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Mapping copy number variation by population scale genome 
sequencing

A full list of authors and affiliations appears at the end of the article.

Summary

Genomic structural variants (SVs) are abundant in humans, differing from other variation classes 

in extent, origin, and functional impact. Despite progress in SV characterization, the nucleotide 

resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs 

(i.e., copy number variants) based on whole genome DNA sequencing data from 185 human 

genomes, integrating evidence from complementary SV discovery approaches with extensive 

experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, 

including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide 

resolution, which facilitated analyzing their origin and functional impact. We examined numerous 

whole and partial gene deletions with a genotyping approach and observed a depletion of gene 

disruptions amongst high frequency deletions. Furthermore, we observed differences in the size 

spectra of SVs originating from distinct formation mechanisms, and constructed a map constructed 

a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map 

serves as a resource for sequencing-based association studies.
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Introduction

Unbalanced structural variants (SVs), or copy number variants (CNVs), involving large-

scale deletions, duplications, and insertions form one of the least well studied classes of 

genetic variation. The fraction of the genome affected by SVs is comparatively larger than 

that accounted for by single nucleotide polymorphisms1 (SNPs), implying significant 

consequences of SVs on phenotypic variation. SVs have already been associated with 

diverse diseases, including autism2,3, schizophrenia4,5 and Crohn’s disease6,7. 

Furthermore, locus-specific studies suggest that diverse mechanisms may form SVs de novo, 

with some mechanisms involving complex rearrangements resulting in multiple 

chromosomal breakpoints8,9.

Initial microarray-based SV surveys focused on large gains and losses10,11,12, with recent 

advances in array technology widening the accessible size spectrum towards smaller 

SVs1,13. Microarray-based commonly mapped SVs to approximate genomic locations. 

However, a detailed SV characterization, including analyses of SV origin and impact, 

requires knowledge of precise SV sequences. Advances in sequencing technology have 

enabled applying sequence-based approaches for mapping SVs at fine-

scale14,15,16,17,18,19,20,21. These approaches include: (i) paired-end mapping (or read 

pair ‘RP’ analysis) based on sequencing and analysis of abnormally mapping pairs of clone 

ends14,22,23,24 or high-throughput sequencing fragments15,17,18; (ii) read-depth (‘RD’) 

analysis, which detects SVs by analyzing the read depth-of-coverage16,21,25,26,27; (iii) 

split-read (‘SR’) analysis, which evaluates gapped sequence alignments for SV 

detection28,29; and (iv) sequence assembly (‘AS’), which enables the fine-scale discovery 

of SVs, including novel (non-reference) sequence insertions30,31,32. Sequence-based SV 

discovery approaches have thus far been applied to a limited (<20) number of genomes, 

leaving the fine-scale architecture of most common SVs unknown.

Sequence data generated by the 1000 Genomes Project (1000GP) provide an unprecedented 

opportunity to generate a comprehensive SV map. The 1000GP recently generated 4.1 

Terabases of raw sequence in pilot projects targeting whole human genomes33 

(Supplementary Table 1). These studies comprise a population-scale project, termed ‘low-

coverage project’, in which 179 unrelated individuals were sequenced with an average 

coverage of 3.6X – including 59 Yoruba individuals from Nigeria (YRI), 60 individuals of 

European ancestry from Utah (CEU), 30 of Han ancestry from Beijing (CHB), and 30 of 

Japanese ancestry from Tokyo (JPT; the latter two were jointly analyzed as JPT+CHB). In 

addition, a high-coverage project, termed the ‘trio project’, was carried out, with individuals 

of a CEU and a YRI parent-offspring trio sequenced to 42X coverage on average.

We report here the results of analyses undertaken by the Structural Variation Analysis 

Group of the 1000GP. The group’s objectives were to discover, assemble, genotype, and 

validate SVs of 50 bp and larger in size, and to assess and compare different sequence-based 

SV detection approaches. The focus of the group was initially on deletions, a variant class 

often associated with disease9, for which rich control datasets and diverse ascertainment 

approaches exist1,13,22,28. Less focus was placed on insertions and duplications34 and 

none on balanced SV forms (such as inversions). Specifically, we applied nineteen methods 
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to generate an SV discovery set. We further generated reference genotypes for most 

deletions, assessed the SVs’ functional impact, and stratified SV formation mechanism with 

respect to variant size and genomic context.

