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Chemotaxis of Pseudomonas putida F1 to Alcohols Is Mediated
by the Carboxylic Acid Receptor McfP

Xiangsheng Zhang,a,b Jonathan G. Hughes,a Gabriel A. Subuyuj,a Jayna L. Ditty,c Rebecca E. Paralesa

aDepartment of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
bJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, China
cDepartment of Biology, College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota, USA

ABSTRACT Although alcohols are toxic to many microorganisms, they are good
carbon and energy sources for some bacteria, including many pseudomonads. How-
ever, most studies that have examined chemosensory responses to alcohols have re-
ported that alcohols are sensed as repellents, which is consistent with their toxic
properties. In this study, we examined the chemotaxis of Pseudomonas putida strain
F1 to n-alcohols with chain lengths of 1 to 12 carbons. P. putida F1 was attracted to
all n-alcohols that served as growth substrates (C2 to C12) for the strain, and the re-
sponses were induced when cells were grown in the presence of alcohols. By assay-
ing mutant strains lacking single or multiple methyl-accepting chemotaxis proteins,
the receptor mediating the response to C2 to C12 alcohols was identified as McfP,
the ortholog of the P. putida strain KT2440 receptor for C2 and C3 carboxylic acids.
Besides being a requirement for the response to n-alcohols, McfP was required for
the response of P. putida F1 to pyruvate, L-lactate, acetate, and propionate, which
are detected by the KT2440 receptor, and the medium- and long-chain carboxylic
acids hexanoic acid and dodecanoic acid. �-Galactosidase assays of P. putida F1 car-
rying an mcfP-lacZ transcriptional fusion showed that the mcfP gene is not induced
in response to alcohols. Together, our results are consistent with the idea that the
carboxylic acids generated from the oxidation of alcohols are the actual attractants
sensed by McfP in P. putida F1, rather than the alcohols themselves.

IMPORTANCE Alcohols, released as fermentation products and produced as inter-
mediates in the catabolism of many organic compounds, including hydrocarbons
and fatty acids, are common components of the microbial food web in soil and sed-
iments. Although they serve as good carbon and energy sources for many soil bac-
teria, alcohols have primarily been reported to be repellents rather than attractants
for motile bacteria. Little is known about how alcohols are sensed by microbes in
the environment. We report here that catabolizable n-alcohols with linear chains of
up to 12 carbons serve as attractants for the soil bacterium Pseudomonas putida,
and rather than being detected directly, alcohols appear to be catabolized to ace-
tate, which is then sensed by a specific cell-surface chemoreceptor protein.

KEYWORDS Pseudomonas, alcohol, butanol, catabolism, chemoreceptor, chemotaxis,
ethanol, methyl-accepting chemotaxis protein, propanol

Pseudomonads are ubiquitous members of soil and water microbial communities
and are known for their ability to catabolize a wide range of organic substrates (1).

Most Pseudomonas putida and Pseudomonas aeruginosa isolates screened in the classic
taxonomic study by Stanier et al. were found to be capable of utilizing short-chain
n-alcohols, including ethanol, propanol, and butanol, as sources of carbon and energy
(2). The metabolism of ethanol has been examined in detail in Pseudomonas aeruginosa,
and the enzymes required have been identified and characterized (3–5). Alcohols
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utilized by Pseudomonas spp. also include longer-chain n-alcohols, as well as secondary
alcohols and polyols (6, 7), and genes encoding the oxidation of long-chain alcohols/
aldehydes were recently identified in P. aeruginosa (8).

In addition to their catabolic diversity, members of the genus Pseudomonas are
known to use chemotaxis to sense concentration gradients of a large number of
organic chemicals (9, 10). A conserved set of cytoplasmic chemotaxis proteins (CheA,
CheY, CheW, CheR, and CheB), together with �20 membrane-spanning methyl-
accepting chemotaxis proteins (MCPs), mediate responses to a wide range of organic
and inorganic attractants in pseudomonads (9, 10). For example, known attractants for
Pseudomonas putida strains include various amino acids, organic acids (11, 12), purines
and pyrimidines (13, 14), polyamines (15), aromatic acids (16–18), and aromatic hydro-
carbons (19–21). However, to our knowledge, chemotaxis to alcohols by Pseudomonas
spp. has not been examined, and with the exception of the demonstration of che-
moattraction to phenol by Escherichia coli (22), alcohols have generally been shown to
be repellents for motile bacteria. For example, various alcohols, including straight-chain
alcohols with up to four carbons, are repellents for E. coli (23, 24), and Young and
Mitchell showed that ethanol elicited a negative chemotaxis response by a marine
pseudomonad (25). Similarly, ethanol and butanol were repellents for Borrelia burgdor-
feri (26), and repellent responses of Ralstonia pseudosolanacearum strain Ps29 to a
variety of alcohols were demonstrated (27).

In this study, chemotaxis assays were used to examine the responses of P. putida
strain F1 to n-alcohols with 1 to 12 carbons, and positive responses were seen with all
n-alcohols that served as growth substrates. The receptor for alcohol chemotaxis was
identified by testing chemotaxis to ethanol by mutant strains lacking single or multiple
MCP genes. Our results suggest that, rather than the alcohols themselves, carboxylic
acids generated from the oxidation of alcohols are the actual attractants sensed by P.
putida F1.

