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Abstract

Background—Dynamic functional network connectivity (dFNC) of the brain has attracted 

considerable attention recently. Many approaches have been suggested to study dFNC with sliding 
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window Pearson correlation (SWPC) being the most well-known. SWPC needs a relatively large 

sample size to reach a robust estimation but using large window sizes prevents us to detect rapid 

changes in dFNC.

New method—Here we first calculate the gradients of each time series pair and use the 

magnitude of these gradients to calculate weighted average of shared trajectory (WAST) as a new 

estimator for dFNC.

Results—Using WAST to compare healthy control and schizophrenia patients using a large 

dataset, we show disconnectivity between different regions associated with schizophrenia. In 

addition, WAST results reveals patients with schizophrenia stay longer in a connectivity state with 

negative connectivity between motor and sensory regions than do healthy controls.

Comparison with Existing Methods—We compare WAST with SWPC and multiplication of 

temporal derivatives (MTD) using different simulation scenarios. We show that WAST enables us 

to detect very rapid changes in dFNC (undetected by SWPC) while MTD performance is generally 

lower.

Conclusions—As large window sizes are unable to detect short states, using shorter window 

size is desirable if the estimator is robust enough. We provide evidence that WAST requires fewer 

samples (compared to SWPC) to reach a robust estimation. As a result, we were able to identify 

rapidly varying dFNC patterns undetected by SWPC while still being able to robustly estimate 

slower dFNC patterns.

Keywords

functional magnetic resonance imaging; fMRI; brain dynamics; ICA; resting state; phase; shared 
trajectory; dynamic functional network connectivity

Introduction

Dynamic brain functional connectivity is currently a major focus in the neuroimaging field. 

The idea is that brain connectivity may not always be static and unchanging during the scan 

length (Allen, Damaraju, Plis, Erhardt, & … 2014; Hutchison, Womelsdorf, Allen, et al., 

2013). Several methods have been proposed and applied to study dynamic functional 

connectivity between regions (dynamic functional connectivity; dFC) or between networks 

(dynamic functional network connectivity; dFNC). Methods developed to study dynamic 

connectivity include hidden Markov models (Ou et al., 2013), coactivation patterns using 

clustering approaches (Liu & Duyn, 2013) and windowless dictionary learning (Yaesoubi, 

Adali, & Calhoun, 2018). One method that shares some similarities to the method we 

propose here is called the multiplication of temporal derivatives (MTD;(Shine et al., 2015)). 

As we elaborate in the discussion section, the similarity between MTD and our proposed 

method is only in the use of derivatives. However, our approach uses them in a different way 

which we also believe provides more intuitive and graphically interpretable results.

The most widely used method to study dFNC utilizes a sliding window to calculate Pearson 

correlation (SWPC) (E. A. Allen et al., 2014; Chang & Glover, 2010; Hutchison, 

Womelsdorf, Gati, Everling, & Menon, 2013). This method has resulted in a considerable 
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number of interesting new findings for different brain related questions, but it has several 

shortcomings (Hutchison, Womelsdorf, Allen, et al., 2013). One problem with SWPC is that 

to reach a good estimation for Pearson correlation we need a relatively large number of 

samples. This forces us to use window size larger than a specific length which can result in 

loss of information if the change in FNC is fast relative to the length of the selected window 

(Leonardi & Van De Ville, 2015).

Here we introduce a new estimator for dFNC which we call weighted average of shared 

trajectory (WAST). We show that WAST, compared to SWPC, requires fewer samples to 

robustly estimate dFNC. This allows us to use smaller window sizes and therefore faster 

changes can be detected. To demonstrate the utility of our proposed method, we compare it 

to SWPC and MTD (another method that aims to estimate time-varying connectivity at a 

more rapid time resolution compared to SWPC) using simulated data. Finally, we employed 

WAST to analyze a real resting state fMRI dataset including healthy controls and patients 

with schizophrenia. The dataset we used has been studied extensively in earlier works 

(Damaraju et al., 2014; Hare et al., 2019; Yaesoubi et al., 2017).

We first motivate and introduce WAST. Next MTD is introduced briefly and simulation 

procedures are explained. These simulations are designed in such a way to allows us study 

WAST and its properties within known scenarios and compare it to SWPC and MTD. 

Finally, we introduce the fMRI dataset used in this study and analyze it using both WAST 

and SWPC estimators and draw conclusions about the results.

Methods

Using trajectory as a connectivity metric

In this section, we introduce WAST, a robust functional connectivity estimator. Assume we 

have two time series labeled xi(t) and xj(t). We can define a new space unique to these two 

time series in which our time series pair at time t will occupy a location at coordinate [xi(t), 
xj(t)]. At each time point we can estimate the gradient ∇xi,xj(t).

∇xi, xj(t) = [
xi(t) − xi(t − 1)
xj(t) − xj(t − 1)] (1)

These gradients can show the trajectory shared between the two time series (i.e. xi(t) and 

xj(t)) in the new defined space. As ∇xi,xj(t) is essentially a vector it can be specified using its 

angle and magnitude:

∠∇xi, xj(t) = tan−1 [xi(t) − xi(t − 1)]
[xj(t) − xj(t − 1)]

∇xi, xj(t) = [xi(t) − xi(t − 1)]2 + xj(t) − xj(t − 1) 2
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Figure 1 illustrate a graphical presentation for angle and magnitude of the gradients as 

defined above.

