
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Source Localization of the Gastric Slow Wave

Permalink
https://escholarship.org/uc/item/1k21791c

Author
Allegra, Alexis B

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1k21791c
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Source Localization of the Gastric Slow Wave

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Signal and Image Processing)

by

Alexis Beatrice Allegra

Committee in charge:

Professor Todd P. Coleman, Chair
Professor William Hodgkiss, Co-Chair
Professor Truong Nguyen
Professor Piya Pal
Professor Geert W. Schmid-Schoenbein

2021



Copyright

Alexis Beatrice Allegra, 2021

All rights reserved.



The dissertation of Alexis Beatrice Allegra is approved, and it

is acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2021

iii



DEDICATION

This work is dedicated to everyone who supported me on my winding journey to get here.

Ron Lasser, who planted a seed.

Wade Lowdermilk, who encouraged me to reach higher and helped provide me with resources to

both work and perform my research.

My parents, for their continued love, support and excitement as I walked this path.

Daniel Carr, my husband, partner, and best friend who continuously reminded me that I was good

enough and smart enough to accomplish my goals.

To all of my family and friends, thank you for believing in me, supporting me, and helping me

get here.

To Cassini may you find your way among the stars, we love you always.

iv



EPIGRAPH

Any sufficiently advanced technology is indistinguishable from magic.
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impossible for those who thought of probability as a physical phenomenon associated with

”randomness”. Quite the opposite; we have thought of probability distributions as carriers of

information.

—Edwin Thompson Jaynes
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ABSTRACT OF THE DISSERTATION

Source Localization of the Gastric Slow Wave

by

Alexis Beatrice Allegra

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2021

Professor Todd P. Coleman, Chair
Professor William Hodgkiss, Co-Chair

Gastrointestinal (GI) problems give rise to 10 percent of initial patient visits to their

primary care physician. Although blockages and infections are easy to diagnose, more than

half of GI disorders involve abnormal functioning of the GI tract, where diagnosis entails

subjective symptom-based questionnaires or objective but invasive, intermittent procedures in

specialized centers. Although common procedures capture motor aspects of gastric function,

which do not correlate with symptoms or treatment response, recent findings with invasive

electrical recordings show that spatiotemporal patterns of the gastric slow wave are associated

with diagnosis, symptoms, and treatment response. In this dissertation, I develop non-invasive
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approaches to extract this spatial information. Using Computed Tomography (CT) or Magnetic

Resonance Imaging (MRI) scans from human subjects, I simulate normative and disordered gastric

surface electrical activity along with associated abdominal activity. I employ Bayesian inference

to solve the ill-posed inverse problem of estimating gastric surface activity from cutaneous

multi-electrode human subject recordings as well as the simulated observations. In Chapter 1, I

explore Bayesian inference methods with different prior distributions to extract spatiotemporal

patterns and identify an optimal technique termed Group Sparsity whose prior enforces both

spatial sparsity in the recovered sources and temporal smoothness. In Chapter 2, I explore a

modification to the inference method and develop automated techniques for isolating an optimal

solution for the Group Sparsity approach. Finally in Chapter 3, Using Fisher information, I turn

to exploring the limits of this problem by investigating how electrode size and density affect the

reconstruction of the gastric slow wave. I find that there is an electrode array configuration that

optimally trades off electrode noise variance with spatial resolution, both of which increase with

electrode density. Ultimately, this research shows that the gastric slow wave can be non-invasively

characterized with a recording from a cutaneous electrode array and medical imaging (CT or

MRI). While my approach still requires a simultaneous invasive measure for complete validation,

this body of work represents a critical step towards clinical non-invasive measures of gastric

health.
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Chapter 1

Bayesian inverse methods for

spatiotemporal characterization of gastric

electrical activity from cutaneous

multi-electrode recordings
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Introduction

Gastrointestinal (GI) problems are the second leading cause for missing work or school in

the US [1], giving rise to 10% of the reasons a patient visits their physician, and costing $142

billion annually [2]. Symptom management is routinely used by primary care physicians, and

patients are referred to GI specialists if symptoms persist, which happens most of the time [2].

While pathologic findings can be detected with a blood test, endoscopy, or imaging, oftentimes

symptoms cannot be attributed to a medical condition despite appropriate workup. These disorders

fall under the umbrella of functional and motility GI disorders such as Functional dyspepsia and

gastroparesis (which affects Parkinson’s and diabetes patients [3, 4]). These disorders make up a

majority of patient referrals to GI specialists.

The clinical gold standard for diagnosing motility disorders is gastric emptying, which

typically involves imaging after ingestion of a meal containing radioactive tracer. However,

gastric emptying does not correlate with symptoms [5] and is not associated with symptom

improvement [6]: some drugs improve symptoms but not gastric emptying and vice versa [7–9].

In fact, the NIH Gastroparesis Consortium has recently recommended that improvement in gastric

emptying not be considered a requirement for clinical drug trials in gastroparesis [5].

The GI system contains smooth muscle cells (SMCs) that are controlled by rhythmically

oscillating slow waves, whose spatiotemporal coordination enables peristalsis to propel food

through the GI tract [10, 11]. It has been observed during surgery with invasive high-resolution

electrical mapping of the stomach surface that direction and speed patterns of the gastric slow

wave co-varies with functional GI disorders, such as gastroparesis, chronic nausea and vomiting,

and functional dyspepsia [12,13]. In a normal functioning stomach, the slow wave is characterized

by bands of electric-motor activity which initiate in the pacemaker region (near the fundus) and

propagate in equipotential rings in the anterograde direction towards the pylorus [11]. It has also

been shown that in patients with GI disorder diagnoses, abnormal initiation can occur, where the
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bands of activity initiate outside the pacemaker region and bifurcate into a retrograde propagating

wave and anterograde propagating wave.

Moreover, recent findings show that features of mucosal multi-electrode recordings predict

symptom improvement from gastric stimulation [14–16]. This suggests that new opportunities

may emerge to phenotype, localize, and treat such disorders, if such information could be extracted

non-invasively.

Conventional electrogastrography (EGG), a noninvasive technique for recording the gastric

myoelectric activity using electrodes placed cutaneously on the abdominal surface overlying

the stomach [17], is attractive in its non-invasiveness and simplicity in interpretation of a single

waveform with spectral analysis. However, conventional EGG solely extracts spectral information

[18] and it has been shown that spatial abnormalities can occur at normal frequencies and thus

go undetected by conventional EGG [19]. This inability to capture spatial abnormalities that

co-vary with functional GI disorders, as well as its inability to correlate with symptoms, might

explain why conventional EGG is seldom used clinically [20]. Our recent advances with the

high-resolution electrogastrogram (HR-EGG) [21], acquired non-invasively from cutaneous multi-

electrode arrays, allows for extraction of abdominal wave propagation parameters at every time

point (e.g. presence of a wave, propagation direction and speed). We have recently demonstrated

that these features correlate with symptom severity in a population of GI patients spanning a wide

range of BMI and ages [22]. This is significant, given the lack of association between symptom

severity and gastric emptying. The HR-EGG, however, extracts spatial information relative to

the cutaneous surface of the abdomen. From volume conduction, the voltages from cutaneous

recordings are the results of an average of complex electrical sources from the gastric surface.

Moreover, it was shown [12, 13, 23] that retrograde and anterograde waves from one or more

sources can arise at the same time in the distal stomach, suggesting that cutaneous spatial analyses

will not be able to resolve them. As such, it has yet to be determined if one can develop a fully

non-invasive and simple signal acquisition procedure to reliably extract dynamic spatial patterns
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of gastric surface electrical activity.

In order to address the problem of non-invasively localizing the site of spatial abnormalities

on the gastric surface, we here consider developing inverse methods to infer spatiotemporal

electrical patterns on the stomach surface based upon multi-electrode abdominal recordings.

Ideally this problem could be solved with a standard linear least squares method if the number

electrodes in the observation array exceeds the number of unknowns we aim to infer. For instance,

if a linear model relating the unknowns x to the observation array y is governed by a matrix A,

then it is well-known that the least squares fit x̂(t) is given by:

x̂(t) = (AT A)−1AT y(t). (1.1)

However, eq. (1.1) can only be implemented when A is full rank. When it is not, e.g. when the

number of unknown variables exceeds the number of observations, the problem is considered

ill-posed and there are infinitely many candidate solutions which are equally consistent with the

data. One way to address this issue is to use Bayesian inference, in which a prior distribution is

specified that enforces a unique solution to a regularized model-fitting problem.

Using computed tomography (CT) scans from human subjects, we simulate gastric surface

electrical activity of stomachs for normative (with proximal wave generation and anterograde

propagation) and disordered (with distal wave generation and retrograde and anterograde propa-

gation) cases (see Figs 1.1 and 1.2). With a forward model to relate the gastric surface potentials

to the abdominal surface potentials, we generate a simulated abdominal surface observation

array positioned according to the same CT scan. To simplify the computational complexity of

the problem, we exploit how circumferential bands of equal potential travel in the organoaxial

direction [11] to construct a set of spatial basis functions defined on these annular rings of the

gastric surface. These different basis functions represent different numbers of wavefronts per unit

space. Thus, estimation of the gastric surface spatiotemporal electric activity is now in terms of
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estimating the time series of weight vectors.

Even with the simplification of the problem to a set of spatial basis functions, the estima-

tion problem remains ill-posed. As such, we take a Bayesian inference perspective and develop

different prior distributions on the time series of weight vectors, each of which pertains to an

estimation problem for finding the Bayes optimal point estimate, also termed the Maximum a

Posteriori (MAP) estimate. We consider three widely used prior distributions on the time series of

weights: Tikhonov regularization, `1 regularization (which encourages sparsity in the number of

active spatial wavefronts and can be solved with the LASSO), and a linear Gaussian state space

model (which encourages temporal smoothness and can be solved with the Kalman smoother).

In addition, we consider a recently developed [24] group sparsity prior which encourages both

sparsity in active spatial wavefronts and temporal smoothness. Further, we implement a recently-

developed computationally efficient procedure to construct the MAP estimate [25] associated

with this group sparsity prior.

We demonstrate that the estimation algorithm pertaining to group sparsity has superior

performance in comparison to all other methods, across a range of noise conditions, for both

normative and disordered gastric activity. Region-specific wave direction information is calculated

and consistent with normal (anterograde propagation in all regions) and abnormal (anterograde

propagation on one side of wave origination and retrograde propagation on the other) cases.

We apply these methods to cutaneous multi-electrode recordings of two human subjects who

have the same clinical description of motor function, but different underlying diagnosed causes

(diabetic gastroparesis in subject 1 and idiopathic gastroparesis in subject 2). We find statistically

significant wave propagation in all regions for both subjects, anterograde activity in all stomach

regions for subject 1, and retrograde activity in some stomach regions for subject 2.
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Previous Work

Much of the previous work on solving the inverse problem to infer the gastric slow

wave from cutaneous recordings is based on the magnetogastrogram (MGG) [26, 27] which

measures the magnetic fields produced by the gastric electric currents. Although the MGG

shows promise in its ability distinguish between normative and disordered gastric activity [27], it

requires measuring the magnetic field with large environmentally controlled equipment [28, 29].

The HR-EGG signals, in comparison, do not require such shielding and have the potential to be

deployed in ambulatory settings. [30].

One previous implementation of an inverse approach to gastric slow wave localization

based on simulated abdominal surface electrical measurements utilized a highly detailed but

generic ionic channel biophysical model using a generic torso model [31]. This previous approach

leveraged classic linear regression (Tihkonov and Tikhonov-greensite) techniques that have

been used in the EEG and ECG localization literature [31]. These regression methods attempt

to combat the under-determinedness of the problem through the use of regularization either

solely in the spatial domain with Tikhonov regression (as in [31, eqn 2]) or through the use of

spatiotemporal regularization with Tikhonov-Greensite regularization (as in [31, eqn 3]) which

uses a spatiotemporal basis [32] to accommodate spatiotemporal continuity in the solution.

Materials and Methods

Key to this study was the development of a three dimensional (3D) time evolving electrical

model from which we could generate dynamic simulations. To accomplish this, we first extracted

the 3D model of both the stomach and the abdominal surface from a human subject CT. We then

developed models of normal and abnormal gastric slow wave electrical activity using a solution

to a one-dimensional (1D) wave equation. To map this solution to the 3D stomach model, we

sliced it along planes normal to a curve along the stomach which we term the organoaxial curve
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(see Fig 1.1). To map the dynamic 3D model of the stomach to the abdominal surface, we solve

a standard forward model which assumes that the medium between the stomach surface and

abdominal surface is homogeneous with fixed conductivity. The output of this is the simulated

abdominal observation array of electric potentials into which we inject additive white Gaussian

noise (AWGN) and then apply the aforementioned Bayesian inference techniques to solve the

ill-conditioned inverse problem.

Figure 1.1: Process Workflow A) Using the 3 standard CT views, a 3D model of the stomach is
extracted. B) We develop a spatially inhomogeneous solution to the 1D wave equation, pertaining
to propagation down the organoaxial direction of the stomach, with region-specific amplitudes
and speeds based upon recent findings in the literature from invasive human recordings. C) The
1D wave equation solution is mapped to the 3D model to generate the dynamic dipole moment
solution. D) We solve a forward model to generate the dynamic simulated observations and inject
additive measurement noise.

Simulation Development

3D Physiology

Using 3D Slicer, an open source medical imaging tool [33], we extract an anatomical

3D model of the stomach and abdomen. We placed fiducial points on the abdomen to estimate
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electrode positions and fiducial lines were drawn on the stomach model surface using a secondary

tool (Meshlab) [34]. To simulate the averaging effect of the electrodes, the forward model was

solved at several points around the fiducial electrode marker on the abdominal model and averaged

together to generate the observation data Y ∈ RN×T where N is the number of electrodes and T is

the number of time samples. For this simulation N is 100 (a 10x10 grid of electrodes) and T is

300 time samples at a sampling rate of 5 samples/second. To map the dynamic simulation of the

gastric slow wave to the 3D model of the stomach, three equi-spaced fiducial lines consisting of

120 spatial points were drawn along the surface of the stomach model (see Fig 1.2 for an example

of one of the fiducial lines). From these lines, we derived a series of planes normal to the stomach,

and created grouped rings of spatial points. The center-line of the planes forms the organoaxial

curve. Onto each one of these rings, we mapped a value of the 1D wave equation solution as a

function of time sample. This represents the activation of the normative stomach in equi-potential

rings.

1-D Wave Equation

The gastric slow wave, like the heart, begins with the activation of a group of pacemaker

cells on the greater curvature of the stomach [35]. The signal emitted spreads isotropically from

the pacemaker region via activation of the interstitial cells of Cajal (ICC), which initiate muscle

contractions through the corpus and antrum. Typically, less than 5 simultaneous slow wave

wavefronts occur at any time in the human stomach [35].

Due to the continuous nature of the gastric slow wave, and the clear wave-like propagation,

we simulated a signal model based on the wave equation. In the normal simulation, wave activity

begins in the proximal stomach and the wave direction is entirely anterograde (traveling from

the proximal toward the distal stomach). As has been done with other gastric models of the

slow wave [21], we ignored circumferential propagation of the serosal slow-wave and solved the

8



Figure 1.2: Abnormal and Normal Simulation Propagation Directions A) 3D physiology
mapped normal simulation. The wave initiates in the proximal stomach and has only anterograde
propagation. B) 3D physiology mapped abnormal simulation. The wave initiates in the distal
stomach and has both retrograde and anterograde propagation. C) The different proximal and
distal regions of the stomach

following 1D wave equation using a finite difference approach:

∂2u
∂t2 = c(x)2 ∂2u

∂x2 (1.2)

where c(x) is the stomach surface location dependent wave speed, and u(x, t), the 1D wave

equation solution, is the amplitude of the wave at each location x and time t. Gaussian pulses

with a width of 35 mm were generated every 20 seconds (0.05 Hz) in the first proximal region of

the stomach. The pulse width, in addition to the modulations of its speed and amplitude along

the organoaxial direction of the stomach, were chosen to be consistent with the most recent

description in the literature for healthy subjects [35–37]. Both the speed and amplitude were
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highest in the first proximal region (6.0 mm/s, 0.57 mV), followed by a reduction in the second

proximal and first distal regions (3.0 mm/s, 0.25 mV), and finally increased in the second distal

region (5.9 mm/s, 0.52 mV). See Fig 1.2 for a description of regions. Mur’s boundary condition

was used to ensure the pulses were absorbed into the pylorus rather than being reflected back into

the stomach. The Courant-Friedrichs-Lewy condition dictated the temporal step-size to guarantee

a converged finite-difference solution.

This same approach is used to develop a dynamic simulation for abnormal initiation. For

this part of the simulation, we kept the pulse width as well as speed and amplitude of the wave

constant, but modified the initial conditions so that wave patterns were consistent with the findings

in invasive recordings [12]: a wave was initiated in the distal stomach and bifurcated into two

waves, one propagating anterograde at more distal locations and the other retrograde at more

proximal locations. Fig 1.2 describes the differences between the normal and abnormal initiation

simulations.

Forward Model

The 3D stomach model is sliced into annular rings and the 1D wave equation is mapped

onto the geometry to represent rings of equipotentials (Fig 1.3). This solution provides current

dipole moments at each point in time, and each dipole is oriented along the organoaxial direction of

the stomach [38], as seen in Fig 1.4A. We compute the estimated EGG signal at each electrode [39]

as:

yn(t) =
D

∑
i=1

An,ixi(t)+Nn(t) (1.3)

where yn(t) is the signal received at each of the N electrodes, An,i is the solution to the forward

model at each of the D sources on the stomach surface, and xi(t) is the dipole moment at each

source location and each instant in time. Nn(t) is additive white Gaussian noise (AWGN) of

adjustable variance σ2, giving rise to adjustable signal-to-noise ratio (SNR) in simulations, in

accordance with previous EEG simulation and inverse modeling methods [39].
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Figure 1.3: Visualization of Source Activity Mapped to the 3D Stomach Model A) 3D stom-
ach model with the normal dynamic simulation mapped at the 6 second time point. The two
dimensional time/space plot is shown below the 3D model. B) 3D stomach model with the abnor-
mal dynamic simulation mapped at the 6 second time point. The two dimensional time/space plot
is shown below the 3D model.

Figure 1.4: Dynamic Dipole Moment Simulations and Forward Model A) Forward model
relationship between dynamic dipole moments (X) and observed abdominal surface potentials
(Y) B) 3D models of dynamic dipole moments and observed array C) Time evolution of dipole
moments and observations for normal simulation
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For the purposes of this analysis, the body is modeled as a homogeneous medium which

contains the stomach surface. The solution to the forward model reduces to an attenuation

constant which depends on the positions of the source (stomach) and the sensor (abdomen). In

matrix notation, the simulated observations are generated as −→y (t) = A−→x (t)+
−→
N (t), and the

solution for the matrix is:

An,i =
cosθ

4πσr2
n,i

(1.4)

where θ is the angle between the current dipole (oriented organoaxially) and the observation

point on the abdominal surface, σ is the tissue conductivity (a constant due to the homogeneous

medium), and r the straight line distance between the current dipole and the abdominal observation

[38].

