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1 INTRODUCTION 

While the concept of views has been studied extensively in the context of the relational model, 
it is largely unexplored for the newly emerging object-oriented database systems (OODB). 
Most initial proposals of views on OODBs suggest a direct extension of the view mechanism 
from relational databases to OODB systems, namely, they define an object-oriented view to 
be equal to an object-oriented query (8, 21, 11). Note however that a relational schema is 
simply a set of 'unrelated' relations (6), whereas an object-oriented data schema corresponds to 
a complex structure of classes interrelated via generalization and decomposition relationships 
[11, 12). We therefore define an object-oriented view, also called a view schema, to be a virtual, 
possibly restructured, subschema graph of the global schema [17]. The construction of these 
view schemata raises challenging research issues in terms of how to restructure view schema 
graphs and how to relate them with the global schema structure, which did not arise in the 
context of the relational model. 

We have developed a methodology, called Multi View [17, 19], for supporting multiple view 
schemata that successfully addresses these problems. Some of the key ideas underlying the 
design of Multi View can be summarized as follows: 

1. An object-oriented view should look like a (regular) object schema, so that we can for 
instance use it to define other views. 

2. The view specification mechanism provided to the user should be as simple as possible, so 
that non-database experts may be able to use the view system. 

3. The user should be relieved of tedious tasks, whenever they can be automated. 

4. The view system should help the user in enforcing the consistency of the view schema 
structure while defining the view. 

Multi View breaks view specification into three independent subtasks: ( 1) customization 
and derivation of virtual classes, (2) integration of virtual classes into one consistent global 
schema graph and (3) the specification of arbitrarily complex, but consistent, view schemata 
on this comprehensive global schema. Multi View's division of view specification into a number 
of well-defined subtasks, some of which have been successfully automated, makes it a powerful 
tool for supporting the specification of views by non-database experts while enforcing view 
consistency. In this paper, we present a solution to the second subtask, while solutions to the 
first and the third subtasks of MultiView are given in [17] and in [19], respectively. 

Multi View's integration of virtual classes into one global schema graph takes care of the 
maintenance of explicit relationships between stored and derived classes in terms of type in­
heritance and subset relationships. This is useful for sharing property functions and object 
instances consistently among classes without unnecessary duplication. Furthermore, this or­
ganization may result in performance increases, since the query optimizer could exploit these 
known relationships among classes for query processing. For instance, the union of two classes 
Cl and C2 could be reduced to be equal to Cl without actual query processing if we knew 
that C2 is a subclass of Cl. Last but not least, the integration of all virtual classes into one 
schema graph is a necessary basis for the third subtask of Multi View, namely, for the formation 
of arbitrarily complex view schema graphs composed of both base and virtual. classes. If the 
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virtual classes are not integrated with the classes in the global schema, then a view schema 
would correspond to a collection of possibly 'unrelated' classes rather than a generalization 
schema graph. In short, the integrated global schema graph represents the backbone of our 
view support system based on which view schemata are being designed. 

Class integration tackles the problem of how a virtual class (as well as a complete view 
schema) derived during the first step of Multi View relates to, and can be integrated with, the 
remaining classes in the global schema. Note that in the relational model, where each relation 
is physically independent from all other relations, the integration of a virtual relation with 
the global schema corresponds to simply adding it to the list of existing relations (the data 
dictionary). In the context of OODBs, however, this is less straightforward. A class in an 
object schema is interrelated with other classes via an is-a hierarchy (for property inheritance 
and subsetting) and via a property decomposition hierarchy (for forming complex objects). 
Class integration in OODBs needs to guarantee the consistency of these class relationships 
when adding new classes (and thus new relationships) into the schema graph. 

Not just individual virtual classes but complete (possibly conflicting) view schemata have 
to be integrated with another and with the underlying global schema into one consistent whole. 
This integration has to maintain the difference in the generalization and decomposition hier­
archies of the view schemata. The proposed MultiView methodology solves this problem by 
separating the definition of view schemata into two independent steps, namely, one, the integra­
tion of virtual classes into one consistent global schema graph and, two, the definition of view 
s<;hemata composed of both base and virtual classes on top of this augmented global schema. 
View schemata are consistently integrated with one another simply by being consistently inte­
grated with the same underlying global schema. 

We have identified two class integration problems that existing work does not appropriately 
handle, which are (1) the type inheritance mismatch for virtual classes and (2) the composition 
of is-a incompatible subset and subtype hierarchies into one consistent class hierarchy. The 
characterization of both problems is made possible by our approach of distinguishing between 
the type and the set content of a class as two independent concepts [18). The first problem is 
concerned with constructing a type (and also class) hierarchy that includes the type of the new 
virtual class while assuring the correct type inheritance for all classes. To demonstrate this 
problem, we present examples for which a correct placement for a class C in a given schema 
graph G cannot be found. The second problem is caused by the fact that the class hierarchy 
combines the subset and the subtype relationships among classes into one is-a relationship. 
Differences between the subtype and the subset relationships of a class may cause problems in 
determining one consistent class hierarchy. For example, if a class's set content is lower in the 
corresponding set hierarchy and the class's type is higher in the corresponding type hierarchy, 
then there is a conflict in where to place the class in the combined class generalization hierarchy. 
In this paper we present a class integration algorithm that successfully solves both problems. 

Inserting arbitrary subclass relationships between classes may result in an inconsistent 
schema graph in terms of property inheritance and subset relationships. Therefore, rather than 
requiring manual placement of classes in the schema graph and then checking the entered in­
formation for consistency, Multi View supports the automatic integration of classes. Automatic 
class integration does not only prevent the introduction of inconsistencies into the schema, but 
it also simplifies the task of the view definer. It decreases the time needed for view specifi­
cation, and, more importantly, it makes it possible for a non-database expert to specify an 
application-specific view on his or her own. 
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For these reasons, we have developed an algorithm for the automatic classification of virtual 
classes into a global schema graph. This algorithm solves the two problems of type inheritance 
and of is-a incompatibility. The solution is based on type lattice theory (13], the essence of which 
is the creation of additional intermediate classes that restructure the schema graph. We present 
proofs of correctness and a complexity analysis for the classification algorithm. Furthermore, 
we characterize classification requirements of virtual classes derived by different object algebra 
operators. This characterization helps us to reduce the complexity of the classification task for 
most cases. For instance, we reduce classification from quadratic to linear complexity for classes 
derived by the Select, the Union, and the Difference operators and to constant complexity for 
those derived by the Refine operator. 

The paper is organized as follows. In Section 2, we introduce object-oriented concepts 
related to views. In Section 3, we outline the Multi View methodology and describe the object 
algebra used for class derivation. Sections 4 and 5 outline the basics of class integration and 
characterize the two class integration problems, respectively. In Sections 6, 7 and 8, we present 
a solution to the first problem. In Section 9, we then present a solution to the second problem. 
The class integration algorithm is refined for virtual classes derived by some of the object 
algebra operators in Section 10. We compare Multi View to related work in Section 11 and 
conclude with Section 12. 
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2 OBJECT-ORIENTED CONCEPTS 

2.1 The Object Model 

Below, we introduce the basic concepts of object-oriented database (OODB) models needed for 
the remainder of the paper. Let P be an infinite set of property functions. property abstractions 
that includes attributes Each property function p E P can be a value from a simple predefined 
enumeration type, an object instance from some class, or an arbitrarily complex function. 
Each property function p E P has a name and signature (i.e., domain types). For simplicity, we 
assume for the following that all properties in the schema have unique property names1 . Let 
T be the set of all types. Let t E T be a type in T. Let propertiest be the set of attributes 
property functions (attributes) of type t and domain,,(t) denote the range (domain) of the 
property function p in type t. Let 0 be an infinite set of object instances. Each element o E 
0 is an instance of an abstract data type (ADT), i.e., it can be manipulated by means of the 
interface of the respective ADT. 

Let C be the set of all classes. A class Ci E C has a unique class name, a type description 
and a set membership. The type associated with a class corresponds to a common interface for 
all instances of the class, that is, the collection of applicable property functions. We refer to 
the name of the type associated with a class C by type( C) and to the set of property functions 
defined for C by properties( type( C)), or short, properties( C). If p E P is a property function 
defined for C, i.e., p E properties(C), then we refer to the domain of the property function p 
for C by domainp(C). A class is also a container for a set of objects. The collection of objects 
that belong to a class C is denoted by extent(C) := { o I o E C} with the member-of predicate 
"E" defined based on the object identities of the object instances [16]. 

2.2 Type Hierarchy and Type Relationships 

Definition 1. We define a partial order on types T as follows. For two types tl and t2 E T, 
. t2 is called a subtype of tl, denoted by t2 :::$ tl, if and only if 

• propertiest1 £ propertiesui 1 and 

• (t/ p E propertiest.2)( domain,,(t2) £ domainp(tl) ). 

The first condition of Definition 1 states that a subtype must have the same property 
functions as its supertype and possibly additional ones. The second condition states that the 
domains of the property functions of a subtype must be contained within the domains of the 
respective property functions of the supertype, but that they could possibly be restricted. 

Given a finite set of types T, we call t 1 a direct subtype of tn and tn a direct supertype of 
t 1 , denoted by t 1 -< tn, if (t1 ~ tn) and (t1 f. tn) and there are no other types t1i:; ET (with 

1 Note that to determine whether two property functions are identical is equally hard to proving that two 
programs are equivalent. The uniqueness of property names asswnption thus provides a simple yet elegant 
solution for this otherwise np-complete problem. We ensure uniqueness of properties by associating a unique 
property identifier with each newly defined property. Two properties that have the same property name can thus 
be distinguished internally based on their identifier. For other schemes of disambiguation of property names see 
[18]. 



Class Integration Elke A. Rundensteiner May 28, 1992 9 

j=l, ... , m) for which the following subtype relationships hold: (t1 j t;,i) and (t;, 1 ::; i.t 2 ) and 
... and (t;,,,. j tn)· Based on this partial ordering function "::;", we can define a set of types 
T to correspond to a type hierarchy that explicitly represents all direct subtype relationships in 
terms of edges of a graph. 

Definition 2. A type hierarchy is a directed acyclic graph TH={TV, TE), where TV is a 
finite set of types and TE is a finite set of directed edges. Each element in TV corresponds 
to a type ti, while TE corresponds to a binary relation on TV x TV that represents all direct 

subtype relationships between pairs of types in TV. In particular, each directed edge e from t 1 

to t2, denoted by e =<ti, t2> 1 represents the direct subtype relationship (ti -< t2) between ti 
and t 2 in TV. 

Next, operations on type descriptions are introduced which form a new type based on the 
sets of properties of two existing types [18]. 

Definition 3. Let tl, t2 E T. Then LJ is a function from T2 _, T that defines a new type t3 by 

t3 = tl u t2. 

The property functions propertiesta of t3 are defined by: 

· propertiesta = propertiest1 U properties12 • 

And, for each property function p E propertiesta of t3, the following domain is defined: 

domainta(p) = domaint1(p) n domaint2(p). 

Intuitively, the new type tl U t2 denotes the collection of all properties defined for either tl 
or t2. In other words, the U function creates a new type from two existing ones (1) by building 
the union of the properties of both types and (2) by forming the intersection of the domains 
of properties, for all properties common to both source types. The following type relationships 

. hold between the new type ( tl U t2) and the two source types tl and t2: 

(tl U t2)::::; tl, and 

(tl u t2) ::::; t2. 

In fact, ( tl U t2) is the greatest common subtype of tl and t2. 

Definition 4. Let tl, t2 E T. Then n is a function from Tl _, T that defines a new type t3 

by: 

t3 = tl n t2. 

The property functions propertiesta of t3 are defined by: 

propertieSt3 = propertieStJ n propertiest2· 

And, for each property function p E propertiesta of t3, the following domain is defined: 

domainta(P) = domaintt(P) U domaint2(p). 
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Intuitively, the new type tl n t2 denotes the collection of properties common to both types 
t1 and t2. In other words, the n function creates a new type from two existing ones by building 
the intersection of the properties of both types and by forming the union of the domains of 
properties, for all properties common to both source types. The following type relationships 
hold between the new type ( tl n t2) and the source types t1 and t2: 

tl :::S (tl n t2), and 

t2 :::S (tl n t2). 

The type tl n t2 is the lowest common supertype of tl and t2. We distinguish between four 
cases for applying the n function to two types tl and t2, which result in different placements 
of the resulting type tl n t2 in the type hierarchy: 

1. tl n t2 = 0. 

2. (tl n t2 = tl). 

3. (tl n t2 = t2). 

4. (tl n t2) ~ {tl, t2, 0}. 

In the first case, tl and t2 have no common properties. By Definition 2, the lowest common 
supertype of t1 and t2 is then equal to the root of the type hierarchy. This implies that tl and 
t2 will be placed into different subgraphs of the type hierarchy. 

In the second case, t2 has the same properties that are defined for tl, and, t2 may also have 
additional properties. Also the domains for some of tl's properties may be further restricted 
for t2. By Definition 1, t2 is a subtype of tl. t2 must therefore be placed below tl in the type 
hierarchy. Case 3 is identical to case 2 with the roles of tl and t2 reversed. If, by default, ( tl 
n t2 = tl = t2) then the two types tl and t2 are identical and their relative positioning in a 
type hierarchy would be the same location. 

In the fourth case, tl and t2 share some common property functions, but, in addition, each 
of them has their own property functions. By Definition 1, tl and t2 are type incompatible. 
Since no type relationship can be established among them, they have to be placed into different 
subgraphs of the type hierarchy. As we will show below, this fourth case plays an important 
role in type classification. 

2.3 Class Hierarchy and Class Relationships 

Definition 5. For two classes Cl and C2 E C, Cl is called a subset of C2, denoted by Cl ~ 
C2, if and only if (Vo E 0) ((oECl) ~ (oEC2)). 

Definition 6. For two classes Cl and C2 E C, Cl is called a subtype of C2, denoted by 
Cl j C2, if and only if (properties{Cl) 2 properties(C2)) and (V p E properties(C2)} -
{domainp(Cl) ~ domainp(C2) ). 
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Definition 6 is directly based on Definition 1, i.e., a class CJ is defined to be a subtype of 
C2 if and only if type( CJ) is a subtype of type( C2). 

Definition 7. For two classes Cl and C2 E C, Cl is called a subclass of C2, denoted by Cl 
is-a C2, if and only if (Cl ::S C2) and (Cl ~ C2). 

Informally, we say that Cl is is-a related to C2 if (1) every member of CJ is a member of 
C2 (the subset relationship) and (2) every property defined for C2 is also defined for Cl (the 
subtype relationship). 

Given a collection of classes for a particular database application, we want to organize them 
in a fashion such that these class r- .1tionships are explicitly represented rather than having to 
recompute them continuously. The maintenance of the subset class relationships allows us to 
determine the containment of the object instances associated with one class within the extent 
of another class. This may for instance be useful for query processing. The maintenance of the 
subtype relationship is useful for the reuse of property function code; this feature is commonly 
known as property inheritance. 

Let S = { C; I i = 1, ... , n} be a set of classes. We call C1 a direct subclass of Cn and Cn 
a direct superclass of C1 if ( C1 is-a Cn) and ( C1 -:/= Cn) and there are no other classes Ck; E S 
(with j=l, ... , m) for which the following is-a relationships hold: (C1 is-a CkJ and (Ck 1 is-a 
Ck~) and ... and (Ckm is-a Cn)· C1 is called an (indirect) subclass of Cn and Cn an (indirect) 
superclass of C1 ifthere are one or more classes Ck; ES (with j= 1,2, ... , m) for which the above 
is-a relationships hold. The direct subclass relationship between C1 and Cn is denoted by (C1 

is-ad Cn); the indirect subclass relationship with (j?l). by (C1 is-a* Cn) for A graph-theoretic 
representation of a set of classes S that explicitly represents all direct subclass relationships 
among the classes in terms of edges is defined below. 

Definition 8. An object schema is a rooted directed acyclic graph2 S=(V,E), where Vis a 
finite set of vertices and E is a finite set of directed edges. Each element in V corresponds to 
a class Ci, while E corresponds to a binary relation on V x V that represents all direct is-a 
relationships between all pairs of classes in V. In particular, each directed edge e from C1 to C2, 
denoted by e = <C1 , C2>, represents the direct is-a relationship between the two classes (C1 

is-a C2). The designated root node, called Object, contains all object instances of the database 
and its type description is empty. 

We refer to the collection of is-a relationships of a set of classes as the generalization 
hierarchy of the object schema. Since the is-a relationship is reflexive, antisymmetric and 
transitive, the schema graph is a directed acyclic graph without any loops. 

Definition 9. Given a set of classes S = { C; I i = 1, .. ., n}. 

a. For all classes C1,C2 in S, an arc from source C1 to sink C2 is defined to be required in 
S, if (C1 is-a C2) in S and there is no Cx in S such that (C1 is-a C:r:) and (Cx is-a C2)1 

i.e., C1 is a direct subclass of C2 in S denoted by (Ci is-ad C2). 

2 A schema without multiple inheritance corresponds to a tree rather than a DAG. 
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b. For all classes C1,C2 in S, an arc from source C1 to sink C2 is defined to be redundant in 
S, if there is a class C,, in S such that (C1 is-a C,,) and (C,, is-a C2), i.e., C1 is a indirect 
subclass of C2 in S denoted by (Ci is-a• C2). 

c. For all classes C1,C2 in VV, an arc from source C1 to sink C2 is defined to be inconsistent 
in S if the subclass relationship (C1 is-a C2) does not hold. 

d. The object schema graph G=(V,E) is defined to be valid if and only if (V=S) and the set 
E of is-a arcs of G contains all required and no redundant and no inconsistent arcs 

in S. 

A valid schema graph G is complete since, by Definition 9.a and by the transitivity prop­
erty of the is-a relationship, two classes C1 and C2 in VS are - directly or indirectly- connected 
via an arc in G if and only if they are also is-a.related in S. A valid schema graph G is minimal 
since, by Definition 9.b, there is no direct is-a arc between two classes if if there is already an 
indirect is-a path between them. Lastly, a valid schema graph is consistent since, by Definition 
9.c, an is-a arc from source C1 to sink C2 exists in G if and only if the two classes are is-a 

related in S. 

Once these class relationships are compiled and stored in this graph format, we can read 
them directly from the structure of the graph without having to repeatedly compute the subclass 

relationships. For instance, C1 is a direct subclass of Cn if the edge e = <C1, Cn> exists in E. 
C1 is an indirect subclass of Cn, denoted by (C1 is-a* Cn), ifthere is a path through the class 
hierarchy of length one or longer connecting C1 and Cn. 

Definitions 3 and 4 that define operators on types are now extended to operators on classes. 

Definition 10. Let Cl and C2 E C be two classes. Then U is a Junction from C2 --+ C that 

defines a new class C3 by 

C3 :=Cl u C2 

with 

type(C3} := type(Cl} U type(C2) 

with the later U function equal to the function on types given in Definition 3. Content(C3) is 

not specified. 

C3 is a common subclass of both Cl and C2 if and only if C3 ~ Cl U C2 and content( C3) 

~ Cl n C2. CS is called the greatest common subclass of Cl and C2 if and only if C3 = Cl U 
C2 and content( C3) = Cl n C2. 

Definition 11. Let Cl and C2 E C be two classes. Then n is a function from C2 --+ C that 

defines a new class C3 by 

C3 :=Cl n C2 

with 
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type(C3} := type(Cl) n type(C2) 

with the later n Junction as defined in Definition 4. Content(C3) is not specified. 

C3 is a common superclass of both Cl and C2 if and only if C3 ~ Cl n C2 and content( C3) 
2 Cl U C2. We call C3 the lowest common superclass of Cl and C2 if and only if C3 = Cl n 
C2 and content( C3) = Cl U C2. 

In both definitions, the overloading of the functions U and n for the class and for the type 
parameter is a matter of convenience, since we generally deal with classes rather than with 
types. We use the notation "C; E G" to denote that the class C; is a member of the set V of 
the schema graph G=(V,E). For notational convenience, we overload the "E" operator to also 
apply to types. Fort; an element of the set of types T underlying the schema graph G=(V,E), 
we say that t; is an element of G, denoted by t; E G, if and only if (3C; E G)(type(C;)=t;). 

2.4 Object-Oriented Views 

We distinguish between base and virtual classes. Base classes are defined during the initial 
schema definition. Object instances that are members of base classes are explicitly stored as base 
objects. Virtual classes are defined during the lifetime of the database using object-oriented 
queries, i.e., their definitions are dynamically added to the existing schema. A virtual class has 
an associated membership derivation function that will determine its exact membership based 
on the state of the database. The extent of a virtual class is generally not explicitly stored, but 
rather computed upon demand. 

Definition 12. The base schema (BS} is an object schema S=(V,E}, where all nodes in V 
correspond to base classes with stored rather than derived object instances. 

Definition 13. Let BS be a base schema. The global schema (GS) is an extension of the 
base schema that is augmented by the collection of all virtual classes defined during the lifetime 

of the database as well as is-a relationships among this extended set of classes. 

A subgraph of the global schema which contains only virtual classes and their is-a relationships . 
is commonly called a virtual schema [24, l). 

Definition 14. Given a global schema GS=(V,E}, then a view schema (VS}, or short, a 

view, is defined to be a sc/t.ema VS= (VV, VE) with the following properties: 

1. VS has a unique view identifier denoted by < VS>, 

2. VV ~ V, and 

3. VE ~ transitive-closure(E). 
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The first condition states that each view schema is uniquely identifiable. The second prop­
erty states that all classes of VS also have to be classes in GS, i.e., they have been properly 
integrated with the global information. The third property states that the view schema main­
tains only is-a relationships among its view classes that are directly derivable from GS. In other 
words, an edge < Ci, Ci > can only exist in VE if either < Ci, C; > exists directly in E or if it 
is indirectly derivable via the transitivity of the is-a relationship, i.e., only if (Ci is-a* C;) in 
GS. A view schema is a special case of an object schema. Therefore all properties of an object 
schema defined in Section 2.1 must also hold. We call the classes in a view schema (both the 
base and the virtual ones) view classes and the is-a relationships among these view classes view 
is-a relationships. 

Class Derivations: 

class Minor:= SELECT (P:Person) 
where (P.Age<21) 

class TeenageBoy :- SELECT (M:Minor) 
where (M.Age:::i-13 /\ M.Sex=male) 

(a) Base Schema BS and Some Class Derivations. 

Person 

(······;~:.~~········."; 
•• Age<21) •• 

················ ..... ·· ········ 

(c) View schema VS1. 

(Person!\ 
Age=-21) 

( ...... ··~·~i~~·; .... · ...... ) 
__ ·· .. _····~··~~~~ ..... 

