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HEAVY-ION ELASTIC SCATTERING
Jonas Alster

Lawrence Radiation Laboratory
University of California
Berkeley, California

April 17, 1961
ABSTRACT

The elastic scattering of cl2 ions from A, Fe, Ni, Ag107, In and
Ta has been measured as a function of angle, at a laboratory-system
energy of 124.5 Mev with the Berkeley heavy-ion linear accelerator. The
experimental equipment and techniques are discussed. [he angular
distributions show the same general behavior as previous heavy-ion
elastic scattering experiments. The experimental data were analyzed
with the semiclassical Blair model as modified by McIntyre. Very good
agreement with experiment was obtained. The measurements were taken
with 1% statistics i1n order to study the structure of the angular
distributions in greater detail, because only by fitting the details
in the structure was 1t possible to obtain unambiguous sets of para-
meters. These parameters indicated a nuclear radius of 1.45A1/3
x 10-13 cm, and a nearly constant surface thickness of 1.6x10-13 cm.
Also, total reaction cross sections were obtained. A rainbow-model
analysis by Goldman of the present data 1s given. Existing a- and
heavy-ion scattering data have been analyzed with the McIntyre model
and compared with previous optical-model analyses of the same data.
It was found that, by independént analysis, the two models give the
same 1maginary phase shifts for all partial waves. The real phase
shifts are identical above a certain £th partial wave, but differ
widely below this £ value. It is shown that in the region of disagree-
ment the real part of the phase shifts 1s i1rrelevant to the calculation

of the cross section.



-5
I. INTRODUCTION

One of the most interesting aspects of the use of heavy ions in
nuclear research is that semiclassical arguments can be used to explain
some of their interactions with nuclei. The criterion for the validity
of classical argument 1s that the wave packet describing the particle
should be small 1n compérison with the dimensions of interest; for
coulomb scattering, one thus requires that the wave length connected
with the relative motion be small compared with the distance of closest

approach for a head-on collision, 1.e.,

2 -1 2 '
x[2,Z,e"/E] " <<lor n = Z;Z,e"/hv »>1,
where Z; 1is the charge of the projectile,
Z9 1s the charge of the target,
e 1s the electronic charge,
1s Planck’s constant divided by 2w, and

v 1s the relative velocity.

The parameter n is important in all calculations involving
Coulomb interactions. For past elastic a—scattéring experiments, n
has usually been in the range 1 to 10, and semiclassical arguments
have been very successful in explaining them, especially Blair’s sharp-
cutoff model.2: 3,45 For heavy 1ons, n can be in the range 10 to 30.
This larger value of the classical parameter suggests that the Blair
model should hold even better for heavy ions.

Many important fields of nuclear research were enlarged when
heavy-ion beams became available, such as that of Coulomb excitation,
where strong electromagnetic interactions can be produced by heavy
ions with energies below the Coulomb barrier, and in the production of
neutron-deficient isotopes for studies in nuclear spectroscopy. When
a heavy 1on hits a nucleus it can impart to the nucleus from 50 to 100
units of angular momentum. If a compound nucleus is formed with such
a high angular momentum, interesting problems arise in. the nature of
its decéy." Several reviews on heavy-ion research can be found in the
literature,6'10 but here only elastic scattering experiments are dis-
cussed. As Blair pointed out, 5,8 through these experiments one hopes
to gather general information on heavy-ion interactions, and in partic-
ular to learn something about the nuclear surface. Blair therefore
suggested that a systematic survey be made throughout the periodic

table to measure the nuclear radius, especially since some a-scattering
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data indicated some irregularities in the radius of nuclei around
pp208 3 .
A. The Blair Model Y

Rutherford’s formula for Coulomb scattering of two point charges
11 v

gives the differential cross section as follows:

2\ 2
do(g) _ | Z1%2¢ ] a.1)
—daQ ~ \~ 4E . 471 :
sin 2-6

where do(68)/dQ 1is the probability for scattering at angle 6 into a

unit solid angle, and E is the c.m. (center-of-mass) energy.
How does this formula change when the charges occur on spheres
We discuss this problem using Fig. 1.

11

of finite dimensions?
The impact parameter b 1s given by

b = (ZIZZeZ/mVZ) cot %— 0, (1.2)

and thebclassical angular momentum by
fc=(ZIZ2e2/v)cot % 6 . (1.3)

The distance of ciosest approach D 1s
(1.4)

D = (ZIZZez/ZE)(1-+cosec % 6)

this distance may not be less than the sum R of the radii

Evidently,
equating D with R in Eq.(1.4) , and combining

of the two charges;
with (1.3), we thus find a critical angular momentum £':

2 2 2
£'® = 2m R” (E - ZZ,e"/R). (1.5)



"}

N

Fig. 1.

MU-23579

Classical Coulomb trajectories and scattering parameters.
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The Blair model now assumes that all particles with higher
angular momentum pass the nucleus along the Coulomb trajectories,
but that all particles with lower angular momentum are absorbed from
the incident beam. Thus, classically speaking, the scattering will
be described by the Rutherford formula for angles smaller than the
critical angle corresponding to £' , and no scattering at larger angles

will occur.
In order to see in a somewhat more refined way how this as-
sumption affects that scattering formula (1.1), we develop the scattered

12

beam 1n partial waves,

£(6) = Z’;_ Z (2L +1) (n, - 1) P, (cos 6), (1.6)
£=0

in which My is the coefficient of the f£th scattered wave, and for

Coulomb scattering of point charges,

my = exp [2i0,]; 0, = arg T (1+L+in) (1.7)
(n having been previously defined). The Rutherford formula can be
obtained by inserting (1.7) into (1.6) and remembering that
do (6) /dQ = lf (6) E . The imaginary part of the amplitude

of the scattered £ waves for this case has been plotted in Fig. 2
for different scattering angles @ and a value n = 22.

The scattering formula in the Blair model is now obtained by
subtracting from the Coulomb scattering all contributions of partial
waves with angular momenta smaller than the critical one given by

Eq. (1.5), or better, its quantum mechanical analogue:
291 (g _ 2 2
WL (€' +1) = 2m RY (E-ZZ,e /R) . (1.8)

The ratio of the differential cross section obtained in this way to the

Rutherford cross section 1is

é;é%%y— = (sin (n ln sin2 % 6 )+



sin2 l-G £
P . 2
+__n_.___Z (22 +1) sin 2 (0, -0,) P, (cos 6) ) “ +
£=0
* {cos (n ln sin’ —%— 6) +
2 28 ! 2
psin 2 Z (2L +1) cos 2(0, - 0y) Py (cos 8) ¢
£=0
(1.9)

as 1s shown in Appendix A.

