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EVOLUTION OF LOCAL RECRUITMENT AND ITS

CONSEQUENCES FOR MARINE POPULATIONS

Richard R. Strathmann, Terence P. Hughes, Armand M. Kuris,

Kenyon C. Lindeman, Steven G. Morgan, John M. Pandolfi

and Robert R. Warner

ABSTRACT
Advantages of dispersal on the scales that are possible in a long pelagic larval period

are not apparent, even for benthic species. An alternative hypothesis is that wide dis-

persal may be an incidental byproduct of an ontogenetic migration from and then back to

the parental habitat. Under this hypothesis, the water column is a better habitat than the

bottom for early development. Because the parental area is often an especially favorable

habitat for juveniles and adults, selection may even favor larval retention or larval return

rather than dispersal. Where larval capabilities and currents permit, a high percentage of

recruits may then be produced from local adults. Expected consequences of a high pro-

portion of local recruitment are stronger links between stock and recruitment, greater

vulnerability to recruitment overfishing and local modifications of habitat, greater local

benefits from fishery reserves, and possibly more localized adaptation within popula-

tions. Export of some larvae is consistent with a high proportion of retained or returning

larvae, could stabilize populations linked by larval exchange, and provide connectivity

between marine reserves. Even a small amount of larval export could account for the

greater gene flow, large ranges, and long evolutionary durations seen in species with long

pelagic larval stages.

The companion papers in this series indicate that local recruitment and retention of

locally produced larvae may occur commonly in marine species with pelagic larval stages

(Hellberg et al., Sponaugle et al., Swearer et al., Warner and Cowen, this issue). In this

paper we first explore evolutionary hypotheses that reconcile the advantages of local

retention with the maintenance of a pelagic larval stage. We then discuss evolutionary

and demographic consequences of recruitment near the parental area, including the con-

sequences for marine conservation. These consequences depend on the magnitudes of

dispersal and local recruitment. The incidental dispersal associated with long pelagic

larval periods has substantial genetic consequences even while a high proportion of local

recruitment has substantial demographic consequences.

THE EVOLUTIONARY BASIS FOR LOCAL RECRUITMENT

THE FUNCTION OF A PELAGIC LARVAL STAGE: DISPERSAL OR MIGRATION?

Pelagic larvae of marine animals are certainly capable of dispersing away from parents

and siblings. Offshore distributions of larvae suggest spectacular transport (Johnson, 1960;

Scheltema, 1988). Because larvae travel far from parents, it is often assumed that many

settle far from their parents. Oceanographic data on advection and eddy diffusion indi-

cate the potential for dispersal. Dispersal distances of tens to hundreds of kilometers

could be easily attained within the observed weeks or months of larval development.

Because larval dispersal over long distances can and often does occur, it is tempting to
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conclude that selection maintains long pelagic larval periods in life histories because of

advantages of dispersal.

On closer inspection, however, large-scale dispersal during a long pelagic period looks

more like a byproduct than the result of selection for dispersal. As discussed below, life

histories and environmental patterns do not suggest benefits from such dispersal on time

scales of decades. Instead, dispersal can remove larvae from benthic areas where they

could survive as juveniles or reproduce as adults. Thus there is no reason to assume

advantages from large-scale dispersal of larvae. Instead, selection may favor recruitment

near parents and thus in a favorable environment. Widely dispersed larvae may be an

incidental byproduct of an ontogenetic migration into the water column that is favored

for other reasons. In terms of selection within populations, the dispersal that occurs could

be neutral or disadvantageous.

If our arguments are correct, then we might expect that many of the recruits to a local

area result from local production, where larval capabilities and currents permit (Schultz

and Cowen, 1994; Secor et al., 1995; Jones et al., 1999, Swearer et al., 1999; Cowen et

al., 2000; Armsworth et al., 2001). Retention near the parental area is one means of such

local recruitment; return to natal areas from growth and development in more distant

waters is another. The observed wide dispersal of larvae may often represent the tails of

distributions centered near parental areas, or perhaps a distant migration followed by a

return closer to the parental area. Migration for early life in the pelagic habitat, rather

than widespread dispersal, may be the function of the pelagic larval stages of benthic or

demersal marine animals (Strathmann, 1982; Sinclair, 1988). The degree of local recruit-

ment may depend on how far the larvae migrate from the parental area, their behavioral

capabilities, and currents throughout the water column (Kingsford et al., this issue;

Sponaugle et al., this issue).

ARE THERE SPECIFIC ADAPTATIONS FOR DISPERSAL IN LARVAE?

Larvae of animals that are pelagic for their entire life history are often similar to pelagic

larvae of animals that are benthic as juveniles and adults (Strathmann, 1985). For ex-

ample, benthic and pelagic gastropods have veligers, benthic barnacles and pelagic cope-

pods have nauplii, and there are no consistent differences between the larvae of pelagic

and benthic fishes. Thus the larval morphologies likely represent requirements for pe-

lagic life rather than specific adaptations for dispersal. An otherwise sedentary life is not

a necessary condition for the persistence of pelagic larvae in life histories because larval

stages persist in species that can disperse as well by other means. Because larvae are

widespread among pelagic and benthic species alike, a parsimonious explanation of the

function of larvae should apply to both. Feeding larvae, which have the longest pelagic

durations, may simply be an efficient means of turning a small egg into a larger juvenile

(Vance, 1973). To demonstrate that larvae are a necessary means of dispersal among

subpopulations of pelagic adults, one needs to show that larvae are better equipped for

this role than juveniles or adults.

