle’dl\'in Table VII.1. The small value of W is noteworthy.
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The CC dpticai potenfial wés thainéd from this by reducing
the absorption and surface thickness accofding to rules
which apply in simiiar cases (Tamura;69 also Giasshauser,7o
for cases of 17.5 MeV protons on 24Mg). The potential obﬁained
is "B" of Table VII.1. The results of sﬁripping calculgtibns
where these parameters were variéd ( e.g. larger W) to éetermine
the effect on the proton angular distributions will Dbe discuésed
in Chapter VIII.

For the case of protons corresponding to 12.3 MeV deuterons
(186-17 MeV), we use an optical potential derived from that of.
Crawley and Gafvey ("c" of Table VII.1) as follows. The

and a,

spin-orbit potential is set'équal tOIZero, and W, a 0

D 0
are reduced as shown to give potential D. This was then
~employed in a coupled channel_éaldulation'invoiving the,Of
‘and 2+ states of Mg24‘and 16 MeV with  ﬂi. ¥.4; The aﬁgular
distribﬁtion leading to the ground state was then used as
"experimental” input for the optical model search code Mércy;71a
The resulting pbtentiél is "E." ‘Finally, we arbitrarily aadd
a spin;orbit component ‘VSo =7.5 to the DW and CC optical
poteﬁtials to give "F" and ﬁG" respectively which areusuitable
for model calculations of inedastic effects in Magnesium.

If suitable data had been availahle, we would probably have
wished.to fit it using the coupléd channel Qode - a very

laborious process, as no coupled channel search program was

available to us.
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2. Deformed Rare Earths

Our stripping calculations on the deformed rare earths were
mostly carried out for the case of 12.1 MeV deuterons. 'Thus

the (p,pf)‘scattering on the samarium isotopes of 15 MeV

72 should provide a suitable optical

154

performed by Stoler et al
potential over a reasonable range of A. The nucleus Sm
is sufficienfly past the transition region to be as collective

as those, such as 166Er, in the middle of the deformed region;.

73

see Stelson and Grodzins. Optical potentlals for both DW

.and cc calculatlons were determined by Ascuitto and Brown.74‘
Their calculations were such as to give the same ground state
angular distributions of 54Sm for coupled channel and DW

and which fitted the 2+ and 4+ reasonably in the coupled channel
case. The resulting potentlals are "H" and "I" of Table_VII;1.
_Note.the'characteristie thickehing of the surface and deepening_
of fhe absorptive paft'of the DW as opposed to the CC potential.
In order to obtain from these potentials others suitable for-
use wifh-16 and 20 MeV deuterons, we transform,the real end
imaginery depths of the CC potential, I, to obtain a new CC

potential as follows:
V= -V, +3(6-E,)

-wW o= =W, ~15 (E-Eo)
We theﬁ fit the ground state cross section with a Mercy

search to obtain DW optical potentials. These potentialsbare}

J,K,L and M of Table VII.1. The correspondence between the
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~CC and DW optical potentials is not so clear cut at these

energies. The optical model code Meroy; however, found a

set that give a very good fit. The geometrical parameters
for tho "J" do not appear physical, and the possibility that |
Mércy diécove:ed a minimum within another family of poten&iais
remains. Concerning I, K, M, the CC calculations were
performed including O¥,12+, and 4+ states -- the 4+ state had
'littlé>éffect on the ground.state'but an>appreciable effect |
‘on the 2+.. The deformation parameters were found to fit

15 MeV (p,p') data and are a little different from those
empioyed when the potentials were used to calculate the odd o
nucleus oxif channel ocatteriog (. Ba =.25 ; Be =.05).

' Finally, we mention that we performed these calculations at

‘an energy‘E = E +4 MeV corresponding to a stripping.

prot deut

"Q value Compromise for §m and Er. Wévbelieve that this wiil’
be sufficient for our purposeé and note that an optical . o ,‘j' | Ny
potential which fitted the Q of each‘staté of the bands of
the residual nucleus is, in ény.case, not poésibie Wifh our
programs. To give an indication of the extent to which the
"experi@ental" elastic cross section was fitted by Mefoy,.we. 
can take the example of 20 MeV protons. Arbitrarily giving
‘the 35 "eiperimental" points 5% accuracy, we find ‘X} =;638.

| | N | , |
- Other cases give a comparable or lower X .. _ S

D. The Deuteron Optical Potentials -- Specific Cases

Many of the general comments concerning the proton optical
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potenitial apply to the case of deuterons. As has been
discussed above, the separatioh of the deﬁteron centre of
mass mqtibn and the use of a_one-body optical model must- be
justified by its utility in describing deuteron scattering[
Equivaléntly, the perturbation series for the optical potential
S must convérge rapidly. 1Ih .fdct, though elaétic scattering
from a gi§en nuéleus can usually be described by §g§g bptical
 potential, the ambiguities are more serious (for example, one
can find a series of equally good‘Opfical potentials for the:

| real potential depth in multiples of the smallest ) .than for_.'
'the_case.of protons. It is also harder to find smoothly
 Varying'thica1'potentials for a large_raﬁge of A and E thanﬁy
is thé'case for protons. The review'artiCle'of Hodgson62.".

g contains a useful sdmmary of the problems involved. Until-
quite reéently polarization data for deuteron élastic |
‘.scattering'was rare. There are still few good deuteron
"polarization data for inelastic states. In every case diécusSed
below where a spin-orbit interaction is used, we choose a -
"likely" value. The formal considerations above and the work
of Lee;ischiffer et 3116 sﬁggGSt that we seék'a deuteron |
oﬁtical potential of k/f’80-90 and a somewhat thicker sﬁrfacév
‘than for nucleon optical potentials. This immediately o
diSqualifies a large number of published oﬁtical potentiélé_,

. The energy dependence of the deuteron optical potentials is

" not double that of the nucleoh optical potentials owing, no .
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doubt, to the energy dependence of the perturbation effects.

According to Dickens and Perey75

the most "physical" V= 90
optical potential appropriate to nickel and deuterons well

~ above the coulomb barrier varies as Vo, = V4 -.22 (E2 —E1)..

1. Magnesium ' |

For the calculations at 10.1 MeV, we:used for a DW
optibal potehtial"that employed by Buck. and Hodgson.?6 It
is listed as A in Table VII.2. Unfortunately, this optical °

- ‘potential which gives a reasonable fit to the elastic 24

Mg

- (d,d) scattering has a considerably thinner surface than would
‘be expected for the most physical optical pbtentiél. This

 is espeéially true'as’they are representing a deformed nucleus
by a spherical potential. The elastic and inelastic .scattering
of deuterons has been studied for a range-of'enérgies about

10 MeV'by Mayer—BBricke and coworkérs,77’ 8 Anbmaiies
appear in the elastic channel, the Blair phase rule breaks
down.ahd:the‘excitation function is not at all smooth; the_
inelastic scattering of deuterons from magnesium below about
15 MeV seems, therefore, not to be well described byithe |
simplest models. Our procedure for the 10.1 MeV case &as to
use the elastic DW'angular distribution calculated using
‘potential A as the ground state déta for a seaﬁch with -a
coupled channel progrém. We attempted to fit the 9.97 MeV

- data of Mayer-Boricke et al for the 2+ state. We did not,

as a rule, include the 4+ state in the calculations -- it is

D dE
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rather close to the bandhead of tﬂe quasi-gamma band and has‘
not been resolved in (d,dﬂ) reactions in this energy range.
In the process of fitting this data (without the use of a
search routine for coupled channel calculations), we had
| occaéidnlto make a series of CC test runs in‘which each of
the A (i,é., Buck and Hbdgson) parameters was varied one by
one. The reéﬁlt of Varying fhe geometricai parameters is shown
: in fig. VII.1 and of varying the potential depfh parameters
in fig. VII.2. FProm these figures the problem of fitting‘thé
_2+ state_at back angles 15 already apparent. This state |
cannot be fitted by this model. The structure which can bve
seen78 varies rather smoothly with energy and may be dug to
':scattering into the 2+ channels from, perhaps, stripping |
3channeis'dr other collective levels. In an attempt to fit this
‘level we also tried a \; expansion of the surface thickhesé,
 but'with'no conclusive improvements. We finally settled.oﬂ
‘_paramefer set X iisted in Table VIi.z; with a deformatién Of
B, =.4. The angular distribution using "X" is shown in
fig. VII.3. The elastic fit is not perfect -- in view of
the fact'that‘this reaction is imperfectly understood, it is
not obvi@us that, if anj parameters were found giving an N
exact fit, -they would be the_moSt.physical. On this'figure,'
ﬂwe also;show the effect of including a spin-orbit potenfial
(a defOfmed spin-orbit potential gives almost indistinguish- -

“able results); of including the 4+ state (at large angles, the
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result is somewhat like that of deepening the absofption
slightly;vi.e., reducing the oscillations) and increasing o o
' the deformation to .5. We have chosen ﬁ1=.4 as it seémea

. more‘important to fit the scattefingvat the peak than at_the
‘ béck'angiés. It could be argued thét the deuteron flux |

dorresponding'tb the back angle scattering can also contribute_ 'w
“to the stripping source, and this must be borne in mind. o

We did perform a stripping calculation (See Chapter VIII.)

with B.=.5. Although compound nucleus effects are certainly =
| | 24

significanf in weaker states than can be produced from d+ Mg

the 2+ state of Mg-4 is too strong for this to be likely

vhere. It is quite possible that second order procesées ' ; |
involving the stiipping intéraction are responsible, although
their effect on the ground state cfoss'section may béISmall.‘
Tt is interesting that the CC potential X does not have a — -
shalloﬁer absorptive part nor could a better fit be obtainéd.:
with a smaller. W. The thinner surface was'expected éndAthe
deeper real part for cbupled channel calculatidns seems to
confirm a trend apparent in the proton fesults for samarium.
The rélatively large W seems to undérline thevimportant part
played Ey the othér‘low—lying collective states of,24Mg§ the i
2+ state of the ground band no longer beingvthé only state
with a marked individual contribution to the'elasfic chénnel.'

Finally, we note that the fit to the O+ obtained using the X

paraméters is at least as good és that obtained by Iaho, Penny,
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and Drisko3

using their B3 =.3 parameters, which; moreover,.

appear to have an unphys1cally large W. iThus'we‘can now

state that their model calculatlons for which the greatest

'deformation was (4 =.3 must underestimate the role of

-inelasﬁic processes in the entrance;channels.,‘Becéuse We.

- were éohcernéd by the seemingiy unbhysicai thinness of the

optical potential surface, we carried out a Mercy search to
it the‘elastic data (that is, the result of a DW calculation‘
‘using thé parameters of Buck and Hodgson) using as a starting

 point ﬁhe deuteron optical potential of Smith and Ivash25

(used also by Cujec68). The hope was that the search would

. find a member of a new family with a larger surface thickneés.
The program returned a potential very neariy that évauck and:

, Hodgson.'vIt is pbssible, of courée, that if we had had'the .
‘original data* used by B. and H. that this search would'have

: disco?ered Quite different parameters. We remark that the

absorptive part of the Smith and Ivash optical potential was

about half that re@uired to fit elastic 3cattéring and that

this thical potential gives a very poor ground staté angﬁlafj

distribution indeed. In order to get the DW and CC optical

*Mayer=Boricke and Siemssen'C fit their 10 MeV (d,d) data
- with an optical potential with a' much more diffuse surface:
=-80, W=-17.3, ¢ =1.05, 7 =.1.35, a=.804, 8=.73. We now -
feel that this would have providtd a more reallstlc startlng
point for our calculations. v
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potentials for 12.3 MeV, we apply the Dickens énd Perey
algbrithm.quoted above to determine a new CC optical
potential. The O+ cross section obtained was then matched
by_a Mercy séarch to obtain DW parametérs. A»spin—ofbit
potential was added to each of these to obtain the resulds
_shown in Table VII.2 as cases B and C. | |

2. Deformed Rare Earths

With one exception, our calculations in this region éfe
carried out with 12.1 MeV deuterons. Inelastic scattering
measurements with deuterons of this energy‘have been carried
out for various rare earth nuclei including Er by Tjgm and

Elbek'2 80

and Sm by Veje, Elbek et al. In these experiments, .
~the multipolarity of the transitions leading_to lbw—lying
‘states is defermined from the partial differential cross
 secti§n>at, typically, two dr‘three angles. Unfortunately,
this implies ambiguities in the optiéaivpotential obtaihed

by fitting their data. The optical potential given by Tjdm .

21 but with surface rather than volume absorption

£ 154 166Er

and Elbek
was féund not quite to fit the ground state o Sm and
sétisfactorily»in DW. However, it is of the correct depth to
give physicai stripping results and it was merely necessary .:
to incfease the real surféce thickness td .91 (from .87) to
obtéin pdtential D of Table VII.Z2, fitting the elastic |

1665,

S _ 1
~scattering of 12.1 MeV deuterons from 54Sm and r. In order

~to. get a reasonable fit when used in a coupled channel code,
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it was mérely‘nécessaf& to rédﬁcevA'to'.87. Because inelastic
cross sections are not large (12.1 MeV deuterons are not far
'above the couiomb barrier) and havé a small efféct back on
thevélanic scatfering, this small change in thé dptical
,poten£151 is sufficient  to account for the data that we have.

