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SPACE CHARGE AND EQUILIBRIUM EMITTANCES
IN DAMPING RINGS *

M. Venturinif, LBNL, Berkeley CA 94720 , USA
K. Oide, KEK, Oho, Tsukuba, Ibaraki 305-0801, Japan
A. Wolski, Univ. of Liverpool and Cockcroft Institute, Daresbury, UK

Abstract approximation there employed would overestimate the im-
We present a model of dynamics to account for the pog-aCt of shace charge on’ the beam nghbnum. We base our
Lo o . contention on Sacherer’s observation [4] that under certain
sible impact of space charge on the equilibrium emittances " . : . .
; . conditions, which appear to be naturally met in damping
in storage rings and apply the model to study the curren!

design of the International Linear Collider (ILC) dampingrlngs operating fgr from resonances, the evolution OT the
rings beam envelopes in the presence of space charge can indeed

be reproduced using a linear approximation of the space
charge forces but with a value for the effective charge den-
INTRODUCTION sity used to estimate those forces that is only a fraction of

Direct space charge effects have the potential to be g?e charge density of the actual bunches.

some relevance in the ILC damping rings because of long

ring circumference and small transverse emittance. Space MODEL OF BEAM DYNAMICS

charge was extensively studied in the reference lattices con-\y consider a model of beam dynamics described by the

sidered for the baseline recommendation [1]. It was foung5sov-Fokker-Planck equation

that at 5 GeV the ‘dogbone’ lattices with about 16-17 km

length could be vulnerable to space charge but some ef- gf 0 1 o2

fects were also noticed in the shorter lattices, especially 3¢ +Uf H] = 371,(’4%‘9'2710) + §Bijm

when lattice errors were considered. In those studies a !

weak-strong model was used to determine rms emittanegherez = (z, p, y, py, 2, 6) iS the vector of the dynami-

degradation by tracking macroparticles over a number a@fl variablesy the single-bunch beam distribution in phase

turns comparable to the damping time. We started from gpace. The RHS of the above equation describes the dy-

beam with the design emittances, and looked for the exramical effect of radiation emission with the-dependent

citation of dangerous resonances. Radiation effects wengatricesA and B modelling radiation damping and quan-

not included during tracking and the reference values fdum excitation respectively. In the LHS, -] are the Pois-

the equilibrium emittances (which determined the initiason brackets and/ the Hamiltonian generating the sym-

beam sizes at the start of tracking), were those estimatptectic part of the dynamicsy(m are the particle charge

in the absence of any collective effect. Far from the harmand massy, the relativistic factor):

ful resonances identified in that study, the question can be

rais_e_d (_)f the po_ssible _impact of space charge on the beargr — %(pi + kypa? +p§ + k:ny + 02+ k.2b) +ar. (2)

equilibrium and in particular the vertical emittance. In lep-

ton storage rings the beam equilibrium is determined bye assume the linear approximation for the external forces.

the balance between radiation damping and quantum exhe self-force is described by the potentiagjiving rise to

citations. In a non-ideal lattice, space charge can modifie electric fieldE = V1. The coefficienty = ¢/mv3+3

thex/y coupling and alter the determination of the verticammuyltiplying + in (2) accounts for the partial cancellation of

equilibrium emittance — horizontally we do not expect anyhe transverse self-force in the ultra-relativistic regime that

noticeable effect as the emittance is much larger and spaggof interest here. In the same regime the self-force in the

charge effects much smaller than in the vertical directionap frame appears mostly transverse and we will neglect its

In [1] a preliminary application of the envelope formalismjongitudinal component in the equations of motion. As for

[2] was carried out by K. Oide by making a simple lineafthe transverse components of the electric field at location

approximation of the transverse space charge force valifiong the bunch, they can be determined as if the bunch was

in a small neighborhood of the bunch center. Sizeable effinitely long and longitudinally uniform with transverse

fects were found for the dogbone lattices. In this papefensity equal to the density at

we revisit the model yleldlng that result and argue that the First consider the case where Space_charge forces are

*Work supported by the Department of Energy Contract no. DEpompIeter neg“glb,le’ n Whl(,;h casé is a qgadratlg form

AC02-05CH11231 H = (z,Syz)/2, with Sy being a symmetric matrix. Be-
 mventurini@Ibnl.gov cause the external forces are purely linear, it can be shown
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that study of Eq. (1) can be replaced with that of the equderm
tions for the first and second moments faf Following

2\
conventional notation we write the second moments as the (@) = 2(zpa), ()
entries of the symmetriex 6 ‘sigma’ matrix¥;; = (z;z;). (zpz) = (02) — ko(2?) + al2Ey), ®)
These obey the differential equations [2] P2 = =2k, (xp.) +2(p.E,). 9

> =Lx+3L” + B, (3) Suppose we write the beam distribution in phase space as

f=f:(2,0)f1L(z,ps,y,py). Inthe ultrarelativistic regime
with L = JSg — A (whereJ is the fundamental sym- the transverse components of the electric field obey the 2D
plectic matrix) and the prime indicating differentiation Poisson equation
with respect tes. Devising an integration method for these
equations is straightforward. A simple first-order scheme OE, + % - qN)\ﬁ (10)
consists of introducing a splitting between non-diffusive Oz dy €o
(LT + XL") and diffusive () parts in the RHS of (3) \hereA(z) = [ dé. is the longitudinal linear density and
and appling the latter in the kick approximation. If the dif-; ;. ) the transverse density with an elliptic symmeitey
fusive kicks are separated by the small interxalintegrat- = p(2%/a® + y2/b%), normalized to unity. Sacherer
ing through a kick at yields X(s™) = X(s™) + AsB(s).  showed that for these beams the expectation vahi,)s