Some larval traits are consistent with advantages to obligate dispersal on smaller scales

of tens of meters to kilometers. The timing of larval release of many species occurs dur-

ing strong tidal flows enhancing initial transport from parental areas (Morgan, 1995a;

Hovel and Morgan, 1997), and subsequent upward swimming toward the light and against

gravity by young larvae further ensures dispersal from the parent (Thorson, 1964). Some

larvae that hatch from broods or egg masses are dispersed away from the parental site
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even though there is no apparent barrier to developing competence at hatching.

Precompetent release without larval growth could be interpreted as purely an adaptation

for dispersal because in these cases a precompetent period offers no other apparent ben-

efits. For example, larvae of the nudibranch Phestilla sibogae hatching from egg masses

near corals are initially habituated and unresponsive to the settlement stimulus from the

coral. They become increasingly dishabituated during the next 5 h away from the coral

stimulus and increasingly responsive when re-encountering the stimulus (Hadfield and

Scheuer, 1985). The habituation could be a mechanism forcing dispersal from the coral

head occupied by parents. Such dispersal is often brief, lasting from seconds to hours, but

larvae of the nudibranch Adalaria proxima hatch up to 2 d before becoming competent to

settle even though they do not require food for development (Todd et al., 1998). If their

dispersal is as reported for other invertebrate larvae (Shanks et al., in press), they may

travel up to a kilometer from the parental site. To our knowledge this is the maximum

pelagic larval period for which there are no apparent advantages other than dispersal.

Longer periods of pelagic development without growth are found in animals that spawn

eggs into the plankton. Pelagic development from egg to first feeding or competence

could result from constraints on benthic retention and protection of embryos (Lee and

Strathmann, 1998).

HYPOTHESIZED FUNCTIONS OF DISPERSAL

Do hypothesized selective advantages of dispersal plausibly match the life histories and

populations of benthic animals, and do these hypothesized advantages require long-dis-

tance travel? It is difficult to envision dispersal as a function for larvae in species with

pelagic adults and easy to imagine that larvae are necessary for dispersal in species with

sessile or sedentary adults. The hypothesized functions of larval dispersal have therefore

been based almost exclusively on benthic species. Offspring of benthic animals could be

leaving a parental site to select proper habitat, to find unoccupied sites, in response to a

locally deteriorating environment, to found new populations, or to engage in bet hedging

in a varying environment.

Habitat Selection.—Some dispersal necessarily accompanies habitat selection. For

sessile or sedentary animals, a pelagic larva may provide the mobility necessary for such

selection among habitats. However, to select a habitat, a larva must be developmentally

competent to settle. The competent period permits selection of sites or times of settlement

(Doyle, 1975; Sponaugle and Cowen, 1994), but duration of competence may be deter-

mined by the balance of risk of settling at a suboptimal site or time versus risk of mortal-

ity during continued pelagic development (Doyle, 1975).

If habitat selection were the sole reason for sending larvae away from the sea bed, then

larvae should be released ready to settle. Indeed, pelagic periods of larvae released from

benthic protection are usually brief unless feeding and growth is required for develop-

ment to competence. Long competent periods may compensate for long precompetent

periods of feeding larvae. Larvae dispersed farther from favorable habitat while

precompetent may require more time to encounter it while competent (Jackson and

Strathmann, 1981). Modal dispersal distances for larvae released at competence are short,

often less than 10 m. For larvae released by brooding ascidians, observed dispersal dis-

tances have been similar to distances for sperm (Grosberg and Quinn, 1986; Grosberg,

1991), less than 1/200 of the distances for rafting adults (Worcestor, 1994), and less than

the distances for passively dispersed non-swimming larvae (Bingham and Young, 1991).

These short dispersal distances suggest that longer pelagic periods occur because eggs
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are released into the pelagic environment rather than provided with benthic protection or

because the larvae must feed and grow before becoming competent to settle.

Finding Unoccupied Sites.—In a crowded environment, simply finding unoccupied

habitat may require some dispersal (Motro, 1983). Given the evidence for recruitment

limitation and unsaturated adult habitats in many marine species (Connell, 1985; Caley et

al., 1996), it is unclear how often the presence of juveniles and adults actually reduces the

fitness of new settlers. Often, the advantages of unoccupied habitat could be obtained

within meters to kilometers of parents, obviating selection for long distance dispersal.

Also, after pelagic periods exceeding a week, many larvae preferentially settle near con-

specific adults.

Locally Deteriorating Environment.—One possible advantage of dispersal is escape

from locally deteriorating conditions. Many terrestrial animals disperse when the paren-

tal environment is deteriorating but remain closer to the parental site when conditions are

favorable (Olivieri and Gouyon, 1997). For many marine animals, however, pelagic de-

velopment is an obligate part of reproduction, and a pelagic larval period is rarely a

facultative response to crowding or other deterioration in the parental environment.