RESULTS
P. putida F1 is attracted to metabolizable short-chain n-alcohols, and the

chemotactic response is inducible. P. putida strain F1 efficiently utilized ethanol,
1-propanol, and 1-butanol in minimal medium (MSB [2]), with doubling times of
approximately 1.5 h in aerobic batch culture, but was unable to grow on methanol or
2-propanol (data not shown). A strong and rapid chemotactic response to ethanol was
observed in qualitative capillary assays using strain F1 cells grown in the presence of
ethanol (Fig. 1). Chemical-in-plug assays were carried out to test the response of P.
putida F1 to a variety of alcohols and whether the responses required induction. Cells
were pregrown with 20 mM pyruvate (uninduced) or 10 mM pyruvate and 2.5 mM
methanol, ethanol, 1-propanol, 2-propanol, or 1-butanol (induced). All cultures showed
strong positive responses to 10 mM succinate (positive control), as shown by the
accumulation of a ring of cells around the attractant-containing agar plug (Fig. 2A,
white arrows). In contrast, no response was observed to the negative control (che-
motaxis buffer, not shown). Only cultures pregrown in the presence of alcohols
responded to alcohols as attractants (Fig. 2A), indicating that the response to alcohols
is inducible. Some of the responses, particularly those of methanol- and 2-propanol-

FIG 1 Time course of the response of P. putida strain F1 to ethanol in a qualitative capillary assay.
Wild-type P. putida F1 was pregrown in MSB containing 10 mM pyruvate plus 2.5 mM ethanol. The
response to 10 mM ethanol diffusing from a 1-�l capillary was photographed over 5 min; the accumu-
lation of cells at the mouth of the capillary appears as a white cloud in darkfield microscopy. No response
was seen to chemotaxis buffer (negative control; not shown).
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induced cells and those to 1-butanol, were quite weak and not consistently observed.
Therefore, to confirm the results of the plug assays, qualitative capillary assays were
carried out. All cultures showed strong responses to 2% Casamino Acids (CAA; positive
control), as shown by the accumulation of cells at the capillary tips (Fig. 2B). Again, only

FIG 2 Induction of the P. putida F1 chemotaxis response to alcohols in chemical-in-plug assays and qualitative capillary assays.
Wild-type P. putida F1 was pregrown in MSB containing 20 mM pyruvate (None) or 10 mM pyruvate plus 2.5 mM alcohol (methanol,
ethanol, 1-propanol, 2-propanol, or 1-butanol as indicated). (A) Chemical-in-plug assays. Cells are suspended in soft agar, which
surrounds the white central agar plug containing the attractant. Responses to 10 mM succinate (positive control) and 5 mM ethanol,
1-propanol, and 1-butanol after incubation for 1 h at room temperature are shown. Rings of cells accumulating around the plugs at
the optimal concentration of attractant are indicated by white arrows. (B) Qualitative capillary assays. Responses to 2% Casamino Acids
(CAA; positive control) and 10 mM ethanol, 1-propanol, and 1-butanol (or in some cases 5 mM, as indicated by white asterisks) are
shown. Photographs were taken after 5 min. No responses were seen to chemotaxis buffer (negative control), or to 10 mM methanol
or 10 mM 2-propanol (not shown).
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cultures that had been pregrown in the presence of alcohols showed responses to
alcohols (Fig. 2B). It should be noted that methanol and 2-propanol, which are not
metabolized by P. putida F1, were capable of inducing weak chemotactic responses to
metabolizable alcohols (Fig. 2). However, P. putida F1 did not respond to methanol or
2-propanol (10 mM) under any of the conditions tested (data not shown).

CheA is required for signal transduction in response to alcohols. To determine
whether alcohols are sensed through the conventional two-component chemotaxis
signal transduction pathway, the response of a cheA mutant was tested. CheA is a
histidine kinase that phosphorylates CheY, a response regulator, which in its phosphor-
ylated state interacts with the flagellar motor to control the direction of flagellar
rotation in response to stimuli (28). As shown by the results in Fig. 3A, a P. putida F1
cheA mutant (13) did not respond to either succinate (positive control) or ethanol in soft
agar swim plate assays. In contrast, the wild-type strain formed a large chemotactic ring
on both substrates, indicating that the chemotaxis response to ethanol is mediated
through the standard two-component chemotaxis signal transduction pathway.

Attraction to alcohols is not mediated by energy taxis receptors. To test
whether the response to alcohols is mediated by energy taxis, the responses of

FIG 3 Role of CheA and energy taxis in the response to alcohols. (A) Soft agar swim plate assays to
examine the role of CheA in the chemotactic response to ethanol. Wild-type P. putida F1 and mutant F1
cheA::Km were inoculated into MSB soft agar plates containing 5 mM succinate (positive control;
photograph taken after 16 h of incubation at 30°C) and 5 mM ethanol (photograph taken after 24 h of
incubation at 30°C). (B) Representative responses of P. putida F1, XLF016 (Δaer1), and XLF019 (Δaer2) to
propanol in the gradient plate assay. Strains were inoculated at equivalent distances from the central
plug containing 5 mM propanol. The photograph was taken after 24 h.
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wild-type strain F1, strain XLF019 (Δaer2), and strain XLF016 (Δaer1) were compared in
gradient plate assays. Aer1 is a homolog of the energy taxis receptor Aer2 in P. putida
F1 (17), and although Aer1 has not been demonstrated to play a role in energy taxis in
P. putida F1, Aer1 has been reported to mediate energy taxis in P. putida strain PRS2000
(29). Similarly to the wild type, the Δaer1 and Δaer2 mutants responded to ethanol,
1-propanol, and 1-butanol in gradient plate assays. A representative example of the
response to 1-propanol is shown in Fig. 3B, and the response index (RI) and standard
deviation were calculated for three replicate plates. Values were 0.55 � 0.02 (mean �

