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Abstract 

 
Ion-conducting polymers (ionomers) have been extensively studied in solution, as membranes 

and substrate-supported thin films for various electrochemical energy conversion devices, 

including fuel-cells and electrolyzers. Formation of an ionomer film from a solution, however, is 

not well understood, despite its importance for fabrication of electrodes in energy devices. Here, 

the evolution of the perfluorinated sulfonic acid (PFSA) morphology upon casting from a 

solution is observed using in-situ grazing-incidence small- and wide-angle x-ray scattering 

(GISAXS/GIWAXS). Aggregate interactions in dispersion directly impact the hydrophilic-

domain network of the cast film and the onset of crystallization occur simultaneously with the 

solution-to-film transition, but continue to evolve on different timescales. In addition, 

confinement is shown to induce anisotropic morphology at multiple lengthscales. These results 

show promise for elucidating the role of casting parameters, drying protocols, and ionomer-

solvent interactions in governing film morphology and open new avenues for establishing 

structure/processing/property relationships for ionomer films and modifying their transport 

functionality at catalytic interfaces. 
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Main Text 

Perfluorinated sulfonic acid polymers (PFSAs) are a class of ion-conducting polymer 

(ionomer) widely used in energy conversion devices such as fuel cells and electrolyzers. PFSAs 

chemical structure consists of a hydrophobic polytetrafluoroethylene (PTFE) backbone, 

providing mechanical stability, with pendant side chains terminated in a sulfonic acid group (see 

Figure S1 in SI). This amphiphilic nature leads to phase-segregation, and upon hydration, 

dissociated protons conduct through hydrophilic domains of a bi-continuous network. The 

unique structure-driven multi-functionality of PFSA ionomers makes it the prototypical material 

for energy conversion devices; thus, there is a rich literature on PFSAs as a bulk membrane (10-

50 μm).1, 2 Moreover, there has been a growing interest in understanding ionomers as thin-films 

(< 100 nm thickness), which stems from the need to understand their behavior in the catalyst 

layers (CLs) of a fuel cell or electrolyzer.1-5 In CLs, ionomer thin-films act as a binder and 

conducting media, transporting reactants and products to and from the catalytic sites (e.g., 

platinum) supported on carbon.3, 6 CLs are cast from inks, where ionomer and catalyst-coated 

carbon particles are dispersed in a mixture of solvents, typically water/alcohol mixtures. To date, 

these inks and CLs have been empirically formulated, relying only on the end performance for 

guidance.3-6 In an effort to understand the underlying science governing CL formation and, in 

turn, performance, more recent studies focused on ionomer/solvent interactions, ink 

formulations, and structure.4, 5, 7-12 Furthermore, the dynamic processes that occur when inks are 

cast is an essential step in CL formation. In particular, it is important to know how the more 

volatile solvents preferentially evaporate first and affect ionomer structure and aggregation 

behavior in the drying ink. Then, to what extent do the structures in the colloidal state persist in 

the cast film and impact ionomer properties and performance? To begin to answer these 

questions, we start with a model system of PFSA ionomer in solution. Understanding gained 
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from this model system can be applied to more complex ink systems and other ionomer-solvent 

compositions and inform the relative impact of components and their binary interactions on CL 

formation. Herein, we report the morphological changes during film formation of Nafion PFSA 

ionomer in-situ using grazing incidence x-ray scattering (GIXS). 

 

A number of studies have utilized in-situ GIXS to understand the formation of organic 

electronics. Films are prepared using either a slot-die printer,13-15 spin coater,16, 17 or spray-

coater18 and morphological data is collected as solvent evaporates and the film dries. These 

studies have shown that solvent, temperature, and organic composition affect both the transient 

and final morphologies, the latter of which can be correlated to device performance.19 Ionomers 

present a distinctly different system to study, where protons (or ions) are the conducting species 

and conduction occurs through the water-filled domains of the phase-separated nano-

morphology.1 A slot-die printer is used to cast 5 wt% Nafion ionomer solution onto a diced 

silicon wafer, and morphology of the solution/film is collected via GIXS as a function of time 

(Figure 1a). Films were cast and imaged in-situ at small and large sample-to-detector distances to 

monitor the morphology evolution at multiple lengthscales. 
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Figure 1. (a) Schematic of in-situ printing technique for monitoring ionomer film morphology. 

(b) Composite GIXS linecuts showing evolution of morphology across lengthscales. (c) 

Schematic of Nafion aggregate and core-shell cylinder model used to fit the solution data. 