It can be seen that ∠∇xi,xj(t) is not equal to ∠∇xj,xi(t). Therefore, its value depends on the 

time series chosen to act as the horizontal axis. To remedy this issue, we modify its value:

∠∇xi, xj(t) =
∠∇xi, xj(t) ∠∇xi, xj(t) < |∠∇xj, xi(t)|

∠∇xj, xi(t) ∠∇xj, xi(t) < |∠∇xi, xj(t)|

This will cause the angle to be limited to +45 and −45 degrees and invariant to the choice of 

horizontal or vertical axis. In addition, as the phase will be undefined if xi(t) = xi(t − 1), in 

this case ∠∇xi,xj(t) will be equal to zero. The same statement holds when xj(t) = xj(t − 1).

We believe ∠∇xi,xj(t) can act as a measure for functional connectivity (i.e. covariance 

between xi and xj). If the two time series are highly correlated (time series i vary very 

similarly to time series j), the gradient of these two time series would tend to form 45 degree 

with the i axis. ∠∇xi,xj(t) will be referred to as instantaneous shared trajectory (IST) for the 

remainder of this manuscript.

To demonstrate the relationship between the covariance matrix and the pair of ∠∇x1,x2(t) 
and |∇x1,x2(t)|, two time series were simulated using multivariate Gaussian probability 

density function (pdf):

[x1(t), x2(t)]~N 0,
σ1, 12 ρ σ1, 1σ2, 2

ρ σ1, 1σ2, 2 σ2, 22

Values for σ1,1 and σ2,2 were between 0.1 and 1. The correlation ρ had values with a range 

between −1 and 1. For each possible value of these three parameters, the 2 time series were 

generated with length equal to 300 time points. Next their angle (i.e. IST) and magnitude 

values were calculated for every time points. These values were then averaged, i.e. for each 

generated time series pair, we have one value (averaged) for IST and one for magnitude of 

the gradient. This simulation was repeated 1000 times.

Figure 2 illustrates these values where the x axis is one of our variable parameters while the 

y axis in the first and second rows are average IST and average magnitude, respectively. As 

can be seen in Figure 2, the average IST does not change with the variance of the two time 

series while it clearly changes with ρ (this does not mean that IST is independent of the 

variance). In contrast, the average magnitude values change primarily as a function of σ1,1 

and σ2,2 while remaining mostly constant with respect to ρ. One interesting insight here is 

that while the average IST does not change with σ1,1 and σ2,2, its standard deviation does 

change. This suggests that the estimator (namely angle of the gradient) standard deviation 

increases as variance values of the original time series increase. This is quite similar to the 

presence of standard deviation in standard error formula of some of the most well-known 

estimators like sample mean (Ahn & Fessler, 2003; Bondy & Zlot, 1976).
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To obtain an improved estimation of connectivity, we define a new estimator called weighted 

average of shared trajectory (WAST) by calculating the weighted average IST over a range 

of t−w and t+w:

W ASTi, j(t) =
∑k = t − w

t + w ∠∇xi, xj(k) × ∇xi, xj(k)

∑k = t − w
t + w ∇xi, xj(k)

As can be seen in the formula above, we are calculating the average of ∠∇x1,x2(k) using |

∇x1,x2(k)| as weights. As we showed in Figure 2, |∇x1,x2(k)| can act as a metric for the 

variance of the two time series. To make the units comparable to the SWPC values, all the 

reported values for WAST in this paper are divided by the value 45 (as the values of SWPC 

are between −1 and +1 while IST values are between +45 and −45).

Multiplication of temporal derivatives (MTD)

As mentioned in the introduction section, Shine et al., proposed MTD as an alternative 

approach to SWPC to estimate connectivity (Shine et al., 2015). The MTD approach, shares 

some resemblance with WAST and both methods aim to estimate connectivity using a 

smaller number of samples (in contrast to SWPC method where a larger number of samples 

are required to reach a robust estimation). Therefore, we have done some comparison 

between MTD and WAST in the current work.

The MTD formula is as follows:

MTDi, j(t) =
[xi(t) − xi(t − 1)][xj(t) − xj(t − 1)]

σiσj

Where σi is standard deviation of xi (for the whole time series). Figure 2 (the third row) 

shows the relationship between average MTD values and the covariance matrix defined in 

the previous section. As can be seen in the figure, MTD essentially only estimates the 

covariance and does not estimate the variance. Shine et al, proposed using a simple moving 

average (SMA) with MTD:

SMAi, j(t) = 1
2w + 1 ∑

t − w

t + w
MTDi, j(t)

For the rest of this manuscript, MTD refers to its SMA variant (i.e. the averaged version of 

MTD).

Simulations:

In this section, we describe a series of simulations designed to study the proposed approach. 

In all simulations, time series were simulated using a multivariate Gaussian pdf (with mean 

0).
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One challenging aspect of studying dFNC is summarizing the estimated connectivity values. 

An approach that has been suggested for this purpose employs k-means clustering to find co-

occurring connectivity patterns from the estimated dFNC values. This method has been 

applied successfully to methods like SWPC (E. Allen et al., 2014) and wavelet coherence 

(Yaesoubi, Allen, Miller, & Calhoun, 2015) to summarize connectivity related information. 

