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40 Summary

41 Although it is well appreciated that genetic studies of flowering time regulation have led to 

42 fundamental advances in the fields of molecular and developmental biology, the ways in which 

43 genetic studies of flowering time diversity have enriched the field of evolutionary biology have 

44 received less attention despite often being equally profound. Because flowering time is a complex, 

45 environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive 

46 isolation, research into the genetic architecture and molecular basis of its evolution continues to yield 

47 novel insights into our understanding of domestication, adaptation, and speciation. For instance, 

48 recent studies of flowering time variation have reconstructed how, when, and where polygenic 

49 evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown 

50 how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural 

51 populations; and provided important case studies of how assortative mating can evolve and facilitate 

52 speciation with gene flow. In addition, functional studies have built detailed regulatory networks for 

53 this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are 

54 rewired and elaborated through evolutionary time. 

55

56 Keywords: evolution, flowering time, adaptation, domestication, speciation, evo-devo, phenotypic 

57 plasticity, phenology

58

59

60 I. Introduction

61 Timing the initiation of reproductive development appropriately in the context of seasonally changing 

62 conditions is critical for fitness. In angiosperms, if flowering occurs too early, floral tissues may be 

63 damaged by late frosts, pollinators and other flowering conspecifics may not yet be abundant enough 

64 to ensure all ovules are fertilized, and plant size may constrain total flower production. If flowering 

65 occurs too late, a plant may encounter conditions unfavorable for seed maturation or dispersal, fail to 

66 set seed before dying in season-ending frosts or droughts, or leave offspring in poor growth 

67 environments. 

68 As a consequence of these and other time-dependent factors that influence survival, 

69 fecundity, and gene flow, plants have evolved mechanisms to regulate their seasonal reproductive 

70 phenology—when flowering begins and ends—through internal timekeepers and environmental 

71 signals. Developmental plasticity of flowering time to environmental signals is particularly important in 
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72 temperate environments, as these mechanisms allow plants to sense changing signals highly 

73 predictive of growing season timing and actively adjust flowering accordingly. For instance, many 

74 plants require prolonged exposure to cold, or vernalization, for floral induction as this indicates the 

75 passage of winter and avoids mortality that would result from prematurely flowering in the fall 

76 (Bouché et al., 2017). In many annual plants, a permanent memory of winter is established through 

77 stable epigenetic silencing of factors that repress flowering, but in perennials, this silencing is not 

78 stable, allowing new vegetative growth that will flower in future years (Hyun et al., 2019).

79 Obligate or facultative flowering responses to photoperiod, a reliable indicator of calendar 

80 date compared to other environmental inputs, are also common adaptations to ensure the 

81 appropriate seasonal timing of reproduction. Photoperiod measurement is achieved by the circadian 

82 gating of light- or dark-inducible signaling mechanisms, such that only when days are above or below 

83 the required length is the flowering regulatory signal transmitted (Song et al., 2015). Pathways 

84 involving epigenetic regulation have also been discovered that track plant age to prevent seedlings 

85 from flowering prematurely (Hyun et al., 2017). These pathways converge to regulate several floral 

86 inducers expressed in the shoot apical meristem and also a mobile hormonal signal known as 

87 florigen, which is encoded by homologs of the FLOWERING LOCUS T (FT) protein and moves from 

88 the leaf to the shoot apex to induce flowering (Andrés & Coupland, 2012).

89 Because the start and duration of the growing season vary across the landscape and 

90 between wild and agronomic environments, flowering time and its regulation by environmental cues 

91 are frequent targets of and contributors to evolutionary processes operating within and between 

92 species. Due to its agronomic importance, regulation of flowering time has received intensive study 

93 in model organisms and diverse crop species (Andrés & Coupland, 2012; Blackman, 2017). The 

94 highly detailed knowledge of developmental mechanisms produced by this immense body of work 

95 has facilitated abundant research into the genetic underpinnings of the processes of domestication, 

96 adaptation, and speciation and also allowed for comparisons at macroevolutionary scales that have 

97 informed our understanding of how developmental networks evolve. Here, we review how genetic 

98 studies of flowering time variation have advanced our understanding of these key evolutionary 

99 processes, with particular emphasis on recent work and on synthesizing findings across study 

100 systems. We conclude by highlighting areas where genetic studies of flowering time variation are 

101 poised to make major contributions to evolutionary biology in the future.

102

103 II. Domestication
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104 The evolutionary transformation of wild plants into crops is a multi-stage process (Kantar et al., 2017; 

105 Gaut et al., 2018). During initial domestication, early farmers began managed cultivation of a species 

106 and consciously or unconsciously selected on harvest and yield traits. Next, cultivation spread from 

107 the center(s) of origin, and during this dispersion stage, adaptation to local environmental conditions 

108 was often essential. Finally, during modern improvement, breeders have further altered crops 

109 through artificial selection on natural variants or induced mutants. Flowering time and its 

110 environmental regulation have often been targets of selection during these processes, as altering 

111 these traits and their underlying pathways can impact critical components of yield including seasonal 

112 phenology, plant architecture, and developmental synchrony at harvest. 

113 Here, we primarily focus on the evolution of flowering time during initial domestication and 

114 dispersion, as these stages share greatest similarity to evolutionary processes operating in natural 

115 populations (Purugganan & Fuller, 2009). We first take a trait-centric perspective, drawing on 

116 literature from diverse crops. In doing so, we aim to illustrate how flowering time evolves as a 

117 multifaceted phenotype comprised of genetically dissociable regulatory modules that integrate 

118 information from multiple seasonal cues and developmental timekeepers (Blackman, 2017). Then, 

119 we specifically describe how the evolution of photoperiodic flowering during maize dispersion 

120 provides a compelling case study of polygenic adaptation, as knowledge of causal variants reveals 

121 how evolution of this trait accumulated over space and time.

122

123 Evolving long-day annuals into crops by reducing photoperiod and vernalization responses

124 Many herbaceous annual species germinate in the fall and overwinter before flowering in the spring. 

125 In these taxa, vernalization is often required to relieve the repression of flowering established early in 

126 development, and long-day photoperiods activate floral inducers and/or relieve other repressors of 

127 those inducers. However, spring plantings are often favored in agriculture, and the pressure to flower 

128 quickly in the spring may be reduced or absent in an agronomic context depending on environmental 

129 conditions. Thus, substitutions that attenuate these inductive responses have been favored in some 

130 crops since delayed flowering can improve resource utilization and yield with extended growing 

131 seasons (Table 1). 

132 For instance, many spring-sown varieties of barley (Hordeum vulgare) and einkorn wheat 

133 (diploid Triticum monococcum) differ from winter-sown varieties by regulatory mutations, missense 

134 substitutions, or even full deletions of VRN2 (VRN-H2), a pseudo-response regulator (PRR; Yan et 

135 al., 2004). Functional VRN2 represses floral inducer expression until it is down-regulated by VRN1 
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136 (VRN-H1), a MADS-box transcription factor expressed in response prolonged cold. Therefore, spring 

137 varieties of these grains can flower without vernalization. Other spring einkorn wheat varieties carry 

138 deletion variants in the VRN1 promoter (Yan et al., 2003, 2004). Spring-sown barley varieties also 

139 segregate for a missense variant in another PRR, Ppd-H1, which delays flowering under long days 

140 by preventing induction of the FT homolog HvFT1. The frequency of the missense allele varies 

141 clinally such that non-responsive genotypes are more common at more northern latitudes, where 

142 mild summer conditions make for longer growing seasons (Turner et al., 2005; Jones et al., 2008). 