One possible exception is colonial animals that reproduce sexually when the colony

runs out of space for growth, thereby increasing the potential for dispersal to less crowded

conditions (Harvell and Grosberg, 1988). However, many colonies begin producing lar-

vae long before this limit is reached. Another exception is those rare poecilogonous ani-

mals that change reproduction from non-feeding to feeding larvae upon adult starvation,

thereby increasing the time spent in the plankton and the probability of dispersing to

areas where food is more plentiful (Krug, 1998).

More commonly, adults obligately produce pelagic offspring whenever they repro-

duce. If these larvae were a means of escaping locally deteriorating conditions, then it

would follow that the parental areas are deteriorating relative to other areas likely to be

encountered through dispersal. Moreover, an advantage from long distance larval dis-

persal (tens of kilometers) requires that parental areas be usually deteriorating on a large

spatial scale.

What might cause routine deterioration of parental sites? Increases in parasites and

pathogens are one possibility. Dispersal of offspring could reduce offspring’s exposure to

parasites and pathogens infecting the parental population, but dispersal could also result

in a net export of larvae from areas with few parasites (and highly fecund parents) to

areas with many parasites. Dispersal could aid escape from pathogens if dispersed larvae

have a higher probability of arriving with different genetic defenses and thereby avoid

the virulence associated with local adaptation of parasites to host genotypes (Edmunds

and Alstad, 1978; Lively, 1999). Spatial and temporal patterns of infection could also

favor dispersal as a form of bet hedging (see below). What we doubt, on present evi-

dence, is that selection for breaking cycles of transmission commonly favors dispersal of

larvae on scales of tens to hundreds of kilometers.

Since parental habitats do not appear to be deteriorating or fully occupied on scales of

tens of kilometers each generation, we infer that an obligate long pelagic larval period

greatly exceeds the requirements of leaving a crowded or deteriorating parental area.

Founding New Populations.—In the long run, large favorable areas deteriorate, other

areas become favorable, and colonization of new sites may be the only means of avoiding

extinction. However, obligate large-scale dispersal of larvae in each generation is not the

most effective means of colonizing new areas. Colonizing requires that the animals first
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reach a location and then populate it. Larvae dispersed on a large scale can reach many

sites, but if the settlers continue to reproduce with dispersing larvae, they export their

offspring rather than populating the site. Animals with shorter routine dispersal distances

may reach new locations more rarely but are better colonists once they reach the site

(Strathmann, 1974; Johanesson, 1988).

Bet Hedging.—If favorability of each area changes over time, such that good areas are

not consistently good and bad areas are not consistently bad, then animals that spread

sibling offspring over a larger area could damp generation-to-generation variation in suc-

cess and thereby gain a relatively greater rate of increase over time (Cohen, 1967;

Strathmann, 1974). The advantage derived from spreading larvae diminishes with in-

creasing spread. Mothers are ‘sampling’ sites with their dispersed offspring, and each

further extension of sampling provides less additional reduction in generation to genera-

tion variation. In contrast, with consistently favorable and unfavorable areas, the spread

of siblings over larger areas results in a net transfer from good to bad areas (Palmer and

Strathmann, 1981; Holt and McPeek, 1996).

For bet hedging to favor widespread dispersal of sibling larvae, the favorability of

large benthic areas for survival and reproduction of recruits must often change rank. A

world favoring such bet hedging would have a high spatial correlation of favorability

(large areas good or bad) but low temporal correlation (large areas not consistently good

or bad; Palmer and Strathmann, 1981). Although there are few good data on spatial and

temporal variation in favorability over large regions and long times, the available obser-

vations suggest that over tens of generations, there is sufficient consistency in rank of

quality of benthic areas to select against obligate and large scale spread of siblings in

each generation.

As an example, we assume spatial variation in the abundance of corals to be an indica-

tion of environmental variability or predictability and thus of the patterns of variability

that a dispersing cloud of larvae is likely to encounter as the larvae move and settle

farther and farther from the point of release. Abundances could reflect favorability be-

cause of proximity to conspecifics for mating or availability of prey or hosts. Alterna-

tively, abundances could reflect unfavorability for animals excluded by the corals. Hughes

et al. (1999) sampled 18 reefs from north to south along the Great Barrier Reef with 4

sites on each and 10 transects at each of the 72 sites (Hughes et al., 1999). This design

allowed calculation of variances for pairs of transects that were all at the same depth and

habitat (1 m, reef crest) and separated by (1) a few meters at a site, (2) a kilometer or two

on the same reefs, (3) about 10 km between reefs in the same sector, and (4) 200 to1800

km between sectors. A nested ANOVA showed that 50–70% of the total variation in

abundances occurred among replicates at a site and among sites on the same reef. Almost

no variation (typically 0–10%) occurred at the intermediate scale, among reefs. Gener-

ally, 30–50% of the variation occurred at the largest scale, among sectors.