 
Immediately after casting, the “film” is still in a solution state and from prior studies, a rod-like 

aggregate of polymer chains is expected.20-22 Figure 1b shows merged horizontal line-cuts from 

both GISAXS and GIWAXS for the early-time morphology. To accurately reproduce the 

shoulder at ~0.3 Å-1 and peak at ~0.6 Å-1, a core-shell cylinder model is chosen (see SI for fit). 

The extracted parameters indicate a dense core of PTFE backbone with a radius of ~0.8 nm, and 

a much less dense shell layer with a thickness of ~1.8 nm (Figure 1c). The shell is composed of 

side chain, solvated ionic moieties and solvent, and represents an average electron density of 

these components. This cross-sectional representative volume has previously been employed for 

SAXS, and is now confirmed in this study with the higher-q data obtained from GIWAXS. 
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While the core-shell cylinder can also be fit to the low-q region, the initial solution is 5 wt% and 

therefore a structure factor is expected due to interparticle interactions. 

 

 

Figure 2. (a) Horizontal GISAXS linecuts showing evolution of morphology from solution to 

film (b) Structure factor derived from dividing intensity by core-shell cylinder form factor (c) 

Peak positions from (b) evolving with time. 
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To extract an approximate structure factor, each linecut (shown in Figure 2a) is divided by the 

core-shell cylinder form factor, with a length of 40nm (from previous dilute-solution studies),23 

and the cross-sectional parameters obtained from fitting the high-q region. While the aggregate 

length may change from dilute solution to film, the form factor in the q-region of interest is 

insensitive to this parameter (Figure S3). Because of this insensitivity, changes in the form factor 

length will not change the approximate structure factor in this q-region and for this reason we 

leave it constant. Two peaks are present in the structure factor (Figure 2b), and their positions 

vary with time (Figure 2c). As the solvent evaporates and the primary rod-like particles 

aggregate further, Peak 1’s position monotonically increases with time, eventually collapsing as 

the solution transitions into a gel. This corresponds to a decrease in correlation length, i.e., d-

spacing, from d1 ≈ 12 nm to 6 nm in less than 50 seconds. Peak 2 shows non-monotonic 

behavior, first moving to lower q as the solution concentrates, before quickly advancing to higher 

q as the solution transitions to a gel. At 48 seconds, the film is now completely in the gel state 

and the second peak in the solution structure factor has become the “ionomer peak,” which is 

related to the hydrophilic domain spacing in the film, d2 ≈ 3 nm, and observed in previous 

GISAXS studies of spin-cast PFSA thin films.27-28. The evolution of the second structure factor 

peak into the ionomer peak highlights that the film morphology is set and mediated by 

interactions in ionomer solution, and by controlling these interactions one may be able to tune 

the final film morphology. As an example, it has been demonstrated that solvent composition 

affects the measured pH of PFSA dispersions, indicating differences in acid dissociation and 

ionomer aggregation.24 It is expected that both the differences in solution interactions, as well as 

the mixed-solvent volatility, will impact the specific morphology and rate of the drying process. 

Subsequently, the film morphology continues to evolve slowly over the course of the next 600 
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seconds. In the film phase, the ionomer peak is fit to the Tuebner-Strey model for bi-continuous 

media (see SI for description),25, 26 and the extracted parameters (𝜉, 〈𝜂2〉, 𝜅) are plotted as a 

function of time in Figure 3 for both through-plane (thickness direction) and in-plane (parallel to 

the substrate)  directions.  

 

 
Figure 3. (a) 2D GISAXS images at selected time points (b) extracted parameters plotted as a 

function of time from fitting the Tuebner-Strey model to parallel and perpendicular line cuts. 

 

 

In this model, ξ is the correlation length of ionomer domains and analogous to a full-

width half max (FWHM) of the ionomer peak. 〈η2〉 is proportional to the scattering length 

contrast between phases, and κ is inversely proportional to the hydrophilic-domain spacing. 

Through the first 400 seconds, κ steadily decreases, corresponding to an increase domain 

spacing. Typically, a decrease in κ is observed as these materials hydrate with water, 
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corresponding to nano-swelling of hydrophilic domains.1 Since this is occurring as solvent 

continues to evaporate and the film dries, it suggests that the hydrophilic domains are coalescing 

into fewer domains that are spaced further apart. After ~440 seconds, κ begins to increase 

through-plane while leveling off in-plane as the hydrophilic domains stop coalescing and the 

film shows usual dehydrating behavior. After this transition point, 〈η2〉 and ξ both decrease more 

rapidly through-plane as the contrast between hydrophilic and hydrophobic domains decreases 

with reduced hydration. The in-plane transition does not show such a clear change in-plane, and 

this may be due to the evaporative flux occurring through-plane. As such, there is less of a 

driving force for morphological rearrangement in the plane of the film. While domain 

coalescence is complete at 440 seconds, mesoscale connectivity of the hydrophilic domain-

network within the film may continue to evolve through dynamic fluctuations in a chemically 

heterogeneous, non-equilibrium structure. Notably, the film exhibits structural anisotropy 

immediately upon forming a gel or film, and that anisotropy is present throughout the 

morphological development. 