Inverse Solutions

Although the problem is ill-posed, we aim to take advantage of the fact that the electrical

activity of the stomach has key physiologic mechanisms that commonly occur both in normal

and diseased states. Specifically, (1) there is a small number of electrically active bands along

the surface of the stomach, and further (2) they move continuously over time. We aim to take

advantage of this prior physiologic knowledge to utilize Bayesian inference techniques to find an

estimate of the gastric electrical activity over time. Since the electrically active bands propagate

as waves along the gastric surface, we represent the stomach electrical activity at any point in

time as a weighted combination of different spatial basis functions, each of which represents

the numbers of wavefronts per unit space. As such, the estimation of electrical activity of the

stomach over time, boils down to estimation of the vector of weights over time. We consider

different models (prior distributions) of the weights over time which encode different subsets of

the two aforementioned physiologic underpinnings of gastric electrical activity. As a baseline,

we consider using Tikhonov regularization, the most common form of regularization in inverse
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problems, which neither encodes physiologic mechanism (1) nor continuous activity over time

(2). To solely address (1), the small number of electrically active bands on the stomach surface,

we use an L1 regularizer, which promotes sparsity in the number of active weights, and can be

solved with the least absolute shrinkage (LASSO) estimation algorithm. To solely address (2), the

smooth evolution of the waves, we use a Gaussian state space model, which promotes smoothness

overtime and can be solved with the Kalman smoother. To address (1) and (2) in the same

estimation method, we consider using a group sparsity model. Further, we use a computationally

efficient procedure to solve the MAP estimation problem for this model.

Basis Functions

For the problem of estimating the stomach surface potentials, we take into consideration

how the gastric slow wave contains bands of electrical activity that propagate as rings continuously

along the gastric surface [11]. We thus represent the spatiotemporal activity on the gastric surface

as a weighted combination of basis functions over space, where the functions are invariant with

time but the weights are indexed by time. Under our assumption that the gastric slow wave

travels along the organoaxial curve in rings of equi-potential, the bases are solely functions of the

position along the one-dimensional organoaxial curve. This curve is visualized in Fig 1.2 as the

points along the top of the geometry.

To construct the set of basis functions, we considered a spatial Fourier basis in which the

different sinusoids represent different spatial frequencies, or number of wavefronts that exist per

unit space:

(H)k,i = cos
(

πi
k
K

)
(1.5)

(H)k+K
2 ,i

= sin
(

πi
k
K

)
(1.6)

where i = 0, . . . ,D− 1 represents the spatial index along the organoaxial curve, and k/K for
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k = 1, . . . ,K/2 the relative spatial frequency component.

As such, we solve the problem with respect to basis functions of a line of sources and

map the inverse result to the full ring of sources.

−→x (t) = HT−→w (t) (1.7)

where HT is the basis matrix (D×K) and wk(t) are the K time evolving weights. This reduces

the problem to finding an optimum set of weights which are less than the total number of sources.

Eq (1.3) becomes

yn(t) =
D

∑
i=1

An,i

K

∑
k=1

hd,kwk(t)+Nn(t) (1.8)

where hd,k is the index into the basis matrix and wk(t) is the kth weight. Eq (1.7) simplifies in

matrix notation to:

−→y (t) = AHT−→w (t)+
−→
N (t). (1.9)

MAP Estimation for Source Localization

With the measurement model with respect to the basis representation given by eq (1.8),

which encodes the statistical model p(Y |W ), we formulate the localization problem as one of

finding the Bayes optimal point estimate of the time series of weights, which maximizes p(W |Y )

over W for any set of measurements Y . This MAP estimation approach takes into consideration

the measurement model p(Y |W ) along with the prior distribution p(W ) to identify a solution to

our ill-posed problem. The general form of the MAP estimation procedure is as follows:

ŴMAP = argmax
W∈RK×T

p(W |Y ) (1.10)
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where p(W |Y ) is the posterior probability of a set of weights W given a set of observations Y .

Using Bayes’ rule

p(W |Y ) =
p(W )p(Y |W )

p(Y )
. (1.11)

Since p(Y ) is not a function of W , and since the − log function is monotonically decreasing, the

maximizer in eq. (1.10) is equivalent to the minimizer of eq. (1.12):

ŴMAP = argmin
W∈RK×T

− log p(Y |W )− log p(W ). (1.12)

Since the likelihoood p(Y |W ) is governed by the forward model and additive Gaussian noise

model at the electrodes, from eq. (1.3), we have that the estimator in eq. (1.12) becomes:

ŴMAP = argmin
W∈RK×T

T−1

∑
t=0
||−→y (t)−AHT−→w (t)||22 +λpen(W ) (1.13)

where − log p(W ) is proportional to the penalty term pen(W ). In each inverse method described,

it is this penalty term which will change to support the underlying model assumptions.

Our source estimate for any time t is then:

−̂→x (t) = HT −̂→w MAP(t) (1.14)

We evaluate four different priors (pen(W )) over the weights, which encode different assumptions

about smoothness and sparsity. First, we consider Tikhonov regularization, a classic penalty which

was used in previous work [31] and is extensively used in EEG and EKG inverse analysis [40]

but does not enforce smoothness or sparseness in the solution. Second, we consider pen(W ) to

be a sum of `1 penalties over −→w (t) so that eq (1.13) becomes a LASSO problem [41], which

encourages sparsity in the solution. Third, we consider pen(W ) to encode a linear Gaussian state
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space model so that the solution to eq (1.13) becomes a Kalman smoother, which has been applied

to the problem of EEG source localization [42] and emphasizes smoothness (i.e. the solution

at time t1 is dependent on the solution at time t0) in the model. Finally we consider a group

sparsity prior, recently developed in [24] for robust spectrotemporal decomposition of time series,

for which an efficient and modular solution of eq (1.13) with respect to this prior was recently

developed in [25]. This group sparsity prior encourages spatial sparsity in the active wavefronts,

akin to the LASSO, and encourages temporal smoothness, akin to the Kalman smoother. Each

of these methods require finding one or more penalty coefficients λ. Because we generate the

ground truth simulation, we find the optimum λ by minimizing the error between the solution

found and the simulated data.

Tikhonov/Ridge Regression

Tikhonov ridge regression makes no assumptions about smoothness or sparsity but is a

classic method for solving ill-conditioned problems, by imposing an `2-norm penalty on W :

pen(W ) =
T−1

∑
t=0
||Γ−→w (t)||22 (1.15)

for some square matrix Γ. Unlike the other methods, Tikhonov regression has a closed form

solution:

−→w ridge(t) = ((AH)T AH +λΓ
T

Γ)−1(AH)TY (t) (1.16)

Tikhonov regression has been applied to this problem with some success in previous work on

gastric electrical source localization [31,43], hence it is included here with Γ = I for completeness.

The LASSO

The LASSO is similar in formulation to Tikhonov regression except that is uses an `1-

norm instead of an `2-norm. As a result, the LASSO encourages 0-valued weights which enforces
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sparsity in the solution:

pen(W ) =
T−1

∑
t=0
||−→w (t)||1 (1.17)

For this study we use the python Sci-kit Learn implementation of the LASSO [44].

The Kalman Smoother

The linear Gaussian state space model of the form

−→w (t +1) =−→w (t)+−→m (t)

where each −→m (t) is a multivariate Gaussian with zero mean and covariance matrix Σ. This gives

rise to the Kalman smoother as the MAP solution, which enforces smoothness in time. For Σ = I,

the penalty is as follows:

pen(W ) = ||−→w (0)||22 +
T−1

∑
t=1
||−→w (t)−−→w (t−1)||22 (1.18)

For implementation of the Kalman smoother we used the python pykalman package [45].

Group Sparsity

We here consider a group sparsity regularization technique that promotes sparsity among

groups of coefficients [46] (in our case, weights on the spatial basis functions). For this problem,

we establish groups of coefficients over time and impose the penalty on the first differences of

the coefficients [47], which imposes temporal smoothness on evolution of the coefficients. As a

result, only a sparse subset of the coefficients are non-zero at any given time, and those that are
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non-zero evolve smoothly over time. Formally, the penalty associated with eq (1.13) is given by:

pen(W ) =
K−1

∑
k=0

(
T−1

∑
t=0

dk(t)2

) 1
2

(1.19)

where d represents the first differences (in time) of w:

−→
d (0) =−→w (0) (1.20a)

−→
d (t) =−→w (t)−−→w (t−1), t = 1, . . . ,T −1. (1.20b)

The group LASSO can alternatively be viewed as the composition of `1 and `2-norms. To

see this, first note that: (
T−1

∑
t=0

dk(t)2

) 1
2

= ||
−→
d k||2 (1.21)

where
−→
d k , [dk(0), . . . ,dk(T −1)] is a vector representing the first differences of the coefficients

associated with the kth basis function. Note the similarity in eq (1.20b) combined with eq (1.21) to

the Kalman smoother penalty in eq (1.18), involving an `2 norm operating on temporal differences

of the weight vectors. Using the representation in eq (1.21), we can rewrite eq (1.19) as:

pen(W ) =
K−1

∑
k=0
||
−→
d k||2 = ||−→v ||1 (1.22)

where −→v , [||
−→
d 0||2, . . . , ||

−→
d K−1||2]. Succinctly, the penalty is an `1-norm of an `2-norm of time

differences.

Under this interpretation, the `1 norm will allow for only a small number of non-zero

elements in −→v . Furthermore, vk = 0 implies that dk(t) = 0 for all t, which by virtue of eq (1.20),

further implies that wk(t) = 0 for all t. Considering only the k for which vk > 0, we can consider

the effect of the `2 norm in eq (1.21) for which, in analogy with the Kalman smoother, the non-

zero weights −→w k will evolve smoothly over time. As a result, we can expect the estimated sources
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X̂ to be composed of a small number of spatial frequency components evolving continuously in

time.

We solve the proposed group LASSO problem using a consensus formulation of the

alternating directions method of multipliers (ADMM) [48]. A generalized solution framework for

using ADMM to estimate latent time-series using sparse regularization is presented in [25].

Calculation of Wave Propagation Parameters

We extracted estimates of the gastric surface potentials using the MAP estimation proce-

dure in eq. (1.13) with the group sparsity prior pertaining to eq (1.19). With these gastric surface

potentials along the organo-axial curve, we identified region-specific wave propagation features

of the gastric slow wave. Specifically, we extracted directional information from the phases of the

estimated electrical activity on the gastric surface. To determine when the directional informa-

tion was statistically significant, we utilized a technique called the phase gradient directionality

(PGD), which was originally developed in physics and neuroscience communities [49] and was

recently employed to describe spatial patterns of GI activity with cutaneous multi-electrode

recordings [21].

We extracted wave propagation features of the slow wave from the estimated patterns along

the organoaxial curve by first performing the Hilbert transform on each individual estimated source

on the curve (x̂i(t) : i = 1, . . . ,D, t = 1, . . . ,T ) in the array to extract instantaneous amplitude and

phase information:

x̂i(t)+ jHb [x̂i(t)] = ai(t)e jφi(t), i = 1, . . . ,D, t = 1, . . . ,T. (1.23)

where j is defined to be
√
−1, Hb is the Hilbert transform, φi(t) is the instantaneous phase of the

ith source on the organoaxial curve, and ai(t) is the instantaneous amplitude of source i.

We represented instantaneous phase information as a function of η ∈ [0,1] which parameterizes
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the organoaxial curve. Discretizing this into D points, we have:

φ(ηi, t)≡ φi(t), i = 1, . . . ,D.

The spatial gradient of instantaneous phase, ∇ηφ(η, t), was constructed at each point ηi

along the organoaxial curve. Since the wave velocity vector v is normal to contours of constant

phase, it satisfies

v(η, t) ∝−∇ηφ(η, t). (1.24)

We found the direction of source i at position ηi on the organoaxial curve, at time t, as

Λi(t) = sign(−∇ηφ(η, t)) , i = 1, . . . ,D, t = 1, . . . ,T. (1.25)

In order to determine if a consistent wave is propagating in a sub-region of the stomach

R ⊂ {1, . . . ,D}, we calculate the PGD in that region, which is the ratio of the norm of the

spatially averaged electrode velocities with the spatial average of the norm of electrode velocities:

PGDR (t) =
‖ 1
|R |∑i∈R ∇ηφ(ηi, t)‖
1
|R |∑i∈R ‖∇ηφ(ηi, t)‖

, t = 1, . . . ,T (1.26)

where |R | indicates the number of elements in the set R and velocities are replaced with −∇φ

by virtue of eq (1.24). The PGD is a measure of how aligned the wave velocities at different

positions are at any point in time, lies between 0 and 1, and equals 1 for planar waves [49]. Thus

one interpretation of the PGD is as a measure of how “close” the activity is to being a plane

wave, which is akin to what occurs for a normal slow-wave HR-EGG recordings, exhibiting

predominantly anterograde propagation.

In order to control the false discovery rate associated with PGD, we defined statistically
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significant planar wave propagation to be present when PGDR (t)> 0.5 for 1 second or longer

(see [21, Fig 2]). A beneficial side effect of computing the PGD is the computation of the wave

velocities, from which we can identify anterograde or retrograde propagation at the time points

for which the PGD is > 0.5 (i.e. a wave is present). The PGD results for the simulated data are

compared in Table 1.1.

Human Data Processing

In simulated data, we can fully characterize the performance of our estimation procedures

because the ground truth is known. We here considered applying the group sparsity estimation

procedure, e.g. solving eq (1.13) with the penalty given by (1.19), on data collected from two

human subjects. Specifically, we collected cutaneous 100-channel EGG recordings on two human

subjects for whom CTs were available. Both subjects provided written consent to participate in

the study and was part of an ongoing study at the University of California, San Diego, whose

institutional review board provided ethical approval (IRB number 141069 ”A pilot trial to evaluate

the utility of passive, skin-mounted electrodes to monitor the electrical activity of the human

digestive system.”). We used a 10×10 electrode array with a reference electrode outside of the

recording grid. The amplifier was a 256 channel GTec g.HIamp system, sampled at 256 Hz and

then down-sampled to 4 Hz. We recorded 90 minutes of EGG data, 30 minutes into which the

patient ate a small meal. Prior to analysis, we filtered the data with a band-pass filter with pass

band frequencies between 0.015 Hz and 0.25 Hz. We showcase detailed results from one human

subject whose CT was used for the aforementioned simulations. We compare summary findings

of the human recorded data from both subjects in Table 1.2. The detailed simulation results and

human recording results of the second subject are available in the supplemental materials.
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Results

In both abnormal and normal scenarios we generated a simulated EGG observation array

and injected AWGN with varying amounts of noise variance in terms of signal to noise ratio (50

dB SNR down to -4 dB SNR). From these noisy observations, we solved the inverse problem

associated with each of the four previously described penalties and evaluated the efficacy of

the methods with the correlation coefficient and root-mean-squared error (RMSE) against the

true simulated sources. We also provide the 3D results on the geometry as well as a time/space

representation of the surface electrical potentials. For the human data, we show the time/space

representation of the inverse as well as wave stomach region specific descriptions of propagation

pertaining to (a) retrograde vs anterograde propagation and (b) the fraction of time there is a

statistically significant wave. These propagation patterns extract phase information across time

and utilize the relationship between phase and direction underlying the planar wave equation to

extract the PGD measure.

Simulated Data

Fig 1.5 shows the results of the group sparsity method against several different noise

levels, for both normal (A) and abnormal (B) simulations. The plots for the other methods

can be found in the supplemental materials. In low SNR scenarios, the inverse results visually

tracked the ground truth in the distal portions of the stomach (positions 0-50) but struggled to

reconstruct the wave in the proximal sections (positions 60-100). However, as the SNR increases,

the inverse solution reconstructs the wave in all portions of the stomach. The same findings hold

in the abnormal simulation. Additionally, the group sparsity is able to detect the separation of

wavefronts in the distal stomach earlier and more clearly than the other methods (see Supporting

Information S1, S2, and S3 Figs). In particular, for the 10 dB noise level, group sparsity is the

only method that is able to resolve the two nearby wavefronts in the distal segment at 4 seconds
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into the recording. Additionally it is able to reconstruct wavefronts occurring in both the proximal

and distal segments of the stomach simultaneously.

Figure 1.5: Group Sparsity Inverse Solution on a Stomach Surface Line Across Noise Lev-
els A) Group sparsity results (electrical potentials) against the ground truth for normal initiation
simulation. B) Group sparsity results (electrical potentials) against the ground truth for abnormal
initiation. In both normal and abnormal simulations group sparsity is able to reconstruct the
ground truth wave pattern even under unrealistically noisy conditions. Additionally the time at
which it reconstructs the separate waves in the abnormal simulation is earlier (i.e. the waves are
closer together) than in any of the other inverse methods

Fig 1.6 shows the correlation coefficient and RMSE mean across space for all methods,

all noise levels, and both normal and abnormal simulations. The group sparsity method remains

consistently higher in correlation coefficient and lower in RMSE across all noise levels and in

both simulation scenarios. In high additive noise cases (<10 dB SNR), the Kalman smoother

based inverse performs similarly to that of group sparsity; however in the abnormal case, LASSO

performs slightly better than the Kalman smoother.

Fig 1.7 shows the correlation coefficients and RMSEs for all methods at each point along

the geometric line in space, for both normal and abnormal simulations, at 10dB SNR. Again,

group sparsity has higher correlations and lower errors in both cases. As can be seen in Fig 1.4,

the normal simulation increases in signal amplitude in the distal stomach. The ability to resolve

signals in the distal stomach is likely a combination of both the closer proximity to the abdominal
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Figure 1.6: Average Correlation Coefficient and RMSE for Different Noise Levels (All
Methods) A) Normal simulation inverse results average correlation coefficient and RMSE as
a function of AWGN noise level, B) Abnormal simulation inverse results average correlation
coefficient and RMSE as a function of AWGN noise level

surface and the increased signal strength. Specifically, our forward model given by eq (1.4)

encodes the body conductivity and the distance between source and sensor points and indicates

that sources of the stomach with same amplitude that are closer to the abdominal surface will go

through less attenuation. The ability to better resolve signals across the entirety of the stomach

in the abnormal simulation is most likely due to the constant signal power in the underlying

simulation.

Fig 1.8 shows the localization results (electrical potentials) mapped back to the geometry

for the 10 dB noise level, at 6 seconds into the simulation, in both normal and abnormal cases.

