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It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although
experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little
known about the control strategies themselves. Here, we consider how secreted negative feedback factors
(‘‘chalones’’) may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11
and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying
performance objectives—what, precisely, is being controlled, and to what degree—and go on to calculate how well
different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately,
we show that many features of the OE—the number of feedback loops, the cellular processes targeted by feedback,
even the location of progenitor cells within the tissue—fit with expectations for the best possible control. In so doing,
we also show that certain distinctions that are commonly drawn among cells and molecules—such as whether a cell is a
stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator—may be the
consequences of control, and not a reflection of intrinsic differences in cellular or molecular character.
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Introduction

In recent decades, biologists have come to view cell lineages
as fundamental units of tissue and organ development,
maintenance, and regeneration. The highly differentiated,
often nondividing cells that characterize the mature func-
tions of tissues are seen as end products of orderly, tissue-
specific sequences of cell divisions, during which progenitor
cells pass through distinct stages, marked by expression of
stage-specific genes (e.g., [1–4]). At the starting points of
lineages—particularly those in self-renewing tissues such as
blood, epidermis, and the intestinal lining—one finds stem
cells, characterized both by multipotency (ability to produce
many cell types) and their ability to maintain their own
numbers through self-replication [5–8]. As scientists and
clinicians have become increasingly interested in harnessing
these features of stem cells to repair injury and cure disease,
there has been a resurgence of interest in the mechanisms
underlying the execution and regulation of cell lineages (e.g.,
[9–12]).

The functions of lineages are often presented in terms of
progressive allocation of developmental potential: Thus,
pluripotent stem cells often give rise to oligopotent progen-
itors, which in turn give rise to unipotent (committed)
progenitors. The sequential expression of marker genes at
different lineage stages may be related to transcriptional
‘‘priming’’ events needed to lock cells into specific patterns of
gene expression [13,14].

Not all lineage stages correlate with restriction of cell fate,
however, raising the question of what else lineages do. The
fact that lineage intermediates often display ‘‘transit-amplify-
ing’’ behavior, i.e., are capable of at least some degree of self-
replication, has led to the suggestion that lineage stages play

essential roles in the control of tissue and organ growth (with
growth referring in this case to increase in cell number).
Here, we seek to discover what those roles are. We approach
this question from the perspective of lineages in general, and
within the context of the mammalian olfactory epithelium
(OE), the neural tissue that senses odor and transmits
olfactory information to the brain. The OE is a continually
self-renewing tissue, even in man, and is capable of rapid
regeneration [15]. As discussed below, a wealth of exper-
imental data on the OE lineage and the molecules that
regulate it makes the OE an attractive system in which to
investigate the relationship between lineages and growth
control.

Performance Objectives of Growing Tissues
In biology, ‘‘control’’ is often used interchangeably with

‘‘regulation,’’ but in engineering, control has a precise
meaning: It refers to the strategies that enable a system to
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achieve desired ends, usually in a robust manner. To begin
talking about the control needs of growing tissues and organs,
we must first ask what are the ‘‘desired’’ ends, and to what
kinds of uncertainties and perturbations must growth and
differentiation be robust?

Perhaps the most obvious objective of a growth control
system is to reach and maintain a specified size. Sizes of
organs such as the brain, for example, are genetically
specified within narrow tolerances (e.g., [16]). Moreover,
self-renewing organs, such as the liver, seem to ‘‘remember’’
their appropriate sizes, as they accurately regenerate to their
original sizes following even massive lesions [17]. The fact that
many genetic alterations can affect final organ size (e.g.,
[18,19]) suggests that there are diverse molecular pathways by
which size may be regulated.

A less obvious performance objective is control of growth
rate. Consider, for example, a self-renewing tissue that
maintains constant size by balancing continual cell death
with cell production. Following an injury in which differ-
entiated cells are destroyed, if there is no adjustment in cell
production, those cells will be replaced only at the same
(often very slow) rate at which they previously turned over. In
regenerating tissues, however, it is common to observe a
dramatic increase in proliferation following injuries, with
rapid restoration of tissue morphology and size [17,20,21].
Even in tissues that do not regenerate, control of growth rate
is likely to be important during development, so that the
changing sizes of different organs are properly coordinated
with each other.

Other possible targets of control are the proportions of cell
types in a tissue. For example, in a branched lineage (one with
more than one terminal-stage cell type) a fixed ratio of end
products may be important for tissue or organ function [22].
In lineages that operate continuously, it may also be desirable
to ensure that stem and progenitor cells (which do not usually
contribute directly to tissue function) are not too great a
fraction of the tissue mass.

How difficult should it be for tissues to achieve such
objectives? With control, the difficulty of the task depends

upon the magnitude of the perturbations that are normally
encountered (e.g., genetic and/or random effects on cell
behavior, environmental fluctuations, injury, and disease); the
sensitivity of the system’s behavior to those perturbations;
and the level of imprecision in output that is acceptable.
In recent years, increasing attention has been focused on

the control challenges of biological networks, including those
associated with metabolism, intracellular signaling, and gene
regulation (e.g., [23–26]). Superficially, cell lineages look a
great deal like these other kinds of pathways (Figure 1). Yet
the components of lineages—cell stages—do not just transmit
signals or material from one to another; they typically
undergo autonomous, exponential expansion at the same
time. This imparts a characteristic volatility to lineage
dynamics that no doubt poses challenges for control. Given
such challenges, it would not be surprising if the control of
tissue and organ growth necessitates control strategies unlike
those encountered elsewhere in biology. Here, we take steps
toward identifying such strategies.

Results

Lineage Dynamics in the Absence of Control
One way to identify the control needs of a system, and the

strategies that may be used to address those needs, is to build
models and explore their behavior. Figure 2A is a general
representation of an unbranched cell lineage that begins with
a pool of stem cells, ends with a postmitotic cell type, and
possesses any number of transit-amplifying progenitor stages.
If cells at each stage are numerous, and divisions asynchro-
nous, then the behavior of such a system over time can be

Figure 1. Biological Pathways That Are Potential Targets of Control

Like metabolic, signaling, and gene expression pathways, cell lineages
may be viewed as input–output pathways in which information or
material flows through a series of defined elements (A–D) at rates
controlled by measurable parameters (e.g., enzyme levels E1, E2, synthesis
rates v1, v2, etc.). Unlike these other pathways, cell lineages are
characterized by a potential for exponential expansion at most or all
stages (parameters p0, p1, etc.). The impact of this difference on the
strategies that may be used for tissue growth control has been little
studied.
doi:10.1371/journal.pbio.1000015.g001
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Author Summary

Many tissues and organs grow to precise sizes and, when injured,
regenerate accurately and rapidly. Here, we ask whether the
organization of cells into lineages, and the feedback interactions
that occur within lineages, are necessary elements of control
strategies that make such behavior possible. Drawing on mathe-
matical modeling and the results of experimental manipulation of
the mouse olfactory epithelium, we show that performance
objectives, such as robust size specification, fast regeneration from
a variety of initial conditions, and maintenance of high ratios of
differentiated to undifferentiated cells, can be simultaneously
achieved through a combination of lineage structures, signaling
mechanisms, and spatial distributions of cell types that correspond
well with what is observed in many growing and regenerating
tissues. Key to successful control is an integral-feedback mechanism
that is implemented when terminally differentiated cells secrete
molecules that lower the probability that progenitor cells replicate
versus differentiate. Interestingly, this mechanism also explains how
the distinctive proliferative behaviors of stem cell and ‘‘transit-
amplifying’’ cell populations can emerge as a consequence of
feedback effects, rather than intrinsic programming of cell types.



represented by a system of ordinary differential equations
(Figure 2B) with two main classes of parameters. The v-
parameters quantify how rapidly cells divide at each lineage
stage (in particular, v¼ ln2/k, where k¼ the duration of a cell
cycle). The p-parameters quantify the fraction of the progeny
of any lineage stage that remains at the same stage (i.e., 1-p is
the fraction that differentiates into cells of the next stage).
Thus p may be thought of as an amplification, or replication,
probability. As each lineage stage has its own v and p, we use
subscripts to distinguish them.

Let us refer to the number of terminal-stage cells at any
point in time as the output of a lineage system. From Figure
2B, we can see that a system is not stable—over time the
output increases without bound—if pi . 0.5 for any i. In
contrast, if pi , 0.5 for all i, stem and progenitor cells
eventually run out, and the production of new terminal-stage
cells stops. Provided terminal-stage cells do not die at an
appreciable rate, such a system will reach a final state with a
fixed number of terminal-stage cells. Finally, if p0¼ 0.5, and pi
, 0.5 for i . 0, then the system will eventually produce
terminal-stage cells at a constant rate. If such cells die or are
shed with a constant probability per unit time (represented in
Figure 2B by the rate constant d), then the output will
approach a steady state, the solution for which is given in
Figure 2C (solutions for certain cases of final-state behavior
are also given in Protocols S1–S3, sections 5 and 6).

The result in Figure 2C describes a steady state that is quite
sensitive to the system’s parameters. For example, output is

proportional to the number of stem cells (v0, which remains
constant at its initial value) and the rate of stem cell division
(v0), and inversely proportional to the rate of terminal-stage
cell death (d). Output varies even more sensitively with the pi.
For example, increasing the value of a pi from 0.45 to 0.4725—
a 5% change—necessarily produces a 74% increase in the
output of terminally differentiated cells. In engineering,
parameter sensitivity is usually quantified as the fold change
in output for a given fold change in the parameter (equivalent
to the slope of a log-log plot of output vs. parameter). Thus, a
linear relationship corresponds to a sensitivity of 1 (directly
proportional) or�1 (inversely proportional). From Figure 2C,
we may calculate that the sensitivity of the output to any pi is
pi/(1 � 3piþ 2pi

2), which for pi , 0.5 is always greater than 1,
and grows without bound as pi approaches 0.5.
In well-regulated biological systems, parameter sensitivities
� 1 tend to be undesirable, since genetic or environmental
variability can easily cause several-fold changes in the
biological processes (levels of proteins, cell growth rates,
etc.) that underlie parameters [27–29]. A system that cannot
compensate for such variation is justifiably considered fragile
(the opposite of robust).
Arguably, the most severe fragility of the system in Figure 2

is the constraint placed on the stem cell replication
probability: p0 must be exactly 0.5 for a non-zero steady state
to exist (effectively, the system’s sensitivity to p0 is infinite).
This is simply another way of stating that, unless exactly half
of all stem cell progeny are stem cells, lineages eventually

Figure 2. Lineage Behavior in the Absence of Control

(A) Cartoon of an unbranched lineage that begins with a stem cell (type 0), progresses through an arbitrary number of transit-amplifying stages (types 1
to n�1) and ends with a postmitotic terminal-stage cell (type n). Parameters vi and pi are the rate constants of cell cycle progression and the replication
probabilities, respectively, for each stage. Turnover of the terminal-stage cell is represented with a cell-death rate constant, d.
(B) Representation of the cell lineage shown in (A), as a system of ordinary differential equations. In these equations, vi(t) stands for the number (or
concentration) of cells of type i at time t, with each equation expressing the rate of expansion (or contraction) of each cell type. For all cell types except
the first and last, this rate is the sum of two terms: production by cells of the previous lineage stage, and net production (or loss) due to replication (or
differentiation) of cells at the same lineage stage. For the first cell type, there is no production from a prior stage, and for the last cell type, loss due to
cell death is included.
(C) Steady state solution for the output (number of terminal-stage cells) of the general system of equations given in (B). Notice that this output is
linearly, or more than linearly, sensitive to every system parameter, with the exception of the vi for i . 0, which do not appear in the solution.
doi:10.1371/journal.pbio.1000015.g002
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either go extinct or explode. Meeting this constraint can be
achieved by having every stem cell undergo perfect asym-
metric divisions, but that does not seem to be what normally
happens. Rather, individual stem cells behave stochastically,
sometimes giving rise to two, one, or zero stem cells (e.g.,
[6,8,30]). For the exact condition p0 ¼ 0.5 to arise as a
population average, when such behavior is not a cell
autonomous imperative, is an extraordinary—and yet poorly
understood—feature of stem cell systems.