Two angular distributions calculated with this formula are
given 1in Fig. 3, together with the experimentally measured angular
distributions. ,

The main features of the angular distributions can be qual-
itatively explained very well with Fig. 1 and 2. Figure 2 shows that

there 1s a large group of amplitudes with the same sign, centered

around ﬂc . This group provides the main contribution to the Rutherford
scattering for this particular angle. For small angles, lc becomes
larger and the main group of amplitudes moves along with 1t. The

amplitudes below £' are cut off and, since £' is fixed, different

amplitudes are cut off for different angles. If £' coincides with

fc about half of the main £ waves are cut off; so at that angle

y

- the cross section should be about 1/4 of the Coulomb cross section

given by Equation (1.1). A

The Blair quarter-point recipe for the measurement of radii
i1s based on this picture.3 For small angles, the main grbup of am-
plitudes is completely included in the sum, and the cross section
does not differ very much from the Coulomb cross section. A drop
in cross section occurs after £ waves of the large coherent group
are cut off. A consistent feature of the angular distributions 1s
the rise above Rutherford scattering before the steep dropoff. The
Blair model reproduces this rise, the nature of which can again be
ekplained with Fig. 2. Before the main group of amplitudes there 1is
always.a smaller group of amplitudes of opposite sign. When by increas-
ing 4, this group is cut off at £' | negative amplitudes are subtracted,
resulting in a larger positive sum, which will therefore give a larger

cross section.
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Fig. 2. The imaginary part of the amplitude of outgoing £ waves
for a Coulomb potential:(2£ +1) cos 2 (01-0 ) P, (cos 6)
for n =22, for different angles.
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Fig. 3. The differential cross section divided by the Rutherford
cross section as a function of the center-of-mass angle (in
degrees) is plotted for Cl2 elastically scattered from Ta
and Ni, The dots are the experimental values and the solid
line is the Blair sharp-cutoff calculation.
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We now compare experimental cross sections with the cross
sections calculated with Formula (1.9). By changing only one parameter,
£ a best fit is obtained. The best value for £' is substituted

into Eq. (1.8) which in turn gives a value for R equal to R, jeus *
Rprojectile' Usually an unambiguous choice in £' can be made of the
order of 60 to 70, such that the precision with which R 1s found de-
pends only on the precision of E in Eq. (1.8). Since the energy spread
in these experiments 1s somewhat less than 1%, the interaction radius
R can be found with a precision of 1%. Such precision for measuring
nuclear radii can be matched only with electron scattering experiments;
the last ones measure, however, a '"nuclear charge radius" rather than

the ™nuclear mass radius'" measured in the above mentioned work.

B. A Modified Blair Model

The Blair model describes the data quite well, which is some-
what surprising in view of its simple classical nature, but also it
gives rise to large oscillations for small (dO (6)/d9)/(d0(6)/dQ)R ,
whereas the experimental cross sections decrease smoothly in an expo-
nential way. The strong oscillations arise because of the extreme
sharp cutoff at one particular radius. Blair predicted that a rounding
of the cutoff would smooth out the oscillations. Several attempts have
been made to modify the Blair model.13-15 The first successful modifi-
cation was introduced by McIntyre to explain some elastic a-scattering
data. 15 The rounding is obtained by changing the coefficient of the
scattered partial wavesm , = A, exp [21 (0, + 5£) ] through the arbi-

trary relations

-1
Al ={l+exp{(1A-ﬂ) AIAJ}

\
-1
61 = 60 {l+exp|t(l_£6) Alé}}

(1.10)

(see Fig. 4).
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Fig. 4. The amplitude of the scattered partial waves and the
real nuclear phase shift as a function of £ according to
the McIntyre model.
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The cross section then becomes

2l =
o (6) .21 in® 2
W = Jcos (n In sin > 6) + smn Z (22 +1)
£=0

1
| 2
1
, sin® Z 0 i (22 +1) [cos 2 (0; - 0,)
n 1___0 0
- A, cos2 (01-00+5£)]P£ (cos 6) 2. (1.11)

The derivation 1s given in Appendix A. The calculation has to
be performed for the whole range of angles and for £'s up to about
100. Since many angular distributions have to be calculated before a
good fit is obtained, the actual calculation has been programmed for an

IBM 704 computer (see Appendix B).

The range of the rounding of the amplitudes 1is controlled by

?

52 with £ ; 50 is the strength of the real nuclear phase shift. The

H

AIA and similarly Af . controls the smoothness of the variations of

annd 15 compare with £' of the Blair sharp-cutoff model.

Instead of the simple "one parameter" model, one now has a
five-parameter model: IA’ AIA, 5, ¢ 5 and Alé. One can try to
reduce the number of parameters by keeping IA = 16 and AibzAlA (see
Sec. IV). The variation of fA and 15 controls the number of oscil-
lations in such manner that increasing IA and 15 increases the number

of oscillations and moves the first maximum to smaller angles. As
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expected,AJ.Aand Ala control the smoothness of the curve.  Increasing
Aannd Al 6reduces the amplitudes of the oscillations and makes the
dropoff steeper, but leaves the position of the maxima and minima
unchanged. Increasing 60 increases the amplitudes of the oscillations
(it lowers the minima and raises the maxima).

The influence of the parameters is not as clear cut as indicated
above. A change of any one parameter will slightly affect all the
features of the curve.

In the McIntyre model a surface region can be definedl® (see
Fig. 1). 1In the sharp-cutoff model £' defines the interaction radius
R; in the rounded-cutoff model a radius R + AR can be defined that
will correspond to the (iA +‘AIA)th partial wave, or to the diffuseness
of the surface. From Eq. (1.8) we get

2
2 Z.Z_ e
# (2£2+1)A£ _ <2E_ 12, ) AR 1.12)
2m R R R

The surface region S = AR will be defined by taking for Af the range of
£ over which the value of A, changes from 0.9 to 0.1 (AL = 4.4A1A) i

C. Total Reaction Cross Sections

17

The general formula for the total reaction cross section 1s

op = WKZX (2+1) (1-|n, |*) (1.13)
2=0

In the McIntyre model | ny I is given by.AI , and the total

reaction cross section becomes

op =Ry (@ +1) (1-4,%). (1.14)
£2=0

The McIntyre model has been applied to the elastic scattering of

heavy ions,]‘8’19 and very good agreement with experimental data was
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obtained. The McIntyre model suggests a great similarity with the

optical model and in Sec. VI the two models are compared.



'
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IT. EXPERIMENTAL PROCEDURE

A. Linear Accelerator

The scattering experiments were done with cl2 1ons, accelerated
in the heavy-ion linear accelerator (Hilac) at the Lawrence Radiation
Laboratory (see Fig. 5). Partly ionized €12 jons are accelerated with
a Cockcroft-Walton generator at a voltage of 425 kv and brought into a
resonating rf cavity. A buncher serves to adjust their velocity so that
the ions enter the prestripper cavity with the correct phase. In the
prestripper cavity the ions are accelerated to 1 Mev per nucleon. At
this point, the ions have a charge +2; the stripper, a jet of mercury
vapor, strips two more electrons off the ions, and cl2(+4) ions are
subsequently accelerated in the poststripper cavity. ' Drift tubes at
zero voltage are placed in the cavities to occupy the negative parts of
the standing wave. The tubes get progressively shorter down the machine
as the velocity of the ions increases. The velocity of different ions
coming out of the linear accelerator is therefore the same, and corres-
ponds to an energy of 10 Mev per nucleon for all particles. The field
gradient has to be adjusted to acquire this correct velocity. Strong-
focusing magnets are mounted inside the drift tubes to keep the part-
icles close to the axis of the cavity. The beam pulse length is 2 msec,
at 10 to 15 repetitions per sec. The Hilac has been described by Edward
L. Hubbard and others.20 After leaving the machine the 1ons are mag-

netically deflected and led into our scattering chamber.