Prediction of SV candidate loci and assessment of discovery methods

We incorporated the SV discovery methods into a pipeline (Fig. 1AB), with the goal of 

ascertaining different SV types and assessing each method for its ability to discover SVs. 

The methods detected SVs by analyzing RD, RP, SR, and AS features, or by combining RP 

and RD features (abbreviated as ‘PD’). Altogether we generated thirty-six SV callsets by 

applying the methods on trio and low-coverage data, and by identifying SVs as genomic 

differences relative to a human reference, corresponding to the reference genome, or to a set 

of individuals (i.e. population reference; Supplementary Table 2). We initially identified 

SVs as deletions, tandem duplications, novel sequence insertions, and mobile element 

insertions (MEIs) relative to the human reference. Subsequent comparative analyses 

involving primate genomes enabled us to classify SVs as deletions, duplications, or 

insertions relative to inferred ancestral genomic loci, reflecting mechanisms of SV formation 

(see below). DNA reads analyzed by SV discovery methods were initially mapped to the 

human reference genome using a variety of alignment algorithms. Most of these algorithms 

mapped each read to a single genomic position, although one algorithm (mrFAST16) also 

considered alternative mapping positions for reads aligning onto repetitive regions (see 

Supplementary Tables 2-4 for method-specific parameters and full SV callsets). We filtered 

each callset by excluding SVs <50bp, which are reported elsewhere33. Many SVs exhibited 

support from distinct SV discovery methods, as exemplified by a common deletion, 

previously associated with body-mass index35 (BMI), that we identified with RP, RD, and 

SR methods (Fig. 1C). Nonetheless, we observed notable differences between methods (Fig. 

2ABC) in terms of genomic regions ascertained (Supplementary Fig. 1), accessible SV size-

range (Fig. 2A), and breakpoint precision (Fig.2C, Supplementary Fig. 2).

To estimate callset specificity, we carried out extensive validations (Methods), including 

PCRs for over 3,000 candidate loci, and microarray data analyses for 50,000 candidate loci 

(Supplementary Tables 3, 4; Supplementary Fig. 3). We combined PCR and array-based 

analysis results to estimate false discovery rates (FDRs), and found that eight callsets (three 

deletion, four insertion, and one tandem duplication callset) met the pre-specified specificity 

threshold33 (FDR≤10%), whereas the other callsets yielded lower specificity (FDRs of 

13%-89%).

We further assessed the sensitivity of deletion discovery methods by collating data from four 

earlier surveys1,13,22,28 into a gold standard (Methods, Supplementary Tables 5, 6, and 

Supplementary Fig. 4A), and specifically assessing the detection sensitivity for an individual 

sequenced at high-coverage (NA12878) as well as for an individual sequenced at low-

coverage (NA12156). Unsurprisingly, given the typical trade-off between sensitivity and 

specificity, in the trios the highest sensitivities were achieved by RD and RP methods with 

FDR>10% (Fig. 2B). By comparison, in the low-coverage data, the individual method with 

the greatest accuracy (FDR=3.7%) was the second most sensitive based on our gold standard 

(Fig. 2B), and the most sensitive when expanding the gold standard to a larger set of 
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individuals (Supplementary Fig. 4B). This method, Genome STRiP (to be described 

elsewhere36), integrated both RP and RD features (PD), implying that considering different 

evidence types can improve SV discovery.

