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Abstract— Connected vehicle (CV) technology has great poten-
tial to improve the performance of today’s advanced driver
assistance systems in terms of safety, energy efficiency, and
driving comfort. The aim of this paper is to develop a specific CV
application that assists with lane selection, i.e., finding the best
travel lane in terms of travel time based on predicted lane-level
traffic states. In this paper, a spatial-temporal model (ST-model)
was developed, which utilizes spatial and temporal information
of road cells to predict future traffic states. This information
was used by the proposed lane selection assistance application
to select an optimal lane sequence for the application-equipped
vehicle. A comprehensive simulation-based evaluation was then
conducted under various scenarios, e.g., with different traffic
volumes, penetration rates of communication-capable vehicles,
and information update cycles. The evaluation results reveal
several interesting findings, including: 1) the proposed ST-model
outperforms the basic estimation model in terms of traffic state
prediction accuracy; 2) travel times of application-equipped
vehicles can be reduced by up to 8% with the use of the proposed
lane selection assistance application when compared with the
baseline, under various traffic scenarios; 3) the application can
be effective in the early deployment stage of CV technology,
where the penetration rate of communication-capable vehicles is
still low; and 4) the potential conflict risk of application-equipped
vehicles is reduced, although the application is mainly designed
for mobility benefits, due to the more strategic and informed lane
changes suggested by the proposed application.

Index Terms— Connected vehicles, lane selection assistance,
lane-level traffic state prediction, optimization, spatial-temporal
discretization.

I. INTRODUCTION

IN RECENT years, Connected Vehicle (CV) technology
that enables wireless communications among vehicles as

well as between vehicle and infrastructure (V2X) plays an
important role in the evolution of advanced driver assistance
systems (ADAS), for improving vehicle safety, efficiency,
and driving comfort [1], [2]. Various studies have been
conducted on the methods for V2X data exchange [3]–[5].
Current CV applications are designed mainly based on two
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types of communications: Wireless Access in the Vehicular
Environment (WAVE) based Dedicated Short-Range Commu-
nications (DSRC) and cellular based communications. DSRC
devices are capable of providing high availability and low
latency channels for critical safety applications [6] through the
IEEE 802.11p standard [7] especially designed for automobile
communication, but they require relatively expensive on-board
units for every communication-capable terminal [2]. On the
other hand, cellular-based devices (e.g., smartphone) can be
easily integrated with different ADAS due to the availability
of various built-in sensors.

The CV technology has attracted increased attention due to
its great potential to enhance vehicle and road safety [8]–[12],
environmental sustainability [1] and driving comfort [13], [14].
For example, Schildbach and Borrelli focused on the safety
of lane changes on highway and designed safe lane change
trajectories for drivers using predictive control models [8].
Wu et al. [1] proposed an Eco-Approach and Departure (EAD)
application which can receive signal phase and timing informa-
tion from the upcoming traffic signal to better guide the driver
through the intersection in an environmentally-friendly way.
Similarly, Butakov and Ioannou [13] proposed an in-vehicle
system which uses traffic light location and timing to find an
individual optimal driving pace. Moreover, a number of effort
has been made by different agencies to advance and promote
CV research. For instance, the Connected Vehicle Reference
Implementation Architecture [15] summarized a large number
of applications developed under the Safety Pilot program [16],
the Dynamic Mobility Application program [17], the Appli-
cations for the Environment: Real-time Information Synthe-
sis program [18], and the Road Weather Connected Vehicle
Applications program [19] funded by the U.S. Department of
Transportation (USDOT). Also, the European Union and other
countries funded several projects on the development of CV
applications [20], [21].

Although a large number of CV applications have been
proposed and developed for driving assistance, only a small
number of them are focused on lateral control assistance.
Examples include lane assignment [22], [23] and optimal lane
selection [24]. Dao et al. [22], [23] presented a decentral-
ized lane assignment approach for a group of single vehi-
cles or vehicle platoons within the vicinity of on/off ramps
(entries and exits) via inter-vehicle communication. Another
research effort on lane selection was proposed to regulate
freeway uncoordinated lane changes via two-way Vehicle-to-
Infrastructure (V2I) communication, by minimizing potential
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vehicle conflicts [24]. The results in [24] showed that, due
to the regulated lane-changing behaviors, the mean average
travel time is reduced (by 0.57% to 3.79%) as compared
to the non-lane selection scenario. These studies all hold a
strong assumption that all the vehicles on the freeway are
application-equipped vehicles (under control), which makes it
challenging to implement these lane assignment approaches in
practice within the next ten years or more. Even so, mobility-
focused lateral control assistance ADAS still has not been very
well studied yet so far.

On the other hand, traffic state prediction has been well
studied for years using statistical models, such as Kalman
filtering, nonparametric regression models, or neural net-
works [25]–[29]. Kwon et al. [25] predicted travel times on
freeway using a linear regression model based on measure-
ments from loop detectors . Rice and Zwet [26] proposed a
simple robust time-series model for travel time prediction for a
section of a freeway. At the same time, many model-driven and
data-driven algorithms have been proposed for short-term traf-
fic state prediction, such as Hidden Markov Models [30], [31],
K-nearest neighbors approach for traffic state prediction [32],
Particle Filter algorithm [33], [34], Kalman Filter [35], and
deep neural networks [36].

A few Markov chain based traffic forecasting methods
has been developed [31], [37]. The Markov chain (discrete)
model was mainly used to decide the traffic state of the
next interval based on the traffic model. For example, nearest
neighbor classification in combination with variable-length
Markov chains was used to predict the traffic pattern [31].
After the traffic state of each new time step is classified
into a cluster, the specific speed value is estimated using
the appropriate locally weighted regression model which is
trained with data only from the relevant cluster. In addition,
a combined forecasting method based on Markov chain theory
and Grey Verhulst model was proposed for high prediction
accuracy of short-term traffic flow forecasting method [37].
In order to improve the accuracy of forecasting, the volatility
of data is dealt with by Markov chain theory on the basis of
Grey Verhulst model. The results show that the relative error
(between real-world data and prediction data) of traffic flow of
one road segment across 16 time steps (5 min per time step)
ranges from 0% to 13%.