B. Scattering Chamber

A 25-cm-diam scattering chamber was built for our experiment
(see Fig. 6). The beam enters the chamber through two sets of colli-
mators, whose size can be adapted to fulfill the requirements of the
particular experiment. Collimators A and B actually collimate a par-
allel beam, while A' and B' prevent the beam particles that are scat-
tered by the walls from reaching the target. The collimators are just
thick ehough to stop the beam particles in order to minimize the a-
mount of slit scattering. A typical collimation would be A=B=3mm and
A'=B'=3.5mm. The target is placed at the center of the chamber. After
passing through the target the beam is stopped in a Faraday cup. The
scattered particles leave the chamber through a 0.05-mm Mylar window.

With this arrangement it is possible to measure at angles from
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Fig. 5. Schematic view of the Hilac (from Ref. 15).
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Fig. 6. Schematic top and side views of the scattering chamber
and monitor.
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15 to 170 deg. In many cases 1t is desirable to measure the scattering
at angles smaller than 15 deg. For this purpose the Faraday cup unit
can be detached from the chamber and replaced by a flange with a 0.025
-mm aluminum window. The beam can then still be monitored with a count-
er, mounted at a fixed angle (14 deg). The monitor counter was used

in all our experiments, with or without the Faraday cup.

C. Scintillation Counters

In the first phases of the experiment, the scattered particles
were detected with a CsI (T1) scintillation crystal mounted on a 6292
Dumont photomultiplier tube. The crystal was only 0.4 mm thick, suf-
ficient to stop the cl2 ions, but inefficient in detection of background
particles such as neutrons and y rays formed in the accelerator and
collimators. Using a standard Csl crystal and photomultiplier tube,
no better than an energy resolution of 6% could be obtained. Resolution
was 1mproved by experimenting with the preparation of the CsI crystal.
The crystals were cut with a jeweler’s blade from a 1.25-cm-diam cylin-
der and polished with fine carborundum sandpaper wetted with alcohol.

The crystals were tested with an asource. Subsequently, one of
the sides of the crystal was water polished. However, water polishing
both sides of the crystal gave the best results.

The resolution obtained with the same crystal changes by as
much as 2 or 3% between different 6292 photomultipliers. Fifteen 6292
photomultipliers were tested and the best one selected. The crystals
were mounted on the face of the photomultiplier with Dow-Corning sil-
icone oil of 100 cst. Resolution depends very critically on the amount
of grease used. The grease was heated on the face of the photomulti-
plier and was allowed to flow on the edges of the crystal (see Fig. 7-A)
in order to facilitate the collection of light leaving the crystal at
the edges, which may be a large fraction of the light output if a very
thin crystal is used. Two counters were made with an energy resolution
of 1.4% for 100-Mev Cl2 jons.

The light collection could not be improved appreciably by using
a light pipe (see Fig. 7-3) to spread the light uniformly over the
face of the photomultiplier. The performance of the various photo-
multipliers was now nearly the same for all the tubes, but not as good
as 1f one were to select a good one and use only part of i1ts face,
without the light pipe. This indicates that the over-all efficiency
is the same for all tubes, but that in some cases to use only a small

part of the face 1s advantageous.
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Fig. 7. (A) Mounting of Csl crystal on photomultiplier.
(B) Mounting of thin CslI crystal via lightpipe.
- (C) Mounting of semiconductor crystal.
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The response of CsI for several heavy i1ons as a function of
energy 1s given in Fig. 8 (and see Ref.21). It is quite nonlinear at
low energies but becomes linear above about 70 Mev. The experiments
were done in the linear region, where we can write E = kV + 30 Mev.
The measured pulse-height resolution AV/V transforms therefore to energy
resolution in the following way: AE/E = (AV/V) (1-30/E). At about
100 Mev AV/V 1is approximately 2% and AE/E = 1.4%.

A closer study of Fig. 8 suggests that the light output of
different heavy ions is approximately the same for the same velocity
(see Fig. 9). Consequently, the pulse height from the CsI crystal will
be the same for a Cl2 ion of 100 Mev and a cll jon of 90 Mev, or a N13
ion of 110 Mev, and in the energy spectrum one cannot separate these

particles from the elastically scattered cl2? ions.

D. Solid-State Radiation Detector

Investigations at the Lawrence Radiation Laboratory showed
that the response of solid-state radiation detectors is linear with
energy, 22independent of the type of particle detected (see Fig. 10).
(There is some evidence of nonlinearity of about 5% for fission frag-
ments.23) The CsI counter was therefbre replaced by a semiconductor
crystal, which had the additional advantage of giving a slightly better
energy resolution. -

The detector was made by diffusing phosphorus in a p-type
silicon wafer, thereby creating n material at the surface. 24 At the
p-n junction, a "depletion layer" is formed, where only a few charge
carriers are present. An ionizing particle entering this region gives
rise to a current flow. The thickness of the depletion layer (the
effective thickness of the detector) is a few microns.2? Tt can be

increased by applying a reverse bias voltage (positive on the n side):

e(V,+V, )
W = 1.05 /_0_3_ % 107% cm

2we N

where W is the thickness of the depletion layer
€ 1s the dielectric constant of the silicon,

Vo is the potential created at the junction when no external
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voltage is applied,
Vi, is . the bias voltage,

N is the concentration of the acceptor atoms initially present

in Si,
e 1s the electronic charge.

The potential that can be applied i1s limited by the resistivity
of the material, and by leakage currents. For 100-Mev cl2 jons a thick-
ness of 0.3 mm 1s necessary to stop the particles in the depletion
layer. The necessary bias voltage was therefore 100 v, since the
resistivity of the silicon was 4000 ohm-cm. The counter assembly 1is
shown in Fig. 7-C. The crystal was mounted in a Teflon holder. The
signal was taken from the n side of the crystal. Aluminum was diffused
on the p side and a wire soldered to 1t to make electrical contact. A

spring wire made a point contact on the front of the crystal.

E. Electronic Equipment

The pulses from the silicon counter were fed into a low-noise

25

preamplifier®? and subsequently brought into a doyble-line linear pulse

26

amplifier“® through a 30-m-long cable. The pulses were recorded in a
scaler and the energy spectra measured with a Penco 100-channel pulse-
height analyzer. Since the Hilac i1s a pulsed machine with a duty
cycle of 2 to 3%, the dead time of the pulse-height analyzer becomes
an important factor. Dﬁriné each 2-msec beam burst, the intensity
had to be sufficiently low so that the dead time of the analyzer should
not cause any losses i1n counts. The Penco has a dead time of 28 +
2% (channel number) psec; however, 'a second pulse arriving 7.5 usec
after the first is put into temporary storage and is not lost. It is
advantageous to store the elastic peak i1n the energy spectrum in the
* low channels, in order to minimize the dead time. This can easily
be accomplished by turning up the threshold of the analyzer, which
.changés the voltage acceptance range of the analyzer and still does
not distort the Gaussian shape of the peak. Typically, the elastic
peak was put in the neighborhood of channel 30, resulting in a dead
time of about 60 usec, and roughly two pulses per 100 psec should be

acceptable. The maximum counting rate is therefore 600 per sec. com-

&z



-27-

pared to 20,000 per sec for continuous accelerator. If the pulses
were uniformly distributed in time during a beam burst, the adopted
counting rate would not cause any losses of counts; since this was not
the case a correction has to be made. Typical energy spectra are

shown 1n Fig. 11.