Construction of a high-confidence SV discovery set

To construct our SV discovery set (“release set”), we joined calls from different discovery 

methods corresponding to the same SV with a merging approach that was aware of each 

callset’s precision in SV breakpoint detection (Supplementary Fig. 5 and Methods). Most 

SVs in the release set (61%) were contributed by individual methods meeting the pre-

defined specificity threshold (FDR≤10%). The remaining 39% of calls were contributed by 

lower specificity methods following experimental validation. Altogether, the release set 

comprised 22,025 deletions, 501 tandem duplications, 5,371 MEIs, and 128 non-reference 

insertions (Table 1, Supplementary Table 7). With our gold standard we estimated an overall 

sensitivity of deletion discovery of 82% in the trios, and 69% in low-coverage sequence 

(Fig. 2B) using a 1 bp overlap criterion. When instead applying a stringent 50% reciprocal 

overlap criterion for sensitivity assessment (which required SV sizes inferred on different 

experimental platforms to be in close agreement) our sensitivity estimates decreased by 12% 

and 18%, respectively, in trio and low-coverage sequence (Supplementary Table 8). We 

further examined an alternative approach that involved the pairwise integration of deletion 

discovery methods, and tested its ability to discover SVs without relying on the inclusion of 

lower specificity calls following experimental validation (“algorithm-centric set”; Fig. 1B). 

While this alternative approach resulted in an increased number (by ~13%) of high-

specificity (FDR<10%) calls compared to the release set (Supplementary Text), it overall 

resulted in fewer SV calls owing to its decreased sensitivity at the lower (<200bp) SV size 

range. In the following analyses we thus focused on the release set.

Extent and impact of our SV discovery set

We next assessed the extent and impact of our SV discovery (release) set. The median SV 

size was 729 bp (mean=8 kb), approximately four times smaller than in a recent tiling CGH 

based study1, reflecting the high resolution of DNA sequence based SV discovery. We also 

compared our set to a recent survey of SVs in an individual genome37 based on capillary 

sequencing and array-based analyses24, and observed a similar size distribution for 

deletions, but differences in the size distributions of other SV classes, reflecting underlying 

differences in SV ascertainment (Supplementary Fig. 6). By comparing our SVs to databases 

of structural variation and to additional personal genome datasets, we classified 15,556 SVs 

in our set as novel, with an enrichment of low frequency SVs and small SVs amongst the 

novel variants (Methods and Supplementary Text).

A major advantage of sequence-based SV discovery is the nucleotide resolution mapping of 

SVs. We initially mapped the breakpoints of 7,066 deletions and 3,299 MEIs using SR and 

AS features. Using the TIGRA-targeted assembly approach38 we further identified the 

breakpoints of an additional 4,188 deletions and 160 tandem duplications, initially 

discovered by RD, RP, and PD methods (Methods, Supplementary Table 2). Altogether, we 

mapped ~15,000 SVs at nucleotide resolution, 48% of which were novel. Few deletion loci 

Mills et al. Page 4

Nature. Author manuscript; available in PMC 2011 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4.4%) displayed different SV breakpoints in different samples, which is explainable by rare 

TIGRA misassemblies, or alternatively, by recurrently formed, multi-allelic SVs 

(Supplementary Text). TIGRA further enabled us to validate an additional 7,359 SVs 

discovered with RP or RD features by identifying the SVs’ breakpoints (Methods), and to 

evaluate the mapping precision of SV discovery methods (Fig. 2C, Supplementary Figure 2).

We further assessed the putative functional impact of SVs in our set by relating them to 

genomic annotation. Seventeen hundred SVs affected coding sequences, resulting in full 

gene overlaps or exon disruptions (Table 2), many of which led to out-of-frame exons 

(Supplementary Table 9). We related gene disruptions to gene functions, and observed 

significant enrichments for several functional categories including cell defense and sensory 

perception (Supplementary Table 10). High levels of structural variation, including copy-

number variation, were previously described for both processes15,22,39. These SVs might 

be maintained in the population by selection for the purpose of functional redundancy. 

While most SVs intersecting with genes were deletions, several validated tandem 

duplications and MEIs also intersected with coding sequences (Table 2).

Population genetic properties of deletions

We next sought to generate genotypes for deletions discovered in the 1000GP data, both to 

facilitate population genetics analyses and to make our SV set amenable to association 

studies in the form of a reference genotype set. In this regard, the Genome STRiP36 

genotyping method was developed, a method combining information from RD, RP, SR and 

haplotype features of population-scale sequence data for genotyping (Methods, 

Supplementary Text). Using this approach we generated genotypes for 13,826 autosomal 

deletions in 156 individuals. The genotypes displayed 99.1% concordance with CGH array1 

based genotypes (available for 1,970 of the deletions), suggesting high genotyping accuracy.