Feedback Control of Transit-Amplifying Cells: Insights
from the Olfactory Epithelium

The idea that negative feedback is used to regulate tissue
size and enhance regeneration is an old one. Over 40 y ago,
Bullough [31] introduced the term chalone to refer to secreted
factors that inhibit growth of the tissues and organs that
secrete them. When a tissue is injured or partially removed,
reduction in chalone levels would thus result in an up-
regulation of tissue production. The view that chalones are
secreted factors was supported by in vitro experiments, and
by experiments with parabiotically joined pairs of animals in
which partial hepatectomy in one animal led to liver cell
proliferation in the other [32].

Although many of the original, in vitro–defined chalones
have yet to be fully characterized, genetic studies in the 1990s
demonstrated that growth and differentiation factor 8
(GDF8)/myostatin (Mstn1, MGI:95691), a member of the
transforming growth factor b (TGFb) superfamily of secreted
signaling molecules, is specifically expressed by striated
muscle cells (the terminal-stage cells of muscle lineages),
inhibits the production of muscle, and when genetically
eliminated from animals, results in the production of super-
numerary muscle cells and an increase in muscle mass [33].
Subsequently, GDF11 (MGI:1338027)—a close relative of
GDF8—was shown to be produced specifically by cells of
the neuronal lineage of the mouse OE, and to provide
feedback to inhibit the production of neurons (olfactory
receptor neurons; ORNs) in that system [34]. Animals
deficient in GDF11 also develop supernumerary ORNs. In
recent years, factors that exert negative feedback on growth
have been described for many other tissues, including skin,
liver, bone, brain, blood cells, retina, and hair (Table S1).
Many of these factors turn out to be members of the TGFb
superfamily, especially the TGFb/activin branch of that
superfamily [35].

The OE of the mouse is a particularly useful system for
studying lineage progression and feedback: It is continually
self-renewing; its lineage stages are well defined; its cells can
be studied in tissue culture; and it can be manipulated in vivo
through genetic, chemical, or surgical means [36–38]. The OE
neuronal lineage consists of a stem cell (which expresses Sox2
[MGI: 98364], a gene encoding an SRY-box transcription
factor), that gives rise to cells that express the proneural gene
Mash1 (Ascl1, MGI: 96919), which in turn give rise to cells that
express another proneural gene, Neurogenin1 (Ngn1; Neurog1;
MGI: 107754), which in turn give rise to cells that exit the cell
cycle and differentiate into ORNs. Recent data have raised
the possibility that the Sox2þ and Mash1þ stages are not truly
distinct, but rather are interchangeable states of the stem cell
(K. K. Gokoffski et al., unpublished data). However, the Ngn1þ

cell—which is usually referred to as the Immediate Neuronal

Precursor, or INP—is clearly a distinct transit-amplifying cell
stage (Figure 3A; [34,39,40]).
The INP appears to give rise solely to ORNs, i.e., it does not

represent a lineage branch point [39]. It is therefore
interesting that the feedback actions of GDF11 seem to be
directed specifically at INPs [34]: In vitro, GDF11 completely,
but reversibly, arrests INP divisions, yet it has no effect on
proliferation of Mash1þ or Sox2þ cells. In vivo, the increase in
neuronal number observed in Gdf11�/� mice is accompanied
by an increase in INPs, but not in Mash1þ or Sox2þ cells. These
data imply that GDF11 regulates tissue size by inhibiting the
proliferation of a committed transit-amplifying cell.
Because GDF11 can slow and even arrest INP divisions, it is

natural to model GDF11-mediated negative feedback as an
increase in the cell-cycle length of the INP (Figure 3B).
Indeed, there is abundant literature showing that GDF11,
GDF8, and other TGFb superfamily members slow rates of
progression through the cell cycle, at least in part by inducing
cyclin-dependent kinase inhibitors [34,41–44]. Increasing the
INP cell-cycle length is equivalent to decreasing its v-
parameter, v1 (Figure 3B). Unfortunately, the result in Figure
2C states that the steady state outputs of lineage systems are
independent of all v except for that of the stem cell (v0). This
makes intuitive sense: if one decreases the division rate of an
intermediate-stage cell in a lineage, the unchanged influx of
cells from the previous lineage stage will cause its numbers to
rise proportionately. From the standpoint of the lineage
output, the two effects will cancel.
Apparently then, having GDF11 (or any other factor) feed

back onto the INP cell division rate can be of no use in
controlling the steady state level of ORNs. Could such
feedback serve a function related to some other performance
objective, such as rate control? As mentioned earlier, without
control, lineage systems would be expected to return to
steady state after a perturbation (i.e., regenerate) with a time
scale similar to that over which terminal-stage cells normally
turn over. In principle, feedback onto the cell division rate of
a lineage intermediate could improve this. However, as
explained below, the utility of this strategy turns out to be
very limited:
Figure 3C shows a simulated regeneration experiment in

which output, via GDF11, feeds back onto v1. At the start of
the experiment, all ORNs are synchronously destroyed, and
the time course of the return to steady state is followed (this
type of perturbation can be produced experimentally by
transecting the olfactory nerve or removing one or both
olfactory bulbs of the brain [45]). For comparison, the figure
also shows what the time course of the return to steady state
would be in the absence of feedback (dashed line). From
Figure 3C, we can see that feedback enables the system to
regenerate faster, but we also observe a very high proportion
of INPs (they are virtually as numerous, at steady state, as
ORNs). It turns out that speeding up regeneration requires a
large feedback gain (the parameter h in Figure 3B), which in
turn drives down steady state ORN numbers (relative to other
cells). If we define progenitor load as the percentage of the
entire tissue that is composed of progenitors (stem cells plus
INPs), we find that requiring the steady state progenitor load
to be less than 50% limits any improvement in regeneration
speed to about 3.2-fold; restricting progenitor load to 10%
drops this value to about 2.6-fold (Figures S16 and S17 in
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Protocols S1–S3). In fact, experimental data indicate that the
progenitor load in the OE is below 10% [46–48].

There is another cost of achieving fast regeneration
through feedback on v1: the lower the progenitor load, the
more necessary it becomes to use values of p1 that are
perilously close to 0.5 (i.e., nearly half the output of INPs
needs to be more INPs; Figures S16 and S17 in Protocols S1–
S3). As discussed earlier, when p-parameters are close to 0.5,
system output becomes extremely sensitive to small variations
in those parameters (and thus very fragile).

All told, feeding back onto the rate at which INPs divide
does not seem to be a particularly good control strategy. We
wondered whether GDF11 might do a better job if it fed back
onto a different parameter of INP growth: p1, the replication,
or amplification, probability. Analysis of a model of this sort
of feedback (Figure 3D) reveals several remarkable things:
First, with feedback on p1, the constraint p1 � 0.5 goes

away: Any INP replication probability allows for establish-
ment of a steady state. Second, the fragility of the steady state
output can be substantially reduced. In particular, sensitivity

Figure 3. Strategies for Feedback Regulation of Transit-Amplifying Cells

(A) The neuronal lineage of the OE, in which terminally differentiated ORNs are produced by committed transit-amplifying cells (INPs).
(B) Negative feedback regulation of the INP cell cycle length (shown diagrammatically in red) can be modeled by making v1 a function of ORN numbers
(v2).
(C) Simulated return to steady state of the system in (B) after removal of all ORNs. The parameters chosen provide the greatest improvement in
regeneration speed (over what would occur in the absence of feedback; dashed line), consistent with progenitor cells comprising no more than 50% of
the tissue mass (note that INP numbers [red curve] are virtually the same as those of ORNs [blue curve] at steady state). Cell numbers are expressed
relative to the starting number of stem cells.
(D) Negative feedback regulation of the INP replication probability (shown diagrammatically in red) can be modeled by making p1 a function of ORN
levels (v2).
(E) Simulated return to steady state of the system in (D) after removal of ORNs. An inset shows the response at early times in greater detail. Note that
progenitor load is now quite low, and regeneration is characterized by a burst of INP proliferation (red curve), followed by a wave of ORN production
(blue curve).
In (C and E), time is expressed in units of ln2/v1. Parameter values for (C) are p1¼ 0.495, d/v1¼ 0.0372, v0/v1¼ 0.128, and h¼ 0.0734, and for (E) are p1¼
0.942, d/v1¼ 0.0138, v0/v1 ¼ 0.506, and g¼ 0.0449.
doi:10.1371/journal.pbio.1000015.g003
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to the number of stem cells, the rate of stem cell division, and
the death rate of terminally differentiated cells can be made
arbitrarily small for appropriate parameter choices. Sensi-
tivity to p1 can also be greatly reduced (to values ,1), even if
p1 is large (Figures S1 and S2 in Protocols S1–S3).

Finally, such a system can mount explosive regeneration
after a perturbation. In some cases, the return to steady state
can be as much as 100 times faster than in the absence of
feedback. Furthermore, this can be accomplished without the
need for a high progenitor load. Figure 3E shows this
behavior for a particularly effective set of parameters. Notice
how, in response to an acute loss of terminal-stage cells
(ORNs), transit-amplifying cells (INPs) undergo a rapid, but
transient, increase in number, following which, terminal-
stage cells are restored rapidly to values close to steady state.
This sort of behavior closely parallels what is seen in the OE
following olfactory bulbectomy (in which ORN degeneration
is induced by olfactory bulb removal): a transient upsurge in
progenitor cell numbers, followed by a wave of neuronal
production [20,40,46,49–51].