15450 (see fig. VII.4) it was necessary to

In theucase7of
increase the various deformation parameters beyond those found
_in (oc;x') scattering, in spite of the greater spatial 7
.extenéiOn of the deuteron. This was particularly true of
thejZdéférmation. The fit shown in fig. VII.4 still badly
uﬁdershodts the 4+ 90O datum. A possible'interprétation is

- that, as the deuteron ‘is near the coulbmb_barrier, it sees a
deformation characteristicvof'thé far surface of the nucieus_.
A long series of attempts to fif this level more closely;by'
including; for example, a deformation in tﬁe surface thiékheés
or a \Q! deformation of the coulomb field resulted in no
satisfactory conclusion. We emphasize that although the_Eibek
group may have been able to identify level spins with aata

at two or, three angles, it is not sufficient to study.thé hature'
of thése states in detail. 1In fig. VII.4 we give the CC . |

‘angular distribution ofvthe O+, 2+, 4+ of 154

Sm using
'paramefers "E." In fig. VII.5 we have the DW and CC angulaf
distributions for the O+ and 2+ states of the groundvband of
166Er using-parametérs "Dﬁ and "F" respectively (but the DW'

calculation used the "F" deformation parameters). Although
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the CC (A =.87) and DW (with A =.91) theoretical curves both
fit the'sméll number of elastic data points reasonably well,
the qurves are rather different. It might well be argued

- that we should have obtained better DW barameters by fitting
the CC elasfic data with a Mercy search. This was done (Fee
below) at 16 MeV. At 12 MeV, the small effect of the 2+
state on the elastic scattering makes it, perhaps, plausible
thét the requisite change in optical potential will have a
 small effect on stripping.' Wershall see,vtoo, that for the
geometric parameters of the imaginary part, the DW and CC
‘deuteron 6ptical potentials differ considerably more at
20-MeV'fhan at 16 MeV. Strictly speaking, it would have been

. more conéistent to have chosen optical pofentials with the
same elastic scattering rather than with equally good fits to
the (meager) elastic scattefing data. It is notewérthy'_‘.
that the Tjg#m/Elbek optical potential, slightly modifiedy
works reasonably well over this range of atomic mass. That |
we have not had_fhe-data to obtain a detaiied’fit to the elastic
data.méy be more detrimental in the present case where we
include the states with the greatest effect on the g.s. in
éur Calculation. Siemssen and Erskiné28 find that an average
optical potential may be much befter than particular potentials
that fit the elastic cross sections exactly for each nuclide

- for which stripping is to be calctilated by using DWBA.

;'Presumably, this is largely due to precisely the variabilityb
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from’nucieus to nucleus of the inelasticvprécesses Which wé
are eipliéitly including. Thus our inability to détermine
unambiguously all the paramefers needed to describe inélasticﬂ
probesseé‘implies that we are not fulfilling the possible

full pofential of our procedure., We expect that the effect  .
back onto the g.s. of states bther than the 2+ and 4+ of

the ground band to be quite small (Glendenning and-Mackintosh54).
‘For the gadolinium.optical pbtential, we argue that, as the E
1 samarium DW and CC optical potentials work satisfactorily

for erbium; we believe a fortiori, they must be suitable for

15644 nas nearly the same ﬁ, as .154Sm,)

gadolinium. (
‘ Suitable CC and DW optical potentials were determined for
16 andvéo MeV deuterons by'extrabolating'the CC optical
:potéhtial by means of the above mentioned energy'depeﬁdence
and tﬁénlobtaining_the'DW parameters by means of a Mercy .
search on‘the elastic séattéring.. The célculationsvweré

156 Gd mass parameters. We find that the

performed  using
| produdt'Vrz for 16 and 20 MeV is about 8% greater for CCvthan
for DW, conflrming a trend that we found for 10.1 and 12. 3

MeV deuterons (in the 10.1 MeV case where r, was fixed, V had.
to be deepened for CC) | .
| There remains the questlon of the gamma band in erblum.ji
We COmmented (Mackintosth) that the custom of speaklng of

an 1= 2 excitatlon as if 1t meant the same for a k=0 or k= 2

state was to be called in’ question, at least for the case of
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50 MeV alpha'particles. We were'informed* that in ébme

- cases, at least,\ﬂoand\ﬁuexcitation lead to very similar
results. We have attempted to fit the gamma bandhead of
' 166Er.ﬁsing a'("correct")\ﬁndeformgtion (ag2=.035; it was.
iﬁportant to have.the same coﬁlomb 322) and, alternatively,
~an ad hoc ‘ay=.043 together with the DW optical parameters
"D." [The curves resulting were‘rathef different and the

fit corresponding to the T@deformation was inferior. Théée
?}ére shown in fig. VII.6 where we also show how the inclusion
of a (somewhat too weak) ground band 2+ étate spoils the -
fit to the gamma. 2+. We conclude that fof the purposes of

167Er, a CC

‘Cal@ulating stripping to the gamma band in
.calCulation,including the g.s. and the 'Y;2+ state and
-using the DW optical pétential together with an apprbpriéte‘
\Qldefqrmation, should pfovide é deuteron wavefunction

suitabie_for a model calculation.

1 *D.L. Hendrie, private communication.
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Appendix I

Definition of Optical Potential and Specification

of Deformatlon

1. §pherlcal Optical Potential _{

The deformed optical potential is defined in terms of the

follow1ng form for the central potentlal
v\/—f-(f)‘(;,)a) +‘:<W'§ (4,1, a)- uE‘Wy,;‘(’(pC(Gf»ﬁ) : v(I“) ;

and for the spin-orbit potential:

~ =75y Vs d
O£ (-';;'C) ..—3: a"‘(‘g(graudso)

- Veo d .
o ah2) 199798 F G730 6,50 (1)

For the coulomb potentlal'

. 2 2'6”/'r | r> Re
22¢ (,_ 2y cer @w
ZRC ) ¢ ' '

This is the convehtion we have used: uﬁfortunately withit ‘
V, w andw:p are negative, V, is positive. |

Thé-formfactor -Fa,dga) is of Saxon -Woods form with radlus

_ barameter r and surface thlckness as | | ? |
PO - Z( |+ expf(r- (@A/% m)D/ﬂ} | (f[-:q)if'

where f“w  is a constant, asseciated with the projectile size,

introduced so that r, should be constant over a range of A.

N
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In fact, we have taken U[,,=0 unless otherwise stated._ We.
note that our program has provision for a complex spin-orbit
potential.

2. Deformed Optical Potential

In général,vboth the radius and the thickneSs of the surface
may'véry around the nucleus. We may parameterize this as

follows - expand r, and a in spherical harmonics:

w=n(i+ S Bapn Tau(05€) ) (15)
, A A
@ =a (14 f‘hw\&ﬁdwu) (1-6)
R |

- where 9'and (p' are the intrinsic frame angular coordinates.
Then, for the real part of (1), we can make the following
_éxpanSion.in terms of derivatives of ¥
' "\/»(\f)= v g(f,(;)cx) +
' 4 vy
>

T YR - A " .
B A_R V=i Mz VI/AJ MK 2v da K :

o Wy L0 Sl B . ;;
A(V/f) = ZA(L%L%'} g1,) % K o o (I ) '
( 2/3}.}‘ YM )" - 2( ,S(:)K Y,_K . B ' - (1—74)

» my (T
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x /\(LJ‘) =.-

4 : | o
AM /\] q(géé\ pl:kL'An-) (I'ID)__

n)
Equation (9a) and (9b) are to be regarded as. deflnlng {

These definitions are a generaliza?ion of those given by *
Glehdé‘n_ning35 to include the surface thickness eXpansion,.
The‘imaginary part is entirely analogous. The formulation
of'the‘cdulomb defbrmed potential is_exactly as given by
- Glendenning. Inciuding the complex parts, we can write (7) 
as | o
V() = v§ +'§ NAR(r)Y/\;(QLLQf) S - (T

. : AR’ ‘A. »
Transforming to the space fixed frame, using the same
convention of rotation matrix elements that is customarily

used in the collective model, we get

#/\ T RFA

\/(rete) V§(r)+ZY (9@)} \/ (r) mr{«*c—) I%_R
CAM ; l.+ % 0
| (z-12)
where - '\/I\V\ = N/\'R t C/\R where C/\R is coef“fic_'ient,'

for deformed coulomb potehtial. This is the form we use in_"

Chapter VI.
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Appendix IT

Composite Particles and Deformed Nuclei

There is no comprehensive, self consistent theory'which

links the various different measurements of nuclear deformation: .
in a perfect way. 'Different projectiles often give'différent
deformations, and so they should, for they never measure quite
the same thing. For example, one should not expect the deuteron

to be sensitive'mawzcomponents on the surface, because of

the large physical extension of the deuteron. The prOblem.

is partly one ofv"fdlding in" the size of the projectile into
'a single particlé field. We'ekpect greater acduracy for the
real part When,we do this than for the imaginary part, as the
highef order terms are proportionally greater for the latter.
Let us start with the result employed by Greenlees, Pyle and
Tang6o‘to calculétebthewfirst order real paft of nucleon
optical potential. The basic input is the nuclear density
'distributiOn/qu We shall generalize the Greenlees model to
include a deformed density parameterlzed as follows (8X1811J

symmetric) Am
L ax

| P(f) v: S -f(;)\f;l | v (ﬂ,)
Thegxumy be obtained from a Taylor expans1on, exactly as

are the coefficients for a deforﬂed Optlcal potential. . Théh_

Greenlees et al evaluate |

\/(r\) = jﬂ(r) V(r-v) d3¢ B o (r-2).




 Now
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where ‘J(f-fJ is the interaction ‘between a nucleon atr,,

and one at r . Their results for the spin-orbit term are
more complex and®we shall not attempt to generalize them
here. Considerable simplification Fnsues‘if;we chooée a
gaussian for V (the;full extent of fhis will become apparent

when we generalize a deuteron)

'\./(lr.-'fl.) = Vexe(- ({';f) ) | (xr3)

Vi) = \/fﬁ ﬁm YM{;W) w( gL .»P_)

_\/e)q:( v )jexp( )2§ (f) (8,) x

x exp(?.r.('fosw/b ) dgr (11‘*)

where W is the anglé bétween-vectors Y; and ¥ .

QXP(L& r) (mjjc )(&r)Y 901)\{ (@@)

=0 m=-.4

(6,0) b‘eing. the angular coordinates of v and (O, a_j) of _'7‘,“.

Using this expansion with a real argument, we get

exP(zrr(osw/b)'“lﬂ‘Zl ( 3 ('urr \)/ (9(2)\( (@®)

x M

Insertlng this in (I1. 4) we readily find that we can expand

M()

Vi) - f W, ()Y, (@45 | », (IS) -:
W, ) = mﬁv(ﬁ “f"%)jﬂ“‘) '(ﬂ'“

where
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and where

oo ' :

3 t A v | . v .
L(ﬁ):jeﬁ(:ﬁ)[%} (0, [255] e (-7

o ) o .
The functions I are "modified Bessel functions of first king"

defined by Iv (“z) = ( -VTV(CZ) ~and are real. Thus 'wei

can gét from expansion (II.1) to'éxpanéion (iI.S) with'é,
simple transformation. Note thét expansion (II.1) can be

"made by ‘applying a surface expansion, lo, fof example, a. Saxon .
"Woods formfactor, as is usually done for the optical pofentiél.
(See Appendix L) | | o

To caiculaté the first ordéf,term ‘a deformed optical

potenfial for a deuteron from the nuclear density diétributidn

(TT.1), we must insert V(+) given by (II.5) into

V(R): <o|V,+ V.o . This éxpression, we nbt_e, has
- been calculated for the much easier case of spherical nuclei_: 
by S.'Watarabe81 and J.R. Rook.82 In the simple treatment

below we treat V. and'Vp as the same and real. There is no -

_ problem involved in generalizing this. We'must evaluate

VIR = S A0 | Walied V(808 « Wo(ed Y, (00 @) | X, i)Y
A : . e
N | | (T8

The difficulty arises in the non-central terms. Let usﬁwrite

V(R in the simple form

V@ = (&% Xip (WRR) Vel B 2,0 (m9)




- where vjx’is now
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Consider a s-wave deuteron, then

\/(ﬁ) = 2{6‘.2/0 ’ Xo(f’))z\/n (R"P/ﬂ)

a2 (@ 101" V. s)

- | 3
Now we note (see Watanabe) that ci%o =2 d"f, , hence

V@)= & (din | LGlen'Ve) . @)

Now, take a gaussian wavefunction for the deuteron. We

assume that as we are essentially studying an effect due. to

the extension of the deuteron, that a reasonable representétibn

of this effect can be achieved with a gaussian that reproduées

the deuteron size. Hence we take

X, = A exp(-pp*): Aexel-tuln-rY]

= Dexpl-tu (R0 ] explsuR:F)

~which we may now insert in (/0).

Following through the procedure exactly as before, we get -

VI(R) = AZ‘ V, () \go(e,,cpﬁ) | (.I[::“) R
Wherev ' ’ ’
A 16T A exp(~3MR) [{%R] 7;))‘ | (T

Fltransform of Wx :
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j;. , jrf’ug exp (5 IWal ) Ty DR el (T 13)

. Thus, for the case of a gaussian deuterbn, exactly the same

‘mathematical process is involved in folding the deuteron size

into a deformed single particle potential as'is‘involved‘in
folding'avgauSSian nucleon-nucleon potential into an arbitrary
nuclear density distribution. Similar procedures could be
‘used to obtain first order optical potentials for other
composite pafticles. It would be a necessary first step

in a comprehénsive theory connecfing nuclear shape to
compdsité §article optical potentials. We note that cdmposite
particles such as alphas are comﬂbnly»used for.shape‘detefmiﬁé—
~ tion Beqause, being‘stroﬁgly absorbed, their ihferactiqn with,
the nﬁciéus takes place'largely in the surface. The usefulnéss
. of é projectile is a combined.function of the shortnesé>of:'ﬁ
its aneiength, the strength of:its abscorption, and the | , |

' smallness of its spatial extension, and the extent to ﬁhiéh_ :
it will maintain its structural integrity in a nuclear;field;
The setcond and the lést requirements ére not necessarily H‘
contradictory if it,ié,unlikely that a pafticle, once absorbed,
will be reemitted leaving the nucleus in a state belonging o

PLO " ‘ ) . : @ i




Table VII.1
used in the

(part one). The proton optical potentials discussed in Chapter VII and
stripping calculations of Chapter VIII. In the cases listed here, the

- ‘geometrical parameters for the spin-orbit potential were the same as for the real" _
part of the central potential. The pa:ameters are defined in-the Appendix to Chgpter o
M % B,=23 - By=.055 B, ==.015 fyltoul) =.315
Label Nucleus  Deformation Egeut v - w o Wy | Voo

A Mg - 1001 =50, -a. 0 0

B Mg =.3 10,1 -50. 3. 0 0

c Mg S 123 460 0 -9.3 7.5 .
D Mg fa=.4 12.3 -46.1 0 -8.5 0 if:‘
E (- — 12,3 -46.161 0 ~8.843 o

¥ Mg ceet 12037 —46.161 0 -8.843 7.5

G Mg | Ba=. 4 12.3  -46.1 0 -8.5 7.5

H 5] —— 121 ~49.201 0 -14.91 0

I Sm : * 12.1 -51.438 0 -13.4 0

J ] 16.0 -46.3 0 -14.6 0

K Csm see I 16,0 -49.983 0 ~14.15 0

'L sm _;_,;  ' 1 20.0 ~47.98 0 14,862 0

M n S ' 0 ~14.75 0

Sm  see I 20.0 -48.738



Table VII.1 (part two).