143 In contrast, in winter varieties of wheat (polyploid Triticum aestivum ssp. aestivum), 

144 photoperiod response is fine-tuned among populations by copy number variants (CNVs) and allelic 

145 combinations of homeologs of Ppd-H1 (Bentley et al., 2013; Würschum et al., 2015, 2018). Adding 

146 copies accelerates flowering under non-inductive short days, allowing southern European 

147 populations to initiate reproduction and grain filling earlier in the calendar year to escape end-of-

148 season summer heat and drought. Quantitative variation in long-day response mediated by earlier 

149 flowering under non-inductive short days is also observed across cultivars of two domesticated 

150 legumes, pea (Pisum sativum) and lentil (Lens culinaris). In both cases, variants that produce 

151 frameshifts in orthologs of EARLY FLOWERING 3 (ELF3), a component of the circadian clock, are 

152 responsible (Weller et al., 2012)

153

154 Adapting short-day crops to shorter growing seasons by altering photoperiod response

155 Environments with short growing seasons or with long end-of-season photoperiods pose challenges 

156 for crops domesticated from short-day wild ancestors, as flowering too late risks mortality from early 

157 frosts prior to maturity. Therefore, for many such species, domestication or dispersal to higher 

158 latitudes or altitudes has selected for variants that abolish or reduce the strength of the short-day 

159 flowering response (Table 1). For instance, two recent elegant studies in tomato (Solanum 

160 lycopersicum) attribute the shift from a strong short-day response to early, nearly day-neutral 

161 flowering to allelic variation in SELF PRUNING 5G (SPG5), a paralog of the tomato FT ortholog 

162 SINGLE FLOWER TRUSS (SFT) (Soyk et al., 2017; Zhang et al., 2018). SP5G has evolved to 

163 function as a repressor of flowering in long days, but a 52-bp deletion in a 3’ UTR enhancer region, 

164 which causes improper transcript termination rather than reduced transcript initiation, shows 

165 evidence of selection during domestication (Zhang et al., 2018). 

166 Recent evidence suggests that allelic variation in a FT homolog may also be responsible for 

167 the evolution of earlier flowering under non-inductive long days in day-neutral temperate cultivars of 
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168 sorghum (Sorghum bicolor; Cuevas et al., 2016). Another example of mechanistic convergence is 

169 observed in temperate-adapted cultivars of short-day rice (Oryza sativa), where induction of early 

170 flowering under non-inductive photoperiod conditions occurs in a manner parallel to the barley and 

171 wheat examples above, i.e., through missense or null alleles in orthologs of the PRRs VRN2 and 

172 Ppd-H1 (Xue 2008, Yan 2013, Koo 2013). Finally, convergent evolution at the genetic level is also 

173 observed in legumes. In soybean (Glycine max) and independently in both domestications of 

174 common bean (Phaseolus vulgaris), loss-of function alleles in homologs of the light receptor 

175 PHYTOCHROME A have been implicated in the evolution of photoperiod insensitivity (Xu et al., 

176 2013; Jiang et al., 2014; Weller et al., 2019).

177

178 Polygenic evolution during range expansion

179 Since its initial domestication ~9000 years ago from short-day teosinte (Zea mays ssp. parviglumis), 

180 maize (Z. mays L.) spread from the tropical lowland Balsas River basin into temperate and higher 

181 latitude areas of North America where it faced many of the same climate-associated challenges as 

182 the crops discussed above (Swarts et al., 2017). We give special focus to maize here because 

183 recent functional, quantitative genetic, population genomic, and archaeological DNA studies have 

184 together made exceptional progress in unraveling how this unfolded. Maize landraces vary from 35-

185 120 days to flower. This variation is highly polygenic, involving thousands small effect polymorphisms 

186 (most alter flowering time by <1 day) that often also show population genomic signatures of 

187 latitudinal or altitudinal adaptation (Buckler et al., 2009; Romero Navarro et al., 2017). Many of these 

188 polymorphisms are in regions of low recombination, and recent work has determined that time to 

189 flowering and genome size are positively correlated, a pattern driven predominantly by variation in 

190 the number of large heterochromatin knobs (Bilinski et al., 2018) and that highlights how 

191 chromosome-scale differences may influence adaptation (Fig. 1a). Even discounting SNPs whose 

192 association with flowering variation solely reflects linkage disequilibrium with these larger structural 

193 features, there are likely still hundreds of adaptive flowering time variants in maize.

194 Five genes contributed specifically to the reduction of short-day response as maize cultivation 

195 spread northward, and most causal variants are known. For instance, upstream of ZNC8, the maize 

196 FT homolog that promotes flowering under short days, a nucleotide substitution and a small deletion 

197 are each associated with higher gene expression and earlier flowering under long days (Fig. 2a; Guo 

198 et al., 2018). The former is nearly fixed in maize landraces throughout the Americas and segregates 

199 within teosinte subspecies, suggesting an early sweep from standing variation. The latter is only 
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200 found on haplotypes with the early allele of the former, is at higher frequencies in northern landraces, 

201 and segregates only within Z. mays ssp. mexicana, consistent with adaptive introgression from this 

202 highland teosinte subspecies facilitating northward dispersion. Two genes—ZmCCT9 and 

203 ZmCCT10—are PRRs homologous to VRN2, and loss-of-function alleles caused by transposable 

204 element (TE) insertions in their promoters are more frequent at higher latitudes. These alleles cannot 

205 repress their downstream target ZCN8 (Hung et al., 2012; Yang et al., 2013; Huang et al., 2018b). 

206 Likewise, a TE insertion at higher frequency in Northern populations disrupts the function of Vgt1 (or 

207 ZmRap2.7), an AP2/ERF transcription factor that represses ZCN8 expression in long days (Ducrocq 

208 et al., 2008). All these insertions appear to have occurred de novo post-domestication; a molecular 

209 evolutionary analysis of the terminal repeats of the ZmCCT9 and ZmCCT10 TE insertions dated their 

210 origins to ~4645 and ~7269 years before present (ybp), respectively (Huang et al., 2018b). The 

211 MADS-box transcription factor ZmMADS69, which promotes flowering by repressing Vgt1, also 

212 shows a signature of a selective sweep associated with domestication, but the causal variant(s) is 

213 unknown (Liang et al., 2019).

214 This exciting composite, interdisciplinary body of research demonstrates how adaptive 

215 changes accreted throughout a regulatory network as selection drove the evolution of day-neutral 

216 flowering to short-day flowering during as maize cultivation spread northward. (Fig. 2b), yielding 

217 ample insight into evolutionary process and illustrating how evolutionary change during the 

218 dispersion stage of domestication could be highly similar to climate adaptation in wild populations. 

219 The common involvement of de novo TE insertions suggests that these mobile elements are potent 

220 sources of new adaptive loss-of-function variants. Furthermore, the combined involvement of 

221 standing variants and de novo post-domestication alleles in building multi-locus genotypes with 

222 temperate-adapted phenologies is consistent with the delayed expansion of maize agriculture out of 

223 the southwest United States for a couple millennia (Swarts et al., 2017). Notably, a sample of 

224 archaeological maize cobs from that period (~1900 ybp) is fixed for all the early flowering variants 

225 except the Vgt1 TE. However, counter to expectation, two Southern Mexican genomes dating to 

226 ~5000 ybp carry  both ZmCCT TEs but have the late flowering ZCN8 alleles (Guo et al., 2018). Thus, 

227 a richer archaeological time series may reveal additional aspects of domestication and dispersion 

228 that other processes have obscured from modern genomes over time.

229

230 III. Adaptation
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231 Natural selection improves the fit of organisms to their environments. However, the environment 

232 varies over space and time, and consequently, individual populations within species may diverge 

233 phenotypically as they adapt to their local habitats and may maintain trait variation across 

234 generations. Each of these adaptive processes may involve changes at few or many loci; be biased 

235 toward or away from particular genes or types of substitutions; and could result from several 

236 evolutionary mechanisms. Consequently, to know what underlying processes can and have 

237 occurred, it is essential to dissect the genetic architecture and/or molecular basis of adaptive trait 

238 variation and examine genotypic effects in natural environments.