GDF11 Controls Replication Probabilities
The fact that feedback aimed at p1 can, in theory, produce

more useful and realistic behaviors than feedback aimed at v1,
raised the possibility that the actual target of GDF11 might be
p1, and not v1, as initially thought. To resolve this issue, we
carried out tissue culture experiments in which mouse OE
progenitor cells were pulse-labeled with 5-bromo-2-deoxyur-
idine (BrdU; to label cells undergoing division), and evaluated
at successive times thereafter to determine when the progeny
of dividing cells acquire immunoreactivity for NCAM, a
marker for terminally differentiated ORNs. As shown
previously, most dividing cells in these cultures are INPs,
and their cell cycle length is about 17 h [39]. If all INP
divisions result in production of ORNs, the acquisition of
NCAM immunoreactivity by all BrdU-labeled cells should
occur after sufficient time to progress through the rest of S-
phase, G2-phase, M-phase, and however long it takes for
NCAM levels to rise above the threshold of detection. If some
INPs replicate, however, then a fraction of labeled cells will
not express NCAM until one cell cycle (;17 h) later (if the
replicating fraction is high enough, some progeny will go
through several cell cycles before acquiring NCAM immu-
noreactivity; cf. [39]). Accordingly, delay in the onset of
NCAM expression can be used as a measure of the INP
replication probability.

Figure 4 shows the effect of GDF11 (added to the culture
medium 12 h prior to BrdU labeling) on acquisition of NCAM
expression by BrdU pulse-labeled cells. In Figure 4J, data for
two different ‘‘chase’’ periods are graphed. In the absence of
GDF11, about 60% of BrdU-labeled cells become NCAM-
positive within 18 h. In the presence of low levels of GDF11,
this percentage rises as high as 75%, then falls again at high
concentrations of GDF11 to less than 10%.

The increase in neuronal differentiation in response to low
levels of GDF11 documents that GDF11 indeed suppresses
INP replication (i.e., it lowers p1). The fact that this increase
gives way to a large decrease in neuronal differentiation at
high GDF11 levels is most likely due to the additional effect of
GDF11 on the rate of cell cycle progression: As the INP cell
cycle is progressively lengthened, one would expect that an
18-h chase period would cease being long enough to allow

BrdU-labeled cells to go on to differentiate. This would lead
to a sharp drop-off in the percentage of BrdU-labeled cells
that acquire NCAM expression, but with longer chase times
(e.g., 36 h), this effect would be overcome. That is indeed what
is observed (Figure 4J). A numerical simulation of the
experiment, in which GDF11 negatively regulates both p1
and v1, replicates both qualitative and quantitative features of
the experimental data (Figure 4K; Protocols S1–S3, section
10).

Performance Tradeoffs
Having the output of the OE lineage feed back onto p1

seems to be an effective strategy for meeting two control
objectives: steady state robustness (low sensitivity to stem cell
number v0, cell division rates v0, and v1, and the death rate
constant of the terminal-stage cell d) and rapid regeneration.
But the ability to meet each objective separately does not
guarantee that both can be met together (i.e., for the same
sets of parameters).
As it turns out, the two strategies are largely incompatible.

Numerical exploration of the parameter space shows a strong
negative correlation between robustness and enhancement of
regeneration (Figure 5A). Cases for which the sensitivity to v0,
v0, or d is less than 0.4 (i.e., a 2-fold change in parameter will
cause �32% change in output), generally do not exhibit
acceleration in regeneration speed exceeding approximately
8-fold. In fact, this result is skewed by cases in which
regeneration speed goes from extremely slow (in the absence
of feedback) to merely very slow. If one restricts the analysis
to cases in which regeneration from complete loss of
terminal-stage cells is 80% complete in fewer than 29
transit-amplifying cell cycles (;20 d for INPs), then to
achieve parameter sensitivities less than 0.4, the best possible
improvement in regeneration speed is less than 2-fold (Figure
5A and 5B).
Upon closer inspection, other unfortunate tradeoffs can be

seen: For the cases in Figure 5A, improvement in regener-
ation speed was calculated by simulating a complete loss of
terminal-stage cells and then measuring the return to steady
state. If we use a milder perturbation (a 75% loss of terminal-
stage cells), but otherwise the same parameters, the return to
steady state is, unexpectedly, quite slow (Figure 5C). The need
to sustain injury that is massive before regeneration can be
rapid hardly seems like a good strategy for an organism in the
real world. To define the conditions under which this
phenomenon occurs, we calculated, for all the cases in Figure
5A, the ratio of two regeneration times: the time for
regeneration from a 100% perturbation, and the time for
regeneration from a 75% perturbation. In Figure 5D, this
value (‘‘speed ratio’’) is plotted against fold improvement in
regeneration speed (for the 100% perturbation, compared
with no feedback). The data show that the speed of
regeneration following massive injury cannot be improved
by more than about 3-fold, without sacrificing the speed of
regeneration following less-than-massive injury.
Altogether, tradeoffs among regeneration speed, sensitivity

to parameters, and sensitivity to initial conditions make the
control strategy of having GDF11 feed back onto p1 less
attractive than it originally seemed. Analysis of cases in which
GDF11 inhibits both p1 and v1 (which corresponds most
closely to what GDF11 does in vitro; Figure 4J and 4K) shows
some improvement in the tradeoff between regeneration
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speed and parameter sensitivity, but the effect is not dramatic
(Figure S18 in Protocols S1–S3). Accordingly, we wondered
whether additional control elements might still be missing.

Two Loops Are Better Than One
As mentioned in Table S1, many feedback inhibitors of

tissue and organ growth belong to the TGFb superfamily of
growth factors, with those of the TGFb/activin branch (which
signals through the intracellular proteins Smad2 and Smad3)
being the most highly represented. Recently, we found that
activinbB (Inhbb; MGI: 96571; hereafter referred to simply as
‘‘activin’’) is highly expressed in the OE and, like GDF11, has
growth-inhibitory effects on the neuronal lineage. Unlike
GDF11, however, activin’s effects are aimed specifically at the
Sox2þ and Mash1þ populations, and not at INPs (K. K.
Gokoffski et al., unpublished data). This implies that two
feedback loops exist in the OE, one aimed at stem cells, and
one aimed at transit-amplifying cells (Figure 5E).

Like GDF11, activin could potentially feed back onto a v-
parameter (namely v0, the rate of stem cell division) or a p-
parameter (namely p0, the stem cell replication probability),
or both. For technical reasons, a pulse-chase experiment

similar to that in Figure 4 cannot be performed to sort this
out. However, we infer that feedback onto p0 must occur,
because Sox2þ and Mash1þ populations are markedly ex-
panded in the OE of ActbB�/� mice (K. K. Gokoffski et al.,
unpublished data). If activin only regulated v0, loss of activin
would result in stem cells that cycle faster, but it could not
increase their numbers.
Interestingly, when we add the feedback effects of both

activin and GDF11 into the equations for the behavior of the
ORN lineage, the expression for the steady state value of
ORNs becomes very simple: (2p0� 1)/j, where j is the feedback
gain for activin (Protocols S1–S3, section 4). This constitutes a
dramatic improvement in robustness—the system will, at
steady state, always produce the same number of terminal-
stage cells regardless of how many stem cells it starts with,
how fast stem cells divide, or how quickly terminal-stage cells
are lost.
Perhaps even more strikingly, the problematic constraint

that the stem cell population must intrinsically ‘‘know’’ to
replicate exactly half the time (p0¼0.5) vanishes. As long as p0
. 0.5, feedback automatically ensures that the stem cell
population behaves in the necessary way.

Figure 4. Experimental Demonstration That GDF11 Regulates p1 and v1

OE explants were cultured in various doses of GDF11. At 12 h, BrdU was added for 2 h and then washed out. Explants were fixed at various times after
BrdU addition and immunostained for BrdU and NCAM expression.
(A–I) Cultures grown in GDF11 concentrations of 0 (A, D, and G), 0.5 (B, E, and H), and 10 (C, F, and I) ng/ml, fixed 18 h after BrdU addition (previous
studies have shown that 18 h is sufficient time for INP progeny that become ORNs to express NCAM [39]). NCAM immunofluorescence (green) is shown
in (A–C); BrdU immunofluorescence (red) in (D–F); merged images in (G–I). Arrowheads point to examples of BrdUþ/NCAM� cells; arrows point to
examples of BrdUþ/NCAMþ cells.
(J) Percentage of BrdUþ cells migrating out of OE explants that had differentiated (acquired NCAM immunoreactivity) by 18 h (black line) or 36 h (blue
line), as a function of GDF11 dose. Low doses of GDF11 increase the proportion of INP progeny that differentiate (i.e., p1 decreases). At high dose, the
effect reverses, with the NCAMþ fraction falling to near zero at 18 h, but recovering at 36 h. These data are consistent with a slowing of the cell cycle (v1)
such that 18 h is not long enough to produce NCAMþ offspring (but 36 h is). This interpretation is consistent with a previous demonstration that high
doses of GDF11 reversibly arrest the INP cell cycle [34].
(K) Simulation of the experiment in (J) by a model in which GDF11 affects both p1 and v1. Parameters used in the model are consistent with measured
proportions of ORNs, INPs, and Mash1þ/Sox2þ cells, as well as experimental data on the effects of GDF11 on BrdU pulse-labeling by INPs [34,39,40].
doi:10.1371/journal.pbio.1000015.g004
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All of these improvements in steady state control come
solely from the single feedback loop of system output onto p0.
When such a loop is in place, however, feedback onto other p-
and v-parameters can have additional useful effects:

Consider, for example, the matter of regeneration speed,
which we previously found could be increased through
feedback onto p1 or v1, but only by sacrificing robustness,
low progenitor loads, or the ability to regenerate quickly
from a variety of initial conditions (Figures 3C and 5A–5D).
When feedback is directed solely at stem cells, we also fail to
achieve good performance: Feedback onto p0 hardly improves
regeneration speed at all (Figure S19 in Protocols S1–S3), and
although feedback onto p0 and v0 together can produce fast

rates of regeneration (Figure S21 in Protocols S1–S3), those
rates still show a very sensitive dependence on initial
conditions (Figure S22 in Protocols S1–S3).
In contrast, when feedback is directed at both stem and

transit-amplifying cell stages—i.e., the arrangement that
actually occurs in the OE—it becomes possible to achieve
very rapid regeneration, with low progenitor loads, from
almost any starting conditions. This includes conditions in
which variable numbers of stem, transit-amplifying, or
terminal-stage cells are depleted. Figure 5F shows an example
of such a case.
Not only is such performance possible, it occurs over a