The benefit of this approach is that it provides an intuitive summary of several patterns of 

connectivity that tend to recur over time. We have designed all our simulations assuming that 

there are several underlying connectivity patterns driving the data generation. All the 

methods are evaluated in terms of their ability to estimate these connectivity patterns.

Simulation 1: For the first simulation, two time series (T = 300) with varying values of 

σ1,2 (between −1 and +1) were simulated:

[x1(t), x2(t)] ∼ N 0,
1 σ1, 2

σ1, 2 1

The aim of this simulation was to evaluate the relationship of the calculated WAST values 

with different correlation values (i.e., σ1,2).

Simulation 2: For this simulation, our aim was to explore how much error is introduced 

when the true correlation is static (constant over time) but analysis assumes that the 

connectivity is time-varying. As such, we simulated two time series (T = 1000) with random 

(static) correlation between −1 and 1. For each simulated time series, we then calculated 

WAST and SWPC using different window sizes. We also calculated the static value of these 

two metrics, i.e. window size for each metric was calculated to cover the whole time series. 

The error was then defined as the mean squared error between the estimator (WAST and 

SWPC) values and their static values. This simulation was repeated 1000 times.

Simulation 3: Next, two time series with 0 mean and covariance −0.5, 0, and 0.5 were 

simulated (the covariance remained the same for the whole time series). The length of the 

time series was chosen to be 1000. We then analyzed the time series using both SWPC and 

WAST with different window sizes. This simulation was repeated 1000 times and the 

histograms of all the values (across all simulations) were calculated.

Simulation 4: The aim of our fourth simulation was to examine the performance of WAST, 

SWPC and MTD in different scenarios. To do this, nine time series were generated using a 

multivariate Gaussian pdf. The covariance matrix remained constant for a period of time (we 

call this period one state, and the length of each state is called dwell time), then changed to 

another value (another state). For this simulation, three states with different lengths were 

simulated. We performed multiple simulations using different state lengths (Li) to explore 

different possible scenarios.

X ∼ N(0, Σt )
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Σt ∈ Σi i = 1, 2, 3

For each Σt, we first randomly chose a variance value between 0 and 1 for all nine time 

series. Then based on the variance values we calculated the covariance entries (off-diagonal 

entries) between the connected time series pairs to have a correlation of 0.7. The covariance 

entries between the time series that were not connected were assigned a value of 0.

To compare the approaches, we used them to estimate the correlation matrix at each window 

using different window sizes. This step resulted in a 9×9 symmetric matrix so 9×8/2=36 

values for each window. These were used as the input to a k-means clustering step (where 36 

was number of features) to estimate 3 clusters (cluster centroid; Ci). These cluster centroids 

are essentially an estimate for the original Σi. To check the accuracy of these estimates, we 

defined two metrics.

• Performance metric: We calculated the similarity between cluster centroids (Ci) 

and the true correlation matrices (Σi; true correlation matrix used for simulation) 

using Pearson correlation as the distance metric. This resulted in 3 values for 

each Ci. Each value indicates how close Ci is to a given (Σi) in terms of the 

variations between their elements. We then count the values higher than 0.8 for 

each Ci (i.e. if a Ci and Σi pair have correlation higher than 0.8 we assume the 

estimation of Σi is accurate). Thus, for each cluster we have 0 to 3 as possible 

values. The most desirable value is 1 (in which case Ci is close to one and only 

one of the Σis), while the worst case is 0 (where Ci is not close to any of the Σi 

values). The other 2 values (2 and 3) mean that Σi is similar to more than one Ci. 

This allows us to include Σi in the final results (compared to the instance that the 

performance metric is zero where Σi information is lost completely). The ratio of 

1s is then calculated as our performance metric. The reason we avoided using a 

measure like mean squared error to evaluate performance of the estimators is 

because calculating the mean squared error when the estimand varies by time is 

not straightforward. More importantly, our focus is on estimating the co-

occurring connectivity patterns (i.e. states correlation matrices) rather than the 

actual dFNC values in the current work.

• False positive metric: To quantify the degree to which each method 

overestimates the null covariance, we first found respective states for each 

window (for both WAST and SWPC methods), and then using their Σi, we 

generated a mask to only include zero values of Σi (The true covariance matrix of 

each state):

Mi(a, b) =
1 ∑i (a, b) = 0

0 ∑i (a, b) ≠ 0

Where a and b are correlation matrix indices.
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This mask was then multiplied into each estimated value of WAST or SWPC, 

and the average of non-zero values was calculated. In other words:

fpi = 1
Ni ∑Ci(a, b) ∀a, b Mi(a, b) = 1

Ni = number of non zero elements of Mi

fpi values measure the amount of overestimation of zero correlation for each 

estimated state (i.e. Ci). The overall mean of fpi is then calculated for each 

simulation:

fp = 1
3 ∑

i = 1

3
fpi

In this simulation, 3 scenarios are designed. In the first scenario, the dwell times of all the 

states are chosen to be very short. In the second scenario, the 3 states have different dwell 

times (one short, one medium length and one with large dwell time). For the third scenario, 

all the 3 states are chosen to be relatively large. Please note that the first scenario is designed 

to favor WAST /MTD while the third one is designed to favor SWPC.