The group sparsity method is the only one that resolves the two near wavefronts in the distal

stomach, and it is also the only method that can resolve both the activity near the distal stomach

and near the proximal stomach simultaneously. The ability of the group sparsity method to

resolve near wavefronts and activity across the entirety of the stomach suggests that the joint

assumptions of sparsity and smoothness, that it exploits, are critical for reconstruction of the

underlying time-evolving gastric electrical activity.
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Figure 1.7: Average Correlation Coefficient and RMSE for the 10 dB Noise Level Across
Geometry (All Methods) A) Normal simulation inverse results average correlation coefficient
and RMSE as a function of geometry, B) Abnormal simulation inverse results average correlation
coefficient and RMSE as a function of geometry

Figure 1.8: Time Snapshot of the Inverse Results Mapped Back to Geometry A) Normal
simulation at the 10 dB SNR level at the 6 Second time point. B) Abnormal simulation at the 10
dB SNR level and the 6 second time point

Region-Specific Analyses of Simulated Data

We split the stomach into four sections (proximal 1, proximal 2, distal 1, and distal 2) so

that spatial wave propagation parameters can be found in a region-specific manner (see Fig 1.2C).

25



We analyzed the PGD in each of those regions over time, and found the percentages of time, per

region, in which PGDR (t)> 0.5. See Table 1.1.

Table 1.1: Percentage of time that PGD > 0.5 for Inverse Results Via Simulation Type and
Region

Data Source Proximal 1 Proximal 2 Distal 1 Distal 2
Normal Simulation 45.7 59.3 82.3 99.0
Abnormal Simulation 60.7 80.6 75 72.3
Noise Alone Simulation 0.0 0.0 1.67 0.0

Table notes: For the normal simulation, the PGD percentage increases from the proximal to the
distal stomach locations. In the abnormal simulation the PGD percentage remains highest in the
second proximal and first distal regions, where we detect strong retrograde wave activity. As
expected, the noise alone results show no statistically significant wave propagation.

A byproduct of the PGD processing is direction information (anterograde or retrograde)

at each point along the organoaxial curve and at each point in time. Fig 1.9 B and C showcases

region-specific histograms of anterograde vs retrograde propagation whenever PGDR (t)> 0.5,

for both normal and abnormal simulations. As expected, the normal results have few retrograde

waves in each of the four regions, and the abnormal results showcase a large majority of retrograde

waves for all regions except distal 2 (where the wave initiation began). In distal 2, a majority of the

waves operate in anterograde fashion, as shown by Fig 1.2. Note that in the abnormal simulation,

the signal amplitude remained constant across time, whereas in the normative simulation the

signal amplitude varied between the proximal and distal sections of the stomach (see Fig 1.3).

This may explain why the PGD percentages in the proximal sections are higher for the abnormal

simulation. More importantly, these results showcase our ability to find the correct direction of

propagation in the proximal regions for both retrograde and anterograde, and owing to the large

PGD percentages in both contexts, we have confidence that we can determine these directions for

a large fraction of the recording.
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Human Subject Recording

We applied the group sparsity method to a two-minute window of data collected from two

human subjects. Both subjects had the same clinical description of motor function, specifically

severely delayed gastric emptying in the absence of a mechanical obstruction (severe gastroparesis)

with 30% of radiotracer label still in the stomach at 4 hours during a gastric emptying study.

Whereas the first subject was diabetic, the most common known cause of gastroparesis due to

possible damage of the vagus nerve or enteric nerve cells [50], the second subject was idiopathic,

with no known reason for the severe delay in gastric emptying [51].

Figure 1.9: Wave Direction Histogram by Stomach Region, for Time Points in Which PGD
> 0.5 A) Color coded stomach regions B) Normal data wave directions show strong anterograde
wave propagation in all segments of the stomach. C) Abnormal data wave directions show strong
retrograde wave propagation in the first distal and all proximal segments, while we see strong
anterograde propagation in the distal 2 segment. This aligns with the simulation patterns. D)
Human subject data wave directions show anterograde wave movement across all segments of the
stomach, the strongest region being the distal 2 segment.

While we do not have ground truth on which to compare the results, the group sparsity

method clearly resolves wave activity on the surface of the stomachs, as can be shown in Fig

1.10 for subject 1. This presence of sustained wave activity is confirmed quantitatively for both

subjects in Table 1.2, which indicates the percentage of time for which a statistically significant
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wave is present (specifically, PGDR (t)> 0.5 for one second).

Table 1.2: Percentage of PGD > 0.5 for Inverse Results on Human Recording and Region
Data Source Proximal 1 Proximal 2 Distal 1 Distal 2
Subject 1 17.9 33.7 42.5 97.5
Subject 2 24.6 92.1 7.9 95.6

In human subject 1, all areas of the stomach showed wave propagation, with the distal 2

section showcasing propagation during a significant percentage of the processed data set. The

second subject shows strongest activity in the distal 2 segment and the proximal 2 segment. Also

of note is that there is very little detected propagation in the distal 1 segment of subject 2, which

may be due to the curvature of this particular stomach, as is seen in S7 Fig in the supplemental

materials, versus that of subject 1 Fig 1.9. Differences in stomach geometry and stomach region

proximity to the cutaneous surface are likely explanations for the percentages shown in Table 1.2.

S8 and S9 Figs in supplemental materials show the localization results on the stomach geometry

of the two human subjects.

Figure 1.10: Inverse Solution for Human Subject Data As with the simulated data, this
represents twelve seconds of computed inverse data across the sources on the organoaxial curve

For subject 1, as shown in Fig 1.9D, almost all waves with PGD > 0.5 contain anterograde

propagation, strongly suggesting that this control subject does not have abnormal myoelectric
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function. We also implemented the group sparsity method on white Gaussian noise to verify that

our estimation results were not due to chance. As shown in Table 1.1, the percentage of time for

which PGD> 0.5 for the white Gaussian noise simulation is 1.67% in the distal 1 segment and

zero everywhere else. See S4 Fig in the supplemental materials for the reconstructed electrical

potentials for the noise alone output.

Discussion

Simulation Results

Our work provides a novel application of Bayesian methods for spatiotemporal analysis

to source localize the gastric slow wave. By exploiting the commonly used assumption of

equipotentials along the bands of the organoaxial curve, we were able to parameterize the problem

more succinctly (e.g. searching for optimal weights on an over-complete basis). These methods

are however generalized, relying only on the relative positions in space of the sources and the

sensors, the relationship between the source signal and the sensors (the forward model), and

the basis representation. The key assumptions we make with our group sparsity prior are that

there are only a few bands of stomach are electrically active at any point in time, and that the

electrical activity will evolve smoothly in time. Our method requires knowledge of the stomach

and abdominal positioning in 3D space, but otherwise the method is agnostic to specific geometry.

To this point, we include an additional human subject for which we developed a model with

their CT and applied analogous normal and abnormal simulations for which we evaluated the

performance of the group sparsity estimator. For this second subject, we also implemented the

group sparsity method on an HR-EGG recorded data segment from the post-prandial segment

of data. The results are presented in the supplemental materials (see S5, S6, and S7 Figs). As

with the first subject, this method is able to reconstruct wave activity in all segments of the gastric

surface and resolve the two nearby wave fronts that appear in the distal 2 segment of the gastric
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surface in the disordered simulation.

Only recently have computationally efficient approaches that combine sparsity constraints

and linear state space dynamics been applied to the more richly studied EEG source localization

problem [52]. As such, our approach, which combines sparsity with state space modeling, has the

potential to be utilized in modern source localization problems for EEG research and beyond.

Previous studies [31] focused primarily on generic physical models of both the torso and

the stomach. In this study, the torso and stomach models are taken directly from CT scans of a

human subject, and as a result the relationship between the torso (electrode positions) and the

stomach in geometry is more akin to a real subject recording. As a result of this, we also see that

the methods are better able to reconstruct wavefronts in different regions of the stomach.

Table 1.1 indicates that for subject 1, the distal segments of the stomach showcase the

strongest recovery of wave activity in the normative simulation. Further, Fig 1.7 showcases that

the distal regions have comparatively superior reconstruction performance. This may in part be

explained by the fact that for the normative simulation, in accordance with known physiology [35],

the signal is stronger in the distal segments of the stomach. This may also be explained by the

fact that the anatomical CT for subject 1 shows that the distal segment is closer physically to the

abdominal surface. Specifically, by virtue of the denominator of eq (1.4), this implies that, absent

of considerations of source amplitude, the stomach region closest to the abdominal array (distal

2) more strongly contributes to the HR-EGG.

For the abnormal initiation simulation, we are more able to consistently reconstruct

wavefronts across all regions of the stomach, as shown by Table 1.1. This is likely due to the fact

that the wave has consistent signal power, at the same magnitude of the antrum signal power of

the normative simulation, across all regions.

For subject 2, the simulated signal activity for the normative simulation still has highest

strength signal activity in the antrum. However, the stomach geometry is different from that

of subject 1, in particular with more curvature through the proximal and distal segments of the
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stomach (see S8 and S9 Figs in the supplement).

S1 Table of the supplemental materials indicates that the proximal 2 segment showed

stronger wave activity (75.3%) than the distal 1 segment (64.3%). This suggests that the larger

amplitude in the distal 1 region as compared to the proximal 2 region was possibly counterbalanced

by the increase in curvature of the stomach, giving rise to variations in the numerator of eq (1.4),

as compared to subject 1.

We found that across noise levels and simulated conditions in subject 1, the group sparsity

approach results in lower squared errors and higher correlation coefficients than the other methods

explored. For the abnormal initiation scenario, in low SNR cases the LASSO slightly outperforms

the Kalman smoother, and for the normal scenario this is reversed. For abnormal initiation

scenario the assumptions about sparsity are perhaps more important than smoothness. However,

because the group sparsity approach showed superior performance against all other models (in

terms of both mean squared error and correlation coefficient) in all scenarios, it implies that the

assumptions of both time smoothness coupled with spatial sparsity are critical. This is further

evidenced by the uniqueness of the group sparsity method in separating the close wavefronts

during the abnormal initiation, as shown in Fig 1.5 and Fig 1.8. It was due to these results that we

focused solely on the group sparsity method for subject 2.

These results represent a critical step forward towards objective non-invasive inverse

measures for gastric health. While Bayesian inference has been used in EEG and EKG inverse

studies, our novel approach aggregates assumptions of spatial sparsity and temporal smoothness

into one prior distribution and thus one penalty. Compared to the classic methods, this method

shows significant and uniform improvement, thus compelling us to solely use this method when

analyzing human subject data.
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Human Data and Clinical Implications

In the human subject recording, we found that after applying our inverse procedure, not

only can we identify wave propagation, but we are also able to determine region specific propaga-

tion patterns that are consistent with what is known about stomach anatomy and physiology. In

the recording for subject 2 who is diagnosed with idiopathic gastroparesis we observe significant

and strong retrograde propagation in the proximal regions, as evidenced by 92.1% detected wave

activity from Table 1.2 as well as 100% retrograde activity found in the proximal 2 region (S7 Fig

of supplemental materials). This differs from subject 1, who had robust wave detection and an-

terograde activity in all regions (Fig 1.9). This subject was also involved in a recent clinical study

that used the HR-EGG to identify cutaneous spatial patterns [22]. The spatial patterns we found

using our inverse method on the gastric surface are consistent with the spatial patterns found on

cutaneous HR-EGG analyses from [22]. Specifically, in the inverse method we find anterograde

activity in all segments, which aligns with the spatial histogram from cutaneous HR-EGG found

in Fig GP-15 in the supplemental materials of [22]. The spatial abnormalities in subject 2 are

consistent with findings of loss of ICC cells in idiopathic gastroparesis patients [53], which is

known to contribute to gastric myoelectric spatial abnormalities. [12]. That there were more

detected spatial abnormalities in an idiopathic gastroparesis subject as compared to a diabetic

gastroparesis subject can perhaps be explained by findings of more severe ultra-structural changes

in ICC cells and nerves idiopathic gastroparesis patients as compared to patients with diabetic

gastroparesis [54].

Understanding the relationship between myoelectric activity in different parts of the stom-

ach can allow for sub-typing of gastric disorders. For instance, antrum and pylorus coordination

or lack thereof can help predict (and thus explain) gastric emptying of meals in humans [55]. As

such, being able to non-invasively extract myoelectric patterns in stomach sub-types, and evaluate

their coordination, can give rise to etiologies of certain GI disorders and suggest therapies. It

was recently shown that spatial features from the cutaneous HR-EGG correlate with symptom
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severity [22]. As such, our approach to identify spatial slow wave abnormalities (such as abnor-

mal initiations discussed here), in region-specific manners, may advance the potential to enable

guided therapies, such as ablation [56] or gastric pacing [57, 58] to normalize the slow wave and

ameliorate symptoms.

One existing therapy, high frequency gastric electrical stimulation, has been shown to

improve symptoms by affecting central control of nausea and vomiting [59]. Moreover, features

from invasive electrical recordings on the stomach surface predict which patients respond well to

this therapy [15]. This suggests that if this information could be extracted non-invasively, new

opportunities exist to phenotype such disorders and assess their response to interventions. In

addition, recent efforts to directly modulate gastric electrical activity with an artificial pacemaker

have the potential to improve gastric function [60, 61]. However, determining the stimulation

location and parameters and confirming the restoration of normal electrical activity requires

invasive measurements [62]. Our noninvasive approach could guide these types of targeted

therapies for gastric disorders, as has been done successfully in cardiology with identifying and

treating arrhythmias [63, 64].

Limitations and Future Research

The gastric slow wave is normally active at all times, but triggers more contractions when

co-regulatory factors (such as stretch from food ingestion) are present. This initial work used a

straight forward dynamic model which did not account for volume changes and region-specific

deformations due to food or deformation due to contractions [65, 66]. Further, the increase in

contractions due to eating may give rise to stronger electrophysiologic potentials, which was not

modeled here. These aspects could be incorporated into both the forward model and the prior for

future studies.

There are two further approaches to extend this model. For one, our forward model

assumes a homogeneous space with the same conductivity to relate the gastric surface potentials
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to the recorded abdominal potentials. In reality, there are tissues with different conductivities

(e.g. fat and muscle) between the stomach and abdominal surface. Using models that capture this

information can be done in future work. Further, our model uses simple one-dimensional wave

equation propagation models to represent the spatiotemporal relationship of the gastric electrical

activity. Future work can take into consideration cellular compartment models with differential

equations, as has been done in other EGG modeling works [67–69]. Validation of these methods

using abdominal recordings from a larger group of asymptomatic human subjects as well as

those with diagnosed disorders may further give credence to this approach. Lastly, selecting

regularization coefficients in a data-dependent manner when using model-fitting procedures that

leverage sparsity is a subject for future work [70, 71].

Conclusion

In this paper, we used CT images from human subjects to develop a basic dynamic dipole

model of the electrical activity on the surface of the stomach (the gastric slow wave). We solved a

forward model, then corrupted with additive Gaussian noise, to simulate cutaneous multi-electrode

recordings. Using these simulated observations, we found the inverse solution by formulating

the inverse problem as a MAP estimation problem to find a set of optimal weights on a set of

spatial Fourier basis functions. Each method we explored leveraged different assumptions about

smoothness (Kalman smoother), sparsity (LASSO), a combination of the two (group sparsity), and

no assumptions at all (Tikhonov regularization). We found that in low to no noise environments,

Tikhonov regularization is sufficient. However, in noisier environments, the assumptions around

smoothness have the most impact and result in lower RMSE and higher correlation coefficients.

Additionally, by incorporating a prior distribution for which the MAP estimate takes advantage of

both smoothness and sparsity (the group sparsity approach), the results are even further improved.

These results uniformly attained the highest performance, for both abnormal simulations as well
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as normal simulations.

Finally, we applied this approach to an asymptomatic human subject who had previously been

imaged with CT. We found statistically significant results for wave activity, as well as region

specific wave direction information that is consistent with current knowledge regarding normal

gastric myoelectric function [11]. The presented methods may benefit from further studies and

validation on mammalian subjects against invasive “gold-standard” methods. While further

research is needed to verify this approach on more human subject data against a secondary

measure of electrical activity on the stomach surface, these initial results show significant promise

towards utilizing a non-invasive technique to localize electrical activity in different regions of the

stomach, possibly even in ambulatory settings [30].
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Introduction

The neuromuscular function of the gastrointestinal (GI) system involves smooth muscle

cells which are controlled with rhythmically oscillating pacemaker cells - the interstitial cells

of cajal (ICC) [11]. The spatio-temporal coordination of these cells enables the peristalsis

which propels food through the GI tract [10, 11]. Generally, the gastric ICCs oscillate at 3

cycles per minute (0.05Hz) and in normal activity initiate a slow wave which propagates in an

anterograde direction from the top of the greater curvature of the stomach towards the small

intestines. Nuromuscular dysfunction make up more than half of disorders in the GI system.

The two most common upper GI disorders are functional dyspepsia (FD) with a prevalence of

10% and gastroparesis (GP) 1.5-3% [3, 72, 73]. Additionally GP, delayed gastric emptying in

the absence of mechanical obstruction, is present in 70% of Parkinsons patients [3] and 50%

of diabetes patients [4]. Non-invasive diagnosis of GI abnormalities generally relies on either

subjective symptom-based questionnaires and assessment or objective measures such as gastric

emptying that do not consistently correlate with symptom severity [5]. Further while there are

multiple medications are on the market that improve gastric emptying they do not always improve

symptoms, or they improve symptoms but not gastric emptying time [7–9]

One approach to the disambiguation of disease etiology, tracking disease progression, and

predicting treatment response is to non-invasively characterise the gastric slow wave. Electro-

gastrography (EGG) is a technique similar to that of electrocardiography for the heart, to assess

gastric myoelectrical activity using cutaneous electrodes [17]. While it is easy to administer

and non-invasive conventional EGG relies on a small number of electrodes and exclusively

extracts spectral information [18]. Additionally it has been shown that spatial abnormalities can

occur at normal frequencies and thus go undetected [19]. The high resolution electrogastrogram

(HR-EGG) [21], is similar to an electroencephalogram (EEG) for the brain, multi-electrode arrays

are placed on the abdominal surface in line with the stomach (often guided by CT or MRI scans).
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These recordings allow for the extraction of abdominal wave propagation parameters at each

time point. Furthermore the extracted propagation parameters have been shown to correlate with

symptom severity in a population of GI patients that span a wide range of BMI, ages, and disease

etiology [22]. However, the HR-EGG extracts spatial information relative to the cutaneous surface

and the HR-EGG voltages measured are an average of the electrical sources on the gastric surface

due to volume conduction. Additionally, it has been shown that anterograde or retrograde waves

from one or more sources can arise at the same time in the distal stomach [12, 13, 23]. The

HR-EGG cannot disambiguate between regions of the stomach (e.g. the pacemaker vs the greater

curvature or distal stomach).

In order to address this limitation, in our previous work [74] we developed inverse methods

to infer spatiotemporal electrical patterns on the surface of the stomach from multi-electrode

recordings used in HR-EGG. Fundamentally the problem of non-invasively source localizing

the gastric slow wave is considered ill-posed, as the number of potential sources to be recovered

greatly exceeds the number of observations on the cutaneous surface, and there are infinitely

many solutions which are equally consistent with the data. To address this we leveraged Bayesian

inference in which a prior distribution is specified that enforces a unique solution to a regularized

model fitting problem. The most robust method we found was MAP estimation with a group

sparse prior that encourages sparsity as well as time smoothness in the spatial wave dynamics,

which is consistent with physiologic findings [11]. With the group sparsity method, we found that

we were able to disambiguate wave propagation direction in four separate regions of the stomach,

and identify statistically significant wave activity in each region. This method, however, was not

fully automated and thus could not be applied to large scale data collection.