substantial fraction of the parameter space (that is, a

Figure 5. Performance Tradeoffs Associated with Feedback Strategies

(A) Simulations of the model in Figure 3D were carried out for 20,000 randomly chosen sets of parameters (Protocols S1–S3, section 8). To simulate
regeneration following a loss of terminal-stage cells, numbers of ORNs were set to zero, whereas numbers of stem cells and transit-amplifying cells
(INPs) were set to their steady state values. For each parameter set, the time it took for ORN numbers to return to and remain within 20% of their steady
state values was taken as an objective measure of regeneration time, and cases with very long regeneration times (.29 transit-amplifying cell cycle
lengths) are not shown (see Protocols S1–S3). Next, the time that would have been required to generate the same number of ORNs, from the same
initial conditions but in the absence of feedback, was calculated. Finally, the ratio of the two regeneration times (with and without feedback) was
considered to be the fold improvement in regeneration speed due to feedback. For each parameter set, this was plotted against the sensitivity of the
steady state solution to variation in either the initial number of stem cells, the stem cell cycle time, or the normal lifetime of ORNs (all three sensitivities
are equal). The data show that only those parameter sets that do not support a robust ORN steady state (abscissa values .0.4) show substantial
improvement in regeneration speed (ordinate values .2).
(B) Simulated regeneration for the set of parameters in (A) that showed the greatest improvement in regeneration consistent with sensitivity to
parameters remaining below 0.4 (this corresponds to a 32% change in steady state values for a 2-fold change in parameters). As in Figure 3, the blue
curve denotes ORN numbers, the red curve shows INPs, and the dashed line shows the time course over which regeneration would proceed in the
absence of feedback. The light-blue zone denotes the range of cell numbers within 20% of the steady state value for ORNs.
(C) Simulated regeneration for the parameters used in Figure 3C, but starting from two different initial conditions. The solid blue curve shows the
dynamics of ORN recovery after complete removal of existing ORNs; the solid gray curve illustrates the predicted rate of recovery in the absence of
feedback. The dashed blue and gray curves present corresponding simulations where ORN numbers were initially depleted only 75%, rather than
completely. Under these conditions, nearly all improvement in regeneration is lost.
(D) To quantify the effect of initial conditions on regeneration speed, a ratio was defined (‘‘speed ratio’’) that indicates how much faster (or slower)
regeneration from 75% ORN depletion is than regeneration from 100% depletion. In the absence of feedback, this ratio should have a value of
approximately 1.22 (regeneration from partial depletion should take slightly less time than regeneration from total depletion). This ratio was calculated
for each of the random cases shown in (A), and the results were plotted against the fold improvement in regeneration speed (from [A]). The abscissa is
drawn at an ordinate value of 1.22. The plot shows that the more one gains in regeneration speed from 100% depletion, the more one sacrifices in
regeneration speed from 75% depletion.
(E) Negative feedback effects of activin and GDF11 (shown diagrammatically in red) can be modeled by multiplying the replication probabilities and cell
division rates of stem cells and INPs, respectively, by decreasing functions of ORN numbers (v2). In this case, Hill functions are used, with parameters g,
h, j, and k representing the feedback gains, and n the Hill coefficient.
(F) Example of a case with both activin and GDF11 feedback. Notice that now, regeneration from initial conditions of 75% ORN depletion is nearly as fast
as regeneration from 100% ORN depletion (compare with [C]). Parameters for this case are: p0¼ 0.507, p1¼ 0.546, d/v1¼ 0.0116, v0/v1¼ 0.965, g¼ 1.258,
h¼ 1.03, j ¼ 0.0394, and k ¼ 1.683 (and the ordinate axis has been scaled for easier comparison with [C]).
In (B), (C), and (F), time is expressed in units of ln2/v1.
doi:10.1371/journal.pbio.1000015.g005
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substantial fraction of randomly chosen sets of parameters
meet all of these performance objectives). Figure 6A shows
graphically how, as feedback loops are added one at a time,
good control (robustness, stability, low progenitor load, and
fast regeneration from a variety of conditions) is found over
an increasing fraction of the parameter space (exploring wide
ranges on all parameters). In evaluating the magnitude of this
effect, it should be noted that fractions of parameter space in
the range of 0.1%–1.5% are remarkably high, given the
numbers of parameters in each model (cf. [52]). For example,
when there are eight independent parameters (as there are
when feedback is directed at p0, v0, p1, and v1), good
performance over 0.1% of the parameter space means that
the average parameter value ‘‘works’’ over 42% (;0.0011/8) of
its range. In Figure 6, most parameters were explored over
three orders of magnitude (i.e., they were randomly selected
from a log-uniform distribution with a 1,000-fold range), so
for such cases, 42% means that the average parameter can be
varied over an 18-fold range (1,0000.42) without loss of good
control.

What is the significance of a control system that works over

a large portion of its parameter space? It means that the
output of the system can be adjusted (through changes to the
parameters) without the control strategy itself being jeopar-
dized. From a biological perspective, this means that the
system is evolvable, a feature we should expect to observe in
most biological control systems [53].

Sensitivity and Geometry
So far, we have said much about the cell stages and

processes that are targets for feedback in cell lineages, and
little about the quantitative details of feedback signals. In
Figures 3 and 5, feedback was modeled using Hill functions;
these are natural choices for the actions of secreted growth
factors, since saturable binding of ligands to receptors is
usually well described by them [54].
Hill functions typically employ a parameter n, the Hill

coefficient, to fit dose-response relationships that are
positively (n . 1) or negatively (n , 1) cooperative. In Figures
3, 5, and 6A, a Hill coefficient of 1 was used, but more detailed
exploration of the two-loop feedback system (with feedback
on p0, v0, p1, and v1) shows that system performance increases

Figure 6. Effects of Feedback Configuration on Regeneration from Diverse Perturbations

(A) Four different feedback architectures (shown diagrammatically beneath the word ‘‘Legend’’) were modeled and investigated for their ability to
support rapid regeneration from multiple starting conditions. For each model, 20,000 random parameter sets were explored (see Protocols S1–S3,
section 8) using simulations that started from initial conditions corresponding to four different perturbations of the steady state. For all 640,000
solutions, the fold improvement in ORN regeneration speed was calculated as in Figure 5. The bar graphs depict the fractions of random parameter sets
for each model that produced at least a given amount of improvement in regeneration speed for one or more sets of initial conditions. The four
different feedback architectures are designated by different colored bars (see diagrams under ‘‘Legend’’): feedback on p0 (grey); p0 and v0 (red); p0, v0,
and v1 (green); and p0, v0, p1, and v1 (blue). The heights of bars give the fraction of parameter sets that produced at least the indicated amount—4-fold
(left graph), 6-fold (middle graph), or 8-fold (right graph)—of improvement in regeneration speed. The ‘‘Performance categories’’ refer to different
combinations of initial conditions: Cases included in performance category 1 are those that met the desired level of improvement in the speed of
regeneration following a complete loss of terminal-stage cells. In category 2, the perturbation was a complete loss of both terminal-stage and transit-
amplifying cells. In category 3, it was a 75% loss of terminal-stage cells. In category 4, the perturbation was a complete loss of terminal-stage and transit-
amplifying cells and a 50% loss of stem cells. Category 5 cases are those parameter sets that met the criteria for initial conditions of both categories 1
and 2. Category 6 refers to those that did so for both categories 1 and 3. Category 7 refers to those that did so for both categories 1 and 4. Category 8
refers to cases in which the parameter sets met the indicated criterion for all four initial conditions. The data show that rapid regeneration from a variety
of initial conditions is facilitated by feedback on the p-parameters of at least two progenitor cell stages.
(B and C). For the system with feedback on p0, v0, p1, and v1 (i.e., the system depicted with blue bars in [A]), the graphs show the percentages of random
parameter sets that meet the regeneration-rate criteria on the abscissa (4-fold, 6-fold, or 8-fold improvement in regeneration speed), as a function of the
Hill coefficient, n, used in the expressions for the feedback functions. The results in (B) were obtained by only considering simulations that started from
a 100% loss of terminal-stage cells. Cases presented in (C) are those that also met the same regeneration-rate criteria for simulations starting from a 75%
loss of terminal-stage cells. The results show that larger n substantially increases the fraction of cases with rapid regeneration. This effect is especially
prominent when the performance criteria call for fast regeneration from more than one set of initial conditions (C).
doi:10.1371/journal.pbio.1000015.g006
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steadily as n goes from 0.5 to 2 (Figure 6B and 6C). This makes
intuitive sense if we consider that high values of n make Hill
functions more switch-like. In the limit of a perfect switch
(infinite n), the drive for increased growth would be zero
when output is at the desired value, yet maximal when output
is even slightly below the desired value. Such a strategy clearly
achieves the fastest possible regeneration following a pertur-
bation.

In biology, dose-response relationships that are fit by Hill
coefficients other than 1 arise for a variety of reasons besides
biochemical cooperativity; these include buffering, competi-
tion, feedback, and distributed multistep reactions [55–57].
Generally speaking, Hill coefficients quantify the sensitivity of
output to input (in the limit of high input, the Hill coefficient
and the engineering definition of sensitivity are equivalent).
Thus, in our models of feedback in the OE, Hill coefficients
near 1 mean that the amount of activin and GDF11 signaling
in stem cells and INPs (respectively) is roughly proportional
(over some range) to the number of cells producing activin
and GDF11 (i.e., the size of the tissue).

It occurred to us that this situation—feedback propor-
tional to tissue size—might not be so easy for tissues to
achieve. As a tissue grows in size, one can certainly envision
the total amount of material it produces increasing propor-
tionally, but it is the concentrations—not the amounts—of
factors like GDF11 and activin to which cells respond. How
the concentrations of secreted ligands change as tissues grow
turns out to depend both on issues of geometry (tissue shape
and boundary properties), and issues of cell biology (rates of
ligand capture and turnover).

For example, consider a hypothetical tissue surrounded by
a boundary across which macromolecules cannot diffuse. In
this case, a secreted protein produced everywhere in the
tissue should reach a steady state concentration determined
by the balance between production and local degradation. If
the tissue doubles in size, it will make twice as much of the
protein, but distribute it over twice the volume. The result
will be no change in concentration. In a truly ‘‘closed’’ tissue,
secreted molecules cannot be used as part of a strategy for
growth control.

Fortunately, epithelia, such as the OE, are not closed
systems. Although tight junctions between epithelial cells
prevent escape of molecules from the apical surface, there
appears to be little or no impediment to diffusion across a
basal lamina into the underlying connective tissue stroma
[58]. Within such a geometry, we may use approaches
developed for the analysis of morphogen and signaling
gradients [59–62] to calculate expected intraepithelial dis-
tributions of secreted molecules (Protocols S1–S3, section 11).

The results of these calculations (Figure 7) show that when
an epithelium is very thin, concentrations of secreted
molecules in the intercellular space initially go up linearly
with tissue size, but soon level off. Does the normal size range
of the OE (adult thickness ;80 lm) lie in the linear region, or
on the plateau? The answer depends on two factors: The first
is the decay length of the molecule of interest. This is the
average distance a molecule travels in tissue before being
captured and degraded by cells, and is a function of its
diffusion coefficient and rate of receptor-binding and
degradation.