Real data analysis:

The utilization of our proposed metric is demonstrated by analyzing a resting state fMRI 

dataset obtained as a part of the Functional Imaging Biomedical Informatics Research 

Network (fBIRN) project (Potkin & Ford, 2009). This dataset includes 163 healthy control 

(HC) and 151 schizophrenia patients (SZ). 162 volumes of echo planar imaging bold data 

were acquired using 3T scanners. The TR for all scans was 2 sec. Further details regarding 

acquisition parameters and data information be found in our earlier work (Damaraju et al., 

2014). Preprocessing included motion correction, slice-timing correction, and despiking. 

The data was then registered to a common Montreal Neurological institute (MNI) template 

and resampled to 3 mm3 isotropic voxels. Next The data was spatially smoothed using a 

Gaussian kernel with a 6 mm full width at halfmaximum (FWHM = 6 mm), and each voxel 

time course was variance normalized.

The data was then decomposed into 100 spatially independent time series and their 

associated spatial map using group independent component analysis (GICA). This method is 

implemented in the GIFT (http://trendscenter.org/software/gift) software (Calhoun, Adali, 

Pearlson, & Pekar, 2001; Erhardt et al., 2011). For the analysis, each subject’s 162 time 

points were first reduced into 100 dimensions using principal component analysis (PCA). 

Next, all subject’s data were concatenated and another PCA was used to reduce the 

dimension to 100. Finally, 100 maximally independent components were obtained from this 

data using ICA. We then visually inspected all 100 components and chose 47 components as 

intrinsic connectivity networks (ICNs). The ICN time courses were then band pass filtered 

between 0.01 and 0.15 Hz using a 5th order Butterworth filter. For a full description of the 

analysis on the data please check (Damaraju et al., 2014).
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The time series associated with these ICNs were used to calculate WAST and SWPC with 

different window sizes. The resulted values were clustered into 5 clusters. The cluster 

number was determined using elbow criteria (Thorndike, 1953). Next, the dwell time for 

each state was calculated for each subject. The dwell time is defined as the length of time 

each subject stay in one specific state after entering that state. The average mean dwell time 

is computed and compared between HC and SZ subjects.

Due to limitations imposed by the IRB of the original study we are unable to share the raw 

data, but it is possible to share the derived results, matrices and such upon direct request. In 

addition, all the code used in this study will be shared online and published as a part of the 

dFNC toolbox within GIFT (http://trendscenter.org/software/gift).

Results

Simulation Results:

First simulation—For the first simulation, two time series with correlation values between 

−1 and +1 were generated and static WAST (window size equal to the time series length) 

was calculated for each case. Figure 3 shows the non-linear mapping of correlation space 

resulted from WAST. As can be seen here the range of WAST is the same as the range of 

correlation but it has a slight non-linear tendency.

Second simulation: For the next simulation, two time series with random but constant 

covariance were generated and WAST and SWPC were calculated using different window 

sizes. These values were then subtracted from static WAST and Pearson correlation (i.e. 

window size equal to time series length) values to calculate error for each window size. The 

mean squared of these errors were reported. In addition, using the values computed and 

shown in Figure 3, we calculated a mapping of the SWPC values into WAST space and 

calculated the mean squared error based on these new values. The reason for this was to 

make sure the nonlinear nature of WAST does not impact the results greatly. Figure 4 

illustrates the mean squared error (MSE) for different window sizes for all 3 methods. As 

seen here, the MSE for WAST is smaller than the other two for all window sizes. The MSE 

decreases for all methods as the size of window increases.

Third simulation: In the third simulation, the WAST and SWPC values for 2 time series 

with constant covariance of −0.5, 0 and +0.5 was calculated. The histogram of all the values 

for each covariance is shown in Figure 5. It is important to note that, as expected SWPC 

values for very small window sizes (e.g. 3) are heavily skewed toward the extreme values 

(+1 and −1), while WAST has resulted in the desirable normal-like histogram even for our 

smallest window size. The skewness of the SWPC values for small window sizes is caused 

by this estimator’s high standard error for small sample numbers.

Fourth simulation:

Fourth simulation, Scenario 1:  For the first scenario, all the states had very short dwell 

times (between 5 and 6 time points). Figure 6 show the performance metric for this 

simulation while Figure 7 shows the false positive values. As seen in Figure 6, using window 
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size 3 and 5, WAST has achieved an improved performance compared to both SWPC and 

MTD. SWPC combined with window size 3 has almost 0 as performance metric while MTD 

with the same window size has higher performance (above 0.75) but it has a very high 

standard deviation too (compared to WAST). All three methods have low performance 

values when paired with window sizes 10 and 20. This is likely because when using window 

sizes higher than 10 the short states are smoothed out (window size 10 is almost 2 times the 

true dwell time of all states). Please note that MTD has higher performance values compared 

to WAST and SWPC using window sizes 10 and 20 time point but its average value is lower 

compared to WAST paired with smaller window sizes and it has a very high standard 

deviation too. As seen in Figure 7, WAST shows less false positive values for almost all 

window sizes. As the false positive metric of both second and third scenarios were very 

similar to the first scenario, therefore we have only brought one figure (Figure 7).

Fourth simulation, scenario 2:  In the second scenario, each state had different dwell time 

(5-6, 10-11, 15-16 time points) Figure 8 shows the performance metric for the second 

scenario. As seen in Figure 8, WAST has the highest average performance value for state 1 

and 2 (window size 5) while for longer state (i.e. state 3) SWPC shows the same 

performance value compared to WAST. For almost all the states MTD has lower average 

(and higher standard deviation) compared to both WAST and SWPC. One exemption is that 

when paired with a window size equal to 5 time points, MTD has higher performance values 

compared to SWPC. Even in this situation WAST is showing higher performance for all 

states.