At the same time, a short-term traffic prediction method
based on spatial-temporal correlations was also proposed.
In [38], Pan and Wynter brought up that the traffic state of a
specific site is highly affected by its upstream and downstream
traffic conditions; and free-flow speeds are spatially correlated
(cell-to-cell, lane-to-lane correlated). An extended stochastic
cell transmission model (SCTM) was used to support short-
term traffic state prediction, taking into account the spatial-
temporal correlation of traffic flow. In [38], a section of
I210-W was divided into four cells, with about 0.5 mile per
cell. The overall mean absolute percentage error (MAPE)
was calculated for effectiveness validation, which was around
10.8%-14% [38]. In [39], a traffic state estimation approach
was proposed, which utilizes road network correlation and
sparse traffic sampling to estimate the traffic conditions of
different road segments. This method derives Multiple Linear

Regression (MLR) based mathematical model to represent
traffic relations and applies both the MLR model and the
compressive sensing technique to achieve a city-scale traffic
estimation via tracking a small number of probe vehicles.
The traffic estimation model was validated by extensive trace-
driven experiments with real-world traffic data (within a large
network with 1826 road segments in Shanghai city). Results
show that the absolute speed differences between the estimated
results and the pseudo ground truths over different traffic
scenarios are 5.2 km/h to 11.0 km/h (around 3.23 mph
to 6.84 mph).

Another approach to traffic state estimation and prediction
is to use an improved Ensemble Kalman Filter to estimate
and predict realistic large-scale freeway network, whose com-
putation time can be decreased due to smaller matrix inver-
sions [35]. In [36], a machine learning deep neural network
was adopted to model the evolution of the traffic state in a
freeway. However, all these approaches mentioned are focused
on link level traffic state prediction instead of lane level.
At the same time, studies of lane-based methods have attracted
more and more attention recently, including but not limit
to vehicle trajectory predictions, queue warning effectiveness
analysis and lateral motion prediction of autonomous vehi-
cles [40]–[42]. In order to support the implementation of lane-
level applications in reality, there is also lane-level vehicle
guidance technology, e.g., using enhanced GPS/multi-layer
map model for ego-lane estimation and lane-level navigation
service [43]–[46]. Also, advanced sensing devices have been
developed as the key enabler for accurate position tracking,
such as the Radio Frequency IDentification (RFID) technol-
ogy [47], [48], which will support numerous applications in
transportation in the future [49]. Inspired by the work men-
tioned above, we proposed a regression model for lane-level
traffic state prediction by utilizing traffic state correlations
between adjacent road segments along the same lane (intra-
lane information) and across the adjacent lanes (inter-lane
information).

In this study, we propose a lane selection assistance applica-
tion to help the driver find an optimal lane-level “micro” route
in terms of minimizing the travel time. The decision making
process is based on the prediction of traffic states at the lane
level via connected vehicle technology (e.g., cellular network).
The rest of this paper is organized as follows: Section II
presents the problem formulation, followed by the detailed
description of the lane selection algorithm, system architecture
and the proposed spatial-temporal traffic state prediction model
in Section III. Simulation model and scenarios are introduced
in Section IV. In Section V, simulation studies are conducted
to evaluate the performance of the proposed application by
varying different parameters, such as traffic congestion level,
penetration rate of communication-capable vehicles, and infor-
mation update cycle. The last section concludes this paper with
further discussion on future work.

II. PROBLEM FORMULATION

In the real world, drivers usually perform lane changes
based on their observations within sight distance, many of
which are not well planned. For example, consider a target
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Fig. 1. An example of the problem description.

vehicle (the individual vehicle of interest) driving on a 5-lane
freeway under heavy traffic conditions (see Fig. 1). Since the
traffic downstream of the target vehicle (in lane 2) is congested
within the range of the driver’s vision, the target vehicle driver
needs to make a decision on which lane to change to (i.e.,
space 1 in lane 1 or space 2 in lane 3). Because of the
limited sight distance, it is hard for the driver to know exactly
which lane has lighter traffic. Assume that the driver changes
to space 2 in lane 3 and he/she will face two alternatives
again, changing to space 3 in lane 4 or staying in lane 3.
The driver would probably change to space 3 in lane 4 rather
than staying in lane 3 since there is more room in space 3.
However, a congestion shockwave could be propagating from
the downstream to the upstream in lane 4 (beyond the range
of the driver’s vision) at the same time. In this circumstance,
staying in space 2 in lane 3 might be a better choice. Therefore,
in order to obtain mobility benefits, predicted information of
downstream traffic at the lane-level is essential for drivers to
make smarter choices on lane selection.

We define vehicles which could share their basic informa-
tion (e.g., velocity and position) as communication-capable
vehicles, and define vehicles equipped with the proposed
application as application-equipped vehicles. In this study,
we assume cellular-based connectivity for data collection is
available (see Fig. 2). We assume that sending messages
over the cellular network in an end-to-end manner is tech-
nically feasible. An application-equipped vehicle is always
communication-capable, but a communication-capable vehi-
cle is not necessarily application-equipped. Communication-
capable vehicles can send their activity information to a
centralized center via on-board smartphones with built-in
sensors for traffic/vehicle states prediction. Based on the data
collected from on-road communication-capable vehicles, the
traffic state (e.g., average speed) can be estimated and even
predicted with certain models by an application server (or the
traffic management center, or the cloud center). The applica-
tion server stores and broadcasts the prediction results to the
application-equipped vehicles so that the proposed application
can support the decision-making process of lane changing.
We also assume that vehicles have complete knowledge of
which lane it is in (this is a research problem in itself).

Note that the traffic state changes with time, therefore
dynamic models are needed to forecast the traffic state. The
lane-level traffic state prediction can be conducted using
regression models. Aimed at searching for the best lane-level
path for an application-equipped vehicle, an optimization
problem is formulated to determine which space (e.g., a lane-
level segment) the vehicle should occupy at certain time.