239 Flowering time is a highly tractable model trait for examining these aspects of the adaptation 

240 process. Common garden studies have revealed that genetic clines in flowering time with elevation, 

241 latitude, or other climate parameters are common (e.g., Kollmann & Bañuelos, 2004; Stinchcombe et 

242 al., 2004; Kawakami et al., 2011; Van Dijk & Hautekèete, 2014), and shifts to rapid cycling life 

243 histories frequently accompany adaptation to environments with seasons abbreviated by terminal 

244 drought or seasons long enough to sustain multiple annual life history cycles (e.g., Donohue, 2002; 

245 Baduel et al., 2016; Ferris et al., 2017). The responsiveness of flowering to vernalization, 

246 photoperiod, and ambient temperature cues also varies in ways both similar and distinct to the 

247 patterns observed among geographically widespread crop species (Lempe et al., 2005; Blackman et 

248 al., 2011; Anderson et al., 2011; Ream et al., 2014; Kooyers et al., 2015). Early progress in 

249 examining the genetics of flowering time diversity was dominated by work in the model plant 

250 Arabidopsis thaliana due to its experimental advantages. However, the development of new 

251 population genomic methods, the expansion of genomic resources, and the extension of functional 

252 tools to other species in the Brassicaceae, wild relatives of crop species, and several classic 

253 evolutionary systems now allow for genetic dissections approaching the scale of individual genes in 

254 these species too. Here, we consider how these studies and some additional relevant findings from 

255 work on crop landrace diversity inform our understanding of adaptive processes operating within and 

256 among populations.

257

258 The genetic architecture of flowering time adaptation

259 Many investigations have sought to characterize the number and effect sizes of loci that contribute to 

260 adaptive variation in flowering time segregating within single populations or among populations of a 

261 species. These studies contribute to ongoing dialogues about whether adaptation proceeds through 

262 allele frequency changes at many loci of small effect or few loci of major effect; whether and why we 
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263 see the same or different genes involved in convergent phenotypic evolution; and, thus together, how 

264 to model quantitative trait variation and how quick or how difficult adaptive evolution may be. 

265 Although an ever-growing number of individual studies have explored these questions in diverse 

266 species, a truly robust picture is as yet unavailable for most wild species for several methodological 

267 and biological reasons (Box 1). Nonetheless, when we look at some of the most comprehensive 

268 studies to date, different templates for the genetic architecture of flowering time adaptation have 

269 emerged.

270 For instance, when the genetics of flowering time variation was mapped in A. thaliana across 

271 17 F2 populations derived from 18 unique parent accessions and several additional recombinant 

272 inbred line (RIL) populations, the QTLs identified mostly map to allelic series at five major loci—

273 including FRIGIDA (FRI), FLOWERING LOCUS C (FLC) (and/or nearby CONSTANS (CO)), and two 

274 paralogs of FLC (FLOWERING LOCUS M and MADS AFFECTING FLOWERING 2), and 

275 ERECTA—plus rarer alleles at several other loci including FT (Salomé et al., 2011). FRI is a positive 

276 regulator of FLC, which represses flowering until silenced by vernalization. CO is a positive regulator 

277 of FT in long days, and the two FLC paralogs are involved in the response of flowering time to 

278 ambient temperature. These results suggest that although the flowering time regulatory network is 

279 large and mutants in >300 genes affect flowering (Bouché et al., 2016), adaptation may proceed 

280 primarily through large effect substitutions from a pool of allele diversity harbored at a few predictable 

281 “evolutionary hotspots”, a pattern that may emerge because advantageous alleles with no or few 

282 negative pleiotropic effects arise more frequently at certain loci (Stern, 2013). Consistent with these 

283 patterns, seven additional FLC alleles that have sustained independent TE insertions are associated 

284 with reduced gene expression and earlier flowering (Lempe et al., 2005; Quadrana et al., 2016). 

285 Furthermore, natural variants that eliminate, attenuate, or otherwise alter the functions of FRI, FLC, 

286 and CO homologs have been implicated in the adaptive evolution of seasonal flowering in three other 

287 species (Yang et al., 2018; Baduel et al., 2018; Lee et al., 2018) and between species (Kiefer et al., 

288 2017) in another genus in the Brassicaceae.

289 Other studies have called into question whether this major effect “hotspot” architecture is 

290 generalizable, however. For example, although initial association mapping by the 1001 Genomes 

291 Consortium detected just five flowering-time associated loci largely similar to those discussed above 

292 (Alonso-Blanco et al., 2016), more in-depth analyses informed by eQTL analysis of the same set of 

293 accessions have detected ~40 additional loci harboring variants that that influence flowering time in 

294 A. thaliana (Zan & Carlborg, 2019). Moreover, another survey performed on the same dataset 
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295 yielded >80 genes with drought-associated, loss-of-function common variants that may alter 

296 flowering time (Monroe et al., 2018), although more recent findings raise cautions about validating 

297 the pooled flowering time effects of large candidate genes sets with T-DNA insertion lines (Chong & 

298 Stinchcombe, 2019). As noted above, adaptive differentiation in flowering of maize landraces along 

299 altitude or latitude gradients may involve hundreds of genes (Romero Navarro et al., 2017). In 

300 addition, bulked segregant analyses comparing allele frequencies of early and late flowering plants in 

301 three populations of the common monkeyflower, Mimulus guttatus, over multiple years detected tens 

302 to hundreds of single nucleotide polymorphisms (SNPs) or structural variants that contribute to 

303 adaptive variation within and between populations (Monnahan & Kelly, 2017; Troth et al., 2018). 

304 However, many SNPs only affected flowering time in one of the populations and/or only in one 

305 growing season, a pattern reminiscent of several studies that have found flowering time QTL or 

306 variants mapped in growth chamber or greenhouse studies often do not affect flowering or fitness as 

307 anticipated in the field (Weinig et al., 2002; Brachi et al., 2010; Anderson et al., 2011; Liu et al., 

308 2014). These results argue for an alternative model of flowering time adaptation where a myriad of 

309 loci throughout the various environmentally sensitive pathways of the flowering time regulatory 

310 network can harbor adaptive genetic variation, particularly when their gene-by-environment 

311 interactions are taken into account.

312 The disparate models--allelic series at few hotspots vs. highly polygenic--may emerge in part 

313 due to methodological differences (e.g., many fewer parental genotypes sampled by QTL mapping 

314 vs. GWAS or population genomics) or biological differences (e.g., highly selfing vs. highly 

315 outcrossing mating systems). Regardless, this important dichotomy signals that more expansive and 

316 comparable investigations of the genetics of adaptation in wild systems are needed. For instance, if 

317 adaptive evolution of flowering time is constrained to occur through repeated major effect 

318 substitutions at few loci, then adaptation to climate change may be constrained by a limited range of 

319 adaptive variants segregating in natural populations or involve long waiting times for the appearance 

320 of new advantageous variants. In contrast, if many genes can contribute ecologically equivalent 

321 allelic variation to flowering time adaptation and if loss-of-function mutations are often beneficial and 

322 occur frequently (e.g., following TE activation by environmental stress), the prospects for adaptation 

323 to climate change seem brighter. 

324

325 Pleiotropy and fluctuating or spatially varying selection
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326 Substantial inquiry has focused on balancing selection, the adaptive force that maintains 

327 polymorphism within a single population. Classic case studies have shown how heterozygote 

328 advantage and negative frequency dependent selection can sustain balanced polymorphisms (Box 

329 2). Temporally varying selection, where the alleles and trait values favored in some generations are 

330 disfavored in other generations, is another important and potentially more pervasive evolutionary 

331 explanation. Because it is theoretically possible for an allele or multi-locus genotype with high 

332 geometric mean fitness across many generations to fix (thus eliminating any polymorphism) under 

333 fluctuating selective regimes however, antagonistic pleiotropy is often invoked as a critical 

334 requirement for maintaining balanced polymorphisms. In other words, alleles that confer high relative 

335 fitness in some years may suffer a fitness trade-off in other years either due to their direct effects on 

336 the trait that makes them sometimes favorable or indirectly through impacts on other traits.