Please note that the performance of all methods for the shortest states is lower than what was 

reported for the first scenario (Figure 6). This is likely because of how the simulations are 

set up. When the dwell time of the states are different (as is the case in this scenario), the 

data spend less time in total in the shortest state compared to the longest state. This in turn, 

causes the k-means clustering to be biased toward longer states.

Fourth simulation, scenario 3:  In the third scenario, all of the states had the same 

relatively large dwell time (20-21 time points). The performance values for the third scenario 

are depicted in Figure 9. For this scenario, WAST is showing very high (almost 1) 

performance values when paired with all window sizes while SWPC only shows high 

performance values when compared with window sizes larger than 3 time points. MTD 

shows overall lower average performance paired with higher standard deviation compared to 

WAST.

fBIRN resting fMRI results:

As mentioned in the method section, we calculated WAST and SWPC with different window 

sizes on the 47 ICNs extracted from fBIRN dataset. Figure 10 demonstrates the histogram of 

all the values calculated using WAST and SWPC with different window sizes (this 

histogram includes all the calculated values for both HC and SZ). As can be seen in Figure 

10, the histogram of WAST values is similar to a Gaussian pdf even for very small window 

size (6s) while SWPC histogram for window sizes 6s and 10s are heavily skewed toward +1 

and −1 values (related to spurious extreme values estimated due to the small sample size). 
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This is a well-known problem associated with the Pearson correlation. i.e. we need a large 

number of samples to obtain estimation with good standard error using Pearson correlation 

(Bowley, 1928).

The values of WAST and SWPC of each window size were then clustered using the k-means 

clustering approach. Figure 11 illustrates the cluster centroids for different window sizes 

when the cluster number is chosen as 5. The 5 clusters resulted from SWPC (except for the 

ones from SWPC with window size 6s) have been reported in our previous work too 

(Damaraju et al., 2014). Out of the 5 clusters identified from WAST, 4 of them are very 

similar to the ones from SWPC (clusters 1, 2, 4 and 5; See Figure 12 for the correlation 

between cluster centroids). However, cluster 3 from WAST looks quite different from those 

in SWPC. Interestingly the third cluster in SWPC with window size 6s is similar to this third 

cluster in WAST, but from Figure 10 we know that SWPC values from this window size (6s) 

are quite skewed toward +1 and −1.

Next, using the cluster index for all subjects, the mean dwell time was calculated for all 

states and a two-sample t-test was used to compare the mean dwell time between HC and SZ 

individuals. Figure 13 shows these results for different window sizes for both WAST and 

SWPC. Focusing on cluster 3 results, we see that in the case of SWPC results with smallest 

window size, the SZ subjects have higher mean dwell time (similar to the results from 

WAST for this specific cluster). For larger window sizes (i.e. 10s, 22s and 62s), both the 

cluster centroid (see Figure 11) and the direction of the effect changes, i.e., the mean dwell 

time for the HC subjects (compared to SZ) is higher for this cluster in larger window sizes. 

The direction of this result is quite similar to what we see for cluster 1 (for both WAST and 

SWPC). If we examine the cluster centroids in Figure 11, we can see that SWPC cluster 3 

for the larger window sizes are quite similar to the cluster 1 centroids (see Figure 12). It has 

the same positive connectivity block between AUD, VIS and SM domains. The difference 

between SWPC cluster 3 and 1 (for window sizes 10s, 22s and 62s) is in the connectivities 

between DM domain and the three domains AUD, VIS and SM. These connectivities are 

mostly negative for cluster 1 while they are more positive for cluster 3.

Discussion

In this paper, we proposed a new estimator called WAST for dFNC based on the gradient of 

change and a sliding window. To compare WAST with SWPC (the most well-known 

estimator for dFNC) and MTD (another method designed to estimate dFNC in shorter time 

resolution), we designed different simulations and evaluation metrics. We found that WAST 

performed better in these designed simulations. We also utilized WAST on a real dataset 

including SZ and HC individuals and found similar results to the SWPC method in addition 

to findings that are exclusive to WAST.

We first showed how to calculate gradient of time series and used simulation to show that 

the angle of these gradients, changes with the covariance between the two time series while 

the magnitude changes with their variances. Our proposed estimator, WAST, uses the 

magnitude of gradients to calculate weighted average of angle for each window. The resulted 

values were then showed to non-linearly map correlation values. Next, we showed that 
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WAST has less error when the correlation is static (does not change with time) compared to 

SWPC. This difference was more visible in smaller window sizes. We also showed that, 

even when we use very short window sizes, WAST results in values with normal like 

histogram while SWPC values would be highly skewed to −1 and +1 when the window size 

is short. A histogram that is close to a Normal distribution is a desirable but not sufficient 

feature to show the benefits of WAST compared to SWPC. Both these observations point to 

the possibility that WAST has lower standard error compared to SWPC with the same 

sample size.

Next, we simulated a dataset with nine time series having three different connectivity states. 