Fig. 2. Information flow of the lane selection assistance application.

III. PROPOSED LANE SELECTION

ASSISTANCE APPLICATION

To solve this problem, a detailed three-step approach is
proposed: 1) spatial-temporal discretization of roadway net-
work; 2) data-driven traffic state prediction at the lane level;
3) optimal lane sequence identification based on dynamic
programming (DP).

A. Spatial-Temporal Discretization

As shown in Fig. 3, the road network can be divided into
K road segments and K × I cells, where I is the total number
of lanes of interest. To make this approach more feasible and
reduce the complexity for implementation, we did not include
those “discontinuous lanes of the mainline” as the lanes of our
interest in this study. These discontinuous lanes of the mainline
include where mandatory lane changes have to be performed,
such as auxiliary lane(s) before lane-drop areas (e.g., lane m
and lane n in Fig. 3). Another major assumption is that there
exists speed difference across different lanes especially in
heavy traffic. Usually fluctuations of traffic may be caused by
the mainline vehicles which make mandatory lane changes to
leave the freeway from the off-ramp exit, or the influx of traffic
from the on-ramp. These factors cause large speed difference
among lanes, especially in heavy traffic.

The spatial discretization method is more applicable to
freeways where road segments of same traffic direction are
correlated with each other. It might be more challenging for
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Fig. 3. Sketch map of spatial discretization on freeways.

urban areas and intersections. Some details about the spatial
segment discretization are as follows:

• The length of each segment does not have to be the same.
• A segment should have consistent geometric characteris-

tics throughout.
• Optimal segment length, varying with traffic speed, bal-

ances between capturing the variability in traffic state
versus limiting the size of optimization problem.

The road stretch used in this paper is California SR91-E, a
15-mile corridor with 4 to 6 lanes and ten pairs of on/off-ramps
(see Section IV.A for more details). The spatial discretization
in this paper was done offline, splitting this freeway into
15 road segments, almost each of which is about one mile
long. The approach can be extended to different freeways as
a generalized method, however it could be slightly different
for various road ways, depending on the traffic direction and
specific road geography.

B. Lane-Level Traffic State Prediction

For each cell in Fig. 3, we can further define the associated
traffic state that can be used to guide the lane change. We do
not estimate the traffic state of the discontinuous lanes (“non-
of-interest” lane) of the mainline, such as auxiliary lane(s)
before lane-drop areas (e.g., lane m and lane n in Fig. 3).
In this study, we assume that the communication-capable vehi-
cles can transmit their state information such as instantaneous
speed and location (both longitudinal and lateral with lane-
level accuracy) over the entire roadway network in real-time.
Then the lane-level average speed of each road segment at
each time step can be estimated and used as the critical traffic
state. More specifically,

xi,k (n) = VMTi,k (n)

VHTi,k (n)
∀i ∈ I, k ∈ K (1)

where xi,k (n) is the average speed on lane i of road segment
k within the n-th time interval, n · �T . VMT and VHT
represent the vehicle miles traveled and vehicle hours traveled,
respectively. Assuming the time interval �T at each step is
uniform, the average speed can be also estimated by the ratio
of the sum of all sampled speeds to the total number of speed
samples for all vehicles of interest. In addition, we use a fixed
average speed value (65 mph in this study) to represent the
traffic state xi,k (n), when no communication-capable vehicle
is available in the specific cell.

It has been brought up that the traffic state of a specific
site is highly affected by its upstream and downstream traf-
fic conditions, and free-flow speeds are spatially correlated
(cell-to-cell, lane-to-lane correlated) [38]. Inspired by the

aforementioned research, we propose a linear regression model
(referred to as Spatial-Temporal model or ST-model in this
paper) for traffic state (i.e., average speed) prediction at the
lane level by utilizing traffic state association between adjacent
road segments along the same lane (intra-lane information) and
across the adjacent lanes of both sides (inter-lane information)
during consecutive time steps, in order to serve as the basis
of the lane selection algorithm proposed in Section III.C.

Considering the lane-based impacts on traffic state predic-
tion, we herein utilize both intra-lane and inter-lane traffic state
information for traffic state prediction. Therefore, the linear
regression model of one single lane is defined as

�Xi (n) = Ai �Xmi (n − 1) + �ui ∀i ∈ I (2)

which can be extended as Equation (3), as shown at the top
of the next page. In Equation (3), the output variable matrix
is �Xi (n) ∈ RK×1; input variables matrix is multiple lanes’
traffic state �Xmi (n − 1) ∈ R3K×1; coefficient matrix is Ai ∈
RK×3K (considering the impacts from immediate downstream
and upstream segments of the original lane and adjacent
lanes); and intercept matrix is �ui ∈ RK×1. The coefficient
and intercept matrices of the above linear regression model
can be trained by historical data. In this study, we assume
that the i -th lane traffic state on road segment k during the
n-th time interval, xi,k (n), can be represented by a linear
function of the lane-level traffic states on road segments k − 1
(immediate upstream), k and k +1 (immediate downstream) of
the original lane and adjacent lanes of both sides, during the
(n − 1)-th time interval, i.e., xi−1,k−1 (n − 1), xi−1,k (n − 1),
xi−1,k+1 (n − 1), xi,k−1 (n − 1), xi,k (n − 1), xi,k+1 (n − 1),
xi+1,k−1 (n − 1), xi+1,k (n − 1) and xi+1,k+1 (n − 1). Please
note that the Equation (3) is the general form, only one-side
adjacent lane was considered for the left-most lane (or the
right-most lane).

The full linear regression model of the entire network with
K segments and I lanes of interest can be formulated as
follows:

⎡
⎢⎢⎢⎣

�X1 (n)
�X2 (n)

...
�X I (n)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1
A2

. . .