Between these kicks propagation of ieanatrix under the only depends on the rms transverse sizés= (z2) and
deterministic part of the dynamics can be done exactly ig2 _ (y?):
Y :

terms of tr/me transfer map (including dampin®yJ (s, s) ) gN\ o, 1)
i — = TLiy)5 = .
withs — s’ = s+ As 5 Pr——
S(s') = M(s',s)2(s) M (s, s). (4) Inthe above(-); refers to the average taken over all phase

space except thedirection. If we consider a density gaus-
Because of damping, solutions of (3) starting from arbisian inz, A(z) = exp(—22/202)/+/270. and average over
trary initial conditions will relax to the equilibrium beam the longitudinal variable as well we find for the last term in
envelopesy., of a gaussian distribution in phase spacegq. (8)
The corresponding rms (eigen-)emittances can then be de-

termined as the imaginary part of the eigenvalues of the (rE,) = gN. 1 1 Oz (12)
matrix XJ [3]. As the dynamics is not symplectic the emit- dmeg 2\ 270, 0x + 0y

tances so defined will not be exact invariant through th@ith a similar expression holding in the vertical plane.
lattice but violation of the invariance is small. Although Now, assuming rms emittance conservation we can use the
straightforward this method is not very efficient because (gquationgi = (p2)(z?) — (2p,)? to find (p2) in terms of

the slow relaxation to equilibrium. Alternately, the equilib-(22) and (zp, ), thus replacing Eq. (9), and are left with a
rium beam envelopes or the emittances can be determingidsed set of equations for the second moments. Next, ob-
at once using the method developed in [2]. If we define theerve that Eq. (12) is equivalent to the expression we would

transformed diffusion matrix obtain if we used an effective purely linear transverse E-
s1C field of the form
B(s) = / drM(s+ C,7)B(1)M" (s + C,7) (5) et gN 1 1 T 13)

T 4meg ﬁ V2ro, 0(0x + 0y)

Under Sacherer’s assumptions the evolution of the beam
envelopes described by Egs. (7-9) is undistinguishable
from that resulting from using this purely linear field —

2(s) = M(s)2(s)M7T(s) + B(s). (6) emittance conservation, in particular, is a direct conse-
guence of the linearity of (13). As a result, Eq. (3) is still

When space-charge effects are present but are small,\adid provided that we allow for the matrik = L(X) a
is the case for the ILC damping rings, it seems reasomlependence on the envelopes to account for space charge in
able to predict that an equilibrium may still exist and thatccordance to (13). The integration scheme outlined below
the form of the beam density at equilibrium will remainEg. (3) can be trivially extended to include space charge
close to gaussian. If this is the case we can make use a@fo in the kick approximation. Eq. (6) for the equilibrium
Sacherer’s observation [4]that for beams with charge deemittances is also still valid. However determining its solu-
sity displaying elliptical symmetry (including in particu- tion is more complicated as the transfer matriddgs’, s)
lar gaussian beams) the envelope equations in the presemdk also depend on the envelope matricgsturning (6)
of space charge form a closed set of equations providéato a nonlinear equation. Finally, one can make the inter-
that the beam rms emittance is conserved (or known a pesting observation that compared with the linearized field
ori). To illustrate Sacherer’s statement consider the emiose to the center of a gaussian bunch, the effective field
velope equations for the horizontal motion in differential13) turns out to be /2%/2 smaller (for the saméV).

where(C' is the machine circumference, the beam envelope
at equilibrium is then given by solving fa the following
algebraic linear equation



APPLICATION TO THE ILC DR’S ing with emittances somewhat smaller than design specifi-

. . . _cation (hence boosting space charge) we could find a sig-
We applied these ideas to study the equilibrium eMitsicicant effect.

tances for the current design of the 6.7 km ILC damping

rings. To this end we added further functionality to the .
MaryLie/lmpact (MLI) [5] code, previously used in the

study [1], to include treatment of synchrotron radiation. We 26 fast method’
studied a non ideal lattice with random vertical displace- =~
ment of the sextupoles to create a finite vertical emittance S 24 . =™
close to the:,, = 2 pm target in the design specifications. "

In the absence of space charge we varied the variange 22 & 'slow method’
of the sextupole displacement and determined the depen- m®
dence of the vertical equilibrium emittance. For eagh 2
we created 1000 lattice error realizations. Hie — 95%

percentile ranges of the resultingare reported in Fig. 1 as

vertical bars, together with the expected average according

to theory (dashed line) [6].
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Figure 2: Equilibrium vertical emittanags. bunch popula-
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Figure 1: Equilibrium vertical emittance as a function of a N=5.6x10%°
random rms vertical displacement of the sextupoles. Boxes 08 O = 60 um
are the average values over &% — 95% percentile range 06
of the emittances found; the dots the average over the full
range. Space charge not included.
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For the case of a non-ideal lattice with space charge
perturbed with a single vertically displaced sextupole we
calculated the equilibrium vertical emittance by numeri-
cal solving Eqg. (3) (‘slow method’, boxes in Fig. 2) andFigure 3: Frequency plot of equilibrium vertical emittance
by solving the envelope equation (6) for equilibrium (‘fastwith and without space charge.
method’, dots in Fig. (2). To solve (6) we adopted a sim-
plified iteration scheme expected to converge to the actual
solution only in the limit of vanishing space-charge. Com- REFERENCES
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