standard deviation), 0.53 � 0.02, and 0.57 � 0.01 for strains F1, XLF016, and XLF019,
respectively; RI values greater than 0.52 are considered to indicate a positive response
(22). Similar responses were seen with 10 mM ethanol and 5 mM 1-butanol (RI values for
ethanol were 0.53 � 0.02, 0.54 � 0.02, and 0.55 � 0.01 for strains F1, XLF016, and
XLF019, respectively, and RI values for 1-butanol were 0.55 � 0.01, 0.54 � 0.01, and
0.55 � 0.01 for strains F1, XLF016, and XLF019, respectively). No responses were seen to
chemotaxis buffer (negative control; all RI values were �0.52). Positive responses of
strains F1, XLF016, and XLF019 to all three alcohols were also seen with chemical-in-
plug assays (data not shown). These results indicate that the response to alcohols is not
mediated by an energy taxis receptor in P. putida F1.

The receptor for chemotaxis to alcohols is McfP (Pput_2828). To identify the
chemoreceptor for alcohols, mutant strains with various receptor gene deletions were
screened for the ability to respond to ethanol. We have been working toward gener-
ating a “gutted” strain lacking all 27 of the putative MCP and MCP-like genes in P. putida
F1 and currently have a mutant lacking 11 of the 21 genes encoding canonical MCPs
(those with two transmembrane domains flanking a periplasmic ligand binding domain
and a cytoplasmic signaling domain). Strain RPF018 (F1Δ11) lacks genes encoding the
tricarboxylic acid (TCA) cycle receptors McfS, McfR, and McfQ (12), the amino acid
receptors McfA (Pput_3489) (30) and McfG (Pput_4352) (31), the aromatic acid receptor
PcaY (16), and the nicotinic acid/cytosine receptor McpC (13, 18). In addition, four genes
encoding receptors of unknown function were also deleted in this strain (locus tags
Pput_0342, Pput_3459, Pput_4234, and Pput_4764). As expected, this strain responded
only weakly to Casamino Acids, since two of the known amino acid receptors are absent
(Fig. 4A). However, the F1Δ11 mutant did respond to propionate (Fig. 4A), demonstrat-
ing that the strain is motile and retains the ability to carry out chemotaxis. The
ethanol-induced mutant (F1Δ11) retained the ability to respond to ethanol (Fig. 4A),
which allowed us to eliminate 11 MCPs as the primary chemoreceptor for ethanol.

Next, we individually tested the responses of the remaining mutants with single
MCP gene deletions and found that all mutants except strain XLF014 (54), which lacks
McfP (locus tag Pput_2828), responded to ethanol (Fig. 4B). The MCP encoded by McfP
is the ortholog of the P. putida strain KT2440 receptor McpP, which has been shown to
mediate chemotaxis to C2 and C3 carboxylic acids, including acetate, pyruvate, L-lactate,
and propionate (32). We recently confirmed that McfP is one of several chemoreceptors
that mediate chemotaxis to propionate in P. putida F1 (54). Here, we verified the role
of McfP in detecting C2 and C3 carboxylic acids in P. putida F1 using qualitative capillary
assays (Fig. 5A). Similar responses were seen regardless of whether cells were pregrown
in the presence of pyruvate, acetate, or succinate, suggesting that the response is not
inducible. In addition, we compared the responses of strain XLF014(pRK415Km) and the
complemented strain XLF014(pGCF114) to 10 mM acetate, pyruvate, L-lactate, and
propionate (Fig. 5B). As expected, McfP was required for chemotaxis to all four
short-chain carboxylic acids.

To confirm that McfP is required for chemotaxis to ethanol, 1-propanol, and 1-butanol,
we examined the responses of strains F1(pRK415Km) and XLF014(pRK415Km) and the
complemented strain XLF014(pGCF114) after growth in the presence (induced) and
absence (uninduced) of ethanol. The mutant lacking mcfP did not respond to any of the
alcohols under either condition, but the response was restored when mcfP was
provided in trans (Fig. 6). The responses of the complemented strain were stronger,
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most likely because the mcfP gene was carried on a multicopy plasmid, and induction
was unnecessary since the mcfP gene was expressed from the constitutive plasmid
promoter. Similar results were obtained when cultures were induced with 1-propanol
or 1-butanol (data not shown).

P. putida F1 responds to n-alcohols with up to 12 carbons and the responses
require McfP. To examine the range of n-alcohols sensed by P. putida F1, we tested
growth and chemotaxis with n-alcohols with up to 12 carbons. P. putida F1 was capable
of using pentanol, hexanol, heptanol, octanol, decanol, and dodecanol as sole carbon
and energy sources (data not shown). Qualitative capillary assays with P. putida F1, the
mcfP mutant, and the complemented strain showed that, unlike the mcfP mutant, the
induced wild type and the complemented mutant were attracted to each alcohol
(Fig. 7). These findings demonstrate that McfP also mediates chemotaxis to long-chain
n-alcohols.

