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RESEARCH NOTE

Carotid artery velocity time integral 
and corrected flow time measured 
by a wearable Doppler ultrasound detect 
stroke volume rise from simulated hemorrhage 
to transfusion
Jon‑Émile S. Kenny1,2* , Igor Barjaktarevic3, David C. Mackenzie4,5, Mai Elfarnawany2, Zhen Yang2, 
Andrew M. Eibl1,2, Joseph K. Eibl1,2,6, Chul‑Ho Kim7 and Bruce D. Johnson7 

Abstract 

Objective: Doppler ultrasonography of the common carotid artery is used to infer stroke volume change and a 
wearable Doppler ultrasound has been designed to improve this workflow. Previously, in a human model of hem‑
orrhage and resuscitation comprising approximately 50,000 cardiac cycles, we found a strong, linear correlation 
between changing stroke volume, and measures from the carotid Doppler signal, however, optimal Doppler thresh‑
olds for detecting a 10% stroke volume change were not reported. In this Research Note, we present these thresholds, 
their sensitivities, specificities and areas under their receiver operator curves (AUROC).

Results: Augmentation of carotid artery maximum velocity time integral and corrected flowtime by 18% and 4%, 
respectively, accurately captured 10% stroke volume rise. The sensitivity and specificity for these thresholds were 
identical at 89% and 100%. These data are similar to previous investigations in healthy volunteers monitored by the 
wearable ultrasound.

Keywords: Carotid Doppler, Stroke volume, Velocity time integral, Corrected flow time

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Inferring change in stroke volume (SV) is the bedrock of 
functional hemodynamic monitoring [1, 2]. Yet measur-
ing SV change  (SV∆) is clinically challenging, so surro-
gates like the common carotid artery Doppler pulse have 
been proposed [3, 4] with some conflicting data [5]. We 
contend that statistically-inadequate beat sampling cou-
pled with variation introduced by the respiratory cycle 
are important arbiters of inconsistent clinical research 

[6]. To rectify the shortcomings of handheld examina-
tions, we developed a wireless, wearable Doppler ultra-
sound [7, 8]. This device adheres to the neck, maintains a 
constant insonation angle and accurately measures beat-
to-beat changes across multiple cardiorespiratory cycles 
[6, 7].

In early, proof-of-concept investigations, the carotid 
artery maximum velocity time integral (VTI) and cor-
rected flow time (ccFT) accurately identified a + 10% 
 SV∆ with thresholds of + 15% and + 2–4%, respectively 
[9, 10]. More recently, in a human model of hemorrhage 
and resuscitation comprising approximately 50,000 car-
diac cycles, we found a strong, linear correlation between 
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 SV∆, and both changing maximum carotid VTI  (VTI∆) 
and ccFT  (ccFT∆) [8]. While 10%  SV∆ associated with 
18%  VTI∆ and 4.3%  ccFT∆, the optimal  VTI∆ and  ccFT∆ 
thresholds for detecting a + 10%  SV∆ were not investi-
gated. In this Research Note, we report these thresholds, 
their sensitivities, specificities and areas under their 
receiver operator curves (AUROC).

Main text
Methods

Clinical setting
11 healthy, adult volunteers with no cardiovascular his-
tory and who provided written, informed consent were 
recruited. The study was approved by the Research Ethics 
Board of the Mayo Clinic (IRB number 19–010,136).

Adherent Doppler system
The U.S. Food and Drug Administration (FDA) cleared, 
4  MHz Doppler ultrasound (Fig.  1) (Flosonics Medical, 
Sudbury, Canada) was placed and the ccFT, maximum 
and power-weighted, i.e., centroid, VTIs were captured 
[6, 8–10].

Lower body negative pressure (LBNP) and stroke volume
As previously reported [6], all subjects underwent a 
7-stage protocol in duplicate; a non-invasive SV monitor, 
the Nexfin® (Edwards Lifesciences, Irvine, California), 
was synchronized with the Doppler monitor for each car-
diac cycle.

Statistical analysis
All data was averaged over 10-s windows. SV and carotid 
Doppler were referenced to resting baseline to model 
hemorrhage. Cardiac cycles with artifact or during 
LBNP stage transition were excluded, as described [8]. 
SV change from the lowest-tolerated LBNP stage back to 
atmosphere modeled rapid blood transfusion, data from 
this transition was included.

Each 10-s data point was dichotomized as ≥  + 10%  SV∆ 
or <  + 10%  SV∆ based on the non-invasive SV monitor. 
An equal number of data points were randomly sampled 
from negative pressure stages without replacement to 
match the sample size of the positive cases (≥ + 10%  SV∆) 
for 1000 iterations. Within each iteration, the optimal 
threshold for each metric was selected using the Youden 
index. Averages of optimal thresholds and the corre-
sponding sensitivities and specificities were calculated 
from all iterations and reported as the best final estima-
tions. AUROC was calculated using the subsamples that 
produced the same optimal thresholds as the final esti-
mation after 1000 iterations.