AI

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�Xm1(n−1)
�Xm2(n−1)

...
�XmI (n−1)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

�u1
�u2
...
�uI

⎤
⎥⎥⎥⎦

(4)

For comparison purpose, we also evaluated another simple
traffic state prediction model (as a baseline), which used the
traffic state in the last time step as the predicted state in the
current time step without considering the spatial interaction
(similar estimation model was also proposed in [50]), i.e.,

xi,k (n) = xi,k (n − 1) (5)

Therefore, for lane i , the baseline can be simply written as

�Xi (n) = �Xi (n − 1) (6)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi,1 (n)
xi,2 (n)
xi,3 (n)

...
xi,k (n)

...
xi,K (n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai−1,1 ai−1,2 . . . ai,1 ai,2 . . . ai+1,1 ai+1,2 . . .
ai−1,1 ai−1,2 ai−1,3 . . . ai,1 ai,2 ai,3 . . . ai+1,1 ai+1,2 ai+1,3 . . .

ai−1,2 ai−1,3 ai−1,4 . . . ai,2 ai,3 ai,4 . . . ai+1,2 ai+1,3 ai+1,4 . . .
. . .

ai−1,k−1 ai−1,k ai−1,k+1 . . . ai,k−1 ai,k ai,k+1 . . . ai+1,k−1 ai+1,k ai+1,k+1 . . .
. . .

ai−1,K−1 ai−1,K . . . ai,K−1 ai,K . . . ai+1,K−1 ai+1,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi−1,1 (n − 1)
...

xi−1,k (n − 1)
...

xi−1,K (n − 1)
xi,1 (n − 1)

...
xi,k (n − 1)

...
xi,K (n − 1)

xi+1,1 (n − 1)
...

xi+1,k (n − 1)
...

xi+1,K (n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ �ui (3)

and for the entire network,
⎡
⎢⎢⎢⎣

�X1 (n)
�X2 (n)

...
�X I (n)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�X1 (n − 1)
�X2 (n − 1)

...
�X I (n − 1)

⎤
⎥⎥⎥⎦ (7)

More details on the comparison results between the
ST-model and the basic estimation model in terms of traffic
state prediction will be presented in Section V.B.2).b).

C. Optimal Lane Selection Algorithm

As previously mentioned, the objective of the proposed
lane selection assistance application is to improve the mobil-
ity performance of application-equipped vehicles. With the
spatial-temporal discretization of the entire roadway net-
work, we formulate the problem as dynamically searching
a lane-level path that maximizes the sum of average speed
of each lane segment that the vehicle traverses. The vari-
ables of optimal solutions are the binary variables ωi,k (n)
given the system equations of lane-level traffic states xi,k (n).

The optimization problem is solved only for the next
N-min (an information update cycle). Assume that the
ego application-equipped vehicle is on lane p of seg-
ment q . To obtain the optimal lane index solution for time
step n, the objective function and constraints of the ego
application-equipped vehicle are shown as follows:

max
�(n)

∑I

i=1

∑K

k=q
ωi,k (n) xi,k (n) (8)

s.t.

⎡
⎢⎢⎢⎣

�X1 (n)
�X2 (n)

...
�X I (n)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1
A2

. . .

AI

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

�Xm1 (n − 1)
�Xm2 (n − 1)

...
�XmI (n − 1)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

�u1
�u2
...
�uI

⎤
⎥⎥⎥⎦ (9)

ωi,k (n) ∈ {0, 1} ∀i ∈ [1, I ] , ∀k ∈ [1, K ] (10)∑I

i=1
ωi,k (n) = 1, k ∈ [q, K ] (11)
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Fig. 4. An illustrative example of the optimal lane-level path in a discretized roadway network.

If ωi,k (n) = 1, then ω j,k+1 (n) = 1,

∀i ∈ [1, I ] , j = i − 1, or i, or i +1, k ∈ [q, K −1] (12)

where I is number of lanes of interest, K is number of road
segments, and n is the next N-min time step (length of the
prediction window). The aforementioned lane-level traffic state
prediction model is used as a constraint to drive the evolution
of traffic states (see (9)). As mentioned above, ωi,k (n) is a
0-1 binary variable indicating if the target vehicle is present
(ωi,k (n) = 1) or not (ωi,k (n) = 0) on lane i of road segment
k during time interval n (see (10)). Equation (11) guarantees
that at any time step, the target vehicle would be only present
in one cell for each road segment k. The last if-then constraint
(i.e., (12)) denotes that the solution � (n) only allows adjacent
lane changes within one N-min time step. The solution � (n)
(i.e., optimal lane-level micro-routing from the current road
segment q to road segment K , within the next N-min) is
obtained by Dynamic Programming (DP) [51], based on traffic
status of time step n − 1.

The proposed lane selection assistance application is imple-
mented through the application programming interface (API)
in PARAMICS microscopic traffic simulation tool [52].
Fig. 4 presents an illustrative example of optimal lane-level
path (as time elapses) calculated by the proposed lane selection
assistance algorithm (with spatial discretization of roadway
network). The average speeds of each road segment in different
lanes are grouped into different levels: very low, low, medium
and high, which are represented by different colors in Fig. 4.
Since the lane-level speed is time-varying, we don’t assign
fixed speed partition range for each level. The purpose of
defining different levels in Fig. 4 is to show the spatial
discretization and the lane-level traffic state more intuitively.
Note that the speed levels of lanes in each road segment are
updated every N-min information collection cycle. Compared
to the unguided path (baseline), the target vehicle (application-
equipped) follows the optimal lane sequence during the whole
trip based on the time-varying lane-level traffic state prediction
results, aiming to minimize the travel time over the same
length of distance traveled. It is possible but not necessary
that the application-equipped vehicles change lanes only at
cell boundaries (Fig.4 is a schematic diagram). After changing
to the target lane, the target vehicle is restricted to the
corresponding target lane without performing any extra lane
changes. The proposed lane selection assistance algorithm is
shown in Table I.

TABLE I

LANE SELECTION ASSISTANCE ALGORITHM

In summary, with discretization of roadway network (in time
and lane-level space), the proposed lane selection assistance
application can be implemented as depicted in Table I:

1) Model training for lane-level traffic state prediction. The
linear regression model (i.e., matrix A and vector �u) for
state prediction can be trained (even offline) by real-
world traffic data and can be differentiated by various
traffic conditions or Level of Service (LOS) defined in
Highway Capacity Manual [53]. In the following simu-
lation study, we trained different models for LOS C (free
flow), LOS D (transitional flows) and LOS E (unstable
flows), respectively, to cover three representative levels
of congestion.