FIG 4 Screening P. putida F1 mutants for the ethanol chemoreceptor. (A) Response of a P. putida F1 mutant lacking
11 MCP genes (F1Δ11) to ethanol. Wild-type P. putida F1 and F1Δ11 were pregrown in MSB containing 10 mM
pyruvate plus 2.5 mM ethanol (induced). Responses to 2% Casamino Acids (CAA), 10 mM propionate, and 10 mM
ethanol are shown. Strain F1Δ11 lacks 11 MCP genes (Table 1), including two for amino acids (Pput_3489 and
Pput_4352), so only a very weak response to CAA was seen. However, strain F1Δ11 retains the propionate
chemoreceptor gene (Pput_2828; mcfP), so propionate was used as the positive control. (B) Responses of P. putida
F1 mutants lacking single MCP genes. The box indicates the mutant that was unable to respond to ethanol. Mutant
strains were pregrown in MSB containing 10 mM pyruvate plus 2.5 mM ethanol (induced). Responses to 2%
Casamino Acids (CAA; positive control) and 10 mM ethanol are shown. Photographs were taken after 5 min.
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Expression of mcfP is not induced in the presence of alcohols in P. putida F1.
Although our results clearly show that alcohol chemotaxis requires McfP, they do not
demonstrate whether alcohols are directly detected by McfP. Based on our findings that
responses to L-lactate, propionate, and acetate do not require induction, whereas
chemotaxis to n-alcohols requires induction in the presence of alcohols, we hypothe-
sized that induction was necessary to allow the expression of genes for alcohol
oxidation rather than for the chemotactic response. To rule out the possibility that the

FIG 5 Chemotactic responses of wild-type P. putida F1 and the mcfP mutant to C2 and C3 carboxylic acids. (A)
Responses of P. putida F1 to C2 and C3 carboxylic acids in qualitative capillary assays after growth in MSB containing
5 mM succinate plus 2.5 mM indicated carboxylic acid as a potential inducer of the chemotaxis response. (B)
Responses of uninduced mcfP mutant and the complemented mutant to C2 and C3 carboxylic acids in qualitative
capillary assays. Mutant strain XLF014(pRK415Km) lacking the receptor encoded by mcfP (ΔmcfP) and the com-
plemented strain XLF014(pGCF114) (ΔmcfP � mcfP) were pregrown in MSB containing 20 mM pyruvate and
50 �g/ml kanamycin. Responses to 2% Casamino Acids (CAA; positive control) and 10 mM acetate, L-lactate,
pyruvate, and propionate are shown as indicated. Photographs were taken after 5 min. No responses were seen to
chemotaxis buffer (negative control; not shown).

FIG 6 Responses of uninduced and ethanol-induced wild-type P. putida F1, the mutant strain lacking mcfP, and the
complemented mutant to alcohols in qualitative capillary assays. F1(pRK415Km) (wild type), mutant XLF014(pRK415Km),
(ΔmcfP), and the complemented strain XLF014(pGCF114) (ΔmcfP � mcfP) were pregrown in MSB containing 20 mM
pyruvate (Uninduced) or 10 mM pyruvate plus 2.5 mM ethanol (Induced). Kanamycin (50 �g/ml) was included in all
cultures. Responses to 2% Casamino Acids (CAA; positive control) and 10 mM ethanol, 1-propanol, and 1-butanol
are shown. Photographs were taken after 5 min. No responses were seen to chemotaxis buffer (negative control;
not shown).

Chemotaxis to Alcohols by Pseudomonas putida Applied and Environmental Microbiology

November 2019 Volume 85 Issue 22 e01625-19 aem.asm.org 7

https://aem.asm.org


mcfP gene is induced in response to the presence of alcohols, we constructed an
mcfP-lacZ transcriptional fusion in the plasmid pHRP309. P. putida F1 carrying the
cloned mcfP-lacZ fusion was grown in MSB containing 20 mM pyruvate (uninduced) or
10 mM pyruvate plus 2.5 or 10 mM ethanol (induced). A significant change in the level
of �-galactosidase activity in Miller units (uninduced, 191 � 40) in response to 2.5 or
10 mM ethanol (111 � 54 and 228 � 22, respectively) was not detected, indicating that
the expression of mcfP is not altered in the presence of ethanol.

If the response to alcohols is actually mediated via McfP binding to carboxylic acids
produced during alcohol catabolism, P. putida F1 should grow on and be attracted to
medium- and long-chain fatty acids. We showed that P. putida F1 could grow in MSB
containing hexanoic acid (C6) and dodecanoic acid (lauric acid; C12) (data not shown),
and chemotaxis to these compounds was tested. Induced cultures showed clear
responses, and McfP was required for the response to both compounds (Fig. 8).

DISCUSSION

To date, most studies have reported that alcohols are sensed as repellents by
bacteria and few receptors for alcohols have been identified (23–27, 33). In E. coli, Tar
mediates chemoattraction to phenol, whereas Tsr, Trg, and Tap mediate repellent

FIG 7 Responses of uninduced and induced P. putida wild type, ΔmcfP mutant, and the complemented
mutant to longer-chain (C5, C6, C7, C8, C10, and C12) n-alcohols in qualitative capillary assays.
F1(pRK415Km) (wild type), mutant XLF014(pRK415Km), lacking the receptor encoded by mcfP (ΔmcfP),
and the complemented strain XLF014(pGCF114) (ΔmcfP � mcfP) were pregrown in MSB containing
20 mM pyruvate (Uninduced) or 10 mM pyruvate plus 2.5 mM alcohol (Induced; in each case, the same
alcohol being tested as the attractant was used as the inducer). Kanamycin (50 �g/ml) was included in
all cultures. Responses to 2% Casamino Acids (CAA; positive control) and 5 mM alcohol are shown. All of
the induced cultures responded to CAA; only those induced by 1-pentanol are shown. Photographs were
taken after 5 min. No responses were seen to chemotaxis buffer (negative control; not shown).
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responses to the same chemical (33, 34). Detailed analyses involving site-directed and
random mutagenesis, as well as hybrid Tar-Tsr proteins, have indicated that phenol is
likely sensed by diffusing into the cytoplasmic membrane and perturbing the trans-
membrane domains of MCPs rather than via direct binding to the periplasmic ligand
binding domain (22). A similar mechanism may be involved in the repellent response
of Ralstonia pseudosolanacearum Ps29 to various alcohols, including methanol, ethanol,
1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,3-propanediol, and prenol, which was
shown to be mediated by multiple MCPs (27).