337 Recent multi-year field studies of flowering time variation in M. guttatus have now affirmed 

338 that these conditions are indeed met in wild populations. For instance, one GWAS on a diversity 

339 panel derived from a single population first identified 24 pleiotropic SNPs associated with both 

340 delayed flowering and increased plant size in the greenhouse (Troth et al., 2018). Then, by tracking 

341 them over three field seasons, the investigators found this set of “large and slow” alleles was 

342 maladaptive in shorter, drier seasons, when an early terminal drought leads to mortality before 

343 flowering or seed set, but favored in longer, wetter seasons because plants with delayed flowering 

344 grew larger and produced more, larger flowers, giving them higher fecundity. 

345 Likewise, CNVs of RLG1a, a tRNA ligase, have been associated with both flowering time and 

346 plant size in M. guttatus (Fig. 1b; Nelson et al., 2019). Individual alleles have one to three, or, rarely, 

347 an extreme number (>250) of copies, and all alleles segregate following single locus expectations. 

348 Carriers of the 3-copy allele have delayed flowering and larger size relative to 1-copy allele 

349 homozygotes, while extreme-copy allele carriers flower earlier but are of similar size to the 1-copy 

350 allele homozygotes. Consistent with the findings for “large and slow” SNPs, the 3-copy allele carriers 

351 were most fit due to a female fecundity advantage in a year with a long spring. Conversely, the 1-

352 copy homozygotes and the extreme allele carriers had highest survival and seed set in years with an 

353 early drought. Since larger plant size is likely a direct developmental consequence of delayed 

354 flowering, the “large and slow” alleles and the 3-copy CNV of RLG1a have (or tag causal variants 

355 that have) pleiotropic and antagonistic effects in different seasons, and these trade-offs maintain the 

356 polymorphisms. 
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357             Notably, these M. guttatus alleles also vary in frequency among populations (Troth et al., 

358 2018), indicating that antagonistic pleiotropy may also contribute to local adaptation to spatially-

359 varying selective pressures. Characterization of non-functional and functional FRI alleles in A. 

360 thaliana has revealed that this likely explains why functional FRI alleles are associated with drier 

361 habitats on average than non-functional FRI alleles. However, unlike the M. guttatus cases, the 

362 pleiotropy results from different downstream impacts of the polymorphism in different environments 

363 (Lovell et al., 2013). Non-functional FRI alleles promote drought escape through rapid growth and 

364 early flowering. However, they also compromise water use efficiency because they cannot activate 

365 proline synthesis under drought stress through an FLC-dependent pathway, preventing drought 

366 tolerance. 

367 These results lend evolutionary weight that reinforces the need to be mindful of evidence that 

368 mutants or natural variants in so-called flowering time genes often impact diverse other 

369 developmental and physiological traits (e.g., Pin & Nilsson, 2012; Ortiz-Marchena et al., 2014; Auge 

370 et al., 2019). Also, although pleiotropy is generally viewed negatively as a source of trade-offs or as a 

371 brake on the rate of adaptive evolution, it need not always be so. When an allele confers multiple 

372 favorable phenotypic effects, known as synergistic pleiotropy, then the overall selection coefficient 

373 will be larger, potentially facilitating divergence in the face of gene flow. For instance, recent work 

374 suggests that synergistic pleiotropy of alleles of TWIN SISTER OF FT (TSF), which affect 

375 reproductive phenology but also impact branch number and the height:rosette diameter ratio in the 

376 field, can promote rapid divergence even at the microhabitat scale within populations of A. thaliana 

377 (Frachon et al., 2017).

378

379 The molecular basis of flowering time adaptation

380 Another major question in this field is whether the adaptation process has predictable substitution 

381 biases (Stern & Orgogozo, 2009). Essentially, do certain mutation types preferentially contribute to 

382 adaptive evolution? One prominent hypothesis is that adaptation will be biased toward evolution 

383 through cis-regulatory changes since their effects can be restricted to particular tissues, 

384 developmental stages, or environments in contrast to coding sequence changes that may have 

385 pleiotropic impacts whenever a protein is expressed (Stern, 2000). Several meta-analyses supported 

386 this hypothesis, but others have argued that summarizing trends observed across traits and across 

387 all plants and animals, obscures important variation in the magnitude and heterogeneity of 

388 substitution biases (Streisfeld & Rausher, 2011). A large sample of causal natural variants affecting 

A
cc

ep
te

d
 A

rt
ic

le



This article is protected by copyright. All rights reserved

389 flowering time and its environmental regulation provides a strong trait-specific dataset to address this 

390 problem. Most of these variants have been discovered in A. thaliana or other brassicas, but ever-

391 improving resources in other plant groups should reduce this taxonomic bias going forward.

392 Coding, cis-regulatory, and CNVs all contribute to variation among natural populations, and 

393 all of these alleles eliminate or attenuate gene function, consistent with the bias that many more 

394 mutations will have loss-of-function rather than gain-of-function effects (Table 2). One notable trend 

395 is that coding variants, whether deletion or missense alleles, are associated with the losses of 

396 responses to environmental cues more often than cis-regulatory alleles. Many such mutations in FLC 

397 and FRI abolish vernalization response in the Brassicaceae. Likewise, a missense mutation 

398 segregating in Brachypodium distachyon compromises the function of an FT paralog (Woods et al., 

399 2019). Expression of this paralog under short days is required to confer competency for floral 

400 induction when long days are experienced subsequently. 

401 In contrast, cis-regulatory variants are more enriched among polymorphisms causing 

402 quantitative variation in flowering time or its environmental responsiveness. For instance, in both A. 

403 thaliana and Capsella rubella, a series of regulatory alleles of FLC are differentially sensitive to 

404 vernalization cues, with different alleles requiring different durations of cold exposure to be silenced 

405 and thus promote flowering (Coustham et al., 2012; Li et al., 2014, 2015; Yang et al., 2018). In both 

406 Arabidopsis arenosa and A. thaliana, variants with more tandem repeats in the CO promoter flower 

407 later likely because they have an additional binding site for CYCLING DOF FACTOR 1, a repressor 

408 of CO expression (Fig. 1c; Rosas et al., 2014; Baduel et al., 2018). Convergent evolution involving 

409 the same repeat array may reflect a bias toward mutations that occur at higher rates, as much as a 

410 fixation bias for specific, limited allelic effects.

411 Together, these trends suggest that substitution biases in the type of mutations contributing 

412 to natural variation for this trait reflect the qualitative vs. quantitative nature of the favored trait 

413 variation more so than pleiotropy. Only examining SNP variation, a common GWAS approach, may 

414 often be insufficient. Insertion-deletion, CNVs, and even more complex rearrangements (e.g., 

415 chimeric variation in tandem-duplicates of MAF2, Rosloski et al., 2010) commonly cause phenotypic 

416 variation (Table 1; Fig. 1). Because these variant types arise by different mutational processes and 

417 impact local recombination rates, nearby SNPs may be ineffective in tagging them well by linkage 

418 disequilibrium (Schrider & Hahn, 2010).

419

420 IV. Speciation
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421 The evolution of flowering time is often highlighted as a potentially important contributor to the 

422 emergence of new plant species. As populations diverge in seasonal reproductive phenology, plants 

423 will more often be fertilized by pollen from their own population than by pollen from other populations, 

424 and this assortative mating constitutes a barrier to gene flow. Indeed, this process can confound 

425 GWAS and gene-environment association analysis, as variants causing flowering time divergence 

426 come to co-vary with population structure (e.g., Larsson et al., 2013; Tyler et al., 2016). Additional 

427 prezygotic and extrinsic postzygotic isolation results when flowering time divergence is driven by 

428 local adaptation or the timing of flowering of interpopulation hybrids reduces fitness relative to 

429 parental genotypes. Such processes fit with the mode of speciation known as ecological speciation, 

430 where reproductive isolation arises as a direct or indirect byproduct of divergent selection (Schluter, 

431 2009), and flowering time can be considered a so-called “magic trait” since its adaptive genetic 

432 divergence leads automatically to increased assortative mating (Taylor & Friesen, 2017). 