Fig. 3 presents allele frequency analyses based on these genotypes. As expected, common 

polymorphisms (minor allele frequency (MAF) >5%) were generally shared across 

populations, while rare alleles were frequently observed in only one population (Figs. 

3ABC). We observed several candidates for monomorphic deletions (i.e., genomic segments 

putatively deleted in all individuals), explainable by rare insertions present in the reference 

genome or by remaining genotyping inaccuracies (Supplementary Text).

We next assessed the allele frequencies of gene deletions (Fig. 3D). Similar to a recent 

array-based study1, we observed a depletion of high frequency alleles among deletions 

intersecting with protein-coding sequence compared to other deletions (P=1.1×10−11; KS 

test), consistent with purifying selection keeping most gene deletions at low frequency. 

Nonetheless, several coding sequence deletions were observed with high allele frequency 

(>80%). Most of these occurred in regions annotated as segmental duplications, consistent 

with lessened evolutionary constraintin functionally redundant gene categories22. 

Intriguingly, common gene deletions also affected many unique genes with no obvious 

paralogs. We further analyzed the abundance of gene deletions in different populations and 

observed highly differentiated loci, albeit with no statistically significant relationship 
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between differentiation and particular categories of gene overlap, i.e., intronic vs. exonic 

(Supplementary Text).

By comparing deletion genotypes with genotypes of nearby SNPs, we found, consistent with 

earlier studies1,13,40, that deletions in genomic regions accessible to short read sequencing 

display extensive linkage disequilibrium (LD) with SNPs. 81% of common deletions had 

one or more SNPs with which they are strongly correlated (r2>0.8; Supplementary Fig. 7). 

This suggests that many deletions mapped in our study will be identifiable through tagging 

SNPs in future studies (Supplementary Text). On the other hand, a fifth of the genotyped 

deletions were not tagged by HapMap SNPs (a figure similar to the fraction of SNPs that are 

not tagged by HapMap SNPs41), implying that these SVs should be genotyped directly in 

association studies. Furthermore, the LD properties of complex SVs (e.g., multiallelic SV) 

have not yet been fully ascertained as methods for genotyping such SVs with similar 

accuracy still being developed.

SV formation mechanism analysis

Nucleotide resolution breakpoint information enables inference of SV formation 

mechanisms15,22. Recent studies broadly distinguished between several germline 

rearrangement classes, some of which may comprise more than one SV formation 

mechanism15,22,42,43: non-allelic homologous recombination (NAHR), associated with 

long sequence similarity stretches around the breakpoints; rearrangements in the absence of 

extended sequence similarity (abbreviated as “non-homologous” or NH), associated with 

DNA repair by non-homologous end-joining (NHEJ) or with microhomology-mediated 

break-induced replication (MMBIR); the shrinking or expansion of variable number of 

tandem repeats (VNTRs), frequently involving simple sequences, by slippage; and MEIs. 

We distinguished among the classes NAHR, NH, VNTR, and MEI by examining the 

breakpoint junction sequence of SVs initially discovered as deletions or tandem duplications 

relative to a human reference.

We first compared the SVs to orthologous primate genomic regions to distinguish deletions 

from insertions/duplications with respect reconstructed ancestral loci using the BreakSeq 

classification approach43. This analysis showed that of the 11,254 nucleotide-resolution 

SVs discovered as deletions relative to a human reference, 21% actually represented 

insertion and 2% represented tandem duplications relative to the putative ancestral genome. 