F. Monitor

The monitor counter is shown in Fig. 6. The light pipe was
made of lucite. The CsI crystal was 5 mm in diameter and 0.8 mm thick.
Bigg’'s cement was used to glue the crystal to the light pipe and the
light pipe to the photomultiplier. An energy resolution of 3% was
obtained even though the light pipe had a strong curvature and a dia-
meter of 5 mm. The collimators in front of the monitor could be changed
during runs, so that the monitor scalers would not become overloaded

when the beam was increased.
G. Targets

The nuclear radius as derived from the scattering experiments
is strongly dependent upon the energy of the projectiles at the instant
of scattering. This energy 1is most easily determined 1f the energy
loss of the particles in the target is negligible. Using Eq. (1.3),
and remembering that we want to determine R with a precision of 1%,
we find that the energy loss has to be less than 1 Mev for 120-Mev cl2
ions. For a large energy loss, moreover, the details in the structure
of the angular distribution are washed out, due to averaging over a
large energy region. Targets of 1 mg/cm2 thickness were therefore
required. The preparation of such thin targets 1s especially difficult
if no backing material can be used, as was the case here, because any
backing material would contribute appreciably to the number of elas-
tically scattered particles. '

Self-supporting Ta and Fe targets were made by rolling films
down to the desired thickness with steel rolls. Aglo7 and In films
were made by vacuum deposition out of a tungsten crucible onto a glass

2T The films were stripped off the glass and mounted on brass

28

plate.

rings. Ni films 1.2 pm thick were commercially available.
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|
Fe + C'2

ELop * 124.5 Mev

Angle = 18,3deg
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MU -23524

Fig. 11. Typical energy spectra taken with the Csl scintillation

counter.
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H. Gas Targets

The scattering chamber 1s easily adapted to the use of gas
targets. A 2.5-um nickel foi1l at the left of the collimator B' (see
Fig. 6) and a 0.025-mm aluminum foil separate the accelerator and
Faraday cup vacuum from the scattering chamber. The whole scattering
chamber 1s filled with the target gas. The efficiency for scattering
into the detector at an angle 6 1s, therefore, a rather complicated
function of the parameters defining the geometry of the arrangement and
is explained in Fig. 12. If we combine them in a quantity G = 2rwr2/ab,
the cross section for scattering at an angle 9 1s obtained from the
number N. of inc¢ident particles, the N(8) of detected particles, and

1
the number N, of target nuclei per unit of volume:

do (6)/d§z = N(6) sin 6 / N; Ny G

(see Ref. 29, 30. 31).

Evidently the effective thickness can become very large at
small angles. This effect can be compensated for by lowering the gas

pressure.

I. Precision and Corrections

The counters were moved manually and the angular settings
could be reproduced to within 0.1 degree. .

If the beam axis does not coincide with the chamber axis, a
large error is introduced in the scattering angle, especially since
measurements were taken at both sides of the chamber. For gas targets,
this also introduces an error in the effective target thickness.

If ¢ is the angle between the beam axis and the chamber axis,
with our dimensions, at a scattering angle 8 = 8 deg, ¢ = 1 deg would
introduce an error of 13% in the cross section for a gas target. An
optical alignment system was therefore used every time both collimator
sets were changed, to ascertain that the beam axis and chamber axis
coincided. During each run the alignment was further checked by meas-
uring the cross section at 6, 7, and 8 deg on both sides of the chamber.
The checks proved that deviations were never larger than 0.1 deg.

An angular spread i1s caused by the finite aperture of the
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Scattered particles

MU -23580

Fig. 12. The gas target geometry in the horizontal plane.



-31-

counter collimator and the size of the beam spot on the target. Assum-
ing that the beam density is constant over the beam area (which is
probably very nearly correct, since the collimator selects only a small
part of the center of the beam), the intensity distribution for the
beam spot-counter system can be calculated by "folding" the two separate
distributions (see Fig. 13).

The beam spot on the target is a circle with a 1.6-mm radius.
The detector 1s a circle with the same radius. For an infinitely small
slit at the detector, the angular spread due to the size of the beam
spot can be represented by g(t)=2V1-t2, where t = 0 corresponds to the
nominal scattering angle 6y and the angular séread t=t, corresponds to
the angle 63 + AO through the relationship A8 = arc tan tj/d (d being
the distance between the target and the detector). Analogously, the
spread due to the size of the detector is f(y) = 2 l—yz. The "folding"
of these two distributions 1s depicted in the insert of Fig. 13; the

resulting distribution is given by I(t) = g(y-t) f(y) dy, and is
~ t-1

plotted in Fig. 13. Here t = 2 corresponds to A9 = 0.5 degree. I(t)

turns out to be nearly identical with a Gaussian curve; the standard

deviation is therefore a good measure for the angular spread of the

s?stem.

-~

J. Multiple Scattering

Multiple scattering at the chamber window adds to the spread
calculated above. The root-mean-square angle for this multiple scatter-
ing 1s 0.5 deg for a typical case in our experiments.32’ 33 Since the
distribution in Fig. 13 and the multiple scattering distribution are

both nearly Gaussian, the spreads can be added quadratically:

No correction is necessary for the number of particles scat-
tered out of the solid angle due to multiple scattering in the windows;
in sufficient approximation, the number of particles scattered out will
be equal to the number of particles scattered into the solid angle from
outside.

The contribution to the angular spread due to multiple scatter-

ing in the target can be neglected, but it sets a lower limit of approx-

A
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MU -23515

Fig. 13. Distribution of intensity over the angle, calculated by
"folding" the two distributions in the insert.
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imately 5 deg for the angle where the elastic scattering can be-meas-
used. At small angles, a second-order correction has to be made allow-

430, 31

ing for the large change in cross section over the angular sprea

K. Cross Sections

In most of the experiments the differential cross sections have
been divided by the Coulomb cross section and theén normalized to unity
by drawing a straight line through the average of the points close to
zero degrees. This 1s justified by the fact that the cross sections
oscillate slightly around the pure Coulomb scattering cross section
for small-angle scattering, as explained qualitatively in Sec. 1. The
error introduced this way is at most 2%, and even less for very heavy
targets. In principle, cross sections could be measured absolutely
by measuring accurately the charge collected in the Faraday cup, the
target thickness, and the counter target distance. Unfortunately,
however, the target thickness cannot be obtained with a better pre-
cision than about 5%. The target can be weighed very accurately, but
a large error is made in the measurement of the area where the beam hits
the target. The foils were not sufficiently uniform that the weighing
of the whole foil was of any use. In addition, the beam charge collect-
ed cannot be measured more accurately than 1% because of instability of
the electrometer, the unknown loss of secondarily emitted electrons
from the Faraday cup, and the capture of knock-out electrons from the
target. The above method of normalization was therefore chosen to
represent the data, although in some cases both methods were used and
found to agree within the expected errors.

For the light targets Fe and A, the above normalization could
not be applied, since the region of oscillations around Rutherford
scattering could not be reached. Consequently, larger errors have to
be assigned to the absolute cross sections in these cases; but the
errors of points in the angular distribution relative to each other are
the same as in the other cases, i.e., the angular distribution curve as
a whole can be moved up or down by several percent, but not the points

separately.
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I1I. EXPERIMENTAL RESULTS

The experimentally measured angular distributions are listed
in Tables I, III, V, VII, IX and XI, and are also plotted in Fig. 14.
Column 1 gives the center-of-mass angle; the spread is 0.7
deg.
| Column 2 gives the measured cross section divided by the Ruther-
ford cross section, normalized as already discussed. The cross sections
are corrected for all the effects listed in the preceding section.
In column 3, the error includes the statistical error in the
number of counts and the uncertainty in separating the elastic peak
in the energy spectrum from the inelastic peak (important only for
large angles); %X i1s the de Broglie wave length, and n 1s the classical
parameter (n = Zj Zg e2/ﬁ v).
The analyses of experimental data with the McIntyre model,
using formula (11), are given in Tables II, IV, VI, VIII and X. The

first five columns give the parameters of the model.