To apply the results to bet hedging, we must add assumptions about temporal variation

so that the pattern can be extended over generations of dispersal. Assuming low temporal

correlations for coral abundance, dispersal within reefs could confer advantages from bet

hedging, but the advantages would diminish as a sibling cohort of larvae added settling

sites and would diminish greatly with spread of larvae among reefs. Spread of larvae over

the largest scale (sectors) is unlikely because of larval duration and survival; but if it

occurred, little advantage would be gained because adjacent transects are likely to be as
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different as transects separated by >1000 km (Fig. 1). Thus for bet hedging, an averaging

of good and bad habitats is as likely to be found nearby as far away.

Advantages from bet hedging will decline even more rapidly with increasing scale of

spread if temporal consistency for spatial variation is greater on the larger scales. Recruit-

ment is an example of temporal correlation at large spatial scales. In a meta-analysis of 23

studies of recruitment by corals along 2000 km of coastline on the east coast of Australia,

recruitment measured over the 20 year span of studies was highly predictable at a re-

gional scale, being 2 orders of magnitude lower at higher latitudes than at the central

Great Barrier Reef (Hughes et al., 2002). The temporally consistent pattern appears to be

driven by regional variation in fecundity. Similar regional-scale patterns in recruitment

are inferred for the west coast of the USA, driven by patterns of upwelling (Ebert and

Russell, 1988).

Thus far, evidence is against the hypothesis of advantageous bet hedging from wide

dispersal of offspring. Are there other possibilities? Environmental features that might

reduce temporal correlation on large spatial scales are catastrophes such as hurricanes

striking different coastal areas. Parasites and pathogens might also have such effects.

Chaotic population dynamics also could favor dispersal (Holt and McPeek, 1996). Com-

binations of species differing in dispersal could be stable when either species in isolation

could be invaded and replaced by other dispersing organisms (Cohen and Levin, 1991;

Ludwig and Levin, 1991). If a coastline has consistently favorable and unfavorable sites,

but advection of pelagic larvae varies from one generation to the next, then spreading

sibling larvae could provide bet hedging benefits (Strathmann, 1974). Although the spread

of larvae is rich in demographic possibilities, sites are often consistently ranked over

large spatial scales and over many generations in such features as adult abundance, den-

sity of recruits, suitability of substratum, and production of food and thus do not suggest

a consistent advantage to bet hedging (Palmer and Strathmann, 1981; Parrish et al., 1981;

Connell, 1985; Menge et al., 1997; Connolly and Roughgarden, 1998; Hughes et al.,

2000). On present evidence, long pelagic larval periods fit none of the hypothetical func-

tions of dispersal.

Figure 1. Variances in percentage cover of corals among pairs of transects that were separated by a
range of distances (meters to >1000 km) on the Great Barrier Reef, Australia. Note that dispersing
larvae will encounter similar variation in adult cover at small, medium, and large scales.



383STRATHMANN ET AL.: EVOLUTION OF LOCAL RECRUITMENT

HYPOTHESIZED FUNCTIONS OF MIGRATION

Why should long larval periods persist if not for dispersal? One hypothesis is that the

pelagic larval period is simply a migration away from and back to the bottom (Strathmann,

1982). Under this hypothesis, return to the parental area could be favored at least as much

as transport to other areas. Here we discuss three hypotheses of advantages from a larval

migration to the pelagic environment: a migration away from adult habitat may (1) ex-

ploit a nutritionally advantageous environment, (2) avoid predation, or (3) break cycles

of parasitism.

For each hypothesis, selection could favor an ontogenetic migration into the water

column and back to the bottom because of size or stage dependent advantages of different

habitats. The same hypotheses apply to larval migration from estuaries and reefs to open

coastal waters and back (Johannes, 1978; Strathmann, 1982; Morgan, 1990). In one model,

the habitat that minimizes the ratio of instantaneous mortality rate to instantaneous growth

rate changes with size, and growing animals switch habitats to minimize this ratio (Werner

and Gilliam, 1984). We can add that size is not the only change from egg to adult-like

juvenile. Embryos and early stage animals are intrinsically limited in their capabilities,

but as cells multiply and differentiate, an animal’s capabilities change. These limitations

could result in stage-dependent advantages of different habitats.

Feeding.—Planktonic food near the seabed is augmented by benthic diatoms and

meiofauna (Muschenheim and Newell, 1992; Judge et al., 1993) and can be at least as

abundant as in the rest of the water column, but for some small organisms, the pelagic

environment may provide better sources of nutrition than the benthos. Greater growth

rates have been reported for pelagic than for settled stages of butterflyfishes and lobsters

(Fowler, 1989; James-Pirri and Cobb, 1997). Food can be depleted when the density of

benthic suspension feeders is high and vertical mixing near the bottom is low, as has been

noted for diverse habitats (Buss and Jackson, 1981; Peterson and Black, 1987; Fréchette

et al., 1989). Suspension feeding by small larvae may not be as effective near the seafloor

as it is in the water column; the benthic nauplii of most benthic copepods do not suspen-

sion feed, unlike the pelagic nauplii of copepods and barnacles (Hicks and Coull, 1983).

Data on growth rates of small animals that are adapted to a range of benthic and pelagic

habitats are needed to test whether growth is greater in the water column or on the sea

bed.