Of the remaining SVs, 60% were classified as deletions relative to ancestral sequence, 

whereas the ancestral state of 17% was undetermined. By comparison, out of 160 

nucleotide-resolution SVs identified as tandem duplications relative to the reference 

genome, 91.6% were classified as duplications relative to the ancestral genome, whereas the 

ancestral state of 8.4% remained undetermined (Supplementary Text). Our breakpoint 

analysis revealed that 70.8% of the deletions and 89.6% of the insertions exhibited 

breakpoint microhomology/homology ranging from 2-376 bp in size, with distribution 

modes of 2 bp (attributable to NH) and 15 bp (attributable to MEI), respectively (Fig. 4A, 

Supplementary Text). As expected42, a small portion of the deletions (16.1%) displayed 

non-template inserted sequences at their breakpoint junctions. By comparison, the tandem 

duplications showed extensive stretches displaying ≤95% sequence identity at the 
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breakpoint linearly correlating in lenght with SV size (Fig. 4A). In addition, most tandem 

duplications displayed 2-17 bp of microhomology at the breakpoint junctions 

(Supplementary Text).

We subsequently applied BreakSeq43 to infer formation mechanisms for all SVs classified 

with regard to ancestral state. Using BreakSeq, we inferred NH as the dominating deletion 

mechanism, and MEI as the dominating insertion mechanism (Fig. 4BC, Supplementary 

Table 11). Furthermore, an abundance of microhomology at tandem duplication breakpoints 

suggested frequent formation of this SV class by a rearrangement process acting in the 

absence of homology (NH). When relating SV formation to the variant size spectrum, we 

observed marked insertion peaks for MEIs at 300 bp, corresponding to Alu elements, and at 

6 kb, corresponding to L1/LINEs (Fig. 4C). By comparison, NH and NAHR based 

mechanisms occurred across a wide size-range, whereas VNTR expansion/shrinkage, 

consistent with earlier findings1, led to relatively small SV sizes (Figs. 4C,D).

Furthermore, when displaying the genomic distribution of SVs (Fig. 5A), we observed a 

notable clustering of SVs into ’SV hotspots’. We analyzed this clustering in detail by 

examining the distribution of non-overlapping, adjacent SVs, and observed a marked 

clustering of SVs formed by NAHR, VNTR, and NH, respectively, a signal extending to 

hundreds of kilobases (Fig.5B). The clustering was influenced by an abundance of VNTR 

near the centromeres43 and NAHR near the telomeres (Fig.5A). A significant enrichment of 

NAHR near recombination hotspots (P=1.3e-15) and segmental duplications (P=3.1e-17) 

further contributed to the clustering (Supplementary Table 13).

To further explore this clustering we devised a segmentation approach for predicting SV 

hotspots (Methods), which yielded a map of 51 putative SV hotspots (Supplementary Table 

14). 80% of the hotspots mainly comprised SVs originating from a single formation 

mechanism (Fig. 5C). Most of these corresponded to NAHR hotspots, although hotspots 

dominated by NH and VNTR also were evident. These observations suggest that SV 

formation is frequently associated with the locus-specific propensity for genomic 

rearrangement.

Conclusions and discussion

By generating an SV set of unprecedented size along with breakpoint assemblies and 

reference genotypes, we demonstrate the suitability of population-scale sequencing for SV 

analysis. Nucleotide resolution data allow the construction of reference datasets and make 

SVs readily assessable across different experimental platforms using genotyping 

approaches. Our fine-scale map enabled us to examine the functional impact of SVs, as 

exemplified by our analysis of gene disruption variants, which will be of value for genome 

and exome sequencing studies.

Our map further enabled us to examine size spectra of SV formation mechanisms and led us 

to identify genomic SV hotspots that are commonly dominated by a single formation 

mechanism. Recurrent rearrangements, implicated in genomic disorders, are hypothesized to 

be associated with local genome architecture44, e.g., with segmental duplications that 
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facilitate NAHR. Also, DNA rearrangement in the absence of homology, i.e., MMBIR, has 

been implicated in recurrent SV formation8,45. In this regard, we noticed that out of the 

hotspots we report, six fall into critical regions of known genetic disorders associated with 

recurrent de novo deletions, including Miller-Dieker syndrome and Leri-Weill 

dyschondrosteosis (Supplementary Table 14). Irrespective of potential disease relevance, or 

inferred mechanism of formation, our analysis revealed a map of SV hotspots that may 

constitute local centers of de novo SV formation, consistent with the concept that local 

genome architecture contributes to genomic instability44.