Here we consider a fully automated approach for the group sparsity method that lever-

ages the Pareto frontier to automate the model selection process. In addition, we consider an

approach that separates the group sparsity (GS) methodology into two stages. The first stage

enforces spatial sparsity by using the least absolute shrinkage operator (LASSO), the second
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stage enforces temporal smoothness with the Kalman smoother. We then leverage two model

selection techniques, the Pareto frontier, and the penalized normalized negative log likelihood

(PNNLL) to identify solutions of interest. For the Lasso-Kalman smoother (LKS) approach we

still require manual intervention to identify the final solution in the PNNLL curve.

Both the GS and LKS find statistically significant wave activity in each of the gastric

regions across seven human subject models for which HR-EGG recordings were available. Three

of these subjects are healthy controls, and four are unhealthy, diagnosed gastroparesis with

different underlying disease etiologies. Further these subjects range in BMI from from 21.8

to 31.5. Whereas the LKS approach is more computationally efficient and demonstrates larger

correlation coefficients with the ground truth in simulation, the GS approach is less susceptible to

false positives for spatial wave propagation and finds statistically significant decrease in wave

activity in patients with diagnosed GI disorders as compared to healthy controls. In addition, a

regression analysis finds that the correlation coefficient between the GS solution and ground truth

is invariant to a wide range of gastric lengths, suggesting it is robust to a variety of stomach sizes

and geometries. Altogether given these findings and the fact that the GS method is fully automated,

this provides an important step towards the development of clinical non-invasive techniques to

characterize the specifics of gastric neuromuscular abnormalities and provide specific avenues to

explore treatment.

This paper is organized as follows, Section 2 describes the modeling and simulation re-

quired for the problem as a whole, including the 3D models, the dynamic simulation development,

and the observational model. Section 2 presents MAP estimation and our Bayesian inference

approach. The different model selection techniques (the Pareto frontier and the PNNLL) are

discussed in Section 2. In Section 2 we present analysis methods for extracting wave information

and determining statistical significance. We then describe the subject recordings. Section 2

provides group level results (simulation and subject recording for all subjects). Lastly, Section 2

and Section 2 provide discussion and conclusion, respectively.
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Modeling and Simulation

Figure 2.1: General Process A) Stomach models extracted from Subject CT B) 1-D wave
equation generated wave dynamics specific to the subject anatomy C). The stomach model is
approximated as rings in 3D space, 1mm apart D) A forward model is solved to generate a
simulated EGG observation E) Apply a MAP estimation technique with model selection to
identify the recovered sources.

In this study, we use the simulations and models previously developed [74] to explore

the ability to identify optimal solutions to ill-conditioned inverse problems in a data-dependent

manner. We first extract the three dimensional (3D) models for both the stomach and the abdomen

from magnetic resonance imaging (MRI) or computed tomography (CT) scans. We use finite

differences to solve a 1-dimensional (1D) wave equation that captures the electro-physiologic

dynamics of the gastric slow wave (both normal and abnormal simulations). To map the dynamic

electro-physiological simulations to the 3D stomach model, the 3D model is sliced along planes

normal to a curve along the stomach surface (the organoaxial curve), in variance to our previous

approach each slice is simplified to a circular ring in 3D space (fig. 2.2. Mapping the stomach

simulation to the abdominal surface is done with a simplified forward model in which we assume

the gastric surface and the abdominal surface exist in the same homogeneous volume, with
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constant conductivity. To the resulting simulated observation array on the abdominal surface we

inject additive white Gaussian noise (AWGN) and then apply Bayesian inference techniques to

solve the inverse problem. Finally, we apply model selection to identify the optimal solution from

the set of possible solutions.

3D Static Models

As in our previous work [74] we use 3D Slicer, an open source medical imaging tool to

extract stomach and abdominal models from MRI and CT scans of participating subjects [33]. 3D

slicer provides the key ability to fit equi-spaced curves to arbitrary geometry. Four fiducial curves

were drawn on each subjects gastric surface and the points forming the organoaxial curve were

set to a 1mm inter-point spacing. Previously a fixed number of points (120) were used for the

two subjects studied. The variability in stomach size and shape across a larger subject population

Figure 2.2: Ring Approximation of the Stomach Using four fiducial lines on the gastric surface
the stomach is sliced along the planes normal to the organoaxial curve and rings of variable radius
are computed at each point. These rings form the ring approximation of the gastric surface.

necessitated the use of uniform point spacing on the organoaxial curve, with different numbers of

points for each subject. As a result, the dynamic simulations were customized to each subject.

Using these four fiducial lines, planes normal to the stomach, containing the organoaxial curve,
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were derived. Circular rings were computed from the center point of each plane, whose radius

varies with the geometry of the stomach (see Supplementary Materials for the 3D models of each

of the 7 subjects studied). The 1-D wave equation solution was then mapped to each ring as a

function of time sample to represent the electro-physiological behavior of a normative stomach

activating in equi-potential rings.

1-D Dynamic Simulation

Similar to the heart, the gastric slow wave begins with activation of a group of pacemaker

cells normally on the upper part of the greater curvature of the stomach [35]. The electrical signal

from these cells spreads isotropically through activation of a network of interstitial cells of cajal

(ICC). The ICCs initiate muscular contraction through the corpus and antrum with typically no

more than 5 wavefronts occurring at any point in time on the stomach surface.

The gastric slow wave is characterized by its continuous nature and strong wave-like

propagation patterns. As in our previous study, we used a finite difference approach with Mur’s

boundary condition to solve a 1-D wave equation [21]. We simulate a normal slow wave in

which the wave activity begins in the proximal stomach (near the fundus) and propagates in an

anterograde fashion to the distal stomach (near the antrum). Consistent with invasive findings [12],

we also simulate the abnormal simulation in which the gastric wave is initiated near the distal

stomach and propagates in both a retrograde and anterograde fashion.

In our previous study, we solved the wave equation on a grid of 100 points equispaced

along the organoaxial curve surface. Here, each subjects simulation was still solved on the

organoaxial curve but the number of points are dictated by the length of the organoaxial curve.

Points were equispaced at 1 mm apart along the curve. Parameters for pulse width, speed and

amplitude were chosen to be consistent with recent descriptions of healthy subjects [35–37].

Speed and amplitude are highest in the proximal region (6.0 mm/s, 0.57 mV), reduced in the

central stomach (3.0 mm/s, 0.25 mV), and increased again in the distal stomach near the antrum
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Figure 2.3: Dynamic Simulation and Gastric RegionsA) Normal simulation mapped to the
ring gastric approximation. ]Initiation begins before the proximal 1 region and propagates in
an anterograde fashion towards the distal regions. B) Abnormal simulation mapped to the ring
approximation, the wave initiates in between the two distal segments and propagates in two
directions, anterograde through the distal 1 segment and retrograde through the distal 2 and
proximal segments. C) Separation of the gastric surface into four regions of interest

(5.9 mm/s, 0.52 mV). For the abnormal simulation the speed and amplitude of the wave remain

constant (6.0 mm/s, 0.57 mV) across the entire gastric surface. As visualized in B) of Fig.

2.3 the abnormal wave initiates in the first distal region and splits with one part of the wave

propagating in a retrograde fashion towards the proximal stomach and the other part propagating
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in an anterograde fashion towards the antrum.

Observation Generation

Using 3D Slicer [33] we placed fiducial markers on the 3D abdominal models according

to the placement notes at the time of HR-EGG recording. For each subject, a 10 by 10 grid

of abdominal fiducial points was generated, spaced 2 cm apart. The averaging effects of the

electrodes were simulated by solving the forward model in a 1 cm radius region around each of

the fiducial points selected and averaging the result to generate the simulated observation data

Y ∈ RN×T where N is the number of electrodes and T is the number of time samples. For each

subject, N is a 10 x 10 grid and T is 180 time samples, with a sampling rate of at 1 sample per

second. The EGG signal at each electrode [39] is

yn(t) =
D

∑
i=1

An,ixi(t)+Nn(t). (2.1)

where yn(t) is the signal at each of the N electrodes, An,i is the simplified forward model matrix,

xi(t) is the surface potential at each of the D gastric source locations and instant in time, and

Nn(t) is AWGN of adjustable variance σ2 to achieve 3 dB and 50 dB signal to noise ratios (SNR).

The same σ2 is used for each electrode to generate a per-electrode realization of AWGN [39].

The simplified current dipole [38] based forward model arises from the assumption that

the gastric surface and the abdominal surface are in the same homogeneous volume of constant

conductance. The forward model reduces to a linear attenuation constant which relies only on the

position of the stomach sources and abdominal sensors.

An,i =
cosθ

4πσr2
n,i
. (2.2)

where θ is the angle between the organoaxially oriented current dipole and the observation point
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on the abdominal medium, σ is the constant tissue conductivity, and r is the straight line distance

between the ith gastric source and the nth abdominal sensor [38].

Source Localization

Due to the ill-conditioned nature of this inverse problem, we leverage the electrophys-

iologic characteristics of the gastric slow wave: it contains bands of electrical activity that

continuously propagate along an organoaxial curve in rings of equipotential [11]. The continuous

spatial nature of this activity lends itself to representation by a set of spatial basis functions. We

use a Fourier spatial basis and solve the problem only on the 1-dimensional organoaxial curve.

Basis Representation

As with the previous study [74], we represent the spatiotemporal activity of the surface

potentials as a weighted combination of spatial Fourier basis functions. These functions are time

invariant, but the coefficients on them evolve over time. The different sinusoids in the spatial

basis represent different spatial frequencies (number of wavefronts per unit space) along the 1

dimensional organoaxial curve. A detailed description of the basis matrix formulation is in [74]

equation 5 and 6.

With this basis representation the sources are modeled as:

−→x (t) = HT−→w (t). (2.3)

where HT is the D x K basis matrix and−→w (t) is the vector containing the K time evolving weights.

The measurement model becomes:

yn(t) =
D

∑
i=1

An,i

K

∑
k=1

hd,kwk(t)+Nn(t) (2.4)
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where hd,k is the index into the basis matrix and wk(t) is the kth weight. (2.4) simplifies in matrix

notation to:
−→
Y (t) = AHT−→w (t)+

−→
N (t) (2.5)

This formulation limits the problem to one of solving for the K weights instead of the total number

of possible gastric sources.

MAP Estimation

The measurement model in (2.4) encodes the statistical model p(Y |W ). As in [74], we

interpret the source localization problem as one of finding the Bayes optimal point estimate of

the time series of weights. In other words, our goal is to maximize p(W |Y ) over W for any set

of measurements Y . This Bayesian approach leverages both the measurement model p(Y |W ) as

well as the prior distribution p(W ) to identify an optimal solution. Since the likelihood p(Y |W )

is governed by the forward model and an additive Gaussian noise model at the electrodes, the

estimator is

ŴMAP = argmin
W∈RK×T

T−1

∑
t=0
||−→y (t)−AHT−→w (t)||22

+λpen(W ).

(2.6)

where ŴMAP = [−→w (1),−→w (2), . . . ,−→w (T )] and pen(W ) corresponds to the negative log of the prior

distribution on W . The source estimate at any time t is given by the maximum a posteriori

(MAP) estimate: −̂→x (t) = HT −̂→w MAP(t). In our previous study we found that a group sparsity

regularization technique which encoded both spatial sparsity in the weights and time smoothness

in the solutions yielded the best results (highest correlation coefficient) in the presence of variable

levels of AWGN.
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Group-Sparse Prior

In general, the group sparsity regularization technique promotes sparsity amongst groups

of coefficients and imposes a penalty on the first differences of those coefficients. This results in

a set of coefficients where only a sparse subset is non-zero at any point in time and this subset

evolves smoothly over time. The penalty associated with this approach is:

pen(W ) =
K−1

∑
k=0

(
T−1

∑
t=0

dk(t)2

) 1
2

(2.7)

where d represents the first differences in the time of weights:

−→
d (0) =−→w (0) (2.8)

−→
d (t) =−→w (t)−−→w (t−1), t = 1, . . . ,T −1. (2.9)

This time evolving portion of the penalty is wrapped inside of an `1-norm and the penalty

can be thought of as an `1-norm of an `2-norm of time differences. The sparsity-promoting

`1-norm allows for a small number of non-zero weights and these non-zero weights will evolve

smoothly in time. The estimated source potentials are thus composed of a small number of spatial

frequency components which evolve continuously in time.

Previously, we found the group sparse prior [25] provided superior results when compared

with techniques that leveraged either sparsity (LASSO) [41] or smoothness (Kalman Filter) [42]

alone. On the flipside, it is computationally intensive and required manual selection of the MAP

estimation hyper parameter (λ) to identify a solution. In the next two subsections, we describe an

alternative spatially sparse and temporally smooth method to the group sparsity approach which

we term the “LASSO-Kalman smoother” (LKS).
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Active Set Identification for LASSO

Here we separated the problem into one of first finding active sets of sparse dominant

weights by solving an `1 regularization problem with LASSO and then solving the problem

again with the Kalman smoother on each one of these active sets to enforce time smoothness

in the final solution. This approach allows for two data dependent techniques to be leveraged

for hyper-parameter estimation: the Pareto frontier and the penalized negative normalized log

likelihood (PNNLL) approach. To identify the active set of sparse dominant weights, we first

Figure 2.4: Pareto Curve and PNNLL for Optimized Model Selection A) The Pareto curve
for the active sets with knee point identified B) The PNNLL computed from each knee point C).
The recovered sources chosen from the transition point in the PNNLL D) The PGD analysis of
the chosen solution.

solve the inference problem with the LASSO. The LASSO penalty for the MAP estimation is:

pen(W ) =
T−1

∑
t=0
||−→w (t)||1. (2.10)
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where the number of active weights increases with decreasing values of the hyper parameter λ.

To identify different active sets from each value of λ, the energy in weights is computed using the

norm of the value of the weights across time:

Eλ = ||Ŵλ||22. (2.11)

Where Ŵλ is the solution to equation (2.6) with the penalty as (2.10), it is a K x T matrix. The

weights whose energy is greater than zero form the active set for a given λ. Active sets are chosen

such that the number of weights in the sets ranges from 1 weight to greater than 100 weights. We

implement the LASSO with the scikit-learn Python package [44].

Kalman Smoother Operating on an Active Set

Once the groups of sparse weights are identified through LASSO, we reprocess the data

with the Kalman Smoother using only those dominant weights found in each active set. The

estimator is formulated as:

ŴMAP = argmin
W∈RK×T

T−1

∑
t=0
||−→y (t)−AHT

m
−→w (t)||22

+β(||−→w (0)||22 +
T−1

∑
t=0
||−→w (t)−−→w (t−1)||22).

(2.12)

Here HT
m is the active basis matrix whose rows correspond only to the weight indices in

the active sets identified for each of the m LASSO λ’s. At the end of the active set identification

process and the Kalman smoothing process, there are m active sets by L Kalman solutions (for

each of the L βs in the Kalman MAP estimation problem). We implement the Kalman smoother

in Python with the pyKalman package [45].
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Model Selection

To perform model selection, first we compute the Pareto frontier on the Kalman smoother

solutions for each active set. This results in A possible solutions, where each A represents a

solution that has an increasing number of weights (fig. 2.4, A). We then apply the penalized

negative normalized log likelihood (PNNLL) procedure to choose the optimal active set and thus

the optimal solution out of the entire set. We also apply the Pareto optimization technique to the

group sparsity approach to compare the efficacy of the LKS approach.

Pareto Optimization

The Pareto frontier is a multi objective optimization approach in which we aim to find

an acceptable solution from a set of potentially infinite solutions [75]. For a two objective

minimization problem, the Pareto front will form a concave up curve where the optimal solution

is at the point of greatest concave curvature [76]. Fig. 2.2 A shows examples of Pareto fronts.

This L-shaped curve which is formed by plotting the log of the residual against the log of the

penalty as indexed by the hyper parameter (the Kalman smoother β ). In general, the residuals are

monotonically increasing and the penalties are monotonically decreasing; the optimal point is

the solution of maximum curvature and encompasses the tradeoff between these two metrics. To

form this curve, we plot the log of the residual

Rm(t) =
T−1

∑
t=0
||−→y (t)−AHT

m
−̂→w (t)||22 (2.13)

against the log of the penalty

Pm(t) = ||−̂→w (0)||22 +
T−1

∑
t=0
||−̂→w (t)−−̂→w (t−1)||22. (2.14)
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For group sparsity we plot the same residual (2.13) against the log of the group sparse penalty

(2.7). For the LKS approach the residuals decrease and the penalties increase as a function of

increasing hyper-parameter β, for the GS approach the opposite is true, residuals increase and

penalties decrease with increasing hyper-parameter size.

To automatically identify the point of greatest curvature, we fit twice differentiable cubic

splines to both the residual curve and the penalty curve. We treat these as parametric curves in t

and use standard parametric calculus to compute the curvature as:

Cm(t) =
R
′
m(t)P

′′
m(t)−P

′
m(t)Rm

′′(t)

(R′2m(t)+P′2m (t))
3
2

. (2.15)

Where R
′
m(t) and P

′
m(t) represents the first derivative of the residual and penalty curve

respectively and R
′′
m(t) and P

′′
m(t) represent the second derivatives. In order to find the greatest

point of concave curvature, we apply a peak search algorithm to (2.15) and chose the maximum

peak that occurred between the 30th and 95th percentile of values of β.

Penalized Negative Normalized Log Likelihood

On each of the solutions identified via the Pareto frontier, we implement a model selection

approach that penalizes models which over-fit the data while avoiding the significant error

reduction that arises from increasing from k weights in the solution to k+1. Here, we employ the

minimum description length model selection approach that identifies the model fit for which the

normalized negative log likelihood evaluated at the solution plus a penalty k logT
2T pertaining to

the dimension k of the model is minimized [77]. Since the model fitting was performed using `1

regularization, we leverage recent findings that approximate the dimension of such solution as the

number of non-zero coefficients (k) in the solution of the `1 regularized problem [78, 79]:

PNNLL[n] =

(
T−1

∑
t=0
||−→y (t)−AHT

m
−→w (t)||22

)
+

k logT
2T

. (2.16)
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The goal is to identify the active set where we find the smallest squared error plus the penalty on

k. The result is a curve that has a local minimum or a point of inflection, Fig. 2.2 B shows an

example PNNLL curve and the selected solution point. The point selection on the PNNLL curve

is performed manually due to the variability in the curve formation under different simulation,

recording, and noise conditions.