An identical sample was cast in the GIWAXS configuration to probe smaller 

lengthscales, particularly crystalline features (Figure 4a). PFSAs have a PTFE backbone, and 

crystallize into the same structure as PTFE, but with a much lower degree of crystallinity due to 

side-chains interrupting the hexagonal packing of backbone chains. In the dispersion state, there 

is initially no crystallinity. Instead, there is a peak at 0.9 Å-1 (d ≈ 7Å) which is part of the core-

shell cylinder form factor, and a solvent correlation peak at 1.5 Å-1(d ≈ 4Å). Between t = 40–60 

seconds, these peaks collapse, and a convoluted amorphous and crystalline peak appears at 1.2 

Å-1. This crystalline peak is from the <100> lattice plane and is commonly observed in PFSAs.1 

Thus, the onset of crystallization is concurrent with the solution-to-gel transition observed in 
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GISAXS. The parameters extracted from the deconvoluted crystalline peak are plotted as a 

function of time after the first 60 seconds in Figure 4b-c. Immediately upon film formation, there 

is an observable orientation in the crystallites. Peak intensity is higher through-plane than in-

plane, and the full-width half-max (FWHM) exhibits the opposite trend, indicating a preferential 

alignment of crystallites through-plane. This alignment continues to increase over time; the 

through-plane intensity increases, while the in-plane intensity remains constant. FWHM 

decreases marginally for both orientations as a function of time, indicating a slow growth in film 

crystallite size, ac (which is inversely proportional to the FWHM through the relation, ac  

2π/FWHM). The amorphous peak intensity decreases slightly for both orientations, again 

indicating marginal crystallization with time. Unlike ionomer domain coalescence, marginal 

crystallization appears to continue at ambient conditions very slowly, affecting the network 

connectivity of hydrophilic domains surrounded by the crystallites at longer lengthscales. 
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Figure 4. (a) 2D GIWAXS images at selected times, extracted (b) crystalline and (c) amorphous 

parameters as a function of time. A double-Gaussian was used to fit and deconvolute amorphous 

and crystalline peaks. 

 

With the two experiments probing multiple lengthscales of ionomer film formation, a picture 

of the overall morphology emerges (Figure 5). The film formation of PFSA ionomer cast via 

slot-die printing proceeds through four stages: I. Solution phase, II. Sol-Gel transition, III. Gel 

phase, IV. Film drying. In Stage-I as the film is initially cast, solvent evaporates, concentrating 

the solution and inducing further primary particle aggregation. No backbone crystallinity is 

observed in this first stage. Then, the solution concentrates to a point where ionomer aggregates 
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percolate into a gel-like phase and the structure factor peaks begin to collapse into the ionomer 

peak (Stage-II). In this stage (II), GIWAXS data shows the onset of crystallization and the 

convoluted amorphous/crystalline peak from the ionomer backbone is present in the GIWAXS 

patterns. The majority of crystallization is completed in Stage-II, although the crystallites 

continue to ripen marginally through stages III-IV. In Stage-III, the ionomer domains coalesce, 

forming fewer domains that are spaced further apart. Thus, the decrease in κ, which proceeds 

steadily until Stage-IV, where the film exhibits drying behavior as the hydrophilic domains 

shrink and move closer together. While domain coalescence is complete at the end of Stage-III, 

crystallites continue to develop through Stage-IV and beyond the timescale of the experiment, 

impacting overall crystallinity and perhaps network connectivity. 

Throughout the film formation process, there is an anisotropy in both the ionomer and 

crystalline peaks, highlighting the impact of confinement on the system. Crystallites are 

preferentially aligned through-plane and the ionomer domains are spaced closer through-plane, 

which has implications for water and ion transport and subsequently catalyst layer performance. 

While preferential orientation of domains has been reported in spin-cast thin-films,2, 27-31 this 

study reveals that the origin of such structural anisotropy is rooted in the film formation, during 

which crystallites and nano-domains orient with the substrate. Likely, this is due to the stiff rod-

like aggregates aligning parallel to both interfaces as the solution evaporates and transitions into 

a thin film. The preferential interaction of ionomer moieties with the substrate interface through 

the ionic groups facilitate this alignment of the backbone chains constituting the polymer 

aggregates.32 Prior work has demonstrated anisotropic transport and proton conductivity in 

ionomer thin-films,33-35 accompanied by higher stiffness,6 which is attributed to preferential 

alignment of domains within the film.28, 30-34, 36 Controlling this alignment and ultimately the 
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phase-separated morphology is important for improving catalyst-layer performance, and how to 

achieve tunability is an open question. 