We simulated different connectivity state lengths to compare the performance of WAST with 

SWPC and MTD. We were able to show that when the states are very short, by using small 

window sizes we can correctly estimate these states using WAST while if we use SWPC we 

are unable to estimate them. In addition, we showed that even if the states are long, WAST 

works at least as good as SWPC. It is important to note that in real data, we do not know the 

true length of states (how fast does connectivity change). As large window sizes are unable 

to detect short states, using shorter window size is desirable if the estimator is robust 

enough. However, using small window sizes causes high error for SWPC in comparison to 

WAST, which has high performance even for very small window sizes. We also showed that 

WAST results in lower false positive values compared to SWPC, when there is no 

connectivity in truth. In addition, in all three scenarios, we were able to show that WAST 

outperforms MTD (higher performance average paired with lower performance standard 

deviation).

The similarity between the formula for MTD and our method is that both of them include a 

derivative term for xi and xj. Please note that there is multiplication between the derivative 

terms in MTD while in WAST there is division between those terms (This is an important 

difference). As we showed in the methods section of this paper, WAST is based on the 

graphical representation of the time series pairs in their defined shared 2D space (Figure 1). 

In this 2D space angle and magnitude of the gradients are calculated. The reason for the 

presence of derivative terms in the formula for WAST is that we are estimating gradient 

using the first derivative. There are many ways to estimate the gradient, but we start with the 

most straightforward approach, i.e. using the first derivative. Please note that in the 

derivative formula we need to divide the results by the time difference between the two 

consecutive samples but as this is a constant number in our case, we decided to ignore that 

division as it will not impact the final results.

In the following sections, we discuss the fBIRN results.

Results shared between WAST and SWPC:

Here, we discuss the results that are the same between WAST and SWPC. These results have 

also been reported in our group’s previous work where we utilized SWPC with window size 

44s (Damaraju et al., 2014).

Based on the SWPC results (for window sizes 10s, 22s, and 62s), we can see that SZ 

subjects spend more time in cluster 5 which shows weak connectivities between different 
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domains in general (this cluster shows sparsely connected networks). We see a similar result 

for the WAST results as well. Apart from WAST window size 62s, SZ significantly spend 

more time in cluster 5 (which shows sparsely connected networks again). In addition, HCs 

stay longer in SWPC states 1 and 3 which show strong connectivities. Based on WAST 

results, we see the same effect direction for cluster 1. Please note that cluster 3 for WAST is 

quite different from cluster 3 of SWPC (see Figure 11). All these results can be used to infer 

that SZ show dysconnectivity between different networks. Dysconnectivity between 

different parts of the brain has long been hypothesized to be a possible cause for 

schizophrenia (Friston & Frith, 1995; He et al., 2013; Iraji, Deramus, et al., 2019; Iraji, Fu, 

et al., 2019; Miller et al., 2016; Stephan, Baldeweg, & Friston, 2006; Williamson & Allman, 

2012). The presence of these connectivity patterns using all window sizes for the two 

approach, point to the slow nature of them in contrast with the connectivity pattern present 

in WAST cluster 3.

Results different between WAST and SWPC:

One connectivity pattern that is present in the WAST results but absent in the SWPC results 

is WAST cluster 3. This cluster shows negative connectivity between SM and the two 

sensory domains (i.e. AUD and VIS). Using wavelet decomposition Yaesoubi et al. found a 

similar coherence pattern when clustering only SZ (Yaesoubi et al., 2017). They were unable 

to find this specific pattern when clustering both HC and SZ together therefore no statement 

could be made about the significance of this state. In contrast to Yaesoubi et al. work, here 

we find a similar connectivity pattern (WAST cluster 3) using all the data. In addition, we 

show that SZ spend significantly more time in this state. There is considerable evidence 

supporting the presence of connectivity between motor areas and sensory regions for 

different cognitive tasks such as speech perception and production (D’Ausilio et al., 2009; 

Londei et al., 2010) in healthy individuals. In the past years, several studies have examined 

the sensorimotor connectivities in SZ compared to HC subjects. Kaufmann et al. reported a 

reduction in connectivity within sensorimotor nodes in SZ subjects (Kaufmann et al., 2015). 

In another study it was shown that connectivity in sensorimotor areas was lower in SZ 

compared to HC group (Berman et al., 2016). In contrast with the mentioned studies, we 

have not compared the connectivities in these regions between SZ and HC individuals and 

can only say that the SZ group spends more time in a state that shows negative connection 

between sensory (AUD and VIS) and motor (SM) domains. This alteration can be an 

explanation for hallucinations and delusions associated with schizophrenia.

A similar pattern is visible in SWPC cluster 3 using window size 6 sec. Using very small 

window size for SWPC has resulted in skewed values (see Figure 10), but because of using 

k-means clustering, we have been able to see the short pattern (negative connectivity 

between sensory and motor networks). This statement is supported by the fact that even in 

WAST results this short pattern is weakened and smoothed for larger window sizes.

Another (and not desirable) possible reason for the presence of this pattern in WAST cluster 

3 can be the non-linear way WAST maps the correlation values (see Figure 2). To explore 

this possibility, we used the values calculated using SWPC (for all window sizes) and 

mapped those values using the previously calculated curve in Figure 3. Then, we applied k-

Faghiri et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



means clustering on these values (which have the same non-linearity as the WAST metric). 

The resulted clusters did not change significantly compared to SWPC results, and we were 

still unable to obtain WAST cluster 3. In addition, WAST results show 4 clusters that are 

quite similar to SWPC results, so the new cluster does not appear to be caused by the non-

linear nature of WAST.