Analysis Methods

To evaluate the efficacy of these approaches we computed correlation coefficients (simula-

tion only) and identified statistically significant wave propagation direction with a technique we

previously leveraged [21,22,74] termed the phase gradient directionality (PGD). Additionally, we

use stochastic dominance to compare the PGD results for the two methods when the observation

arrays are noise alone. Finally, we estimate distributions of various metrics due to noise alone

and computed p-values on these metrics when computed from data.

Phase Gradient Directionality

To extract wave propagation features of the slow wave from the recovered gastric surface

electro-potentials, we applied a method from our previous work that was originally developed for

physics and neuroscience communities [49] which has also been used to describe spatial patterns

of GI activity with cutaneous multi-electrode recordings [21]. The PGD, a ratio between the norm

of spatially averaged velocities and the spatial average of the norm of velocities, is a measure

of how aligned wave velocities are at different spatial positions, with values falling between 0

(unaligned) and 1 (planar waves) [49]. A detailed derivation and description of the PGD can be

found in [30, 74].

A byproduct of this processing is the extraction of wave direction from the sign of spatially

averaged recovered source velocitiesOne interpretation of the PGD is as a measure of how “close”
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the activity is to being a plane wave. In order to accurately identify those samples for which

we have statistically significant plane wave activity, we only consider those direction values for

which PGDr(t) > 0.75 for one second or longer (see [21, Fig 2]).

Stochastic Dominance

We next aimed to compare the GS and LKS methods to one another when noise was

provided as input. In order to determine which method more consistently specifies PGD values

that are near 0, we used the procedure of stochastic dominance [80] to compare the probability

distributions for the percentage of time for which PGD ≥ 0.75 from the two methods. Stochastic

dominance provides a partial order over probability distributions and allows for specifying when

one distribution can be interpreted as describing a generative model that is “less noisy” than the

other. Each probability distribution was represented from an empirical cumulative distribution

computed from multiple simulations with statistically independent noise inputs during each

simulation iteration.

Consider two random variables X and Y . Let X be a random variable pertaining to the

percentage of time that PGD ≥ 0.75 when the original observation array was AWGN and the

inverse method was GS with Pareto. Let Y be a random variable pertaining to the percentage of

time that PGD ≥ 0.75 when the original observation array was AWGN and the inverse method

was LKS. Each of these random variables has an associated probability distribution, PX and PY ,

respectively. Stochastic dominance (PX ≤sd PY ) holds if there exists a pair of random variables X

and Y where X has distribution PX , Y has distribution PY , and X ≤ Y with probability 1. PX ≤ PY

if and only if the cumulative distribution functions (CDFs) obey the following relationship [81]:

FX(u)≥ FY (u), for all u (2.17)

FX(u) and FY (u) are the CDFs for the respective X and Y random variables.
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Null Hypothesis Significance Testing

In this study, we test two hypotheses for the metrics of interest (correlation coefficient

and percent of samples where PGD ≥ 0.75). We seek to understand if the metrics we compute

from the processed data are statistically significant. We compute p-values and compare with a

α = 0.05, a confidence level of 95%.

To perform this computation, we applied the two methods (GS and LKS) to each subject’s

observation array which contained a large number (T = 3600) time samples of AWGN. We

estimated the underlying distribution by combining the region specific correlation coefficients

of the electropotential estimates from all 7 models. As such, we develop distribution estimates

for the proximal1, proximal2, distal1, and distal2 regions (supplement Fig. S-43 and S-44). We

created a second set of region specific distributions (supplement Fig. S-54 and S-46) from the

percent of samples where PGD ≥ 0.75 to provide a statistical measure for the subject recording

data.

Human Subject Data

For simulated data, the results from the algorithm can be completely characterized due

to the knowledge of the ground truth which generated the observation array. However, when

applying these inference methods to recorded subject data, no such ground truth is available.

In our previous work we found statistically significant wave activity across all regions of the

gastric surface for two subjects. Here, we extend the subject population to 7 subjects with varying

underlying disease states (3 healthy controls, and 4 with gastroparesis). We collected 100 channel

EGG recordings on 7 subjects for whom either CT or MRI was available. All subjects provided

written consent to participate in the subject and were part of an ongoing study at the University

of California, San Diego, whose institutional review board as provided ethical approval (IRB

number 141069 “A pilot trial to evaluate the utility of passive, skin-mounted electrodes to monitor
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the electrical activity of the human digestive system.”). The data was collected from a 10 x 10

electrode array connected to a 256 channel GTec g.HIamp system. The recording protocol was

for each subject to begin the recording after having fasted for several hours. We recorded 90

minutes in total: 30 minutes of recording before each subject ate a standardized small meal and

60 minutes of recording afterwards. The resulting data was processed by first performing artifact

rejection [30, 74], followed by filtering to between 0.015 Hz and 0.25 Hz to isolate the 0.04-0.06

Hz frequency range of interest. Finally, it was down-sampled from the original rate of 256 Hz to

a sampling rate of 1 Hz. The data segments processed and presented here are 1200 time samples

(20 minutes), starting from when the subject completed eating their meal.

Results

For each of the 7 subjects, we generated a simulated multi-electrode cutaneous EGG

observation array that was derived from both abnormal and normal initiation scenarios. We

injected AWGN with two different levels of noise variance in terms of signal to noise ratio (3 dB

SNR, and 50 dB SNR) into each generated array. For each of these noisy observation states, we

solved the inverse problem with both the group sparsity method and the LKS approach. We then

applied the different approaches for data dependent model selection.

For the group sparsity inverse solution, we use the Pareto frontier approach only. For

the LKS inverse, we first use the Pareto frontier approach on the Kalman smoother solutions

from each active set, and then use the PNNLL approach to identify the best active set and thus

the best overall solution. To smooth the PNNLL for solution identification, a 5 point moving

average filter is applied to the curve to facilitate smoothness and identification of a local minimum.

For all simulation data, we compare the results with Pearson’s correlation coefficient. We also

determine statistical significance by comparing the measured test statistics (correlation coefficient

and percentage of samples for which PGD ≥ 0.75) to the distributions under the null hypothesis
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(estimated using simulations with AWGN noise inputs). Presented here are the group level results

(averages across all subjects) for the 7 subjects analyzed. The Supplemental Materials contain the

individual subject results.

Simulation Data

Fig. 2.5 shows the average correlation coefficient across all subjects for both methods in

the high noise (3dB SNR, part A) and low noise (50dB SNR, part B) cases. Both approaches show

improvement in the proximal 1 and distal 2 sections for the normal simulation. These regions are

also where the normal simulation increases in signal level. In the central gastric regions, the LKS

method outperforms GS in terms of correlation coefficient. Further, in the low noise setting, LKS

outperforms GS in terms of correlation coefficient for all subjects in the gastric regions.

Fig. 2.6 shows the same as Fig. 2.5 for the abnormal simulation data. Both approaches

show higher average correlation coefficient than the normal simulation. In the abnormal simula-

tion, the 3.0 dB SNR case performs similarly to the 50 dB SNR case.

Fig. 2.7 shows the average correlation coefficient for each subject (across all gastric

regions) plotted against the length of the organoaxial curve. In order to isolate the relationship

between correlation coefficient and gastric length, only the 50 dB SNR simulations are presented.

While both approaches show a small negative slope, the GS approach shows no negative trend in

the normal simulation and a smaller negative trend than LKS in the abnormal simulation. The

LKS for the normal simulation does show higher correlation coefficients than GS for smaller

gastric lengths. In general an increase in CC for smaller gastric lengths is expected, since smaller

gastric lengths have fewer parameters to estimate and thus estimation performance improves.

Table 2.1 presents the average correlation coefficient across all subjects for the different

simulation type as a function of region and method. We also form an estimate of the noise alone

distributions for each region and method in order to determine statistical significance (see the

supplement Fig. S-43 and S-44 for the correlation coefficient distribution estimates). As also
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Figure 2.5: Normal Simulation Average Correlation Coefficient A) The average CC for all
subjects both Group Sparsity with Pareto and Lasso Kalman for the 3.0 dB SNR normal simulation.
Also shown is the correlation coefficient due to noise alone. B) The same as A but for the 50 dB
SNR normal simulation.

indicated by Fig. 2.5, the correlation coefficients for the proximal 2 and distal 1 segments are

lower and the p-values in this region exceed 0.05 for both GS and LKS in the proximal 2 segment

and for the GS method alone in the distal 1 segment. For the abnormal simulation, the average

GS correlation coefficients are higher than that of LKS; however, for the normal simulation the

LKS method has higher correlation in the proximal 2 and distal 1 gastric segments.
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Figure 2.6: Abnormal Simulation Average Correlation Coefficient A) The average CC for
all subjects both Group Sparsity with Pareto and Lasso Kalman for the 3.0 dB SNR abnormal
simulation. Also shown is the correlation coefficient due to noise alone. B) The same as A but for
the 50 dB SNR abnormal simulation.

Fig. 2.8 shows box plots for the percentage of samples, in a given 60 second time segment,

for which PGD ≥ 0.75. It displays these percentages in terms of retrograde and anterograde

directions. For example if in a given 60 second time segment we found 30 samples for which

PGD ≥ 0.75, 20 of which were anterograde and 10 of which were retrograde, the anterograde

and retrograde percentages would be 33.33% and 16.67% respectively. Both approaches show
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Figure 2.7: Correlation Coefficient vs Gastric Length Each subject’s average correlation
coefficient across all time samples and gastric sources for the 50 dB SNR simulations A). Normal
(predominantly anterograde wave propagation) B) Abnormal (retrograde propagation in the
proximal 1, proximal 2 and distal 1 gastric sections, anterograde in the distal 2 section)

recovery of the simulated wave patterns. Specifically in part A and D of Fig. 2.8, higher levels

of anterograde activity are found across all gastric regions (which is consistent with the normal

simulation). Moreover, parts B and E of Fig. 2.8 show higher levels of anterograde activity in just

the distal 2 segment; everywhere else is predominantly retrograde (which is also consistent with

the abnormal simulation). Also shown are the PGD direction percentage values due to noise alone

(Fig. 2.8 C and F). As expected, i) there is no directional difference in terms of the percentages,
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Table 2.1: Average Correlation Coefficient and P Values for 3.0 dB SNR Simulation Data

Higher correlation coefficients and P values ≥ 0.05 have been highlighted in
bold.

Figure 2.8: Percentage of PGD Values Exceeding 0.75 in Each Direction The percentage of
PGD values exceeding 0.75 in the anterograde and retrograde directions for A) LKS normal
simulation at 3dB SNR; B) LKS abnormal simulation at 3 dB SNR; C) LKS simulation with
AWGN noise as observations; D) GS normal simulation at 3dB SNR; E) GS abnormal simulation
at 3 dB SNR; F) GS simulation with AWGN noise as observations

and ii) the mean directional percentages in each region are significantly lower than those of the

simulations in where there is a known direction ground truth. Lastly, the GS method finds lower

numbers of samples for which PGD ≥ 0.75 than LKS for the noise alone simulation, indicating
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that GS is more robust to noise.

Figure 2.9: Stochastic Dominance The CDFs due to noise alone for both LKS and GS A)
Proximal 1 region, B) Proximal 2 region, C) Distal 1 region, D) Distal 2 region

To further compare robustness of both methods to noise, as described in Section 2, we

estimated the distribution of the percentage of samples whose PGD exceeds 0.75. The empirical

CDFs (derived from the PDFs in Fig. S-45 and S-46) are shown in Fig. 2.9. In all scenarios,

FGS(u)≤ FKS(u) for all u between 0 and 1. As discussed in Section 2, this is a sufficient condition

for stochastic dominance. As such, Pnoise,GS ≤SD Pnoise,LKS and when applied to noise alone, the

GS method produces smaller numbers of samples for which PGD ≥ 0.75.

Table 2.2 shows the average PGD percentages for the 3.0 dB SNR simulation by method,

region and underlying simulation type. As in Table 2.1 for correlation coefficients, we estimated

distributions for the PGD values due to noise alone and used these to compute p-values. As

expected, the noise alone simulations exhibit the highest p-values and as also found with the

correlation coefficient, the highest p-values computed from recovered simulation data is with

the LKS approach for the normal simulation in the proximal 1 and proximal 2 gastric regions.
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Table 2.2: PGD Percentages for 3.0 dB SNR Simulation Data By Region
Group Sparsity LKS

Region Data Source PGD % P-Value PGD % P-Value

Proximal1
Normal 37.063 0.051 56.825 0.163
Abnormal 51.984 0.01 80.635 0.01
Noise 18.456 0.218 39.378 0.501

Proximal2
Normal 51.111 0 64.365 0.07
Abnormal 71.111 0 91.984 0.001
Noise 9.911 0.252 38.074 0.501

Distal1
Normal 54.365 0 66.587 0.03
Abnormal 76.349 0 99.127 0
Noise 7.287 0.273 32.687 0.5

Distal2
Normal 43.968 0 59.841 0.033
Abnormal 81.032 0 75.159 0.002
Noise 6.838 0.274 31.816 0.5

The GS approach has low p-value (< 0.02) in all gastric regions, for both normal and abnormal

simulation.

Recorded Subject Data

For the recorded subject data, there is no ground truth against which to compare the

recovered source results. We use PGD and p-values based on the estimated noise alone PGD

distributions to derive confidence in our output results. Table 2.3 shows the average PGD

percentages and the p-values for each approach in each region for the healthy and unhealthy

subjects. With both approaches, we find time samples for which PGD > 0.75 in all regions of

the gastric surface, for both healthy and unhealthy individuals. The p-values on the recorded

subject data for the LKS approach are > 0.05 for all regions. The GS approach by contrast only

shows p > 0.05 for the unhealthy individuals in the proximal sections. Due to the poor statistical

significance (high p-values) results for the LKS approach, we limit the subject data PGD results

to the GS approach in Fig. 2.10 and Fig. 2.11, as well as in the supplemental figures.

Fig. 2.10 shows the box plots of the PGD results for the recorded subject data, separated

by method and subject classification (healthy vs unhealthy). Higher levels of anterograde activity
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Table 2.3: PGD Percentages for Recorded Subject Data By Region
Group Sparsity LKS

Region Data Source PGD % P-Value PGD % P-Value

Proximal1 Healthy 56.638 0.005 55.137 0.188
Unhealthy 22.884 0.163 47.479 0.325

Proximal2 Healthy 43.775 0 50.662 0.24
Unhealthy 17.795 0.095 40.429 0.448

Distal1 Healthy 50.716 0 39.787 0.347
Unhealthy 21.843 0.015 25.829 0.648

Distal2 Healthy 48.391 0 51.066 0.104
Unhealthy 25.377 0.003 48.562 0.136

Solutions where P ≥ 0.05 have been highlighted in bold.

are found in the healthy subjects. The unhealthy subjects show lower levels of wave activity in

general and little to no statistical significance between the directions was found.

Fig. 2.11 shows the percentage of plane wave activity (PGD≥ 0.75) between the unhealthy

subjects, the healthy controls, and noise alone. P-values between the groups, computed with the

Kruskal-Wallis H test, show statistically significant differences (p = 0.0) in all regions. Healthy

controls show higher levels of wave activity (regardless of direction) in all regions of the stomach.

Unhealthy subjects show higher levels of wave activity than noise alone.

Discussion

While group sparsity is a more computationally complex approach, the application of the

Pareto frontier model selection procedure to the GS approach lends itself to a fully automated

method for source-localizing the gastric slow wave, requiring no human intervention to identify

a solution. By contrast, LKS still requires human intervention to perform model selection. In

addition, GS is superior to the LKS method with respect to noise: it finds fewer noise samples for

which PGD exceeds a threshold. Further, when taking into account anatomical differences, the

GS method is less susceptible to increasing length of the organoaxial curve (with respect to the

correlation coefficient in simulated data). Further, the wave activity percentages found with the
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Figure 2.10: Subject Recording Histograms Group Sparsity PGD results for different regions
for healthy and unhealthy subjects.

GS method, across all gastric regions, showed statistically significant increases in healthy human

controls as compared to patients with diagnosed gastric disorders. Finally these results showed

robust source localization of the gastric slow wave in subjects with BMI up to 31.5 kg/m2.

Simulation Data

Both approaches we explored were able to recover wave activity where PGD ≥ 0.75 with

correlation coefficients greater than that of a noise alone simulation. Moreover, across all seven
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Figure 2.11: Wave Activity Percentage of statistically significant wave activity across healthy
subject, unhealthy subjects, and noise alone.

subject models we are able to disambiguate between gastric regions. As showcased in Fig 2.8,

we recovered the wave patterns we simulated in each of the gastric regions for both a low noise

(50 dB SNR) case and a more realistic (3 dB SNR) example. The LKS method, while more

computationally efficient than GS, struggled in the more proximal regions, resulting in lower

correlation coefficients and higher p-values. Both methods had low correlation coefficients and

high p-values for the normal simulation in the proximal 2 region. There were two regions, in the

normal simulation, where the LKS approach out performed the GS approach, Proximal 2 and

Distal1. This dip in correlation coefficient and increase in p-value may be due the the changing

amplitude of the normal simulation (0.57 mV in the Proximal 1 and Distal 2 segments and 0.24

mV in the Proximal 2 and Distal 1 segments). Based on Fig. 2.7, we find that gastric length has a

more pronounced impact on the LKS method as there is a stronger negative slope when plotting

average correlation coefficient against the organoaxial curve length. The GS approach is flat or

slightly negative and thus appears to be more robust to anatomical differences between subjects.
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Recorded Subject Data

Based on the low p-values shown in Table 2.3 and the interpretation of the PGD as a

measure of plane wave propagation, the wave activity identified by the GS approach is unlikely to

be due to chance. The higher p-values from the LKS method in a controlled noise setting bring

into question the validity of the findings in the human subject data. One explanation is that the

separation of the methods, first enforcing sparsity and then smoothness, places too much wave

like structure on the underlying data such that even with noise alone, a larger than anticipated

number of samples have wave activity where PGD ≥0.75. The GS approach found statistically

significant plane wave activity in each gastric region for healthy controls, and likewise in the

distal gastric regions for the patients with GI disorders (see Table 2.3). In the healthy controls,

we find more wave activity of both retrograde and anterograde directions. Subject 5 in particular

shows dominant anterograde activity in all regions of the stomach (supplement figure S-36).

Subject 6, also a healthy control, however shows dominant retrograde activity in all regions except

for proximal 2 (supplement figure S-42). By contrast, in the unhealthy subjects, no direction

dominates another. This matches our expectations for functional dyspepsia and gastroparesis,

which has been shown both invasively and non-invasively [12, 22] to exhibit disordered gastric

propagation patterns. We also identified more statistically significant wave activity (regardless of

direction) in healthy controls vs unhealthy subjects. Importantly, we found more wave activity

in the unhealthy subjects than the noise alone simulations. Still, without a secondary invasive

measure (such as high resolution antro-duodenal manometry) with which to compare our inverse

results on recorded subject data, we rely on p-values as confidence measures.