2) Online guidance of optimal lane for the next time steps.
With the most updated prediction of lane-level traffic
state downstream, the optimization problem is solved to
determine the best lane for the target vehicle (following
the steps described in (8) through (12)). A table of
the lane index sequence for every road segment is
generated/updated online for the application-equipped
vehicles. For online implementation, a rolling horizon
technique [54] is applied where the optimization prob-
lem is solved within every N-min information update
cycle, based on the updated prediction of downstream
traffic states (at the lane level).

IV. SIMULATION SETUP

To validate the proposed application, we conduct a compre-
hensive simulation study as described below.
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Fig. 5. Road network of the California SR-91E in real-world and
PARAMICS.

A. Simulation Network Model

The simulation network is California’s SR-91(eastbound),
consisting of a 15-mile corridor located between the Orange
County Line and Tyler Street in Riverside (see Fig. 5).
The number of lanes varies from 4 to 6, and there are ten
on/off-ramp pairs. The traffic demand (25,000 vehicles
released in the network, stable traffic flow) and driving
behavior have been well calibrated against a typical weekday
morning in the summer of Year 2006 based on historical traffic
data from California Freeway Performance System (PeMS)
to represent the network’s real-world conditions [55]. In this
study, we use PARAMICS (PARAllel MICroscopic Simu-
lator), a microscopic traffic simulation tool that is capable
of modeling the movement and behavior of each individual
vehicle on road networks, to generate detailed traffic data
(i.e., to simulate as in a connected environment) for system
performance evaluation.

B. Implementation Details

Traffic state prediction model’s inputs were generated from
the simulation network. Those raw data were post processed
by aggregating and averaging for different road segments and
lanes at different time horizons which were afterwards trained
using the regression model (“fitlm” function) with ordinary
least squares in MATLAB.

The optimization process is implemented online through
the application programming interface (API) in PARAMICS
microscopic traffic simulation tool using C++ language. In the
PARAMICS API, the obtained prediction model coefficients
are applied to real-time collected data to acquire traffic state
prediction results. After the prediction was made, recursion
method of dynamic programming algorithm is used to obtain
the optimal solution (i.e., the lane index sequence for the cur-
rent road segment the vehicle was traveling on and every road
segment downstream). Within the N-min duration, the target
lane index is assigned to the application-equipped vehicle
based on its optimal lane index sequence.

C. Simulation Scenarios

To test the lane selection assistance application, we divided
the road stretch into about fifteen 1-mile road segments and
chose a specified traffic information update cycle. The simu-
lation period is from 6:00 AM to 9:00 AM with a 15-minute
warm-up period. From 6:16 AM to 7:51 AM (to guarantee
the last target vehicle can complete its trip by the end of
simulation) with 5- minute intervals (called a case), there are
20 cases corresponding to 20 departure time intervals for each
simulation run. At the start of each case (the first ten seconds),
a few application-equipped vehicles (usually 4-6, i.e., a case)
with the same Origin-Destination (OD) are randomly selected
into the network for further effectiveness evaluation purpose.
All the selected vehicles are released from the left end of
the mainline and traveled to the right end of the mainline.
In addition, since the number of lanes along the mainline
ranges from 4 to 6, the lanes of interest herein only consist of
the four left-most lanes (as conceptually illustrated in Fig. 3).
The traffic direction is from left to right.

As mentioned above, 4-6 application-equipped vehicles in
each case are released into the network at certain frequency
(i.e., every 5 minutes) to evaluate the effectiveness of the
proposed lane selection assistance application. Moreover, com-
prehensive sensitivity tests are conducted over the following
system parameters:

• Congestion level. With a major focus on the traf-
fic pattern, three networked traffic volumes that
represent free flow, medium and heavy traffic are
evaluated: 16,000 vehicles/simulation run, 25,000 vehi-
cles/simulation run and 32,000 vehicles/simulation run.
An analysis on average traffic speed indicates that these
three levels of traffic demand correspond to LOS C (free
flow), LOS D (transition flows) and LOS E (unstable
flows), respectively, according to the Highway Capacity
Manual (HCM) 2010 53]. For LOS C, LOS D (calibrated)
and LOS E cases, results of 100% penetration rate of
communication-capable vehicles are investigated for the
sensitivity analysis on congestion level.

• Penetration rate of communication-capable vehicles. Ten
levels of penetration rate of communication-capable vehi-
cles are studied in this paper, including 0.01%, 1%,
2%, 5%, 10%, 20%, 40%, 60%, 80% and 100% in the
penetration rate sensitivity analysis.

• Information update cycle. As aforementioned, N-min
is a specific traffic information update cycle for the
target vehicles, during which time real-time information
is collected. The traffic predict results are updated every
N-min and the optimal lane sequence is overwritten at
the same time. A set of {1 min, 2 min, 3 min, 4 min,
5 min} is selected for the information update cycle
sensitivity test in order to observe its impacts on travel
time improvement. The information update cycle is also
related to the penetration rate of communication-capable
vehicles. The information update cycle may be shorter
due to more sufficiently available data.

Under these simulation scenarios, a baseline case for each
scenario is defined as the case where the vehicles make lane
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changes as normal without any assistance. We use PARAMICS
default lane change model. The vehicles of the baseline would
consider to change to another lane when it needs to overtake
a slow vehicle in front, taking into consideration its accepted
gap at the same time. For more detailed information, please
refer to [56]. On the other hand, the application-equipped
vehicles would follow the lane selection guidance and make
lane changes to the target lane smoothly in the simulation
environment. As soon as the target lane was assigned, the opti-
mal lane selection application-equipped vehicles would follow
the recommendation of the target lane number and make lane
changes as quickly as it can to get into its lane range but in a
safe manner.