Deformation | DW/CC

Lébel Nuéléué‘ r, T, ag Ed r,
A Mg S DW 1.25 1,25 .5 .5 1.25
B Mg =3 cc 1.25  1.25 .47 .47 1.25
c 72— DW 1.25 1.25 .65 .47 1.25
D Mg =4 co 1.25 1.25 .6 45 T 1.25
E Mg e DW 1,228 1.176 632 586 1.25
F ‘Mg -——-- DW 1.228  1.176  .632 .586  1.25
G Mg =4 cc 1.25 1.25 .6 .45 1,25
H I T— DW 1,25 1,278 .821 .73 1.2
I Sm * cc 1.25 1.293  .765 .61 1.2

g ] S — " DW 1,297 1.241 723 732 1.2
K Sm see I ce 1.5 1.295  .765 .61 1.2
I sm - DW 1.262 . 1.243  .756  .715 1.2
Mo ‘sm see I~ CC  1.25 1.295 . .765 .61 1.2
| Po =23 =.055  fio=-.015  Biloul) =315 | | o




‘Table VII.2 (part one). The deuteron optical_potentiais discussed in Chapter

VII and used in the stripping calculations of Chapter VIII.

for further description.

See Table VII.1

Label

Nucleus- | Energy v W ;?WD VSO

A Mg = —mmem 10,1 ~ -83  -27.8 O 0

X  Mg .4 10.1 -95  -27.8 O 0

XVLS Mg | o 10.1 ~95  -27.8 O 5

B Mg .4 12.3 ~-94.0 -28.0 .0 5%

c Mg ——mm- 12.3 ~92.247 =27.975 0 5% .
D Sm,Br  ----- . 12.1 -86 0 -12 0 gi

E Sm L23%x 12,1 -86 0 ~12 0

P Er ogxxx 121 - -86 0 _12 0
¢ Gd .23 16.0 -84 0 -12.8 0

H 6d —e——e 1640 _86.068 0 ~12.669 0

I Gd .23%%  20.0 -82.0 0 -13.6 0
g 64 —meme 120.0 ~87.987 0 ~14.136 0

,*r..so=‘].4 E j-as.o=r'6 R

*x By =.055 B .=-;.o15_-_',8,(<',,ux), =.315

R Balcoul.) =.307 By =0.



‘Table VII.2 (part two).

~ Nucleus

DW/CC

=

Label ro,_ O ao 0 rc
A Mg _____ DW 105 1.5 -55 055 1.5
X Mg .4 fele 1.5 1.5 .52 .52 1.5
XVLS" - Mg 4 cC 1.5 1.5 .52 .52 1.5
B Mg 4 cC 1.5 - 1.5 .52 .52 1.5
c Mg —mme- DW 1.327.  1.424  .614 .760 1.5
D Sm,Br  ———m- DW 1.15 1.37 .91 .7 1.20
E sm 23%%  CO 1.15 1.37 .87 .7 1.20
P - Er L26%%% GO 1.15 1.37 .87 .7 1.20

G Gd L23%% CC 1.15 1.37 .87 T 1.2
H G4 - W 1.098 . 1.279  .905 .866 1.2°
I Gd 23*% . (C . 1.15 1.37 .87 .7 1.2
J e W, DW 1,065  1.302  .953  .853 1.2

*rso=1‘.4- - as*o‘z'6 . . .
* By =:055 g =-.015 Paltoul) =.315
% Ba(roul) 307 B¢ =0 ' B

~991-
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Figure Captions for Chapter VII

Fig.,VII 1 The inelastic scattering of 10.1 MeV deuterons
from 24Mg. The data for the O* state is the result of a
DWBA calculation.using the parameters of Buck and HodgsOn.76
That for the 2*state is taken from the 10 MeV curve of ref.77
In this coupled-channel calculation, the effects of succes-
sively changing various of the geometrical parameters was
studied.

Fig. VII.2 As for Flg. VII. 1 but here well depth parameters
are varied. : ' '

Fig. VIT.3 The same reaction showing the fit obtained with
the use of the X-parameters. Also illustrated 1is the .
effect of increasing the deformation to B, =.5 (with a
concomitant decrease in surface thickness), the result of
incéluding the 4+ state in the calculation (no data), and
the result of includinga‘spherical spin-orbit potential.

_Flgi VII.4 Inelastic scattering of 12.1 MeV deuterons from
Sm For parameters used, see text.

Fig. gII .5 Inelastic scatterlng of 12.1 MeV deuterons from
For parameters used, see text. Comparison of cc
and. DWBA calculations. The real surface thickness parameter
- was reduced somewhat for the coupled-channel case.

Fig. VII.6 Coupled-channel study of %gglastic scattering
leading to the gamma band head of '®“Er. TFor the stripping
calculation leading to the gamma band of 167Er, we required
a calculation of the entrance channel problem involving the
ground state and the ¥2+ only. We did not alter the surface
thickness in this case. It is clear that Y,, and Y. deforma-
tions give different angular dispributions and that Yz'is
distinctly preferable. We also see that coulomb excitation
plays an extremely important role in the excitation of this
energy and that the inclusion of the 2t of the ground band
upsets the calculation. In our model we assumed that if the
angular distribution was fitted, the wavefunction in the
interaction region was suitable for a stripping calculation.
This is not obvious, and probably not accurately true.
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VIII,  THE STRIPPING CALCULATIONS

In this”chaptéf we deScribe“the=calbulations théf were

- actually carried out on a - series of rotaulonal bands in

magne51um and in three rare earth nuclel.. The calculatlo?al
procedure and the programs. on whlch thé oalculatlons were .
carrled,out evolved somewhat during the ‘course of the work o
with the éonsequence that the degree to which.any ca1Culation-
is a mddelacalculatioh or one in which meaningfulfspeCf}OSCObic

~information was obtalned varied from case to case. We do not

‘treat the cases in exactly the order in whlch the calculatlons:'-

’were‘carried out.. Section B also expands the general
discussion in the Introduction df.stripping én deformeau

fare eéfth nuclei.

-A. Magnesium v R ‘
The reaction 24Mg‘(d,p)25Mg was studied in a sérieé”df:: 
"model.célcglations intended to explore ih detail thebeffect

of ihelastic processes. The édvantage of'working with>ligﬁtf 
vnuciei'is that, owihg to the smaller raaius.of integration |
and smaller number of partial waves required, the’gdmpring : '
time-needed for a-éomplete study is much leés. .The.forﬁﬁ; 
itous cifCumstance that the bands are probably rather f?éé of?l
first order coriolis mixing (the two k = 1/2 bandsvcan1ﬁix;_'.
but they are 2 MeV apart in energy (See A(c).)) is offsefiby a

- congeries of drawbacks: first, as we hgvé discussed in Chapter




' Hinds

(a) The Reaction °
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IT, the Qustomary stripping formalism seems not always to
24

~ work sétiéfactorily for light nuclei; then, the “"Mg core

is not at all stable under the influence of the 25°%

particle;
and finally, the adiabatic wavefunction has been described
(RipkaBB) as a much less valid apprOXimétion in this region

than it is for the rare earth deformed nuclei. Another

‘problem that may effect our fit to the weaker levels is

that domppund5nucleus~processes seem to be present (but

see Pearson and Wilcott22). Possibly related to this is

: 5 _ _
the impossibility of fitting Mg 4 (d,d') as discussed in

-Chaptér_VII.

| 2 : |
| Of the rotational bands in SMg shown in fig. IV.1,
our study has been confined to those based on the [éOé]S/Zf
énd I?11]1/2+ intrinsic states. In particular, we shall

attempt to fit the_"forbidden" 7/2+ levels at 1.611 and 2;736'

- MeV. Magnesium region calculations differ from thcse in

the fare;earth regioh in the relatively larger range of
outgbing proton energies»involved.

Thé'reaction was studied at 10.1 and i2,3 MeV, energieé
at which this reaction has been studied by Middleton and

83;and by Hosono26 respectively. We shall nOt‘eXpéCt

to calculate perfect angular distributions for the case of' :

magnesium for reasons discussed in Chapter II.

24ye (a,p) Mg at 10.1 MeV.

The wavefunctions employed for most of the following
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Calculationé are thﬁse listed in Table IV:2 and TableVIV;3,;'
"calculated ~using the FaesslerFSheline program; We femark |

* that in splte of the fact that the blndlng enefgles were
.abput right, the deformatlon used is probably too SmdlL'.’
rééulting; in this case, in wavefunctlon components w1th‘}
excessiﬁely:long téils. See, howe&er, séction A(d) below:
where, in paftiéuiar, we give a referénée to a very recent

use of the "constant deformation" éssumptidn. Unless
eiplicitly_mentioned,‘all calculations emp}oy proton
parametefé."A" or QB" of Table VII.T, accérdiné aé the

protoné are treated in DW or CC éppfoXimations. 'Similarly,. ‘
we alﬁays use “A" br "X" of Table VII 2 for the deutérons.
The results of a model calculation of strlpplng leadlng to
the ground band of 5Mg are illustrated 1n figs. VIII.1 to
VIII.5.

Note:These ground band calculations were performed with six.

raaial components in the wavefunctiqn,u The DWBA
calculations without spin;orbit interactions that

appear in figures VIII.1, VIII.2, VIII.4 were éalculatéd'
with seven components. The comparison in these figures
should be made with a DWBA calculation‘with six components.
This latter is very close to the seven componentsb'
éalculation except that the stripping peak is reduced_‘
about ten percent. Thus, the apparent effect showﬁ

in fig. VIII.4 where spin-orbit interactions have reduced
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fhe.5/2+‘cross section ten percent; is spurious. The

éeventh radial component makes a smaller difference to

the cross section than the sixth. See Appendix I .of

Chapter IV. |

FProm fig. VIII.1 we éonclude that inelastic proceés.in

the exit and entrance channels éonfribute comparable amplitudes 
to thev"forbidden" 7/2+ state, but that the strong 5/2+
state is affected only in the details of its angular distri—.
bution'by its coupling to the weak 7/2+ state. .The 2+;étate
in the entrance channels, excited in this instance according -
to a DW calculation, has had a clear effect (50% increase |
at the stripping peak) on the ground state. In this case,
of course, the various amplitudes all involve the same 5/2¥_
component. Figure VIII.2 illustrates the effect of varying
the déformation in the outgoing qhannels,and also compares
:the effect on the stripping reaction of the DW and CC
. excitation of the target 2+ state. The smaller effect when -
the latter state is CC excited corresponds to the smaller
inelastic cross section when compared with DW excitations
_‘vusing the same deformation. ' The different angular distributi@n,
however, réflects the qualitatively different deuteron wave-
function in the stripping region. Tn fig. VIIT.3 we illustrate .
the effect of including a spin;ﬁrbit interaction in the
entrancé of»exit channels. The "forbidden" 7/2+ state is

- depressed about 20% by a deuteron spin-orbit interaction
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V., =5 (as we shall see, the effect is exactly the reverse

$0
 for the 7/2+ state of the k—,1/2 ‘band). Deformlng the
'.deutercn spin-orbit optlcal potential was.found to”have a

very sméllceffect.” The spin- —orbit potential in ‘the proton
channels had some effect on 1mprov1ng the angular dlstrlcutlon
Ixn a CC_calculatlon, but a lesser one-ln a DWBA calculatlon, |

as can be seen in fig. VIII.4 where we match the data®’

with

' »the,angnlar distributions of DWBA and COmplete_CCBA-caLculations
including spin?orbit interactions. The 7/2% state is under-
estimated by a factor from two to three over most of the

angular distribnticn. The eXcess measured protone.could'come
from a number of eources. For reasons mentioned. in Chepterr
VI1I, ccmpcund nucleus effects are iikely to.pléy a role in |
levels. this weak. (A comparison wifh the case of ca]cium

where compound nucleus effects play a role in levehsthls

16 suggesfs that

strong discussed by Lee, Schlffer et al
g‘forticri, they should play a role in the lighter magne81um
_nucleue.) We flnd that 1ncrea51ng the entrance channel
deformecion to .5 1ncreases the 7/2+ cross section by 20%
rather uniformly. (It also increased the 5/24 level 10% at
Vthe_stripping‘peak.)' Including transitions.thfough thej4+

24

state of Mg nardly affected the 5/2+ state but increased

the 7/2+ by 20% at 90° with no effect at 0° and 180°, We

- ' g 6 '
estimate from the experiments of Crawley and Garvey5 and the.

84

-gamma decay experiments of McCallum and Sowerby that the
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amplitudes-éf.the single particle interband transitions‘fromv
the 3/2+ and 5/2+ states of the [217 1/2+ might be about .25
~of the intraband transition émplitude from the ground state.
There i also the‘3/é+ state‘of the [?O@ 1/2+ band that is
strongiy excited in stripping. It is gquite coﬁceivable, then, -
that the coherent sum of amplitudes from these inelastié
processés éould double the cfoss section to the 7/é+ state.

25

Finally,valthough it is probably true that this band of Mg

24

. has a smaller deformation than °*Mg, the low calculated 7/2+

-cross section could be taken as an indication that we have .

24Mg) deformation.

‘underéstimated_thié (and perhaps the
(see fig. VIII.2.) |
| In fig. VIII.S‘we compare the polarization from the
’-‘coﬁplete DWBA and CCBA calculations with ﬁJALJ> ¥;4,

ﬁa(P‘5D :=.3. We shall comment about the somewhat surprisingly
low ovefall experimentai cross section bf this band below (sec-
tion A(d)).