Future Work

With the rise of customizable, stretchable electrode arrays [82] which enable ambulatory,

long time duration recordings [30], this fully automated technique for characterizing the gastric

66



slow wave may be able to provide continuous monitoring and feedback in the future. As they can

be fabricated into arbitrary patterns, stretchable electrode arrays can be “tuned” in size (electrode

diameter) and density (number of electrodes per unit area) to support the optimal trade off, in

a subject-specific fashion, between electrode impedance and spatial resolution. More work is

needed to fully explore the limits of employing such approaches.

Future work is needed to provide “ground truth” information to compare to our estimates

from human subject recordings. Simultaneous cutaneous and serosal multi-electrode recordings

have not been established due to the obvious challenges involved with surgery. As an approxima-

tion to the ground truth, recent studies have succeeded in acquiring simultaneous cutaneous and

mucosal recordings (the latter of which can be acquired concurrently with endoscopy) [83, 84].

Although these simultaneous recordings are nascent, if they eventually are performed in a large

patient cohort, they can be employed in tandem with our methods to establish comparisons

between our estimates and the ground truth derived from mucosal recordings.

Conclusion

There is a significant need for more non-invasive diagnostic tools for the clinical evaluation

and diagnosis of GI issues. Here we have applied two Bayesian inference techniques to a selection

of 7 subjects (3 healthy controls and 4 subjects with diagnosed GI disorders). We found that both

of our methods were able to disambiguate between gastric wave activity in different regions of

the stomach and compute wave direction. Furthermore, our approaches use a data dependent

method for model selection to determine the optimal hyperparameters. Ultimately, we found that

the group sparsity approach, while more computationally intensive, was more robust to variations

in gastric length and found statistically significant metrics of interest in all regions as compared to

our other method. The fact that this was robust to varying physiology (gastric length and subject

BMI) is further suggestive that this approach could be of significant future clinical utility.
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Chapter 3

Biopotential Electrode Array Optimization

for Source Localization of the Gastric Slow

Wave
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Introduction

10 percent of initial patient primary care visits are due to gastrointestinal (GI) complaints.

While physical blockages or gastric infections are straightforward to diagnose, neuromuscular

dysfunction, which comprises more than half of all GI disorders, is more complicated to diagnose

and treat. The most prevalent neuromuscular disorders in the upper GI tract are gastroparesis

(GP) and functional dyspepsia (FD) [3, 72, 73]. GP is characterized by delayed gastric emptying

in the absence of a mechanical blockage and is found in 70% of Parkinson’s patients [3] and

50 % of diabetes patients [4]. Further, the diagnoses process often involves non-invasive but

subjective symptom based questionnaires, or highly invasive objective measures. While some

common procedures can capture motor aspects of gastric function, these features do not always

correlate with symptoms or treatment response [7–9]. On the other hand, gastric slow wave

recordings from multi-electrode arrays placed on the stomach surface during open-abdominal

surgery showcase abnormal spatial propagation patterns of subjects with gastroparesis [12].

GI neuromuscular function begins with the activation of rhythmically oscillating pace-

maker cells termed the interstitial cells of cajal (ICC) [11] which control smooth muscle cells.

The spatiotemporal coordination of the ICCs comprise the slow wave and enables the peristalsis

which moves food through the GI tract. In general, gastric ICCs oscillate at 3 cycles per minute

(0.05 Hz). Normal activity is characterized by a slow wave which propagates in an anterograde

fashion from the top of the greater curvature towards the small intestines.

One method for non-invasively characterizing the gastric slow wave is through the use of

the high resolution electrogastrogram (HR-EGG), a developed method used in a fashion similar to

that of the EEG for the brain [21]. Multi-electrode arrays are placed on the abdominal surface in

line with the antrum of the stomach (often guided by CT, MRI, or ultrasound), and the electrical

signals emanating from the gastric surface are recorded. The multi-electrode array utilized for

HR-EGG contains standard off the shelf electrodes which limits our ability to control the diameter
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of electrodes for varying electrode density and spatial resolution to optimize the received signal

to noise ratio of the gastric slow wave.

While the HR-EGG has been recently shown to correlate with symptom severity [22],

because of volume conduction, it only captures spatial information relative to the cutaneous

surface, as such it is unable to disambiguate between different regions on the gastric surface.

In our previous work, we have shown that by performing Bayesian Inference based source

localization on the recordings taken for HR-EGG, we can not only extract spatial wave dynamics,

but further we can do so in an region specific manner. [74]. Specifically we use maximum a

posteriori (MAP) estimation procedure with a group sparse prior model which encourages sparsity

in the number of spatial weights while simultaneously enforcing smoothness in the temporal

evolution of these weights. This spatially sparse and smooth in time model is consistent with

physiologic findings [11].

In our previous studies we limited ourselves purely to recordings of 100 channels, in

which the electrodes were 3M red dot with an effective diameter of 8.6 mm. In simulation we

were able to recover the sources with high correlation coefficient [74] and in the recorded subject

data we found wave activity metrics of interest in all gastric regions across multiple subjects [85]

with varying disease states. However the 100 channel array requires large amplifiers that are

only rational in a clinical environment. In order to perform ambulatory measurements or longer

recordings for which we can also successfully source localize the gastric slow wave, we need

to understand the limitations of the electrode array (both number of electrodes and electrode

diameter).

Flexible, customizable, stretchable, electrode arrays are a promising technology for gastric

recording. They are non-invasive, comfortable and critically can be made in different electrode

densities, diameters, and materials. We have recently demonstrated flexible electrode arrays

(FEA) made of silver-silver chloride (AgAgCl) that can acquire the gastric slow wave signal [82].

No longer limited to available off the shelf components, FEAs can be built with arbitrary electrode
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diameters, thus allowing for simulations and modeling to inform the geometry of the electrode

array for optimizing performance.

To explore different array configurations, we chose a 10 cm by 10 cm area on a 3D model

of a subject’s abdominal surface positioned over the gastric antrum. We model electrodes of

varying sizes and compute both a normative (predominantly anterograde activity) simulation as

well as an abnormal initiation (initiation beginning in the distal stomach and bifurcating into both

anterograde and retrograde wave activity) simulation. We model the noise variance reduction due

to the increased electrode size and add additive white Gaussian noise (AWGN) of varying noise

variance to the simulated observation arrays. We then use electrical impedance spectroscopy (EIS)

data collected on AgAgCl electrodes of varying sizes to measure the complex impedance as a

function of frequency [86]. From this set of data we extrapolate an impedance model for AgAgCl

electrodes of any size. Using Ohm’s law, we model the RMS noise voltage, and again we add

AWGN of varying noise variance (based on the RMS noise voltage computed) to the observation

array. On each of these models (Noise Variance and EIS), we perform our group sparsity based

source localization and compare the results. In order to determine the optimal array, for each array

configuration, we use the noise variance model and compute the mutual information between the

gastric sources and the simulated surface electrode recordings. We identify the optimal array by

maximizing the mutual information.

This paper is organized as follows, Section 3 describes the time evolving 3D gastric

model, the Flexible Electronic Arrays, Electrical Impedance Spectroscopy and the noise models.

Section 3 discusses our approach to source localization with MAP estimation and the Group

Sparsity prior. We discuss Fisher information and mutual information in section 3. In Section 3 we

present analysis methods for extracting wave information and determining statistical significance.

Section 3 provides the results of the two subject models used for both the EIS and noise variance

models. Lastly, Section 3 and Section 3 provide discussion and conclusion, respectively.
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Figure 3.1: General process of source localizing the gastric slow wave with different elec-
trode configurations and noise models

Modeling and Simulation

Here we use dynamic simulations and 3D gastric models previously developed and then

expanded [74, 85] to compare different electrode noise models.

Time Evolving 3D Gastric Models

In previous publications [74], we have described the model development process used

here in detail. We here provide a succinct description of the model we employ. Our time evolving

gastric electro-physiologic model begins with extraction of a 3-Dimensional (3D) models of the

gastric and abdominal surfaces from subject abdominal CTs or MRIs [33]. In order to map the

dynamic electro-potential simulation to a variety of gastric surfaces, we utilized a simplified

circular model of the stomach. Specifically, we first draw four fiducial curves on the cardinal

sides of the 3D model [85]. We denote the organoaxial curve as the one that is closest to the

abdominal surface. We determine the number of points on the organoaxial curve such that the

inter-point spacing is 1 mm, and interpolate the other three curves such that they contain the same

number of points as the organoaxial curve. With these four curves defined, we use the center of
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Figure 3.2: 3D Modeling and Simulation A) The gastric surface divided into four regions. B)
Normal simulation with exclusively anterograde wave propagation. C) Abnormal simulation with
bifurcated propagation.

mass of the fiducial curves to compute circular rings whose radius varies with the geometry of

the stomach. These circles are normal to the stomach geometry and the organoaxial curve.

Each of these rings represents the bands of equal potential on the gastric surface. On this

set of rings, we map a time evolving simulation derived from invasive recording descriptions [11].

Similar to the pacemaker activity of the heart, the gastric slow wave is initiated by a group

of pacemaker cells typically found on the upper portion of the greater curvature of the stomach.

These cells trigger the activation of a network of interstitial cells of cajal (ICC). The activation of

the ICCs spread isotropically along the gastric surface and initiate muscular contractions in the

stomach corpus and antrum which underlie the stomach’s peristalsis. Based upon preliminary

findings in patients without underlying disease or symptoms, no more than five wavefronts occur

at any point in time on the gastric surface [35]. The gastric slow wave is continuous in nature

and under normal activity, it exhibits strong wave-like propagation patterns. It begins with high

amplitude and speed, reduces and slows in the central region of the stomach, and increases again

in speed and amplitude through the antrum [35–37]. Our simulation uses a finite difference

approach to solve a 1-D wave equation with Mur’s boundary condition to avoid wave reflections.

The simulation for normal activity begins in the proximal stomach (closer to the esophagus)
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and propagates in an anterograde fashion to the distal stomach (closer to the duodenum). Our

abnormal simulation models abnormal initiation based on preliminary findings from serosal

recordings [12], the wave initiates in the first distal region and propagates in a retrograde fashion

toward the esophagus and in an anterograde fashion toward the duodenum (fig 3.2 parts B and C).

Dynamic Simulated EGG Observations

The main goal of this study is to understand the effect of different electrode diameters

and densities (number of electrodes per unit area) on our ability to source localize the simulated

gastric slow wave. The abdominal 3D model is composed of many points in 3D space. We

first model the electrode centers on the abdominal surface and then we process the 3D model to

identify the points. To enable arbitrary placement of electrode centers, we used 3D slicer [33] to

draw 6 vertical fiducial curves and 6 horizontal fiducial curves each containing 6 points. This

defined a baseline grid of 36 points. Each of the curves was then interpolated up to a maximum

of 65 points which resulted in a grid of 1024 electrode centers. In order to maximize the 10

cm x 10 cm surface area used, the electrode diameters were determined by the spacing between

these electrode points. Each electrode is defined by the center and the number of points on the

abdominal surface that represent the area the electrode covers.

The simulated electrode grids begin with 4 electrodes, each with a diameter of 50 mm,

and increases to an electrode array with 1024 electrodes with 3.125 mm diameter each.

On each of the simulated electrode arrays, we solve our simplified current dipole [38]

based forward model which assumes that the gastric surface and the abdominal surface exist in

the same homogeneous volume of constant conductance.

An,i =
cosθ

4πσr2
n,i
. (3.1)

Where the angle between the organoaxially oriented current dipole and the abdominal surface is
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represented by θ, the constant conductance is σ, and r is the Euclidean distance between the ith

current dipole source on the gastric surface and the nth abdominal sensor [38].

The EGG signal at each of the electrodes [39] is modeled by:

Ym(t) =
D

∑
i=1

Am,ixi(t)+Nm(t). (3.2)

Ym(t) is the time signal at each of the M electrodes, Am,i is the matrix representing the forward

model (3.1), xi(t) is the electrical surface potential at each one of the D gastric sources. Nm(t) is

the 0 mean AWGN whose variance is determined by the noise model under investigation. Once

the noise variance is computed either through the EIS model or the noise variance reduction

model, the same σ2 is used to generate noise realizations for each electrode [39].

Strechable Ag/AgCl Electrode Arrays

Conventional HR-EGG arrays rely on the manual placement of individual off-the-shelf

electrodes on the abdominal surface. Conventional electrodes are of a few fixed sizes and

thus present challenges in adapting the size of individual electrodes within arrays to optimize

reconstruction performance. In addition, with manually placed individual electrodes, human error

can result in imprecise inter-distances across the entire array. Further, attempting to deploy such

arrays in long-term ambulatory settings can present irritation or fluctuating signal quality from

pre-gelled off-the-shelf electrodes drying out over the course of recordings.

Recently established stretchable adhesive-integrated multi-electrode arrays [82] have been

shown to enables continuous, comfortable, and customizable monitoring. While these arrays

can be constructed of many materials, the use of silver-silver chloride (Ag/AgCl) combined

with conformal contact to human skin results in a class of stretchable electronics that attain a

high signal to noise ratio (SNR) at frequencies of interest for gastric monitoring (0.05 Hz). To

characterize the complex impedance characteristics of these arrays, we performed potentiostatic
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eletrochemical impedance spectroscopy (PEIS) on a wafer of Ag/AgCl electrodes and performed

model-fitting to determine the best parameter describing the observed exponential relationship

between electrode diameter and impedance [86].

To perform this characterization, a petri dish was modified to support a metal header

pin that made contact with a standard electrophysiologic 0.9% NaCl solution in the dish. The

Ag/AgCl wafer with electrodes and measurement leads was placed inside the petri dish and the

negative lead was connected to the header pin, while the positive lead was connected to each of

the individual measurement leads (fig 3.3, A). The complex impedance was measured across

from 0.01 Hz to 5 Hz with linearly spaced points. We extracted the complex impedance values at

0.05 Hz and performed an exponential curve fit to extrapolate complex impedance values at any

electrode diameter. These complex impedance values were then used to compute the root mean

squared voltage (Vrms) of a noise signal.

Electrical Impedance Spectroscopy Electrode Model

In order to model the Vrms of noise based only on the electrode diameter, we used Ohms

law:

VRMS = I|Z|. (3.3)

VRMS is the RMS voltage of the noise signal, I is the background current on the abdominal surface,

and |Z| is the magnitude impedance of the specific electrode diameter. To model I, we fixed the

expected signal to noise ratio at the electrode array to be 3dB and computed the average signal

power across the electrode array due to the noise free observations:

Sm = 10log(
||−→ym||2

T
). (3.4)

−→ym is the time signal vector at each of the M electrodes. Sm is the signal power of each of the M

electrodes. We use the average of Sm (Sm) as the baseline signal power for the entire electrode
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Figure 3.3: EIS Measurement Setup and Curve FittingA) Wafer with electrodes of different
diameters. B) Frequency vs log average |Z| for each electrode in the wafer C) linear and
exponential regression for |Z| at F = 0.05 Hz

array. We then compute the noise power as:

Snoise = 10
Sm−3

10 (3.5)

We compute a random sample of length T for the AWGN noise process, where each entry is

N (0,σ2) where σ2 =
√

Snoise. The noise VRMS is root mean square measurement of the realization.

Finally we compute current as:

Ielectrode =
VRMS

|Z|
(3.6)

78



Figure 3.4: Electrode Abdominal Models Each electrode model for the noise variance reduction
simulation contains K points around the central M electrode positions.

For each of the different diameter electrode models, we compute the current based on 3dB

SNR and 10mm electrode diameter and then calculate the noise variance using the extrapolated

impedance for the electrode diameter of interest and this baseline current. Realizations of 0 mean

AWGN with this noise variance is then added to each simulated noise-free electrode observation

in the array.

Noise Variance Reduction Electrode Model

The noise variance reduction model relies on the fact that electrode models of differing

diameters are composed of increasing numbers of points on the abdominal surface. Because each

point contains statistically independent additive noise, the variance of the noise pertaining to the

averaging effect of the electrode reduces by L, the number of points in the individual electrode

model. To formulate this, we computed the baseline noise variance from our previously used

electrode models (100 channels of 1 cm diameter electrodes). We assumed a baseline SNR of 3dB

as this is close to observed SNRs in subject recordings [30]. For each of the different electrode

diameters, we divided this baseline σ2 by the number of points in the electrode model. AWGN of

this noise variance is then added to the observed electrode array as above.
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MAP Estimation with a Group Sparse Prior

Even though the problem of source localizing the gastric slow wave is ill posed, we take

advantage of the electrophysological properties of the stomach as we have done previously [74].

There are two key properties we leverage, (1) at any point in time there are a small number of

bands of electrical activity on the gastric surface and (2) these bands move continuously in time.

Because the electrical activity occurs in bands of equipotential, we represent the each band by a

single point along the organoaxial curve. Additionally due to the continuous nature of the wave

propagation, we encode the gastric activity as weights on a Fourier basis matrix H:

−→x (t) = HT−→w (t)

(H)k,i = cos
(

πi
k
K

)
(H)k+K

2 ,i
= sin

(
πi

k
K

) (3.7)

where i = 0, . . . ,D−1 is the spatial index at each of the gastric sources on the organoaxial curve

and k/K for k = 1, . . . ,K/2 is the spatial frequency component [74]. With this representation the

general signal model becomes:

−→y (t) = AHT−→w (t)+
−→
N (t) (3.8)

Finally our localization problem is distilled to one of finding the optimal Bayes point

estimate on the time evolving weights. To accomplish this we use a Maximum A Posteriori (MAP)

approach which leverages both the measurement model P(Y |W ) as well as a prior distribution

P(W ) on the weights. Our weight estimator is:
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ŴMAP = argmin
W∈RK×T

T−1

∑
t=0
||−→y (t)−AHT−→w (t)||22

+λpen(W ).

(3.9)

ŴMAP = [−→w (1),−→w (2), . . . ,−→w (T )] is the weight estimate and pen(W ) is the negative log

of the prior distribution on W . The source estimate at any time t is: −̂→x (t) = HT −̂→w MAP(t). In our

previous studies we have identified a group sparse regularization technique whose prior encodes

both spatial sparsity in the weights while also enforcing time smoothness yields the best results.

Group Sparse Prior

Our previously developed [74] group sparsity regularization technique in general is one

that encourages sparsity amongst groups of weights and enforces a penalty on the first differences

of those weights (similar to a Kalman Smoother). The resulting set is composed of a sparse

subset of weights which are non-zero at any point in time, further those non-zero weights evolve

smoothly in time. The group sparse penalty is as follows:

pen(W ) =
K−1

∑
k=0

(
T−1

∑
t=0

dk(t)2

) 1
2

(3.10)

where d represents the first differences in the time of weights:

−→
d (0) =−→w (0) (3.11)

−→
d (t) =−→w (t)−−→w (t−1), t = 1, . . . ,T −1. (3.12)

Conceptually this penalty is `2-norm of time differences which promotes time smoothness,

wrapped in an `1-norm which promotes spatial sparsity. As a result, the source potential estimates
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are comprised of a small number of continuously time evolving spatial frequency components.