Where in the pelagic environment can the most nutrition be obtained? Coastal regions

are among the most productive regions of the ocean, and estuaries have even higher

densities of potential prey (phytoplankton and zooplankton) than do adjacent coastal waters

(Denman and Powell, 1984; Rissik et al., 1997). Food limitation for copepods is more

likely to occur offshore than in more productive estuaries, bays and nearshore coastal

waters (Huntley and Boyd, 1984). Barnacle and fish larvae retained near spawning areas

appear to grow more rapidly and settle at larger sizes than those that have moved offshore

(Gaines and Bertness, 1992; Swearer et al., 1999). Thus shallow coastal waters may pro-

vide a better food supply for young larvae, and a larval migration to regions farther off-

shore may negate this advantage.

Predation.—The idea that pelagic development carries eggs and young away from

benthic areas where predators are concentrated has a long history (e.g., Randall and Randall,

1963; Robertson and Hoffman, 1977). Planktivorous animals are abundant near reefs,

estuaries and other nearshore environments and pose a danger to pelagic juveniles that

remain very near to parental areas (Johannes, 1978; Morgan, 1990). Greater survival in
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the plankton also could account for pelagic development of prefeeding embryos and non-

feeding larvae, for which habitat is unimportant for growth. For these, the hypothesis

predicts greater survival away from the bottom than at the bottom.

We know of few data for comparing predation on small animals in benthic and pelagic

environments (Strathmann, 1982; Shapiro et al., 1988). Sampling planktonic larvae has

provided estimates of mortality (Strathmann, 1985; Rumrill, 1990; Lamare and Barker,

1999). These estimated mortality rates are greater than those for benthic embryos that are

protected from predators in broods or egg masses (Strathmann, 1985; Rumrill, 1990;

Petersen, 1990; Warner et al., 1995), but benthic embryos and larvae that are not in pro-

tected aggregations may not fare so well (Warner et al., 1995).

Indirect indications are suggestive but inconclusive. Since predators can be concen-

trated near the sea bed and along shorelines, a migration into the open water column may

confer safety. Although mortality rates of postmetamorphic juveniles are often lower than

for larvae (Houde, 1987; Rumrill, 1990), mortality rates in the first day of postsettlement

life (estimated from Gosselin and Qian, 1997) are similar to those estimated for plank-

tonic larvae (Strathmann, 1985; Rumrill, 1990), with mortality rates declining with

postsettlement age. This pattern of mortality estimates is consistent with Werner and

Gilliam’s (1994) model for optimal size for changing habitat, although it is also consis-

tent with high risk at settlement followed by lower mortality in the benthic habitat. Body

mass scaling of production/biomass ratios and respiration rates suggest that predation

risk is reduced at small body sizes for both meiofauna and zooplankton, possibly greater

for meiofauna (Banse and Mosher, 1980; Banse, 1982), but the data are insufficient to

indicate which of them has the smaller ratio of mortality rate to growth rate. Reviews of

data have been insufficient to test the mortality hypothesis, and comparative studies for

habitat-specific tests are needed. These studies could include comparisons of mortality of

small benthic and small pelagic animals of similar size and form, such as benthic and

pelagic nauplii of copepods.

We have simplified the discussion by addressing growth and mortality separately, but

the two factors combine to render a habitat better or worse for a given size or stage of

feeding larva. Larvae that remain near inshore parental habitats may contend with more

numerous predators but develop more rapidly in food-rich waters near favorable habitat

for settlement. In contrast, larvae that migrate offshore may find fewer predators but also

less food and must locate a suitable settlement site at the end of a long trip. Coexisting

species differ, with some larvae migrating short distances between the parental area and

nearshore waters whereas others are exported far offshore (Epifanio, 1988; Morgan, 1995b).

In shallow-water crabs, the distance that larvae migrate is correlated with differences in

larval size and defenses (Morgan, 1987, 1989, 1990). Larvae released on nocturnal ebb

tides disperse from predator-rich shorelines under the cover of darkness into deeper wa-

ters during the first hours after they are released (Morgan, 1995a; Hovel and Morgan,

1997). Thereafter, behaviors of well defended larvae foster short distance migrations in

bays, estuaries and nearshore coastal waters, whereas those of comparatively poorly de-

fended larvae favor migration far onto the continental shelf and back. Interspecific com-

parisons of larval production and settlement have shown that larvae that develop offshore

may recruit to adult populations as reliably as do larvae that remain near the parental

habitat (Hovel and Morgan, 1997; Christy and Morgan, 1998). Thus, a range of migra-

tions occurs within the same array of habitats revealing a variety of evolutionarily stable
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strategies. It remains to be demonstrated whether species that develop in estuaries recruit

to the parental estuary more than do those that develop on the continental shelf.

Parasitism.—The pelagic larval stage may break cycles of parasitic transmission be-

cause of the migration into the water column. Here we emphasize effects of a pelagic

larval stage that are not dependent on dispersal among benthic sites.

Transmission of parasites occurs in the pelagic environment with hosts that are large or

concentrated, as with trematode metacercariae in chaetognaths (Pearre, 1976), hyperiid

amphipods in salps, ctenophores, and medusae (Madin and Harbison, 1977; Laval, 1980),

Metophrya ciliates in chaetognaths (Kudo, 1966), and larval tapeworms in jellyfish

(Dollfus, 1931). Dense phytoplankton blooms have been terminated by the epidemic spread

of host-specific viruses (Suttle et al., 1990; Milligan and Cosper, 1994). In contrast, it is

much more difficult for parasites to spread in a sparsely distributed population of pelagic

larval hosts.