A'séries of model caiculétions of stripping to the.
(é1f71/2+ bands were carried out using the F-S wavefunctions
listed in Table IV.2; for réasons mentioned above and in |
~ Chapter IV, these.are prbbably not good wa&efunctions: al—
:though:the cjl are probably about right, the tail on the
‘j =3/2 component'is relatively too long, and we have seen in

Appendix I to Chapter IV that thisvcould drasticélly over-

emphasize the cross section of the 3/2+ state.
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In fig. VIII.6,‘the effect of proton coupling Between
the states of the residual nucleus is shown. The overall
cross seétions of the three Strong levels are not;changed
muchj; they are of comparable stréngth fo eaéh_othéf and we
shall find a téndéncy fbr Weaker levels to be boosted by
exit chahnél inelastic effects. Thus, in this ¢a$e; the
weaker 5/2+ state (weaker, that is, where, as in this éase,
there are no transitions through the target 2+ state) is not
reduced by thesé processes, whereas the 1/2+ aﬁd‘3/2+'states ‘
are depressed by about 20% and tﬁev7/2+ state, which, with this
wavefunction, wéuld otherwise be forﬁidden, is now weakly
excited. It is noteworthy that the angulér diStributions
to the 3/2+_énd.5/2+'levels are respectively depressed and
augmented just beyond-the_stripping peak. This is'in-qua1ita—

85 shown with the morevrealistic

- tive agreement With the data
cése*in fig. VIII.8 discussed below. Figure VIII.6 also

shows theveffect_on a DWBA calcuiation of increasing the .
number of radiél quanta included in the neutrdn‘ﬁavefunCtion
from seven to eight. By comparing with Table IV.2, it is

clear that there . is'an immediate correspondence between the
effect seenkin any;leve1 ahd the_amplitudé of the corresponding
eighth radial quéntum.,_The_result of including stripping |
“amplitudes arising‘from the first»ordérv(DWBA) excitation

-of the target 2+ state was studied and the results ére-shown

in fig. VIII.7. The effect on the. bandhead state is rather
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small butvthe 3/2+ and 5/2+ states are respectively depressed

by 50% and doubled at their stripping peaks. This figure also
shows the effect of exit channel coupling. The changes
evident in the previous figure in the two 1=2 levels persist.
Thellarger effect of proton coubling on the i/2+ state (c.f.
fig. ViII,G)must be due to the fact that the 5/2+ state is

now stronger. Again it seems that entrance and exit channel

inelastic processes are of comparable importance for the 7/2+

state. ‘The amplitudes arising from the 2+ state are smaller
when a coupled channel deuteron calculation is employed to
calculate ‘the deuteron wavéfunctions; these wavéfunctiéns
also resuit in a less drastic attenuation of the 3%/2+ cross
section in the backWard'hemisphere. This can be seen in

fig. VIII.8 where we compare complete (i.e., including spin-
orbit interactions) DWBA and CCBA calculations of this band
and compare the results with the data.83 The levels are of
incorrect strengths: the data, of arbitrary normalization,
must be multiplied by .2882, .5714,_and .40 for the three
states in order to obtain the fit shown. These factors should
be equal. Probably, the main source of error lies in the j=3/2
componént having too long a tail. When the calculation, |
identical but for the 3%/2+ formfattor being scaled by .74
(.742=.55) was carried out, the cross section of the 3/2+
state was‘scéled by .51 at the stripping peak, but was

attenuated much less at back angles givihg an overall improvement
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to fhe angﬁlar distribution. As is cieér,ffomvfhévfigure, 
'thesé.ﬁormalizations factors-would have varied @Vér'a mucﬁf,
greater range in a DWBA calcuiation.‘ The'7/2+.state was
“ considerab1y_weakened by this change in c3/2, due possibly
tb eithef entrance or exit’channe%‘effects. The 5/2+ -~ [
gfate was not changéd much but the last diffraction minimum;
of thé 1/2+ state was somewhat displaced. The‘sighificanf
conclusion, however, is thatreven with inelastic,proCesses
Aprésent, the cross sections still retain a semblénce fo
proportiOnality to c5 2 over a fairly wide range. The

.51 factdr'( in particular, the fact that it is lowerithan

the .55 reduction factor for c ) is easily understandable in

fermsiqf the;eduction of the largest of several destructivel&l
cotierent amplitudes for.this'sfate. Because the Qegree!toi
vwhich this approximaﬁe proportionality to 632 might-Vary ff
‘from'staté to state, we should probably make use of it pnly'

_over a sméll range of cj2 where a few.percent‘changevmight

impfove the overall fit. 1In the present case, however, making

use of this approximate linearity, the orthonormality
L, 2 2 2 _ - L v

(01/2A”+ Cz/0° + Cg5/p = 1, in this casg) and the data
normalization numbers cited above, we find 01/22 = .3962,

2 2 _ . |

03/2 = .3933, C5/p = 2104, We give ﬁhese for refergncej »
' apart from their approximate method of derivation, the
corresponding cj's are amplitudés;of incorrect fadial wave-

functions. We give "better" values later in this section.
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The influence of spin-orbit interactions in the proton and
deuteron channels is illustrated in fig. VIII.9. In this

case, a deuteron spin-orbit interaction enhances the 7/2+

state, conﬁrary to what was discovered for . the ground band.

There is one inéonsistency in the above calculations:
the deﬁteron opticai potential‘was found by fitting scattering;
the profbn optical poténtial was»determined as suitaﬁle for
strippihg and has a very smallvabsorptive part. In fig;,VIIig

10, we illustrate the effect of deepening W( “rom -3

, prot)
to -6. This figure also demonstrates that the 1=4 components

of the Wavefunction used had a smaller effect on all but'the

7/2+ angular distribution. Unfortunately, the SAXOND wave-

function employed in this calculation cbrresponds to ﬁx =2
and the 1=4 components have about half the’amplitude of those

in Table IV.6 so that this figure represents a lower limit

of the effect of the 1=4 components.

A stripping calculation was performed‘using'the "bes%ﬁ
wavefuncfion (Table IV.6a) and th2 fit to the experimentél -
data is shown in fig. VIII.11. We have normalized the results
as follows: the experimental points for each state are scaled
so that the best (subjective) fit near the stripping peak
is obtained. Thé‘scaling factors for the three states afe,
respéctively, starting with the bandhead, 17055, 1.333, 1.222;
1.285. (Thése numbers are rélative: they should not be_‘ '

compared with others that might be quoted.) The fourth of
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these factors was a compromise value not obtained: by fitting
'the 7/2+ state for which the theory is clearly too low.

_We note that this fit corresponds to the theoretical'values'

2 _ 2 2" '
of Ci/p = .283, C3/p = .501 and C5/p = .197. If we

éssume that cross sections are still roughly pfoportional to

22, Wé can extract "theoretical" 02 values by scaling 02

so that the factors by which the experimental data for each
state would.have to be multiplied for a match With the theory:

v ére.all_eQual. In this manner we_determine normélized values
01/22‘= ;333, 03/22 = .467, 05/22_; .200. " We emphasize:

that these are probabilities for the particular radial wave-

- functions implieit in Table-IV.6é, and that small éhanges in
.radial.form can potentially entail 02 values that are donsider-
ably different. A problem that is evident from fig, VIII.11_
is the difficulty, engendered by the imperfect fit to the

1=0 state, of determining the best angle for normalizing :
'theorylto experiment for this state. The fit of the strengths
‘vathese states is quite good, differing greatly from what
would be fhe case for these wavefuhétions in a DWBA caléulation.
- We conclude that our aaiabatic nuzlear model based on a
prolate, axial intrinsic state of ﬁ1=;4 is substantially
correct é for further comment see section A(d) below.and‘ref.86
Moreover, the gualitiative differénce between the'shapes'of?v

the two 1=2 levels is feproduced in a way that is not possible

with any'spin—orbit potentials alone. However, real discre-
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pancies remain - the strippiné'peaks énd minime:fOr the
threelétrong States are not perfectly reproduoed,in shape.
This mayfin part be a result of incorrect geometric'feotors'
in the-optical potentials - perhaps .the too thin surface of
the_deuteron potential., The angular distribution: to thev3/2+e
state ie,not well explained at back angles. Very possibly
thefe isveouplingvin the proton channels from thevquite strong
3/2+ state of the [200]1/2+ band. Tt is just possible thaf
compound- nucleus components are present in the 7/2+ cross
section; however, our theory does not explain the 1arge,cross
_section‘at 150O The difference is orobébly the sum of effecte
due to (e) inadequacy of treatment of proton channel scattering
for k = 1/2 bands (b)’lnterband céupling (c) the 1=4 components
might Very well be much larger than ueed'in our calculetion. |
An increase of the deformation of the optical potentiai,and
the'introduction of a 7; intrinsic deformation could both
have a significant effect on this state, (a) coriolwe m1x1ng .
with the 1200}1/2+ band (see discussion in section A(c) below,.

The sens1t1v1ty of our results to the \ﬂ_ deformation
employed in the scatterlng paru of the calculatlon w1ll be
shown for the case of 12.3 MeV. dezterons in the follow1ng
section. |

It is to be noted that the calculations 111ustrated ‘in

flgures VIIT.4 and VIII 8 required rather different normalization
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factors in order to fit the data.*. This may be interpreted

in terms of a:core overlép) {3lo7 for the ground band of 25

Mg
of about 0.8. Owing to uncertainties in the Wavefunction; |
this must be regarded as a tentativé figufe. For fﬁrther
ddscuésion; see the accountvof the:ﬁ2.3 MeV reaction below.

24

(b) The Reaction Mg (dlp)QSMg at 12.3% MeV

We have attemptéd to_fit the 12.3 MeV data of Hosono. 2°

For our.study, we used proton opticai’potentials npe and "G" -
of Taéle VII.1 and deuteron potentials B and C of Table VII.Z2.
With one exception, we used the wavefuﬁctioné of Tables IV.4 H
and -IV.5. The deuteron thical potential_ﬁas (sée Chapter VII)
obtained by extrapolation. Such proéadﬁres are_somewhat7
doubtful for light nuclei. Energy dépendent_effééts are, wexv
belie&e,3most realistically studied where the deutefbn,and
protoﬁ'scattering can be fitted to each-eneré&. For thié‘
reason, wé gmpioyed the more "reéiiétic"-protdn opt1081 '
parameters and‘heﬁtron wavefunctions noted above, hoping tQ5Vi
achieve good agreement'with the 1253 MeV angular distributionsv
rather than attempt to study the energy dependence of the
inelaStié processes. To be realistic, such a stﬁdyvrequirés; 

if not detailed elastic and inelastic scattering data at each’

*The fact that those for the calchlations illustrated in
fig. VII.10 were quite different is a result of different
overall normalization employed in these later calculations.
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energy, then at_least a well esfablished»enérgy dependence

of the pptical parameters, and we dovnot bélieve_this exists
for'déuterbns in magnesium. Unfortunately, it turns out that
our angulér diStributions are not close enoﬁgh to ihose measur-
d26v(whiéh iook;somewhat unphyéical_in places) to allow us
to unambiguously give normalizations. Qualitatively, the -

phenomena observed are similar'to those at 10.1 MeV.

" Ground Band

In fig. VIII.12 we give our results for the ground band.
The DWBA cross section to the 7/2+ state.is non-vanishing
because 6fvthe small direct component. Including the 9/2%
state in the calculation had very little effect other than a .
30% decrease in the extreme back angle 7/2+ cross section.
We see from this figure that the 7/2+ state is undérestimated
by arfaCtor of 25.19/1.749 = 14.4.
The k=1/2 Band

- It was here that there were normalization ambiguities,,:
The results were qualitatively similarito those illustréted‘

for 10.1 MeV. The approximate normalization factors by which

the theéry muét be.multiplied to.fit the data for the threej £
lowest states (there is no 7/2+ data) afe approximately giveﬁ
by : . ‘ _ | |
1. . DWBA 6.097 (j=1/2), 2.452 (3j=3/2), 9.673 (j=5/2).
-2, CC in, direct out 7.794, 4.525, 6.223.

.3,‘CCBA 7.236(=), 5.050(-), 5.952.
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two points emerge: (i) these factors are much more uniform
 for CCBA than for DWBA, (ii) Wevsee_that théy are greatéf

by a factor of about 3.5 fhan the ground state factors given
in fig.'ViII.12. This large ratio (for 10;1vMeV, using F-S
wavefunctions, iﬁ-was about 1.5) reflects ﬁhe much longer -

| tail of the 5/2% component of'the1wavéfanction in Téble Iv.5
than'bf fhét in Table IV.4. The possibility ﬁhat <5165 may
departZSubstantiélly from.unity was examined.  Using SAXOND
wavefunctions and assuming the core for the ground band had
a ‘ﬁ_déformation of .3 and that that for k=1/2 band wasw.d,
then <(316> x-75 .« It seems quite plausible from the
different moments of inertia for these bénds85 (see_Chabtér
IV section F.1) that the deformations could differ this

much. Therefore, unless the core is a completeiy different

self cohsistent solution for a [202]5/2+ or a [?11]1/2+f  S

orbital, the above mentioned ratio must result from an

excessively loné tail of the neutron wavefunction. - There is

no way that 05/2+‘for the ground band can be substantially
less than .98. If the asymptotic radial wavefunctions are
about right, then the 10.1 and 12,3 MeV data imply that

(&1oY ~6— -8 '

‘(c) Note on Coriolis Mixing

25

We ‘have not studied the f20@}1/2+ band in “Mg, althbugh

the 5/2+ state, for which Cs /oy is very small and which has

a greater than "expected" stripping cross section, would be
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an intefeéting level to study. However, this level is also
 very sensitive to the coriolis mixing of the two bands.go

We comment that of the levels in the [21{]1/2+ band, the,3/2+ 
will probably be most affected by the borioiis admixing.go )
The‘fabf that the coriolis‘admixedlcomponents contribute
coherently to the cross section cbuld.mean that the relative
strengths of the'1/2+, 3/2+ and 5/2+ states could have been
_affected.v Litherland et 8190 give admixing amplitudes as

follows (for the [211}1/2+ band), written symbbllically:

|ty =992 - 13 [2001 " -
\Ypt? = 97f2n] -~ -2 {200]
15p4> = -asfan] - -31[200]
17ty = 92fan] ~ ‘3‘?'[10-01

The [200]1/2+ intrinsic state has the largest probability

amplitude for the 3/2+ component and almost zero for the 5/2+:

componeht which is the reason for our statement above that

the 3/2+ state is the most affected by band mixing. We.add the
proviéo_that with the above admixing gggvinelastic prOcesses;

the cfoss section of the 7/2+>sfate of the [21ﬂ 1/2+ band could

in principle be as much as doubled. | |

(d) Conclusions for A~—~25

1. The relative strengths of levels within a band may be
.drasticélly changed when inelastic effeéts are inclﬁdeds

2. Certain features of the anguldr distribution that might

he described as "j-dependence," appear for the two 1=2 levels

within the [211)1/2+ band in Mg. )
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3. The‘pfesent generalization of zero range DWBA without
cutoff is unable td;account for the detailed shape of
angular distfibutions for Stripping'in light nuclei.