Column 6 is A= X | (calculated-measured)/measured [X 100,
summed over all calculated angles. A value near the sum of statistical
errors for this quantity, indicates a good fit between experiment and

theory.

Column 7 gives the total reaction cross section calculated

with Eq. (1.13), where the summation is performed up to £, such that
A (£) > 0.9999.

The sets of parameters listed all give good agreement with the
experimental data. They are the results of an extensive search for
best fits. The chance that good fits could be obtained for very differ-
ent values of these parameters 1s exceedingly remote.

The criterion for a good fit was that the following features,
in decreasing order of importance, should be reproduced very well:

(a) the sharp break from Rutherford scattering,

(b) the initial rise above Rutherford scattering,

(¢) the exact slope of the steep fall-off, and

(d) the oscillations around Rutherford scattering.

The limits of the parameters that still give a good fit to the
data are best presented in a table, because a two-dimensional graph

of a five-dimensional space 1s not easy to read.

In the first group of fits, lA =1 and AIA# AIS;

63

13
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Experimental angulor
1.2 distributions of elasticolly
3 scattered C'2ions
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Fig. 14. Experimental angular distribution of C12 ions
elastically scattered from A, Fe, Ni, Ag107, In, and
~ Ta.
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In the second group of fits, lA = 18’ and A£A7é Al

0

In the third group, all parameters were changed independently.
One fit in each group, marked *, has been plotted in a graph together
with the experimental points (see Figs. 15 through 22). The interaction
radius is calculated by substituting N for £' in Eq. (1.7). The error
in the radius arises from the fact that the scattering can occur at an
energy Ey £ 1 Mev. The surface parameter S is calculated by using
Eq. (1.12), substituting for Af 4.4 times the maximum and minimum values

values of the AIA'S 1n the table.
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A. Ta + Cl2

The results for Ta + C12 are summed up in Tables I and II, and
Figs. 15 and 16.

For IA = 65: the interaction radius R _ (11.51 £ 0.07) X 10"13 cm.

For Ly = 66: the interaction radius R = (11.63 + 0.07) X 10_13 cm.

For IA = 65: the surface region S is 1.58 < S$<2.02 X 10_13 cm.
C . ' -13

For £, = 66: the surface region S is 1.28<S<1.63 X10 cm.

The initial rise above Rutherford scattering is 20%.
The fits with the McIntyre model are very good in this case.
The small oscillations of O'/GR around 1 are very well

reproduced.
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Table 1

Experimental results: Ta + C12

ec.m. e/ /\de R Error ec.m. do /) /\da R Error

(deg) (%) (deg) (%)
7.9 0.980 1 23.2 1.088 1
9.0 1.003 1 24.2 1.137 1
10.2 1.036 1 26.3 1.184 1
11.2 1.007 1 28.5 0.934 1
12.2 0.975 1 30.6 0.811 1

13.3 0.985 1 31.6 0.668 1

14.4 1.013 1 33.3 0.512 3
15.5 0.988 1 34.3 0.414 1
16.5 0.985 1 34.9 0.311 1
17.6 1.041 1 35.8 0.249 1
18.7 1.044 1 37.0 0.181 1
19.7 0.973 1 37.6 0.199 1

20.8 0.859 1 38.7 0.147 2

21.0 0.923 1 39.6 0.106 3

22.1 0.957 1 41.2 0.0645 3
Target thickﬁess = (2.2+0.2) mg/cmz;

x = 0.127 f; E m. - 114, 9 Mev n = 21.59.
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Table 11

Theoretical analysis: Ta + C12

iA 16 AZA Al& 6 A “Reaction
(b)
*65 65 3.0 3.0 0.4 89 2.40
65 65 3.8 1.0-3.0 0.3 116-97 2.46
*65 65 3.6 2.0-3.0 0.3 102-92 2.44
65 65 3.2 1.0-3.0 0.4 102-95 2.41
65 65 3.2 3.0 0.3 122 2.41
65 65 3.0 1.0-2.0 0.4 121-93 2.40
*65 66 3.3 2.0-3.2 0.3 81-89 2.42
65 66 3.0 2.0-29 0.3 102-114 2.40
*66 66 2.7 2.7 0.3 109 2.44
66 66 2.4 2.4 0.3 146 2.42
*66 66 3.0 2.0-3.5 0.3 90-119 2.46
66 66 2.8 2.0-2.5 0.3 100-103 2.45
66 66 2.6 2.0-3.5 0.3 132-126 2.43
66 65 2.8 2.0-3.5 0.3 131-118 2.45
66 65 2.8 2.5 0.4 107 2.45
*66 65 3.0 2.0-3.5 0.3 109-100 2.46
66 65 3.0 2.0 0.4 100 2.46

*
Plotted in graph.
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Fig. 15. Angular distributions of CIZ ions elastically scattered

from Ta at Elab = 124.5 Mev. The dots are the measured
cross sections and the solid line is the calculated cross
section with the following Mclntyre model parameters.
y
ZA A A 0 £ 5 Al 5 A
(1) 66 2.7 0.3 66 2.7 109
(2) 66 3.0 0.3 66 : 2.0 90

(3) 66 3.0 0.3 65 2.5 101
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Fig. 16. Angular distribution of C12 ions elastically scattered
from Ta at E aQ = 124.5 Mev. The dots are the measured
cross sections and the solid line is the calculated cross
section with the following McIntyre model parameters.

LA A, o Is Aty a
(1) 65 3.6 0.3 65 3.0 92
C(2) 65 3.0 0.4 65 3.0 89

(3) 65 3.3 0.3 66 2.6 82
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B. In + Cl2

The results for In + Cl2 are summed up i1n Tables III and IV, and
Figs. 17 and 18.

For iA = 61: the interaction radius R = (10.24 + 0.06) X 10“13 cm.
For £A = 62: the interaction radius R = (10.36 :I: 0.06) X 10-13 cm.
For ‘QA = 61: the surface parameter S is 1.01 <S< 1.36X 10"13 cm.
For IA = 62: the surface parameter S 1s 1.14 <S < 1.36 X 10_13 cm.

The 1nitial rise above Rutherford scattering is about 30%.

The fits with the McIntyre model are very good, and the small
oscillations around O'/OR =1 are very well reproduced.