Migration into the water column could break transmission because pelagic larvae are

very small, dispersed in three dimensions, and often scarce. As a result, pelagic larvae are

less suitable hosts for the parasites of the subsequent benthic stages. Large parasites sim-

ply cannot use very small hosts. Small hosts provide smaller resources for production of

numerous infectious propagules. Parasites that can profitably infect marine larvae are

small, such as protozoans, bacteria and viruses, and these require a high host density

threshold for effective transmission (Bailey, 1957; Stiven, 1968; Kuris and Lafferty, in

press), a condition rare for larvae (Strathmann, 1996). Consistent with this, we found no

reports of epidemics sweeping through larval populations in nature, although epidemics

occur in cultures with sustained high host densities (Aquacop, 1977; Nicolas et al., 1992).

In contrast, mass marine mortalities have been documented for many benthic or demersal

molluscs, echinoderms and fishes (Dungan et al., 1982; Lessios, 1988; Lafferty and Kuris,

1993; Harvell et al., 1999).

Larval stages can be parasitized, but apparently not by agents that will also be effec-

tively transmitted to adults (Rigby and Dufour, 1996). Metamorphic and habitat

discontinuities, perhaps in concert with very low larval densities, may prevent transmis-

sion of disease. We know of no examples of infectious diseases transmitted across pe-

lagic larval phases from adult to juvenile populations. If they exist, they are not common-

place.

GENERAL CONCLUSIONS: MIGRATION VS DISPERSAL

The preceding hypotheses of migration advantages are not yet strongly supported by data

on survival and growth, but they are not yet rejected either. At present, the migration

hypothesis is supported largely by deficiencies in the alternative hypothesis of dispersal

advantages of a long pelagic stage. Regardless of the form of the migration hypothesis,

there are no apparent advantages for extending the migration beyond the nearest favor-

able habitat for larvae. If the ontogenetic migration is simply between habitats, it does not

matter if the larvae return to the parental area or another as good. If, however, the prob-

ability of reaching an area as favorable as the parental one is low, then pelagic larvae

should be either retained near the parental area or returned to it. The degree to which they

are returned or not depends on both the movement of the water and capabilities of the

larvae (Bonhomme and Planes, 2000; Armsworth et al., 2001). Less transport confers

proximity to settlement areas (Kingsford et al., this issue, Sponaugle et al. this issue).
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A migration with complete fidelity to the parental area could be disadvantageous in the

long term, but some incidental ‘leakage’ of offspring from the parental area is unavoid-

able even with continuing selection within populations for endogenous recruitment of

pelagic larvae. This leakage, though selected against, may be sufficient to spread risk

from local catastrophes among descendants, as long as catastrophes are infrequent.

CONSEQUENCES OF ENDOGENOUS RECRUITMENT TO PARENTAL SITES

Some marine larvae are transported long distances from parental sites, as exemplified

by numerous examples of both offshore transport of larvae and larval range extensions,

but a larger portion than previously suspected may return to the parental area (Jones et al.,

1999; Swearer et al., 1999; Sponaugle et al., this issue; Swearer et al., this issue). If an

unexpectedly large proportion of pelagic larvae of benthic or demersal animals returns to

the parental area, what are the evolutionary and demographic consequences?

MACROEVOLUTIONARY CONSEQUENCES

Macroevolutionary hypotheses based on larval type have predicted that species with longer

larval periods have greater geographic and stratigraphic ranges and are less prone to ex-

tinction and speciation than those with non-feeding or brooded larvae. Some studies sup-

port some or all of these predictions (Jablonski, 1986); in some the reverse is true (Edinger

and Risk, 1995); and in others there is no relationship (Bouchet, 1981). In the Neogene

gastropod genus Nassarius, greater species durations and geographic ranges occurred in

species with feeding larvae (Gili and Martinell, 1994), yet speciation and extinction rates

were not enhanced with non-feeding larvae. There appears to be substantial overlap in

species durations between ‘dispersed’ species and those with non-feeding or brooded

larvae. For example, nine of 31 species (29%) of nassariid gastropods with feeding larvae

had species durations similar to those with non-feeding larvae (Gili and Martinell, 1994).

In Jablonski’s (1986) study, 13 of 49 taxa inferred to have feeding larvae (27%) had

species durations that were less than or equal to the median value for taxa without feeding

larvae, but only 8 of 50 taxa inferred to lack feeding larvae (16%) had species durations

that exceeded or equaled the median value for taxa with feeding larvae. In Hansen’s

(1978) study, 5 of 13 species with feeding larvae (38%) had species durations similar to

species without. Hansen (1978) interpreted the overlap in durations of species with and

without feeding larvae in terms of environmental tolerances, but degree of larval reten-

tion might also play a role.