]
86 68 of

4. The finding of Parikh, who uses the results
stripping at 15 MeV to determine that magnesium is prolate
angd aiially symmetric is substantiated. Our best c2 values

2 ' p)
= 467, cg /5" = .200

 for the'k;1/2'band;-01/22 = .333, C5 /o
are clbsé‘to those of.Cujec,68 begguse in her work, the result
of an ihcbrrect fadiallwavefunction-and_the neglect of inelastic
processes seem ﬁb cancel within- the k=1/2 band.

5. We do not régard the paramefers employed'ih,the caléuiation
of the gfound band neutron intrinsic wavefunction to have
been'éufficiently'well chésen (as cdmpared‘wifh those for

our "best" k=1/2 band calbulation)‘to‘permit us to finélly
settle the question of the value of <F1oY  for the ground
band. We can say that our wavefunctions calculated aoéordiné‘[
to the (probab1y erroneous) assumption that.the deformation .
was the same in each bandl( see Chapter IV) lead to stripping
resuits which suggest <&l X-% . We note, however, that 
this assumption of equal deformations (again, probably B

87

erronébus)'has recently been invoked, together with axiélf '

asymmetfy,in a rather unsuccessful attemptiat the explication

25

of the ““Mg spectrum. We regard this last work to be, if
anything, evidence that this nucleus is axially symmetric

and that the k=1/2 and k=5/2 band have quite different deforma-
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tions. 1In fact, this should already have been c¢lear from.

fig. 10 of the 1959 paper of Mottelson anvailsson.85

B. Stripping Reactions on Deformed Rare:Earth Nuclei

Since the (d,p) experiments of Vergnes and Sheline,46

a wealth of nuclear level data have been amassed by thié
methodbfor the deformed rare earth nuclei. These experiments
have confirmed that the édiabatic model, together with the
Nilsson scheme, contain a large degree of physical truth

for strongly deformed nuclei. With an even-even'iarget,'we
can'seévfrom the results of Chaptéf IT together with eq(18)

of Chapter VI, that the DWBA stripping cross section is of

the form._: CSZO’z(G) - where 0,(®) can be tabulated as

a function of Q. Each band, then, has a characteristic
"fingerprint" depending on the cjiis of the underlying single-
particle state when the cross section for its members are ‘
plotted on a logarithmic bar graph. In this way, the band
based on a particular Nilsson orbital can be traced through
ail the ﬁuclides in whose spectra it appears. Most of the
available data for this région are either for one anglevor a
small number of angles. Varidus authors claim that this is
sufficient to determine the orbital anguiar momentum transferred’
with the neutron. (This procedure ig‘probably not unconnécted
with the large number of levels fbund. -Detailed angular -
distributions for a few levels along the lines of the work

28

of Siemssen and Erskine would be welcome in some lighter
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~ rare eérth nuclei chosen so-that coriolis ambiguities will
not clOud'the'inelastic processes issue.) This claim
deserves examination as does any claivahat cji can be
mgasuredbwithout taking account of inelastic processés.

If is prdﬁably true that, by and large, the identificatioﬁ
'ZOf bands using "fingerprinﬁ" techniques and thé cjl tabulgtion
of Vergnes and Sheline (really, Nilsson translated‘into
cjl-ese)'is’sound - especially‘whgn:it is .known what baﬁds
should be present. A possible exception will be discussed
beiéw; .Our calculation will also involve a better treatment
of the state where a particular camgonent of an intrinsic
state may have the characteristic long tail of é nearly
‘unbound’Stafe ~ with a profound effect on the angular
distribution.

‘A very recent review’artiéle on the DWBA approach to
nucleon tfansfer-on strongly deformed nuclei has Heen presented
by Elbek and Tjgm. All of the calculations discussed bélow.:
were carried out before the analysis88 of coriolis coupling
in various odd deformed rare earth nucleil were.published.

1665, (34,p) at 12.1 MeV

167

1. The reaction

 The low lying levels of '~ 'Er which are shown in fig,
IV.3 are particularly appropriate'for study because, in the
first place, the 1e?el structure suggests that the ground
bands at least have ITittle first order coriolis mixing

(allowing for a less ambigudus interpretation of our findings)
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andﬂfﬁeh3 there are certain ievels, the grbﬁhd state,.for
example, which should have very small direét amplitudeé and
should therefore be very sensitive to inelastic éffecté;_.
The réaétion 166Er (d,p) was studied by_Harlan and Sheline4o

at 12.026 MeV, and the relative cross section at one anglé,
450, was listed for many levels. We have studied the [633_]7/2}'I

and the [512]5/2- bands as well as the "gamma band" at 532 KeV.

The [633]7/2+ Band

As can be seen from the wavefunction for the [63%3]7/2+
intrinsic state which is given in Table IV.7, by far the
largest component is that with j=13/2+,“As>l=6 levels are much
lower in créss section than 1=4‘levels of the same stfengfh “
(vy a factor of 20 at 45° with 12 MeV deuterons'), the
13/2+ level (02=.85) is actually wéaker than the 9/2+ 1eV§l_ f
(c2=.14)._ As our program was unable to handle more proton
channels than those corresponding to ﬁhe 7/2+, 9/2+ énd 11/2{ 
states,'the 13/2+ state was omitted from the.calculation. We.
note, however, thatbthe strong 13,/2+ components were_retained
in the neutron wavefunction. In wview of the moderate strength
of the 13/2+ level, we might have expected a modification of |
the (weakish) 11/2+ cross section had it been included. The
effect 6n the 7/2+ state would have been smaller as it is not .
coupled to the 13/2+ by the 1=2 (first order) components of |
the deformed optical potential. The calcﬁlations were perfofm—

~ed at 12.1 MeV, the energy of the standard CC and DW optical
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potentialé, "H" and "I" of Table VII.1 and "D" and "P" =

of Table VII.2. In order to study‘the,Consequences.of
scatferiﬁg in the enfrance and exit channels'separately,_we'
calculate the angular distribution first in pure DWBA, and then
'repeat'firSt with»saattering in.the outgoing channels, scét—
tering in the.ingoiﬁg channels and finally the complete
problem. Whenever there is a coupled cﬁaﬁnel or distorted

wave calculation, we use the corresponding optical potential.

In this case, we included only the;2+ state of 166Er in the .
‘deuteron wavefunction. The deformations were: 66Er B.=.26,

By=0.0, fulow) =.307; '®Tpr g=.25, B4 =.05, ffeod=.3. The

existence of '7; deformation in Er is doubtful, but will make

-~ very little difference in this case where there are no states

to be’qoupléd by it in first order that cannot be coupled

by ﬁ;in‘first order. The DWBA caiculations of the two 1=4
stafes are of interest in themSelves; while 09/22/07/22 ;140,
the corresponding ratio of the DWBA cross sections is about
40. That;must necessarily be a-reéult primarily of the '
differenf radialfformféctors; the Q dependence could have oﬁly
a slight effecf (seé fig. 1O of the review article1 of Elbek -
and Tj#m). As we found in Chapter IV, the details of the
nwavefunctions depend éensitivelyvon the separation energyi_As,
'expléined there, it was not always possible to establish_the -
best value for this perfectly and this might explain the.large

‘direct (DWBA) 7/2+ cross section. We believe it is high,
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for when the inelastic scattering is switohed on, the cross
section»at 450 exceeds. the experimental‘value in this case.
The angular distributionsfér the three.stétes of this‘band
for the four cases are shown in fig. VIII.13. The numerical
reéults'at one angle are summarized in Table VIII.1.
The following.points emergeﬁ |

(a) The,7/?+ and 11/2+ levels are increased by factors of
four and'five respectively when the full calculation is |
Qérried out. v
-(b),Thé relatively strong 9/2+ level is little changed, beiﬁg:'
‘reducéd markedly (40%) only near 60°. | .

(c) For the 7/2+ levei, inelastic effects are about equally
importént in the exit and entrance channels. The eiit y
channel scattering has less effect,'except at fdrward aﬁgles
on the 11/2+ level. Possibly the inclusion of fhe 13/2+-
level would have altered this last‘conclusiono

(d) Invfhis particular'case, the ekit channel'scattering'
appears to have induéed a diffrécﬁion pattern on the angular . .
distribution of the protons. We shall see that this does |
not happénvin‘every case, howevér;'

" As mentioned, our overshdotiﬁg of the 7/2+ level is

“probably due to an incorrect intrinsic wavefunction{ this is
" not in conflict with the fact that inelastic effects have
increased the cross section by a factor of four as can be

"seen by considering the fact that the various amplitudes add
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;coherently.‘ These calculaﬁions did not include the 4+ target
state which makes a significant contribution in some caseS-'
as we see below.

167Er

The [512] 5/2— Band in
| The_wavefﬁnction for the IEiﬂ:5/2—_neutron intrinsic!
state of A = 167 is given in Table IV.8. In this case, the-
stripping strength éhould'be predominantly in the 1=3% and
1=5 states. Harlan and Sheline4o give the éross‘sectioﬁvfor
the 5/2—,.7/2-, 9/2- levels at one angle, 45°, and these three
states héve been coupled together in Our galculations for- |
this band, except in one case where we-inclﬁded the 7/2-,
9/2- and 11/2- states. In figure VIII.14 ( see also Table ’
VIiI,Z) we give the angular distribution to the first three'_ 
‘states of the band (a) direct, (b) pure CC, including the 2+
state in the incoming Channel, and (c) pure CC including'alsb’
the 4+ state of the target. The data of Harlan and Sheline
at 459 are given in Taﬁle VIII.2, normalized to the case (é) 
7/2~ sfate.'NIhe difference between cases (a) and (b) for the
weaker 5/2— ;ﬁd 9/2- states is dramafic, but notvunexpécted;
What is not expected is the magnitude of the effect that the
4+ target state has on the 5/2- level, and_the fact that for -
cases (b) and (c) the forward éngle cross section of this
level is so strongiy boosted by the inelastic processes. The

5/2—'angular distribution appears now more like an 1=1 transi-

" tion than an 1=3 transition. Although the 4+ cross section




is mudh;lower than the 2+ cross sectién in ‘inelastic deuteron -

: scafteriqgon.166E

r, it turns out that the scattering matrix -
elepents leading to the 4+ state become comparable to those
leading tO‘the 2+ state for the higher parﬁiél»waves. Hence,
one miéht suppose the dedteron wavefunctions corresponding to
the 4;,farget state to have a relatively large amplitude at a
large radius; SO0 tﬁat they lead to.neutron stripping at a |
,large.fadius which, according to the usual semi-classical
argumeﬁts_associating l-transfer with*a particular angulaf'
distriﬁution,'should‘resglt in a more forward péaked.angular
distribution. We remark in this connection, that thevfofwafd
angle cross gsection is sensiti&e to quiteISmall high partial
wave SQmatrix elements whose coherent effect may be larger

than would be guessed ffom their magnitude. We determined

the required number of partial waves émpirically»by‘demanding’
convergence of the forward angle differential cross section.’

- We might conclude that at energies near the coulomb barrier,
elastic and also inelastic scattering takes place outéide'thé
range Of the nuclear forces. Thosge deuterons reaching the
ﬁuclear surface have a large probability'ofvbeing associated
‘with ekcited ﬁuclear statés. They are also, of course, moving.
3.very 510w1y having been nearly stcpped by the coulomb fiéld. It
would seem, then, that the importance of inelastic processes

in transfer reactions is greétest precisely where the adiabatic

model is least appropriate. The adiabatic picture of scattering
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waé’used in a previous study of ine1éstic processes in
stripping by Tano and Austern.j

As can be seen from Table IV.8, there are small amplitude
1=7 cdmponents in the bound state wavefunction. These do
not correspond to direct amplitudes to any stétes considéred;
In order.td determine their role in stripping, we pérformed
a calculatioh in which they were 6mitted. ~The results are
displayed in fig. VIII.15 and Table VIII;Q. The only real
effect these components have is to depress the 9/2- levéi.5
We illustrate in the same figure the effect of fhe proton
channel inelastic processes. It is clear that in this case,
at ieaSt,'the'exitvchannel scattering confributesbto the
distinct forward angle peakiﬁg of one level (the 5/2- 1é§el). 
The agreemént with experiment, though greatly improved, is |
not pérféct for the 5/2- level and is poor for the 9/2- level.
The 11/2- level presumed by Harlan and Sheline to bevat 668
' KéV, and certainly weaker than the 9/2- level when directiy"'
excited, is not seen, apparently masked by levels at 654 KeV
and 674 KeV. The level at 654 Ke'l is ﬁnassigned‘and ié about
four times the DWBA strength expected of the 11/2- level.
Harlan and Sheline support their tlaim that the 11/2- level
should be at 668 KeV with the datam that the 9/2- level fits
the I(I+1) s¢heme quite well. However, if we examine the
' 169

energies of the levels in the same band in Er, we find that

I(I+1) places the 11/2- level in that nucleus at 439 KeV, whereas
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it is seen at 420 KeV. Granting‘fhen, the somewhétvdifferent

16 _
inertial parameters in .9Er, it is plausible that the 11/2-_

in 16_7Er>might’be 14 KeV too low ( the breakdown of adiabati-
city always leads 1o 'higherllevels of a band being somewhat
low). A calculation was performed inéluding the 7/2-, 9/2—
and 11/2- levelsvtogether and the results are included on fig.
VIII.14. vAlthough the fit to the cross sectionvof the 654
KeV level is not good, yet it is better thaﬁ thét for the 9/2-.
level. The DWBA cross section of the 11/2- level was not
._calculated yet it is plain that inelastic effects have enhanced
it by a greater factor than for the 9/2- level. We feelvthat,
by inclﬁding inelastic processes in this calculation, we can
establish that the 654'KeV level is the 11/2- level with; “
comparable plausibility to the hypothesis that the band ié
based on the f51é]5/24 intrinéic state (in view of the
inabiiity té fit the 9/2- 1eve1) We note fhat Tigm and
Flbek51 note the "breakdown of the single particle descrlptlon
of the [512] 5/2- orbital™ in Gd. o |
| This last calculatlon also shows that omitting the 11/2—-
level from th¢ previous calculatlonsdld not greatly affect
the 9/2; levél; the exit channel ‘inelastic processes are
“dominated by the very strong 5/2- level. |

byAffer this work was'completeﬁ, the coriolis coupling -,
‘analysis of Kanestrgm and Tj¢m88 was published. This |

suggests that the 7/2- level is weakened and the 9/2% level
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doubled by coriolis mixing; this would greatly improve our
agreement with experiment. (Recall our scheme of normaliz-

ing the calculation to the 7/2- level. See Table VIII.Z2.)