In contrast, we report here that a single receptor in P. putida F1 mediates chemoat-
traction to n-alcohols of up to 12 carbons in length. McpP, the McfP ortholog in P.
putida KT2440, is responsible for detection of C2 and C3 carboxylic acids, and direct
binding of McpP to acetate, propionate, pyruvate, and L-lactate was demonstrated by
isothermal titration calorimetry (32). Although linear alcohols and carboxylic acids are
structurally similar and could potentially bind to the same receptor, several lines of
evidence suggest that during catabolism, alcohols are oxidized to carboxylic acids,
which then serve as the actual ligands for McfP. Our finding that only alcohols that
serve as carbon and energy sources for P. putida F1 were capable of eliciting a
chemotactic response is consistent with this idea and suggests that metabolism is
required for the response. Energy taxis is a metabolism-dependent type of response
(35), but we showed that the energy taxis receptors Aer1 and Aer2 were not required
for the response. Another form of metabolism-dependent chemotaxis involves the
detection of catabolic intermediates. Detection of catabolic intermediates rather than
initial substrates has been observed previously in other soil bacteria. For example,
chemotaxis toward aromatic compounds by Comamonas testosteroni strain CNB-1 is
metabolism dependent; the actual ligands that bind the relevant MCP are TCA cycle
intermediates produced during catabolism (36, 37). Similarly, a major portion of the
response of Acidovorax sp. strain JS42 toward 2-nitrotoluene results from the detection
of nitrite, which is produced during the oxidation of 2-nitrotoluene by 2-nitrotoluene
2,3-dioxygenase (38). In both cases, pathway mutants blocked at steps that prevent the
formation of the relevant intermediates were incapable of responding to the initial
aromatic substrates, although they were still capable of responding to the relevant
intermediates directly (36, 38). Consistent with these findings, induction of the

FIG 8 Responses of P. putida F1 wild type, the ΔmcfP mutant, and the complemented mutant to
hexanoic (C6) and dodecanoic (C12) acids in qualitative capillary assays. F1(pRK415Km) (wild type), mutant
XLF014(pRK415Km), lacking the receptor encoded by mcfP (ΔmcfP), and the complemented strain
XLF014(pGCF114) (ΔmcfP � mcfP) were pregrown in MSB containing 10 mM pyruvate plus 2.5 mM
hexanoic acid or MSB containing 5 mM dodecanoic acid. Kanamycin (50 �g/ml) was included in all
cultures. Responses to 2% Casamino Acids (CAA; positive control) and 10 mM carboxylic acids are shown.
All cultures responded to CAA; only those grown in the presence of 1-dodecanoic acid are shown.
Photographs were taken after 5 min. No responses were seen to chemotaxis buffer (negative control; not
shown).

Chemotaxis to Alcohols by Pseudomonas putida Applied and Environmental Microbiology

November 2019 Volume 85 Issue 22 e01625-19 aem.asm.org 9

https://aem.asm.org


2-nitrotoluene catabolic genes was shown to be required for the chemotactic response
to 2-nitrotoluene (38).

The simplest explanation for the inducible response to alcohols in P. putida F1 would
be that the gene encoding the chemoreceptor is induced in the presence of alcohols.
There is a precedent for inducible MCP genes in P. putida F1; pcaY, which encodes the
chemoreceptor for aromatic acids, is induced by �-ketoadipate, an intermediate in
aromatic acid catabolism (16). However, we showed that the mcfP gene is not induced
in the presence of alcohols, and we hypothesize that pregrowth in the presence of
alcohols is necessary to induce genes for alcohol catabolism, which would allow the
oxidation of alcohols to carboxylic acids. P. putida KT2440 grown in rich medium was
capable of sensing C2 and C3 carboxylic acids (32), suggesting that mcpP is also
constitutively expressed.