Macroevolutionary predictions based on developmental mode have assumed equiva-

lence between larval mode and distance that recruits are dispersed. Recruitment of pe-

lagic larvae to the parental area could weaken this assumed correlation, but how much of

the larval pool needs to be retained to make a macroevolutionary difference? In other

words, does a smaller proportion of larvae dispersed long distances affect the macroevo-

lutionary consequences of a pelagic larval stage? Even if there is a substantial shift in the

proportion of larvae that recruit to the parental population, there still may be no effect on

predicted macroevolutionary consequences, as long as some of the larvae are dispersed

long distances.

Thus, for a particular species, larval retention may not be consistently high enough to

prevent a wide range or long duration, even though it may result in high rates of endog-

enous recruitment.
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Can one test the prediction that species with greater larval retention show smaller geo-

graphic ranges, shorter species durations, and greater rates of speciation and extinction?

Ideally, one would compare evolutionary rates within monophyletic groups that show

both larval retention and large-scale dispersal, or among sister clades that strictly show

one or the other pattern, but we see no clear basis for evaluating larval retention versus

broad-scale dispersal in fossil species.

MICROEVOLUTIONARY CONSEQUENCES: LOCAL ADAPTATION AND MOSAIC EVOLUTION

Local recruitment sufficient for strong demographic consequences does not preclude ge-

netic exchange sufficient to reduce genetic differentiation among populations. In many

taxa of marine invertebrates, species with a pelagic larva exhibit greater genetic homoge-

neity over greater distances than do those without, but populations with long pelagic

larval periods can also exhibit genetic differences among sites (Palumbi, 1995, for re-

view). Local recruitment can be added to the list of factors (including local differences in

post-settlement selection) that could produce genetic differences among populations, de-

spite pelagic larval periods of days or weeks.

If reduced larval dispersal resulted in reduced genetic exchange among populations, it

could increase possibilities for local adaptation. The possibility of local adaptation con-

trasts with the expected microevolutionary consequences of broad dispersal across vari-

able habitats. If populations were truly open with no possibility of local feedback, then

adaptations would either be fixed, representing the best strategy averaged over the dis-

persal range of the species, or phenotypically plastic, if the proper local environmental

cues were detectable by newly arrived individuals (Warner, 1991; Morgan, 1991; Mor-

gan and Christy, 1994).

Also, the demographic consequences of local recruitment suggest particular microevo-

lutionary consequences. Downcurrent populations of the bluehead wrasse on St. Croix

received large numbers of recruits, sufficient for local density-dependent population regu-

lation (Caselle and Warner, 1997; Caselle, 1999). The large downcurrent recruitment pulses

were retention events; the proportion of locally retained recruits was much higher in

pulses, comprising up to 70% of the recruiting cohort (Swearer et al., 1999). If large

recruitment pulses often represent retention, then high-density marine populations (that

themselves resulted from large recruitment events) may also represent populations that

are self-seeding and therefore capable of undergoing local adaptation. Local adaptation

can occur under some circumstances of high rates of gene flow from immigration (Holt

and Gomulkiewicz, 1997; Gomulkiewicz et al., 1999). Local retention could provide the

intergenerational feedback to allow local adaptation to occur and could also lead to high

population densities in which additional components of selection are present. Processes

operating in larger, denser local populations can be important in the evolution of species

characteristics and tolerances, simply because these populations are large (Holt, 1996).

DEMOGRAPHIC CONSEQUENCES

If there is a connection between retention and high recruitment levels, then areas con-

ducive to larval retention may also be areas in which post-settlement density-dependent

processes are important in local population regulation. In contrast, other areas with more

distant sources of young may experience chronically low supply and be recruitment-

limited (sensu Doherty, 1983, Victor, 1983). Attempts to classify populations or species

as recruitment-limited vs density-regulated are less useful than identification of the times
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and places in which local marine populations experience predominantly one or the other

of these regulation mechanisms (Warner and Hughes, 1988; Caley et al., 1996; Morgan,

2000). The degree of local retention may be directly related to the mechanism of local

population regulation. If particular physical features are associated with retention, then

these may provide a working hypothesis about local densities and mechanisms of regula-

tion. For example, the contrast between upcurrent, low-retention reefs and downcurrent,

high-retention reefs in St. Croix suggests that the downcurrent ends of islands may have

higher densities and thus be more likely to be regulated by reef-based processes.

Populations with and without some degree of local retention show profoundly different

dynamics. If all recruits come from elsewhere, the population size responds linearly to

increased inputs of recruits in the absence of density-dependent mortality (e.g., Warner

and Hughes, 1988; Hughes, 1990). Although the external recruits are added periodically

and temporarily stored in the population (sensu Warner and Chesson, 1985), they do not

multiply over several generations. In contrast, if all recruits are locally-derived offspring,

the population responds geometrically to increased or decreased birth rates.

Where local recruitment dominates, the addition of a few external recruits has little

effect on the size of a local population or its long term growth rate. Some clonal taxa

show an interesting variant on this dynamic, where asexually produced offspring are

retained locally and sexually-derived larvae are dispersed. In this case, larval dispersal

may be important evolutionarily, but its demographic role in maintaining local popula-

tions can be far exceeded by ‘self-seeding’ of asexual offspring (e.g., Hughes and Tanner,

2000).