88 that.this band cannot be

It can ve seen from ref.
|

fully accounted for with coriolis admixing and DWBA and

‘that the inelastic effects we describe are of comgarablé

importance to this mixing in an overall picture of stripping

on deformed nuclei.

Although the strong 7/2- level has been only slightly

- enhanced by inelastic processes, this has some importance

when different bands are compared; when measurements of the _'

BCS U2 factors is attempted, or when absolute cross sectidn

calculations are éssayed. We compare, for example, thefslight

reduction in the intensity of the strong (9/2+) level in the
ground band (which would be drastic if the measurements were

at 60° alone).

An Erbium’Gamma Band at 12.1 MeV

The k=3/2+ band at 532 KeV in 167

Er is identified by
Harlan énd Sheline as being a gamina band:on the [635]7/2+
.‘intrinsic'state, together with vafious single quasi—particié
admixtupés. Probably these latter are dominant as far as |
stripping is concerned, for the 5/2+ level at 573 KeV in.thiS 
band ié excited in (d,p) nearly as strongly as the corresbond—

ing 9/2+ level of the ground band; whereas the amplitude for

the ¥ 2+ state being excited by deuterons is about one tenth
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(cross section one hundredth) of the amplitude for the rotational -
2+ excitation. This would imply that.levels of a pure odd--
nucleus gamma band corresponding to those in the non—vibratibn— E

al band on which it is based, which are excited largely

" through the rotational 2+ of the target, will have cross

sectiéns reduced By two orders of magnitude. Other levels:
of the gamma band are expected to have cross sections attenu-

ated even more compared to non-vibrational levels with the

same. intrinsic state.

The'empirically moderate excitétion of the 5/2+ state.

of the'gamma band is not inconsistent with this band indeed

'being largely of gamma band character as small non—vibrationalvv

admixturés with large stripping amplitudes could dominate the
cross section. 1In spite of the large measured cross section a
(model) calculation was carried out in which this band was
considered as a pure gamma band excited entirely through the
2+ gamma bandhead of the target nudléuso The optical potentiai
for the aeuterons and the deuteron ineléstic scattering are
discussed in Chapter VII. We neglect in this case the effect
of the possible excitation of.thevcore phonon by protons which
are aséociatéd with‘stripping to the ground band; our program
was not sét up to caleculate interband scattering. Actually, s
in ‘the one calculation performed thefe was not even intraband
coupiing in the exit channels. The angular distributions are .

shown in fig. VITII.16 where we CbMpare them with a pure DW
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calculation bf'the ground band, the latter being reduced in

the figure by a factor of 100. The most conspicuous feature -

is the peaking at more forward angles, corresponding perhaps

to the deutéron-wayefunction in the. gamma band channel havihgv

'1Argest amplitudes at the ﬁuclear surface. |
We_femark that the structure factor for the gamma béhd-'

involves the product for state J of the gamma band:

237 '
C.
(g Ou

Thus for J=3/2, there is j=7/2'on1y as;jz7/é; for 355/2,
'.possible j values are j=9/2 or 7/?. As c7/2<§ 69/2 for

the ground band, we may speak lodsely of "corresponding
iéveiéﬁ betWeen,these bands (in_the context of stripping
reactions) for the two lbwest levels of the respective bands.
 This gives point o the comparison made in fig. VIII.16;

1545y (d,p) at 12.1 MeV

2 Thé Reaction

Deuteron stripping reactions on the even isotopes of
49 at

samafi@m have been studied by Kenefick and Sheline
deuteron energies around 12 MeV. The isotopes involved
straddle the transition region from spherical to strongly
deformea, ‘The nuclide_1543m isvépparently very well describéd
by the adiabatic model and is probably rélatively stable in
deformation under the éddition offone neutron (i.e., (olo> %1 );
this is not so obviously true for 152§m.

Kenefick and Sheline measure the relative stripping
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intensity'of about one hundred lévels in 1SSSm'at a single
| angl¢, 65O, ét 10.472 MeV. Our calculations were at 12.1 |
MeV, fhe energy of the optical potential (and the energy
quoted in the abstract of ref.49):, The low lyingvleVels of .-
15)Sm as interpreted in ref. 49 have been discuésed in Chépter
IV and were illustrated in fig. IV.4. The present calculations
are gonfinéd to the [52{]3/2— (ground)bband, using the wave-
funcfion‘éf Table IV.10 or, in one case, that of Table IV.11.
.- Because of the shortcomings in these wavefunctions, discuSsed:
in Chapter Iv; and the energy discrepancy (10.4-12.1 MeV is in
the regidn of the coulomb barrier where changes could be
rapid) our seriouévattempt at spectroscopy will be made in
the'vefy similar nucleus 157Gd as described below. Howévér,
our model calculations of the first four 1evels.of the'ground
band haVé yieldedvuseful information about inelastic processes.
Most of the results discussed below in terms of figures are
also given in a tabulated éomparisbn with the 65° experimental
results in Table VII.3. | |

The ground band will be somewhat mixed with the [523]5/2-
band. As the latter band is weakly excited in stripping, onlJ
the weak 5/2— level of the ground band should be much affected.
In the [52313/2- band, however, the 426 KeV level (see fig.
IV.4) is five times as strong as fhe 338 KeV level, wheresas,

from the Vergnes and Sheline cj's, they should have much

" the same stripping strength (the 426 XeV level would mix
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with the very.strong‘1?8 KeV level). .

In fig. VITII.17, we compare the angular distributions
for a pure DWBA calculation, a calculation iﬁciuding tfansi-
tions thrbugh the 2+ and 4+ target states but with no coupling
in the exit channels and the complete CCBA calculation.' The
strong'levels are not markedly chghged, The influence of the
exit channel inelastic transitioné is quite compafable to
tﬁat of-theventrance channel scattering; as fof 167Er it has
fimposéd a relatively strong diffractioh pattern on the band-
heéd ahguiar distributions. A'Calculatibn'was performed with
the wavéfunction of Table IV.11, and the angular distributions
are'cdmpared with those using the previous wavefunction. - The

nonlinear effects discussed in Chapter II are evident; at

65° the ratio of the cross sections using the Table IV.11

wavefﬁnction to those using the wavefunction of Table Iv.10

afe reSpecfively : 1.2557, 0.7418, 1.077 and 0.8826 fOrvthe
four sfatesQ  The ratios of the cjl2 for thé same two
wavefunctions are 1.2826, 0.3091, 1.091 and 0.7647. For |
theﬁeak states in partioulaf, the departure from unity of
these:rafios has been clearly damped by the inelastic processes.
We note thaf the shape of the angular distributions reméinsb'v
rather'éonstant'for this small change, except for the 5/2; level
for which the new.cross section is about 20% less depressed at
the most forward angles following from.thé fact fhat the

subcomponents of»the 5/2- component of the wavefuncticn.with
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w

,high n doInot'decreasefcommensurately-with'the principal

component. This;ié also true for the 9/2—'c0mponent.

" The effect of adding a spin-orbit term to the proton
optical potential is found to be very small, being a slight
depressidn‘of the cross section at.the’most backwapd angles
(3/2—, 5/2; states) or most forward angles (9/2- state). The
strongest stafe, 7/2-, is virtually unaffeéted. This is not
illustrated. |

In view of the rather surprising contribution of amplitudes
1nvolv1ng the target 4+ state for the 5/2- band in erbium, the |
calculation was repeated with the 4+ state omitted from the |
entrance channels. The results are shown in fig. VIII.18.

Evidently the coherency between the various amplitudes feeding

a particular state allows what must be a fairly small amplitude

to have a:significant effect on the angular distribution. Nofé
the displacement of the diffraction minima for the 3/2- state.
The addition of target states can depress a cross section; as

is the case for the 5/2- level. If we compare the 9/2- angular

distributions in fig. VIII.17 and fig. VIII.18, it becomes

apparent‘that the 2+ target state and the 4+ target statéé
result in respectively destructive and constructive coherent
amplitudes. The provides a possible explanation of the over—f

167

estimation of the Er g.s. cross section for which we did_

not include the target 4+ state.
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3. The Reaction '°°Gd (d,p) at 12.1 and 16.0 MeV

157

The spectrum, fig. IV.5, of Gd parallels that of

155

Sm quité closely. These nuclei have very similar déforma-.
tions, as this depends'mostly on the ﬁeutron number in this-
region. ‘We have continueﬁ our study of fhe [52f]3/?~ band

in thié'nucleus fof'which-these afe differéntial cross

section measﬁrements at severél angles, at 12.1vMeV; the
-energy of our standard optical potential. Thése are due fto
Tjﬁm aﬁd Elbek.Sj‘ The neutron'single\par%ible wavefunction 
'giveh iﬁ Table IV.12 is probably, as discussed in Chapter IV, 
better: than that used for Sm; The larger separation between
the 3/2- and 5/2- bands, aé’compared with 15‘5Sm,"swu&gge'sts

that coriolis mixingvis less for the [52]73/2— band ‘in this
nucleus, though the weakly populated 5/2—-levelvis no doubt’
affeéted. The predicted 5/2- direét_amplitude is so small'thaf
in ref. 2 the measured intensity is attributed to bandﬂ
‘mixing. Howevér, wé shall show that indirect prbcesses 
seemingly account for the cross section. ’(This weak level is”
not tabulated in Table 5 of ref.sl, but can be seen in fhei% ’
Fig. 11) We have calculated the DWBA and CCBA cross sections
for the 3/2-, 5/2-, 7/2-, 9/2- levels and compare them in

fig, VIII.19 and Table VIII.A. The cross section of the 5/2-
level is increased twentyfold at 6(_).O and the strong 7/2- -
level is attenuated by about 20% father uniformly. The grdund

‘state diffraction pattern is distinetly altered geometrically,
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'but-not iﬁ overall strength: at 600,‘one of the_angleé of
measurement, a maxihum takes'thé place of a minimum. .This
reveals not only a possible pitfallvin the,proéedure of

‘ identifyiﬁg angular momentum transfer by measuring three or
four points, but the overall strength may not- be well Judged..
Thé étrongest level, in the cases we have seen, retéins its
shape; but the 5/2- level in this case is not that weak.

Note that in this case, the DWBA 5/2- also has a distinct
.diffraétion pattern. The predicted crosé sections at 1259

are all too low, a phenomenon familiar to us from Mg, but

vless expected here, A deuteronvoptical potential of

excessive absorption seems a possible explanation or perhaps

an inadequate representation‘of the pfoton coupling. To
'investigate the latter possibility, we fepeated the calculation
with ﬁ1;‘3 in the exit channels, as is also shown in fig.
VIII.19 — the 125° ekpérimental points remain unaccounted for.
The 7/2- level is too strbng relative to the 3/2- gnd 9/2-
levels. We have been able to get a reasonable fit to the data
5y multiplying Cq /o bi%BS;;(The 7/2- level is scaled by ‘almost
exaptly¢,852,”the 5/2-f%y a factor somewhat less than ,852;J
suggesfiﬁg.that the contribution from the 3/2—vsing1e particle

componénﬁ adds destructively.) It is to the 7/2- 60° result

- of this final calculation to which we normalize the data for
each state inffig. VIII.19, in which the effect of the change

in Cq /o on the 3/2- and 9/2- angular distributions is also
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visible; By scaling 07/2 in such a way as to fit the data,
we may say we have determined (such is oﬁr agreement at 600
and 900) normalized Cj'S for the[52f]3/2— neutron, A=157:

_.366, ¢

= ,651, c = -.515 (etc.) compared with the

©3/0" 7/2 9/2
values of Vergnes and Sheline for these three components of
—i32, +.73, and -.5 respectively (our convention).

Comment on the Structure of Gadolinium

The case of coriolis coupling in- 57Gd is not treated by
ref.88 However, the authors do study the [521]3/2~ band in
159Gd. Band miking should be greater in this case( the strbng—
ly admixed bands are ﬁuch closer in energy), and we may infer
from these calculations that coriolis admixing will have
little effect on this band in 157Gd. The 3/2- level will be
barelylaffected, bﬁt probably the 9/2- level will be enhanced.
This would be in the right direction, but the question remains:
why 1is the c7/é_fcalculated in oﬁr Saxon-Woods model (discuqsed
in Chapfer iV) too high (apparently for this band in 159Gd‘i
'318088)9 Certainly, the value obtained by Vergnes and Shellne
is too .thigh to flt the stripping data. Neither corlolls
admixing nor inelastic processes, though both help, can
satisfactorily account for the discrepancy. 1In View of what -
we have learned concerning the crucial importance:of the £311 
of the wavefunction, a suitable combinatibn of chaﬁges in the

potential parameters could possibly be sufficient and we may

even have a means of determining these parameters. It is-
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unlikely that our choice of f,=.3 for the bound state
wavefunetion is too high; a reduction in ﬁ;would result in
| e 16 . &

07/2_.ee;ng 1ncreased,v | | A
Nowhere have we considered (nor seen ebnsidered) any

possible perturbatibn of the single particle radial wave-

functlon arising from the rotatlon vibration interaction. A

‘qulte small effect in the surface reglon would be sufflclent
" to affect stripping calculatlons.é

: 16.0 MeV Deuterons

The DWBA and CCBA angular dlstrlbutlons were calculated '

at 16 MeV using the approprlate potentlals dlscussed in

,vChapter VII. The results are shown in fig. VIII.Z20 and

‘llsted in Table VITII.S. There is rno data.