Due to the large rise, the value of §; is quite large in this

case.
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Table III

Experimental result: In + C12

oo (S2)/(8), e oo, (%)/(%), Eee
R R ()

(deg) (%) (deg)
7.1 1.0 69 1 19.2 1.113 1
8.2 0.9 60 1 20.3 0.937 1
8.4 0.9 33 1 20.8 0.855 1
9.3 0.9 64 1 21.7 0.663 1
9.5 0.9 81 1 22.8 0.469 1
10.4 1 1.023 1 23.9 0.359 1
11.6 1.0 30 1 25.0 0.282 1
12.7 0.9 89 1 27.2 0.155 1.5
13.8 0.9 83 1 28.3 0.117 3
14.8 1.085 1 30.5 0.589 3
15.9 1.2 45 1 32.7 0.0258 1.5
17.0 1.290 1 34.4 0.0152 4
18.1 1.2 31 1

Target thickness = 1.5 % 0.2 mg/cmz;

7& = 0.132 f; Ec.m. = 110.9 Mev; n = 14.49.
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Table IV
Theoretical analysis: In + C12

1A Ls Ao Ls 8 A Reaction
(b)
61 61 2.0 2.0 1.1 276 2.20
61 61 2.1 2.0 1.0 255 2.21
*61 61 2.2 2.2 0.9-1.0 253-251 2.22
61 61 2.4 2.4 1.0 184 2.23
61 - 61 2.0 2.8 1.0 173 2.20
61 61 2.2 2.4 1.0 163 2.22
*61 61 2.4 2.8-3.6 0.8 173-162 2.23
61 62 1.8 3.0 0.8 198 2.19
61 62 2.0 3.0 0.7 238 2.20
%1 62 2.0 2.5 0.8 155 2.20
61 62 2.0 2.0 0.9 185 2.20
61 62 2.2 2.0 0.8 164 2.22
61 62 2.2 3.0 0.7 176 2.22
62 62 2.0 2.0 0.9 284 2.27
*62 62 2.2 2.2 0.8 242 2.29
62 62 2.2 2.8 0.8 185 2.29
62 62 2.4 2.,4-2.8 0.8 167-180 2.30
*62 61 2.2 2.5-3.0 1.0 251-208 2.29
*62 63 2.3 2.5 0.6 200 2.29
62 63 2.3 1.5 0.7 216 2.29

*
Plotted in graph.
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Fig. 17. Angular distribution of C12 ions elastically scattered
from In at E a = 124.5 Mev. The dots are the measured
cross sections ‘and the solid line is the calculated cross
section with the following McIntyre model parameters.

£, AL, b L5 Al A
(1) 62 2.2 0.8 62 2.2 242
(2) 62 2.3 0.6 63 2.5 200 -

(3) 62 2.2 ‘1.0 61 3.0 208
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Fig. 18. Angular distribution of Cl'2 ions elastically scattered
from In at E a =124.5 Mev. The dots are the measured
cross sections and the solid line is the calculated cross
section with the following MclIntyre model parameters.

N AL, 5 L5 Al A
1y 61 2.2 1.0 61 2.2 203
(2) 61 2.4 0.8 61 3.2 153
(3) 61 2.0 0.8 62 2.5 155
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C. Agl07 + cl2

The results for Aglo7 + Cl2 are summed up in Tables V and- VI,
and Figs. 19 and 20.

For 4, = 60: the interaction radius R = (10.09  0.06) X 10713 o
For £, = 61: the interaction radius R = (10.22 +0.06) X 10717 cm.
For lA = 60: the surface parameter S is 1.14< S < 1.58 X 10-13 cm.
For lA = 61: the surfac-e parameter S 1s 1.14 <SS < 1,58 X 10_13 cm,

The initial rise above Rutherford scattering is about 27%.
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Table V

Experimental results: Ag107+ C12

do do ‘dor do-
0. m. <aﬁ>/<d—sz>R Error 0 .. <a§>/(m>R Error

(deg) (%) (deg) (%)
6.9 1.050 1 19.2 0.948 1
8.0 1.054 1 20.3 0.806 1
8.6 0.969 1 20.7 0.738 1
9.1 1.0 33 1 21.6 0.580 1
9.7 0.996 1 21.9 0.530 1
10.4 1.056 1 23.0 0.409 1
11.5 1.031 1 25.0 0.234 2
12.6 0.931 1 26.3 0.167 1
13.7 1.027 1 27.4 0.118 1.5
14.8 1.151 1 28.5 0.0842 1.5
16.0 1.279 1 29.6 0.0584 1.5
17.0 1.2 48 1 32.9 0.0331 2
18.2 1.177 1 34.0 0.0142 3
19.0 1.0 14 1 34.4 0.0133 1.5

Target thickness =

3

= 0.133 f{;

1.8 0.1 mg/cmz;

E
c.m

110.1 Mev;

n-=

13.90.
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Table VI

Theoretical analysis: Ag'l-o'7 + Cl'2

JeA 18 AJeA Az& § A 9 Reaction
(b)
%60 60 2.5 2.5 0.8-0.9 166-190 2.20
60 60 2.7 2.7 0.8 194 2.22
60 60 2.8 2.0 0.9 174 2.22
60 60 2.6 2.0 0.9-1.0 193-184 2.21
60 60 2.6 2.5 0.8 177 2.21
%60 60 2.4 2.5 0.9 151 2.19
60 60 2.4 3.0 0.8 156 2.19
60 60 2.0 3.0 0.9 160 2.16
60 60 2.0 2.5 1.0 163 2.16
60 61 2.6 3.0 0.6 196 2.21
60 61 2.4 2.5-3.0 0.7 172-155 2.19
*60 61 2.2 2.5-3.0 0.7 197-162 2.18
60 61 2.0 2.5 0.8 148 2.16
61 61 3.0 3.0 0.6 188 2.31
%61 61 2.5 2.5 0.6-0.8 153-167 2.27
61 61 2.0 2.0 1.0 225 2.23
61 61 2.8 2.0 0.8 154 2.29
61 61 2.8 2.8-3.0 0.6 155-191 2.29
*61 61 2.6 2.0 0.8 153 2.28
61 61 2.4 2.0-2.5 0.8 133-197 2.26
61 61 2.2 2.5-3.0 0.8 152-165 2.25
%61 62 2.5 2.0-4.0 0.6 167-171 2.27
61 60 3.1 2.0 0.9 180 2.32
61 60 2.9 2.0-2.5 0.9 165-187 2.30
%61 60 2.8 2.5 0.9 146 2.29

&
Plotted in graph.
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Fig. 19. Angular distribution of C12 ions elastically scattered
from Aglo7 at E, ;, = 124.5 Mev. The dots are the
measured cross sections and the solid line is the calculated
cross section with the following McIntyre model parameters.

£, Al 5 L5 Al A
(1) 61 2.5 0.7 61 2.5 167
(2) 61 2.5 0.6 62 2.0 167
(3) 61 2.6 0.8 61 2.0 153
(4) 61 2.8 0.9 60 2.5 146
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Fig. 20. Angular distribution of - C12 ions elastically scattered
from Ag 07 at E_, =124.5 Mev. The dots are the
measured cross sections and the solid line is the calculated
cross section with the following MclIntyre model parameters.

N 42A ) ‘s Al A
(1) 60 2.5 0.8 60 2.5 190
(2) 60 2.2 0.7 61 3.0 162

(3) 60 2.4 0.9 60 2.5 151
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D. Ni + cl2

The results for Ni + Cl2 are summed up 1n Tables VII and VIII,
and in Fig. 21.