433 Some of the earliest computer simulation models of speciation explored these possibilities, 

434 revealing how plastic differences in flowering time can facilitate speciation of adjacent, or parapatric, 

435 populations and how reinforcing selection can drive further flowering time divergence when 

436 interpopulation species hybrids form (Crosby, 1970; Stam, 1983; Dijk & Bijlsma, 1994). Consistent 

437 with these predictions, several empirical studies have found that flowering time differences contribute 

438 considerably to reproductive isolation between ecotypes or incipient species (e.g., Runquist et al., 

439 2014; Sedeek et al., 2014; Ferris et al., 2017). Sympatric speciation theory shows that disjunct 

440 genetic clusters can emerge from a single, finite population on short evolutionary timescales even 

441 through non-selective processes when ample genetic variation for flowering time exists and 

442 individual plants flower for only brief periods over a long flowering season (Devaux & Lande, 2008). 

443 In addition, shifts in phenology may aid establishment of nascent polyploid species (Ramsey, 2011). 

444 Despite these conceptual advances and observations and also despite our detailed understanding of 

445 flowering time regulation, flowering time genes hardly contribute to the “speciation genes” literature 

446 (Rieseberg & Blackman, 2010). Nonetheless, several recent genetic studies have yielded results that 

447 bear upon predictions of verbal or analytical models of the speciation process.

448  

449 Speciation with gene flow

450 If flowering time differences do arise due to divergent selection and cause assortative mating that 

451 helps maintain phenotypic differentiation between species in sympatry, the causal flowering time loci 

452 should also remain differentiated even while divergence is eroded throughout most of the genome. 
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453 Recent work in the monkeyflower species pair of M. guttatus and M. nasutus has explored this 

454 possibility. These species are often found in sympatry and despite observed natural hybridization, 

455 they remain largely morphologically and developmentally distinguishable (Martin & Willis, 2007; 

456 Kenney & Sweigart, 2016). M. guttatus is an outcrosser and bee-pollinated, while M. nasutus is a 

457 predominant selfer. 

458 Both species must experience a minimum critical photoperiod for floral induction, but M. 

459 nasutus can flower under shorter day lengths and thus earlier in the season than M. guttatus, 

460 (Fishman et al., 2014). In the field, the temporal isolation caused at least in part by this change in 

461 photoperiodic regulation has been estimated to account for anywhere from ~4% to ~90% reduction in 

462 hybrid seed production relative to random mating, depending on the site and the direction of gene 

463 flow. Because the flowering period of F1 hybrids overlaps more with M. guttatus, introgression of M. 

464 nasutus alleles into M. guttatus is observed more often than the reverse (Martin & Willis, 2007). 

465 Genetic mapping reveals that two major effect QTL almost entirely explain the difference in critical 

466 photoperiod between the species (Fishman et al., 2014). Consistent with a contribution to 

467 reproductive isolation in sympatry, the allelic diversity at one of these loci shows reduced 

468 introgression and is more differentiated between the species compared to the rest of the genome 

469 (Kenney & Sweigart, 2016).

470             Although this Mimulus example likely involved a fully allopatric phase at some point in the 

471 past, temporal isolation is of central importance in the best-known example of sympatric speciation in 

472 plants. Two palm species that evolved from a common ancestor on small, highly remote Lord Howe 

473 Island are primarily reproductively isolated by differences in soil type preference and flowering time. 

474 Temporal isolation through flowering displacement is 80% or 97% depending on the direction of gene 

475 flow (Hipperson et al., 2016). Although some of this displacement is due to developmental plasticity 

476 that may have helped kickstart assortative mating by soil type (Gavrilets & Vose, 2007; Devaux & 

477 Lande, 2008), genetic differentiation also contributes to the species difference. Through differential 

478 expression analysis, selective sweep analysis, and functional tests of A. thaliana homologs, 

479 investigators have identified several candidate genes for this differentiation, including a homolog of 

480 the known flowering time regulator FPA (Dunning et al., 2016). Because several of these genes are 

481 annotated with other functions that could respond to divergent selection on different soil types, it is 

482 tempting to speculate that synergistic pleiotropy may have facilitated both adaptive divergence and 

483 assortative mating, fitting the “magic trait” model under which sympatric speciation is most likely to 
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484 succeed (Servedio et al., 2011). Expanded genomic resources for the Howea palms and functional 

485 studies in phylogenetically closer species may lend more credence to this possibility in the future.

486  

487 Allopolyploidy and gene interactions

488 When a new polyploid individual evolves, it does so in sympatry with its progenitor(s) of lower ploidy. 

489 Consequently, to establish a new polyploid species, it must overcome being mated to extinction by 

490 its neighbors of different ploidy, a problem known as minority cytotype exclusion (Oswald & Nuismer, 

491 2011). If temporal isolation is a direct consequence of the polyploidy event, then a new polyploid 

492 species is more likely to establish. Investigations into the control of flowering time in the allopolyploid 

493 Arabidopsis suecica, derived from A. arenosa and A. thaliana, demonstrate a mechanism by which 

494 such an immediate flowering displacement may emerge upon polyploidy (Wang et al., 2006). The A. 

495 thaliana genome contributes a strong functional FLC allele and a non-functional FRI allele. 

496 Conversely, the A. arenosa genome contributes a weak FLC allele and a strong FRI allele. Hence, in 

497 the natural and newly synthesized allopolyploids, these two strong alleles interact epistatically such 

498 that AaFRI transactivates AtFLC, and the resulting high expression of FLC delays flowering relative 

499 to either diploid progenitor (Fig. 3).

500

501 IV. Evolution of developmental networks

502 Gene regulatory networks coordinate the complex orchestration of gene functions so that cells grow, 

503 divide, and adopt particular fates in a spatial-, temporal-, and environment-specific manner during 

504 development. By understanding why and how these networks become rewired or co-opted over time, 

505 we can learn how novel developmental programs evolve at both micro- and macroevolutionary 

506 scales. In addition, comparative studies of the networks regulating homologous traits in species that 

507 shared a common ancestor millions to hundreds of millions of years ago can reveal when gene 

508 functions are highly conserved; when circuit logic is conserved even if the specific proteins, RNAs, or 

509 cis-regulatory elements turnover, a process known as developmental system drift (Box 2); and how 

510 independent solutions to the same developmental problem can be reached entirely convergently. 

511 Finally, determining how network structures have evolved to confer robustness to genetic or 

512 environmental variability also has critical applications in conservation and agriculture.

513             By describing networks in multiple species to a level of mechanistic complexity that often 

514 yields important new insights into the fundamentals of gene regulation, flowering time research has 

515 repeatedly made seminal contributions to understanding these processes. For instance, early work 
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516 comparing the GIGANTEA-CO-FT regulatory circuit between A. thaliana and rice was among the first 

517 studies to demonstrate how the transcriptional relationships between homologous genes have been 

518 rewired to confer opposite behavior (i.e., long-day vs. short-day response; Hayama et al., 2003). 

519 Several recent papers have reviewed which aspects of flowering time regulation are conserved or 

520 differ among major study systems (Andrés & Coupland, 2012; Song et al., 2015; Bouché et al., 

521 2017). Therefore, we narrow our focus here to recent examples that illustrate particular conceptual 

522 advances achieved or supported through evolutionary developmental studies.