Genes and enzymes necessary for growth on alcohols have not been identified in P.
putida, but alcohol catabolism has been studied in P. aeruginosa. P. aeruginosa catabo-
lizes ethanol aerobically via a two-step oxidative pathway, yielding acetate. Ethanol is
converted to acetaldehyde by the periplasmic quinoprotein ethanol dehydrogenase
(ExaA), shuttling electrons to cytochrome c550 oxidase (ExaB). Acetaldehyde is then
oxidized by the NAD�-dependent aldehyde dehydrogenase (ExaC), yielding acetate
and NADH. Similarly, the products of laoABC (encoding a flavin-containing oxidoreduc-
tase, a small protein of unknown function, and an aldehyde dehydrogenase, respec-
tively) are involved in catabolism of long-chain alcohols like n-dodecanol in P. aerugi-
nosa (8). Growth on n-dodecanol was completely eliminated only when both exaA and
laoA were deleted, indicating that there is overlapping specificity of the two alcohol
oxidation systems (8). The expression of both exaABC and laoABC in P. aeruginosa is
regulated; transcription of exaA and exaC is the under the control of the two-
component regulatory system encoded by exaDE (5), and the laoABC genes are under
the control of the TetR family repressor LaoR (8). ExaD is a HAMP domain-containing
integral membrane histidine kinase, and ExaE is a LuxR-type transcriptional activator.
Analysis of the genome indicates that P. putida F1 has homologs of exaABCDE
(Pput_3083 and Pput_3088 to Pput_3092) and laoABCR (Pput_4993 to Pput_4996), as well
as additional putative alcohol and aldehyde dehydrogenases. Some or all of the
encoded proteins may be involved in alcohol catabolism, and it is likely that such genes
are expressed in response to the presence of alcohols. Therefore, it is likely that
induction of alcohol oxidation genes is required for the chemotactic response to
alcohols, as the cells are actually sensing the carboxylic acids that are produced by the
action of alcohol/aldehyde dehydrogenases. Future studies with P. putida mutants in
which alcohol catabolism is blocked could provide further evidence for this hypothesis.

Consistent with the idea that McfP detects carboxylic acids generated during alcohol
catabolism is the demonstration that P. putida F1 grows on and is chemotactic to
hexanoic acid and dodecanoic acid, which are expected to be produced as intermedi-
ates during catabolism of hexanol and dodecanol. A standard �-oxidation pathway is
present in Pseudomonas putida (39, 40) and is likely the main route responsible for
conversion of fatty acids of various chain lengths to acetyl-coenzyme A (CoA) (and
some propionyl-CoA in the case of fatty acids with an odd number of carbons).
Medium- and long-chain carboxylic acids would therefore be converted to acetate (and
some pyruvate in the case of fatty acids with an odd number of carbons); both acetate
and pyruvate were shown to bind directly to the purified ligand binding domain (LBD)
of McpP from P. putida KT2440 (32). The McpP LBD did not bind to butyrate, succinate,
fumarate, malate, citrate, or malonate in isothermal titration calorimetry assays (32),
suggesting that it is not responsible for directly detecting carboxylic acids with more
than three carbons. In addition, the LBD of McpP from strain KT2440 did not bind to
1-propanol (32), which is consistent with our proposed metabolism-dependent mech-
anism of alcohol taxis in P. putida F1, in which acetate produced during the catabolism
of alcohols is the primary metabolite detected by McfP.
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MATERIALS AND METHODS
Bacterial strains, plasmids, and growth conditions. The bacterial strains and plasmids used in this

study are listed in Tables 1 and 2. E. coli strains were grown in lysogeny broth (LB) or on LB plates (41)
at 37°C in the presence of 100 �g/ml kanamycin or 12 �g/ml gentamicin when appropriate. P. putida F1
strains were grown at 30°C in MSB medium (2) containing 10 mM succinate, 20 mM pyruvate, or a
combination of 10 mM pyruvate and 2.5 mM ethanol, 1-propanol, 1-butanol, or another potential inducer
as indicated in the text or figure legend. Kanamycin was added to final concentrations of 50 �g/ml for
plasmid selection and maintenance in P. putida.

DNA manipulations. Genomic DNA was isolated using a 5= ArchivePure DNA kit (5 Prime, Gaith-
ersburg, MD), and plasmid DNA was isolated using commercial kits from Fermentas (Glen Burnie, MD).
Manipulation of DNA fragments and plasmids and transformation of E. coli strains were carried out by
standard methods (41). Restriction endonucleases were purchased from New England BioLabs (Beverly,

TABLE 1 Bacterial strains used in this study

Strain Relevant characteristic(s)a Source or reference

E. coli strains
DH5� Cloning host Life Technologies, Gaithersburg, MD
DH5� �pir Cloning host William W. Metcalf
HB101 Host for mobilization plasmid pRK2013 41

P. putida strains
F1 Wild type 51, 52
F1 cheA F1 cheA::miniTn5; Kmr 13
RPF018 (F1Δ11) F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ ΔmcfS ΔPput_0342

ΔpcaY ΔPput_4234 ΔPput_4764 ΔPput_3459
54

XLF003 F1 ΔPput_0601 This study
XLF006 F1 ΔPput_1257 (ΔmcfU) 54
XLF008 F1 ΔPput_1872 This study
XLF009 F1 ΔPput_2091 This study
XLF011 F1 ΔPput_2217 This study
XLF014 F1 ΔPput_2828 (ΔmcfP) 54
XLF016 F1 Δaer1 17
XLF018 F1 ΔPput_3621 This study
XLF019 F1 Δaer2 17
XLF020 F1 ΔPput_3892 This study
XLF025 F1 ΔPput_4863 This study
XLF027 F1 ΔPput_4895 This study

aKmr, kanamycin resistance.