We conduct simulations with ten random seed num-
bers, generating 800-1200 (i.e., 10 seeds∗20 departure time∗
(4-6 vehicles/departure time)) vehicle samples for each sce-
nario and the corresponding baseline respectively. For every
scenario, we compare the application-equipped vehicles with
the same amount of non-application-equipped vehicles under
the same environment (i.e., similar departure time, same OD
and same traffic status). Moreover, for the same seed, the traf-
fic status for both application-equipped vehicles and the corre-
sponding baseline vehicles at the same departure time should
be the same. “Travel time baseline” is calculated by averaging
those baseline vehicles with the same departure time across ten
seeds, and the average travel time of the application-equipped
vehicles of ten seed of each departure time was compared with
the corresponding “Travel time baseline”. The performance
of ST-model based traffic state prediction is evaluated in the
simulation as well.

V. SIMULATION ANALYSIS

A. An Example of the Individual Vehicle

To give a general idea of how the proposed algorithm works,
an example of the driving is analyzed in detail. Fig. 6 displays
the driving features of one application-equipped vehicle (green
solid line on the left) and the corresponding baseline vehicle
(blue dashed lines on the right), respectively. Both vehicles
start from the same lane with similar speeds and departure
time (the departure time difference is within 10 seconds), and
are assumed to get encountered the same traffic state. The time
at each black vertical dashed line (except those at the end of
the trip) is the time when a lane-changing maneuver happens.
The individual vehicles are traveling under the relatively heavy
traffic scenario (32000 vehicles/simulation run).

In the example of Fig. 6, the example vehicles are released
at departure time 1 in the heavy traffic scenario. Fig. 6(a)
shows that for the same distance, the vehicle equipped with the
proposed application spends less travel time than the baseline
vehicle whose driver changes lane without lane selection
guidance. In Fig. 6(b), we can observe that the overall velocity
of the application-equipped vehicle is higher than that of the
baseline vehicle. After the guidance starts, the application-
equipped vehicle is assigned to target lane 6 (see Fig. 6(c)).
Please note that the target vehicle might cross several lanes at
its current road segment to change to the target lane after the
prediction results are updated.

Fig. 6. An example of the application-equipped vehicle (left) and the
corresponding baseline (right). (a) Trajectory. (b) Velocity. (c) Lane index.

In combination with Fig. 6(c), the lane changes of the base-
line vehicle are more event-based operations, i.e., changing to
an adjacent left lane to pursue a faster speed. On the other
hand, we observe that, by taking full advantage of the long-
range information, the proposed application would help the
driver ahead of time make a better decision (in terms of lane
index sequence) to obtain mobility benefits. Please note that
non-adjacent lane changes might still happen at the beginning
of the vehicle’s trip or when the solution updates at each N-
min, such as the lane changing behavior from lane 3 to the
target lane 6 at the beginning of the vehicle’s trip in Fig. 6(c).

B. Statistical Analysis of the Application Performance

In order to comprehensively test the robustness of the pro-
posed lane selection assistance application, simulation results
were obtained statistically as well.

1) Measures of Effectiveness (MOEs): To assess the mobil-
ity benefits of the lane selection assistance application, two
types of performance measures were selected for statistical
analysis as follows:

a) Forecast accuracy: Mean Absolute Percentage
Error (MAPE) was used to measure the forecast errors from
each trip of target vehicle:

M AP E = 1

n

∑n

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣ × 100% (13)

where At is the actual value, Ft is the prediction value,
and n is the total number of all samples involved in the
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MAPE calculation. This MOE is used to evaluate the traffic
average speed prediction accuracy for all the cases. In addition,
due to the fact that these MOEs are less influenced by low
average speed, we also use Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) to evaluate the ST-model
forecast accuracy under specific scenarios (e.g., the heavy
traffic scenarios).

MAE = 1

n

∑n

t=1
|At − Ft | (14)

RMSE =
√

1

n

∑n

t=1
(At − Ft )

2 (15)

b) Performance of application-equipped vehicles: Rela-
tive Travel Time Difference (RTTD) is used to evaluate travel
time difference between ST-model based scheme and baseline,
i.e.,

RTTDi = t i
ST − t i

B

t i
B

× 100% (16)

where RTTDi is the relative travel time difference between
ST-model based scheme and baseline at i -th departure time.
t i
ST is the mean travel time of 40-60 target vehicles at i -th

departure time (as mentioned in Section IV.C), and t i
B is

the mean travel time of the corresponding baseline case
at i -th departure time (same amount of vehicles with the
application-equipped vehicles). This MOE shows mobility
benefits in terms of individual travel time for the application-
equipped vehicles portion (target vehicles) over the baseline
(no-application). Again, to show the statistical significance,
we ran simulation runs with ten random seeds, generating 800-
1200 (i.e., 10 seeds∗20 departure time∗ (4-6 vehicles/departure
time)) vehicle samples for each scenario and the corresponding
baseline, respectively.

In addition to RTTD, normalized conflict frequency is cal-
culated for each individual vehicle based on the conflict occur-
rence results obtained from the Surrogate Safety Assessment
Model (SSAM) [57], which is defined as potential conflict
when the minimum time to collision drops below a predefined
threshold (i.e., 3 seconds).

C F =
∑n

i=1 cni

n
(17)

where cni is the number of conflicts caused by vehicle i ; n
is the total number of vehicles. It is noted that in this study
each conflict is only associated with the second vehicle (i.e.,
the one occupying the conflict area at a later instant) which is
assumed to be responsible for the potential conflict.