For £, = 54: the interaction radius R = (9.10 +0.06)x 1071  cm.
For IA‘ = b5: the interacﬁion radius R = (9.25 + 0.06) X 10_13 cm.
For 2, = 56: the interaction radius R = (9.39 0.06)X 107>  ecm.
For £, = 57: the interaction radius R = (9.59 £ 0.06)x 107>  am.
For ,@A = b54: the surface parameter S is 1.94X 1_0_13 cm.
For ﬁA = 55: the surface parameter S 1s 1.72 < S <2.11X 10—13 cm.
For ‘ZA = bB56: the surface parémeter Sis 1.26 <S<1.98% 10_13 cm.
For Lo = 57: the surface parameter S is 2.02 < S < 2.16X 10713 _cm.

Because of multiple scattering in the target is was not possible
to measure the scattering at angles smaller than 5 deg in the labora-
tory system. For low-Z,targets this means that the oscillation around
(T/O'.R = 1 could not be measured, which introduces an error or several
per cent in the normalization of O’/O’R to unity. In this case, there-
fore, no attempt was made to vary all five parameters independently,
and four lA values give equally good fits to the experimental data.
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Table VII

Experimental results: Ni + C]‘2

do do do do
GC.m. <E§>/<H§>R Error Gc.m. (d_§2> /(—d—Q—)R Error

(deg) (deg) (%)
5.3 1.049 1 14.8 0.447 1
6.5 0.979 1 17.2 0.233 1
7.7 0.970 1 19.6 0.112 1.5
8.9 1.123 1 22.0 0.0533 1.5
9.1 1.133 1 23.4 0.0356 1.5
10.1 1.136 1 24.6 0.0253 1.5
10.3 1.190 1 - 25.8 10.0179 1.5
12.2 1.027 1 27.0 0.0137 2
12.4 0.810 1 28.2 0.0084 2
13.4 0.608

Target thickness = 1.1 £ 0.05 mg/cmz;

X =0.144 f; E = 101.6 Mev; n= 8.28
c.m.
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Table VIII

Theoretical analysis: Ni + C12

L Ls Al Alg 8 A " Reaction
(b)
54 54 3.0 3.0 0.6 183 2.16
55 55 2.8 2.8 0.6 116 2.22
%55 55 3.0 3.0 0.5 147 2.23
55 55 3.0 3.0 0.6 178 2.23
55 55 3.2 3.2 0.5 160 2.25
55 55 3.4 3.4 0.4 189 2.27
56 56 2.8 2.8 0.5 154 2.29
56 56 2.8 2.8 0.6 146 2.29
* 56 56 3.0 3.0 0.5 115 2.31
56 56 3.2 3.2 0.4 128 2.33
%57 57 3.2 3.2 0.4 137 2.40
57 57 3.4 3.4 0.3 145 2.42

E
Plotted in graph.
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0.005
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Fig. 21. Angular distribution of C12 ions elastically scattered

from Ni

at Elab

= 124.5 Mev.

The dots are the measured

cross sections and the solid line is the calculated cross
section with the following MclIntyre model parameters.

iA AIA o)
(1) 55 3.0 0.5
(2) 56 3.0 0.5
(3) 57 3.2 0.4

Aié A
3.0 147
3.0 115
3.2 137
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The results for Fe + C12 are summed up in Tables IX and X,
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E. Fe + Cl2

interaction radius R = (8.51 £ 0.05) X 10_13

interaction radius R = (8.65 £ 0.05)X 10—13

interaction radius R = (8.80 + 0.05) X 10013

surface parameter S is 1.85<S < 1.98% 10_13

surface parameter S 1s 1.63 <S< 2.16X 10_13

surface parameter S is 1.76 <S8 < 2.02X%X 10_13

remarks made for Ni apply equally to this case.

and
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Table IX. Experimental results: Fe + C

12

o () /() w0, (2)/(t) s
(deg) (%) (deg) (%)
6.4 0.982 3.5 18.5 0.139 1
7.6 0.933 1 19.7 0.101 1
8.9 1.140 1 20.9 0.0734 1
10.1 1.104 1 22.1 0.0507 1
11.3 0.961 1 23.7 0.0238 1.
12.5 0.723 1 25.0 0.0183 1.
13.7 0.561 1 26.2 0.0131 2.
14.9 0.373 1 27.4 0.00885 3
16.1 0.302 1 28.6 0.00575 3.5

17.3 0.200 1
Target thickness = 1.9 £ 0.3 mg/cmz;
x = 0.145 f; n= 7.69.

E
c.

= 100.8 Mev;
m.
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Table X

Theoretical analysis: Fe + C12

IA 18 A‘eA AIS 8 A ¥ Reaction
(b)

%50 50 2.8 2.8 0.75 247 1.89
50 50 3.0 3.0 0.6 323 1.90
50 50 3.2 3.2 0.6 299 1.92
51 51 2.6 2.6 0.75 214 1.94
51 51 2.8 2.8 0.6 285 1.96
%51 51 3.0 3.0 0. 195 1.97
51 51 3.4 3.4 0.45 274 2.00
*52 52 2.8 2.8 0.6 151 2.03
3.0 3.0 0.6 171 2.05
3.2 3.2 0.45 191 2.06

*
Plotted in graph.
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Fig. 22. Angular distribution of C12 ions elastically scattered
from Fe at E;;,, = 124.5 Mev. The dots are the measured
cross sections and the solid line is the calculated cross
section with the following McIntyre model parameters.

£, Al 5 L5 VA A
(1) 50 2.8 0.75 50 2.8 247
(2) 51 3.0 0.6 51 3.0 195

(3) 52 2.8 0.6 52 2.8 151
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F. A+ Cl2

The cross sections in Table XI are relative cross sections.
In this case only a small part of the initial rise could be measured,
therefore no fits with the McIntyre model are given since many com-
binations of parameters can be found that will reproduce just the

slope of the fall-off from Rutherford scattering.
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Table XI

Experimental results: A + C12

6 c.m. (—2—3) <§—g—> Error
(deg) R (%)

5.6 .23 3

6.9 7.13 1 /
8.2 5.98 1.5

9.5 4.46 1.5
10.8 o317 1.5
12.1 2.00 1.5
13.4 1.45 1.5
14.7 1.01 2
16.0 0.719 2.5
17.3 0.482 2

18.6 0.350 3
21.1 0.184 4.5
22.4 0.125 4.5
Target thickness varies with angle;

x=0.173 X102 cm; n =5.91

E
c.m

75.4 Mev;
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IV. DISCUSSION OF RESULTS

Heavy-i1on elastic scattering experiments were first done with
27-Mev N14 ions by Reynolds and Zucker. 3% Halbert and Zucker later
carried out similar experiments.35' 36, 37 Goldberg and Reynold538
bombarded Aul97 with Cl2 jons of different energies, and Kerlee and
others scattered Clz, N14, 016, and Ne20 from Aul97 and Bi209 (see
Ref. 39), using photographic detection of the scattered partiéles. The
authors obtained reasonable fits with the Blair model. Similar experi-
ments with 016 ions on several targets have been made by McIntyre
et al.,40 using detection in Csl scintillation counters. All these
results follow the same trend as the angular distributions found in
the present work. In our experiments emphasis has been given to measur-
ing the angular distributions with 1% statistics, in order to bring out
the details in the,structure. Blair’'s semiclassical sharp-cutoff model
for elastic scattering can reproduce the small-angle part of the ex-
perimental angular distributions, but for larger angles the Blair model
gives strong oscillations because of the sharp-cutoff at the classical
distance of closest approach of the two nuclei. In elastic a-scattering
experiments 1t has been found3 that these large oscillations start at
angles where (T/OI{z 1/n. As has been pointed out in Sec. I, the
sharp-cutoff model is expected to be better for heavy ions than for
a particles, because for heavy ions the scattering is "more classical".
These experiments show, however, that (U/QTR) calculated starts deviat-
ing ‘already for angles where UT/GI{) measured > 1/n (see Fig. 3). In
the region of small angles, the sharp-cutoff model cannot account for
the details in the structure around (T/UR-= 1; in particular the
initial rise in the Blair model decreases continuously with decreasing
Z of the target, whereas in our experiments the rise does not vary with
Z in any regular way.