TABLE 2 Plasmids used in this study

Plasmid Relevant characteristicsa Source or reference

pAW19 Suicide vector; sacB, Kmr, Apr 43
pGCF114 Pput_2828 (mcfP) cloned in pRK415Km, Kmr 54
pHRP309 Broad-host-range lacZ transcriptional fusion vector, Gmr 42
pHRP310 pK19 with � Smr/Spr cassette, Kmr 42
pJPF100 pHRP310 carrying the mcfP promoter This study
pJPF101 pHRP309 carrying the mcfP promoter fused to lacZ This study
pRK2013 ColE1 ori, RP4 mobilization function, Kmr 53
pXLF003 Gene Pput_0601 upstream and downstream 1-kb PCR fragments fused and cloned

into SpeI-SacI sites of pAW19, Apr, Kmr

This study

pXLF008 Gene Pput_1872 upstream and downstream 1-kb PCR fragments fused and cloned
into SpeI site of pAW19, Apr, Kmr

This study

pXLF009 Gene Pput_2091 upstream and downstream 1-kb PCR fragments fused and cloned
into SpeI-SacI sites of pAW19, Apr, Kmr

This study

pXLF011 Gene Pput_2217 upstream and downstream 1-kb PCR fragments fused and cloned
into SpeI-SacI sites of pAW19, Apr, Kmr

This study

pXLF018 Gene Pput_3621 upstream and downstream 1-kb PCR fragments fused and cloned
into SpeI site of pAW19, Apr, Kmr

This study

pXLF020 Gene Pput_3892 upstream and downstream 1-kb PCR fragments fused and cloned
into SpeI-SacI sites of pAW19, Apr, Kmr

This study

pXLF025 Gene Pput_4863 upstream and downstream 1-kb PCR fragments fused and cloned
into SpeI-SacI sites of pAW19, Apr, Kmr

This study

pXLF027 Gene Pput_4895 upstream and downstream 1-kb PCR fragments fused and cloned
into SpeI-SacI sites of pAW19, Apr, Kmr

This study

aKmr, kanamycin resistance; Apr, ampicillin resistance; Gmr, gentamicin resistance; Smr, streptomycin resistance; Spr, spectinomycin resistance.
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MA). DNA fragments were purified by gel extraction using a Fermentas GeneJET gel extraction kit. All
PCRs were carried out using Pfu polymerase in Pfu reaction buffer [200 mM Tris-Cl (pH 8.8), 100 mM
(NH4)2PO4, 100 mM KCl, 1% Triton X-100, 1 mg/ml bovine serum albumin, 20 mM Mg2SO4] under
standard conditions (95°C denaturation, 55°C annealing, 72°C elongation, with an elongation time of
1 min/kb of PCR product). Sequences of cloned PCR products were verified by fluorescent automated
DNA sequencing at the University of California Davis DNA Sequencing Facility with an Applied Biosys-
tems 3730 automated sequencer.

Construction of the mcfP-lacZ fusion plasmid. To examine the regulation of mcfP, the promoter
region upstream from the mcfP gene was amplified using primers 2828ProF and 2828ProR (Table 3) with
P. putida F1 genomic DNA as the template. The resulting PCR fragment was digested and cloned into the
KpnI and EcoRI restriction sites of the cohort vector pHRP310 (42), generating plasmid pJPF100. The
plasmid containing the correct construct was verified by DNA sequence analysis and digested with XbaI
and EcoRI, and the resulting fragment was cloned upstream from the promoterless lacZ gene in pHRP309
(42) to generate plasmid pJPF101.

Construction of the single MCP mutants and the F1�11 mutant RPF018. P. putida F1 MCP gene
deletion mutants were constructed using the suicide vector pAW19 (43). The 1-kb regions upstream and
downstream from each MCP gene were amplified by PCR using the primers listed in Table 3. The resulting PCR
fragments were fused by either overlap extension PCR (44) or blunt-end ligation. Each product was further
amplified by PCR, resulting in a 2-kb fragment with an in-frame deletion of the MCP gene. Each 2-kb DNA
fragment was digested with appropriate restriction enzyme(s) and then inserted into the SpeI (or the SpeI and
SacI) site(s) of pAW19. The resulting plasmids were introduced into E. coli DH5� �pir and mated into P. putida
F1 by conjugation using E. coli HB101(pRK2013) as a helper strain in triparental matings, as described
previously (45). Kanamycin-resistant F1 exconjugants were selected and grown in MSB minimal medium
containing 10 mM succinate. To select for deletion mutants that arose from double crossover events, cells
were plated on MSB agar containing 10 mM succinate and 20% sucrose. Individual colonies were then
screened for kanamycin sensitivity, and deletions were verified by PCR using appropriate primers.

�-Galactosidase enzyme assays. �-Galactosidase assays were carried out as previously described
(46). Cells were grown to a final optical density at 660 nm (OD660) of 0.45 to 0.55 in MSB containing
20 mM pyruvate (uninduced) or 20 mM pyruvate plus 2.5 or 10 mM ethanol (induced).

Qualitative capillary assays. Qualitative capillary assays were carried out as previously described
(47). Cells were grown in MSB medium with the appropriate carbon source(s) as indicated and harvested