2) Sensitivity Analysis: As aforementioned, sensitivity
analysis is conducted on three parameters: congestion level,
penetration rate of on-road communication-capable vehicles
and N-min information update cycle. We use ten random
number seeds for simulation. The test results are shown in
boxplots, each of which contains 20 cases (i.e., 20 departure
times) and there were 4-6 vehicles released for each case,
thus one seed generating 80-120 vehicle samples for this
scenario (ten seeds generating 800-1200 vehicle samples in
total). The sample value of each departure time is the mean
value calculated from 40-60 sample vehicles of the same case

Fig. 7. Measures of effectiveness for different congestion levels. (a) Mean
absolute percentage error. (b) Relative travel time difference.

with similar departure time and the same origin/destination,
so is the baseline case. Therefore, for one scenario, the results
were collected and compared between 800-1200 application-
equipped vehicles, and 800-1200 vehicles of the corresponding
baseline.

a) Sensitivity analysis on congestion level: Fig. 7 illus-
trates the results for three different traffic demands when the
penetration rate of communication-capable vehicles was 100%
at 1-min information update cycle. Every 1-min prediction
cycle for each application-equipped vehicle has one MAPE
value. Each MAPE value is calculated based on a comparison
between the forecast and actual traffic state value of each
cell across the four lanes of interest and 15 road segments.
The final MAPE value for one application-equipped vehicle
is calculated out by averaging all the MAPE values from
multiple prediction cycles during its whole trip. We then
average the MAPE values of application-equipped vehicles
of each departure time, and draw the MAPE boxplot using
20 departure times’ MAPE samples (each sample is the
mean value of 40-60 target vehicles). It’s worthy to mention
that only from departure 1 to departure 10 cases are shown
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Fig. 8. Relative travel time difference with and without the lane change lock.

TABLE II

THE RECOMMENDED NUMBER AND THE ACTUAL LANE
CHANGING NUMBER OF APPLICATION-EQUIPPED VEHICLES

(1200 APPLICATION-EQUIPPED VEHICLE SAMPLES,
1-MIN INFO UPDATE CYCLE, 100% PENETRATION

RATE OF COMMUNICATION-CAPABLE VEHICLES,
32,000 VEHICLES PER RUN)

in Fig. 7 and Fig. 8. Since there exists too much bump-to-bump
status (traffic breakdowns) after departure 10 in the heavy
traffic scenario, the proposed prediction method generates
large MAPE, so in Fig. 7 and Fig. 8 we do not include those
vehicles which are beyond departure 10.

Fig. 7(a) displays the average speed prediction accuracy in
terms of MAPE for three congestion levels (across 20 dif-
ferent departure time cases), which ranges from 1%-2% (for
LOS C and LOS D). Assume the highest speed is 70 mph
in the 25,000 veh/run case, the prediction error is less than
2 mph on average when traffic is stable and moderate, which
could provide good prediction for the lane selection assistance
application.

From Fig. 7(b), we observe the travel time improvement of
the target vehicles is 5%-7% (median) compared with baseline
under free flow and moderate traffic condition, whereas the
travel time improvement is less (the median is around 2%) in
the heavy traffic scenario.

In order to mimic the real-world lane change behavior,
a three-second lock between two consecutive lane-changing
operations for the application-equipped vehicles was set up to
prevent too frequent/abrupt lane change. Moreover, we observe
that the actual lane change number is less than the lane change
recommendation number (see Table II) due to the limited time
and space for performing lane changes, which could be the
major reason for the less mobility improvement under the
heavy traffic scenario.

TABLE III

THE AVERAGE VALUES FOR MAPE, MAE, AND RMSE IN THE
HEAVY TRAFFIC SCENARIOS (100% PENETRATION RATE OF

COMMUNICATION-CAPABLE VEHICLES, 32000 VEHICLES/RUN)

We also tested the relative travel time difference of the
proposed application without the three-second lane change
lock (see Fig.8), and results show that the relative travel time
difference is significantly reduced in the heavy traffic scenario.
The proposed lane selection assistance application is able to
take advantages of the traffic state prediction scheme and be
capable of dynamically guiding the driver for lane selection
and thus can help squeeze the individual travel time, even
under such unstable flows condition.

In addition, the forecast accuracy (MAPE, MAE and
RMSE) of departures 11-20 in the heavy traffic status was
evaluated as well (see Table III), in order to provide a
more comprehensive assessment of the ST-model. Since the
ST-model becomes less effective when there are too many
traffic breakdowns, the prediction accuracy is lower, very
likely leading to no benefits in the travel time improvement
any more.

b) Sensitivity analysis on penetration rate of
communication-capable vehicles: It is worthy to mention
that, when the penetration rate is low, there may be not
sufficient communication-capable vehicles inside a cell.
As aforementioned in Section III.B, we set up a fixed
average speed value for the cell with no communication-
capable vehicles. In this study, the value used in simulation
is 65 mph, which is the speed limit on most California
highways. In the algorithm, once there exists one cell with
no communication-capable vehicles, no target lane would
be assigned to the target vehicles for that road segment.
Moreover, we aim to show effects of a specific application
at the stage of early deployment of connected vehicles
based applications, and only a minority of vehicles were
application-equipped in this paper. Specifically, there are
about 4-6 application-equipped vehicles for each case (each
departure time) for one run, appearing within the vicinity of
each other, where we thus assume these application-equipped
vehicles do not significantly affect each other.

In order to test the application reliability under various
penetration rates, the application performance under different
penetration rate levels of communication-capable vehicles was
tested in the 25,000 veh/run case.

Fig. 9(a) summarizes the MAPE statistics results for ten
levels of penetration rates (each containing 20 different depar-
ture time cases). The MAPE (median) concentrates on below
3% (starting from 20% penetration rate), which means that
the performance of the ST-model is robust to the variation
of high penetration rate of communication-capable vehicles
which shows the application reliability to certain extent.
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TABLE IV

THE AVERAGE VALUES OF MAPE, MAE, AND RMSE OF THE ST-MODEL
AND THE BASIC ESTIMATION MODEL UNDER MODERATE TRAFFIC

(100% PENETRATION RATE OF COMMUNICATION-CAPABLE

VEHICLES, 25,000 VEHICLES PER RUN)

In Fig. 9(b), it can be observed that the travel time (median)
decrease is quite stable as the penetration rate increases (start-
ing from 10%), which can be still more than 5% even when
only 10% vehicles on road could supply their information
for the traffic state prediction. Using the one-way analysis of
variance (ANOVA) as the statistical analysis method, we con-
duct statistical analysis for the last seven group data (i.e., 5%,
10%, 20%, 40%, 60%, 80%, and 100%) of different levels of
penetration rate. The result of a rather big p-value 0.81 (which
is >0.05) indicates that the means between the seven groups
are not statistically significantly different from each other. The
p-value turns out to be small (0.02) when the 2% penetration
rate case is added into the analysis. Therefore, we conclude
that there is no significant difference in travel time improve-
ment, when penetration rate of communication-capable is
higher than 5%, due to relatively sufficient information.