523

524 Versatility in gene networks facilitates life history evolution

525 The perennial brassica Arabis alpina has emerged as a powerful model system for examining how 

526 homologs of flowering time genes known from A. thaliana process information from internal and 

527 external timekeepers differently, resulting in its distinct life history (Fig. 4). PERPETUAL 

528 FLOWERING1 (PEP1) is the A. alpina ortholog of FLC, and like FLC, it represses flowering unless 

529 the plant experiences sufficient vernalization. However, unlike FLC, which remains fully silenced 

530 post-vernalization, PEP1 expression reverts to high levels in warm conditions and represses 

531 flowering in the meristems of young vegetative branches that will continue to grow and not flower 

532 until after the next winter. PEP2, orthologous to APETALA 2 (AP2), is required to activate PEP1 after 

533 vernalization (Lazaro et al., 2019). The competency of A. alpina meristems to respond to 

534 vernalization cues is age-dependent; the expression of a small RNA, miR156, declines over 

535 developmental time and, in doing so, de-represses expression of SQUAMOSA PROMOTER 

536 BINDING PROTEIN-LIKE 15 (SPL15), a promoter of flowering (Xu et al., 2016; Hyun et al., 2019). 

537 Age-dependent interactions between PEP2 and another small RNA miR172 also regulate axillary 

538 meristem competency independent of SPL15 (Bergonzi et al., 2013; Lazaro et al., 2019)

539 SPL15 expression is also repressed by PEP1 without vernalization and following reversion 

540 under warm conditions. Thus, SPL15 integrates signals that confer competency so that axillary 

541 meristems that are too young and/or have not experienced cold do not produce flowers in A. alpina 

542 (Hyun et al., 2019). In contrast, all meristems in A. thaliana are able to flower under warm, long days 

543 post-vernalization regardless of age because FLC is stably repressed, allowing FT induction to 

544 promote floral initiation. Congener and annual Arabis montbretiana also flowers in post-vernalization, 

545 warm days by this mechanism because AmFLC is also stably repressed by vernalization. The same 

546 is true for a near isogenic line carrying AmFLC rather than PEP1 in an otherwise A. alpina 

547 background and when AmFLC is transformed into A. alpina pep1 mutants. Since cis-regulatory 
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548 variants can quantitatively alter the duration of cold necessary for stable FLC repression (Coustham 

549 et al., 2012; Li et al., 2014, 2015; Yang et al., 2018), it is easy to conceive how natural selection 

550 could quickly modulate this capacity and shift the relative influence and redundancy of the age, 

551 vernalization, and photoperiod pathways for floral induction, driving evolutionary transitions in life 

552 history strategies while still preserving individual pathway structure.

553

554 Extensive turnover and convergence in developmental networks

555 When we observe homologous phenotypes preserved across species separated by long evolutionary 

556 timescales, it is easy to assume that the regulatory interactions that structure the underlying 

557 developmental networks are also conserved. However, through either adaptive or neutral processes, 

558 developmental system drift frequently transpires (True & Haag, 2001). This process is the 

559 evolutionary equivalent of treading water. The underlying developmental mechanisms churn with 

560 change over time often without yielding a noticeable impact at higher scales of phenotypic 

561 organization due to the robustness of the system, leaving the overall impression of conservation. 

562 Indeed, ample empirical work in animal and fungal taxa has found, for instance, that the transcription 

563 factor binding sites can turnover rapidly even as gene expression levels remain conserved 

564 (e.g., Borneman et al., 2007; Schmidt et al., 2010; Berthelot et al., 2018). 

565 To our knowledge, only one comparative transcription-factor binding site study examining 

566 taxa of considerable evolutionary distance has been reported in plants. Mateos et al. (2017) 

567 compared the binding of A. thaliana FLC and its A. alpina ortholog PEP1 to their respective 

568 organism’s genomes through chromatin immunoprecipitation and high-throughput sequencing. 

569 Consistent with the extensive turnover observed in other taxa, only 28 of 204 bound genes (14%) 

570 shared direct target sequences in both species and only eleven more genes were commonly bound 

571 by both orthologs but at species-specific binding sites. Flowering time genes, as expected, were 

572 over-represented among the conserved targets. Interestingly though, both transcription factors 

573 directly bind and upregulate genes annotated as cold-responsive, but target almost entirely non-

574 overlapping gene sets. Thus, these transcription factors serve at least two common functions, 

575 flowering and cold-response regulation, but for cold-response, there is a pattern potentially 

576 consistent with developmental system drift, assuming the FLC ortholog in the common ancestor of 

577 these two species also served this function. That is, an orthologous upstream regulator has 

578 maintained its functional role, yet has evolved to target a similar but not directly orthologous set of 

579 genes to produce a homologous trait.
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580 Pathways may also misleadingly appear conserved between distant taxa due to convergent 

581 evolution. Homologous genes may gain a similar or the same role in a regulatory network multiple 

582 times independently, whether anew or reversing a previous loss along an evolutionary lineage. The 

583 regulation of FT homologs by CO homologs has emerged as one major case study of such high 

584 evolutionary lability (Ballerini & Kramer, 2011). Homologs of CO act as photoperiod-dependent 

585 regulators of FT homologs throughout the Brassicaceae and in rice, potato (Solanum tuberosum), 

586 sorghum, barley, strawberry (Fragaria vesca) and possibly soybean (Hayama et al., 2003; Wu et al., 

587 2014; Yang et al., 2014; Mulki & Korff, 2016; Abelenda et al., 2016; Kurokura et al., 2017), though in 

588 some cases the regulation is partially or entirely indirect. However, substantial evidence in legumes 

589 (pea and Medicago truncatula), morning glory (Ipomoea nil), and poplar (Populus spp.) suggests that 

590 CO orthologs are not upstream regulators of FT in these species (Hayama et al., 2007; Hsu et al., 

591 2012; Wong et al., 2014; Ridge et al., 2016). Thus, FT-regulatory function appears to have been 

592 repeatedly evolutionary lost, gained, or both throughout the angiosperms. One gain of this function 

593 by CO likely occurred through coding and cis-regulatory changes following gene duplication near the 

594 origin of the Brassicaceae, as the sole CO homolog in the Cleomaceae, the sister clade to the 

595 Brassicaceae, functions similar to COL1 and COL2, two CO paralogs that have circadian functions 

596 but do not impact photoperiodic flowering in A. thaliana (Simon et al., 2015). Finally, in a particularly 

597 striking instance of convergent evolution, two independently transcribed genes, each of which 

598 encodes one of the two major protein functional domains found in CO, physically interact to regulate 

599 FT paralogs in sugar beet in a photoperiod-dependent manner (Dally et al., 2018).

600             That different clades have independently evolved aspects of their photoperiod pathways is 

601 not surprising. Different taxonomic groups have adapted to colonize and thrive in temperate regions 

602 much more recently than they shared common ancestors. These independent histories of adaptation 

603 have also been invoked to explain the involvement of different phytochromes in photoperiod 

604 regulation and the complete lack of homology between the vernalization pathways of the temperate 

605 brassicas and grasses, for example (Chen et al., 2014; Woods et al., 2014). What is surprising is that 

606 CO homologs are repeatedly recruited or disconnected somehow. One explanation for this pattern 

607 may be that CO homologs have a strongly conserved function in photoperiodic regulation of another 

608 fundamental function like carbohydrate metabolism (Serrano et al., 2009; Ortiz-Marchena et al., 

609 2014), and thus they are predisposed to be co-opted for novel photoperiodic adaptations. Because 

610 CO promotes transcription both by directly binding DNA and as a co-activator (Blackman & Michaels, 

611 2010), CO homologs may also have more routes to gain new functions compared to other gene 
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612 families. Lastly, because photoperiodic flowering often involves multiple mechanisms acting together 

613 to repress flowering in non-inductive photoperiods and promote flowering in inductive photoperiods, 

614 and since several other pathways converge at FT transcriptional regulation, the CO-FT regulatory 

615 relationship may be especially prone to loss through developmental system drift when rendered 

616 redundant or irrelevant by shifts in control elsewhere in the network. 

617

618 Network elaboration through gene duplication 

619 Gene duplication is a prominent driver of developmental system drift and convergence, as different 

620 members of gene families with similar functional capacities may swap in and out of pathways in 

621 diverging taxa over time. In addition, gene family expansion has long been postulated to be an 

622 important, potent source of evolutionary novelty in gene networks. On arrival, new gene duplicates 

623 are often partially or wholly functionally redundant to the ancestral gene copy. They may bind to the 

624 same cis-regulatory sequences, interact with the same protein complexes, or process the same 

625 metabolic compounds. Consequently, until the redundancy of young duplicate pairs is fully resolved 

626 through loss of one copy or subfunctionalization, new duplicates are well positioned to evolve new 

627 cooperative or competitive interactions with the ancestral gene copy or other paralogs that elaborate 

628 gene networks. 