The second factor is the ratio of decay length within the
epithelium to decay length in the adjacent stroma (which, in

most cases, simply reflects how much faster or slower
degradation proceeds in one location versus the other). If
that ratio is low—i.e., if molecules that diffuse into the stroma
are not quickly degraded—then intraepithelial concentra-
tions will be poorly sensitive to tissue size long before the
epithelium reaches even a single decay length in thickness
(Figure 7A; Figure S27 in Protocols S1–S3).
In contrast, if the ratio of decay lengths between

epithelium and stroma is high—i.e., if the stroma acts as a
sink, quickly eliminating molecules that enter it—then
average intraepithelial concentrations will rise more gradu-
ally, and not plateau until the epithelium has reached a size of
several decay lengths (Figure 7B). This effect is more
pronounced if the concentration that matters is the concen-
tration close to the basal surface of the epithelium, and not
the average concentration over the entire epithelial thick-
ness. At this basal location, concentration varies linearly with
tissue size for many decay lengths (Figure 7B; Figure S28 in
Protocols S1–S3).
Estimates of intraepithelial decay lengths of TGFb super-

family polypeptides, obtained both from measurements of
morphogen gradients and from first-principles calculations,
tend to be in the range of tens of micrometers [59,63–65], i.e.,
on the order of, or less than, the normal thickness of the OE.
This suggests that it would be difficult to use activin and
GDF11 as ‘‘reporters’’ of OE size, if these molecules merely
leaked into the stroma and were not rapidly degraded there
(as in Figure 7A): once the OE grew beyond 0.2 decay lengths
in thickness, the poor sensitivity of activin and GDF11
concentrations to OE size would be functionally equivalent
to feedback described by Hill coefficients less than 0.5. As
already demonstrated (Figure 6B), such low Hill coefficients
undermine good control.
Accordingly, we infer that it would be strategically

advantageous for the OE to possess a mechanism that rapidly
removes activin and GDF11 in the underlying stroma, as well
as a mechanism for restricting the location at which cells
measure the level of activin and GDF11, to the basal surface
of the tissue. Remarkably, the OE seems to have both:
First, the OE contains large amounts of the protein

follistatin (FST; MGI: 95586) in its basement membrane and
stroma (Figure 7C; [34,66]). FST not only binds and inhibits
both activins and GDF11, it does so irreversibly, effectively
eliminating them [67–69]. That FST plays a central role in
regulating GDF11 and activin function in the OE has recently
been demonstrated genetically ([34] and K. K. Gokoffski et al.,
unpublished data); what the analysis here provides is an
explanation for why FST is used by the OE, and why it should
be found primarily beneath the epithelium.
Second, the progenitor cells of the OE that respond to

activin and GDF11 become increasingly polarized, during
early development, to the basal side of the epithelium;
eventually they lie within a few cell diameters of the basement
membrane. This is shown in Figure 7D and 7E, using in situ
hybridization for Ngn1 to visualize INPs. Thus, the only
concentrations of GDF11 and activin that progenitor cells
sense are likely to be those near the basal surface of the
epithelium. Interestingly, in many other types of epithelia,
stem/progenitor cells also localize near the basement mem-
brane, an observation that has long suggested the existence of
a specialized microenvironment, or ‘‘niche,’’ in this region
[70].
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Final-State Systems
The OE, a self-renewing tissue, maintains its size by

continuous replacement of dying cells [51,71]. Some or-
gans—such as the mammalian brain—achieve a final size
during development and largely cease proliferating [72–74].
Such final-state (as opposed to steady state) systems also may
be modeled using the equations in Figure 2, by setting the
terminal cell death rate constant, d, to zero, and allowing
replication probabilities to be below 0.5. Like steady state
systems, they can be quite fragile.

This point is well illustrated by the mouse brain, which is
composed of approximately 108 cells of neural lineage
(neurons and glia; [16]). Although brain cell number varies
from mouse to mouse, within a given strain, the coefficient of
variation is small, about 5% [16]. If we hypothesize that the
brain is ‘‘founded’’ by a pool of 105 progenitors (probably an
overestimate), and we make the simplifying assumption that

no cells die during development, then a 1,000-fold expansion
in cell numbers is needed (Figure 8). One way to accomplish
this would be to have all progenitors replicate for a time
equal to ten cell-cycle lengths (210 ¼ 1,024), and then stop.
With this strategy, final cell number will be linearly sensitive
(i.e., proportional) to the initial size of the progenitor pool
(Figure 8A), and much more than linearly sensitive to the
average length of the cell cycle, or the length of time allowed
for proliferation (a mere 5% change in either parameter
would produce a 30% change in output). If the brain is
founded by fewer progenitors, this fragility only becomes
more severe.
Now, let us consider a slightly more sophisticated strategy:

a progenitor pool that undergoes a mixture of replicative and
differentiative divisions, with a replication probability p set
below 0.5. Because proliferating cells replicate less than half
the time, the progenitor pool runs out, and the tissue

Figure 7. Effects of Geometry and Degradation on Levels of Secreted Molecules within Epithelia

(A and B) Polypeptides secreted into the intercellular space of an epithelium are removed by two processes: diffusion into underlying connective tissue
(stroma) and degradation within the epithelium. Given a molecule’s rate of production, its diffusivity, its rate of uptake and degradation, and the
geometry of the epithelium, one may calculate its concentration, at steady state, at every location within the epithelium. Here, such calculations are
shown graphically, for epithelia of different thicknesses (in each picture, the epithelium is oriented with the apical surface at the top). Epithelial
thickness (‘‘height’’) is scaled according to the decay length of the molecule of interest. The shading in each picture depicts the concentration of the
secreted molecule, with black representing the limiting concentration that would be achieved in an epithelium of infinite thickness. In (A), the
degradation capacity of the stroma is set at a relatively low value, one-tenth of that in the epithelium. In this case, intraepithelial concentrations of
secreted molecules plateau while the epithelium is very thin. In (B), the degradation capacity of the stroma is ten times of that in the epithelium, so that
few molecules that enter the stroma escape undegraded. Now, there is a large (and more physiological) range of epithelial thickness over which the
concentrations of secreted molecules change appreciably with tissue size. This is particularly true near the basal surface of the epithelium (see also
Figures S27 and S28 in Protocols S1–S3).
(C) Follistatin (FST), a molecule that binds GDF11 and activin essentially irreversibly, is present at high levels in the basal lamina (arrow) and stroma
(asterisk) beneath the embryonic day 13 OE. Association of FST with basal laminae is consistent with its affinity for extracellular matrix components
[102]. Scale bar represents 100 lm.
(D and E) INPs (visualized with Ngn1 in situ hybridization) become progressively localized to the basal surface of the OE over the course of development.
(D)¼ embryonic day 12.5; (E)¼ embryonic day 18.5. nc ¼ nasal cavity. Scale bar in (E) represents 100 lm.
doi:10.1371/journal.pbio.1000015.g007
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approaches a final state gradually, without need to count cell
cycles or time. In this case, the final state is still linearly
sensitive to the initial size of the progenitor pool, and
although no longer sensitive to time or cell-cycle parameters,
it is extremely sensitive to the value of p itself, which must be
very close to 0.5 to produce a 1,000-fold expansion in cell
numbers (Protocols S1–S3, section 5).

One way to circumvent this extreme fragility is to allow p to
change over time, starting above 0.5 (promoting progenitor
expansion), then falling below 0.5 (driving progenitor cell
extinction). In fact, this very mechanism, illustrated in Figure
8B, was introduced by Nowakowski et al. [75] to explain the
biphasic expansion and contraction of progenitor pools in

the cerebral cortex, and it is supported by considerable
experimental data (e.g., [76]). Mathematical analysis (Proto-
cols S1–S3, section 5) shows that sensitivity to p is reduced by
this strategy, but it still remains very high (Figure S5 in
Protocols S1–S3). Moreover, the system now becomes quite
sensitive to the rate at which p declines (relative to the cell-
cycle length; Figure S4 in Protocols S1–S3). In addition, such
a system is still linearly sensitive to the initial size of the
progenitor pool (Figure 8B).
Given how difficult it seems to be to achieve even modestly

robust final states, it is striking how much can be accom-
plished with the addition of just a single feedback loop.
Figure 8C illustrates a case much like the one in Figure 8B, in

Figure 8. Behaviors of Final-State Systems

Three different ways are shown by which an initial pool of 105 progenitors (solid curves) or 5 3 104 progenitors (dashed curves) can generate 108

terminally differentiated cells. Differences among the three mechanisms are illustrated by the diagrams at right.
(A) Simple exponential expansion. The progenitor pool expands for just enough time to produce the desired output and then stops. Halving the
starting number of progenitors halves the output.
(B) Nowakowski-Caviness system: progenitors undergo both replicative and differentiative divisions, according to a replication probability p0, which
starts at pmax . 0.5 and declines linearly to pmin , 0.5 at time s. As in (A), halving the initial progenitor cell number halves the output. The output is also
highly sensitive to values of pmax and s.
(C) System with negative feedback on p0. Feedback is modeled as previously, using a Hill function (without cooperativity in this example). Halving the
starting progenitor pool now produces almost no change in output (there is, however, a one cell cycle lag in reaching the final state). Sensitivity to p0 is
also reduced.
In each panel, time is expressed in units of ln2/v1. Parameter values were, in (A), time of cessation of cell division¼6.91/v0; in (B), pmax¼1, pmin¼0, and s
¼ 19.4; and in (C), p0 ¼ 0.9, and c ¼ 3.14 3 108 (where c is the feedback gain).
doi:10.1371/journal.pbio.1000015.g008
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which the p-value of a progenitor pool declines over time, but
this time, the decline is caused by feedback from terminal-
stage cells. Superficially (that is, when not perturbed), it
behaves just like the Nowakowski-Caviness model [75],
displaying expansion, contraction, and disappearance of a
stem cell pool. Yet in this case, a 2-fold change in the initial
number of stem cells produces only a minute (0.14%) change
in the final state! Even sensitivity to the initial value of p can
be much lower (,5) than in the case without feedback
(Figures S6–S11 in Protocols S1–S3). Just as with our analysis
of steady state systems, this sort of behavior arises only when
feedback regulates replication probabilities (p-parameters),
and not when it regulates cell cycle lengths (v-parameters).

Discussion

At the start of this article, it was argued that, compared
with other biological pathways, cell lineages should be
especially fragile to intrinsic variability and external pertur-
bation. Yet for many tissues and organs, size, growth rate, and
cellular composition are actively maintained within narrow
limits. The goal of the present study was to identify basic
strategies that enable lineage pathways to achieve tight
control of growth. The mammalian OE provided a platform
for pursuing this investigation, which exploited both model-
ing and experimentation. Because some conclusions—those
having to do with distributions of possible regeneration
speeds—were supported by the computational exploration of
parameter spaces, and not derived from models analytically,
it is formally possible that additional system behaviors
relevant to these conclusions were missed. However, given
the large parameter ranges used, the smoothness of the
feedback functions, and the regularity of the solutions (cf.
[77]), this seems unlikely.

The Power of p
Using this approach, we showed that a feedback config-

uration that exists in the OE—with regulation at two
sequential lineage stages—achieves a variety of important
control objectives, including limited parameter constraints,
decreased parameter sensitivities, improved regeneration
speed, minimized influences of initial conditions, and
evolvability. The core of this strategy is feedback inhibition
of replication probabilities, referred to here as p-parameters.
Such feedback is highly useful, not only to tissues that
continuously turn over (such as the OE), but also to tissues
that are generated during a discrete period by a transient
pool of progenitors (such as the mammalian brain). In
contrast, feedback on rates of cell division was found to be
of only marginal value unless also combined with feedback
on p.