Results
The median and interquartile ranges for age and BMI 
were 27 (23—38) years and 23 (21.9–25.6) kg/m2, respec-
tively; 39% were female. Vital signs and their change are 
previously reported [6]. Figure 2 A-D illustrates the pro-
gression of mean arterial pressure (MAP), SV, maximum 
VTI, ccFT and SV for all protocols. The optimal thresh-
olds of %  VTI∆, %  ccFT∆ and their calculation are shown 
in Fig. 2 E and F. Both + 18%  VTI∆ and + 4%  ccFT∆ were 
89% sensitive and 100% specific at detecting ≥  + 10% 
 SV∆. The areas under their receiver operator curves 
were 0.97 and 0.98, respectively. Though not illustrated, 
a + 20% change in the centroid VTI had identical diag-
nostic characteristics.

Fig. 1 Picture of wireless, wearable Doppler ultrasound device

(See figure on next page.)
Fig. 2 Hemodynamic data captured during lower body negative pressure (LBNP) and release. Measures from A–D are synchronously captured. 
Each faint line represents a single protocol, while the emboldened line represents the average of all protocols. A Stroke volume (SV) percent 
change during progressively severe LBNP (i.e., hemorrhage model) and release of LBNP (i.e., rapid transfusion model). B Mean arterial pressure 
(MAP) percent change. C velocity time integral (VTI) from the wearable Doppler percent change. D corrected flow time (ccFT) percent change. E 
The optimal carotid artery maximum VTI threshold for distinguishing ≥  + 10%  SV∆. Each data point represents a 10‑s average. Prior to subsampling, 
there were 3596 data points categorized as <  + 10%  SV∆ and 598 data points categorized as ≥  + 10%  SV∆. The data categorized as <  + 10% 
 SV∆ were randomly subsampled, iteratively 1000 times, to 598 data points (see methods). The sensitivity of maximum VTI is 532/598 = 89% and 
specificity is 598/598 = 100%. F The optimal ccFT threshold for distinguishing + 10%  SV∆. Each data point represents a 10‑s average. The sensitivity is 
532/598 = 89% and specificity is 598/598 = 100%
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Fig. 2 (See legend on previous page.)
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Discussion
In this model of hemorrhage and transfusion, the % 
 VTI∆ and %  ccFT∆ thresholds for detecting a ≥  + 10% 
 SV∆ are consistent with earlier proof-of-concept data 
using a separate paradigm, also in healthy volunteers 
[9, 10]. With simulated blood transfusion, the 4%  ccFT∆ 
approximates an absolute  ccFT∆ of 10 ms, comparable to 
the 7 ms threshold observed in critically-ill patients with 
undifferentiated shock [4]. The + 18%  VTI∆ threshold in 
this investigation is consistent with the slope of the  SV∆- 
 VTI∆ regression line, described previously [8]. Curiously, 
the + 20% threshold for the power-weighted (i.e., cen-
troid) VTI matches the threshold of changing carotid 
blood flow in septic patients [3]. Assuming static vessel 
diameter, changing centroid velocity best approximates 
volumetric flow change [8].

Limitations
Our findings have a number of limitations deserving 
of elaboration. First, from a broad hemodynamic per-
spective, common carotid blood flow relates to cardiac 
output (i.e., total blood flow) by the following, general 
relationship:

where Z is the impedance to flow for the listed vascular 
beds. Thus, using the carotid artery as a surrogate for 
 SV∆ implies a constant ratio of whole body-to-down-
stream carotid impedance. That HR increased and MAP 
remained constant during the protocol,  Zwhole body (e.g., 
total vascular resistance) likely rose relative to  Zcarotid 

artery, especially if downstream internal carotid artery 
impedance fell by auto-regulation. This could partly 
explain the relatively large change in carotid VTI (i.e., 
18%) observed to detect a 10%  SV∆. Second, though we 
did not measure carotid diameter to calculate carotid 
artery flow, the normal carotid artery pressure-diameter 
relationship is relatively flat above a MAP of 80  mmHg 
[11, 12]. More specifically, the carotid diameter changes 
by only 0.2 mm when MAP rises from 80 to 110 mmHg 
[12]; the average MAP for our subjects during the low-
est tolerated LBNP stage was 99  mmHg. Nevertheless, 
even a 0.2 mm diameter change in a 7 mm carotid artery 
affects total flow by ± 6% [13]. On the other hand, in 
hypotensive patients, diameter assessment is likely more 
important; for example, measuring the diameter of the 
descending aorta improves the sensitivity of Doppler 
ultrasonographic flow assessment by approximately one-
third in the critically-ill [14]. Third, we chose non-inva-
sive pulse contour analysis as a gold standard because it 
is continuous, user-independent and accurately trends 

carotid blood flow = cardiac output x
Zwhole body

Zcarotid artery

%  SV∆, which is important for functional hemodynamic 
monitoring. However,  absolute SV measures by non-
invasive pulse contour analysis are less adequate, espe-
cially in the critically-ill [15, 16]. Still, we believe that the 
pattern of  SV∆ that we observed is valid because it rep-
licates the  SV∆ measured in other LBNP investigations 
[17, 18] and is consistent with the LBNP  SV∆ measured 
by other gold standards including left ventricular outflow 
tract VTI [19], bioimpedance [20] and bioreactance [21].

In summary, in this large data set of continuously-
monitored SV synchronous with carotid Doppler, 
multiple measures from a wearable ultrasound patch 
identified + 10%  SV∆ with high accuracy.
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