.. ,. .., .. 
.. ····· TeenageBoy "·· ... 

{ (Minor/\ .i 
'. A e:-13 • .-
·-.... /\~ex-male~ .. -·· ...................... 

(b) Global Schema GS. 

·········· 
...-·"'reenageBo~"·· .... 

{ (Minor f\ ·~ 
\ Age:::i-13 / 
· ....... 0 Sex=ma!~k· 

··············· 

(d) View schema VS1. 

Figure 1: Examples of Base, Global and View Schemata. 
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Example 1. Figure 1 shows the relationship between (a) the base schema, (b} the global 

schema, and (c) and ( d} two different view schemata. We depict base and virtual classes 

by circles and dotted circles, respectively. The global schema in Figure 1. b is derived from the 

base schema in Figure 1.a by adding the virtual classes Minor and TeenageBoy and by in­
terconnecting them with the remaining classes to create a valid schema. The view schematas 

in Figure l.c and l.d are derived from the global schema by selecting a subset of its classes 

and interconnected them into a valid schema using view is-a arcs. The view VSl in Figure 1.c 

contains the classes Person, Minor and TeenageGirl; and the view VS2 in Figure l.d the 
classes Person, Adult, TeenageGirl and TeenageBoy. 

Note that the base schema is a special case of a view schema that consists exclusively of all 
base classes and no virtual classes. A base, a global, and a view schema are all special forms of 
an object schema, and, for that reason, each of them must obey the conditions of schema graph 
validity outlined in Definition 9. In addition, we have developed criteria for evaluating the 
consistency of the class generalization hierarchy of a view schema with the underlying global 
schema as well as the closure of the property decomposition hierarchy of a view schema [17]. 
These issues are not particular to the work presented in this paper, and therefore are omitted. 
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3 THE MultiView METHODOLOGY 

3;1 Key Features of MultiView 

In this section, we outline our approach for supporting multiple object-oriented views, called 
the Multi View methodology. Object-oriented views, also called view schemata, correspond to 
virtual, possibly restructured, subschema graphs of the global schema. with the later equal to 
a complex structure of classes interrelated via various relationships, such as, the orthogonal 
generalization and decomposition hierarchies [11, 12). Multi View breaks view specification into 
the following three subtasks: 

1. the customization of existing type structures and object sets by deriving virtual classes via 
object-oriented queries, 

2. the integration of virtual classes into one consistent global schema graph, and 

3. the specification of arbitrarily complex view schemata composed of both base and virtual 
classes on top of this augmented global schema. 

In this paper, we present a solution to t!:te second subtask. Solutions to the first and the third 
sµbtasks of MultiView are given in [17) and in [19), respectively. 

The separation of the view schema design process into a number of well-defined subtasks 
has several advantages. First, it simplifies the view specification and maintenance, since each 
of the subtasks can be solved independently from the others. Second, it increases the level of 
schema design support by allowing for the automation of some of the subtasks. In this paper, 
we present, for instance, algorithms that automate the second subtask of integrating virtual 
classes into one consistent global schema graph. Similarly, we have proposed algorithms for the 
third subtask, the automatic generation of the view schema hierarchy elsewhere [19). In short, 
Multi View's division of view specification into a number of well-defined subtasks, some of which 

·have been successfully automated, makes it a powerful tool for supporting the specification of 
views by non-database experts while enforcing view consistency. 

The first subtask of Multi View supports the customization of existing classes by deriving 
virtual classes with a modified type description and membership content. Multi View uses 
these class derivation mechanisms for a. number of different purposes, e.g., to customize type 
descriptions, to limit the access to property functions, to collect object instances into groups 
meaningful for the task .at hand, and so on. We assume that virtual classes are derived using 
object-oriented queries. Since there is no generally agreed-upon object algebra available in the 
literature [11, 8, 21], we define, for the purpose of this work, our own object algebra similar 
in flavor to the ones proposed in the literature (see Section 3.2). We focus, in particular, on 
the subset, subtype and subclass relationships among the source and result classes derived by 
object algebra. This issue, important for successfully addressing the class integration problem, 
is generally ignored in the literature. 

The second subtask of MultiView, which is the subject of this paper, supports the in­
tegration of virtual classes into one underlying global schema. This explicit maintenance of 
relationships between stored and derived classes is a necessary basis for the third subtask of 
MultiView, namely, for the formation of arbitrarily complex view schema graphs composed 
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of both base and virtual classes. If the virtual classes are not integrated with the classes in 
the global schema, then a view schema would correspond to a collection of 'unrelated' classes' 
rather than a generalization schema graph. In short, the integration of virtual classes into one 
global schema assures the consistency of all views with the global schema and with one another. 
Motivation for class integration is given in more detail in Section 4. 

The third subtask of Multi View utilizes the augmented global schema graph for the selection 
of both base and virtual classes and for arranging these view classes in a consistent class 
hierarchy, called a view schema. This supports for instance the virtual restructuring of the is-a 
hierarchy by allowing to hide from and to expose classes within a view schema. For the explicit 
selection of view classes from the global schema, we have developed a view schema definition 
language [19]. After class selection, MultiView's view generation algorithm can automatically 
augment the set of selected view classes to generate a valid view schema hierarchy [19]. 

To make the presented ideas more concrete we now give an example of the steps involved 
in constructing a view schema in Multi View. 

(a) Common Global 
Schema GS. 

(b) Class Derivation (c) Class Integration (d) View Schema 
for Type Customization. into comprehensive GS. Generation. 

Figure 2: The Multi View Approach: From Base over Global to View Schemata. 

Example 2. This example of the view schema construction process is based on Figure 2. In 
this figure we depict base and virtual classes by circles and dotted circles, respectively. Given 
the global schema GS in Figure 2.a, the view definer first specifies the two virtual classes VC4 
and VC5 using object-oriented queries (Figure 2.b). Class VC4, for instance, is derived based 
on the two source classes Cl and C3 as depicted by the dotted arrows pointing from Figure 2.a 
to Figure 2.b. The second subtask then integrates the virtual classes VC4 and VC5 into GS 
as shown in Figure 2.c. View schema definition now proceeds by selecting a subset of classes 
from the augmented schema GS and interconnecting them into one schema graph. The resulting 
virtual schema graph, called a view schema, is given in Figure 2. d. 

3.2 Class Customization Using Object Algebra 

The Multi View methodology is independent from the particular object algebra operators chosen 
for the class derivation subtask. However, since there is no agreed-upon standard for object 
algebra, we present a representative set of algebra operators below. As we will demonstrate in 
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this section, the resulting class relationships between the derived class and the source classes 
vary with the type of the query operator. The determination of these subclass relationships, 
a necessary basis for the integration of virtual classes into the global schema, is generally not 
covered in the literature. The table in Figure 1 summarizes the object algebra operators, in 
particular, it gives their syntax, semantics and the resulting class relationships, while a more 
detailed description of the operators and some examples follow (See also [17]). The proposed 
object algebra consists of the following six operators, hide, refine, select, union, intersect, 
and diff; each of which is explained below. 

The hide operator modifies the type description of a class by hiding some of its property 
functions - similar to the project operator in relational algebra. It has the syntax "<virtual­
class>= hide [<prop-functions>] from (<source-class>)" with <prop-functions> being one 
or more property functions defined for the class <source-class>. Its semantics are to remove 
the property functions listed in the set <prop-functions> from the source class while preserving 
all other property functions visible in the class. The set content of the virtual class is equal to 
the set content of the source class. 

BehavlorGraph 
Domain -······ •••• ••••• ..,.., ------*'- ·-. 

NodeOp •'{ 01, 02, 03, 04, 05} ~ . , 
------......... # ·- .. •" ········ ······· 

Domain StateGraph 

NodeOp 

Get State 
SetState 

Behavior-Graph= HIDE [ SetState, 
GetState ] from State-Graph; 

Figure 3: An Example of the hide Operator. 

Example 3. In Figure 3, t~e query "BehaviorGraph = hide [SetState, GetState] from 
(StateGraph)" is used to derive the virtual class BehaviorGraph from the source class 
StateGraph. Then extent(BehaviorGraph) = extent(StateGraph), i.e., StateGraph 
~ BehaviorGraph. Also type(StateGraph) = [Domain, NodeOp, SetState, GetState] 
and type(BehaviorGraph) = [Domain, NodeOp J imply StateGraph :5 BehaviorGraph. 
The is-a relationship (StatsGraph is-a BehaviorGraph} is indicated by the edge from State­
Graph to BehaviorGraph. 

The refine operator is a type-manipulating operator that adds ad.ditional property func­
tions to a type rather than removing existing ones. It is similar in flavor to calculating a derived 
value for each tuple of a relation and then joining this derived value to the relation in the form 
of an additional column. It has the syntax "<virtual-class> = refine (<prop-function-clefs>] 
for (<source-class>)" with <prop-function-def> being the definition of a new property func­
tion in the form of a new property name and a function body with the latter a legal arithmetic, 
boolean or set expression. The property functions in <prop-function-clefs> are assumed to 
be distinct from all others in the global schema and therefore get assigned a unique property 



Class Integration Elke A. Rundensteiner May 28, 1992 19 

hide syntax <virtual-class>:= hide (<prop-functions>] from (<source-class>) 
semantics type(< virtual-class>) :- {p E P I p E properties(< source-class>) 

/\ p !l <prop-functions>} 
extent( <virtual-class>) :=extent( <source-class>) 

class rels <source-class> ~ <virtual-class> 
<source-class> ~ <virtual-class> 
<source-class> i.f-a <virtual-class> 

refine syntax <virtual-class> := refine [<prop-function-clefs> j for (<source-class>) 
semantics type(< virtual-class>) :- {p E P I p E properties( <source-class>) 

V p E <prop-function-def>} 
extent( <virtual-class>) := extent( <source-class>) 

class rels <virtual-class> ~ <source-class> 
<virtual-class> ~ <source-class> 
<virtual-class> i.f-a <source-class> 

select syntax <virtual-class> :=select from (<source-class>) where (<predicate>) 
semantics type(< virtual-class>) :- type( <source-class>) 

extent(< virtual-class>) := { o E 0 I o E <source-class> 
/\ <predicate>(o) =true} 

class rels <virtual-class> ~ <source-class> 
<virtual-class> ~ <source-class> 
<virtual-class> is-a <source-class> 

union syntax <virtual-class> := union( <source-classl >, < source-class2>) 
semantics type( <virtual-class>) :=type( <source-classl>) n type( <source-class2>) 

extent(<virtual-class>) := {o E 0 Io E <source-classl> 
V o E <source-class2>} 

class rels <source-classl> ~<virtual-class>/\ <source-class2> ~ <virtual-class> 
<source-classl> ~ <virtual-class>/\ <source-class2> ~ <virtual-class> 
<source-classl> is-a <virtual-class>/\ <source-class2> is-a <virtual-class> 

intersect syntax <virtual-class> := intersect(< source-classl>,< source-class2>) 
semantics type(< virtual-class>) := type(< source-classl >) LI type(< source-class2>) 

extent(<virtual-class>) := {o E 0 Io E <source-classl> 
/\ o E <source-cla.ss2>} 

class :rels <virtual-class> ~ <source-classl> /\ <virtual-class> ~ <source-class2> 
<virtual-class> ~ <source-cla.ssl> /\ <virtual-class> ~ <source-class2> 
<virtual-class> is-a <source-classl> fl. <virtual-class> is-a <source-cla.ss2> 

di ff syntax <virtual-class> := diff( <source-classl>,<source-class2>) 
semantics type(< virtual-class>) := type(< source-classl>) 

extent( <virtual-class>) := { o E 0 I o E <source-classl> 
/\ o !l <source-cla.ss2>} 

class rels <virtual-class> ~ < source-classl> 
<virtual-class> ~ <source-classl> 
<virtual-class> is-a < source-classl> 

Table 1: Derivation Operators: Syntax, Semantics and Class Relationships. 
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identifier. Its semantics are to refine the type description of the source class by adding to it the 
property functions listed in <prop-function-clefs>. All other property functions of the source 
class are preserved. Again, the set content of the virtual class is equal to the set content of the 
source class. 

Name Comps 

Height 

Width 

Name Comps2 
~-------,······· ········ 

_H_e_19.;..ht ___ .•• •• •• •• 
Width : {01, 02, 03, 04, 05} ~ 
------~ : Area •.. .,.• -------················ 

Comps2 = REFINE (Comps) 
by [Area := Height* Width]. 

Figure 4: An Example of the refine Operator. 

Example 4. In Figure 4, the refine operator is used in the following query to derive Comps2 
from Comps: Comps2 = refine {Area = Height * Width} for (Comps). We have ex­
tent(Comps2} = extent(Comps), i.e., Comps2 ~ Comps. The type of Comps2 has 
been extended by the new method Aera. Hence type(Comps) = [Name, Height, Width J and 
type(Comps2) = [Name, Height, Width, Area}, which together imply Comps2 ::S Comps. 
Comps2 is integrated into the global schema by placing Comps2 below Comps as direct sub­
class. 

The select operator is a set-manipulating operator that selects a subset of object in­
stances from a given set of objects - similar to the select operator of relational algebra [6]. It 
has the syntax "<virtual-class> =select from (<source-class>) where (<predicate>)" with 
<predicate> being some possibly complex function on the source class and its type descrip­
tion. Its semantics are to return a subset of object instances of the source class based on the 
evaluation of the associated predicate, namely, all object instances that satisfy the predicate 
are collected into the virtual class. 

Example 5. In Figure 5, the select operator is used in the query "Adders = select from 
(Comps) where {Plus in Comps.Ops)" to derive Adders from Comps. The AdderG class 
consists of a selected subset of object members from the Comps class, namely, all compo­
nents that implement the Plus operator. Thus Adders ~ Comps . . Also type(Adders) = 
type(Comps). The is-a relationship (Adders is-a Comps) has been added as indicated by 
the edge from Adders to Comps. 

Set operators manipulate both the type description and the set membership of their two 
source classes. A detailed analysis of these set operators for OODBs can be found in [18}. 
The semantics of the union operator are to return a set of object instances composed of the 
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Name 
Comps 

Num-Ops .. -
Ops 

Adders 
Name •••••• ••••••• ____ ___,,...• .. 

•• • • 
._.._N_um_-o ___ p_s_: {01, 02, 03} i 

• • __ o __ p_s ___ ·.... ..• 
•••• • •• •••······•• 

Adders =SELECT (Comps) 
where (Plus in Comps.Ops); 

Figure 5: An Example of the select Operator. 
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members of either or both of the source classes. The resulting type description is equal to the 
lowest common supertype of the two sources classes (Definition 4). 

Graph Constructs 
••·••·······•·•• 

Domain ••• ••• ..-----t { 01, 02, 03, C1, C2} •i 
• • •• •• ········ ······· 

Domain 
Domain 

CF-Construct 
DF-Constru 

get-OF-Graph 

GraphConstructs =UNION (DataFlow,ControlFlow) 

Figure 6: An Example of the union Operator. 

Example 6. In Figure 6, the union operator is used in the query ''GraphConstructs = 
union(l)ataFlow,ControlFlow)" to derive the virtual 
class Graph Constructs from the source classes DataFlow and ControlFlow. Then ex­
tent (Graph Constructs)= extent(l)ataFlow) U extent(ControlFlow) = {DI,D2,D3} 
U {Cl,C2} = {Dl,D2,D3,Cl,C2}. Hence DataFlow ~ GraphConstructs and Con­
trolFlow ~ GraphConstructs. Also type(GraphConstructs) = type(l)ataFlow) n 
type(ControlFlow) = [Domain, DF-Construct] n [Domain, CF-Construct, get-DP.· Graph 
] = [Domain}. Hence DataFlow :::5 GraphConstructs and ControlFlow :::5 GraphCon­
structs. The is-a relationships {l)ataFlow is-a GraphConstructs).and (ControlFlow is-a 
GraphConstructs) are indicated by the edges from DataFlow to GraphConstructs and 
from ControlFlow to GraphConstructs, respectively. 

The intersect operator returns a set of object instances that are members of both source 
classes. The type description of the resulting virtual class is equal to the greatest common 
subtype of the two sources classes (Definition 3). 
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RandomLoglcUnlts 
Comp-Type 

OF-Construe 

CF-Construct 

get-OF-Graph 

••• Comp-Type • .. 
•. OF-Construct 

{ 01, 02 } I .. 

: CF-Construct 11 .. 
••••••• ••••••.• • get-OF-Graph_. 

FexLayout 

Fexlayout = INTERSECT (DataPathUnits, RandomlogicUnits) 

Figure 7: An Example of the intersect Operator. 
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Example 1. In Figure 7, the intersect operator is used to derive the virtual class 
FexLayout from DataPathUnits and RandomLogicUnits using the query FexLayout 
= intersect(DataPathUnits,RandomLogicUnits). Then extent{FexLayoutJ = ex­
tent(DataPathUnits)n extent(RandomLogicUnits) = {01, 02,03} n {01, 02, 04, 05} 
= {01,02}. Hence FexLayout s:; DataPathUnits and FexLayout ~ RandomLogicU­
nits. Also type(FexLayout) = type(DataPathUnits) U type(llandomLogicUnits) = [ 
Comp-Type, DF-Construct JU [Comp-Type, CF-Construct, get-DF-Graph J = [Comp-Type, 
DP-Construct, CF-Construct, get-DF-Graph]. Hence FexLayout ~ DataPathUnits and 
FexLayout ~ RandomLogicUnits. The is-a relationships (FexLayout is-a DataPathU­
nits) and (FexLayout is-a RandomLogicUnits) are indicated by the edges from FexLayout 
to DataPathUnits and from FexLayout to RandomLogicUnits, respectively. 

Lastly, the difference operator returns a set of object instances that are members of the 
first but not of the second source class. The resulting type description is equal to the type 
description of the first source class. No subset, subtype or subclass relationships hold between 
the second source class and the virtual class. 

AL Us 
Get-Name 

Comp-Type 

Get-Name •••••••• . .. ....... 
Comp-Type ~. { 03, 04, 05 } : 

,.. -·· ................... 
AllOtherComps = DIFF (Components, ALUs) 

Get-Name 

Set-ALU-Type 
Get-ALU-Fcts 

Figure 8: An Example of the diff Operator. 

Example 8. In Figure 8, the cliff operator is used in the query "AllOtherComps = 
diff(Components,ALUs)" to derive AllOtherComps from Components that are not in 
ALUs. We have extent{AllOtherComps) = extent(Components) - extent(ALUs) = 
{01,02,03,04,05} - {01,02} = {03,04,05}. Thus AllOtherComps ~Components. 
Also type(AllOtherComps) = type(Components) = [Get-Name, Comp-Type J and thus 
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AllOtherComps j Components. The relationship (AllOtherComps is-a Components) 
has been added to Figure 8. 
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4 CLASS INTEGRATION: SUPPORTING A 
GLOBAL SCHEMA GRAPH 

4.1 Motivation 

Multi View supports the integration of virtual classes created for different view schemata into one 
comprehensive global schema. Class integration is concerned with finding the most appropriate 
location in the schema graph for a given virtual class with the term 'appropriate' meaning 
correct in terms of property inheritance and subset relationships between classes (Definition 
9). The derivation specification of a new class explicitly states some subsumption relationship 
between the source and the result class (as indicated in Section 3.2). For example, a virtual class 
created by the select operator is a subclass of its source class. We hence could place the result 
class of a selection as direct subclass of its source class. This placement is not semantically 
incorrect, but it results in an incomplete schema graph that does not capture all existing 
class relationships (Definition 9). Namely, there may be additional subsumption relationships 
between the derived class and other classes in the schema that are not directly derivable from 
the class derivation. It is the task of class integration to find these class relationships and to 
explicitly represent them in the schema graph. These ideas are illustrated with the example 
below (for which the class derivations used in Figure 9.a have been borrowed from ((1], pg. 
242). . 

Example 9. Figure 9.a depicts the specifications for deriving the virtual classes Adult, Mi­
nor, Senior, and Adolescent. Figure 9.a also depicts the resulting virtual class hierarchy 
that incorporates these four classes. This hierarchy that has been generated using the simplistic 
strategy of inferring the class placement directly from the definitions of the virtual classes [1}. 
In this case, the simple placement strategy did result in a valid class hierarchy (Definition 9 ). 
In Figure 9. b, we present alternative derivations for the semantically equivalent set of classes. 
Note that the simple placement strategy now generates a different virtual class hierarchy (Fig­
ure 9. b ). This virtual class hierarchy is still consistent in the sense that it does not represent 
any incorrect is-a relationships (Definition 9). On the other hand, it is not complete since 
some subclass relationships, like, for instance, the relationship (Senior is-a Adult), are not 
explicitly captured in the structure of the schema graph. Clearly, the schema graph in Figure 
9. b is less informative than the one in Figure 9. a. A classifier could determine these subclass 
relationships by comparing the class derivation predicates. ·For instance, predicate (Person /\ 
Age<21) of the class Minor clearly subsumes the predicate (Person/\ Age<21 /\ Age?:.13) of 
the class Adolescent. A complete classification of classes derived using the class derivations 
given in Figure 9. b would result in the schema graph shown in Figure 9. c. Note that the schema 
graph shown in Figure 9.c is identical to the one in Figure 9.a, with the exception of some of 
the class derivation predicates. 

With the above example we want to convey that our goal is complete classification (Figure 
9.c) rather than partial classification driven exclusively by the view-defining query (Figure 9.b). 

Explicit capture of class relationships between stored and derived classes in the form of a 
global schema graph brings numerous advantages. It is for instance useful for sharing property 
functions and object instances among classes without unnecessary duplication. Since virtual 
classes are defined in terms of existing classes, they often use property functions of these 
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Class Derivations: 

(1) class Adult := SELECT (P:Person) 
where (P.Age:>-=21) 

(2) class Minor:• SELECT (P:Person) 
where (P.Age<21) 

(3) class Senior :• SELECT (A:Adult) 
where (A.Age>-65) 

(4) class Adolescent :• SELECT (M:Minor) 
where (M.Age>-13) 
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(a) Determine Class Placement Directly from the Class Derivation. 

Class Derivations: 

(1) class Adult:"' SELECT (P:Person) 
where (P.Age>-21) 

(2) class Minor:• SELECT (P:Person) 
where (P.Age<21) 

(3) class Senior:= SELECT (P:Person) 
where (A.Age>-65) 

(4) class Adolescent:• SELECT (P:Person) 
where (P.Age<21 /\ P.Age>-13) 

(b) Determine Class Placement Directly from the Class Derivation. 

Class Derivations: 

( same derivation as b. ) 

(c) Use Subsumption Inferencing to Determine Final Class Placement 

Figure 9: Complete Classification Versus Partial Classification. 
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base classes in their type description. Type inheritance between base and virtual classes thus 
becomes an issue - and this is exactly what is supported by global schema integration. 