The data in Figure 4 provide experimental verification that
GDF11 in fact acts by lowering the replication probability of
neuronal transit-amplifying cells. Recent work suggests that
GDF8/myostatin works similarly in muscle—lowering the
probability that progenitors replicate and increasing the
probability that they differentiate [78]. Thus, action on p may
be a common feature of feedback inhibitors of tissue and
organ growth. The molecular mechanisms by which such an
action is achieved are currently unknown. Like many
members of the TGFb superfamily, GDF11 and GDF8 up-
regulate the expression of cyclin-dependent kinase inhibitors

(e.g., p21cip1/waf1, p27kip1), which are implicated in both
inhibiting cell-cycle progression and promoting differentia-
tion (e.g., [34,41,78–80]). Formally, it is possible that these two
effects are linked, i.e., the probability that a cell replicates or
differentiates is determined by how long its cell cycle lasts.
Indeed, in the developing mammalian brain, an observed
progressive decline in p-values is matched by a progressive
increase in cell cycle lengths [73,76].
However, we do not favor the interpretation that cell cycle

length dictates replication probability, for two reasons. First,
as implied by Figure 4F and 4G (and unpublished data), the
dose of GDF11 needed to maximally decrease p1 in the OE is
considerably lower than that needed to prolong the cell cycle.
Second, several growth factors are known to increase
replication probabilities without altering cell cycle parame-
ters. For example, the FGFs act in this way both on neural
progenitors [39,81] (including the INPs of the OE) and on
muscle progenitors [82]. The inhibitory effects of leukemia
inhibitory factor on mouse embryonic stem cell differ-
entiation also occur without changes to cell cycle parameters
[83]. From this, we conclude that it is at least possible for p-
and v-parameters to be regulated independently.

Strategies of Control: Human versus Biological
In engineering, feedback control is often classified by the

relationship between a measured ‘‘error’’—usually the differ-
ence between actual and desired output values—and a
control signal, i.e., a quantity that is fed back. ‘‘Proportional
control’’ means the control signal is proportional to the
error. In ‘‘integral control,’’ the signal is proportional to the
integral, over time, of the error. ‘‘Derivative control’’ implies
a control signal proportional to the derivative, with respect to
time, of the error.
Each strategy has strengths and weaknesses, and engineers

often combine them. Proportional control, for example, can
never fully compensate for a steady perturbation, because
only when output is not at the desired level does a non-zero
control signal exist. Proportional control can decrease a
system’s response time, but at the expense of gain (the
amount of amplification from input to output). In the lineage
pathways described here, feedback onto v-parameters clearly
exhibits the hallmarks of proportional control: Feedback
onto v0 can reduce, but never eliminate, parameter sensitiv-
ities; and feedback onto v1 can speed regeneration, but only
by decreasing the ratio of terminal-stage cells to progenitors.
Integral control, in contrast, will fully compensate for a

steady perturbation, producing a steady state that is
completely independent of many external and internal
influences; this phenomenon is sometimes referred to as
‘‘perfect adaptation’’ [84]. Integral feedback also tends to
speed the rate of approach to steady state, but often at the
risk of overshoots, undershoots, and oscillations. In the
lineage pathways described here, feedback onto p0 exhibits
the hallmarks of integral control: output that is independent
of many parameters, very rapid regeneration, and a tendency
toward oscillation (the latter behavior is described in detail in
[77]). To understand how feedback onto p0 implements
integral control, it suffices to note that any steady deviation
in the replication probability of stem cells above (or below)
0.5 leads to an ever-increasing (or ever-decreasing) effect on
system output. In this way, output naturally follows the time
integral of the difference between the effective value of p0
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(i.e., p0 as modified by feedback) and the value 0.5. Feeding
back output onto p0 thus represents true integral feedback
control.

Derivative control is often used by engineers to suppress
instabilities associated with integral control, but it suffers
from its own problems, such as a tendency to amplify noise.
At this point, it is unclear whether derivative control is used
in lineage pathways. Intriguingly, it has been noticed in the
OE that the expression of GDF11 is stronger in immature
than mature cells [34], raising the possibility that GDF11
levels could track, at least to some degree, the rate of change
(i.e., the time-derivative) of system output, and not just the
current output.

To Stem or Not to Stem?
In the biological literature, a sharp distinction between

stem cells and transit-amplifying cells is classically drawn: the
former are said to divide indefinitely and asymmetrically,
regenerating themselves with each division, whereas the latter
are said to have only limited capacity for self-replication
[85,86]. The results of the present study lead us to question
whether stem and transit-amplifying cells necessarily exist. By
this we mean it is possible to have lineages in which all cells
have the same intrinsic proliferative tendencies, yet typical
stem and transit-amplifying behaviors are observed, solely as a
consequence of feedback control. The only conditions
required for this to happen are (1) cells should have an
intrinsic tendency to self-replicate more than half the time (p
. 0.5), and (2) the output of the lineage should negatively
regulate replication probabilities (feedback on p).

For example, in a lineage with two sequential stages of
dividing cells, if the output feeds back onto the p-parameters
of both cell types, then either of two steady states is possible,
depending on the relative strength of the two feedback loops
(see Protocols S1–S3, section 4). In one of these, the first cell
stage exhibits classic stem cell behavior, i.e., its population
self-replicates exactly half the time, and the second cell
exhibits classic transit-amplifying behavior, i.e., its popula-
tion appears to undergo limited divisions. In the other, the
first cell stage is extinguished, and the second cell exhibits
stem cell behavior (see [77] and Protocols S1–S3, section 4, for
further discussion; see also the related discussion in [87]).
Which cell becomes the stem cell is thus determined by the
feedback, and not anything intrinsic to that cell.

It is easy to see how other typical behaviors of stem cell
systems can also be the consequences of control. For example,
with sufficiently large negative feedback onto v-parameters,
progenitor cell populations will appear ‘‘slowly cycling’’ or
even ‘‘resting,’’ and would be observed to be ‘‘label-retaining’’
(see Protocols S1–S3, section 7, especially Figure S13). These
arguments lend strong quantitative support to a view that has
been gathering increasing support, namely that the definition
of stem cell should be seen as one of context and condition,
not of cell type [6,88,89]. The work presented here addition-
ally suggests that much the same thing could be said about
transit-amplifying cells. Interestingly, recent work on epi-
dermis has shown that cells long thought to be classical
transit-amplifying cells in fact do not display the seemingly
essential property of limited self-replication [30,90]; instead
they behave in a probabilistic manner that is fully consistent
with the models presented here.

No Free Lunch
In engineering, it is widely accepted that one cannot make

a device robust in every possible way to every possible
perturbation. Usually, strategies that eliminate one fragility
come at the expense of creating new ones, a phenomenon
underlying the characteristic ‘‘robust-yet-fragile’’ architec-
ture of highly engineered systems [91,92]. Evidence for such
tradeoffs can be seen in some of the data presented in this
study (for example, the fact that feedback onto p1 leads to
rapid regeneration only at the expense of steady state
robustness; Figure 5B). This suggests that even the two-loop
OE feedback control system of Figure 5E must have an
Achilles’ heel somewhere, and indeed this is the case. For such
a system to robustly control output, the feedback gain
parameters (the relationship between ORN number and the
amount of feedback) must be reliable. In essence, sensitivity
to one set of parameters (stem cell number, growth rates,
death rates, etc.) has been shifted onto another.
Does this mean the control strategy is a failure? Not at all.

As engineers know, control is not about eliminating fragility,
but managing it. One seeks to transfer fragility to parameters
or inputs that are either intrinsically more reliable, or can
themselves be controlled by other means, or to outputs in
which error is more tolerable. The feedback mechanisms
described in the present study end up transferring fragility
from cell-intrinsic processes (cell cycle length and death rate)
to cell-extrinsic quantities (the level of GDF11 or activin in
the extracellular space). This creates an opportunity for
additional regulation, as well as opportunities to tie the
behavior of cells in the OE neuronal lineage to each other, to
other phenomena in the tissue, or even to the behaviors of
cells in surrounding tissues. From a systems biology perspec-
tive, the present study has defined a control module, whose
function can be appreciated in isolation, but whose real
utility depends on how it integrates with other modules.

From Models to Insights
The notion that elements like GDF11, activin, FST, lineage

stages, and epithelial architecture are components of an
integrated system for controlling growth and regeneration
emerges here mainly from the mathematical analysis and
computational exploration of models. The models are firmly
anchored in experimental data, but their primary use was not
to generate experimental predictions (although such things
did occur, e.g., Figure 4). ‘‘Predictive’’ modeling can be
valuable for testing mechanistic hypotheses, but it often
requires a relatively complete picture of a system’s compo-
nents [64,93]. In tissue and organ growth control systems, it is
indeed likely that components not considered here—such as
Notch and Wnt signaling [94–98], lineage branch points, and
other feedback and feedforward factors—also play important
roles.
Rather, modeling was used here for its explanatory power,

i.e., as a way to achieve clarity in the face of complexity.
Whether the precise control mechanisms suggested here are
‘‘right’’ or ‘‘wrong’’ is less important than the fact that they
provide a more satisfying set of explanations than those
yielded by traditional intuitive reasoning about the data. In
the OE, for example, traditional pathway-centered reason-
ing—following from the analysis of phenotypes—would
naturally emphasize the fact that GDF11 and activin are
potentially redundant ‘‘antineurogenic’’ factors; that Fst is
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‘‘proneurogenic,’’ and that OE growth is somehow regulated
by a balance among these factors. Although not inaccurate,
this view draws attention away from what may be more
fundamental relationships: that Fst extends the dynamic
range over which tissue size can be sensed; that GDF11 and
activin regulate a cell-fate decision (to replicate or differ-
entiate); and that stem and transit-amplifying cell behaviors
can be simple consequences of feedback. Such relationships
fit better into the context of observations that Fst is highly
expressed adjacent to several other epithelia that respond to
Fst-sensitive ligands (e.g., in tongue, eye, and gut [66]; that
GDF11 and GDF8 affect other kinds of cell fate decisions (e.g.,
in retina and muscle [99,100]); and that stem and transit-
amplifying cell behaviors are strongly context-dependent in
many lineage systems [6,89,90,101].

Materials and Methods

OE explant culture and labeling. OE explants were prepared as
previously described [39] and cultured with 10 ng/ml recombinant
FGF2 and varying concentrations of GDF11 (PeproTech). After 18 h,
bromodeoxyuridine (BrdU) cell-labeling reagent was added at
1:10,000 (#RPN201; Amersham). Two hours later, explants were
washed with cold thymidine (10 lm; Sigma-Aldrich), growth factors
replenished, and cultures grown for either 16 or 34 h longer (total
culture time was either 30 or 48 h). For 48-h cultures, FGF2 and
GDF11 were refreshed after 40 h in vitro.