One additional advantage of our proposed metric (WAST) over SWPC is that by using 

derivative, WAST can possibly reduce the effect of auto-regression on the estimated 

connectivities. This is a well-known limitation of the SWPC which has been mentioned in 

other works (Afyouni, Smith, & Nichols, 2018; Arbabshirani et al., 2014). This claim needs 

further examination in future work and is outside the scope of this work.

Limitations:

One limitation of WAST is that it maps the correlation space non-linearly (see Figure 3). 

The reason we did not apply the transformation (Figure 3) to make WAST as linear as 

possible was to avoid making the method more complex. In addition, this non-linear effect is 

less important in our approach to dFNC analysis since the estimated dFNC values are not 

typically reported and interpreted by themselves. Instead, the estimated values are used to 

find co-occurring connectivity patterns, where the relative values between different parts of 

the brain are important.

Another limitation of this paper is that the simulation is not mirroring more fMRI-like 

properties. For example, our designed simulations do not include autocorrelation effects (a 

known property of the fMRI signal). The reason we decided to design our simulations 

without any autocorrelation is because we view WAST as a general method for estimating 

dynamic correlation/co-occurrence on any dataset (possibly without any inherent 

autocorrelation). Therefore, our aim was to showcase WAST in a more general setting in this 

initial work. In addition, using WAST on real data we managed to estimate 4 states that are 

quite similar to SWPC results, with an additional (possibly higher frequency) state that we 

are able to capture more robustly than previous studies, suggesting the WAST approach 

works well on real fMRI data.

Finally, we do not compare WAST to approaches such as instantaneous phase coherence 

(Cabral, Kringelbach, & Deco, 2017) or window-less dictionary learning (Yaesoubi et al., 

2018). We focus on a comparison of WAST with MTD for two key reasons. Firstly, we 

included MTD because the formulation is similar to that of WAST and thus is conducive to a 

more detailed comparison. Doing a detailed comparison with these and other methods is 

better addressed in a subsequent project. Secondly, we view WAST as a window-based 

approach and therefore comparing them with instantaneous connectivity estimation is not 

straightforward. Window based approaches (e.g. SWPC) use neighbor samples and therefore 

have lower standard error if connectivity is slower (in the most extreme case constant). 

Instantaneous connectivity estimators aim to estimate more rapid changes in connectivity (in 

the most extreme case connectivity is changing between each consecutive sample). One 

disadvantage of Instantaneous connectivity estimators is their higher standard error if the 

true connectivity is static or changing very slowly. Considering these two reasons in this 

work we chose to compare WAST with two window-based approach (i.e. SWPC and MTD) 
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and leave a more comprehensive comparison between different methods (both window-

based and instantaneous) for future study.

Conclusion:

Results suggest that weighted average of shared trajectory (WAST) is a good alternative to 

SWPC for estimating dFNC, particularly because it allows us to use shorter window length 

and therefore improve our ability to detect brain states. In other words, WAST requires fewer 

samples to reach the same results which allow us to identify faster changes in dFNC with 

more reliability. Here we showed the superiority of WAST to SWPC and MTD using several 

simulation scenarios. We also utilized WAST for a multi-site fMRI dataset including HC and 

SZ individuals. In addition to some shared results between WAST and SWPC, we identified 

an interesting state which was undetected by the typical SWPC method. The estimated state 

showed negative connectivity between sensory and motor domains. Results also suggest that 

SZ individuals stay in this state longer compared to HC. Here, we speculate that this 

alteration (which is not visible using SWPC) may be linked to the hallucinations and 

delusions associated with schizophrenia, though future work will be needed to test this.
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Highlights:

• New estimator for dynamic connectivity can detect both rapid and slow 

changes.

• We found a new dynamic connectivity pattern prevalent in schizophrenia 

patients.

• The new pattern showed negative connectivity between motor and sensory 

regions.

• This pattern cannot be detected using sliding window Pearson correlation.
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Figure 1. 
This figure explains the main idea behind our proposed method. The left plot shows the two 

time series xi and xj in the time domain. The length of time series is 3 here. The middle plot 

shows the defined 2D space where xi is horizontal and xj is vertical axis. The colored vectors 

(blue and red) are the estimated gradients at time 1 and 2 respectively. The right plot shows 

the 2 gradient vectors in red and blue and what their angle and magnitude mean graphically. 

The angle here shows how much one time series varies in comparison to the other time 

series at each time point. For example, if the angle is close to zero, it means that xj is not 

changing that much when xi changes. In the other hand if the angle is close to 45 degree, it 

would mean xj has changed very similarly to how xi has changed.
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Figure 2. 
The relationship between phase, gradient and MTD with the covariance matrix. As we can 

see here angle and MTD values change based on the ρ value (the top and bottom right 

figures). In contrast, the magnitude values change based on the variance of the two time 

series (middle two left figures). Based on this figure, we can say that WAST uses both 

covariance and variance information while MTD only uses covariance information and does 

not estimate variance.
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Figure 3. 
The relationship between WAST and Pearson correlation values. WAST (the blue line) maps 

the covariance space in a non-linear fashion while the Pearson correlation (the red line) 

maps this space linearly. Based on this figure we can say that WAST is a biased estimator of 

connectivity while Pearson correlation is an unbiased estimator.
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Figure 4. 
Mean Squared error (MSE) of WAST and SWPC when the true covariance is static. To 

remove the non-linearity effect of WAST (see Figure 3), we transformed the SWPC using 

the values computed and shown in Figure 3 and brought the results here as well (called 

mapped SWPC). Based on these results WAST shows lower MSE compared to both SWPC 

and mapped SWPC for all window sizes. As expected, using larger window sizes decreases 

the bias of estimation and therefore the difference is smaller for larger window sizes.
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Figure 5. 
The histogram of calculated values using WAST and SWPC with different window sizes. 