The change in the 3/2- and 7/2- levels at 16 MeV is
almost entirely a matter of altering the dlffractlon pattern- 
without chaﬁging the overall strengths. In this respect, the i
effect is less than at 12;1 MeV where there was’e distinct |

overall attenuation of the 7/2- level. The effect on the

5/2~ and 9/2—_1evels is about the same as for 12,1 MeV, except

at thevmostvbackward angles where it was greater.
‘We can give some answer to thke question of energy depeh—e

dence df inelastic processes. It appears that; once above

the energy where the elastic scattering becomes significantly

different from Rutherford ( a more empirical criterion than -

"above the coulomb barrier"), then inelastic processee become
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poténtially significént. The coulomb barriér transitioh region
is difficult to study, as optical parameters vary in a
complex manner here, and scattering eXperiménfs would ideally
be performed at each energy. Above thé couldmb barrier (and
12.1 MeV is above in the sense defined aboveg!for A “160)§‘

the energy dependence of the importance of inelastic procésses
is rather small; The fact that at 12.1 MeV, the influence

of the target 2+ state back on the ground state is small,
seems'not to imply necessarily thét inelastic processeé are
without influence in stripping redctions. At 12.1 MeV, the
elastic differential cross sectioﬁ of deuferons Qn Sm is

about 031;x Rutherford at _180O and greatér everywhere else.

As thévRutherford cross section ié very small at back angles,
this,ﬁight‘be thoughtxto'correspond to a very small absorption
for the elastic channels. However, the large forward angle.l
coulomb cross section corresponds td an impact parametéf.
béyond the range of stripping. Compare the comments we made
above in connection with the 5/2- band in erbium.

4. A Note on Alternative DWBA Calculations

Our'procedure uséd above to determine the deuteron
"Dw opfical parameters is not exactly thét described in
our general discussion. We required that the DW optical
‘parameters fit the same (meagre) experimental data in a DW
‘calculation as those fitted by the CC parameters in a CC

(d,d') calculation . Subsequent to the ‘above investi ation,
g ,




=211~

'we'carried out trial DWBA calculations in order to compare the

results obtained using the optical poténtials discussed
in Chapter VII with potentials obtained by requiring that
the deuteron optical potentials give the same elastic scat-

tering (in a DWBA calculation) as that found for the CC

~calculation when the 2+ state was included (we treat the case

of '®®Er). We used the optical model search code Mercy for

this as -we did for 16 MeV. and 20 MeV deuterons. The use

:of optical potential thus brings our investigation for the

rare earﬁhs more strictly in line with the general procedure
discussed above and in Chapter II. However, we note that .

although the new DWBA calculations now bear the correct.

‘relationship to the CCBA calculations discussed above (as

far as our scheme of model calculations is concerned), optical

model ambiguities still exist. The original (DW) optical
166Er

k]

potential fitted the small amount of elastic data for

79,80

however, it has been used satisfactorily in other

deuteron scattering reactions. We might more réalistiéally;-

thefefore, have searched for CC parameters that fitted the

DW elastic deuteron scattefing'(i.e., instead of vice Versa):_
No automatic search program Was available that could handie ;

coupled channel caléulations, and the parameters found'in a -
manual séarch that fitted the same elastic data Were discussed

in Chapter VII and were the onés‘employed. Using program

- Mercy, we found the following parameters gave a good fit to
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the CC calculated deuteron eiastic cross sectioh on 166Er:

V=-86-6 Wo=-99 ¢, =1.0%¢ 7= 1277 (, =12

a, =%8 g, =939

Thesé are to be compared with .set D of Table VIII.2. The
most notable feature is the reduction in overall strength
of"the'aﬁsorptive potential which is apparently (as we shall
'see)vmore than countered by the‘greatly increased surface
thickness of the absorptive region.

We-tbeh'studiéd the 5/2,-, 7/2- and 9/2- states in
167Er using both the new set of deuteron dbtical poteﬁtials
.above, and the set of standard DWBA parameters. |
| 'The‘éhanges in the 5/2- and 7/2- levels were very similar
to each other. Above about 900, the cross secfion:using'the
Mefcy>pafameters above-wasv10—éo% reduced.' The stripping
peak was reduced 10% and moved from 52° to 580 and the SIighfr”
peaking below 15° was-femoved and becomes a dip so that the
0° cross section was reducéd 35%. Experimental resultsvaré'

not usually given for rare earths in this region. It is

evident that the increase in"éO has resulted in a decrease of"

the wavefunction in the nuclear surface. The total cross se§fion
is reduced 10%. TFor the 9/2- level, for which the wavefunction
has greatest amplitudes for the n=O,component,.the cross

section is reduced only by 2% at 1800, 10% at 900, 5% at the

stripping peak (which is moved from 70° to 780, but the angular

Sy
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Variation of the cross section is small.) At forward angles
the change*is more pronounced: 10% at 40°, 33% at 300, |
60% at QOQ, 70% at 10°. The total cross section is reduced
6%. Thus,'the changes in the optical potential appear %o

have reduced the deuteron wavefunction in the nuclear surface,
but not'changed it much in the nuclear interior. »To interﬁret
our.previoﬁs results in terms of a quel calculatibn in whicﬁ

the DW optical potential precisely fits the calculated CC

elastic scattering, we should regard the DWBA curves, fig.
VIII.14.v For 1 > 5, fhere will be no appreciable change éboVe
90°%. At forward angles, the DWBA cross section will be lower
to an extent which is greafer for 1ower'l transfers. The
tendency fof inelastic processes to increase st}ipping.

cross sections is thus somewhat enhanced in this model

calculation.

*The percentages indicate the extent to. which the cross section
is reduced by using the Mercy parameters quoted on the previous
page. : '



Stripping of 12.1 MeV deuterons leading to “the [§3§]7/2+ band
Coupling in the entrance channels includes
are as specified

Lab%g VIII.1.
TEr. The c.m. angle is 45°,
the target 2+ state only. In all these cases, the parameters
in the text. . 7 | - ' .
State. Expt.*O N x N ¥ Y
N * % % Y W Y
7/2+ .9968x107> .484%107° .928x107>  1.11x107> 1.78x107°
9/2+ 1.78x107% 1.83x107%  1,0x107% 1,55x107° #1.78x107° &
11/2+ 1.495x107° . .502x107° 1.12x107°  2.39x1077  2.58x107°

* The experimental points were normalized to this
**¥ N here means no coupling in incoming channels, Y means coupling

**% N here means no coupling in outgoing channels, etc
- B N \‘7




Tab
AR

VIII.Z2,

Stripping of 127 MeV: deuterons leading t0 the
Lr. The experimental cross section exists only for 45°
N 31gn1fles no coupling in entrance channels, Y 31gnif1es coupling.

[512]5/2- band

**N signifies no coupllng_ln exit channels, Y signlfles coupling. 7
State Expt. %0 Nt Y Y Y T, X
, . Y
— . X
%;0 N++ N v Y Y***
45°  .054 .00769 .0159 .0187 L0345 L0339
5/2- 60° . 00802 .0157 .0215 .0385 .0386
90° . 00582 .0090 . 00746 0118 L0116
(0] ' ) *
45°  .567 .549 .456 L AT5 .567 571
7/2- 60° .555 .558 .641 .661 .675
90° 405 .381 414 . 459 .456
45° 0587 .00382 .00581 .0112 L0120 .0132
9/2- 60° .00525 . 00761 L0112 L0133 .0142
90° .00281 .00638 .0105 L0101 L0113

- .
» We normalize the data to this number. .

¥* *
Includes the 4+ state of the Target nucleus.

* 3% %

-Gle-

The other calculations include 2+ only

Calculatlon excludes the 1=7 components of uhe 31ngle particle wavefuncticn.
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Table VIII.3. Partial differential cross section at 65° for
the Strl?glng of 12.1 Mey deuterons leading to the [521] 3/2-
band in The data was taken at 10.472 MeV. In this
table, we have normalized both the data and the theory to 1.0
for the 7/2- state (lower of each pair. The upper of each pair
- 1s unmnormalized; note the nearly constant strength of the 7/2+

‘state. Note that 65° at 10.472 MeV does not correspond to
exactly the same point in the angular distribution at 12.1 MeV.
The best improvement is in the 3/2- state where thé experimental

.633 is to be compared with DWBA (. 4) and CCBA (.585 or .657)
and in the weak 5/2- otate.

+. v } ¥
State  Expt. Y Y Y
| Nt N | fi o Y
3/2- 1.0  .026 -~ .03 .038 . 046
.633 .4 461 585 657
5/2- .06  .0012 .0025 L0052 L0037
.038 .0185 .038 - os .05%
7/2- 1.58  .065 065 L 065 .07
1.0 1.0 1.0 ' 1.0 1.0
9/2- .12 .0056 . 0056 ;0083 . 007
.076 .086 .086 127 .1

*For these, we employ the wavefunction of Table V.17, In all
other cases that of Table IV.10 was used.

*In first line, N and Y signify absence or presence of inelastic
coupling in entrance channels.

*In the second line, N and Y refer to coupling in exit channels.
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Table VIII.4 (part one). Strigging of 12.1 MeV deuterons lead-
ing to the [52173/2- band in 157Gd. The upper numbers of each .
pair are the theoretical numbers as calculated; the lower o
are the values of (Experimental/Theory) for that angle. These.
numbers should ideally all be equal; the great reduction in

the range of values when inelastic processes are included is

‘evident -- especially if the 125° results‘aré ignored.
! "
State Expt.” | N Y
N * Y
e g I
K L A
ol
60 0 .000189 : . 00442
5/2- 49 o - .000129 0015
125 o . 000063 . 000529
0238 g1 A 7!
Ve s S i
s oo gz o
o 5 e o
(I N N
125 11 8200 4490

For explanation of * and *, see Fig. VIII.4 (paft two).
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Fig. VIII.4 (part two). "In top row, N or Y 31§n1fies absence
or presence of coupling in entrance channels. + Same for exit.

q_. * ¥
State Y ! Y
»*
Y N Y
60 . 0406 *AR R .0415
3596 3518
3/2- 4 .0139 .0145
k 3957 3846
' .0042 .00456
125 5470 5044
o 60 .00492 .00333
-5/2‘ 90 . .00157 .00126
125 .000515 000447
co - -0981 . 08764 .0725
2405 2639 3055
7/2- 90 0505 .0447 .0393
¢ 2614 2766 3358
195 .0182 L0166 0 .0145
. 3791 4170 4759
6o - -00587 . 00507
° 3918 4536
9/2- g .00355 .00312
- 2535 2885
‘ .0026 .00222
125 4255 4955

*In_this case B;;.B in proton channels.

**in:theSé cases, 07/2_ is multiplied by .85.

e Where not given, as for the other N; N column.
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Table VIII.5. Str%g?ing of 16 MeV deuterons leading to the
521 3/2- band in Gd. The effect on the geometry of the
3/2 diffraction pattern is dramatized by the - way that the

450 cross section is halved, whlle at 300 and 60° it is nearly
doubled. : : ‘

| State : 8. ~ DWBA S CCBA
30 L0676 - .105
3/2- 45 L0470 L0242
60 | . 0260 L0404
30 ~.00052 . .010
5/2- 45 00031 .0054
| 60 . .00019 . .0048
| 30 246 . ,202
7/2- 45 | 117 RS &1
| 60 . 104 . . 0837
30 .00484 - .00974
9/2- 45 00775 L0103

60 .00388 . .00738
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Figure Captions for Chapter VIII

Fig. VIII.1 The influence on stripping of the presence or
absence of transitions going through the 2+ of . 24Mg and
of no coupling or complete coupling among the two final
states in 29Mg (g.b.) are illustrated. The inelastic
transition to the 2+ state is calculated in first order
(DW) in this figure. The deformations assumed are f =.4

' in the deuteron channels and (@B.=.3 in the proton channels.,

Flg. VIII 2 The same reaction as shown in Fig. VIII.1. Curves
labelled (2=.4, Pa=.3 have this deformation in cc calcula-
tion of outgoing inelastic scattering together with a cc
calculation with p2=.4 of the deuteron scattering which
includes the 2+ target state. Also shown is the effect on
this calculation of projecting the 2+ state out of the
entrance channel. For comparison we show the result (see
Fig. VIII.1) of treating the incident channels in with
the 2+ state excited iR first order (dw), and the pure
DWBA'calculation.

Flg. VIII.3 The effect of varied spin-orbit interaction on
: CCBA calculation ( Pfa=.4 in incident, A =.3 in exit '
channel scatterlng) Curves labelled VLSP=6 have this
spherical spin-orbit interaction in the proton channel,
those labelled VLSD=5 have this spherlcal spin-orbit 1nter—
action in deuteron channels.

Fig. VIII.4 Comparison of complete DWBA and CCBA calculations

with spin-orbit interaction (Vs =5 for deuterons,V=6 for
protons) included. The data has been normalized at the
stripping peak of the 5/2+ state. To facilitate comparison
with other levels of the nucleus, we state that the experi-
mental results have been multiplied by .625. For note on
relative strength of the DWBA calculation without spin-orbit
potentials, see text. o

Fig. VIII.5 The reaction 24Mg(d,p)25Mg(g.b.) with 10.1 MeV
- deuterons., Comparison of polarization for CCBA and DWBA
calculations leading to the grcund state.