Explants were fixed and stained with rat monoclonal anti-NCAM
H28 and mouse monoclonal anti-BrdU antibody as described [39].
Immunoreactivity was visualized with Cy2-Donkey anti-rat IgG (1:50;
Jackson Immunoresearch) and Texas Red goat anti-mouse IgG1 (1:50;
Jackson Immunoresearch). To compare the percentage of ORNs
produced by INPs in each culture condition, total migratory BrdUþ

cells were counted in at least 15 fields each of duplicate cultures per
condition and scored for BrdU and NCAM immunofluorescence by
an experimenter blind to the treatment condition, to ensure lack of
bias.

Immunohistochemistry and in situ hybridization to tissue sections.
Embryos were dissected in room temperature phosphate-buffered
saline (PBS; pH 7.2) and heads fixed in 4% paraformaldehyde in PBS
overnight at 4 8C, then cryoprotected, embedded, sectioned, and
processed as described [34]. For Ngn1 in situ hybridization, tissue was
processed using digoxigenin-labeled cRNA probes [34]. FST immu-
nostaining was performed using R&D Systems goat anti-human FST
antibody (10 lg/ml final concentration) and visualized with biotiny-
lated horse anti-goat IgG (1:250) in combination with Vector MOM
Immunodetection Kit (PK-2200; Vector Labs) according to the
manufacturer’s instructions.

Computational methods. Mathematical analysis and numerical
simulation were carried out with the assistance of Mathematica
(Wolfram Research). Codes used for all cases shown are provided in
Protocols S1–S3.

Accession numbers. Gene accession numbers used in the manu-

script refer to the Mouse Genome Informatics database, http://www.
informatics.jax.org/.

Supporting Information

Protocol S1. Mathematical Appendix

File includes Figures S1–S31.

Section 1: ODE model of an unbranched lineage.
Section 2: Steady state solution in the absence of feedback.
Section 3: Steady state solution for a two-stage lineage with feedback.
Section 4: Steady state solution for a three-stage lineage with
feedback (Figures S1–S3).
Section 5: Final-state solutions in the absence of feedback (Figures S4
and S5).
Section 6: Final-state solutions in the presence of feedback (Figures
S6–S11).
Section 7: Time-dependent solutions (Figures S12 and S13).
Section 8: Parameter space exploration—methods.
Section 9: Parameter space exploration—supplemental results
(Figures S14–S22).
Section 10: Simulation of pulse-chase experiment (Figure S23).
Section 11: Spatial dynamics calculations (Figures S24–S31).
Section 12: Parameters: definitions, ranges, and justifications.

Found at doi:10.1371/journal.pbio.1000015.sd001 (1.59 MB PDF).

Protocol S2. Mathematical Appendix, Mathematica Notebook Ver-
sion

This is a version of Protocol S1 that may be opened as an interactive
file in Mathematica.

Found at doi:10.1371/journal.pbio.1000015.sd002 (4.06 MB TXT).

Protocol S3. Mathematical Appendix, Mathematica Playere Version

This is a version of Protocol S1 that may be opened as an interactive
file using Mathematica Player freeware, which is available at http://
www.wolfram.com/products/player/.

Found at doi:10.1371/journal.pbio.1000015.sd003 (4.08 MB TXT).

Table S1. Negative Feedback Regulators of Proliferation

Found at doi:10.1371/journal.pbio.1000015.st001 (104 KB DOC).

Acknowledgments

The authors are grateful to Tau-Mu Yi for reading of the manuscript
and for helpful discussions about principles of control.

Author contributions. ADL and ALC conceived and designed the
experiments. ADL, KKG, and QN performed the experiments. ADL,
KKG, FYMW, QN, and ALC analyzed the data. QN contributed
reagents/materials/analysis tools. ADL and ALC wrote the paper.

Funding. This work was supported by National Institutes of Health
(NIH) grants P50GM076516 (ADL, ALC, QN, and FYMW), R01-
GM067247 (FYMW, QN, and ADL), R01-GM075309 (FYMW and QN),
and R01-DC03583 (ALC). KKG was supported by MSTP grant
GM08620.

Competing interests. The authors have declared that no competing
interests exist.

References
1. Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of

mammalian hematopoietic stem cells. Nat Immunol 9: 129–136.
2. Stern CD, Fraser SE (2001) Tracing the lineage of tracing cell lineages. Nat

Cell Biol 3: E216–218.
3. Fichelson P, Audibert A, Simon F, Gho M (2005) Cell cycle and cell-fate

determination in Drosophila neural cell lineages. Trends Genet 21: 413–
420.

4. Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the
hematopoietic stem cell. Immunity 26: 726–740.

5. Shostak S (2006) (Re)defining stem cells. Bioessays 28: 301–308.
6. Loeffler M, Roeder I (2002) Tissue stem cells: definition, plasticity,

heterogeneity, self-organization and models–a conceptual approach. Cells
Tissues Organs 171: 8–26.

7. Watt FM (2001) Stem cell fate and patterning in mammalian epidermis.
Curr Opin Genet Dev 11: 410–417.

8. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell.
Bioessays 24: 91–98.

9. Binetruy B, Heasley L, Bost F, Caron L, Aouadi M (2007) Concise review:

regulation of embryonic stem cell lineage commitment by mitogen-
activated protein kinases. Stem Cells 25: 1090–1095.

10. Kee BL (2005) Helix-loop-helix proteins in lymphocyte lineage determi-
nation. Curr Top Microbiol Immunol 290: 15–27.

11. Gan Q, Yoshida T, McDonald OG, Owens GK (2007) Concise review:
epigenetic mechanisms contribute to pluripotency and cell lineage
determination of embryonic stem cells. Stem Cells 25: 2–9.

12. Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell
homeostasis: insights from the hematopoietic system. Cell Stem Cell 1:
140–152.

13. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, et al. (2006)
Multilineage transcriptional priming and determination of alternate
hematopoietic cell fates. Cell 126: 755–766.

14. Glauche I, Cross M, Loeffler M, Roeder I (2007) Lineage specification of
hematopoietic stem cells: mathematical modeling and biological implica-
tions. Stem Cells 25: 1791–1799.

15. Farbman A (1992) Cell biology of olfaction.Barlow P, Bray D, Green P,
Slack J, editors. Cambridge (United Kingdom): Cambridge University
Press. 282 p.

16. Williams RW (2002) Mapping genes that modulate mouse brain develop-

PLoS Biology | www.plosbiology.org January 2009 | Volume 7 | Issue 1 | e10000150098

Cell Lineages and Proliferative Control



ment: a quantiative genetic approach. In: Goffinet AF, Rakic P, editors.
Mouse brain development. New York: Springer Verlag. pp. 21–49.

17. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:
60–66.

18. Pan D (2007) Hippo signaling in organ size control. Genes Dev 21: 886–897.
19. Chae TH, Walsh CA (2007) Genes that control the size of the cerebral

cortex. Novartis Found Symp 288: 79–90.
20. Costanzo RM, Graziadei PPC (1983) A quantitative analysis of changes in

the olfactory epithelium following bulbectomy in hamster. J Anat 119:
277–286.

21. Martin P (1997) Wound healing–aiming for perfect skin regeneration.
Science 276: 75–81.

22. Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis
in the developing organ of Corti. Development 126: 1581–1590.

23. Novak B, Tyson JJ (2003) Modelling the controls of the eukaryotic cell
cycle. Biochem Soc Trans 31: 1526–1529.

24. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers:
dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell
Biol 15: 221–231.

25. Khammash M (2008) Reverse engineering: the architecture of biological
networks. Biotechniques 44: 323–329.

26. Tsankov AM, Brown CR, Yu MC, Win MZ, Silver PA, et al. (2006)
Communication between levels of transcriptional control improves
robustness and adaptivity. Mol Syst Biol 2: 65.

27. Barkai N, Leibler S (1997) Robustness in simple biochemical networks.
Nature 387: 913–917.

28. Morohashi M, Winn AE, Borisuk MT, Bolouri H, Doyle J, et al. (2002)
Robustness as a measure of plausibility in models of biochemical networks.
J Theor Biol 216: 19–30.

29. Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of
cellular functions. Cell 118: 675–685.

30. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, et al. (2007) A
single type of progenitor cell maintains normal epidermis. Nature 446:
185–189.

31. Bullough WS (1965) Mitotic and functional homeostasis: a speculative
review. Cancer Res 25: 1683–1727.

32. Moolten FL, Bucher NL (1967) Regeneration of rat liver: transfer of
humoral agent by cross circulation. Science 158: 272–274.

33. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle
mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90.

34. Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, et al. (2003)
Autoregulation of neurogenesis by GDF11. Neuron 37: 197–207.

35. Newfeld SJ, Wisotzky RG, Kumar S (1999) Molecular evolution of a
developmental pathway: phylogenetic analyses of transforming growth
factor-beta family ligands, receptors and Smad signal transducers.
Genetics 152: 783–795.

36. Calof AL, Mumm JS, Rim PC, Shou J (1999) In vitro analysis of neuronal
progenitor cells from mouse olfactory epithelium. In: Haynes L, editor.
The neuron in tissue culture. Chichester (United Kingdom): Wiley. pp. 23–
44.

37. Calof AL, Bonnin A, Crocker C, Kawauchi S, Murray RC, et al. (2002)
Progenitor cells of the olfactory receptor neuron lineage. Microsc Res
Tech 58: 176–188.

38. Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and
molecular regulation of neural stem cells in the olfactory epithelium. Exp
Cell Res 306: 309–316.

39. DeHamer MK, Guevara JL, Hannon K, Olwin BB, Calof AL (1994) Genesis
of olfactory receptor neurons in vitro: regulation of progenitor cell
divisions by fibroblast growth factors. Neuron 13: 1083–1097.

40. Gordon MK, Mumm JS, Davis RA, Holcomb JD, Calof AL (1995) Dynamics
of MASH1 expression in vitro and in vivo suggest a non-stem cell site of
MASH1 action in the olfactory receptor neuron lineage. Mol Cell Neurosci
6: 363–379.

41. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003)
Myostatin negatively regulates satellite cell activation and self-renewal. J
Cell Biol 162: 1135–1147.

42. Siegenthaler JA, Miller MW (2005) Transforming growth factor beta 1
promotes cell cycle exit through the cyclin-dependent kinase inhibitor p21
in the developing cerebral cortex. J Neurosci 25: 8627–8636.

43. Yamato K, Koseki T, Ohguchi M, Kizaki M, Ikeda Y, et al. (1997) Activin A
induction of cell-cycle arrest involves modulation of cyclin D2 and
p21CIP1/WAF1 in plasmacytic cells. Mol Endocrinol 11: 1044–1052.

44. Reynisdottir I, Polyak K, Iavarone A, Massague J (1995) Kip/Cip and Ink4
Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-
beta. Genes Dev 9: 1831–1845.

45. Murray RC, Calof AL (1999) Neuronal regeneration: lessons from the
olfactory system. Semin Cell Dev Biol 10: 421–431.