In addition, class integration serves data modeling purposes. Recall that one of the func­
tions of an object schema is to explicitly model class relationships rather than having to re­
compute these relationships, whenever needed. Class integration follows this philosophy by 
organizing the concepts and objects of the application domain in a systematic manner such 
that they are more easily comprehensible by the users of the system. 

Disadvantages of ignoring class integration would not only be the less informative class 
hierarchy but possibly also performance penalties. A known subclass relationship between two 
classes can be exploited by a query optimizer during query processing. For instance, if we 
know that C2 is a subclass of Cl then the union of the two classes Cl and C2 would be equal 
to Cl. In this example, computationally expensive query processing has been replaced by a 
simple check of the existence of a subclass relationship among two classes. Moreover, insertion 
of an object instance into a class Cl automatically implies that the instance is also inserted 
in all superclasses of Cl. If this class Cl is not placed at its optimal location (i.e., the lowest 
possible place in the schema graph), then the membership predicate of other classes in the class 
hierarchy would have to be checked to determine whether the new instance is also a member 
of that class. 

Last but not least, the comprehensive global schema graph is a necessary basis for the 
third subtask of Multi View, namely, for the formation of view schema graphs composed of both 
base and virtual classes. If the virtual classes are not integrated with the classes in the global 
schema, then a view schema would correspond to a collection of possibly 'unrelated' classes 
rather than a generalization schema graph as defined in Definition 14. 

4.2 Towards a Simple Classification Algorithm of Virtual Classes 

Classification is the process of taking a new [class] description and putting it where it belongs 
in the [class] hierarchy [20]. A class is in the "right place" if it is below all classes that subsume 
it and if it is above all classes that it subsumes. We thus need to define a boolean function 
subsumes() that given two classes Cl and C2 will determine whether the first subsumes the 
second: 

{ true 
subsumes( Cl, C2) = fail 

if Cl is - a C2 
otherwise 

Class Cl is said to subsume class C2 if and only if the set denoted by Cl necessarily 
includes the set denotes by C2. While exact details of the subsumes() function are dependent 
on the object model, we characterize its general features [20]. The subsumes(Cl,C2) function 
returns true if and only if the following holds: 

• type description (both defined and inherited properties) 

o For each property function pl defined for Cl, there must be an equivalent function p2 
defined for C2, where a property function could be a storable value, an object pointer, 
or a complex method. Since we assume for simplicity that property functions have a 
unique property identifier, two property functions are determined to be equivalent by 
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comparing these identifiers rather than by comparing the actual function body, the 
later being a potentially undecidable problem. 

• declarative constraints on property functions 

o The domain for each function pl defined for Cl must subsume the domain of the 
equivalent function p2 defined for C2. 

o Constraints for a property function p 1 defined for Cl must include the constraints 
for the equivalent function p2 defined for C2, where constraints could be cardinality 
restrictions, access modes, and the like. 

• membership constraints 

o Membership constraints are predicates that restrict the set content of a class, i.e., this 
could be a subset-predicate for base classes or a derivation query for virtual classes. 

Since a comparison of arbitrary expressions (possibly involving functions) is in gen­
eral undecidable, one would either have to limit the expressiveness of the derivation 
specification such as to be computable, or, we could require a canonical predicate 
expression that can be broken into decidable subexpressions. In the later case, we 
would base the classification on the comparison of this partial information. 

Clearly, more work is needed in each of these three issues. Details of a subsumes() function 
ror the KL-ONE knowledge representation schema are for instance given in [20]. It would 
of course also be interesting to develop efficient subsumes() functions for some of the newly 
emerging object-oriented data models. However, this investigation is beyond the scope of this 
paper. 

In general, the classification problem is not decidable since it may involve the comparison 
of arbitrary functions and predicates. Therefore, our classification algorithm is sound but not 
complete. The subsumes(} function being sound means that if the function returns true for a 
pair of classes then the two classes are necessarily is-a related. Put differently, any subsumption 
relationship discovered by the classifier is legitimate. Second, the subsumes{) function is total, 
i.e., it always terminates and returns either true or fail. However, the subsumes() function is 
not complete, i.e., the function is not guaranteed to discover a relationship between two classes 
even if one exists. In other words, we cannot guarantee that all subsumption relationships are 
discovered. For instance, if two classes have property functions with equivalent semantics but 
different property identifiers, then the subsumes() function ~ill fail even though these two classes 
may indeed by equivalent. In the worst case, if some is-a relationship is not discovered, then the 
virtual class is placed higher in the class hierarchy than would theoretically be possible. This 
would still be a correct but possibly not the most informative class arrangement. For example, 
Figure 9.b represents the result of such a partial classification whereas Figure 9.c shows the 
result of a complete classification. 

Once we have developed the subsumes(} function for a particular object model, then the 
basic algorithm for finding the correct position for a class VC in a schema G=(V,E) can be 
summarized as follows. First, the classifier determines the subsumption relationships between 
VC and all other classes in the global schema using the subsumes{) function. VC then is placed 
below all its direct parent classes and above all its direct children classes (Definition 9). As we 
will show in later sections, this simplified classification algorithm does not correctly account 
for the type inheritance underlying the schema graph. In fact, we will describe two problems, 
called the type inheritance mismatch problem and the is-a incompatibility problem, that this 



Class Integration Elke A. Rundensteiner May 28, 1992 28 

simple class integration algorithm does not properly address. In the remainder of the paper, 
we then present an algorithm for automatic classification that solves both problems. 

4.3 Manual Placement Versus Automatic Classification 

There are two obvious but not necessarily mutually exclusive approaches towards global schema 
integration: 

1. we can require the view definer to manually place a newly defined virtual class into the 
global schema graph, and 

2. we could develop an algorithm for automatic classification. 

Clearly, class integration is required by the view methodology rather than being of direct 
modeling interest to the view definer. The view definer would have to be knowledgeable about 
all classes in the global schema, even those that are not related to his or her view schema, 
in order to correctly perform class integration. Also, as the size of the schema graph grows, 
class integration becomes a more and more involved process. For these reasons, we do not 
want to force the view definer to have to take care of this task. Instead, we suggest automatic 
classification. This would decrease the view creation time, and more importantly, it may allow 
a non-database expert to specify an application-specific view on his or her own. 

Automatic class integration does not only simplify the task of the view definer, but it also 
prevents the introduction of inconsistencies into the schema. A view definer could easily place a 
class into an incorrect location or insert incorrect generalization arcs. A class VC is for instance 
placed incorrectly, if it is below a class C that is its subtype and/or its subset. The former 
would mean that the schema graph would incorrectly capture the fact that VC inherits property 
functions from C. The later, which corresponds to a mistake in set membership inclusion, would 
incorrectly represent VC as being a subset of C. A consequence of these errors would be an 

. inconsistent global schema graph in terms of property inheritance and subset relationships 
- and, since view schemata are defined on top of the global schema, also inconsistent view 
schemata. This inconsistency would not only confuse the user of the database system but it 
may also result in inefficiencies in terms of query processing and it may potentially lead to 
incorrect results. 

Besides the assertion of blatantly incorrect is-a relationships, there is also the possibility 
of adding redundant or omitting required class relationships (Definition 9). If the view definer 
omits is-a arcs that are required to describe the complete semantics of the view schema, then this 
would leave some of the type inheritance that is actually taking place unexposed. If the view 
definer inserts redundant is-a arcs, then this may obscure the structure of the schema graph and 
it may result in inefficient query processing. The manual classification approach thus requires 
the development of a consistency checker that verifies the correctness of the user-inserted classes 
and arcs. This consistency checker would be equivalent in flavor (and in complexity) to the 
automatic classifier. Therefore we have opted to automate this process of classification. This 
decision does not necessarily prevent manual specification, if so desired. In fact, the automatic 
classifier could be used to guide the user during the view specification process, or, it could serve 
as basis of a consistency checker for manually-specified class placement. 



Class Integration Elke A. Rundensteiner May 28, 1992 29 

To summarize, automatic classification provides a means of enforcing semantics and of 
checking for consistency of the class hierarchy. Therefore, automatic classification is a superior 
alternative to manual classification of the taxonomy. 
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5 THE CLASS INTEGRATION PROBLEMS 

In Section 4 we have described a simple solution approach to class integration that has been 
advocated repeatedly in the literature [20, 24, 1]. In this section we will show that this simple 
classification approach does not appropriately handle classification in all cases. Based on our 
distinction between the type and the set content of a class as two independent concepts (18], we 
were able to characterize the two problems that any class integration algorithm has to address: 

1. inheritance mismatch problem in the type hierarchy, and 

2. the problem of composing is-a incompatible subset and subtype hierarchies in.to one class 
hierarchy. 

5.1 The Type Inheritance Problem 

The first problem is concerned with constructing a type hierarchy that assures the proper 
inheritance of property functions after the insertion of new classes. As we will demonstrate 
below, in some cases there may be no correct placement for a class C in a given schema graph 
G. In such situations, we have to reorganize the schema graph such as to allow for the insertion 
of VC, while preserving the type inheritance for all existing classes. This problem is best 
explained with an example as is done in the following. 

Example 10. This example explains the type hierarchy mismatch problem based on Figure 10. 
Figure 10. a depicts the schema graph G and the virtual class VG derived by the query "VG 

:= hide {b] from C4." Clearly, VC is a supertype (and superclass) of both C4 and C3, and 

therefore must be placed above C3 and C4 in the class hierarchy. We cannot determine any 

subtype relationships between C2 and VG, i.e., neither {C2 ::::S VG) nor (VG ::::S C2} hold. This 
is so because even though C2 and VG share some common properties, each of them also has 
properties that are not defined for the other. Therefore, VG can be placed neither below nor 

above C2 in G. The same is true for Cl and VG. As a consequence, there is no correct location 

for VG in G. 

In Figure 10. b, we present a solution to this problem. It is based on the idea of integrating 

intermediate classes into G that filter out the properties that are common to the existing classes 
in G and to the new class VG, so that they can be inherited by both. The intermediate class 

gl, for instance, filters out the property function "a" so that it can be inherited by both the base 

class Cl and by VG. As ehown in Figure 10. b, this extended class hierarchy now allows for the 

consistent integration of VG into G. 

In the example above, we assume that the set contents of all c.lasses are identical, i.e., 
content(Cl) = content(C2) = content(C3) = content(C4). This then clearly shows that the 
type inheritance mismatch is a problem of the type hierarchy alone - not dependent on the 
characteristics of the set hierarchy. In a later section, we will present a general solution to this 
problem based on work in type lattice classification. 
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VC := hide [b] from C4. 

type(VC) := { a, c, d } 

content(VC):=content(C4). 

(a) Problem: No proper place to integrate VC into G . 

... ,,, 
/ ··. .,.a 
~.92 .~ ... ,,. ,, ... 

.... .... ___ a 
f vc ·,___....c 
..... ... . ..d 

(b) Solution: Create intermediate classes for preserving type inheritance. 

Figure 10: The Type Inheritance Problem. 

31 
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5.2 The is-a Incompatibility Problem 

The second class integration problem results from the fact that we are combining the subset 
and the subtype relationships among classes into one relationship, called the is-a or subclass 
relationship. Differences between the subtype and the subset hierarchies underlying the class 
hierarchy may lead to conflicts when trying to compose these two hierarchies into one graph. 
More precisely, if a class's set content is lower in the corresponding set hierarchy and the class's 
type is higher in the corresponding type hierarchy, then there is a conflict in where to place 
the class in the combined class hierarchy. We can again solve this problem by reorganizing the 
schema graph such as to allow for the proper insertion of VC, while preserving the semantics 
of all existing classes. Below we explain the is-a incompatibility problem based on an example. 

Example 11. This example explains the problem caused by the incompatibility between subtype 

and subset relationships underlying a class hierarchy based on Figure 11. For this example, we 
assume that the type and the set content of a class Ci are denoted by the symbols T; and St, 
respectively. Figure 11. a depicts the schema graph G and the virtual class VG with content( VG) 

:= content(G2) U content(G3) = 52 U 53 and type(VG) := type(G2) U type(C3) = T2 LI T3 
= [x, a, b}. When integrating VG into G, we must first determine the subtype and the subset 
relationships among all classes. As shown in Figure 11.b2, type(VG) is a subtype of T2 and 

of T3 and therefore must be placed below both of them in the subtype hierarchy. On the other 

hand, as shown in Figure 11.bl, content(VG) is a superset of S2 and of S3 and therefore must 
be placed above both of them in the subset hierarchy. This clearly represents a conflict since in 

the final class hierarchy VG needs to be above G2 and G3 as dictated by the subset relationships 

and below G2 and C3 as dictated by the subtype relationships. As a consequence, there is no 
correct location for VG in G. We say that VG is is-a incompatible with respect to G. 

In Figure 11. c, we present a solution to the is-a incompatibility problem based on the 

creation of additional intermediate classes. For this example, we create the two intermediate 

classes C2 ' and C3 '. Both C2 ' and C3 ' have the types of their respective source classes C2 and 

C3 , such that VG can correctly inherit their combined type [x, a, bj. On the other hand, C2' and 
C3 ' both have a larger set content (namely, their set content is equal to the one of VG), so that 

VG can indeed be placed below them in the class hierarchy without violating the set hierarchy 

constraints. 

Note that in Example 11, the problem for class integration is not caused by the type 
hierarchy itself, but by composing a subclass hierarchy out of the subtype and the subset 
hierarchy (see Figures 11.bl and 11.b2). If we assume that the set contents of all classes in 
Figure 11 were identical, then a correct position can be found for VC without intermediate class 
creation. In this case, the resulting class hierarchy would be equal to the type hierarchy graph 
shown in Figure 11.bl. In the remainder of this work, we present a class integration algorithm 
that solves the two problems characterized in this section. 
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x 

@==:~ 
contents(VC) :=S2 U 83. 

~ type(VC) :== [x, a, b]. 

contents(C2):=S2. contents(C3):_=S3. 

(a) Integrating the is-a incompatible class VC into G. 

T1 := [x] 

(b1) Subtype hierarchy. (b2) Subset hierarchy. 

(b) The Incompatibility Problem. 

content(C2'):• content(C3'):"" 
82 u S3. ' S2 u $3. 

( c2;·r---x t"c. 3"·;··r--- x 
· .. ~a · .. :--b 

ro~~~ ..... ( ..... 

... .. .-x 
( VC}--a 
·· .......... ·-b 

content(VC):=S2 U 83. 

(c) Solving the ls-a Incompatibility Problem by Creating Intermediate Classes. 

Figure 11: The Is-a Incompatibility Problem. 
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6 SOLVING THE TYPE INHERITANCE PROBLEM 

In this section, we present an approach to class integration that solves the type inheritance 
problem introduced in Section 5. This problem refers to the fact that in general there is 
not always a placement for a class C in a given schema graph G that results in correct type 
inheritance (see also Example 10). We thus are interested in a class hierarchy structure where 
the correct placement of a new class can always be enforced. Our solution to this problem is 
based on type lattice theory [4, 14]. More precisely, we present an algorithm that solves the 
problem by inserting additional intermediate classes that reorganize the schema graph such as 
to allow for the insertion of VC, while preserving the type inheritance for all existing classes. 
In the following, we assume that there are no conflicts between the subset and the subtype 
hierarchies underlying the class generalization graph. This problem of is-a incompatibility 
introduced in Section 5 will be dealt with in Section 9. 

6.1 The Type Closure and Class Closure Properties 

In our object model (as well as in most others), a property is defined exactly once and, if used 
elsewhere, it is inherited from this original definition class. A direct consequence of this is the 
fact that if two types t1 and t2 share some common properties, then they must have ultimately 
inherited them from the same type. As defined in Definition 4, this lowest common supertype 
of tl and t2 must have all attributes common to t1 and t2 and no others. We then define the 
type closure property of a type hierarchy as stated below. 

--·~ax} Ao .ay 
_.....:g~}A1' 

lowest common supertype 
type t3 = t1 nt2 

Figure 12: Lowest Common Supertype of Two Types in a Type Hierarchy. 

Definition 15. [Type Closure) A type specialization hierarchy T is said to be closed under 

'41" if and only if for any two types tl and t2 in T, there exists a third type t in T which has 

exactly all properties that are common to t1 and t2, i.e., t = tl n t2 with the '41" function 

defined in Definition 4. 

Since a class hierarchy G has an underlying type hierarchy T, we now extend Definition 
15 from types to classes. 

Definition 16. [Class Hierarchy Closure) A class hierarchy G is said to be closed under n 
if and only if for any two classes Cl and C2, there must exist a third class C3 in G with 
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1. type(C3) = type(Cl) n type(C2) and 

2. content(C3) 2 contents(Cl) U contents(C2). 

Definition 16 is a direct consequence of Definition 15. By Definition 15, for any two classes 
Cl and C2, there must exist a third class C3 in G with the type description of C3 equal to the 
lowest common supertype of type( Cl) and type(C2). Since C3 is a supertype of both CJ and 
C2, C3 must be a superclass of Cl and C2 in the class hierarchy. This then implies the second 
condition; namely, the subset relationships CS 2 Cl and C3 2 C2 imply C3 2 Cl U and C2. 
If two types (classes) don't share any common attributes, then their common lowest supertype 
(superclass) is the general root type (class) of the hierarchy. It is fairly easy to see that if a 
class hierarchy is closed then there is no problem with the type inheritance. 

For the remainder of this work, we assume that the type hierarchy and the class hierarchy 
are closed under the "n" operator. We then will show that the lattice structure of the type 
hierarchy and of the class hierarchy can be maintained when inserting new classes. Put dif­
ferently, we will show how to assure correct type inheritance when inserting new classes. This 
approach is effective in the design of views for complex applications, since it is generally difficult 
to proceed linearly top-down (by first introducing the most general types and then repeatedly 
specializing them into several subtypes, etc.) or bottom-up (by introducing the most specific 
types and then repeatedly finding generalizations of existing types). On the contrary, when a 
new virtual class is being specified for a view schema, then the view definer has no knowledge 
about which (super)-classes will be required by other views later on. It therefore is more natu­
ral to introduce types at the intermediate level and to either specialize downward or generalize 
upward, whenever needed. Intermediate types generated by the system that are not of interest 
to the view definer can be dropped (hidden) at the end of the view definition process, while all 
others are kept explicitly. 

6.2 Using the Closure Property for Class Integration 

In this section, we want to determine how to keep a schema graph G closed after the insertion of 
a new virtual class VC, i.e., how to maintain its lattice structure. This is done by coercing the 
generation of the lowest common superclasses required by the closure property of the schema 
graph (Definitions 15 and 16). 

We shortly explain the requirements of the closure property on class integration using an 
example before presenting a more formal treatment. In Figure 13.a, we depict a closed schema 
graph G and a virtual class VC to be inserted into G. Figure 13.b then demonstrates an attempt 
to integrate VC into G. Note that the resulting schema graph G' is not necessarily closed, since 
the lowest common superclasses g; for the virtual class VC and each of the existing classes C; 
in G may not exist in G'. Hence, in order for G' to be closed, we have to insert all required 
lowest common superclasses. In the example in Figure 13.c, for instance, we had to insert the 
lowest common superclasses g1 = C3 n VC and g2 = C7 n VC. On the other hand, we did 
not have to insert the lowest common superclass of C2 and VC, since C2 n VC is equal to Cl 
which obviously already exiSts in G. 
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G +i 

(a) A closed schema graph G. 

LCS= 
lowest common superclass 

(b) G' = G U VC is no longer a closed schema. 

LCS of C2 and vc 
(already exists) 

LCS of C3 and VC 
(must be created) ):t\ .. 

C3 • g2 .. , __ LCS of C7 and VC 
• ., ... ___ (must be created) 

• vlrtual class VC 

(c) Generating hidden classes to make G' a closed schema graph. 

Figure 13: The Necessity of Creating Intermediate Classes. 
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Lemma 1. [Necessity] Given a closed schema graph G=(V,E} and a new class VG that is 
to be integrated into G. Assume that the result of this integration is G '=(V',E'). By Definition 
15,. the following types ti must exist in G ': 

('/ti E G)(3ti E G')(ti =ti ntype(VC)) 

in order for G' to be closed. 

By Definition 16, the following classes gi must exist in G': 

('r/Ci E G)(3gi E G'}(type(gi) = type(Ci n VG) /\ content(gi) ::) content(C;) U 
content(VC)). 

in order for G' to be closed. 

Proof: The first part of Lemma 1 follows directly from Definition 15, which states that for 
any pair of types tl and t2 in G, their lowest common supertype t = tl n t2 must also exist 
in G. As a matter of course, this condition must hold for all pairs consisting of VC and any 
of the existing types. The second part of Lemma 1 follows directly from Definition 16, which 
states that for every pair of classes Cl and C2 in G their lowest common superclass C3 must 
also exist in G. q.e.d. 

Lemma 1 indicates the necessity of certain types (classes) to be created, when inserting 
a new class VC into a schema G. The creation of these new classes g; =Ci n VG with C; E G 
may recursively cause the creation of additional classes, namely, the lowest common superclasses 
defined by (gi = C; n g;)(VC; E G). Missikoff and Scholl [13] prove 

that the first set of types g; as specified in Lemma 1 is sufficient to guarantee the closure 
of the resulting type hierarchy. This work is directly applicable to our research, and as shown 
below we extend this sufficiency criteria from the type hierarchy to the class hierarchy. 

Lemma 2. [Sufficiency for Types] Given a closed type hierarchy TG=(TV, TE) and a new 
type tvc to be integrated into TG. We denote the result of this integration by TG'=(TV', TE'). 
Then the integration of the types t~ into TG' defined by 

GG = {t~ I t~ = t; n tvc and t; E TG } 

and 

TV'= TV U GG U tvc 

will result in a closed type hierarchy TG'=(TV', TE'}. 

Lemma 2 states that integrating the newly generated types t~ into G does not cause the 
generation of additional new types. It indicates that the types t~ obtained by the first iteration 
are sufficient for assuring the closure of the resulting schema graph TG'. In particular, it 
suggests that the computation of the new types t~ can be done in a single pass - without 
recursive iteration over the newly generated types ti. The proof for Lemma 2 can be found in 
[13], and thus is not repeated here. 



Class Integration Elke A. Rundensteiner May 28, 1992 38 

We are interested in extending this result from the type hierarchy to the class hierarchy. 
Note we now deal with a class, which is a two-facet concept consisting of both an associated 
type and a set content. We are hence concerned with two tasks: First, the adjustment of 
the underlying type hierarchy such as to make it closed, and second, the determination of the 
correct set contents for these newly generated classes g; such as to maintain the consistency of 
the schema graph. 