Fig. VIII.6 The influence of courling in the exit channels
upon_the stripping gf 10.1 MeV deuterons leading to the
[211]1/2+ band of Mg. The number of radial components
in the Faessler-Sheline bound state neutron wavefunction
is seven, except that the DWBA calculation is also shown
where eight components are included. The calculation was
performed with exit channel deformation 2 =0.2,0.3; in each

gzii -
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case we used optical potential B of Table VII.1. The

1/2+, 3/2+, 5/2+ states are normalized to the DWBA cross
section at 20°, by multiplying by .785, .812, .99 respective-
ly, for both values of B2 .. The 7/2+ level has been -
scaled by 1.225 for #8,=,2 and by .570 for pa =.3. We

compare (.3/.2)2=2.25 with 1.225/.570=2.15.

FPig. VIII.7 The stripping of 10.1 MeV deuterons on 24Mg
leading to the [211 1/2+ band. The effect on a direct
transition of successively adding transitions through the
target 2+ state (excited in DWBA% and coupling among-the
exit channels ( 8,=.%) is ilkustrated. There are no
spin-orbit potentials used in these calculations.

Fig. VIII.8 The efgict_of inelastic scattering processes
in the reaction “*Mg(d,p) at 10.1 MeV is illustrated by
comparing the complete calculation CCBA with the usual
DWBA which omits these processes. _ This calculation includes
the four lowest states of the [211)1/2+ band. Also shown
is a CCBA calculation in which the nuclear deformation in
the 25Mg channels is increased from 0.3 to 0.4. Spin-orbit
interactions, Vgo(prot)=6 and Vg y(deut)=5 were used.

- Pig. VIII.9 The influence of spin-orbit térms in deuteron

and proton optical potential is illustggted in a CCBA
calculation of the [211]J1/2+ band in <°Mg. We used
Vgolprot)=6, Vg, (deut)=5.

FPig. VIII.10 PFor the same reaction as Fig. VIII.9, we
illustrate the effect of increasing the absorption of the
proton optical potential by changing W from-3 to -6. Also
shown is the effect of omitting the 1=4 component of the
bound neutron wavefunction. This wavefunction (see text)
was different from that used for obtaining figures 6 through
9.

Fig. VIII.11 1Illustrated is a complete calculation for the
{211] 1/2+ band, comparing with the dataB3 using the "best"
wavefunctions (see text). The factor by which the data has
been multiplied in order to fit the stripping peak for each
state is shown. - _ :

Pig. VIII.12 Comparison of complete DWBA and CCBA calculations
of the stripping of 12.3 MeV deuterons leading to the ground
band of 25Mg. Also shown on the figure is a hybrid calcula-
tion (in which the deuterons but not the protons undergo
inelastic scattering) and a CCBA calculation in which the
scattering in entrance and exit channels is calculated with
nuclear deformation f.=.5. The factors N(5/2) and N(7/2)
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are the factors by which the_theorétical numbers have been
multiplied in order to get the normalization shown.

Fig. VIII. 13 The influence of inelastic processes on the
strip of 12.1 M?g deuterons leading to states of the
[53 7/2+ band of TEr is illustrated. Inelastic processes
involving the entrance channels (target 2+ only) and exit
channels are included separately and together in calculations
-that are compared with +he DWBA calculation. .

Fig. VIII.14 The effect of inelastic processes on the
stripping gf 12.1 MeV deuterons leading to the [512]5/2-
band in 6 Er. We compare calculations in which trans-
itions through the target 4+ state are included with
those with the 2+ state alone. We also give the result
of a calculation in which the 7/2-, 9/2— and 11/2- levels of

this band are coupled together instead of the 5/2-,7/2-, 9/2—:

Fig. VIII.15 Further study of the reaction of Fig. VIII.14.

- Here we illustrate the effect of omitting exit channel
coupling and of omitting the 1=7 components from the
wavefunction of the bound neutron.

- Fig. VIII.1? We compare the excitation of the 532 KeV gamma

-~ band of TEr with the DWBA excitation of the ground band.
The states of t%e gamma band are fed diretily through the

¥ 2+ state of 1066Er alone, with no exit ‘channel coupling.
The justification for this comparlson is given in the text
(end of Chapter VIII, section B.1).

Fig. VIII.17 A study of 1nelast1c processes in the stripping
of 12.1 MeV deuterons leading to the g.b. of 155Sm. Apart
from the DWBA case, we include transitions:through the
target 4+ state.

Fig. VITI.18 In this figure we illustrate the importance of
the target 4+ state in the same reaction of Fig. VIIT.17.

Fig. VIII.19 A study of stripping to the same band in the
neighboring nucleus 157Gd. We compare a DWBA calculation
with a full CCBA calculations, and CCBA calculations in
which we increase the exit channel optical deformation to
0.3 or scale c by a factor of 0.85. The data is
normalized to %ée 7/2- level, calculated using CCBA with

scaled by O. 85 For the 7/2 level, we also give the
D%éﬁ scaled by (.85)2. ' o

Fig., VIII.20 The effect of inelastic processes at 16 MeV for
- the same reaction as that in Fig. VIII.19 is illustrated
by comparing complete CCBA and DWBA calculations.

j
{
1
|

-

vl
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IX. SUMMARY AND CONCLUSION -

A. Summarx

The customary theoretical analyses of stripping reactions‘

- 1gnore the possibility that the incoming_déuteron and outgoing

proton can excite the target or residual nucleus, although,
if‘the nucleus is strongly deforméd, the probabilify that

a projectile (at typical stripping enefgiés) will excite
rofational‘transitions is quite large. There is now a large liter-
ature inlwhich the conventional analysis QfAStripping reactions

on deformed nucléi1'has been employed to_identify Nilsson

states and measure the probabilities of j components within

these states. In this work we have studied in detail,‘fér
magnesium and selected nuclei of A=155-167,lthe role that

inelastic processes (specifically fotational excitations) play

in stripping reactidns, the eXtentvto whlch they invalidate

the cusfomary analyses and the possibilitytthat more refined

'spectroscopic information can be obtained if their effect is

- included in the calculations.

We have used the source ferm4 approach which we have éhown
is equivalent to the natural generalizatioh of DWBA that had -
previously been writtén,down by.Pénny and‘Satchlevr.3 We
derive thislatfer in a manner that exhibits the approkimations
that remaih. We haye discussed in some detail the calculation

of the neutron bound state wavefunction and stress the_sensitivity

/
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.of theAreéults to the correctness of—this procedure. In the
}courseAOf d§termining suitable optioal.potentials, we fitted
certain inelastio'deutéron scattering data for samarium and
erbium, getting slightly differentvdefofmatiOn paraheters from

 those appropriéte to (o,x') expefimeni{s.43

B. Conclusions

At the end of Chapter II we 1isted possible consequences for
stripping calculations on deformed nuclei;of including inelastic
processeé. We shall now discuss these iﬁ'the same order.

1. We have seen that it is no longer po#Sible fo factorize
~the angular distributions of vafious levels of arbitrary bands
in the form O°(8) CJ; 0%(8) . There is ‘a strong tendency
for wéakvstates of a band to be enhanced: the cross section of

the strohg levels in a band may be enhanced or reduced, and

in prinoiple this is important where the quasiparticle occupa-
~tion féctors,(iz of several bandsrare.to-befcompared, for
example, or an absolute cross section caloulation attempted.
.However, it is probable that even with étripping transitions
.through_the.target 2+ state'included (or other inelastic
procesSGS) that a very strong state, I, will be fed mostly

through the component j=I. 1In this case, there is approximate

proportionality to cZintthe reétricted sense that over a limited

range of ¢ the cross section of this particular state I will
be roughly proportionéte to CI2' ‘This is not true for weaker

" levels, and the proportionality constant is different for

6’1
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each state.

2. Certain distincti.ve features of the angular distributions

in light (A~25) nuclei can be exblained,.ih particﬁlaf the |
"deependenceﬂ of the 1=2 levels iang;‘ However other detailsv
such aé the precise shape of the ét;ipping peak  or the large

back angle cross section were not explained. This latter may

be improved by decreasing W(deut) but thisbappears to be

a fundamentally unmotivated artifice ( but see the end of

‘ Chapter II; section C). The inelastic préCesses considered
do not account for the differencé between-ﬁstripping” and‘
_"écattéring".optical potentials.

3. The‘angular distributions were often COhsiderably altered,

to the extent that a diffractiop pattern might appear where

none had been, or maxima and minima would interchange. The

overall shape of the meédium strength 5/2- level in erbium

was changed to the'péint where it had more the appearance
of an 1=1 than of an 1=3 transfer. For such levels more than

four experimental points are necessary to set the scale or

vdefine‘the l-transfer unambiguously, unless, that is, a

calculation including inelastic processes ( and, where needed,’
coriolis mixing) had been performed. Even so, there are as

yet no experimental grounds to assure us that our calculation

'is adequate for this. Unfortunately, we do not know precisely ‘

~ how an alternate deuteron optical potential ( we say deuteron -

because of the particularly serious ambiguities - that ariée)
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could affect'the pésitions Qf’ﬁhe sometimés gquite marked
diff;action minima. | |

We havé mentioned above how j-dependence comes out of the
calculations for Mg. Little is known expérimeﬁtally about
thié for the heévier deformed nuclei. iIn any case, for the
heavier nuclei, we did not include a deuteron spineorbit boten—
tial. - |
4. Our diécussion in Chapter VII makes the finding of ref.28
plausibié; but we have not demonstrated'it.explicitly.

, . 50 ;

- 5. The speculations concerning the probable effect of'ihelastic
processes on_tﬁe angular distributions hawe been shown to be
untrue in general, except perhaps for the dominant.member

of a band.

General Comments

In our deformed rare earth calculations, we were not

‘usually able to get perfect agreement_with the experimental

results. There was always a considerable»imprdvement, however,
and we were geﬁerally able to give plausible arguments about
the discrepancies in terms of coriolis mixing (5/2- band in

67Er) or perhaps an incorrect radial wavefunction (7/2+ band

in 167Er), The cross section is extremely SEHSitive to this
latter, and our (in principle, readily remediable) lack of
knowlédge of the effect of pairing on the observed gquasiparticle

energy made the asymptotic form uncertain. 'In dne case (157Gd)

- we achieved good agreement with the datalgexcept,at back angles)
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'profidéd‘éne j-component was scaled sémewhat.

| We héve shown that inelastic processes a:e pOténtially, at
least, as important as coriolis mixing, and suggest that these
together might explain the very bad agréément with theory

for the[512]5/2- band in '®7 Er. In addition, we have used this
theory td make it plausible that a previously unassigned level

, 1 ‘ :
in the spectrum of 'C'Er is the 11/2- level of [512)5/2- in

"spite of its strength. This suggests how our program might be

used fq‘deduce spectroscopic information. In the s-d shell too
we have strengthened the claimso that 24Mg'is prolate and
axially symmetric. Further, we have been led to speculate

2
that the core in 5Mg has a somewhat different structure to

24Mg, although for reasons stated this is less certain. Our

~ calculations did not seem to consistently underestimate or

overestimate. the importance of inelastic prbcesses.
We claim that a "good" DWBA ahgular distribution shouid

not necessarily lead to confidence in the theory; we have in

27

mind the vibrational case' discussed in Chapter II. Angular’

distributions depend primarily on the l—transfer,and in some

cases, the .inelastic processes largely involve the same 1, so-

that the overall cross section is scaled somewhat without much.

changing the angular disfributionﬁ This phenomenon occurs

.most markedly for a level in a rotational band ‘that has most

of the direct stripping strength.

‘Finally, we believe that we have demonstrated the utility
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of the.sburée-term-procedure4 for the inélusion of inelastic
processes in stripping reactions. We aré still faced withra very
'_big computing job (One calculétign in fhé‘rére earth région
can easily take an hour, filling the CDC6600) and it is not | @
always possible tovreﬁeat calculations;pefformed with too;

hastily chosen parameters.

Extensions of the present work are (a) a less modelistic
study of energy dependence (see, "Experiments" below), (b) -
" the inclusion of coriolis mixing,‘(c) a better treatment of the

proton scattering problem: a program to study the inelastic

scattering of protbns for odd nuclei With’spin—orbit interactions
included should be written. Related to this is (d) the

inclusion of tranéitions between bands. In the magnesium

region in particular, the enhancement of é§1léctive transitions
over single particle trangitions is perhaps, ten. This
:corresponds to amplitude enhancement of abqut,three, potentialiy
a. source of error where the effects of Sinéle pérticle transitibns

can act coherently.

We also recognize the desirability of printing out and
B exémining‘éomeypf the wavefunctions involved, eépecially perhépé‘. |
- the deutéron wavefunctions in the case where the 1=3 transfer _ %
| ~ angular distribution was altered to look like an 1=1 transfer
reaction. It was postulated thatithe_deuteron wavefunction j"'

_component corresponding to excited target states was concentrated

at the nuclear surface. It is to be understood that giVing a
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complete account of this might prove to be a substantial project,

owing to the large number of'degrées_of freedom involved.

Experiments Needed

Most obviously, we have no assurance that our predicted

angular distributions, which differ in many instances from

DWBA results; are; in fact, good. Perhaps-instead of 150

states at four angles, someone will measure 15 states at 40
angles? Preferably in a nucleus where the coriolis mixing is

thoughtto be small, at least for one band, and specifically

28 : - : ,
- not tungsten. = An effort would be made to measure weak levels.

. 157
The ground band of 57Gd might be a good candidate. The

measurements would be carried out for a series of energies,

at each of which (d,d) and (d,d'(2%,4¥)) angular distributions

would be taken. If possible, (p,p') measurements would be

taken at each corresponding energy. It would be interesting to

1carry out this program in an energy rahge straddling the coulomb

barrier. A similar program is needed for A~25. Here, however,
the seeming greater importance of the spinfbrbit interactions
makes déSirable a full set of polarization measurements .

We have scarcely mentioned the deforméd actinides. Unfor-
ﬁunétely, the simultaneous increase in integration radius and
number of'partial waves make calculations_With our program
(in which the spins of the'projectiies are treated correctly)V 'i

prohibitive.
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. APOLOGY TO THE READER

- To be perfectly intelligible,
one must be inaccurate; ’
. to be perfectly accurate,

‘one has to be unintel{igible,

4
= |
{Bertrand Russell
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