629 To our knowledge, studies of recent lineage-specific duplicates of FT were the first to 

630 demonstrate the mettle of this theory empirically. In particular, young FT-like genes in several 

631 species have evolved anti-florigenic regulatory activities, likely by competing with FT for partners in 

632 the florigen activating complex in the shoot apical meristem. This mechanism was first suggested by 

633 findings in sunflower (Blackman et al., 2010). A frameshift allele of a recently duplicated, meristem-

634 expressed FT copy rose to high frequency during sunflower domestication, and this allele acts in a 

635 dominant negative manner by interfering with the capacity of a different FT paralog to promote 

636 flowering in an A. thaliana ft mutant background. In tobacco, several recently duplicated FT paralogs 

637 that act to delay flowering have mobile transcripts and are capable of binding the tobacco FD 

638 paralog, lending support to the hypothesis that they inhibit FT function through competition for 

639 activation complex partners (Harig et al., 2012; Huang et al., 2018a). An FT paralog in soybean 

640 (GmFT1a) may similarly antagonize the action of florigenic FT paralogs (Liu et al., 2018). Additional 

641 evidence that developmental networks may be adaptively elaborated through novel antagonistic 

642 protein interactions between young duplicates and ancestral paralogous copies has now emerged in 

643 other systems (e.g., Charrier et al., 2012; Dennis et al., 2012). 
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644 In several other cases, lineage-specific FT duplicates have evolved to antagonize the 

645 canonical FT paralog’s function not by competing for protein interactions but instead by repressing its 

646 transcription. This mode of evolved antagonism was first discovered in sugar beet (Pin et al., 2010), 

647 and subsequent studies of FT paralogs that suppress photoperiod-induced responses in onion 

648 (Allium cepa L.) and tomato have described similar mechanisms of action (Lee et al., 2013; Soyk et 

649 al., 2017). The evolution of lineage-specific FT homologs also illustrates how gene duplication can 

650 facilitate the evolution of novelty through co-option. FT paralogs distinct from those that function in 

651 the environmental regulation of flowering have evolved to act as photoperiod-specific regulators of 

652 bulb and tuber formation in onion and potato, respectively (Navarro et al., 2011; Lee et al., 2013).

653

654 V. Conclusions and future directions

655 Our goal has been to highlight how investigating the genetics of flowering time diversity has enriched 

656 our understanding of fundamental evolutionary processes. Several discoveries summarized above 

657 reveal how diverse types of variants have repeatedly altered the pathways that regulate the 

658 developmental plasticity of flowering time as the seasonal phenologies of populations or crops have 

659 adapted to local climate variation. Many examples of convergent genetic evolution are noted, 

660 indicating that “evolutionary hotspots” often harbor adaptive genetic variation in this trait. However, 

661 additional studies in Arabidopsis, maize and Mimulus suggest that polygenic adaptation may also be 

662 common, particularly if standing variation within populations is characterized by antagonistic 

663 pleiotropy across years or locations. Recent case studies also illustrate how flowering time facilitates 

664 ecological speciation with gene flow and polyploid speciation. Finally, comparisons of regulatory 

665 pathways among distant taxa have found extensive rewiring through turnover and convergence at 

666 several hierarchical scales and demonstrated how gene duplications foster developmental network 

667 innovation through multiple mechanisms. 

668 Future efforts to identify the molecular basis of flowering time diversity will undoubtedly 

669 continue to advance the field of evolutionary biology. Current technologies for rapidly and cheaply 

670 generating heaps of population and functional genomic data are now often readily transferable 

671 across systems or applicable to archaeological and herbarium samples. Genome editing tools hold 

672 great promise for confirming gene and allele functions in a broader range of taxa. A point 

673 underscored by several studies reviewed above, however, is that there remains no substitute for 

674 multi-year, multi-site field studies for understanding how alleles function to produce trait variation and 

675 interact with selection in native environments. Bridging all these approaches is increasingly important 
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676 if we hope to predict how quickly and fully the flowering time diversity segregating within species will 

677 foster adaptation to non-analog combinations of seasonal cues and selective agents in future 

678 climates.

679 As new mechanisms of flowering time plasticity to drought, nutrient stress, ambient CO2, and 

680 soil microbiota become better described, genetic investigations of their diversity should reveal how 

681 pleiotropic or modular adaptive variation affecting these responses can be (Blackman, 2017). 

682 Comparative study of these pathways may be particularly critical for learning how unique life histories 

683 like gregarious flowering or masting evolve (Peng et al., 2013; Kobayashi et al., 2013). Another area 

684 where flowering time is particularly poised to contribute is evolutionary epigenetics. Epi-allelic 

685 variation in flowering can be generated artificially (Cortijo et al., 2014) but flowering epi-alleles 

686 adaptive in the wild remain undescribed. Given past theoretical findings, it is also tempting to 

687 speculate how epi-alleles for flowering could kickstart speciation, a possibility with precedence in 

688 postzygotic incompatibilities (Blevins et al., 2017). Furthermore, comparisons of flowering time 

689 evolution in selfing and outcrossing species will illuminate how mating system influences the genetic 

690 architecture of adaptation and the reliance of adaptation on de novo mutations vs. standing variation 

691 (Glémin & Ronfort, 2013). Finally, more phylogenetically structured sets of network analyses are 

692 needed to determine which network properties promote developmental system drift and whether the 

693 exploration of genotypic space that occurs by this process fosters the origin of novel functions. 

694

695

696

697
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1124 Box 1: Connecting Genotype to Phenotype 

1125 Most studies reviewed here identified allelic variation affecting flowering time starting with either 

1126 quantitative trait locus (QTL) mapping or a genome wide association study (GWAS). QTL mapping 

1127 tests for linkage between genetic markers and trait variation in controlled crosses derived from a 

1128 limited number of parents. QTL detection power and mapping precision depend on marker density, 

1129 population size, and the number of generations of recombination since the initial cross. In many 

1130 species, QTL mapping has been limited to one or two biparental crosses, sampling too few 

1131 genotypes to yield a population- or species-wide picture of a trait’s genetic architecture. Moreover, 

1132 the challenging work to go from broad genomic intervals to causal variants is never completed for 

1133 most QTLs.

1134             GWAS overcomes some of these limitations. Hundreds of genotypes are sequenced, 

1135 sampling much more diversity and many generations of recombination that have eroded trait-marker 

1136 associations except at the causal polymorphism and the most tightly linked variants. Power to detect 

1137 marker effects depends on the sample size of each genotypic class, and consequently, GWAS is 

1138 most powerful for detecting common, large-effect alleles. Population structure and kinship must be 

1139 controlled for to reduce false positives. Even with whole genome re-sequencing data, coverage is 

1140 often too low to include copy-number or presence-absence variants, and many studies ignore 

1141 haplotype and insertion-deletion information, complicating candidate gene and causal variant 

1142 identification.

1143             Neither of these approaches reveals whether allelic variation was shaped by past adaptive 

1144 processes. Population genomic analyses are needed to infer selective sweeps or test for 

1145 associations between allele frequency and environmental variation. Conversely, while population 

1146 genomics studies on their own may highlight adaptive variation at homologs of flowering regulators 

1147 (e.g., Keller et al., 2012; Pyhäjärvi et al., 2013), additional work remains necessary to connect 

1148 sequence and flowering time variation, as these genes often regulate additional traits.

1149

1150

1151

1152

1153
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1155 Box 2 - Glossary

1156 Artificial selection: Human-imposed selection for desired phenotypes and the maintenance of those 

1157 phenotypes in the population. 