Lemma 3. [Sufficiency for Classes) Given a closed schema graph G=(V,E) and a new class 
VG to be integrated into G (Definition 15). The result of this integration defined by 

V'=VU VCU GG 

with 

GG = {g; I g; = C; n VG and content(g;)=content(C; U VG) and C; E G } 

represents a closed schema graph G'=(V',E'). 

Proof: We divide the proof into the following three cases: (a) both classes in V, (b) one class 
in V and one in GG, and ( c) both classes in GG. 

case a. We show that for C; EV and Ci E V, the class C; n C; already exists in V'. 

This is true by assumption, since G=(V ,E) being a closed schema graph implies that C; n Cj 
in V. And, V' is a superset of V. 

case b. We show that for g; E GG and C; E V, the class g; n Cj exists in V'. 

g; n C; 
= ( C; n v C) n C; 
= (VCnC;)nC; 
= v c n ( C; n Ci) 
= vcnck 
= g,. EV' 

by definition of GG 
by commutativity of n 
by associativity of n 
by G closed, 3Ck = C; n Ci EV 
by definition of GG 

This demonstrates that the newly generated classes g; do not cause the generation of new 
classes when combining them with existing classes C;, since the classes g; n C; are already in 
GG. 

case c. We show that for g; E GG and g; E GG, the class g; n gi already exists in V'. 

g; no; 
= (C; n VC) n (C; n VC) 
= (VCnVC)n(C;nC;) 
= v c n ( C; n ci) 
= vcnc,.) 
= g,. EV' 

by definition of GG 
by commutativity and associativity of n 
by idempotence of n 
by G closed, 3C,. = C; n C; E V 
by definition of GG 

This demonstrates that newly generated classes g; do not cause the generation of new 
classes when combining them with other newly generated classes g;, since the classes g; n gi 

are already in V'. 

The three cases together then prove that G' is closed. q.e.d. 
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Lemma 3 states that the computation of the intermediate classes g; required for the closure 
of the schema graph G' can be done in a single pass - without recursive iteration over the newly 
generated types g;. 

6.3 Minimizing the Generation of Intermediate Classes 

Next, we discuss how to limit the number of intermediate classes g; generated for assuring the 
closure of a schema graph after class integration. This work is again based on [13]. 

Definition 17. Given a type hierarchy TG=(TV, TE) and a new type tvc to be integrated into 
TG. Let =tvc be an equivalence relationship defined by 

{Vt;, t; E TV)((t; =tvc t;) ~ (t; n tvc = t; n tvc)). 

Also we define the set of required lowest common supertypes in G with respect to =tvc by 

GG ={ti I ti= tin tvc t\ t; E G } 

We divide the set of types TV of TG into equivalence groups G; for i = 1, ... , jGGI with 

. G; = {t; I ((tvc n t;) = tD t\ (t; E TV)} 

with ti E GG some fixed type per group G;. 

Definition 17 defines two types to be equivalent with respect to VC if and only if both 
types have the same lowest common supertype with respect to VC. An equivalence group G; 
then is composed of all types t; that have the same lowest common supertype ti with respect 
to VC. 

Theorem 1. Given a closed type hierarchy TG=(TV, TE) and a new type tvc to be integrated 
into TG. Let { G;} denote the set of equivalence groups of G with respect to =tvc. For each 
equivalence group Gi, there is one type t; E G; that is minimal and unique in G;. 

The proof of correctness for Theorem 1 can be found in [13]. For a type t; in Gi to be 
minimal means that it is a supertype of all other types in the equivalence group G;. ·Fort; in 
G; to be unique and minimal means that it is the only type that is a supertype of all other 
types in G;, i.e., it is root type of the subgraph representing G;. We denote this unique and 
minimal member t; of G; by rep( Gi). Next, we extend Definition 17 and Theorem 1 from 
types to classes. 

Definition 18. Given a schema graph G=(V,E) and a new class VG to be integrated into G. 
Let :=vc be an equivalence relationship defined by 

{VG;, G; E V)((C; =:vc G;) ~ (type(G; n VG)= type(G; n VG))). 

Also we define the set of required lowest common supertypes in G with respect to =vc by 

GG = {t; It;= type(G; n VG) t\ G; E G} 
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We divide the set of classes V of G into equivalence groups Gi for i = 1, .. ., IGGI with 

G; ={Ci EV I (type(VC n Ci)= t;) /\(Ci E V)} 

with t; some fixed type per group G;. 

Theorem 2. Given a closed schema graph G=(V,E) and a new class VG to be integrated into 
G. Let { G;} denote the set of equivalence groups of G with respect to =:vc. For each equivalence 
group G;, there is one member class Ci E G; that is minimal and unique in Gi· 

The proof of correctness for Theorem 2 can be directly derived from Theorem 1, and thus 
is omitted here. For a class Ci to be minimal in Gi means that it is a supertype and a superset 
of all other classes in the equivalence group G;. For C; in G; to be unique and minimal means 
that it is the only class that is a superclass of all other classes in G;, i.e., it is root class of the 
subgraph representing G;. We denote this unique and minimal member C; of Gi by rep(Gi)· 

Assumption: 

type(VC)= [a, b, x]. 
Ci= rep(Gi) 

Figure 14: Partitioning of G Using the Equivalence Relation =tvc. 

Example 12. In this example, we explain the concepts introduced in Theorems 1 and 2 based 
on Figure Lf. In Figure 14, the two classes C; and C1c are equivalent with respect to VG, since 
both have the same lowest common supertype [a,b]: type(Ci n VG)= [a,b} n [a,b,xj = [a,b} and 
type(C1c n VG) = {a, b, c} n [a, b,x} = {a, b}. All classes with this same lowest common supertype 
are equivalent and thus form an equivalence group. For instance, the classes C;, C1, C1c, Cn, and 
C; have the same lowest common supertype [a,b}, and they form the equivalence group G;. The 
class Ki does not belong to the equivalence group G;, because type(Kjn VG)= [a,b,x} :f [a,b} 
= type(rep(G;)). 

It is straightforward to see that the equivalence function =vc partitions G into a set of 
non-overlapping subgraphs G;. This is so since for all C; E V, C; n VG is equal to exactly one 
type t;. This type t; then determines the membership of C; in one and only one group G;. 
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Lemma 4. Given a closed schema graph G =(V,E} and a class VG that is to be integrated into 
G. Then the result of this integration defined by 

V'=VU VGU GG 

and 

GG = {g; I type(g;) = type(rep(G;) n VG) and 

(content(g;) = content(rep(G;)) U content(VG))3 and 

(G; an equivalence group in G with respect to =vc) }. 

corresponds to a closed schema graph G'=(V',E'). 

Proof: By Lemma 3, the following intermediate classes Ui must exist in G (or must be created 
in G'): 

('VGi E G)(3g; E G') (type(g;) 
content(VG)). 

type( G; n VG) and content(g;) :J content( C;) U 

By Definition 18, all classes in an equivalence group Gi have the same lowest common 
supertype t; with respect to VC. Therefore, we only need to create one intermediate class g; 
for each equivalence group G;. More precisely, the following intermediate classes g; must be 
created: 

('VG; E G)(3g; E G') (type(gi) =type( rep( Ci) n VG) and content(g;) = content(rep(G;) U 
VG)). 

q.e.d. 

Lemma 5. Given a closed schema graph G =(V,E) and a class VG that is to be integrated 
into G. Assume that this integration of VG into G forces the creation of intermediate classes 
GG = { gi I i = 1, ... , m }. If an intermediate class g; E GG already exists in G, then g; is a 
member of the equivalence group G; of G with ('VGi E G;)(type(C; n VG)= type(g;)). In fact, 

the type of gi would be equal to the type of rep(Gi)· 

Proof: Lemma 5 can be explained as follows. g; E GG means that g; is a lowest common 
superclass for some grou;i G;. For all classes G; in G;, type(G; n VG) = type(gi)· This 
observation together (g; E G) imply that g; E G;. Obviously, g; corresponds to the smallest 
type in G;. Hence, type(g;)=type(rep(G;)). 

q.e.d. 

3 When dealing with an i6-a. compatible schema graph, then VC being a subtype of these classes would also 
be a subset ofrep( G; ). Hence, content( rep( G;)) U content(V G) == content( rep( G;)) 
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From Lemma 5 we can conclude that the existence of a class C in G with a type equal 
to g;'s type can be determined by checking whether type(rep(Gi))=type(C) for each Gi of G. 
Hence, we can assure that if an intermediate class Ui E GG exists in G, then we can easily find 
it and thus won't unnecessarily create redundant ones. 

Next, we show that all classes that are members of the same equivalence group Gi corre­
spond to a connected subgraph of G with Ci=rep(G;) the root of the subgraph. 

Theorem 3. Given a schema graph G={V,E) and a new class VG to be integrated into G. For 
each equivalence group Gi of G, the classes C; E Gi form a connected subgraph of G. More 
formally, for all C; E G;, all classes C.,. E V with (C; is-a * C1c) and (C1c is-a * rep{Gi)) must 
also be members of Gi. 

. . . . . . . 
. . 
. . . . . 

. . . . . . . 

equivalence group Gi ....... ········-~ . . . . 
.-.-· c· . ·.. Ci=rep(Gi) 

... : I . . . . . . . ......... ., 
---. ... . Ck in Gi? 

... · . · . . 
:"t 111I111 I II 11 t• 

"I I I I 0 .. ,·· ••• 

•1 I I I I I I I ................ 

. . Cj in Gi . . . . . . . . ................. 
Figure 15: An Equivalence Group G; Forms a. Connected Subgraph of G. 

Proof {By contradiction): By Theorem 2, for all C; E G;, (C; is-a* rep(G;)) holds because 
rep(G;) is minimal in G;. In other words, ea.ch class C; E G; is a. subclass of the unique 
representative rep( G;) of G;. Next, we show that if there is a. class C'/c between C; E G; and 
rep( G;), then C'/c E G;. The argument below is based on the situation depicted in Figure 15. 

Assumption: Let C1c E. V be a class with (C; is-a* C1c) and (C1c is-a* rep(G;)) and C1c rf. 
G;. 

(a) (C; is-a* C1c) implies (C; ::::; Ck)· And (C; ::::; C'/c) and (type(C; n VC)=type(g;)) 
imply ((Ck n VG) t g;). 

(b) (C1c is-a* rep(G;)) implies (Ck::::; rep(Gi)). And (C1c::::; rep(Gi)) and (type(rep(G;) n 
VC)=type(g;)) imply ((C1c n VG)~ Ui)· 

(c) By (a) and (b), we have ((C1c n VG) ::::; g;) and ((C1c n VG) t g;). This then implies 
(( C1c n VG) = g;). We thus have shown C1c to be a member of the equivalence group G;. This 
is a contraction to the assumption C1c rf. G;. q.e.d. 
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6.4 Interconnecting Intermediate Classes 

Let f() denote the function defined by f(t;) = (t; n VG) = g;. Then, the reverse function 
1-1() is defined by 1- 1(g;) = t; with t; the canonical representative of the group Gi. Lattice 
properties that lead to the interconnection of these intermediate classes are discussed next 
based on ([13], Lemma 4.4 and Theorem 4.2). 

Definition 19. Given a schema graph G=(V,E) and a class VG to be inserted into G. By 
Theorem 3, the equivalence relation =vc defines a partition GG of equivalence groups G; on G 
of size m. We define G*=(V*,E*) to be a schema graph with V*=GG and E* the set of edges 

e=< Gi, G; > with G;, G; E V* and (3Ci E G;) (:lC; E G;){(C; is-ad C;) in G). 

G* corresponds to the set of class representatives modulo =vc. Put differently, G* is a 
hypergraph on G since each node in G* is equal to an equivalence group G;. For C;, G; E G, 
we say that C; is a parent* of C;, denoted by parent*(Gi)=G;, if G;=rep(G;) and there is an 
edge e=< G;, G; > in G*. In [13], it is shown that G* is isomorphic to the graph GG defined 
above. 

Theorem 4. Given a closed schema graph G=(V,E) and a class VG to be inserted into G. 
The integration of a class G with type(C)=type{VC) and arbitrary set content results in a 
closed schema graph G'=(V',E') if we add the set of classes GG = {g; } as defined in Lemma 
1. In addition, the following is-a edges must be established: 

1. Each class g; E GG has a single child in G which is the canonical representative of the 
group to which f- 1 (gi) belongs. Put differently, we add the edge e = <rep(G;),g;> between 
each rep(G;) and the corresponding generated class g;=rep(G;) n VG. 

2. For all g;, g; in GG, we add the edge e = <g;,g;> if and only if C;=rep(G;) and 
G; =rep(G;) and G; is a direct parent* of G; in G*. 

Note that the creation of intermediate classes g; coerced by the type lattice problem is 
driven by the closure requirements of the type hierarchy. No requirements are made on the 
set content of these classes, since these types are hidden and not necessarily of interest to the 
database user. Therefore, we can specify the set aspect of these new intermediate classes as 
needed. By setting the content of the new intermediate class g; equal to the content of the 
representative class rep(G;) of G; U VC, we assure that g; is the superset of all classes in G;. 
By Theorem 2, g; for G; is also the supertype of all classes in G;. This implies that g; is indeed 
a superclass of all classes ill G;. Hence, the largest class in G;, namely, rep(G;) should be the 
direct child of g;, which is stated in part 1 of Theorem 4. By part 2 of Theorem 4, two newly 
generated types g; and g; are only subtypes of one another if the corresponding representative 
classes C; and G; of the equivalence groups G; and G; are also subtypes of one another. lf C; 
and G; are subtypes of one another in G then they must also be subsets of one another. Since 
the contents of g; and g; are equal to the contents of C; and C;, we can imply that g; is a 
subclass of g;. This then justifies part two of Theorem 4. A more detailed proof of Theorem 4 
with respect to the type hierarchy can be found in [13]. 
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(a) Partitioning of G using the Equivalence Relationship. 

••• ····~·· •• ~chema graph G 
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(c) The final schema graph G with the type hierarchy prepared for the Insertion of VC. 

Figure 16: Connecting Intermediate Classes with G. 
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Example 13. Figure 16.a shows a schema graph G with a partition induced by the class VG. 

The partition consists of the five equivalence groups G;, G;, G,., G1, and Gm, which have the 
representatives C;, G;, G,., C1, and Cm, respectively. The matching hypergraph G* of G, in 
which each node in G* corresponds to an equivalence group Gi in G, is depicted in Figure 16.b. 
Figure 16. c then shows the schema graph that results from integrating a class G with type(G) = 
type(VG) into G. First, for each equivalence group G; in G, we create an intermediate class g; 
as shown on the right hand side of Figure 16.c. By Theorem .4,a, each representative class Ci 
of G; is connected to the respective class g; =C;nVC. This is depicted by the dark arrows going 
from the left to the right of Figure 16.c. By Theorem 4.b, the newly generated classes g; are 
connected with one another as dictated by the relationships of the corresponding representatives 

classes C; (as shown in Figure 16.b}. For instance, the edge (g; is-a g;) is inserted into GG 
because the relationship (G; is-a * G;) holds in G. 

6.5 Class Integration After Type Preparation 

In previous sections, we have demonstrated how to prepare a schema graph hierarchy for the 
insertion of a new class VC. Next, we need to handle the actual integration of VC into G. 
Contrary to the flexibility in arbitrary determining the set content of the intermediate classes 
g; generated for type hierarchy preparation, the type and the set content of the virtual class VC 
are predetermined. Hence, the integration of the class VC itself must obey both the subtype 
and the subset relationships of VC with all other classes in the schema graph. The integration 
of VC into G can be characterized as follows. 

Lemma 6. Given a closed schema graph G=(V,E} and a class VG to be integrated into G. The 
integration of a class VG into G results in a closed schema graph G'=(V',E') if 

1. first, we extend the class hierarchy G to include type(VG) using Theorem 4, and 

2. second, we add VG into its correct location in G' by connecting it to its direct parents and 
direct children in G'. 

By Theorem 4, step 1 of Lemma 6 results in an extension of G that correctly incorporates 
a class with type(VC) into its class hierarchy. Once, a class with its the type equal to VC is 
present in G, class integration of VC becomes a matter of finding the correct location for VC in 
G. Details on finding the correct position of VC given a prepared type hierarchy are presented 
in a later section. We will use the lemma above for implementing the integration process as 
explained in Section 8. 

We have discussed the creation of intermediate classes and the associated arcs required 
to consistently integrate a virtual class VC into a schema graph G. The discussion and hence 
the solution are driven by the type inheritance problem (Section 5). We now need to assure 
that the edges created are also sufficient in terms of capturing the subset relationships between 
all classes. It is easy to see that all suggested edges are correct and non-redundant. It is not 
necessarily clear whether they are also sufficient in capturing all subset relationships. Edges 
could not be missing between the original graph G and the virtual graph GG consisting of 
intermediate classes g;, since we assumed G to be complete and showed GG to be complete. 
It is relatively straightforward to show that no additional edges from G to GG can exist. At 



Class Integration Elke A. Rundensteiner May 28, 1992 46 

present, we are not able to prove that no additional edges from GG to G need be added to 
complete all information on the combined schema graph. If this is the case, then we would 
apply the algorithm described in Section 7 to add these extra direct-parent relationships for 
each intermediate class g;. Since this can be done in linear time, this will not change the 
complexity of the type hierarchy preparation algorithm. 

6.6 The Type Hierarchy Preparation Algorithm 

In the previous sections, we have described the theory underlying the preparation of a class 
hierarchy for the insertion of a new class. Based on these results, we now develop an algorithm 
to solve this problem. This algorithm creates the additional intermediate classes required by 
the insertion of a new type into a schema graph. This algorithm, a direct extension of ([13], 
page 77-80), handles both the type and set content of the class concept while Missikoff's work 
focuses on type classification. 

For the following, we assume that the graph G is represented by a table with sorted rows 
(one for each class) and with the following four columns, the name of the class C, the set of 
parents of C in G, a label "*" to mark members of G*, and the set of parents* of C in G*. 
The former two are given initially and the later two are generated by the algorithm. We also 
assume that the rows are sorted according to the generalization relationship. The notation f() 
is again used to denote the function f(C) = C n VC. 

The Compute-G*(G,VC) procedure in Figure 17 computes the hypergraph G*. In partic­
ular, it computes the representative class rep( Ci) for each equivalence group G; with respect 
to VC. By Theorem 2, a class C; is a representative of an equivalence group G; if and only if 
it is the highest class in the group G;. This means that all its parents must belong to different 
equivalence groups. This is exactly what is tested by statement (2) of the procedure. These 
unique representatives C;=rep( G;) are marked by the label "*" and they are said to belong to 
G*. By Lemma 4, each of them will trigger the generation of a new intermediate class g; with 
type(g;) = C; n VC. 

The Compute-G*(G,VC) procedure also finds the parents of each unique representative 
class C; in the hypergraph G*, denoted by parents*(C;). These parents*(C;) correspond to the 
canonical representatives of the equivalence groups G; that the class C; is directly is-a related 
to. Put differently, parents*( C;) corresponds to the set of all parents of C; in G*. For a class 
C, if any of its parents C,. are marked then these parents in G are also its parents* in G*. 
However, if a parent C1c of C is not marked, then we need to find the parent* of C higher in 
the graph. If we could assume that the parents* of all classes above the current class C have 
already been determined before attempting to calculate parents* of C, then we could simply 
set parents*(C) equal to parents* of Ck. Indeed, this is assured by scanning the list of classes 
ordered according to the generalization relationship among classes from left to right. 

Next, the Generate-Intermediate-Classes(G,VC) procedure (Figure 17) is applied to con­
struct all required intermediate classes g; and interconnects them with one another and with 
the classes in G. The type of the new class g; is determined by the lowest common supertype 
operator n while the set membership of g; is determined by setting the content of g; equal to 
the content of the respective rep(G;) U VC. Note that this represents an important extension 
to the algorithm in [13] since we generate a complete class (rather than just a type). 
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Algorithm outline: Generation of Intermediate Classes. 

Input: 
A schema G = (V,E) with possibly multiple inheritance. 
A class VC to be integrated into G. 

Output: 

May 28, 1992 

The schema G augmented by all intermediate classes required by the integration of VC into G. 
Algorithm: 

procedure Generate-Intermediate-Classes( G, VC) 
begin 

(1) Compute-G*(G,VC); 
(2) for all C E G* do 

if (CnVC) =I= type(C) then 
type(g) = C n VC; 
contents(g) = contents( C) U contents(VC); 
v =vu { g }; 
for all p E f(parents*(C)) 

add the edge (g is-a p) to G .. 
endfor 
add the edge (C is-a g) to G. 
if parents(g) n parents(C) =I= {0} then 

for all pEparents(g) remove the edge (C is-a p) endfor 
endif 

endfor 
end procedure 

procedure Compute-G*(G,VC) 
begin 

for all C E G do 
(1) parents*(C)= parents(C); 
(2) if (V Ck E parents(C)) (C n VC =I= Ck n VC) then 

mark C by the label "*"; 
(3) for all Ck e parents(C) do 

endfor 

if Ck is not marked then 
parents*(C)= parents*(C) - { Ck }; 
for all Cj E parents*(Ck) do 

if parents*(C)={0} then parents*(C)= { ·Cj }; 
else if (V Ci E parents*(C)(Cj is not a. supertype of Ci) 

then parents*(C)= parents*(C) U { Cj }; 
endfor · 

endfor 

end procedure 

Figure 17: The Type-Hierarchy-Preparation Algorithm. 

47 
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For each class C in G*, we check whether the condition (C n VG f type(C}} evaluates 
to false. This would mean that an intermediate class g with type(g) = C n VC (i.e., the 
required type) exists in G and therefore need not be generated. In this case, the class C is 
already properly connected since the original schema graph is assumed to be closed. Thus the 
if-statement is skipped. If, on the other hand, the condition (C n VG f type(C)) evaluates 
to true, then the intermediate class g; with type(g) = C n VC does not yet exist in G and 
therefore needs to be created. In this case we associate a new class g; with type(g;) = C n VC 
and content(g;) = content(C) with C. In addition, we create an edge e=< C, g; > between C 
and g; to make C the unique child of g;. We also add edges from g; to all its parents in the 
hypergraph G*. These parents* of g; could be other classes g1i: in G* or existing classes C; in 
G. This is done by creating the edges e =< g;,p >with p = f(parents*(C)). 

In order to avoid redundant arcs, the procedure removes edges e =< C,p > from the class 
C, if C shares any parents with its newly generated intermediate class g;, i.e., if p E parents(g;). 
g; becomes a direct parent of C and thus these arcs are redundant. 