As a local population increases in size, per capita recruitment from an outside source

will tend to fall as the number of recruits arriving is divided by a growing number of pre-

established individuals. Consequently, recruitment can appear to be density-dependent

and to regulate local population size around an equilibrium, even in the absence of den-

sity-dependent mortality (Warner and Hughes, 1988). However, without some source of

density dependence, the global production of recruits would walk randomly to zero or

grow exponentially, given enough time. In reality, true density dependence in birth or

death rates is likely to occur somewhere (in one or more sub-populations or in the plank-

ton) and random walks to zero recruitment are unlikely to occur. Furthermore, asynchrony

of dynamics in partially open local populations is a well-established mechanism of global

stabilization or regulation (e.g., Crowley, 1981; Palmqvist and Lundberg, 1998). For ex-

ample, the coexistence of competing species is promoted by fluctuations in per-capita

rates of recruitment that must increase at low densities (Warner and Chesson, 1985).

Reeve (1988) and Murdoch et al. (1992) also examined this phenomenon in a meta-

population context and concluded that temporal density-dependence due to fluctuating

per capita migration rates could be a stabilizing influence, under conditions that are likely

to occur in nature. Population theory and model predictions in this area need empirical

testing.

Most empirical tests of recruitment-limitation have been highly localized. In small-

scale studies, most populations are open. However, even a modest scaling up has sug-

gested that populations are partially closed (Jones et al., 1999; Swearer et al., 1999). Tests

of the role of self-seeding and meta-population theory are possible with organisms with

short-lived or easily manipulated larvae, such as tunicates or brooding fish.
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MANAGEMENT CONSEQUENCES

Fishery Management.—In a locally recruiting population, the loss of larger and more

productive members of the local population through intense fishing will directly reduce

recruitment. In essence, local retention of young results in geographically smaller man-

agement units. Management itself may be simplified due to fewer losses from export, less

dependence on importation of recruits whose parents are under differing management

regimes, and tighter stock-recruitment relationships. On the other hand, populations with

extensive larval retention are more vulnerable to recruitment overfishing and loss due to

catastrophe.

The juveniles of many fishery species use nearshore habitats affected by coastal con-

struction. Even when negative human effects on a habitat and an associated assemblage

of animals can be documented, conclusions on the population-scale significance of the

impact are usually constrained by limited knowledge of population sizes and the connec-

tivity of local and adjacent populations. It is equally difficult to evaluate the effects of

mitigation projects or other regulatory tools without knowledge of the degree to which

local populations are dependent on their own recruitment (Lindeman and Snyder, 1999).

The more open the population, the greater the probable capacity to recover from signifi-

cant local anthropogenic impacts.

Marine Reserves.—Reserve planning involves several spatial scales, including (1) the

size and shape of individual reserves and (2) the potential for connectivity, or lack thereof,

among multiple reserves. The identification of ontogenetic migration paths of larvae,

juveniles, and adults can suggest reserve boundaries and also the distribution of reserve

networks. Regardless of whether the objective of a reserve is conservation of biodiversity

or fisheries management, all design theory must include assumptions about the source of

recruits into the reserve and the fate of young produced by the reserve (Roberts et al., in

press). If larval retention is more common than previously supposed, how might this

affect reserve design?

Obviously, the ability of a reserve to sustain its own biodiversity would reduce con-

cerns about the dependence of reserve populations on supplies of recruits from else-

where. Identifying physical features that may be associated with enhanced local retention

will be important for placement of reserves. In fishery reserve design, multispecies spawn-

ing aggregation sites are particularly important examples (Lindeman et al., 2000). The

diversity of spatial scales of local recruitment for co-occurring animals and plants and the

multispecies nature of many fisheries suggests difficulties in fitting one network to all

species. This problem is not as severe as it first appears, because differing processes may

work for different species within a single reserve network. For example, one function of

connectivity of reserves is protection against local extinction, and organisms differing in

dispersal and local recruitment can persist locally by quite different means. For species

with a long pelagic larval period, connectivity and persistence can result from larvae that

are routinely leaked beyond presumed population boundaries and between reserve sites

even when there is substantial local recruitment. Such leakage also may enhance fisheries

outside reserves. For species with little or no transport of larvae, persistence can result

from much rarer transport between reserves because of a higher capacity for local recruit-

ment (Dethier and Strathmann, submitted; Shanks et al., in press).
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CONCLUSION

Assumptions of selective advantages of long-distance dispersal by pelagic larvae of

benthic animals are unsupported by existing evidence. An alternative hypothesis is that

the pelagic environment is favorable for unprotected, early-stage animals. In this view, a

long pelagic development is an ontogenetic migration into the pelagic environment and

back to the benthos. This migration hypothesis proposes short-term selection for pelagic

larval stages while implying no advantage or disadvantage from larval dispersal. In addi-

tion, we expect the parental locale to be better than most sites reached after long pelagic

drift and therefore predict selection for local recruitment to the extent that currents and

larval capabilities permit. This migration hypothesis is consistent with new evidence for

local recruitment in marine populations with feeding pelagic larvae. Substantial local

recruitment is consistent with incidental dispersal, which exceeds that favored by natural

selection. Incidental dispersal is consistent with and may account for evolutionary conse-

quences of a long pelagic larval development, even while local recruitment has substan-

tial demographic consequences.
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