Our study focused on characterizing deletions, which are often associated with disease9. 

Facilitated by ancestral analyses of SV loci, we also characterized insertions and tandem 

duplications, albeit in less detail than deletions. Companion papers with more detailed 

analyses of MEIs, and copy-number variation within segmental duplications are published 

elsewhere34,46. Of note, most SV discovery methods depend on mapping reads onto their 

genomic locus of origin, i.e., the ‘accessible’ fraction of the genome, a fraction lessened in 

segmental duplications that are of high interest to SV analysis. Nonetheless, owing to the 

abilities of RP and RD methods in detecting SVs in these regions and in interpreting reads 

with multiple mapping positions, the ‘accessible’ fraction of the genome is higher for SVs 

than for SNPs16. In the future, sequencing technologies generating longer DNA reads will 

increase the accessible genome, and will enable the assessment of SVs embedded in long 

repeat structures, such as balanced inversions.

Our SV resource will enable the discovery, genotyping, and imputation of SVs in larger 

cohorts. Numerous genomes will be sequenced in the coming months to facilitate disease 

association studies. Systematic characterization of SVs in these genomes will benefit from 

the concepts and datasets presented here.

Methods Summary

Samples

Sequence data for 179 unrelated individuals and six individuals from parent-offspring trios 

were obtained as part of the 1000GP. These data were generated with Illumina/Solexa, 

Roche/454, and Life Technologies/SOLiD sequencing technology platforms.

SV discovery and breakpoint assembly

The SV discovery methods we applied comprised six RP, four RD, three SR, four AS, and 

two PD based methods. TIGRA38 was used for targeted breakpoint assembly.

Experimental validation

We validated SV calls by PCR, array CGH and SNP microarrays, targeted assembly, and 

custom microarray-based sequence capture. PCR was performed in various different 

laboratories33, CGH analysis was performed based on tiling array data provided by the 

Genome Structural Variation Consortium (ArrayExpress: E-MTAB-40), and SNP array 

analysis based on data obtained from the International HapMap Consortium (http://

hapmap.ncbi.nlm.nih.gov).
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Genotyping

Genome STRiP36 was used for deletion genotyping in low coverage sequence data. Initial 

genotype likelihoods were derived with a Bayesian model and imputation into a SNP 

genotype reference panel from the HapMap41 (Hapmap3r2) was achieved with Beagle 

(v3.1; http://faculty.washington.edu/browning/beagle/beagle.html).

SV formation mechanism analysis

SV breakpoints mapped at nucleotide resolution were analyzed with BreakSeq43 to classify 

SVs relative to putative ancestral loci and to infer SV formation mechanisms. SV hotspots 

were mapped with custom Perl and R scripts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SV discovery and genotyping in population scale sequence data
A. Schematic depicting the different modes (i.e., approaches) of sequence based SV 

detection we used. The RP approach assesses the orientation and spacing of the mapped 

reads of paired-end sequences14,15 (reads are denoted by arrows); the RD approach 

evaluates the read depth-of-coverage25,26; the SR approach maps the boundaries 

(breakpoints) of SVs by sequence alignment28,29; the AS approach assembles SVs30,31,32. 

B. Integrated pipeline for SV discovery, validation, and genotyping. Colored circles 

represent individual SV discovery methods (listed in Supplementary Table 1), with modes 

indicated by a color scheme: green=RP; yellow=RD; purple=SR; red=AS; green and 

yellow=methods evaluating RP and RD (abbreviated as ‘PD’). C. Example of a deletion, 

previously associated with BMI35, identified independently with RP (green), RD (yellow), 

and SR (red) methods. Grey dots indicate position and mapping quality for individual 

sequence reads. Targeted assembly confirmed the breakpoints detected by SR.
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Figure 2. Comparative assessment of deletion discovery methods
A. Deletion size-range ascertained by different modes of SV discovery. Three groups are 

visible, with AS and SR, PD and RP, as well as RD and ‘RL’ (RP analysis involving 

relatively long range (≥1 kb) insert size libraries, resulting in a different deletion detection 

size range compared to the predominantly used <500kb insert size libraries), respectively, 