Example 14. Figure 18 demonstrates how to apply the type classification algorithm given in 
Figure 17 to prepare a class hierarchy G for class insertion. Figure 18. a shows the schema G 

before type classification. Assume that the virtual class VG is derived by the view derivation 

"VG= hide [b} from G.f'. Then the type of VCis defined by type(VC)=[a,c,d} and the ob­
ject membership of VCis defined by content(VC) = content(C4). The Generate-Intermediate-

Classes(G, VG) procedure first calls the Compute-G*(G, VG) procedure to compute the hyper­
graph G*. There are three equivalence groups with respect to VG, namely, G1 with the lowest 

common supertype of [a }, G2 with the lowest common supertype of [a, c }, and Ga with the 

lowest common supertype of [a, c, d}. The outer for-loop of the Compute-G*(G, VG) procedure 
steps through the list of all classes in G. When processing the first class Cl, step (2) of the 

for-loop marks the class Cl, since its parent is the general root of the schema. Step (3) checks 

whether all parents of Cl are marked, and since they are, parents*(CJ} = parents{Cl} is not 
modified. The second iteration of the for-loop marks the class C2, since C2 and CJ are in the 

different equivalence groups 0 2 and G1, respectively. Step (3) checks whether the parent of C2, 

which is Cl, is marked. Since CJ is indeed marked, parents*(C2) ={Cl} is not modified. The 
third iteration of the for-loop marks the class C3, since its only parent C2 is again in a different 

equivalence group. Since the parent of C3 is marked, the parents*(C3} set is not modified. The 

fourth and last iteration of the for-loop does not mark the class C4, since its parent C9 is in 
the same equivalence group Ga as G4. Step (3) then checks whether the parent of C4, which 
is C3, is marked. Since C3 is marked, parents*(C4) = {C3} is not modified. This completes 

the computation of the hypergraph G* on G. The equivalence groups G1, G2 and Gs and their 

marked representatives rep(G1)=C1, rep(G2)=C2, and rep(Ga)=C3 are shown in Figure 18.b. 
The hypergraph G*, i.e., the marked classes C; = rep(G;) and their parents* relationships, are 

shown in Figure 18. c. 

The second step of the Generate-lntermediate-C/asses(G, VG) procedure now generates the 

intermediate classes g; for each equivalence group G;. For the first marked class Cl, it checks 

whether a class g1 with type(g1) = {Cl n VG) exists in the schema. Since it does not, 91 is 
created with type(g1) = Cl n VG = [a] and content(g1} = content{Cl) as shown in Figure 
18.d. We add edges from g1 to the generated intermediate classes of all its parents* in G*. 

Since parents*{Cl}= {O} and 0 n VG= 0, this corresponds to the edge< 91,0 >. The edge 
< Cl, g1 > becomes redundant and is removed. We also add the edge < Cl, 91 > to connect 91 

to its canonical representative in the original schema graph G (Figure 18. d). The next marked 
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cleaaea parents marked parents* 

f(C4) = [a, c, d] 

C1 0 * 

C2 C1 * 

C3 C2 * 

C4 C3 

nodes(G·i- marked classes rep(Gi), 
edges(G• • 1he parents• arcs. 

0 

C1 

C2 

C3 

(a) VC=hide [b] from C4. (b) Find equivalence groups Gi. (c) Compute the hypergraph G•. 

···\ __ .....,a 
1 ! 
·"~ep(G1) 

content(g1):= 
content(C1). 

(~2"··r---a 
· .... ·~ 

··· ·• rep(G2) 

content(g2):= 
content(C2). 

(d) Insert intermediate class g1. (e) Insert intermediate class g2. 

···..,, _ __..,a 
1 ' 
... ~·ep(G1) 

(f) Insert intermediate class g3. 

Figure 18: An Example of Class Hierarchy Preparation. 
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class in the list in Figure 18.c is G2. We check whether a class g2 with type(g2) = (C2 n VG) 

exists in the schema. Type(g2) = {a, c] # [a, c, d} = type(C2} implies that a class with the 

required type of g2 does not exist in the schema. Hence, we create the class g2 with type(g2) 

= (C2 n VG)= [a, c] and content(g2) = content(C2} as shown in Figure 18.e. We add edges 

from 92 to the intermediate classes g; that are 92 's parents* in G*. Since parents*(C2) = {Cl} 
and CJ n VG= gi, this corresponds to the edge< g2,g1 >. The edge< C2,g2 >is also added 
to connect gz to its canonical representative in G. The resulting schema is depicted in Figure 

18. e. Lastly, the algorithm processes the marked class C3 in a similar manner. The final result, 
the graph G prepared for the insertion of the virtual class VG, is given in Figure 18.f. 

In [13], the algorithm has been shown to be of quadratic complexity O(m2 ) with m the 
number of edges in G. Our extension of the algorithm, namely, the generation ofa complete 
class (rather than just a type) does not influence this complexity. This analysis assumes of 
course that the subsumes() function can be calculated in constant time. 
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7 ALGORITHMS FOR CLASS PLACEMENT 

In this section, we discuss the integration of a class into a given class hierarchy assuming that 
the type hierarchy has been properly prepared for class insertion as described in Section 6. The 
proposed placement algorithm handles both single- and multiple-inheritance schema graphs. 
We prove the correctness of the algorithm and show the algorithm to be of linear complexity 
(assuming a subsumes() function of constant complexity). For the following, we assume the 
existence of a function subsumes(Gl, G2} that determines whether the is-a relationship (C2 
is-a Cl) exists. As described in Section 4, this function is computed by comparing the type 
description and the membership predicate of the two classes. This is different from checking 
whether the edge e = <C2,Cl> exists in a schema graph G. 

7.1 The General Class Placement Algorithm 

By Definition 8, a schema graph captures all direct is-a relationships between pairs of classes 
G1 and C2, namely, ( C1 is-a d C2), by directed graph edges e = <C1, C2>. Put differently, 
each class C; in a schema graph G is connected to its direct sub- and super-classes via graph 
edges. Indirect is-a relationships (C1 is-a* C2) are derivable via the transitive closure on the 
graph edges. The integration of a new virtual class VC into the schema graph G=(V,E) thus 
requires the identification of the direct is-a relationships between the virtual class VC and all 
other classes in the global schema G as defined below. 

Definition 20. Given a schema graph G=(V,E) and a class VG. Then we defined the set of 
all classes in G that directly subsume VG, i.e., the direct superclass es of VG, by 

DIREGT-PARENTSvc := 

{ C; I (VG is-a C;) /\(~Ci E V)(j f: i)((VC is-a• Gj) /\ ( Cj is-a• C;))}. 

Similarly, we define the set of all classes in G that VG directly subsumes, i.e., the direct 

subclasses of VG, by 

DIREGT-GHILDRENvc := 

{Ci l(C; is-aVC)/\(~GjEV)(jf:i)((C; is-a• G1)/\(C1 is-a• VG))}. 

Example 15. Definition 20 is explained based on the schema graph given in Figure 20. In this 

figure, the labels sup and sup are associated with a node C; that is a superclass or a subclass 

of VG, respectively. 

The DIREGT-PARENTSvc set contains all classes that fulfill the following conditions: 

(1) they are superclasses of VG, i.e., they have the sup label, and (2) there are no other classes 

below them in the schema graph that are also superc/asses of VG. The later means that they 
are the lowest possible classes still marked by the sup label. In Figure 20, the members of the 

DIREGT-PARENTSvc set, which are G3 and G9, are marked by horizontal strips. 

The DIREGT-GHILDRENvc set contains all classes that fulfill the following conditions: 

(1) they are subclasses of VG, i.e., they have the sub label, and (2) there are no other classes 
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above them in the schema graph that are also subclasses of VG. The later means that they are 

the highest possible classes still marked by the sub label. In Figure 20, the members of the 
DIRECT-CHILDRENvc set, which are C16 and C25, are marked by vertical strips. 

Based on Definition 20, the algorithm for finding the correct position for the class VC in the 
schema G=(V,E) can be summarized as follows. First, we find all classes in G that are direct 
superclasses of VC, namely, the set of classes DIRECT-PARENTSvc as defined in Definition 
20. Next, we find all classes in G that are direct subclasses of VC, namely, the set of classes 
DIRECT-CHILDREN vc as defined in Definition 20. VC then is placed directly below all classes 
in the DIRECT-PARENTSvc set and directly above all classes in the DIRECT-CHILDRENvc 
set by adding new is-a edges to the schema graph G. The just described algorithm is given in 
Figure 19. 

Algorithm outlizie: Placement of A Virtual Class into the Global Schema. 

Input: 
A schema G = (V,E) with possibly multiple inheritance. 
A class VC to be integrated into G. 

Output: 
The schema G with VC integrated into G. 

Data Structures: 
variables DIRECT-PARENTSvc, DIRECT-CHILDRENvc: set of classes 

Algorithm: 
procedure Class-Placement-Algorithm(G,VC) 
begin 

(1) Compute DIRECT-PARENTSvc. 
(2) if Ci E DIRECT-PARENTSvc with (Ci= VC) then STOP else V:=VUVC; endif 
(3) Compute DIRECT-CHILDRENvc. 
(4) Update-Edgesvc(G, VC, DIRECT-PARENTSvc, DIRECT-CHILDRENvc); 

end procedure 

procedure Update-Edgesvc(G, VC, DIRECT-PARENTSvc, DIRECT-CHILDRENvc) 
begin 

(4.1) for all p E DIRECT-PARENTSvc do 
create-edge( <VC,p> ); 

end for 
(4.2) for all c E DIRECT-CHILDRENvc do 

create-edge( <c,VC> ); 
end for 

(4.3) for all p E DIRECT-PARENTSvc do 
for all c E DIRECT-CHILDREN vc do 

if edge <c,p> exists then delete-edge( <c,p>) endif 
end for 

end for 
end procedure 

Figure 19: The Class-Placement Algorithm. 

The Class-Placement algorithm shown in Figure 19 has the following steps. Step (1) 
of the algorithm computes the DIRECT-PARENTSvc set. As explained later, this is done 
by a depth-first downwards traversal of G starting from the root of G. If it finds a class in 
the DIRECT-PARENTSvc set that is equal to VC, then VC exists already in G and the 
algorithm terminates (step (2)). This equality of classes is determined by comparing their 
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type descriptions and membership characteristics and not necessarily their class names. If 
a mismatch in class names exists, then the view designer may attach the new name of VC 
as synonym with the original name of the existing class C;. For simplicity, we assume that 
(C;=VC) is defined by subsumes(C;, VC)=true and subsumes(VC,Ci)=true. If VC was not 
integrated in G to being with, then the else-branch of step (2) will now add the class VC to the 
set of classes V ofG. Step (3) of the algorithm computes the DIRECT-CHILDRENvc set again 
by depth-first traversal ofG. Lastly, step (4) updates the edges E ofG so that the new class VC 
is now properly connected with the classes of G. This edge computation is described in detail 
in the Update-Edges procedure in Figure 19. The first for-loop creates edges between VC and 
all classes in the DIRECT-PARENTSvc set, i.e., it connects VC with its direct superclasses. 
The second for-loop creates edges between VC and all classes in the DIRECT-CHILDRENvc 
set, i.e., it connects VC with its direct subclasses. Finally, the third for-loop removes all edges 
from G that have become redundant due to the introduction of the edges listed above. Namely, 
all edges that directly connect classes in the DIRECT-PARENTSvc set with classes in the 
DIRECT-CHILDRENvc set have become redundant and thus are removed. 

Example 16. In this example, we demonstrate the Class-Placement algorithm given in Figure 
19 on the example schema graph shown in Figure 20. The first step of the algorithm finds 

the DIRECT-PARENTSvc set by depth-first downwards traversal of G starting from the root 
CO. The search stops for a given branch if either a leaf node Ci is reached (e.g., for the class 
C4) or if the condition subsumes(Ci, VG) no longer holds (e.g., for the class CS). All classes 

at the borderline of this search space that still fulfill the superclass condition are put into the 

DIRECT-PARENTSvc set, in this case, the classes CS and C9. The algorithm does not find 
any class C; that is equal to VG (step (2)). The third step of the algorithm then computes the 

DIRECT-CHILDRENvc set by depth-first downwards traversal of G. The search stops for a 
given branch if either a leaf is reached (e.g., the classes C15 and CB) or if a class node C; is 

reached for which the subclass condition subsumes(VC,C;) is true (e.g., for the classes Cl 6 and 
C25}. All classes of the later category are placed into the DIRECT-CHILDRENvc set. Lastly, 

the fourth step of the algorithm updates the edges E of G so that the new class VG is now properly 

connected with the classes of G. First, we create the edges el = <VG, CS> and e2 = <VG, C9> 

to connect VG with all classes in the set DIRECT-PARENTSvc={CS,C9}. Then, we create 
the edges e3 = <C18, VG> and e4 = <C25, VG> to connect all classes in the set DIRECT­

CHILDRENvc={ C18,C25} with VG. There is one direct edge between classes in DIRECT­

CHILDRENvc={ C18,C25} and those in DIRECT-PARENTSvc={ CS,CO}, namely, the edge 
<C25,C9>. Due to introduction of the edges <C25, VG> and <VC,C9>, this edge has become 

redundant and is thus removed. 

Theorem 5. (Correctness) Given the schema G = (V,E} and a class VG, the Class­
Placement algorithm shown in Figure 19 integrates VG into G with the resulting G representing 

a correct schema graph as defined in Definition 8. 

Proof: Definition 20 defines the direct superclasses and subclasses of the class VC in a set of 
classes Sas DIRECT-PARENTSvc and DIRECT-CHILDRENvc, respectively. For this proof, 
we assume that the Class-Placement algorithm (steps 1 and 3 in Figure 19) indeed calculates 
these two sets of classes correctly - as we will show later in this section. Then we only need 
to show the correctness of the fourth step, namely, of the manipulation of the graph edges to 
prove the correctness of the overall algorithm. 
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By Definition 8, a schema graph G=(V,E) is correct if it represents a set of classes S = 
{ C; Ji = 1, ... , n} and their is-a relationships in the following manner: 

(1) V := S, 

(2) E := { e = <C;,Ci> J (C; is-ad Cj) in Sand V C;, Cj EV }. 

From the point of view of a class C;, this is equivalent to each class C; having an is-a edge 
e in G to all its direct super- and subclasses in S. More formally, (V C; E V) 

('i Pi EV) ((C; is-a a PJ) in S ~ e;i =< C;,pi >in E) /\ 

('i ch1c E V) ((ch1c is-ad C;) in S ~ e1c; =< ch,., C; > in E) 

We assume that the input schema graph G=(V,E) is correct as defined above. If the new 
class VC is equal to one of the existing classes in G, then the Class-Placement algorithm in 
Figure 19 sets G':=G by step 2. G':=G is by assumption correct. 

If the new class VC is not equal to any of the existing classes in G, then the Class-Placement 
algorithm constructs a new graph G'=(V',E') by adding VC to G. It is easy to see that the 
resulting graph G' will have the following characteristics: 

(1) V' :=Vu VC, 

(2) E' := E U DP U DC - DPC with 

DP:= {evc,j =< VC,pi > I Pi E DIRECT-PARENTSvc}, and 

DC:= {e1c,vc =< ch1c, VG> J ch,. E DIRECT-CHILDRENvc}, and 

DPC := {e1c1 =< ch1o,P1 > J ch1c E DIRECT-CHILDRENvc /\ Pi E DIRECT­
PARENTSvc }. 

We now show that G' is correct, namely, that G' contains graph edges for all direct is-a 

relationships and no others, by examining the following four cases: 

Part I: (C; EV) /\ (C; ~ DIRECT-PARENTSvc) /\ (C; ~ DIRECT-CHILDRENvc). 
Part II: (C; E DIRECT-PARENTSvc). 
Part III: (C; E DIRECT-CHILDRENvc). 
Part IV: (C;=VC). 

Part I: (C; EV)/\ (C; ~ DIRECT-PARENTSvc) /\ (C; ~ DIRECT-CHILDRENvc). 

Part I.a: The introduction of a new class to G can make an existing direct is-a relationship 
between two classes C; and C; redundant (indirect) if and only if the new class is placed 
between C; and C1, such as to provide an alternative is-a path of length greater or equal to 
two to the existing is-a edge between C; and C1. For the addition of VC to make an existing 
is-a edge redundant would imply that (C; E DIRECT-PARENTSvc) and (Ci E DIRECT­
CHILDRENvc), or, vice versa. This is a contradiction to the assumption of Part I. Hence, 
the introduction of VC will not affect any of the existing is-a relationships of C;. It can easily be 
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seen that for (C; fl. DIRECT-PARENTSvc) /\ (C; rt. DIRECT-CHILDRENvc) no is-a edges 
are added ore removed by the algorithm. 

Part I.b: The introduction of a new class creates new direct is-a relationships only between 
classes that are the direct parents or the direct children of the new class. For the addition of 
VC, this would imply that it creates a new direct is-a relationship only for the classes ( G; 
E DIRECT-PARENTSvc) or (C; E DIRECT-CHILDRENvc). This is a contradiction to 
the assumption of Part I. Hence, the introduction of VC will not create a new direct is-a 

relationship for C;. As stated above, it can easily be seen that the algorithm does not add any 
new is-a edges for (G; ¢ DIRECT-PARENTSvc) /\ (G; ¢ DIRECT-CHILDRENvc. q.e.d. 

Part II: (G; E DIRECT-PARENTSvc). 

Part II.a: By Definition 20, G; acquires a new direct subclass in G', namely, VC. There­
fore, the edge e = <VC,G; > has to be added to E'. It can easily be seen that step 4.1 of the 
algorithm adds this edge <VC,C;> for all G; E DIRECT-PARENTSvc. 

Part II.c: Assume that there is a class Gj in V with which C; had a direct is-a relationship 
in G. If this class G; was a superclass of C;, then it could not have been affected by the . 
introduction ofVC. It can easily be seen that no edges are added or removed by the algorithm for 
Classes Cj that are neither in the DIRECT-PARENTSvc nor in the DIRECT-CHILDRENvc 
set. If this class node G; was a subclass of C;, then it can become indirect if VC has been 
placed between C; and G;. The later is only possible for G; E DIRECT-CHILDRENvc. In 
this case, the edge e;; = <G;,G;> with (G; E DIRECT-CHILDRENvc) is redundant, since 
the integration of VC into G adds the edges e2=< G;, VG > and e3=< VG, G; > to E. By 
transitivity, e2=< G;, VG> and e3=< VG, G; >imply the (indirect) is-a relationship (G; is-a 

• G;). Hence, the edge e;; = <G; ,G;> must be removed from E. See Figure 22 for an example 
of the creation of redundant edges. It can easily be seen that step 4.3 of the algorithm removes 
all edges <G; ,G;> for Gi E DIRECT-CHILDRENvc and for G; E DIRECT-PARENTSvc. 

DIRECT-PARENTS vc ={C1 ,C2}. 

ub DIRECT-CHILDRENvc ={C3,C4}. 

Figure 22: Removal of Redundant Edges During Class Placement. 
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Part II.d: Assume that there are classes Cj in V with which C; had no direct is-a 

relationship in G. The introduction of the extra class VC into the schema G will not add any a 
direct is-a relationship between these two classes Ci and C;, since neither C; nor Ci are equal to 
VC. It can easily be seen that no new edges are added for a class C; E DIRECT-PARENTSvc, 
except for those connecting it to the new class VC done in step 4.1. q.e.d. 

Part III: (C; E DIRECT-CHILDRENvc). 

The argument for Part III is similar to the one for Part II, except for dealing with a 
direct subclass rather than a direct superclass of VC. The proof is thus omitted here. q.e.d. 

Part IV: (C;=VC). 

As explained above (and in Definition 8), a schema graph G'=(V',E') is correct if each 
class C; in G' has an is-a edge e in E' to all its direct super- and subclasses in G'. Hence, there 
need to be edges in G' to connect VC to all its direct superclasses, which by Definition 20 are 
equal to all classes in the DIRECT-PARENTSvc set. It can easily be seen that step 4.1 of 
~he algorithm adds exactly these required edges <VC,pj> for all Pi E DIRECT-PARENTSvc. 
In addition, there need to be edges in G' to connect VC to all its direct subclasses, which by 
Definition 20 are equal to all classes in the DIRECT-CHILDRENvc set. It can easily be seen 
that step 4.2 of the algorithm adds exactly these edges <ch,.,VC> for all ch,. E DIRECT­
CHILDRENvc. q.e.d. 

Lemma 7. (Correctness) Given the schema G = (V,E) and a class VG. All classes G; in G 

that are direct children of VG are subclasses of all classes Cc in G that are direct parents of 

VG. 

Proof: Lemma 7 follows directly from the transitive closure property of the is-a relationship. 
For a class C; to be a direct subclass of a class VC in G implies, by transitivity, that C; will 
also be subclass of all superclasses of VC. More formally, 

('V C; EV) ('V C1c EV) ((C; is-ad VC) !I (VC is-ad C1c) ~ (G; is-a* Ci:)). q.e.d. 

From Lemma 7, we can derive the lemma given below. 

Lemma 8. Given the schema G = (V,E) and a class VG. The search for the classes G; in G 

that belong to the DIREGT-GHILDRENvc set has to consider only classes that are in subgraphs 

of G rooted at some class Ci: that is a member of the DIRECT-PARENTSvc set of G. 

Lemma 8 follows directly from Lemma 7 since classes in the DIRECT-CHILDRENvc set 
are subclasses ofVC and classes in the DIRECT-PARENTSvc set are supercla.sses ofVC. From 
Lemma 8, we can conclude that the search for the DIRECT-CHILDRENvc set starts where 
the search for the DIRECT-PARENTSvc set ends. See the example below for a demonstration 
of this idea. 



Class Integration Elke A. Rundensteiner }fay 28, 1992 58 

Example 17. In Example 16 we have discussed the application of the Class-Placement algo­
rithm given in Figure 19 to the schema graph shown in Figure 20. We now want to show how 
Lemma 8 can be used to limit the search space of the algorithm. The algorithm first searches for 
the DIRECT-PARENTSvc set of G by depth-first downwards traversal of G starting from root 
CO. Thereafter, it computes the DIRECT-CHILDRENvc set also by a depth-first downwards 
traversal of G. However, rather than starting again from the root node CO of G, the search 
starts from the DIRECT-PARENTSvc set of G (Lemma 8). For instance, the search of direct 
subclasses continues with the subgraphs rooted at the class nodes C3 and C9. Other subgraphs, 
e.g., the ones rooted at the nodes Cl 3 and Cl 0, do not need to be explored at all. In Figure 
19, we have encircled the parts of the graph G traversed for either the search for the DIRECT­
PARENTSvc set or for the search for the DIRECT-CHILDRENvc set by dotted lines. Note 
that these two search spaces do not overlap. 