Here two time series with static covariance value (−0.5, 0, and +0.5) were simulated. Next 

WAST and SWPC were used to estimate covariance using different window sizes. As can be 

seen here WAST has normal like histogram even for small window sizes while SWPC values 

are skewed for small window sizes (window size 3 and 5). This suggests that WAST has 

lower standard error as an estimator for covariance compared to SWPC.
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Figure 6. 
Performance of the third simulation for the first scenario. Error bar represent the standard 

deviation of the performance metric for all the simulations. In this scenario, the state length 

was chosen to be small (between 5 and 6 time points). As seen here, WAST has been able to 

detect these states with higher performance compared to SWPC and MTD. For all three 

approaches, if we choose a window size more than 10 time points, the state is essentially 

undetected. In addition, note the higher error bar for both SWPC and MTD. This means that 
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WAST results are more robust (less varied between simulations) in addition to having overall 

higher mean (for window sizes 3 and 5 where performance is high).
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Figure 7. 
Mean false positive for all of the scenarios in simulation 3. Here we have calculated how 

much each method falsely estimates null connectivities as a non-zero value. As seen here, 

WAST has lower mean false positive values (especially for small window sizes). As reported 

in Figure 4, this difference is smaller for larger window sizes, but using larger window sizes 

reduces the ability of both metrics to detect shorter states (See Figures 6 and 8).
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Figure 8. 
Performance of the third simulation for the second scenario. Error bar represent the standard 

deviation of the performance metric for all the simulations. In this scenario, we had a very 

short state (with state length betWeen 5 and 6), and two longer states. For the very short 

state, as with the first scenario, WAST can detect this state more accurately compared to 

SWPC and MTD (as evidence by the higher value for performance). For the larger states, 

WAST has high performance even using window size 3 while to obtain good performance 
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values, SWPC needs at least a window size of 5. MTD shows lower average value paired 

with higher standard deviation.
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Figure 9. 
Performance of the fourth simulation for the third scenario. Error bar represent the standard 

deviation of the performance metric for all the simulations. In this scenario, all the states had 

relatively long dwell times (between 20 and 21 time points). The results suggest that WAST 

has very high performance values with all the examined window sizes. In contrast, SWPC 

has high performance only for window sizes larger than 3 time points. This means that 

WAST can achieve high performance using a very small window size even when the actual 
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covariance is changing more slowly. In this scenario too, MTD shows lower average 

performance paired with higher standard deviation when compared with WAST.

Faghiri et al. Page 30

J Neurosci Methods. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
The histogram of the calculated values from data using WAST and SWPC for different 

window sizes. As can be seen here, like what we saw in Figure 5 for simulated data, using 

small window sizes causes a skewness in calculated SWPC values. In contrast, even with 

very small window sizes, WAST is not skewed by spurious extreme values.
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Figure 11. 
k-means cluster centroids resulted from WAST and SWPC for several window sizes. 4 out of 

5 clusters have very similar centroids between WAST and SWPC (i.e. clusters 1,2,4 and 5), 

while cluster 3 is visibly different. Cluster 3 in WAST shows strong connectivity between 

SC, AUD and VIS. In addition, the SM domain has negative connectivity with SC, AUD and 

VIS domains. This pattern is exclusive to WAST results (A similar pattern is estimated using 

window size 6s for SWPC). Note that cluster 3 in WAST results fades out for larger window 

sizes.
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Figure 12. 
Correlation between cluster centroids (shown in Figure 11). For the window size 6s, all 5 

clusters from WAST are similar to the ones from SWPC (the correlation matrix has high 

values on the diagonal). For larger window sizes, cluster 3 for WAST diverges from cluster 3 

of SWPC (It is similar to cluster 5 of SWPC but the correlation is below 0.9 here). In 

addition, as can be seen here, cluster 1 of WAST is similar to cluster 1 and 3 of SWPC for 

larger windows. As seen in Figure 11, cluster 1 and 3 of SWPC are similar to one another. In 

conclusion, it seems that there is less similarity between WAST clusters (as cluster 3 is quite 

different from cluster 1) compared to SWPC clusters (where cluster 1 and 3 are quite 

similar).
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Figure 13. 
mean dwell time compared between HC and SZ for different window sizes using WAST and 

SWPC methods. We can see here that SZ subjects tend to stay more in cluster 5 for both 

WAST and SWPC results. This state shows a dysconnectivity between different parts of the 

brain that has been reported in some previous studies. In contrast, HC subjects tend to stay 

more in SWPC cluster 1 and 3 and cluster 1 of WAST which shows a strong connection 

between AUD, VIS and SM domains. One connectivity pattern exclusive to the WAST 

method is only seen in cluster 3 of WAST (see Figure 11). This cluster shows a negative 

connectivity between motor and sensory domains that is not present in any other cluster 

using SWPC method. In the current figure, we see that SZ individuals tend to stay 

significantly longer in this state compared to HC.
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