ascertaining similar size-ranges. Pie charts display the contribution of different SV 

discovery modes to the release set. Outer pie = based on number of SV calls; inner pie = 

based on total number of variable nucleotides. Of note, not all approaches were applied 

across all individuals (see Supplementary Table 2). B. Sensitivity and FDR estimates for 

individual deletion discovery methods based on gold standard sets for individuals sequenced 

at high (NA12878) and low-coverage (NA12156), respectively. All depicted estimates are 

summarized in Supplementary Tables 3, 4, 6. Vertical dotted lines correspond to the 

specificity threshold (FDR≤10%). C. Breakpoint mapping resolution of three deletion 

discovery methods (the respective method names are in Supplementary Table 2). The blue 

and red histograms are the breakpoint residuals for predicted deletion start and end 

coordinates, respectively, relative to assembled coordinates (here assessed in low-coverage 

data). The horizontal lines at the top of each plot mark the 98% confidence intervals (labeled 

for each panel), with vertical notches indicating the positions of the most probable 

breakpoint (the distribution mode).
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Figure 3. Analysis of deletion presence and absence in two populations
A-C. Deletion allele frequencies and observed sharing of alleles across populations, 

displayed for deletions discovered in the CEU, YRI, and JPT+CHB population samples in 

terms of stacked bars. D. Allele frequency spectra for deletions intersecting with intergenic 

(blue), intronic (yellow), and protein-coding sequences (red).

Mills et al. Page 15

Nature. Author manuscript; available in PMC 2011 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Contribution of SV formation mechanisms to the SV size spectrum
A. Breakpoint junction homology/microhomology length plotted as a function of SV size for 

SVs originally identified as deletions compared to a human reference. Dots are colored 

according to the SVs’ classification as deletions, insertions/duplications, or “undetermined” 

relative to inferred ancestral genomic loci. Gray lines mark groups of SVs likely formed by 

a common formation mechanism. The diagonal highlights tandem duplications (and few 

reciprocal deletion events), in which the length of the duplicated sequence correlates linearly 

with the length of the longest breakpoint junction sequence identity stretch. The ellipses 

indicate MEIs, i.e., Alu (~300 bp) and L1 (~6 kb) insertions, associated with target site 

duplications of up to 28 bp in size at the breakpoints. The horizontal group corresponds 

mostly to NH-associated deletions with <10 bp microhomology at the breakpoints. The 

remaining (ungrouped) SVs comprise truncated MEIs, VNTR expansion and shrinkage 

events, as well as NAHR-associated deletions and duplications. B. Relative contributions of 

SV formation mechanisms in the genome. Numbers of SVs are displayed on the outer pie 

chart and affected base pairs on the inner. Left panel: SVs classified as deletions relative to 

ancestral loci. Right panel: SVs classified as insertions/duplications. C. Size spectra of 

deletions classified relative to ancestral loci. D. Size spectra of insertions/duplications.
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Figure 5. Mapping hotspots of SV formation in the genome
A. Distribution of SVs on chromosome 10 (“chr10”). Above the ideogram, colored bars 

indicate SV formation mechanisms (same color scheme as in B and C); bar lengths relate to 

the logarithm of SV size. Below the ideogram, bar lengths are directly proportional to allele 

frequencies. Arrows indicate an SV hotspot near the centromere underlying mainly VNTR, 

and several hotspots near the telomeres underlying mainly NAHR events. B. Enrichment of 

SVs inferred to be formed by the same formation mechanism for different genomic window 

sizes. Displayed is an enrichment of nearby, non-overlapping SVs formed by the same 

mechanism relative to an SV set where mechanism assignments are shuffled randomly. C. 
SV hotspots are mostly dominated by a single formation mechanism. Colored bars depict 

numbers of SV hotspots in which at least 50% of the variants were inferred to be formed by 

a single formation mechanism. The average abundance of NAHR-classified SVs in NAHR 

hotspots was 70% (compared with 77% for VNTR-hotspots; 69% for NH). The gray bar 

(“mixed”) corresponds to SV hotspots with no single mechanism dominating.
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