Moreover, to better assess the benefits of the ST-model,
the forecast accuracy (MAPE, MAE and RMSE) of both the
ST-model and basic estimation model (see Equation (5)-(7))
are compared (see Table IV). It can be seen that the accuracy
of the proposed ST-model outperforms the basic estimation
model in every aspect.

c) Sensitivity analysis on information update cycle:
Besides traffic demand and penetration rate, the N-min infor-
mation update cycle may also have impacts on the proposed
application performance. Whereas, what is different with the
other two factors (traffic demand and penetration rate, whose
impacts on the traffic time decrease are relatively pure) is the
information update cycle has more combined impacts.

As displayed in Fig. 10(a), the longer information collection
duration/information update cycle (i.e., the lower informa-
tion update frequency) leads to higher prediction accuracy.
To be specific, the 5-min case has better MAPE than 1-min
case as it aggregates the results of five 1-min error, i.e.,∣∣∣∑N

i=i xi

∣∣∣ /N ≤∑N
i=i |xi | /N , which could clearly explain the

MAPE results in Fig. 10(a).
From Fig. 10(b), we observe less relative travel time

decrease (median) is achieved as the information update
cycle gets longer, even though the corresponding MAPE gets
smaller. Due to the longer information collection process,
the lane change recommendation generated from the proposed
application is less frequent. Simultaneously, due to the lagged
real-time lane change guidance, it can be expected that the
corresponding lane-changing operation number induced by
the proposed application drops as well, leading to weakened
application performance in terms of travel time decrease.

Fig. 9. Measures of effectiveness for different penetration rates of
communication-capable vehicles. (a) Mean absolute percentage error. (b) Rel-
ative travel time difference.

In addition, the 5-min cycle might not be a better “resolu-
tion”. For example, during one 5-min cycle after one prediction
is made, the target vehicle follows the optimal lane sequence
obtained from the previous 5-min prediction results. The
number of prediction generated by the proposed application
can be only 1-2 during the whole trip at the 5-min update
cycle. Actually, the traffic status of lane-level speed change
even at every one minute. On the contrary, 1-min cycle can
provide the target vehicle the more up-to-date information used
for updating the micro-routing. In other words, the chances of
application-equipped vehicles staying at the correct target lane
of the current time, is increased due to the timely information
update.

3) Safety Performance Analysis: Moreover, to evaluate the
safety performance of the proposed application, we analyzed
the risk index in terms of the potential conflict frequency (men-
tioned in Section V.B.1).b)) using SSAM software [57]. The
potential conflict frequency results (there are ten simulation
runs for each result) are summarized in Table V.
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Fig. 10. Measures of effectiveness analysis for different information update
cycle. (a) Mean absolute percentage error. (b) Relative travel time difference.

There are slightly higher lane changes induced by the
proposed application, however, the potential conflict frequency
is lower than the baseline. There are several reasons: 1) The
restriction strategy on extra lane changes within one lane/road
segment prevents the application-equipped vehicles from per-
forming too frequent lane changes; and 2) only adjacent lane
changes are allowed in the proposed application within N-min,
which helps reduce conflict risk as well.

VI. DISCUSSION AND FUTURE WORK

Based on predicted lane-level traffic states enabled by CV
technology, a CV application called Lane Selection Assistance
Application is proposed in this paper. This application can
help drivers choose a relatively faster travel lane at any point
in time. The results can be summarized as: 1) the ST-model
outperforms the basic estimation model in terms of traffic state
prediction accuracy; 2) for all the scenarios simulated in this
study, the lane selection assistance application does help the
application-equipped driver reduce travel time, compared with
the baseline case (i.e., normal driving without any assistance);
3) results of traffic volume sensitivity analysis indicate that the

TABLE V

THE MEAN ACTUAL LANE CHANGE NUMBER AND POTENTIAL CONFLICT
FREQUENCY FOR THE PROPOSED APPLICATION (100% PENETRATION

RATE OF COMMUNICATION-CAPABLE VEHICLES,
25,000 VEHICLES PER RUN) AND THE

CORRESPONDING BASELINE

proposed application can provide travel time benefits under
various congestion levels. Travel time improvements can be
observed even under heavy traffic condition (i.e., LOS E
(unstable flow), or 32,000 vehicles/run); 4) the proposed appli-
cation performs robustly and can be effective even in an early
deployment of CV technology with relatively low penetration;
5) different information update cycles have combined impacts
on the travel time improvements. Higher travel time improve-
ments can be achieved if the real-time state information of on-
road vehicles is updated more frequently; and 6) the potential
conflict risk of application-equipped vehicles is reduced as
well, due to the more strategic and informed lane changes
suggested by the proposed application.

Furthermore, it should be noted that more advanced models
can be explored in the future to better predict the lane-level
traffic states. Adding the Markov chain theory and the Adap-
tive Smoothing Method [58] to the proposed model is another
interesting future work. In addition, further tests on the impacts
of key spatial-temporal related parameters remain as future
research topics. Moreover, since this application can help
vehicles in the traffic stream obtain mobility benefits in terms
of travel time reduction, unintended issues (e.g., oscillations in
lane changes) might happen if a significant number of vehicles
use this application independently and simultaneously. This
will lead to the necessity of considering a priority strategy,
arbitration mechanism, or optimization methods of vehicle
groups in future work. Furthermore, to test the effectiveness in
a more comprehensive way, it is also necessary to consider a
more realistic driver behavior model, e.g., based on real-world
human drivers’ experience about which lane and when to
change lanes to achieve a higher speed [59]. In addition,
as a step towards the potential real-world test, one way is
the “hardware-in-the-loop” where one or two real vehicles
represent the model in the simulation and interact with other
vehicles in the microscopic simulation.
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