46. Schwartz Levey M, Chikaraishi DM, Kauer JS (1991) Characterization of
potential precursor populations in the mouse olfactory epithelium using
immunocytochemistry and autoradiography. J Neurosci 11: 3556–3564.

47. Mackay-Sim A, Kittel P (1991) Cell dynamics in the adult mouse olfactory
epithelium: a quantitative autoradiographic study. J Neurosci 11: 979–984.

48. Mumm JS, Shou J, Calof AL (1996) Colony-forming progenitors from
mouse olfactory epithelium: evidence for feedback regulation of neuron
production. Proc Natl Acad Sci U S A 93: 11167–11172.

49. Holcomb JD, Mumm JS, Calof AL (1995) Apoptosis in the neuronal lineage
of the mouse olfactory epithelium: regulation in vivo and in vitro. Dev Biol
172: 307–323.

50. Graziadei GA, Graziadei PP (1979) Neurogenesis and neuron regeneration
in the olfactory system of mammals. II. Degeneration and reconstitution of
the olfactory sensory neurons after axotomy. J Neurocytol 8: 197–213.

51. Calof AL, Hagiwara N, Holcomb JD, Mumm JS, Shou J (1996) Neurogenesis
and cell death in olfactory epithelium. J Neurobiol 30: 67–81.

52. Von Dassow G, Odell GM (2002) Design and constraints of the Drosophila
segment polarity module: robust spatial patterning emerges from
intertwined cell state switches. J Exp Zool 294: 179–215.

53. Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci U S A 95:
8420–8427.

54. Alon U (2007) An introduction to systems biology: design principles of
biological circuits.Etheridge AM, Gross LJ, Lenhart S, Maini PK,
Ranganathan S, et al., editors. Boca Raton (Florida): Chapman and Hall/
CRC. 301 p.

55. Goldbeter A, Koshland DE Jr (1981) An amplified sensitivity arising from
covalent modification in biological systems. Proc Natl Acad Sci U S A 78:
6840–6844.

56. Ferrell JE Jr (1999) Building a cellular switch: more lessons from a good
egg. Bioessays 21: 866–870.

57. Kim SY, Ferrell JE Jr (2007) Substrate competition as a source of
ultrasensitivity in the inactivation of Wee1. Cell 128: 1133–1145.

58. Dowd CJ, Cooney CL, Nugent MA (1999) Heparan sulfate mediates bFGF
transport through basement membrane by diffusion with rapid reversible
binding. J Biol Chem 274: 5236–5244.

59. Lander AD, Nie Q, Wan FY (2002) Do morphogen gradients arise by
diffusion? Dev Cell 2: 785–796.

60. Goentoro LA, Reeves GT, Kowal CP, Martinelli L, Schupbach T, et al.
(2006) Quantifying the Gurken morphogen gradient in Drosophila
oogenesis. Dev Cell 11: 263–272.

61. Meyers J, Craig J, Odde DJ (2006) Potential for control of signaling
pathways via cell size and shape. Curr Biol 16: 1685–1693.

62. Eldar A, Rosin D, Shilo BZ, Barkai N (2003) Self-enhanced ligand
degradation underlies robustness of morphogen gradients. Dev Cell 5:
635–646.

63. Lander AD (2007) Morpheus unbound: reimagining the morphogen
gradient. Cell: 128: 245–256.

64. Reeves GT, Muratov CB, Schupbach T, Shvartsman SY (2006) Quantitative
models of developmental pattern formation. Dev Cell 11: 289–300.

65. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, et al. (2007)
Kinetics of morphogen gradient formation. Science 315: 521–525.

66. Feijen A, Goumans MJ, van den Eijnden-van Raaij AJ (1994) Expression of
activin subunits, activin receptors and follistatin in postimplantation
mouse embryos suggests specific developmental functions for different
activins. Development 120: 3621–3637.

67. Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, et al. (2004)
Follistatin complexes Myostatin and antagonises Myostatin-mediated
inhibition of myogenesis. Dev Biol 270: 19–30.

68. de Winter JP, ten Dijke P, de Vries CJ, van Achterberg TA, Sugino H, et al.
(1996) Follistatins neutralize activin bioactivity by inhibition of activin
binding to its type II receptors. Mol Cell Endocrinol 116: 105–114.

69. Schneyer AL, Sidis Y, Gulati A, Sun JL, Keutmann H, et al. (2008)
Differential antagonism of activin, myostatin and GDF11 by wild type and
mutant follistatin. Endocrinology 149: 4589–4595.

70. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches.
Science 287: 1427–1430.

71. Graziadei PPC, Graziadei GAM (1978) Continuous nerve cell renewal in
the olfactory system. In: Jacobson M, editor. Handbook of sensory
physiology, Volume IX: development of sensory systems. New York:
Springer Verlag. pp. 55–83.

72. Altman J (1969) Autoradiographic and histological studies of postnatal
neurogenesis. IV. Cell proliferation and migration in the anterior
forebrain, with special reference to persisting neurogenesis in the
olfactory bulb. J Comp Neurol 137: 433–457.

73. Kauffman SL (1968) Lengthening of the generation cycle during
embryonic differentiation of the mouse neural tube. Expl Cell Res 49:
420–424.

74. Caviness VS, Takahashi T, Nowakowski RS (1995) Numbers, time and
neocortical neuronogenesis: a general developmental and evolutionary
model. Trends Neurosci 18: 379–383.

75. Nowakowski RS, Caviness VS Jr, Takahashi T, Hayes NL (2002) Population
dynamics during cell proliferation and neuronogenesis in the developing
murine neocortex. Results Probl Cell Differ 39: 1–25.

76. Calegari F, Haubensak W, Haffner C, Huttner WB (2005) Selective
lengthening of the cell cycle in the neurogenic subpopulation of neural
progenitor cells during mouse brain development. J Neurosci 25: 6533–
6538.

77. Lo W-C, Chou C-S, Gokoffski KK, Wan FYM, Lander AD, et al. (2009)
Feedback regulation in multistage cell lineages. Math Biosci Eng 6: 59–82.

78. Manceau M, Gros J, Savage K, Thome V, McPherron A, et al. (2008)
Myostatin promotes the terminal differentiation of embryonic muscle
progenitors. Genes Dev 22: 668–681.

79. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, et al. (2006)

PLoS Biology | www.plosbiology.org January 2009 | Volume 7 | Issue 1 | e10000150099

Cell Lineages and Proliferative Control



p27kip1 independently promotes neuronal differentiation and migration
in the cerebral cortex. Genes Dev 20: 1511–1524.

80. Vernon AE, Devine C, Philpott A (2003) The cdk inhibitor p27Xic1 is
required for differentiation of primary neurones in Xenopus. Develop-
ment 130: 85–92.

81. Cavanagh JF, Mione MC, Pappas IS, Parnavelas JG (1997) Basic fibroblast
growth factor prolongs the proliferation of rat cortical progenitor cells in
vitro without altering their cell cycle parameters. Cereb Cortex 7: 293–302.

82. Clegg CH, Linkhart TA, Olwin BB, Hauschka SD (1987) Growth factor
control of skeletal muscle differentiation: commitment to terminal
differentiation occurs in G1 phase and is repressed by fibroblast growth
factor. J Cell Biol 105: 949–956.

83. Zandstra PW, Le HV, Daley GQ, Griffith LG, Lauffenburger DA (2000)
Leukemia inhibitory factor (LIF) concentration modulates embryonic
stem cell self-renewal and differentiation independently of proliferation.
Biotechnol Bioeng 69: 607–617.

84. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in
bacterial chemotaxis through integral feedback control. Proc Natl Acad
Sci U S A 97: 4649–4653.

85. Potten CS (1981) Cell replacement in epidermis (keratopoiesis) via discrete
units of proliferation. Int Rev Cytol 69: 271–318.

86. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from
transit amplifying cells on the basis of differences in integrin function and
expression. Cell 73: 713–724.

87. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ (2007)
Examples of mathematical modeling: tales from the crypt. Cell Cycle 6:
2106–2112.

88. Roeder I, Braesel K, Lorenz R, Loeffler M (2007) Stem cell fate analysis
revisited: interpretation of individual clone dynamics in the light of a new
paradigm of stem cell organization. J Biomed Biotechnol 2007: 84656.

89. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev
Genet 5: 873–878.

90. Jones PH, Simons BD, Watt FM (2007) Sic transit gloria: farewell to the
epidermal transit amplifying cell? Cell Stem Cell 1: 371–381.

91. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity.
Science 295: 1664–1669.

92. Doyle J, Csete M (2007) Rules of engagement. Nature 446: 860.
93. Mogilner A, Wollman R, Marshall WF (2006) Quantitative modeling in cell

biology: what is it good for? Dev Cell 11: 279–287.
94. Garcia-Peydro M, de Yebenes VG, Toribio ML (2006) Notch1 and IL-7

receptor interplay maintains proliferation of human thymic progenitors
while suppressing non-T cell fates. J Immunol 177: 3711–3720.

95. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, et al. (2005) Notch
signals control the fate of immature progenitor cells in the intestine.
Nature 435: 964–968.

96. Molofsky AV, Pardal R, Morrison SJ (2004) Diverse mechanisms regulate
stem cell self-renewal. Curr Opin Cell Biol 16: 700–707.

97. Hirsch C, Campano LM, Wohrle S, Hecht A (2007) Canonical Wnt
signaling transiently stimulates proliferation and enhances neurogenesis
in neonatal neural progenitor cultures. Exp Cell Res 313: 572–587.

98. Kubo F, Takeichi M, Nakagawa S (2005) Wnt2b inhibits differentiation of
retinal progenitor cells in the absence of Notch activity by downregulating
the expression of proneural genes. Development 132: 2759–2770.

99. Kim J, Wu HH, Lander AD, Lyons KM, Matzuk MM, et al. (2005) GDF11
controls the timing of progenitor cell competence in developing retina.
Science 308: 1927–1930.

100. Guo W, Flanagan J, Jasuja R, Kirkland J, Jiang L, et al. (2008) The effects of
myostatin on adipogenic differentiation of human bone marrow-derived
mesenchymal stem cells are mediated through cross-communication
between Smad3 and Wnt/beta-catenin signaling pathways. J Biol Chem
283: 9136–9145.

101. Viswanathan S, Davey RE, Cheng D, Raghu RC, Lauffenburger DA, et al.
(2005) Clonal evolution of stem and differentiated cells can be predicted
by integrating cell-intrinsic and -extrinsic parameters. Biotechnol Appl
Biochem 42: 119–131.

102. Nakamura T, Sugino K, Titani K, Sugino H (1991) Follistatin, an activin-
binding protein, associates with heparan sulfate chains of proteoglycans
on follicular granulosa cells. J Biol Chem 266: 19432–19437.

PLoS Biology | www.plosbiology.org January 2009 | Volume 7 | Issue 1 | e10000150100

Cell Lineages and Proliferative Control