In the implementation for this study, we solve the group sparse prior over multiple λs and

identify the optimal solution based on our underlying knowledge of the ground truth simulation.

Theoretical Limitations

Fisher Information

While MAP estimation is a powerful technique for identifying solutions to ill-posed

problems, it is still a point estimation paradigm and thus does not quantify the uncertainty in our

estimates [87]. In order to evaluate which electrode arrays allow for improvements in estimation,

we take advantage of our forward model and utilize standard theoretical methods to quantify

uncertainty in estimation. The curvature of the log likelihood function, captured by the Fisher

information, is a frequentist approach to quantifying uncertainty.

For a frequentist statistical model of Y with density given by f (y;θ), the Fisher information

can allow for describing the average curvature of the log likelihood LL(θ), log f (Y ;θ)

Iy(θ) =−LL′′(θ) (3.13)

Where Iy(θ) is the Fisher information and −LL′′(θ) is the second derivative of the negative log

likelihood. θ ∈ R is a real valued parameter. Typically this would be computed via a Taylor

series approximation, however for Gaussian problems, the log likelihood is twice differentiable in

closed form and the approximation is exact.

We can rewrite (3.8) by considering a the gastric source model at a single point in time

HT−→w (t0) and treating it as a deterministic variable θ. The relationship between the gastric sources
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and a simulated electrode array of any size can be described as:

−→y = A
−→
θ +N (3.14)

Where A, the linear forward model, is fixed and non-random of size D×M, θ is our non-random

but uncertain parameter and N is Gaussian with mean 0 and variance σ2. For this signal model in

which there are D gastric sources and M electrodes, the covariance matrix is constant.

If we consider that each electrode is modeled by a group of K points around the central

electrode point the linear Gaussian signal model becomes:

−→
V =

1
K

K−1

∑
k=0

Ak
−→
θ +Nk

= B
−→
θ +
−→
W

(3.15)

−→µ v = B
−→
θ (3.16)

Σ =
1
K



σ2 0 . . . 0

0 σ2 . . . 0
...

... . . . ...

0 0 . . . σ2


(3.17)

Because the model is linear and Gaussian, the Fisher information reduces to a a D×D

square matrix [88, 89]:

I(θ) = BT
Σ
−1B (3.18)

In order to perform optimal experiment to design and select the optimal electrode array,

we map the Fisher information to a single comparative value by computing its trace [90]. One

justification for this, for instance, is that for the linear Gaussian model (which coincides with

83



our model), the performance of the minimum variance unbiased estimator is given by the trace

of the inverse of the Fisher information matrix [89]. As such, minimizing estimator variance is

equivalent to maximizing the trace of the Fisher information matrix [91].

Analysis Methods

Phase Gradient Directionality

We partition the organo-axial curve into 4 regions, where any R is one of proximal 1,

proximal 2, distal distal 2, as shown in Fig 3.2 To measure how close the recovered source activity

in any region is to being a plane wave (which occurs for each region in both the normal and

abnormal simulations), we use a measure that we have applied on cutaneous multi-electrode

recordings recordings [21, 22] as well as the gastric source potentials from source-localizing the

slow wave [74]. This method, termed the phase gradient directionality (PGD), is given by.

PGDR (t) =
‖ 1
|R |∑i∈R ∇ηφ(ηi, t)‖
1
|R |∑i∈R ‖∇ηφ(ηi, t)‖

, t = 1, . . . ,T (3.19)

where ∇ηφ is the spatial gradient of the instantaneous phase computed via Hilbert transform from

the recovered gastric sources. Fundamentally the PGD is a measure of alignment between waves

at different spatial positions. The values for the PGD fall between 0 (for unaligned waves) and 1

(for plane waves) [49]. As such, the PGD provides a comparative measure between the recovered

wave patterns and a pure plane wave. One output of the PGD method is the sign of the spatially

averaged recovered wave velocities, which provides a measure of the recovered source’s traveling

direction (anterograde or retrograde). Because the PGD can vary between 0 and 1, to identify

statistically significant wave activity we use a detection threshold of PGDR (t)> 0.75 for at least

one second to control false discovery rate [92].
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Null Hypothesis Significance Testing

In order to determine if the metrics we compute (percent of samples where PGD ≥ 0.75

PGD and correlation coefficient) are statistically significant, we compute p-values and compare

them with α = 0.05, a confidence level of 95%. To accomplish this, we performed the group

sparsity inverse method to an observation array containing only a large number of samples (T =

3600) of noise alone. We combine the results from both subjects for each of the abdominal array

types and regions of interest. From this, we estimated the distribution under the null hypothesis

for our metrics of interest in each region, for each abdominal electrode pattern. The histograms

and estimated distributions are presented in the supplement figures S-9 and S-10.

Results

In this section, we present the results for the normal simulation. Analogous results for

the abnormal simulation, histograms used to compute p-values, and all findings for the second

subject (which mirror those of the first), can be found in the Supplemental Materials.

Fig 3.5 shows the median CC and median MAE as a function of electrode diameter for

both noise models and both subjects. In both noise models, the largest diameter simulation with

the fewest number of sensors has the lowest correlation coefficient performance. As the number of

electrodes increases (for which the noise variance on each electrode increases) the CC improves

before the noise overwhelms the increase in spatial density (around electrode diameter 15 mm).

There is a corresponding rise in the MAE measure at the same point.

Table 3.1 shows the average correlation coefficients in a region for a given diameter.

Based on our null hypothesis testing, we derive estimates of the distributions due to noise alone

for the correlation coefficient metric and compute p-values. The diameters with the highest

correlation coefficients are in bold and the P-values that are greater than 0.05, e.g. they fall

below the 95% confidence interval, are marked in red. In general, the electrode array with high
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Figure 3.5: CC and MAE for the Electrode Noise Models

Figure 3.6: PGD results for both Electrode Noise Models Normal simulation for both subjects.
Percent of time PGD ≥ 0.75 for at least 1 second separated by gastric region

correlation coefficient pertain to electrodes with higher diameters (16.66 mm). For the variance

reduction model, the highest correlation coefficients occur with an electrode diameter of 10mm in

the proximal 2 and distal 1 regions.
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Table 3.1: Average CC and P-Values For both Models, all Diameters, Normal Simulation, Subject
0
Diam(mm) Proximal1 Proximal2 Distal1 Distal2
EIS CC P CC P CC P CC P
3.12 0.640 0.000 0.338 0.019 0.450 0.005 0.535 0.000
6.25 0.650 0.000 0.400 0.007 0.467 0.003 0.565 0.000
10 0.672 0.000 0.438 0.004 0.448 0.005 0.579 0.000
12.5 0.692 0.000 0.450 0.003 0.518 0.001 0.662 0.000
14.29 0.687 0.000 0.447 0.003 0.460 0.004 0.574 0.000
16.67 0.721 0.000 0.450 0.003 0.546 0.001 0.593 0.000
25 0.717 0.000 0.452 0.003 0.507 0.002 0.580 0.000
50 0.225 0.080 0.036 0.417 0.003 0.498 0.148 0.174
VAR
3.12 0.640 0.000 0.307 0.030 0.342 0.020 0.514 0.000
6.25 0.569 0.000 0.400 0.007 0.287 0.042 0.519 0.000
10 0.689 0.000 0.420 0.005 0.507 0.001 0.556 0.000
12.5 0.660 0.000 0.328 0.022 0.347 0.019 0.520 0.000
14.29 0.658 0.000 0.322 0.024 0.443 0.004 0.566 0.000
16.67 0.695 0.000 0.353 0.015 0.439 0.004 0.580 0.000
25 0.682 0.000 0.389 0.009 0.425 0.005 0.527 0.000
50 0.442 0.001 0.045 0.388 -0.003 0.511 0.447 0.002
Diameters with high average correlation coefficient are highlighted in bold, high P-values
are highlighted in red

Fig 3.6 presents the results from the PGD analysis for each electrode configuration for

the normal simulation. As expected in each simulation type, the wave direction is predominantly

anterograde. However, in the largest electrode diameter (50 mm), essentially no wave activity is

recovered in the EIS model and comparatively little in the noise variance model. The percentage

of wave activity recovered increases in the middle electrode models and then decreases again as

the noise variance increases and the electrode diameter decreases. The Noise Variance electrode

model and the EIS model both show that electrodes in the middle of the range strike the best

balance between spatial resolution and noise reduction.

Table 3.2 shows the average PGD percentage (percent of time samples for which PGD

≥ 0.75 for more than 1 second) for each region, noise model, and diameter. This table shows

the results from the noise models side by side with the majority of the high PGD percentages
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Table 3.2: PGD Percentages For both Models, all Diameters, Normal Simulation, Subject 0
Diam. Prox1 PGD Prox2 PGD Distal1 PGD Distal2 PGD
(mm) EIS Var EIS Var EIS Var EIS Var
3.12 80.00 93.33 20.00 57.50 73.33 48.33 75.00 66.67
6.25 73.33 77.50 68.33 75.00 73.33 65.00 83.33 83.33
10 96.67 91.67 68.33 71.67 48.33 66.67 90.00 83.33
12.5 93.33 73.33 78.33 51.67 85.00 40.00 95.00 68.33
14.29 98.33 88.33 80.00 60.00 80.00 61.67 90.00 95.00
16.67 96.67 95.00 96.67 78.33 96.67 76.67 100.00 90.00
25 93.33 96.67 86.67 68.33 73.33 61.67 93.33 85.00
50 20 68.33 N/A N/A N/A 45 N/A 23.33
Solutions where the percentage of time PGD ≥ 0.75 is the highest in any column are
highlighted in bold.

Figure 3.7: Recovered Sources for both Noise Models Normal simulation for subject 0, T =
12 seconds

occurring when the electrode diameter is 14.29 mm or 16.67 mm.

Fig 3.7 shows the 3D models of the gastric surface with the recovered sources mapped to

the surface. Also shown is the ground truth simulation. Both the noise variance and EIS models

show good recovery of the ground truth simulation. They also both show that the electrode models

in the middle of the simulated group have the best recovery performance. In particular, electrode

arrays with electrode diameters between 25mm and 14.3mm appear to most accurately recreate

the ground truth. Larger arrays show higher noise content and smaller arrays show smearing or
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Figure 3.8: Fisher Information vs Electrode Diameter

widening of the recovered bands of sources.

Fig 3.8 presents the trace of the Fisher information as a function of electrode diameter.

As expected, when the diameter is very high, with small numbers of electrodes the information

content is low. As the number of electrodes increases, the information increases to a peak near an

electrode diameter of 14.29mm for subject 1 and 25 mm for subject 0. As the electrode diameter

decreases past these points, the amount of noise in the electrode reduces the available information.

Discussion

In general, our results indicate that the theoretical noise variance model matches the

model created from the EIS impedance measurement. Fundamentally there is a tradeoff between

electrode size and spatial resolution: too many electrodes results in too much noise and too few

electrodes results in too little spatial resolution despite very low noise variance. In both models,

electrodes around 16.67 mm show significant promise. Additionally, because these arrays only
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require 16 electrodes they are well suited to ambulatory settings and portable amplifiers [30,93,94]

Most of the electrode arrays modeled were able to recover source activity on the gastric

surface. The largest electrodes (50 mm, with 4 electrodes in the array) were significantly worse

at distinguishing region specific wave characteristics. This is unsurprising, given the findings

from the Fisher information plot (Fig 3.8) which clearly show low information content at both

high diameters (lowest noise, lowest spatial resolution), and extremely small diameters (highest

noise, highest spatial resolution). Clearly too many small electrodes result in resulting in poor

correlation coefficient and PGD percentages, due to noise overcoming any potential improvements

in spatial resolution. On the flipside, when there are too few large electrodes, while the noise

content is minimized, there is not enough spatial resolution to distinguish individual bands of

gastric activity. Further, extremely dense arrays are not realistic to produce both in terms of

fabrication capability and amplifier density.

Future Work

With the results of this study in mind a logical next step is to build flexible arrays of 16 or

36 channels and perform measurements on a variety of subjects to compare the outcomes.

Conclusion

In this study, we have compared an electrode noise model based on EIS measurements

to that of a linear Gaussian Noise Variance model. We find that when source localizing the

gastric slow wave, the theoretical noise variance model matches the trends observed with the EIS

model. Both indicate that a smaller number of large electrodes produce better (higher correlation

coefficient) results than a large number of small electrodes. Further, these simulated experiments

agree with the theoretical results derived from the Fisher information matrix. This is a promising

result for ambulatory recordings using customizable flexible arrays coupled with portable bio
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potential amplifiers.
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Other Inverse Methods 

Below are the time/space plots of the reconstructed electrical potentials on the surface of the 

stomach for ridge regression, LASSO, and the Kalman smoother. 

 

Fig A. Tikhonov Ridge Regression Inverse Solution on a Stomach Surface Line Across Noise Levels 
A) Ridge regression results (electrical potentials) against the ground truth for normal initiation simulation. 
B) Ridge regression results (electrical potentials) against the ground truth for abnormal initiation. In both 
normal and abnormal simulations, ridge regression is not able to fully reconstruct the ground truth wave 
pattern even under unrealistically strong signal conditions. 

 

Fig B. LASSO Inverse Solution on a Stomach Surface Line Across Noise Levels A) LASSO results 
(electrical potentials) against the ground truth for normal initiation simulation. B) LASSO results (electrical 
potentials) against the ground truth for abnormal initiation. In both normal and abnormal simulations LASSO 
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is only able to reconstruct the ground truth wave pattern where the signal is the strongest in the distal 
portions of the stomach. Even for these, it does not perform well in the presence of noise. 

 

Fig C. Kalman Smoother Inverse Solution on a Stomach Surface Line Across Noise Levels A) Kalman 
smoother results (electrical potentials) against the ground truth for normal initiation simulation. B) Kalman 
smoother results (electrical potentials) against the ground truth for abnormal initiation. In both normal and 
abnormal simulations the Kalman smoother tracks the ground truth simulation fairly well after the first time 
point 

 

 

Fig D. Group Sparsity Inverse Solution on the Stomach Surface due to Noise Only The group sparsity 
inverse reconstructed potentials due to a noise only simulation; no wave activity. 
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Second Human Subject Results 

For basic validation of these methods, we include results from a second human subject who had 

the same clinical description of motor function (GES at 30% at 4 hours) as the first human subject 

reported upon in the main manuscript.  Below we report the reconstructed potentials for both the 

simulated waves (Fig E) as well as the actual recording (Fig F), and the histograms of wave 

direction (anterograde or retrograde) as a function of time and stomach region (Fig G).  

 

Fig E. Subject 2 Simulation Reconstructed Potentials The time and space reconstructed electrical 
potentials from the group sparsity inverse for the second subject. (A) is the reconstructed potentials for the 
normal simulation. (B) is the reconstructed potentials for the abnormal initiation simulation. 

Along with the first subject reported in the main manuscript, this subject also was also involved in 

a recent clinical study that used the HR-EGG to identify cutaneous spatial patterns [1].  

Commensurate with what occurred with subject 1, the spatial patterns we found using our inverse 

method on the cutaneous surface are consistent with the spatial patterns found on cutaneous HR-
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EGG analyses from [1].  Specifically, in the inverse method we find strong retrograde activity in 

both proximal segments, which aligns with the spatial histogram from cutaneous HR-EGG found 

in Fig GP-8 in the supplemental materials of [1]. 

 

Fig F. Subject 2 Recording Reconstructed Potentials The time and space reconstructed electrical 
potentials from the second subject recording using the group sparsity inverse 

 

Table A. Percentage of Time that PGD > 0.5 for Inverse Results Via Simulation Type and Region 
(Subject 2) 

Data Source Proximal 1 Proximal 2 Distal 1 Distal 2 

Normal Simulation 48.3 75.3 64.3 84.7 

Abnormal Simulation 52.7 97.3 95.3 92.3 
 

In human subject 2, all areas of the stomach showed wave propagation, with the second distal 

section show-casing the highest percentage 84.7% of wave propagation in the normative data 

set. Strong activity is also present in the proximal 2 segment 75.3%.   

Also, of note is that the distal 1 segment shows less activity than that of the proximal 2 segment 

for this subject.  This may be due to the curvature of this particular stomach, as is seen in Fig G, 

versus that of subject 1 (Fig 9).  

Differences in stomach geometry and stomach region proximity to the cutaneous surface are likely 

explanations for the percentages shown in Table 2.  
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Fig G. Subject 2 Direction Histograms (A) the second subject stomach geometry mapped into 4 regions. 
(B) the direction histogram indicating entirely anterograde direction for the normal simulation. (C) the 
direction histogram for the abnormal simulation. (D) the direction histogram for the recorded subject data 

In terms of geometry, each stomach and abdominal CT represent different geometric relationships 

between the abdominal surface and the gastric surface.  The level of curvature in different 

stomach regions, and the effect that has on the propagation of electrical activity to the electrodes 

on the abdominal surface, can play a role. Further, eq 4 pertaining to the forward model contains 

a cos θ in the numerator, where θ is the angle between the current dipole (oriented organoaxially) 

and the observation point on the abdominal surface.  As such, if we have strong curvature, cos θ 

can go through significant changes throughout that region and so the superposition principle can 

result in the cutaneous electrode array containing interference between nearby dipole sources.  

Altogether, this would result in a reduction in signal to noise ratio and thus a reduction in the 

fidelity during reconstruction. Notice that subject 2 has a significant amount of curvature, in 

comparison to subject 1, with most curvature occurring in the two proximal regions. We surmise 

that the lower PGD percentage in the distal 1 segment, as compared to that of the proximal 2 

segment, is due in part to the more extreme curvature in the proximal segments.   
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Fig H. Subject 2 3D Model Reconstructed Potentials (A) the second subject stomach ground truth 
normative simulation and reconstructed potentials at the same time point (6 seconds). (B) the second 
subject stomach ground truth disordered simulation and reconstructed potentials at the same time point. 
(C) the second subject reconstructed potentials from the recorded data 

 

 

Fig I. Subject 1 3D Model Reconstructed Potentials (A) the first subject stomach ground truth normative 
simulation and reconstructed potentials at the same time point (6 seconds). (B) the first subject stomach 
ground truth disordered simulation and reconstructed potentials at the same time point (6 seconds). (C) the 
second subject reconstructed potentials from the recorded data 

Figs H and I show the localization results on the stomach geometry of the two human subjects. 
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Overview 

In this set of supplementary materials, we present the results for each of the individual subjects. For each subject we 

provide: 

• The 3D models (abdominal and gastric) 

• The 3 dB SNR simulation results (normal and abnormal) 

• The results due to noise alone  

• A spectrogram of a single channel of the recorded observation  

• The results from processing the recorded data 

We also showcase the histograms and distribution estimates for the noise alone simulations for correlation coefficient 

and PGD percentages. These are used to compute the p-values in the primary document.  

For each subject, regardless of disease state, we find a dominant frequency in the 0.04-0.06 Hz frequency band in the 

spectrogram. In general, the signal level is highest in the immediate post prandial time of the recording (the first 200 

seconds).  