7 .2 Computing The Direct Parents Set 

In this section, we describe an algorithm for the computation of the DIRECT-PARENTSvc 
set. This then represents a solution for step (1) of the Class-Placement algorithm given in 
Figure 19. Based on Definition 20, we can make the following observation about the elements 
in the DIRECT-PARENTSvc set. 

Lemma 9. Given the schema G = (V,E) and a class VG, then the following properties hold 
for the classes C; that are direct superclasses of VG in G, i.e., that are in the DIRECT­

PARENTSvc set, 

I. All classes C; in DIRECT-PARENTSvc are subclasses of the root class CO of the schema: 

('IC; E DIRECT-PARENTSvc)(subsumes(CO, C;)=true). 

II. For all classes C; in DIRECT-PARENT Svc, none of its subclasses C1c in G subsumes VG: 

('IC1c EV) ((C1c is-a * C;) ==> (subsumes(C1c, VC)=false)). 

Ill. For all classes C; in DIRECT-PARENTSvc, all of its superclasses C1c in G also subsume 

VG: 

('IC1c EV) ((C; is-a * C1c) ==> (subsumes(C1c, VG )=true)). 

Proof: 
Part I: Schema root. 

Part I is true by default, since the root class of a schema is by definition a supertype and 
a superset of all classes in the schema. q.e.d. 

Part II: Classes below the direct superclasses of VC. 

By Definition 20, for a class C; to be a direct superclass of VC, i.e., C; E DIRECT­
PARENTSvc, means that the following holds: 

(1) (VC is-a C;), and 
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(2) (~Ck E V)(k '{; i)((VC is-a* C1c) I\ (C1c is-a* Ci)). 

For all classes Ck in G that are subclasses of the classes Ci in the DIRECT-PARENTSvc 
set in G, we have the is-a relationship: 

(G1c is-a *C;). 

By Definition 20, this implies that none of the subclasses G1c of G; can satisfy the sub­
sumption relationship, i.e., 

({VC is-a• G1c):=false) 

since, otherwise, there would exist classes G1c that contradict the definition of the DIRECT­
PARENTSvc set and thus it contradicts the initial assumption that the classes G; are members 
of the DIRECT-PARENTSvc set. We can conclude that "IG1c E subclasses(G;) the condition 
subsumes( G1c ,VC) fails. q.e.d. 

Part III: Classes above the direct superclasses of VC. 

By Definition 20, for all classes G; in DIRECT-PARENTSvc, we have 

{VC is-a d C;). 

By the Definition 8 of a schema graph, the classes C1c above the direct superclasses G; of 
VC in G have the following is-a relationships with their subclasses G;: 

By transitivity, this implies the desired is-a relationship, namely, 

("IC; E DIRECT-PARENTSvc) ('VC1c E superclasses(C;)) 

(((VC is-ad C;) /\ (C; is-a* G1c)) ===:> (VC is-a• G1c)). 

The later is equivalent to the desired subsumption relationship, namely, 

subsumes( G1c ,VC)=true. q.e.d. 

Lemma 9 provides us with conclusive information on the shape of the search space for the 
DIRECT-PARENTSvc set. Namely, by Part I of Lemma 9, we know that the root class CO of 
G qualifies as superclass for any VC. All other superclasses of VC are also located in the upper 
half of the schema graph (above all classes that are not superclasses of VC) (Part II). Once we 
find a class C; which fulfills the condition subsumes( C; ,VC) but for which none of its children 
fulfill the superclass condition of VC, then the class C; is a direct parent of VC (Part III). In 
term of the schema graph this means that the DIRECT-PARENTSvc set corresponds to all 
classes that are at the lower borderline of classes that still are subsumed by VC. In summary, 
we can conclude that the search for direct parents of VC should start with the root class CO of 
G (Part I). It should continue downwards while the encountered classes are still superclasses 
of VC (Part II). Once we find a class G; for which none of its children is a superclass of VC, 
then the class C; is a direct parent of VC (Part III) and we are done with the search for this 
branch. 
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We associate the label success of type Boolean with each class C to delimit this search to 
the upper part of the schema. The label success() determines whether the class C (or any of its 
subclasses on this branch) has been identified as a member of the DIRECT-PARENTSvc set. 
This label is used to propagate upwards the fact whether or not a 'successful' class has been 
located in a given subgraph. 

As explained in the previous section, this algorithm is based on the depth-first traversal 
of the schema graph. However, since we allow for schema graphs with multiple inheritance, we 
need to assure that a subgraph of G does not get processed more than one. For this, we use a 
labeling scheme that marks classes C that have been processed by the label processed(C)=true. 
These labeled classes are not processed again. 

Algorithm outline: Compute Direct-Pa.rents of A Class. 

Input: 
A schema G = (V,E) with multiple inheritance with CO the root. 
A class VC to be integrated into G. 

Output: 
DIRECT-PARENTSvc: a set of classes. 

Data Structures: 
label processed( class) : Boolean; 
label success( class) : Boolean; 
function subsumes( classl,class2) : Boolean; 

Algorithm: 
procedure Find-Direct-Parents (G,VC,DIRECT~PARENTSvc) 
begin 

DIRECT-PARENTSvc := 0; 
for all classes C; do processed(C;) :=false; end for 
for all classes C; do success(C;) :=false; end for 
Process-Node (root-of-schema); 

end procedure 
procedure Process-Node (C) 
begin 

processed( C) := true; 
for all Kin children(C) do begin 

if ((processed(K)=false) and (subsumes(K,VC))) 
then Process-Node (K); 
endif 
if (success(K)) then success(C) :=true endif; 

end for 
if (success(C)=false) 
then begin 

DIRECT-PARENTSvc := DIRECT-PARENTSvc UC; 
success(C) := true; 

endif 
end procedure 

Figure 23: The Algorithm For Computing the DIRECT-PARENTSvc Set. 

The algorithm for computing the DIRECT-PARENTSvc set ofVC, called the Find-Direct­
Parents algorithm, is depicted in Figure 23. It proceeds as follows. The algorithm traverses 
the graph G depth-first starting from schema root. It goes down as far as possible while the 
function subsumes(C;, VG) holds. If a class K is found that has already been processed, then 
the algorithm backtracks since the given branch needs to be explored but once. The search will 
also backtrack if the condition subsumes(K, VC) does not hold, since then neither the current 
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class (nor any of its subclasses) will qualify as DIRECT-PARENTSvc (Lemma 9). After all 
children of a class C have been processed, the algorithm proceeds as follows. If one or more 
of its children (or their subclasses) have been found to be 'successful', i.e., they were added 
to the DIRECT-PARENTSvc set, then the class C need no longer be added to the DIRECT­
PARENTSvc set. If however none of the children did qualify as DIRECT-PARENTSvc, then 
C is the lowest class on this subtree that still subsumes the virtual class VC. Hence, C is added 
to the DIRECT-PARENTSvc set. 

Figure 24: An Example of Applying the Find-Direct-Parents Algorithm. 

Example 18. In Figure 24, we demonstrate the Find-Direct-Parents algorithm given in Figure 
23. In the figure, the label sup for a class C; indicates that the condition subsumes(C;, VG) 
evaluates to true, i.e., C; is a superclass of VG. After initialization, the algorithm starts the 
traversal of the schema graph G with the root node CO. It processes the first child of CO, which 
is Cl. Since the first if-statement is true, it then recursively processes the first child of Cl, 
which is C3. For both children of C3, which are C7 and CB, the if-statement evaluates to 
false. Hence, the label success(C3} remains false. The fourth if-statement then adds C9 into 
the DIRECT-PARENTSvc set. The search now backtracks to complete the processing of Cl. 
Since the child C9 of CJ carries the label success(C3}=true, the class Cl is not added to the 
DIRECT-PARENTSvc set. The search now backtracks to continue processing of CO, which 
corresponds to exploring the right subgraph in the just described manner. 

Theorem 6. {Correctness) Given the schema G = (V,E) and a class VG. The Find-Direct­
Parents algorithm in Figure 23 will find all classes of G, called DIRECT-PARENTSvc, that 
are direct superclasses of VG. 

Proof: We prove Theorem 6 in several steps. 
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Part I: The Find-Direct-Parents algorithm in Figure 23 will call the Process-Node function on 
each superclass of VC exactly once. 

A schema G = (V,E) is a connected directed acyclic graph. This assures that a general 
depth-first search starting from the root will meet all leaf nodes exactly once (See a standard 
algorithm book, e.g., [2], pg. 176 - 178). By Lemma 9, the shape of the search space for 
superclasses of VC in G is such that all indirect superclasses of VC are above all direct parents of 
VC which are above all other classes in the schema graph G. The Find-Direct-Parents algorithm 
traverses G in a depth-first manner starting from the root of G until it reaches class C; for 
which the condition subsumes( C; ,VC) no longer holds, i.e., it will process all indirect and all 
direct parents of Ci and it backtracks as soon as it reaches other undesirable classes. The 
Find-Direct-Parents algorithm in Figure 23 recursively continues the search downwards if and 
only if the first if-statement evaluates to true, i.e., the condition "((processed(K)=false) and 
(subsumes(K,VC)))" is true. This means that the search continues only if the class K has not 
been processed before and if it is indeed a superclass of VC. This assures that the search stops 
after all superclasses of VC have been found and also that the same class is processed at most 
once. 

Part II: When traversing downwards the graph, the algorithm encounters a class C with 
processed(C)=true, then success(C)=true must also hold. 

First, the label processed(C) is set to true for classes C that have been processed before. 
Second, once a class C; is found to be a direct parent of VC, then the label success( C;) is set 
to true by the third if-statement. In addition, the second if-statement sets the success label 
of parents to true whenever the success label of a child is true. Hence, the success label of 
all parents of the class C is also changed to true when backtracking. The directed depth-first 
search will completely finish the processing of a class C (and all its successors) before possibly 
encountering the same class again via an alternative path (due to multiple inheritance). This 
can easily be shown by using the facts that (1) there are no directed cycles in the schema graph 
and (2) the search starting at a class C will recursively process only its subclasses in the schema 
graph but no other class until terminating the processing of class C. Thus, the search encounters 
a class with the label processed(C)=true if and only if its label success(C)=true either due to 
being a direct parent or due to having backtracked passed this class. 

Part III: The algorithm adds the class C; of V into the DIRECT-PARENTSvc set if and only 
if the class C; is a direct superclass of VC. 

Part III.a: If a class C; of V is a direct superclass of VC then the algorithm will add C; into 
the DIRECT-PARENTSvc set. 

Assume that the class C; of V is a direct superclass of VC. Note that a class C; is added 
into the DIRECT-PARENTSvc set only by the last if-statement of the algorithm. For this 
if-statement to be executed for a class C;, we must show that the label success( C;) must be 
false. 

First, if the class C; has no children, then the for-loop over all children K of C; will not be 
executed. Hence, the label success(C;), which is modified within this for-loop, is not changed 
and remains 'false'. If success(C;)=false, then the last if-statement evaluates to true and adds 
C; to the DIRECT-PARENTSvc set. 
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Second, if the class Ci has some children K, then the for-loop over all children K of Ci 
will be executed. However, none of the children K of Ci will be a superclass of VC (by Lemma 
9) and hence the function subsumes(K,VC) will fail for all of them. Therefore, the first if­
statement within the for-loop will be skipped for all K. Hence, the label success(K)=false will 
not be modified, and the second if-statement within the for-loop will also be skipped for all K. 
This again implies that the label success( C;) is not modified and remains 'false'. In this case, 
the last if-statement will add Ci to the DIRECT-PARENTSvc set. 

In summary, we have demonstrated that a class Ci that is a direct superclass of VC will 
always be added to DIRECT-PARENTSvc set by the algorithm. 

Part 111.b: If the algorithm adds the class Ci of V into the DIRECT-PARENTSvc set then 
the class Ci is a direct superclass of VC. 

Assume that the algorithm has added the class Ci of V to the DIRECT-PARENTSvc 
set. Note that there is only one statement, namely, the last if-statement of the algorithm, that 
would add a class Ci into the DIRECT-PARENTSvc set. For this if-statement to be executed, 
the label success( C;) must have been false. For the label success( Ci) to stay false means that 
the following circumstances must be true for C;. 

First, if the class C; has no children, then the for-loop over all children K of C; will not be 
executed and the label success(C;) will remain false. Recall that the function Process-Node() is 
only called for class C;, for which the function subsumes(C;,VC) is true. And since the function 
Process-Node() has been called for the class C;, we can deduce that the class Ci must be a 
superclass of VC. C; being a superclass of VC and not having any children implies that C; is 
by default a direct parent of VC. 

Second, if the class C; has children, then the for-loop over all children K of C; is executed. 
However, if the label success(K) were changed for any of the children K of C; to true, then it 
would also be changed for C;. Consequently, the label success(K) must have remained 'false' for 
all children K of C;. This can only occur, if the first if-statement evaluates to false for all children 
K of C; (Part I). Since if the first part of the if-statement condition, which is processed(K)=false, 
is fals~, then K has been processed before and the algorithm has already backtracked over K 
(since the schema G has no loops). By Part I, this implies that success(K):=true. This would be 
a contradiction to the fact that the label success(K) must have remained 'false' for all children 
K of C;. Hence, the first part of the if-statement condition must evaluate to true, and by this 
we can conclude that the second part of the if-statement condition, which is subsumes(K, VC), 
must evaluate to false for all K. By Lemma 9, subsumes(C;,VC):=true and ('v'K E children(C;)) 
( subsumes(K,VC):=false) implies that C; is a direct parent of VC. q.e.d. 

Theorem 7. (Complexity) Given the schema G = (V,E} and a class VG. The Find-Direct­
Parents algorithm in Figure 29 has a worst case complexity of O~.EJ) with IEI the number of 
edges in the schema. 

Proof: The proof is similar to those for the standard depth-first search (See a standard algo­
rithm book, e.g., [2), pg. 176 - 178). The initialize functions require O(IVI) steps if a list of 
class nodes is available. The time spend in the Process-Node (C) function is proportional to 
the number of out-going edges (or the number of children of C). The function Process-Node 
(C) is called at most once for a given class C, since the class are marked by "processed" the 
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first time they are called. Therefore the worst case complexity is O(max(jVj,jEI)). Note that 
in a connected directed graph G the number of edges IE! in G is always larger or equal to 
the number of classes IV! in G. !El > !VI implies that complexity(Find-Direct-Childrenl) := 

O(max(jVj,IEI)) := O(jEI). q.e.d. 

7.3 Computing The Direct Children Set 

In this section, we present algorithms for computing the set of direct children of a new class 
VC in a schema graph G. An algorithm similar to the one for computing the direct parents set 
(Figure 23) can be used. The algorithm traverses the schema graph downwards in a depth-first 
manner, until it finds a class C; that fulfills the condition subsumes(VC,C;). This class C; is a 
direct subclass of VC, since any class above it that is also subsumed by VC would have been 
found before reaching C;. See Figure 25 for a precise formulation of the just outlined algorithm. 

Algorithm outline: Compute The Direct-Children classes of A Class. 

Input: 
A schema G=(V,E) with single inheritance and a class VC to be integrated into G. 
DIRECT-PARENTSvc: a set of direct-parent classes of VC in G. 

Output: 
DIRECT-CHILDREN vc: a. set of direct-children classes of VC in G. 

Data Structures: 
'function 8Ubsumes( classl,class2) : Boolean; 

Algorithm: 
procedure Find-Direct-Childrenl(G,VC,DIRECT-PARENTSvc) 

DIRECT-CHILDREN VG 

begin 
DIRECT-CHILDREN vc := 0; 
for all classes C; in DIRECT-PARENTSvc do Process-Node (O;); end for 

end procedure 
procedure Process-Node (class C) 
begin 

if ( subsumes(VC,C)) 
then DIRECT-CHILDRENvc := DIRECT-CHILDREN vc u C; 
else for all classes K in children(C) do Process-Node (K); end for 
endif 

end procedure 

return 

Figure 25: The Algorithm For Computing the DIRECT-CHILDRENvc Set for Single Inher­
itance. 

The Find-Direct-Childrenl algorithm in Figure 25 works on a schema G = (V,E) with 
single inheritance. Such a schema G with single inheritance corresponds to a graph structure 
in the form of a tree, and hence a depth-first traversal of G will not traverse the same subgraph 
twice. Hence, the processed label introduced earlier to mark already processed classes is not 
needed for graphs G with single inheritance. 

Example 19. In this example, we apply the Find-Direct-Children1 algorithm given in Figure 
25 to find the direct subclasses of the class VG in the schema graph G shown in Figure 26. We 
assume that the graph shown in Figure 26 corresponds to a subgraph of the complete schema 

graph G and that the DIRECT-PARENTSvc set has been determined to be { Cl, C2 }. The 
search starts by traversing G downwards starting from the classes { Cl, C2 }. The algorithm 
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u~··· ..• _ DIRECT-CHILDRENyc={C4,C5} 
. 

... 

ub 

Figure 26: An Example of Applying the Find-Direct-Children! Algorithm. 

first processes the class Cl using the Process-Node() function. Since the first if-statement fails, 
the execution falls into the else-branch. Next, the for-loop iterates over the children of Cl, which 
are C3 and C4. For the first iteration of the for-loop with K=C3, the if-statement fails and 

the execution continues with the else-branch. However, since C3 has no children, the for-loop 
in the else-branch is not executed. The algorithm then processes the second child of Cl, which 

is K=C4. The first if-statement evaluates to true, i.e., C4 is indeed a subclass of VG, and 

the then-branch adds C4 to the DIRECT-CHILDRENvc set. The else-branch is skipped, and 
hence none of the classes below C4 will be processed. The search along this branch is completed. 

The algorithm backtracks to process the next class in the DIRECT-PARENTSvc set, C2, in 
the just described manner. 

Theorem 8. (Correctness) Given the schema G = (V,E) with single inheritance and a class 
VG, then the Find-Direct-Childrenl algorithm in Figure 25 will find all classes of G, called 

DIRECT-CHILDRENvc, that are direct subclasses of VC4. 

Proof: A schema G = (V,E) is a connected directed acyclic graph. This assures that a general 
depth-first search starting from the root will meet all leaf nodes exactly once (See a standard al­
gorithm book, e.g., [2), pg. 176 - 178). By Lemma 8, it is sufficient to start the the search for the 
DIRECT-CHILDRENvc set from the classes in the DIRECT-PARENTSvc set on downwards 
rather than from the root of the schema graph. By Definition 20, the DIRECT-CHILDRENvc 
set contains all classes that fulfill the following conditions: (1) they are subclasses of VC and 
(2) there are no other classes above them in the schema graph that are also subclasses of VC. 
The later means that they are the highest possible classes in the schema graph that are still 
subsumed by VC. Due to the depth-first traversal of the schema graph G, the Find-Direct­
Childrenl algorithm finds the 'highest' classes of G that are subsumed by VC first. In fact, 
the search terminates the search for a given branch of the tree G, whenever the condition "sub­

sumes(VC,C)" evaluates to true. By Definition 20, these highest subclasses C of VC are indeed 
the direct children ofVC. These classes are thus added to the DIRECT-CHILDRENvc set by 

4 We assunie that the function aubaumea is computable for our object model and by the terms 'all direct 
subclasses' we mean all direct subclasses recognizable by the s-ubaumea function. 
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the then-branch of the if-statement, and the search along this branch of the schema graph is 
terminated. q.e.d. 

Theorem 9. (Complexity) Given a schema G = (V, E) with single inheritance and a class 
VG, then the Find-Direct-Childrenl algorithm in Figure 25 has a worst case complexity of 
on El) with !El the number of edges in the schema. 

Proof: We assume a set representation (e.g., for the sets DIRECT-CHILDRENvc and 
DIRECT-PARENTSvc) that allows for the manipulation of the set by adding or deleting 
elements and for the checking its membership for a particular element in 0(1) time, e.g., a vec­
tor representation of G. The proof is then similar to those for the standard depth-first search 
(See a standard algorithm book, e.g., [2], pg. 176 - 178). The functions to initialize the search 
require O(IV/) steps if a list of class nodes is available. The time spend in the Process-Node (C) 
function for a given class C is proportional to the number of out-going edges (or the number 
of children of C). The function Process-Node (C) is called at most once for a given class C, 
since for a graph G with single inheritance, a depth-first traversal will by default encounter 
each node in the tree exactly once (See [2), pg. 176 - 178). Therefore the worst case complexity 
is O(max(IVl,IEI)). Note that in a connected directed graph the number of edges !El in the 
schema is always larger or equal to the number of classes !VI in the schema. IEI ~ IVI implies 
that complexity(Find-Direct-Childrenl) := O(max(IVl,IEI)) := O(IEI). q.e.d. 

The Find-Direct-Children! algorithm in Figure 25 works on a schema G = (V,E) with 
single inheritance. If we want to apply the algorithm to a schema G with multiple inheritance, 
which corresponds to a DAG structure rather than to a tree structure, then we need to assure 
that the depth-first traversal will not traverse the same subgraph of G more than once. Hence, 
we introduce the label processed into the Find-Direct-Children! algorithm in Figure 25 to mark 
classes that have been processed before. The resulting algorithm is shown in Figure 27. 

Theorem 10. (Correctness) Given the schema G = (V,E) with possibly multiple inheritance 
and a class VG, then the Find-Direct-Children2 algorithm in Figure 27 will find all classes of 
G, called DIRECT-CHILDRENvc, that are direct subclasses of VG. In addition, the algorithm 
might select some classes Ci that are indirect subclasses of VC6. 

Proof: 
Part I: The Find-Direct-Children2 algorithm finds all DIRECT-CHILDRENvc of VC. 

Theorem 8 shows that the Find-Direct-Children! algorithm finds all DIRECT­
CHILDRENvc of VC for a graph G with single-inheritance. The same reasoning can be used 
here to argue that the Find-Direct-Children2 algorithm finds all direct subclasses of VC for a 
graph G with multiple-inheritance. Namely, by depth-first traversal, each relevant branch of 
G is explored (once) and all classes Ci for which the condition "subsumes(VC,C)" evaluates to 
true are collected in the set DIRECT-CHILDRENvc. 

Part II: The Find-Direct-Children2 algorithm may also find indirect subclasses of VC. 

5 Again, we assume that the function auhaumea is computable. 
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Algorithm outline: Compute The Direct-Children classes of A Class. 

Input: 
A schema. G=(V,E) with multiple inherita.nce and a class VC to be integrated into G. 
DIRECT-PARENTSvG: a set of direct-parent classes of VC in G. 

Output: 
DIRECT-CHILDREN VG: direct- and possibly indirect-children of VC in G. 