1158  

1159 Convergent evolution: Repeated origin of similar phenotypes in independent evolutionary lineages. 

1160  

1161 Balanced polymorphism: Multiple alleles at a single locus are actively maintained by selection over 

1162 many generations within a population. 

1163  

1164 Antagonistic pleiotropy: Allelic variation at a single locus where different alleles have the highest 

1165 relative fitness in different environments.

1166  

1167 Synergistic pleiotropy: Allelic variation at a single locus that confers beneficial effects through 

1168 multiple phenotypes. 

1169  

1170 Ecological speciation: Reproductive isolation evolves as a by-product of divergent selection acting 

1171 on populations adapting to different environments

1172  

1173 Developmental system drift: Divergence through time of gene regulatory networks governing the 

1174 development of a homologous trait even as the phenotype itself remains conserved

1175

1176

1177
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1179 Figure Legends

1180

1181 Figure 1

1182 Case studies at three scales illustrate how change in DNA copy number is associated with variation 

1183 in phenology. (a) In maize, decreasing genome size and heterochromatin knob count with elevation 

1184 is correlated with earlier flowering. Larger genome sizes are associated with slower cell production 

1185 rates and thus likely slower developmental progress toward flowering. Data adapted from Bilinski et 

1186 al. 2018. (b) In M. guttatus, copy number variation in a tRNA ligase is associated with variation in 

1187 flowering time, and the relative fitness of these alleles differs across years. Data adapted from 

1188 Nelson et al. 2019. (c) In A. thaliana, copy number variation in a cis-regulatory element in the CO 

1189 promoter causes changes in flowering time and interacts with the presence/absence of a functional 

1190 FRI allele. Data adapted from Rosas et al. 2014.

1191

1192 Figure 2

1193 Polygenic adaptation during maize domestication and dispersion. (a) Regulatory relationships of 

1194 genes involved in the evolution of photoperiodic flowering during maize domestication and 

1195 dispersion. (b) A cis-regulatory allele of ZCN8 (dark blue) became common as maize was 

1196 domesticated and initially dispersed beyond the Balsas River basin (yellow star). Next, an additional 

1197 variant in ZCN8 and variants affecting Vgt1, ZmCCT9, ZmCCT10 and ZmMADS69 (light blue) 

1198 allowed for further northward expansion of maize cultivation in North America. 

1199

1200 Figure 3

1201 Epistatic interactions between sub-genomes affect flowering following polyploidy. In allopolyploid 

1202 Arabidopsis suecica, a functional vernalization pathway is restored through interactions between 

1203 gene copies from both the A. arenosa and A. thaliana parental genomes. The strong AaFRI allele 

1204 transactivates the strong AtFLC alleles to repress flowering unless plants experience sufficient 

1205 vernalization. 

1206

1207 Figure 4

1208 Rewiring of flowering time regulatory pathways accounts for differences between annual and 

1209 perennial life histories. (a) In the perennial Arabis alpina, cold exposure (blue interactions) and aging 

1210 (green interactions) are both required to promote floral induction. (b) In Arabidopsis thaliana, long 
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1211 days (orange interactions) can promote flowering independently of cold exposure (blue interactions) 

1212 and aging (green interactions). 
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Table 1. Flowering Time Genes Contributing to Crop Domestication and Dispersion

Phenotypic effect Species
Common 

Name
Gene Variant(s) Reference(s)

Hordeum vulgare Barley VRN2-H2 deletion (Yan et al., 2004)

Hordeum vulgare Barley Ppd-H1 coding sequence mutation (Turner et al., 2005)

Triticum monococcum Einkorn Wheat VRN2 deletion; coding sequence mutation (Yan et al., 2004)

Triticum monococcum Einkorn Wheat VRN1 5’ cis-regulatory variation (Yan et al., 2003, 2004)

Triticum aestivum ssp. 

aestivum Winter Wheat Ppd-H1

copy number variation; homeolog 

combinations

(Bentley et al., 2013; 

Würschum et al., 2015, 

2018)

Pisum sativum Pea ELF3 coding sequence mutation (Weller et al., 2012)

Reduced photoperiod 

and vernalization 

response in long-day 

crops

Lens culinaris Lentil ELF3 coding sequence mutation (Weller et al., 2012)

Solanum lycopersicum Tomato SP5G 3' UTR cis-regulatory variation

(Soyk et al., 2017; Zhang 

et al., 2018)

Sorghum bicolor Sorghum FT 5' cis-regulatory variation (Cuevas et al., 2016)

Glycine max Soybean FT2c TE insertion in intron (Wu et al., 2017)

Helianthus annuus Sunflower HaFT1 coding sequence mutation (Blackman et al., 2010)

Zea mays L. Maize ZCN8 5' cis-regulatory variation (Guo et al., 2018)

Zea mays L. Maize Vgt1

TE insertion in coding region, coding 

sequence mutation (Ducrocq et al., 2008)

Zea mays L. Maize ZmMADS69 unknown (Liang et al., 2019)

Zea mays L. Maize ZmCCT9 TE insertion in 5' regulatory region (Huang et al., 2018b)

Changes in 

photoperiod 

requirements in 

short-day crops

Zea mays L. Maize ZmCCT10 TE insertion in 5' regulatory region

(Hung et al., 2012; Yang 

et al., 2013)
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Oryza sativa Rice PRR37 coding sequence mutation (Koo et al., 2013)

Oryza sativa Rice Ghd7 deletion; coding sequence mutation

(Xue et al., 2008; Yan et 

al., 2013)

Glycine max Soybean PHYA deletion; coding sequence mutation

(Xu et al., 2013; Jiang et 

al., 2014)

Phaseolus vulgaris Common bean PHYA3 coding sequence mutation (Weller et al., 2019)
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Table 2. Flowering Time Genes Contributing to Natural Variation among Wild Populations1

Phenotypic Effect Species Gene Substitution Type2 Reference(s)

Loss of Vernalization Response Arabidopsis thaliana FRI Coding (20) (Johanson et al., 2000; Shindo 

et al., 2005; Strange et al., 

2011)

Arabis alpina PEP1 Coding (4), 

Regulatory (1)

(Albani et al., 2012)

Capsella rubella FLC Regulatory (2), 

Coding (1)3

(Guo et al., 2012; Yang et al., 

2018)

Boechera stricta FLC Coding (1) (Lee et al., 2018)

Arabidopsis arenosa FLC Coding (2) (Baduel et al., 2018)

Varying Duration of Cold Required for Vernalization Arabidopsis thaliana FLC Regulatory (5) (Coustham et al., 2012; Li et 

al., 2014, 2015)

Varying Sensitivity to Ambient Temperature Arabidopsis thaliana FLM Regulatory (8) (Lutz et al., 2015, 2017)

Loss of Short-Day Vernalization Response Brachypodium distachyon FTL9 Coding (2) (Woods et al., 2019)

Early Flowering in Short Days Arabidopsis thaliana FT Regulatory (2) (Bao et al., 2019)

Arabidopsis thaliana MAF2 Coding (1) (Rosloski et al., 2010)

Arabidopsis thaliana SVP Coding (1) (Méndez-Vigo et al., 2013)

Arabidopsis thaliana PHYC Coding (2)3 (Balasubramanian et al., 2006)

Early Flowering in Long Days Arabidopsis thaliana CO Regulatory (3)3 (Rosas et al., 2014)

Arabidopsis arenosa CO Regulatory (2) (Baduel et al., 2018)

Arabidopsis thaliana FLC Regulatory (7) (Lempe et al., 2005; Quadrana 

et al., 2016)

Arabidopsis thaliana FRL1 Coding (1)3 (Schläppi, 2006)
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Arabidopsis thaliana FRL2 Coding (1)3 (Schläppi, 2006)

Early Flowering in Constant Light Arabidopsis thaliana PHYD Coding (1)3 (Aukerman et al., 1997)

1Only genes where flowering time function has been experimentally verified are listed.  2Number of independent allelic variants discovered by type is 

given in parentheses. 3One or more of the allelic variants has only been observed in one accession.
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