While the Pareto frontier for some subjects recorded data appears similar to the Pareto frontier due to noise alone, as 

Fig. 10 in the primary document shows, the noise alone results in very small amounts of statistically significant wave 

activity compared to that of subjects with diagnosed GI disorders. This does vary on a subject-by-subject basis: subject 

0 for example has very little statistically significant wave activity found in the recording with only 1 time segment 

showing more than 20% of the samples (12 seconds) with PGD > 0.75. Across all four gastric regions and 1200 time 

samples processed, there are 80 total time segments of 60 seconds each.  

Table S-1 Overview of wave activity for recorded subject results on a per subject basis 

Subject Health State 

Number of  Segments where 

PGD > 0.75 for more than 

12 seconds 

Total Number of 

Segments with 

PGD > 0.75 

Percent of Strong 

Segments 

Subject 0 Non-Diabetic GP 1 7 14.3 

Subject 1 Healthy 18 43 41.9 

Subject 2 Severe Idiopathic GP 63 80 77.8 

Subject 3 Early Diabetes GP 4 24 16.7 

Subject 4 Diabetic GP 43 70 61.4 

Subject 5 Healthy 62 68 91.2 

Subject 6 Healthy 72 78 92.3 

 

As Table S-I shows, there is variability between healthy and unhealthy subjects, as seen in the main document Fig. 

10. Healthy subjects have more time segments in which PGD > 0.75, but one of the healthy subjects (subject 1) exhibits 

relatively little wave activity with only 43 of the segments exhibiting strong activity. Two of the subjects with GI 

disorders show wave activity throughout the majority of the recording (Subject 2 and Subject 4). However, these two 

subjects only exhibit wave activity in 77.8 % and 61.4% of the segments, in comparison to the two strongest healthy 

controls with 91.2% and 92.3% (Subject 5 and Subject 6). For validation of why different subjects exhibit such 

different amounts of wave activity, more study is required. 
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Subject 0 – Unhealthy: Non-Diabetic Gastroparesis 

Normal Simulation at 10 Sec Abnormal Simulation at 10 Sec

Gastric RegionsAbdominal Model

Subject 0 Abdominal and Gastric Models

Gastric Model

Proximal 2 Proximal 1

Distal 1

Distal 2

 

Fig. S-1 Subject 0 Abdominal and Gastric Surface 3D Models 

Simulation Results 

 

  

 

 

Fig. S-2 Subject 0 3.0 dB SNR Normal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.251 

Fig. S-3 Subject 0 3.0 dB SNR Abnormal Simulation Results – From left to right the pareto frontier with solution point 

selected, the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a 

function of region. The average correlation coefficient across all time and all sources is 0.526 
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Fig. S-4 Subject 0 Noise Alone Observation Results – From left to right, the pareto frontier with solution point identified, the 

recovered “sources” and the ground truth normal simulation that we compare against, the directions computed from the PGD of 

the recovered sources. The average correlation coefficient across all time and all spatial sources is -0.001 

Recording Results 

 

Fig. S-5 Recorded Data Spectrogram -  Spectrogram of  a single channel of the HR-EGG recorded data for subject 0 
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Fig. S-6 Subject 0 Recorded Data Results– From left to right the pareto frontier with solution point selected, the recovered 

sources and the ground truth simulation, the directions computed from the recovered sources as a function of region 

Subject 1 – Healthy Control 

Normal Simulation at 10 Sec Abnormal Simulation at 10 Sec

Gastric RegionsAbdominal Model

Subject 1 Abdominal and Gastric Models

Gastric Model

Proximal 2

Distal 1

Distal 2

 

Fig. S-7 Subject 1 Abdominal and Gastric Surface 3D Models 

Simulation Results 

 

Fig. S-8 Subject 1 3.0 dB SNR Normal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.145 
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Fig. S-9 Subject 1 3.0 dB SNR Abnormal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.373 

 

 

Fig. S-10 Subject 1 Noise Alone Observation Results – From left to right, the pareto frontier with solution point identified, the 

recovered “sources” and the ground truth normal simulation that we compare against, the directions computed from the PGD of 

the recovered sources. The average correlation coefficient across all time and all spatial sources is -0.006 

Recording Results 

 

Fig. S-11 Recorded Data Spectrogram -  Spectrogram of  a single channel of the HR-EGG recorded data for subject 1 
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Fig. S-12 Subject 1 Recorded Data Results– From left to right the pareto frontier with solution point selected, the recovered 

sources and the ground truth simulation, the directions computed from the recovered sources as a function of region.  

 

Subject 2 – Unhealthy: Severe Idiopathic Gastroparesis 

Normal Simulation at 10 Sec Abnormal Simulation at 10 Sec

Gastric RegionsAbdominal Model

Subject 2 Abdominal and Gastric Models

Gastric Model

Proximal 2

Proximal 1

Distal 1

Distal 2

 

Fig. S-13 Subject 2 Abdominal and Gastric 3D Models 

Simulation Results 

 

Fig. S-14 Subject 2 3.0 dB SNR Normal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.075 
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Fig. S-15 Subject 2 3.0 dB SNR Abnormal Simulation Results – From left to right the pareto frontier with solution point 

selected, the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a 

function of region. The average correlation coefficient across all time and all sources is 0.531 

 

 

Fig. S-16 Subject 2 Noise Alone Observation Results – From left to right, the pareto frontier with solution point identified, the 

recovered “sources” and the ground truth normal simulation that we compare against, the directions computed from the PGD of 

the recovered sources. The average correlation coefficient across all time and all spatial sources is 0.003 

 

Recorded Data Results 
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Fig. S-17 Recorded Data Spectrogram -  Spectrogram of  a single channel of the HR-EGG recorded data for subject 2 

 

Fig. S-18 Subject 2 Recorded Data Results– From left to right the pareto frontier with solution point selected, the recovered 

sources and the ground truth simulation, the directions computed from the recovered sources as a function of region.  

Subject 3 – Unhealthy: Early Diabetes 

Normal Simulation at 10 Sec Abnormal Simulation at 10 Sec

Gastric RegionsAbdominal Model

Subject 3 Abdominal and Gastric Models

Gastric Model

Distal 2

 

Fig. S-19 Subject 3 Abdominal and Gastric 3D Models 

 Subject Simulation Results 
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Fig. S-20 Subject 3 3.0 dB SNR Normal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.033 

 

Fig. S-21 Subject 3 3.0 dB SNR Abnormal Simulation Results – From left to right the pareto frontier with solution point 

selected, the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a 

function of region. The average correlation coefficient across all time and all sources is 0.504 

 

 

Fig. S-22 Subject 3 Noise Alone Observation Results – From left to right, the pareto frontier with solution point identified, the 

recovered “sources” and the ground truth normal simulation that we compare against, the directions computed from the PGD of 

the recovered sources. The average correlation coefficient across all time and all spatial sources is -0.001 

Recorded Data Results 

109



 

Fig. S-23 Recorded Data Spectrogram -  Spectrogram of  a single channel of the HR-EGG recorded data for subject 3 

 

 

Fig. S-24 Subject 3 Recorded Data Results– From left to right the pareto frontier with solution point selected, the recovered 

sources and the ground truth simulation, the directions computed from the recovered sources as a function of region. 

Subject 4 – Unhealthy: Diabetic Gastroparesis 

Normal Simulation at 10 Sec Abnormal Simulation at 10 Sec

Gastric RegionsAbdominal Model

Subject 4 Abdominal and Gastric Models

Gastric Model

Proximal 2

Proximal 1Distal 1

Distal 2

 

Fig. S-25 Subject 4 Abdominal and Gastric 3D Models 
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Subject Simulation Results 

 

Fig. S-26 Subject 4 3.0 dB SNR Normal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.05 

 

Fig. S-27 Subject 4 3.0 dB SNR Abnormal Simulation Results – From left to right the pareto frontier with solution point 

selected, the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a 

function of region. The average correlation coefficient across all time and all sources is 0.159 

 

 

Fig. S-28 Subject 4 Noise Alone Observation Results – From left to right, the pareto frontier with solution point identified, the 

recovered “sources” and the ground truth normal simulation that we compare against, the directions computed from the PGD of 

the recovered sources. The average correlation coefficient across all time and all spatial sources is 0.003 

Recorded Data Results 
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Fig. S-29 Recorded Data Spectrogram -  Spectrogram of  a single channel of the HR-EGG recorded data for subject 4 

 

 

Fig. S-30 Subject 4 Recorded Data Results– From left to right the pareto frontier with solution point selected, the recovered 

sources and the ground truth simulation, the directions computed from the recovered sources as a function of region. 

Subject 5 – Healthy Control 

Normal Simulation at 10 Sec Abnormal Simulation at 10 Sec

Gastric RegionsAbdominal Model

Subject 5 Abdominal and Gastric Models

Gastric Model

Proximal 2

Proximal 1

Distal 1

Distal 2

 

Fig. S-31 Subject 5 Abdominal and Gastric 3D Models 
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Subject Simulation Results 

 

Fig. S-32 Subject 5 3.0 dB SNR Normal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.133 

 

Fig. S-33 Subject 5 3.0 dB SNR Abnormal Simulation Results – From left to right the pareto frontier with solution point 

selected, the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a 

function of region. The average correlation coefficient across all time and all sources is 0.612 

 

Fig. S-34 Subject 5 Noise Alone Observation Results – From left to right, the pareto frontier with solution point identified, the 

recovered “sources” and the ground truth normal simulation that we compare against, the directions computed from the PGD of 

the recovered sources. The average correlation coefficient across all time and all spatial sources is 0.001 

 

Recorded Data Results 
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Fig. S-35 Recorded Data Spectrogram -  Spectrogram of  a single channel of the HR-EGG recorded data for subject 5 

 

Fig. S-36 Subject 5 Recorded Data Results– From left to right the pareto frontier with solution point selected, the recovered 

sources and the ground truth simulation, the directions computed from the recovered sources as a function of region. 

Subject 6 – Healthy Control 

Normal Simulation at 10 Sec Abnormal Simulation at 10 Sec

Gastric RegionsAbdominal Model

Subject 6 Abdominal and Gastric Models

Gastric Model

Proximal 2

Proximal 1

Distal 1

Distal 2

 

Fig. S-37 Subject 6 Abdominal and Gastric 3D Models 
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Subject Simulation Results 

 

Fig. S-38 Subject 6 3.0 dB SNR Normal Simulation Results – From left to right the pareto frontier with solution point selected, 

the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a function of 

region. The average correlation coefficient across all time and all sources is 0.17 

 

Fig. S-39 Subject 6 3.0 dB SNR Abnormal Simulation Results – From left to right the pareto frontier with solution point 

selected, the recovered sources and the ground truth simulation, the directions computed from the recovered sources as a 

function of region. The average correlation coefficient across all time and all sources is 0.578 

 

Fig. S-40 Subject 6 Noise Alone Observation Results – From left to right, the pareto frontier with solution point identified, the 

recovered “sources” and the ground truth normal simulation that we compare against, the directions computed from the PGD of 

the recovered sources. The average correlation coefficient across all time and all spatial sources is 0.006 
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Recorded Data Results 

 

Fig. S-41 Recorded Data Spectrogram -  Spectrogram of  a single channel of the HR-EGG recorded data for subject 6 

 

 

Fig. S-42 Subject 6 Recorded Data Results– From left to right the pareto frontier with solution point selected, the recovered 

sources and the ground truth simulation, the directions computed from the recovered sources as a function of region. 
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Histograms and Distributions for P-Value Computation 

Correlation Coefficient 

PGD Percentage 

 

Fig. S-43 Group Sparsity Correlation Coefficient 

Distribution Estimates- The histograms and density 

estimates for the correlation coefficients based on the noise 

alone simulation. The distribution estimate is made for 

each gastric region. 

Fig. S-44 LKS Correlation Coefficient Distribution 

Estimates- The histograms and density estimates for the 

correlation coefficients based on the noise alone simulation. 

The distribution estimate is made for each gastric region. 

Fig. S-46 Group Sparsity PGD Percentage Distribution 

Estimates- The histograms and density estimates for the 

percent of samples for which PGD > 0.75 based on the noise 

alone simulation. The distribution estimate is made for each 

gastric region. 

Fig. S-45 LKS PGD Percentage Distribution Estimates- 

The histograms and density estimates for the percent of 

samples for which PGD > 0.75 based on the noise alone 

simulation. The distribution estimate is made for each 

gastric region. 
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Overview 

In these supplementary materials we present the results for: 

• Abnormal simulation results 

• Subject 1 Results: 

o Average CC and P-Values 

o PGD Percentages 

o 3D Models and recovered sources 

• Noise histograms for p-value computations 

Abnormal Simulation Results 

PGD Results

Anterograde

Retrograde

Pareto CC

Max of the Minimum Mean: 3.12 Min of the Maximum Variance: 25Max of the Minimum Mean: 3.12 Min of the Maximum Variance: 16.7

Max of the Minimum Mean: 3.12 Min of the Maximum Variance: 25Max of the Minimum Mean: 3.12 Min of the Maximum Variance: 6.25  

S- 1 PGD Results for the Abnormal Simulation 

Table S- 1 Percent of Samples with PGD > 0.75 for each region, diameter and subject. 

EIS Model Sub_0 Sub_1 

Diam(mm) Prox 1 Prox 2 Distal1 Distal2 Prox 1 Prox 2 Distal1 Distal2 

3.12 100 100 95 80 60 56.667 35 50 

6.25 95 88.333 91.667 75 86.667 95 90 100 

10 93.333 91.667 86.667 81.667 76.667 81.667 73.333 65 

12.5 80 78.333 81.667 53.333 75 90 75 40 

14.29 96.667 93.333 98.333 95 86.667 95 85 65 

16.67 98.333 100 98.333 93.333 73.333 98.333 91.667 88.333 

25 100 100 98.333 95 83.333 93.333 76.667 68.333 

50 60 81.667 86.667 95 0 90 90 90 

Variance Model 
       

3.12 83.333 95 91.667 91.667 72.5 71.667 63.333 43.333 

6.25 93.333 93.333 93.333 73.333 88.333 90 80 81.667 

10 91.667 95 85 86.667 55 90 65 80 

12.5 80 83.333 88.333 73.333 80 85 81.667 73.333 

14.29 100 96.667 93.333 75 81.667 88.333 83.333 63.333 

16.67 96.667 98.333 96.667 81.667 73.333 86.667 75 63.333 

25 98.333 98.333 96.667 93.333 53.333 80 91.667 60 

50 56.667 81.667 73.333 90 0 90 93.333 85 
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Abnormal Correlation Coefficient and Error Results 

EIS Impedance Noise Variance
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S- 2 Error and Correlation coefficient results for both subjects, abnormal simulation 

Table S- 2 Correlation coefficients and associated p-values for subject 0 abnormal simulation 

EIS Model Subject 0 
 

Proximal1 Proximal2 Distal1 Distal2 

Diam (mm) CC P CC P CC P CC P 

3.12 0.611 0 0.568 0 0.692 0 0.712 0 

6.25 0.625 0 0.542 0 0.662 0 0.679 0 

10 0.6 0 0.563 0 0.663 0 0.676 0 

12.5 0.569 0 0.514 0.001 0.645 0 0.622 0 

14.29 0.569 0 0.559 0 0.687 0 0.717 0 

16.67 0.63 0 0.546 0 0.695 0 0.714 0 

25 0.629 0 0.599 0 0.701 0 0.732 0 

50 0.453 0.002 0.485 0.001 0.573 0 0.626 0 

Variance Model 
       

 
Subject 0 

 
Proximal1 Proximal2 Distal1 Distal2 

Diam (mm) CC P CC P CC P CC P 

3.12 0.6 0 0.561 0 0.7 0 0.677 0 

6.25 0.597 0 0.575 0 0.643 0 0.648 0 

10 0.611 0 0.567 0 0.687 0 0.696 0 

12.5 0.577 0 0.538 0.001 0.663 0 0.679 0 

14.29 0.614 0 0.573 0 0.648 0 0.675 0 

16.67 0.61 0 0.561 0 0.677 0 0.694 0 

25 0.606 0 0.559 0 0.655 0 0.675 0 

50 0.388 0.004 0.476 0.002 0.563 0 0.599 0 

120



 

 

 

Table S- 3 Correlation coefficient results and associated p-values for subject 1 abnormal simulation 

EIS Model Subject 1  
Proximal1 Proximal2 Distal1 Distal2 

Diameter 
(mm) 

CC P CC P CC P CC P 

3.12 0.323 0.022 0.347 0.017 0.514 0.001 0.443 0.002 

6.25 0.511 0.001 0.602 0 0.632 0 0.566 0 

10 0.509 0.001 0.527 0.001 0.645 0 0.602 0 

12.5 0.483 0.001 0.574 0 0.652 0 0.545 0 

14.29 0.502 0.001 0.556 0 0.68 0 0.559 0 

16.67 0.421 0.004 0.569 0 0.683 0 0.623 0 

25 0.558 0 0.614 0 0.709 0 0.647 0 

50 0.104 0.255 0.569 0 0.497 0.002 0.492 0.001 

Variance Model 
       

 
Subject 1  

Proximal1 Proximal2 Distal1 Distal2 

Diameter 
(mm) 

CC P CC P CC P CC P 

3.12 0.326 0.013 0.49 0.001 0.637 0 0.471 0.001 

6.25 0.456 0.001 0.59 0 0.608 0 0.593 0 

10 0.513 0 0.566 0 0.68 0 0.626 0 

12.5 0.36 0.007 0.597 0 0.534 0.001 0.52 0 

14.29 0.516 0 0.587 0 0.636 0 0.594 0 

16.67 0.443 0.001 0.575 0 0.564 0 0.573 0 

25 0.368 0.006 0.561 0 0.599 0 0.554 0 

50 0.098 0.235 0.58 0 0.485 0.002 0.482 0.001 
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Subject 0 Abnormal Simulation Recovered Source Results 

 

S- 3 Subject 0 abnormal simulation recovered sources mapped to 3D model for the EIS noise model 

 

S- 4 Subject 0 abnormal simulation recovered sources mapped to 3D model for the variance noise model 

 

 

 

 

 

 

122



 

 

 

Subject 1 Abnormal Simulation Recovered Source Results 

 

S- 5 Subject 1 abnormal simulation recovered sources mapped to 3D model for the EIS noise model 

 

S- 6 Subject 1 abnormal simulation recovered sources mapped to 3D model for the variance noise model 
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Subject 1 Normal Simulation Recovered Source Results 

 

S- 7 Subject 1 normal simulation recovered sources mapped to 3D model for the EIS noise model 

 

S- 8 Subject 1 normal simulation recovered sources mapped to 3D model for the variance noise model 
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Noise Histograms For the EIS Model 

 

S- 9 Noise histograms and distribution estimates for the EIS model, all electrode diameters, all gastric regions 

 

 

 

S- 10 Noise histograms and distribution estimates for the Variance model, all electrode diameters, all gastric regions 
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