Data Structures: 
label processed( class) : Boolean; 
function subsumes( classl ,class2) : Boolean; 

Algorithm: 
procedure Find-Direct-Children2 ( G, VC ,DIRECT-PARENTS v G) 

DIRECT-CHILDREN VG 

begin 
DIRECT-CHILDRENvGl := 0; 
for all classes G; in V do processed(C;) :=false; end for 
for all classes G; in DIRECT-PARENTSvG do 

processed( C;) := true; 
Process-Node (C;); 

end for 
end procedure 
procedure Process-Node (class C) 
begin 

if ( subsumes(VC,C)) 
then DIRECT-CHILDREN VG := DIRECT-CHILDREN vG u C; 
else begin 

for all classes K in children(C) do begin 
if (processed(K)=false) 
then begin 

processed(K):=true; 
Process-Node (K); 

endif 
end for 

endif 
end procedure 

67 

return 

Figure 27: An Algorithm for Computing the DIRECT-CHILDRENvc Set for Multiple In­
heritance. 
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In a graph G with multiple inheritance, a class node C may have more than one parent. 
Hence, we may arrive at the same node C of G more than once during a depth-first traversal. 
If we arrive at such a node C; from one parent while one of its other parents is also subsumed 
by VC, then the class C; will be redundant in the DIRECT-CHILDRENvc set. An example 
of this situation is depicted in Figure 28. q.e.d . 

.. ························· ... , .. , 
u~··... DI RECT-CHILDRENyc ={C4,C6,C5}. 

···················· ········ 
: computed by the Direct-Children2 

,/algorithm on a multiple-inheritance graph. 

ub ub 

Figure 28: Applying the Find-Direct-Children2 Algorithm to Multiple-Inheritance Schema. 

Example 20. The schema graph in Figure 28 is identical to the one in Figure 26, except 

for the addition of the arc e = <C6, Cf!>, which turns the schema into a graph with multiple 
inheritance. The Find-Direct-Children2 algorithm given in Figure 27 proceeds as described in 

Example 19. However, when processing the class C3, the algorithm now also processes C6, the 

new child of C3. Since C6 is the first class on this branch that fulfills the subsumes(VC, C6} 

condition, C6 is added to the DIRECT-CHILDRENvc set. Next, C4 and CS are also added 
to the DIRECT-CHILDRENvc set as explained in Example 19, It can easily be seen that C6 

is not a direct child of VG, since there is another class, C4, in the graph that is a direct child 
of VG and that is a superclass of C6. Hence, C6 is redundant in the DIRECT-CHILDRENvc 

set. 

Theorem 11. (Complexity) Given a schema G = (V,E) with multiple inheritance and a 
class VG, then the Find-Direct-Children2 algorithm in Figure 27 has a worst case complexity 

of on.El) with /E/ the number of edges in the schema. 

Proof: The Find-Direct-Children2 algorithm in Figure 27 is identical to the Find-Direct­
Childrenl algorithm in Figure 25, except for the introduction of the processed label to delimit 
the search on a graph with multiple inheritance. Hence, the proof proceeds similar to Theorem 
9. The only difference is the reason for why the function Process-Node (C) is called at most once 
for a given class C given below. Namely, the Find-Direct-Children2 algorithm marks all classes 
by the label processed the first time they are called. When a class C is encountered for a second 
time, then its label processed(C) will be true. For a class C with the label processed(C)=true, 

the if-statement evaluates to false and the Process-Node (C) function call is skipped. Hence, 
the Process-Node (C) function is called but once for each class C. q.e.d. 
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Lemma 10. Given the schema G = (V,E) and a class VG, then the following properties hold 

for classes Ci that are either direct or indirect subclasses of VG in G: 

I. For all Ci that are direct subclasses of VG, i.e., they are true members of the DIRECT­
CHILDRENvc set, the following holds: 

('/Ck E parents(Ci))(subsumes(VC,Ck)=false). 

II. For all C; that are indirect subclasses of VG, i.e., they are redundant members of the 
DIRECT-CHILDRENvc set, the following holds: 

(3Ck E parents( Ci ))(subsumes(VC, Ck)=true). 

Proof: 
Part I: For direct subclasses of VC. 

Assume that the class Ci is a direct subclass of VC. Then the following must hold by 
Definition 20: 

(1) (Ci is-a VC), and 

(2) (J:lCk EV) with (Ci is-a• Ck)/\ (Ck is-a• VC) . 

. The second condition can be rewritten as "(f-lCk E parents( Ci)) with (Ck is-a • VC)", 
since if there is a class ck with the above property then there is at least one direct superclass 
(parent) of Ci with the same property. This, of course, is equivalent to the condition that 
"('VCk E parents( Ci)) (subsumes(VC,Ck):=false)" given in Lemma 10.I. 

Part II: For indirect subclasses of VC. 

For a class Ci to be an indirect - but not a direct - subclass of VC means that the following 
holds: 

(1) (C; is-a VC), and 

(2) (3Ck EV) with (Ci is-a• Ck)/\ (Ck is-a• VC). 

The first condition indicates that Ci is a subclass of VC and the second condition is a 
negation of the requirement that the subclass relationship m~st be direct. The second condition 
can be rewritten as "(3Ck E parents(Ci))(Ck is-a • VC)", since if there is a class Ck with 
the above property then there is at lea.st one direct superclass (parent) of Ci with the same 
property. This is equivalent to the condition listed in Lemma 10.II. q.e.d. 

Next, we demonstrate these definitions by an example. 

Example 21. As discussed in Example 20, the Find-Direct-Children2 algorithm finds the 
DIRECT-CHILDRENvc set := { C4, C6, C5} for the schema graph in Figure 28. By Lemma 
10.I, the class C4 is a true member of the DIRECT-CHILDRENvc set, since its only parent Cl 
is not subsumed by VC. Similarly, the class C5 is a true member of the DIRECT-CHILDRENvc 
set, since its parent C2 is not subsumed by VC. However, by Lemma 10.II, the class C6 is not 
a direct subclass of VC, since one of its parents, namely, C4, is also subsumed by VC. Since 
there is at lea.st one class between VC and the class C6, namely, its parent C4, the class C6 is 
a redundant member of the DIRECT-CHILDRENvc set (Lemma 10.II). 
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Based on Lemma 10, we can derive an algorithm that removes all redundant classes (in­
direct subclasses of VC) from the DIRECT-CHILDRENvc set generated by the Find-Direct­
Children2 algorithm. Namely, for each class C; in the DIRECT-CHILDRENvc set, we test 
the condition outlined in Lemma 10. If the condition in Lemma 10.a is true, then the class C; 
is indeed a direct child of VC and should remain in the DIREGT-GHILDRENvc set. If the 
condition in Lemma 10.b is true, then the class C; is not a direct child of VC and should be 
removed from the DIRECT-CHILDRENvc set. This algorithm has been implemented by the 
Remove-Redundant-Classes procedure shown in Figure 29. 

Algorithm outline: Remove all indirect subclasses of VC from DIRECT-CHILDRENvc. 

Input: 
A schema G=(V,E) with multiple inheritance and a class VC to be integrated into G. 
The set DIRECT-CHILDRENvc with all direct and possibly some indirect subclasses· of VC. 

Output: 
DIRECT-CHILDREN vc with all direct children of VC. 

Data Structures: 
variable redundant: Boolean; 
function subsumes( class! ,class2) : Boolean; 
function remove-from-set( class,set-of-classes ); 

Algorithm: 
procedure Remove-Redundant-Cla.sses(G,VC,DIRECT-CHILDRENvc) 
return DIRECT-CHILDRENvc 
begin 

for all C; in DIRECT-CHILDRENvc do begin 
redundant := false; 
for all K in parents( C;) do 

if (subsumes(VC,K)) then redundant:=true; endif 
end for 
if (redundant=true) then remove-from-set(C;,DIRECT-CHILDRENvc); endif 

end for 
end procedure 

Figure 29: An Algorithm For Removing all Indirect Subclasses of VC from 
DIRECT-CHILDREN vc. 

Example 22. The schema graph in Figure 30 is identical to the one in Figure 28. Example 20 
explained how all direct and possibly some indirect subclasses of VG are found, i.e., DIRECT­
CHILDRENvc := { C4, G6, C5 }, while in this example we show how all indirect classes are 
removed from this set. The algorithm proceeds as follows. The first iteration of the first for-loop 
with C;=G4 checks whether the redundancy condition given in Lemma 10.I applies for G,f. The 
second for-loop iterates over all parents of C4 to check whether any of them are subsumed by 
VG. Since CJ, the only parent of G4, is not, the variable redundant:=false is not modified. G4 is 
found to be not redundant. The second iteration of the first for-loop with C1=C6 checks whether 
C6 is redundant. The second for-loop iterates over all parents of G6, which are C9 and C4. 
For K=G9, the first if-statement fails. However, for K=G4, the first if-statement succeeds and 
the variable redundant is set to true. Consequently, the second if-statement evaluates to true 
and removes G6 from the DIRECT-GHILDRENvc set. C6 has been found to be redundant. 
Lastly, the third iteration of the for-loop with C; =G5 determines that G5 is not redundant. In 
summary, the classes C4 and C5 remain in the DIREGT-GHILDRENvc set. 
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ub DIRECT-CHILDRENvc-{C4,C5}. 

Figure 30: An Example of Applying the Remove-Redundant-Classes Algorithm. 

Below, we show that the Remove-Redundant-Classes procedure in Figure 29 implements 
the algorithm for removing all redundant members (indirect subclasses) and none of the true 
members (direct subclasses) of the DIRECT-CHILDRENvc set as described in the previous 
paragraph. 

Theorem 12. (Correctness) Given the schema G = (V,E) with possibly multiple inheritance, 
a class VC, and the set DIRECT-CHILDRENvc set composed of all direct subclasses of VG 
and possibly some indirect subclasses of VG. Then the Remove-Redundant-Classes algorithm 
in Figure 29 removes all of the indirect and none of the direct subclasses of VG from the set 
DIRECT-CHILDRENvc. 

Proof: For a class Ci in the set DIRECT-CHILDRENvc, the Remove-Redundant-Classes 
~lgorithm checks for the condition described in Lemma 10, namely, the condition ('VC1a E 
parents(Ci))(subsumes(VC,C1a)) for Ci a subclass of VC. The flag redundant remains false· if 
and only if the condition of the if-statement never evaluates to true. This is equivalent to 
(\:/C1a E parents(Ci))(subsumes(VC,C1a)=false), which is equal to the first condition listed in 
Lemma 10.I. Hence, by Lemma 10.I, the class Ci is a direct subclass of VC and is thus not 
removed from the DIRECT-CHILDRENvc set by the second if-statement. The flag redundant 
is set to true if and only if the condition of the if-statement evaluates to true at least once. This 
is equivalent to the second condition listed in Lemma 10.11, namely, there exists a class G1a in 
parents(Gi) for which (subsumes(VC,G1a)=true). By Lemma 10.11, the class Ci is an indirect 
subclass ofVC and thus has to be removed from the DIRECT-CHILDRENvc set. It can easily 
be seen that this is done by the second if-statement. After running this test for all classes in 
the DIRECT-CHILDREN vc set, all indirect subclasses of VC have been removed and thus 
DIRECT-CHILDRENvc is left with the direct subclasses of VC. q.e.d. 

Theorem 13. (Correctness) Given the schema G = {V,E} with possibly multiple inheritance, 
a class VC, and a set DIREGT-PARENTSvc consisting of all direct parents of VG in G. 
Then the algorithm Find-Direct-Children in Figure 31 finds all classes of G, called DIREGT­

CHILDRENvc, that are direct subclasses of VG. 
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Algorithm outline: Find Direct-Childrenvc For a Graph G with Multiple Inheritance. 

Input: 
A schema G = (V,E) with multiple inheritance and a class VC to be integrated into G. 
DIRECT-PARENTSvc: set of all direct parents of VC. 

Output: 
DIRECT-CHILD REN vc: set of all direct children of VC. 

Algorithm: 

12 

procedure Find-Direct-Children( G, VC,DIRECT-PARENTS v c) return 
DIRECT-CHILDREN VC 

begin 
DIRECT-CHILDREN vc := Find-Direct-Children2(G, VC,DIRECT-PARENTSvc ); 
DIRECT-CHILDREN vc := Remove-Redundant-Cla.sses(G,VC,DIRECT-CHILDRENvc); 

end procedure 

Figure 31: An Algorithm for Finding All Direct Children for Multiple Inheritance. 

Proof: By Theorem 10, we know that the Find-Direct-Children2 algorithm will find all classes 
of G that are direct subclasses ofVC plus possibly some classes C; that are indirect subclasses of 
VC in G. By Theorem 12, we know that the Remove-Redundant-Classes algorithm removes all 
indirect subclasses of VC and none of the direct subclasses of VC from DIRECT-CHILD REN vc. 
Hence, all direct subclasses of VC will remain in the DIRECT-CHILDRENvc set. q.e.d. 

Theorem 14. {Complexity) Given the schema G = (V,E) and a class VG, then the Find­
Direct-Children algorithm in Figure 31 has a worst case complexity of on El) with IEI the number 
of edges in the schema. 

Proof: By Theorem 9, the complexity of the first procedure, called Find-Direct-Children2, is 
O(max(IVl,IEI)) = O(IEI). The complexity of the second procedure, called Remove-Redundant­
Classes, is ocr:.c,eDIRECT-CHILDRENvc(#parents(C;))) with #parents(C;) equal to the 
number of outgoing is-a edges of C; in G, denoted by #outgoing-edges(C;). The sum 
'L:c,eDIRECT-CHILDRENvc(#outgoing-edges(C;)) is of course smaller or equal to IE!. In 
summary, the complexity of the Find-Direct-Children algorithm is complexity(Find-Direct­
Children) := complexity(Find-Direct-Children2) + complexity(Remove-Redundant-Classes) = 
O(IEI + IEI) = O(IEI). q.e.d. 

7.4 Summary 

Figure 19 in Section 7.1 presents the general algorithm for integrating a virtual class VC into a 
global schema G. In Sections 7.2 and 7.3, we present algorithms for subtasks (1) and (3) of the 
Class-Placement algorithm, respectively. The reader is referred to Example 16 for an example 
of the complete algorithm. The complexity of the class placement algorithm given in Figure 
19 is linear, since both the computation of the direct parent and the direct children set can be 
done in linear time as shown in Sections 7.2 and 7.3, respectively. 



Cla.ss Integration Elke A. Rundensteiner May 28, 1992 73 

8 THE COMPLETE CLASS INTEGRATION ALGO­
RITHM 

In this section, we present the general solution for cla.ssification based on the algorithms de­
veloped in previous sections (see also Figure 17). In Section 5, we have demonstrated that the 
introduction of a class with a new type into a schema graph may require the creation of yet 
additional classes. The Generate-Intermediate-Classes(G,VC) procedure addresses this prob­
lem by preparing the type hierarchy for insertion of a virtual class by adding all intermediate 
classes required to preserve the correct type lattice underlying the schema graph. Thereafter, 
we need to determine the correct location for VC in this prepared schema graph. The Class­
Placement( G, VC) procedure presented in Section 7 solves exactly this problem. Finally, putting 
these two algorithms together as done in Figure 17 results in a class integration aigorithm that 
solves the general classification problem (Theorem 6). 

Algorithm outline: Integration of a. Virtual Class VC into the Global Schema G. 

Input: 
A schema. G = (V,E) and a class VO. 

Output: 
VC integrated into G (with possibly additional intermediate classes). 

Algorithm: 
procedure Integration(G,VC) 
begin 

11 Prepare G by adding all intermediate classes required for its closure with respect to VC. 
Generate-Intermediate-Classes( G, VC); 
I I Insert VC into this modified schema. graph G. 
Class-Placement(G, VC); 

end procedure 

Figure 32: The Complete Class Integration Algorithm. 

Below, we present two examples that demonstrate the classification algorithm given in 
Figure 32. 

Example 23. Figure 33 demonstrates how the classification algorithm given in Figure 32 in­

serts a class VG into a class hierarchy G. Figure 33. a shows G before type classification. For this 
example, we assume that all four classes have the same object instances as members, i. e. 1 con­
tent(GJ) = content(G2) = content{G3} = content(G4). The virtual class VG is derived by the 

view derivation "VG= hide {b] from C4 ". Then the type of VGis defined by type(VG):=[a,c,d} 
and the object membership of VGis defined by content(VG} := content(G4). We first run the 

Generate-Intermediate-Glasses(G, VG) procedure to modify the class hierarchy G such as to 
prepare its underlying type hierarchy for the insertion of the new class VG. As explained in 

Example 23 and shown in Figure 33.b, this procedure generated the three intermediate classes 
g1, g21 and g3. Next, we apply the Glass-Placement(G, VG) procedure to add VG to the now 

prepared schema graph G (Figure 33.c). By traversing G downwards starting from the root, the 

algorithm establishes the set DIREGT-PARENTSvc := {g3}. g3 is a direct parent of VG since 

(1) g3 subsumes VG with type(g3) = {a, c, d} = type(VG) and content(ga) = content(G3} = 
content(C4) = content(VG), and (2) none of g3 's children does subsume VG. The algorithm 

checks whether VG is contained in the DIREGT-PARENTSvc set. Since type(ga) = type(VC) 
and content(g3) = content(VG}, the two classes VG and g3 are found to be equivalent and no 
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Assumption: 
content(C1)= 
content(C2)­
content(C3)­
content(C4). 

VC=hide (bl from C4. 
.......... _a 
f vc i----C 
·-......... ·~ 

(a) Given a schema G and virtual class VC 
defined by ''VC= hide (b] from C4". 

Class-Integration Algorithm: 

Search: 

DIRECT-PARENTSvc = { g3 }. 

VC in DIRECT-PARENTS vc 

therefore stop and rename g3 by VC. 

Edge menlpulatlon: 

None. 

(c) Class Integration of VC into G: 
tracing through the algorithm. 

g(C2) = {a, c} 

~ g(C4) = {a, c, d} 

.. " ... 
(91"~ 
".. ... ~·ep(G1) 

.......... ,__.a 

~ g2 f----oc 
· ......... ~ep(G2) 

!)'pe(g3):-
{ a, c, d} 
content(g3):• 
content(C3). 

:, ............................................................... ; 
(b) Prepare the schema ~raph G for insertion of VC 
by inserting the intermediate classes gi into G . 

....... 
{91 \---a 
·· .. , ,,.·· 

, ...... _a 
{ vc }----C 
·· ...... ~ 

g3=VC. 

(d) Class Integration of VC into G: 
the resulting schema graph G. 

Figure 33: An Example of Complete Classification (Identical Set Contents). 
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new class needs to be added. The intermediate class g3 is simply renamed by the name of VG 
(Figure 33. d). Since the class g3 is already properly integrated in the schema graph, no further 
manipulation of the graph edges is needed. 

Example 24. Figure 34 presents another example of the classification algorithm given in Fig­
ure 32. The example schema graph in Figure 3.,(. a is identical to the one in Figure 33. a with the 
only exception that al/four classes C; now have distinct object memberships, that is, content(Gl) 
::::J content(G2) ::::J content( GS) ::::J content(G4). VG is again derived by the view derivation "VG= 
hide {b} from G4 ". First, the type hierarchy preparation task done by the Generate-Intermediate­

Glasses(G, VG) procedure proceeds as already explained in Example 23. Then, when applying the 
Glass-Placement(G, VG) algorithm to add VG to the prepared schema graph G, the DIREGT­
PARENTSvc set is again set equal to {g3}. The algorithm checks whether VG is contained in 
the DIREGT-PARENTSvc set, which this time is not true for the following reason. While the 

type of VG is equal to the type of g3 with type(g3) = [a, c, d} = type(VG), the two contents are 

distinct with content(g3) = content(G3) ::::J content(G4) = content(VG), in short, content(g3) 'f. 
content(VG). The algorithm thus initiates the search for the DIREGT-GHILDRENvc set start­
ing from g3 on downwards the class hierarchy. G3 is not subsumed by VG, since content(G3) 

::::J content(G4) = content(VG). However, since content(G4) = content(VG), the class G4 is 
subsumed by VG and we have DIREGT-GHILDRENvc := {G4}. Lastly, we need to adjust the 
edges of the schema graph in order to insert VG directly below the DIREGT-PARENTSvc set 

and directly above the DIREGT-CHILDRENvc set. For this reason, the edges < VG, g3 > and 

< G4, VG> are added between VG and its direct parent and its child, respectively (Figures 34. c 
and 34.d). The resulting schema graph is shown in Figure 34.d. 
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Assumption: 
content(C1) > 
content(C2) > 
content(C3) > 
content(C4). 

VC=hide [b] from C4. 

.......... _,___a 
~VG }---C · .......... ~ 
content(VC):= 
content(C4). 

(a) Given a schema G and virtual class VG 
defined by "VG= hide [b] from C4". 

Class-Integration Algorithm: 

Search: 

DIRECT-PARENTSvc = { g3 }. 

VG is not in DIRECT-PARENTSvc 

DIRECT -CHILDRENvc - { G4 }. 

Edge manlpulatlon: 

Insert <VC,g3> 

Insert <C4,VC> 

(c) Determine the correct position for VG in G. 

............... , ............................................... .. 
~G1 

g(C1)-{a} 
; ...................................... .. 

g(C2) - {a, c} 

...-·········---a 
: g1 • 
-.._ ... ~·ep(G1) 

...... ····--..a 
ig2 ~ 
·· .... ""rep(G2) 

type(g3):• 
{a, c, d} 
content(g3):­
content(C3). 

(b) Prepare the schema ~raph G for VC 
by inserting the intermediate classes gi into G. 

.• ··" .... ,,___,_.a 
~g2 ~ 
··.... ..... content(g3): .. 

~-----... -... • .. / :ntent(C3). 

. ·~ 
~ g3 _;_____... 
... ,, ..• ·-----u 

(d) Insert VG into G. 

Figure 34: An Example of Complete Classification (Distinct Set Contents). 
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9 SOLVING THE SUBSET/SUBTYPE INCOMPATI­
BILITY PROBLEM 

In Section 5, we have identified a class integration problem that arises due to the conflict between 
subset and subtype relationship requirements of a class. We have also shown an example of how 
this problem may be solved (Example 11). In this example, the is-a incompatibility problem 
was solved by creating additional intermediate classes (besides those required for a closed type 
hierarchy) that restructure the schema graph such as to allow for the correct insertion of the 
virtual class. In the following, we will present a general solution to the is-a incompatibility 
problem. More precisely, we will show that the algorithm that solves the type inheritance 
mismatch problem (Section 6) also successfully addresses the is-a incompatibility problem for 
the object algebra proposed in this paper. 