TABLE 3 Primers used in this studya

Primer name Sequence (5=–3=)
2828ProF GGGGGTACCTTACAGCGACTGTTGGGCGC
2828ProR GGGGGGAATTCATCCATCAGCTCCCGCATTG
0601 SpeI up-for GGAGCTACTAGTGGTTGGCGACGTTGTTCAGG
0601 up-rev (p) p-CGAGCATTCAGGGTCTGAGTCAGC
0601 dn-for (p) p-CAGCAATAGGGTGTTGAAATTGGTCAGC
0601 SacI dn-rev GTATCTGAGCTCTGATCATCCTCGACCTGTACATGCC
1872 SpeI up-for AGGTCTACTAGTGATGATGTGTTCCGGGTCCAGTTCAC
1872 up-rev (p) p-CGACATTATCTTCACCATACGCGACATCG
1872 dn-for (p) p-GTAACGCACCTGTCCGGTCATCG
1872 SpeI dn-rev GTGACGACTAGTTGCCTTGTACTGGGTGGACATTCC
2091 SpeI up-for CCTGACACTAGTACCGCTTCATCCATATCCTCAACCGC
2091 up-rev (p) p-ATGGTGGCGCAGTTCAAGGTTTGATC
2091 dn-for (p) p-GGAATGCTCCTTGACGGTGGCG
2091 SacI dn-rev GACTCTGAGCTCTTCGCCAACTCGCAATACCGTGG
2217 SpeI up-for GGATGTACTAGTTCAGGCGATCGATGGGCAGG
2217 up-rev (p) p-ATGGACCAGTTCCGCGTCTGAAGC
2217 dn-for (p) p-GATGGAAAGTTGTCGCAAAGGCATGGG
2217 SacI dn-rev GACTCAGAGCTCCAGCAAGGTCAGCGGGTTGTAC
3621 SpeI up-for GCATGAACTAGTCCAATGTCGGCCACGGAAATCTGC
3621 up-rev (p) p-TTGTCAGGGCAGTTGGGCGAAGTC
3621 dn-for (p) p-TCGGAACCAGAGGGAGTAGGCTGAG
3621 SpeI dn-rev GGAGTTACTAGTGAGGTGATCGGCGAACTGCAACG
3892 SpeI up-for GGCGCGCCACTAGTCACACTAAGTTCGGCAAAGGG
3892 up-rev CCGGCACAGGCAACGAGACGCCGATCCCCTTTCAGC
3892 dn-for GCTGAAAGGGGATCGGCGTCTCGTTGCCTGTGCCGG
3892 SacI dn-rev GTCATGGAGCTCTACATTACCTGTGCCTTGCTGG
4863 SpeI up-for AGCTACACTAGTCGGACTCCAGGTAATCGC
4863 up-rev (p) p-CCGCGTTAAGGAATAGTGACCATG
4863 dn-for (p) p-GTTCGCAGGTCCTATAACGCCAC
4863 SacI dn-rev CTGATCGAGCTCTCAACAACACGCACCCTGAC
4895 SpeI up-for AGATGAACTAGTCCTCAACGCAGCAATCGAAGCC
4895 up-rev (p) p-ATATTTCGTCCTGTGCCGTCCTC
4895 dn-for (p) p-TTCAGCCTCTGATTTCGCCTCGC
4895 SacI dn-rev CCTGTAGAGCTCATCGCCATCACCGAACTGACCAAG
aUnderlined sequences indicate restriction sites. (p) or p, the primer was phosphorylated at the 5= end.
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during mid-exponential phase (OD660 of 0.3 to 0.45). Cell pellets were washed and resuspended in
chemotaxis buffer (CB; 50 mM potassium phosphate buffer [pH 7.0], 0.05% glycerol, 10 �M EDTA) to a
final OD660 of approximately 0.1. Microcapillaries (1 �l) were filled with attractants dissolved in CB or CB
alone (negative control) with 2% low-melting-temperature agarose (NuSieve GTG; Lonza, Rockwell, ME)
and introduced into the cell suspensions. Chemotactic responses were viewed at room temperature for
up to 15 min under �40 total magnification on a Nikon Eclipse TE2000-S microscope (Melville, NY).
Photographs were taken using an Evolution Micropublisher 3.3 RTV camera and Evolution MP/QImaging
software (Media Cybernetics, Inc., Rockville, MD).

Chemical-in-plug assays. Chemotaxis responses were monitored using chemical-in-plug assays (48,
49). P. putida strains were grown under the indicated conditions (induced or uninduced) and harvested
in mid-exponential phase (OD660 of 0.4 to 0.5). Cell pellets were resuspended in 2� CB, and suspensions
were mixed with an equal volume of cooled molten 0.5% Noble agar and dispensed into 35-mm petri
dishes. A 2% Noble agar plug containing the test attractant dissolved in CB (or CB only; negative control)
was inserted in the center of the petri dish. Assay plates were incubated at room temperature
(approximately 25°C) for 1 h. Chemotactic responses were observed as a distinct ring of cells around the
plug, and photographs were taken with backlighting (50).

Soft agar swim plate assays. Plates contained MSB with 0.3% Noble agar and 5 mM ethanol.
Cultures were grown overnight in MSB containing 10 mM succinate and were harvested, washed, and
resuspended in MSB to an OD660 of approximately 0.4. Plates were inoculated by pipetting 2 �l of cell
suspension into the soft agar and were incubated at 30°C for approximately 24 h. Photographs were
taken with backlighting (50).

Gradient swim plate assays. Gradient plate assays were based on the Pham and Parkinson protocol
(22). MSB soft agar plates contained 0.3% agar and 1 mM glycerol. Agar plugs contained 10 mM ethanol,
5 mM 1-propanol, or 5 mM 1-butanol, and after harvesting and resuspending in MSB as described above,
cell suspensions (2 �l each) were inoculated 2 cm from the plugs. Photographs were taken with
backlighting (50) after incubation at 30°C for �24 h. The response index (RI) was calculated using the
equation RI � D1/(D1 � D2), where D1 is the distance measured from the site of inoculation to the colony
edge closest to the plug and D2 is the distance from the site of inoculation to the colony edge furthest
from the plug. As reported previously (22), RI values greater than 0.52 were concluded to indicate an
attractant response.
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