 
 
 

Figure 5. Illustration of the evolution of morphological features during formation of a PFSA 

thin-film from a dispersion based on the time-resolved GI(SAXS-WAXS) data. 
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Findings herein illustrate the key role of film formation during casting in setting a morphology, 

which indicates tuning of ionomer-solvent interactions, processing via casting method, and 

temperature control as possible routes to control film functionality.  

The fact that hydrophobic semi-crystalline domains and polar domains evolve at different 

timescales during film formation underscores the key role of ionomer’s chemically dissimilar 

phases and their preferential interactions with the solvents (e.g., alcohol vs. water) in 

morphology. To demonstrate this further, we cast Nafion films from different solvent ratios of 

water to n-propanol (nPA) at the same weight percent and have plotted horizontal GISAXS 

linecuts with time (Figure 6). Across the three solvent ratios, all show markedly different 

transitions from solution to film and reach their gel point at different times. This gelation time 

scales with increasing water content in the solution; less volatile mixtures have a lower 

evaporative driving force. In addition, the structure factor peaks across the samples all differ due 

to local solvent environment around the ionic group. These differences subsequently lead to 

varying interaction strengths and degrees of aggregate ordering. While the impact of these 

structural changes on properties warrant further investigation, the solvent type and composition 

appears to have a significant impact on the evolution of morphology from solution to film. 
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Figure 6- in-situ GISAXS casting of different solvent ratios, demonstrating the effect of solvent 

composition on non-equilibrium morphology evolution. Dashed lines in each plot denote the 

time at which the film transitions from solution to gel 

To conclude, the continued ripening of crystallites beyond the timescale of the initial 

experiment, along with their preferential orientation, brings up the questions of film aging and 

long-term relaxation, and how they impact film behavior and functionality. Demonstration of this 

powerful technique for ionomer film formation serves as a baseline for subsequent studies to 

explore roles of materials and processing parameters in understanding and manipulating 

structure-functionality of ion-exchange thin-films for various technologies, including the 

electrodes of energy conversion devices.  

 

Experimental Section 

Ionomer solutions. Nafion®-ionomer dispersion (5-wt% solids of 1100 g polymer (molSO3
-) −1 in 

alcohol-water mixture) were obtained from Sigma Aldrich. (St. Louis, MO) and used as purchased. 

For the solvent ratio dispersions, Nafion D2021 (20-wt% solids of 1100 g polymer (molSO3
-) −1 in 

alcohol-water mixture) was diluted in varying water/nPA ratios to 4-wt% solids. Nafion D2021 

was purchased from Ion-Power Inc. (New Castle, DE). 

Thin-film Casting. PFSA thin-films were cast in-situ using a custom-built mini slot-die printer.13 

After priming the line with solution, the films were cast from the slot-die head onto a silicon wafer 
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with a head-substrate gap height of 50 um and an injection rate of 5 uL/s. The print head was 

stationary while the substrate was translated underneath at a rate of 5 mm/s. 

Grazing-incidence X-ray Scattering (GISAXS/GIWAXS). GISAXS/GIWAXS measurements were 

performed at beamline 7.3.3 of the ALS at LBNL.37 The X-ray energy was 10 keV (λ=1.24 A-1) 

with a monochromator energy resolution E/dE of 100, and the patterns were acquired with a 

Dectris Pilatus 1M or 2M CCD area detector (172 µm x 172 µm pixel size). GISAXS images were 

collected at grazing incidence angles (αi) of 0.18o with 2 sec exposure. GIWAXS images were 

collected under He at αi = 0.16o with a 3 second exposure time and corrected to account for the 

missing wedge of the Ewald sphere. Through-plane intensity vs. scattering wave vector I(q) 

profiles were obtained from 1o sector cuts  and in-plane I(q) profiles were obtained using horizontal 

line-cuts  (Δ𝑞 = 0.278 𝑛𝑚−1). The core-shell cylinder form factor was fit in the SANS Toolbox 

within Igor Pro38 and the Tuebner-Strey and double Gaussian models were fit using scripts written 

in Matlab. Error bars on the extracted parameters represent a 95% confidence interval. Exposure 

times and total dose were selected to mitigate x-ray induced damage to the sample. Included in the 

supplementary information is a more detailed discussion on Distorted Wave Born Approximation 

effects, fitting, and the models used in this work. 
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