It is straightforward to see that virtual classes derived by most of the object algebra 
operators suggested in this paper are not subject to the subset/subtype incompatibility problem. 
This can intuitively be explained by the fact that the object algebra operators generate virtual 
classes that are compatible with the existing is-a hierarchy, meaning, either the derived class 
is both a subset and a subtype of the source class, or it is both a superset and a supertype of 
the source class. We leave it as an exercise to the reader to verify this observation; 

Note that there is one exception to this, namely, the hide operator may indeed generate 
an is-a incompatible class as shown in Figure 36. The hide operator creates a virtual class VC 
with the same content as the source class C and a more generalized type than C. Due to its 
type, VC must be placed higher in the schema graph above C. In order to develop a solution for 
the is-a incompatibility problem in the context of the hide operator we consider the following 
three cases: (1) a class with a type equal to type(VC) already exists, (2) no class with a type 
equal to type(VC) exists but VC can consistently be integrated, and (3) no class with a type 
equal to type(VC) exists and none can be created. 

In the first case, if a class C,. with type(Ck)=type(VC) already exists in the graph G, then 
VC can always be integrated - without conflict - by simply making it a subclass of Ci:. This 
is so because the hide operator guarantees that the content of VC is smaller or equal to the 
content of any of the classes above the source class C ofVC. Hence, C,. 2 VC. This then implies 
VC is-a C,., i.e., VC can always consistently be integrated into G by making it a subclass of 
C,.. We explain this situation with the example below. 

Example 25. In Figure 35, the virtual class VG is derived from the class C3 using the hide 
operator. By the definition of the hide operator, content{VG)=content{C3)1 and thus the set 
content of VG is always smaller or equal to the set content of any of the classes above C3. Since 
VG >- C3, VG needs to be integrated into G above C3. There is one class in G above C3 that 
has the same type as VG, namely, Ci. Therefore, VG can is integrated into G by making it a 
subclass of Ci. 

In the second case, a class C,. with type( G1: )=type(VC) does not exist in the graph G but 
VC can be consistently integrated. By assumption, this case does not represent a problem. An 
example of this situation is discussed below. 
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VC := hide [b,c] from C3. 

type(VC) := [a] 

content(VC):=content(C3). 

(a) Class C with type(C)=type(VC) exists in G. 

May 28, 1992 78 

(b) Successful integration of VC. 

Figure 35: The is-a Incompatibility Problem: A Class C with VC's Type Exists in Schema. 

Example 26. In Figures 36. a and 36. b, we assume that the set contents of all classes are 
identical. Then the set relationships can be ignored; this reduces the is-a incompatibility problem 
to the type inheritance mismatch problem, which fortunately we already know how to solve. In 

Figure 36.b, VG is integrated into G by placing it directly below Cl and above C2. 

Lastly, we take a look at the third case in which no consistent integration of VC can take 
place. For instance, if we drop the simplifying assumption of identical sets in the previous 
example, then the fact that a class Ck with type( Ck )=type(VC) does not exist in G results in 
conflicts caused by a mismatch between the subset and the subtype hierarchy. In this case, a 
subset/subtype conflict may occur since VC's content may be smaller than the content of any 
of the other classes above its source class. VC should be below all of them in terms of the set 
relationships and above some of them due to the subtype relationships. 

Example 27. An example of this situation is given in Figure 96.c, which is equal to Figure 

36. b except for the fact that the set contents of all classes are now distinct. In this example, 
VG is required to be above C2 due to their subtype relationship and below C2 due to their 

subset relationship. Clearly, there is no consistent position for VG in G. The problem in Figure 

36. c can be solved by introducing an intermediate class C2' with type(C2')=type(VC) and con­
tent(C2')=content(C2). VG can then be integrated by placing it directly below C2' as depicted 

in Figure 96.e. 

It is interesting to note that the solution for the is-a incompatibility problem proposed in 
the above example is exactly what the type lattice preparation algorithm presented in Section 6 
would do. This is also demonstrated in Figures 36.d and 36.e by displaying detailed steps of the 
type lattice preparation algorithm for the example. We now argue that this is not coincidence 
but rather that it is always the case. This can be explained as follows. Our solution to the 
type inheritance problem introduces intermediate classes, one for each equivalence group of G 
with respect to VC (Section 6). Since type( <hide-source-class> n VC) = type(VC), this then 
implies that a class with a type equal to VC is created. Consequently, application of the type 
hierarchy preparation will always generate a class with the required type of VC. In other words, 
the type hierarchy preparation reduces the problem to the situation shown in Figure 35. As 
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lvC=hide [c] from C3.1 

(a) Class C with type(C) 
=type(VC) not in G . 

Elke A. Rundensteiner 

~-
.. ··----a 
( VG} .. b ·· ...... . 

I Assumption: S1 =S2=S3. 

(b) Type hierarchy is 
not a problem here. 

........... , ............................................ . . . 
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~ 
~ Tvd 
: ........ : 

1Svc 
set hierarchy ... 

Type hierarchy. 

I Assumption: S1>S2>S3. 

(c) Type/Set hierarchy incom­
patibility is a problem. 

79 

b1 l 
~ f(C1) = [a] --.a ~ content(C2'):= 

__ -!-_c_o _ntent(C2) 

.................................... 1111111111111111• 

jG2 

. . ............................................................ : 
(d) Use type hierarchy algorithm 
to solve incompatibility problem. 

....................... 1111 

~ 1111111111111111111111111111111111111111111111 ': 

'G2 = [a,b] : 

content(VC):­
content(C3) 

(e) The final schema graph also solves 
the incompatibility problem. 

Figure 36: An Example of Solving the is-a Incompatibility Problem 
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discussed earlier, in this case is-a incompatibility is no longer a problem. In short, we thus have 
shown that the type hierarchy preparation algorithm solves the is-a incompatibility problem 
for the general case (see also Figures 36.d and 36.e). For this reason, we need not develop an 
independent solution to address the is-a incompatibility problem. Lastly, we would like to note 
that if one were to use a different class derivation language than the object algebra proposed in 
this paper, then one might have to develop a general algorithm to solve the is-a incompatibility 
problem (See for example Figure 11). Further investigation of this problem is however beyond 
the scope of this paper. 
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10 CLASSIFICATION CUSTOMIZED FOR OBJECT 
ALGEBRA 

In this section, we customize the general class integration algorithm presented in this paper for 
each of the six object algebra operators proposed in Section 3.2. We demonstrate that in the 
majority of cases the type hierarchy preparation procedure, which has quadratic complexity, 
need not be run. For the following, we refer to the simple class placement procedure defined 
in Section 7 by algorithm A and to the more complex algorithm defined in Section 8 that 
first generates the appropriate intermediate types and then places the virtual class in the 
modified schema graph by algorithm B. Recall that complexity(A) is linear and complexity(B) 
is quadratic, assuming a subsumes() function with constant complexity. 

derivation intermediate final 
operators types location algorithm complexity 

select no below A 
SC 

refine no 
direct~ 

below C, direct 
no 

children 

hide yes above B SC 

union no above A 
SC 

intersect yes below B 
SC 

diff no below A SC 

Legend 

algorithm A = class placement (given correct type hierarchy) 

algorithm B =type hierarchy preparation and class placement 

O(IED 

0( 1 ) 

O(IE 21) 

O(IEI) 

O(IE 2 1) 

O(IED 

Figure 37: A Table of Class Integration Customized for Each Object Algebra Operator. 

The table in Figure 37 presents a summary of the results of customizing class integration 
for each derivation operator, while a more detailed discussion is given next. The first column 
lists the object algebra operators, the second whether or not type generation may be required, 
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the third indicates the final location of the virtual class in the schema graph, and the fourth and 
fifth columns indicate the algorithm and complexity needed to accomplish the class integration 
of the virtual class generated by the respective operator. 

The refine operator defined in Section 3.2 generates a virtual class VC with a more spe­
cialized type description than a given source class SC by adding new property functions to the 
type description of SC. VC has the same set content as SC. Having a more specialized type 
description and the same set content as SC, VC becomes a subclass of SC and thus must be 
placed below SC in the schema graph. In spite of the generation of a new type (and a new 
property function), we do not need to add intermediate classes to the schema during class 
integration. This is so, since all property functions added to the refined class are distinct 
from existing functions. Hence the equivalence partition of G with respect to SC is equal to 
the equivalence partition of G with respect to VC (see Definition 18 for a definition of the 
equivalence partition). By Theorem 4, this implies that all necessary types do already exist in 
the schema graph. We thus have shown that algorithm B is not needed for the class integration 
of a refined class. 

smaller sets and/or more 
complex types than SC 
-> 
they can't be parents o1 VC. 

,... ........ "···········;...-...new distinct 

j VirtualClasa : property function 
\ vc / 

.. ......................... · 

Figure 38: Linear Class Integration for the refine Operator. 

Next, we show that the integration of a virtual class VC generated by the refine operator 
can be reduced to a simple 0( 1) algorithm requiring no search - rather than having to apply the 
linear class-placement procedure in algorithm A. As shown in Section 3.2, the refined virtual 
class is always a (direct or indirect) subclass of its source class. Based on the example graph in 
Figure 38, we can explain why VC cannot be placed any lower in the class hierarchy. All classes 
below the source class SC have a restricted set membership and/or a refined type description 
of SC. Since the content of VC is equal to the content of SC, none of these children of SC can 
become a parent of VC. Based on Figure 38, we can also explain why the virtual class VC will 
not have any direct parents besides its source class SC. Since content(SC)=content(VC) and 
the types of SC and VC are equivalent with the exception of the new property function of VC, 
any parent of VC will already be a parent of SC. VC would consequently inherit these parent 
relationships through SC. Lastly, we argue that the virtual class VC cannot have any subclasses 
of its own. VC has a type description distinct from the types of all existing classes due to the 
newly defined property function and therefore it would be incorrect for any of the existing 
classes to inherit this new property. We can thus conclude that the refined virtual class VC 
always has to be placed as direct subclass of its source class SC with no children of its own, i.e., 
direct-parents( <refined-virtual-class>) := { <source-class> } and direct-children( <refined­
virtua/-class>) := { }. 
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The hide operator defined in Section 3.2 modifies the type description of a class SC by 
hiding some of its property functions. It thus generates a new class VC with a more general type 
description and the same set content as SC. As for instance demonstrated in Example 10, we are 
forced to generate intermediate classes since VC may have a new type description (composed 
of existing property functions) that does not yet exist in the object schema. Therefore, the 
integration of a virtual class generated by the hide operator may require the application of the 
full-blown algorithm B. 

The select operator is a set-manipulating operator that generates a virtual class VC by 
selecting a subset of object instances from a given class SC. The final location of VC is below 
SC in the schema graph, but not necessarily as a direct subclass of SC. It is easy to see that we 
do not need to generate any intermediate classes, since VC has the same type as SC and SC 
is already properly integrated into the schema graph. Therefore, simple class placement using 
algorithm A is sufficient for the select operator. 

The union operator defined in Section 3.2 builds a new class VC by combining the members 
of two source classes SCI and SC2 into one set. The type description of the virtual class then 
is set equal to the lowest common supertype of the two sources classes as defined in Definition 
4. Clearly, this makes VC a supertype and a superset of both its source classes, and thus VC is 
placed above them. Even though manipulating the type description of the two source classes, 
the integration of a class derived using the union operator does not require the introduction of 
intermediate classes. The reason for this can be explained as follows. The type of VC is equal 
to type(VC):=SCI n SC2, which corresponds to the lowest common supertype of SCI and SC2. 
By Theorem I6, this lowest common supertype has to exist for all pairs of classes in a closed 
schema graph. Since SCI and SC2 were members of the schema graph before the inserting of 
VC, a class with a type equal to the lowest common supertype of SCl and SC2 must already 
have existed in the schema graph. Consequently, the simple class placement algorithm A with 
linear complexity is sufficient. 

The intersect operator defined in Section 3.2 builds a new class VC by constructing a 
set of object instances that are members of two classes SCI and SC2. The type description of 
the virtual class is equal to the greatest common subtype of the two sources classes as defined 
in Definition 3. VC is placed in the subgraph below both SCl and SC2. The integration of a 
class derived using the intersect operator may require the introduction of intermediate classes 
since its new type did not necessarily exist before in the schema graph. We therefore need to 
use algorithm B with quadratic complexity. 

The difference operator generates a virtual class VC consisting of a set of object instances 
that are members of the first but not of the second source class. This is effectively equivalent 
to the select operator, since "VC := diff(SC1,SC2)" is equivalent to "VC := select (e:SCl) 
where ( e not in SC2)". Therefore, the virtual class has the same type as the first source class. 
And, since this type has already been properly integrated into the schema graph, no generation 
of intermediate classes is needed. In short, algorithm A is sufficient for the difference operator. 
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11 RELATED WORK 

An immediate extension of the view mechanism from relational databases to OODB systems is 
to define a view to be equal to an object-oriented query. In fact, many efforts of defining views 
for OODBs follow this approach; that is, they suggest the use of the query language defined 
for their respective object model to derive a virtual class. Some examples are view mechanisms 
for the Fugue Model in (8], for the Orion model in (11), and for integrating databases in (9]. 
MultiView can use any of these proposed class derivation mechanisms to implement the first 
phase of view schema generation, i.e., the customization of individual classes. In this sense, 
Multi View is a superset of these approaches. 

Most of these approaches do not discuss the integration of derived classes into the gl_obal 
schema. Instead, the derived classes are treated as "stand-alone" objects (8], or they are 
attached directly as subclasses of the schema root class [11]. Scholl et al.'s recent work [21] is 
one of the exceptions. They sketch the class integration process for a selected subset of the 
operators of the query language COOL. This work is similar in flavor to what we present in 
Section 3.2 on object algebra. Namely, they determine whether a derived class should be placed 
lower or higher than their source classes. This localized class integration approach is dire~tly 
guided by the derivation of a virtual class, and it is not, as we have shown in this paper, a 
solution to finding the globally most appropriate location in the schema graph. Scholl et al. 
[21] do not ·consider the problem of generating multiple view schemata, which is an integral 
part of Multi View. Multi View can thus be considered to be a compatible extension of their 
work. 

Abiteboul and Bonner [1] present a view mechanism for the 02 database system. In this 
context, they also discuss class integration as an important problem. However, their suggested 
solution is again a simplistic approach that results in partial rather in complete classification 
(See Section 4). No precise algorithm for class integration is presented. 

Rundensteiner et al. [18] discuss the integration of virtual classes derived using set op­
erators into a schema graph. Their work focuses on the semantics of set operators and the 
inheritance of property characteristics, such as, single- versus multi-valued or required versus 
optional. Again, they discuss the relative positioning of the virtual class with respect to its 
source classes without presenting a general solution for classification. 

Tanaka et al. 's work on schema virtualization [24] does not distinguish between the task 
of integrating derived classes into a common schema and the task of generating view schemata. 
While recognizing the need for class integration, they do not present a general classification 
algorithm. They point out that work is needed for developing a systematic approach towards 
view specification in OODBs. In this paper, we have provided a solution for this. In fact, by 
breaking the view schemata definition process into a number of distinct phases, we were able 
to reduce the view definition to a simple yet powerful mechanism. In summary, Multi View is a 
more systematic solution approach compared to their rather ad-hoc proposal. 

Shilling and Sweeney's approach [22] for supporting object-oriented views is based on 
extending the concept of a class from having one type (one ADT interface) to having multiple 
type interfaces. We accomplish the same goal of specializing types by using the type refinement 
capability of the generalization hierarchy. Our work is simpler, however, since it does not 
require the extension of the traditional class concept. Shilling and Sweeney's work focuses on 
one class only, and the effects of multiple interfaces on the class generalization hierarchy are 
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not addressed. Consequently, the question of whether a new type interface associated with an 
existing class is properly integrated with the complete schema remains open. Of course, class 
integration, which does not become an issue when dealing with an individual class only, is not 
addressed. 

Algorithms for special forms of the classification problem have been proposed in the Ar­
tificial Intelligence literature. Schmolze and Lipkis (20], for instance, describe a classifier for 
'concepts' in the KL-ONE Knowledge Representation System. The KL-ONE Knowledge Repre­
sentation scheme does not include behavioral abstractions and abstract data types as done in an 
object-oriented model. Hence, the type inheritance mismatch problem is not addressed by their 
solution. Furthermore, the KL-ONE classifier deals with single-inheritance only, while our class 
placement algorithm can handle both multiple-inheritance schema graphs. More importantly, 
they do not assume that a 'concept' has an associated set of object members. Consequently, 
they do not have to tackle the problem of is-a incompatibility between the subset and the 
subtype hierarchies underlying the general representation scheme. Lastly, since the derivation 
of new classes is accomplished in Multi View using well-defined object algebra operators, we are 
able to reduce the complexity of classification depending on the operator used for derivation. 
This issue is not addressed in (20). 

Our work on classification probably comes the closest to the research by Missikoff et al. [13) 
on inserting types into a lattice structure. Rather than dealing with an object-oriented model, 
they assume a simple record-oriented type system. Our classification algorithm, on the other 
hand, is extended to be applicable to a class generalization hierarchy. Since a class represents 
both a type and a set, our classification algorithm solves the is-a incompatibility problem. This 
problem does not arise, and thus is not addressed in (13], when dealing with classification in a 
type structure rather than in a schema graph. 
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12 CONCLUSIONS AND FUTURE WORK 

12.1 Summary and Contributions 

MultiView is a novel approach for supporting multiple object-oriented views with an object­
oriented view defined to be a virtual, possibly restructured, subschema graph of the global 
schema. This approach is simple yet powerful. It allows for instance for the customization of a 
view schema by virtually restructuring both the generalization and the property decomposition 
hierarchies of the underlying global schema. 

Mu/tiView breaks view specification and maintenance into the following three subtasks: 
(1) customization and derivation of virtual classes, (2) integration of virtual classes into one 
consistent global schema graph and (3) the specification of arbitrarily complex view schemata 
on this augmented global schema. In this paper, we have presented a solution to the second 
subtask, while solutions to the first and the third subtasks of Multi View are given in (17] and 
in (19], respectively. This second subtask, namely, the integration of all virtual classes into one 
global schema graph is the key feature of Multi View that ultimately supports the formation of 
arbitrarily complex view schema graphs composed of both base and virtual classes. In other 
words, the integrated global schema graph corresponds to the backbone of our view support 
system based on which all view schemata are being designed. 

Rather than requiring manual placement of classes in the schema graph and then check­
ing the entered information for consistency, Multi View supports the automatic integration of 
classes. Automatic classification does not only prevent the introduction of inconsistencies into 
the schema, but it also considerably simplifies the task of the view definer. This decreases 
the view creation time, and, more importantly, it allows a non-database expert to specify an 
application-specific view on his or her own without having to be concerned with the tedious 
class integration task. 

For these reasons, we present in this paper an algorithm for the automatic classification of 
virtual classes into a global schema graph. We have identified two class integration problems, 
called the type inheritance mismatch and the is-a incompatible subset/subtype hierarchies 
problem. Our classification algorithm solves both problems. Both solutions are based on type 
lattice classification proposed in the literature, the essence of which is the creation of additional 
intermediate classes that restructure the schema graph. We present proofs of correctness and 
a complexity analysis for the classification algorithm. 

Furthermore, we characterize classification requirements of virtual classes derived by dif­
ferent object algebra operators. This characterization helps us to reduce the complexity of 
the classification task for most cases. For instance, we are able to reduce classification from 
quadratic to linear complexity for classes derived by the Select, the Union, and the Difference 
operators and to constant complexity for those derived by the Refine operator. 

To summarize, the contribution of our work is two-fold: (1) the idea of generating one 
global schema graph incorporating both virtual and base classes as foundation of view support 
and (2) the development of a general class integration algorithm for object-oriented data models 
that supports the generation of such a graph. 

Note that our paradigm is not specific to a particular OODB model. This generality 
allows the Multi View approach to be incorporated into most existing OODBs. Multi View would 
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enrich these systems by allowing them to support a more powerful notion of views. A major 
contribution of the proposed approach lies in its simplicity compared to alternative proposals 
(22, 7], and hence the potential ease in implementing it with existing OODB technology. 

12.2 Future Work 

While the correctness of the algorithms presented in this paper has been tested in isolation, a 
prototype implementation of the complete Multi View system on top of some existing object­
oriented database system would represent a good means for further evaluating our approach. We 
are in the process of evaluating available OODBs for their suitability. This evaluation includes 
the requirement for the OODB to support some basic features, such as that an object instance 
can be a member of many classes simultaneously and thus can take on different types (21]. 
Several implementation issues immediately arise from this requirement, such as the development 
of efficient strategies for method resolution. Other important issues, such as query processing 
techniques on views, materialized views, and view updates, which have been extensively studied 
in the relational model, must now be reexamined in the context of object-oriented data models. 

In this paper, we have restricted the set of object algebra operators to be object-preserving 
(21]. We believe strongly that this is sufficient for many application domains, in particular, since 
the join operator can be simulated using the refine operator. However, it would be interesting 
,to investigate whether, and if so how, MultiView could be extended to also handle object­
generating algebra operators [11, 8]. 

As indicated in Section 4, the classification problem for object-oriented models is not 
decidable since it may involve the comparison of arbitrary functions and predicates. Hence, the 
development of a realistic subsumes() function for some of the emerging object models needs to 
be investigated. The goal of such a project would be not to restrict the expressive power of the 
model nor the constructs used for deriving new classes, while guaranteeing that the subsumes() 
function stays computable. 

In this paper, we took the extreme stance of requiring complete classification, i.e., of 
automatically forcing the placement of a virtual class in its (syntacticly) most appropriate 
position. A more detailed discussion on this issue can be found in Section 4. If one were 
interested in dropping this stringent restriction and allow the user to place new classes in 
non-optimal but nontheless syntacticly correct positions, then our work on the classification 
algorithm would still be a useful component of classification. In particular, it could serve as 
core for a consistency checker that verifies the correctness of a manual class placement, once 
specified. The automatic classifier could also be utilized to guide the user during an interactive 
view specification phase. 

Furthermore, the design of a graphical interface for the incremental view definition phase 
would be a useful feature for application domains. It would open the avenue for non-database 
experts to utilize Multi View to define their desired application-specific views. Indeed, the 
development of Multi View has been driven by our need to provide multiple design views for 
CAD tools working on a central database, and our long-term goals is to apply MultiView to 
address this problem. 
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Lastly, we propose view optimization as a new open problem that arises from our research 
on object-oriented views. View optimization is concerned with restructuring the view specifi­
cation such as to minimize the number of intermediate classes that need to be created. View 
optimization attempts to minimize the size of the resulting schema graph in terms of the num­
ber of (virtual) classes, whereas query processing on views is concerned with finding the best 
execution plan for a given view schema. View optimization is permanent since it influences the 
final schema structure whereas view query optimization is temporary since it is concerned with 
the performance of executing an individual query. As a matter of course, view optimization 
may have an influence on the effectiveness of query optimization, and thus should take the 
potential impact of its decisions on query processing into account. 
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