In the McIntyre model, the sharp-cutoff is replaced by a smooth
decrease over many { waves; and a smoothly varying real phase shift 61
is introduced, in addition to the Coulomb phase shift (see Sec. I).
Figures 15-22 show that very good agreement can be obtained between
this model and the experiments.

All important features of the experimental angular distributions
can be reproduced by using only three of the five available para-
meters, making £A = !6 and iA =‘A£5. The large initial rise for Aglo7
and In can be fitted by making 52 large. In most caseslﬁﬂA >2; for

,AIA < 2 strong oscillations appear again, although at larger angles
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than in the sharp-cutoff model. By varying all five parameters inde-
pendently, refinements in the fits can be made such that in some cases
all calculated cross sections fall inside the statistical errors of the
measured cross sections. :

The results derived from the analysis are tabulated in Table
XIT. Column 1 gives the interaction radius obtained by averaging the
radi1 derived from all the possible IA values. The error indicated
1s the maximum error.

Column 3 gives the surface parameter obtained in the analogous
way as Column 1.

Ry in Column 2 is the same in all cases except for Ni. The R,
value agrees very well with the value 1.46x10 " 13cm derived with the
sharp-cutoff by Kerlee, Goldberg, and Reynold539 for the scattering of

C12, Nl4, 016, and Ne20 from Aul97 and Bi209.
| The large deviation of Ry for Ni may be explained by the fact
that no distinction in goodness of fit for four IAkvalues could be made
which causes the error in this case to be rather large.

The surface parameter S is roughly the same in all cases.
McIntyre compared the elastic scattering of F19 from Tb with 016 from
pp208 having a diffuse and a sharp boundary respectively.16’ 19 He
found that the surface parameter for the Tb+F system is about twice
that for the Pb+0 system., From all these results one can conclude
that the McIntyre analysis of elastic scattering data is a good probe
for measuring the surface region of nuclei, giving large surface para-
meters for "diffuse systems" (Tb + F) and smaller, constant surface
parameters for other systems. The total reaction cross sections com-
piled in Column 4 are obtained by averaging the values in the tables.
The errors include all the possible values of the tables.

The reaction cross sections agree very well with the formula
. 2 ‘
og T (R+N) {I-V(R+)\)/EJ

given by Blatt and Weisskopf,41 where

VIR+N) = 2, 2, /R + 1),

which is not surprising, since in the derivation of this formula essen-

tially the same assumptions are made as in the Blair model.
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Table XII

Results derived from MclIntyre analysis

R
Ta  11.57 +0.14
In 10.30 £ 0,12
Ag!®7 1015 2 0.12
Ni 9.32 % 0.30
Fe  8.65+ 0.20

R

- A11/3+ A21/3 S O-R(es)ction
1.45 £ 0.02 1.63 + 0.40 2.43 = 0.03
1.44 + 0.02 1.19 £ 0.18  2.20 + 0.05
1.44:&0.02.' 1.36 +0.22  2.23 + 0.07
1.51 % 0.05 1.94 £ 0.22 2.29 +0.15
1.42 + 0.03 1.89 £ 0.26 2.14 % 0.10




-65-

V. THE RAINBOW MODEL

é@

Our elastic scattering data for Ni, Ag107, In, and Ta have
. recently been analyzed with the Ford Wheeler rainbow model,42 by M. V.
- Goldman at the Oak Ridge National Laboratory.43 Only a very brief
description of this semiclassical model 1is given here because very
good exposes are available in the literature,42’ 44
The classical, qualitative behavior of the scattering angle
as a function of angular momentum £, the "deflection function," 1is
shown in Fig. 23. When the classical impact parameter is large, corres-
ponding to large £, the deflection function is small (see also Fig. 1);
it follows the classical repulsive Coulomb deflection function until
the impact parameter becomes small enough for the projectile to be
attracted by the nuclear forces. Consequently, a maximum GR_in the
deflection function will occur at ﬂRf (In geometrical optics, an
extremum in the deflection function gives rise to a rainbow. 4%) For
impact. parameters such that £ < ls the particlé is fully absorbed,
which corresponds classically to spiraling inside the nucleus.
Starting from the quantum-mechanical equation for the scattering

amplitude,

X Zial
f(6) = 5T (2£+1) (e - 1) Pl(cose),

£=0

one can calculate the cross section for elastic scattering by making
the following approximations :
(a) the phase shifts O; are evaluated by the WKB method;

(b) the asymptotic form for the Legendre polynomials is used;

and
(¢) the summation is replaced by an integration.
I1f, furthermore, the deflection function in the neighborhood

of g 1s approximated by

2

: - 6(4) = 0 -q(t-15)°,

R

the cross section divided by the Rutherford cross section becomes
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MU-23535

Fig. 23. Classical deflection function vs angular momentum
without absorption (from Ref. 43).
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L2 1
_9__ ) 2 sin ‘2—' GR . Al(x)
[ n ql2/3 ’
h
where and Ai (x) is the

x=q7/3 (o - o),

Airy integral. Here, q and g are used as free parameters, in order

to fit measured angular distributions.
. A nuclear radius can be defined as the distance of closest

approach for Coulomb scattering at the angle OR' So with Eq. (1.2)

one gets

R = (Zl Z\2 62/2E> /< 1 + cosec lZGIR>

The distance corresponding to Af = iR‘_ ls can be regarded
1s not known,

as a refractive nonaborptive surface region. Since ls :
one takes Al = '€~R - 10, and the surface region is AR = .ék.g , where
k is the wave number. -

.Goldman’ s rainbow-model fits to our data are shown in Fig. 24,
together with the parameters and the derived values for rg = R/Al/3,
and AR. One sees that the fits are good for angles 93>9R_but fail at
smaller angles. The ry values are only slightly larger than the values
in Table XII, but AR is larger than the surface parameters S found in
Sec. III. This is of course not surprising, because the surface regions

in the two models are defined in different ways. In the rainbow model

no ‘absorption is assumed for £ larger than fg.
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Fig. 24. Rainbow model fits for C12 elastically scattered

from Ni, Ag

107

, In, and Ta (from Ref. 43).
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VI. COMPARISON OF THE MCINTYRE AND OPTICAL MODELS

The optical model describes the nucleus by a complex potential
where the imaginary part allows for absorption of incident particles
by the nucleus. The wave function of the nucleus-particle system is
calculated by solving (numerically) the Schrodinger equation and, com-
bined with boundary conditions, complex phase shifts are calculated.
The elastic scattering cross section can then be found with a formula
analogous to Eq. (1.11).

The optical model was introduced to describe neutron reaction

46, A7, 48
51, 52

cross sections and was later adapted to proton scattering,

49, 50

a-particle scattering, and recently to heavy-ion scattering.
The potential used for charged-particle scattering has the general

form

<V0 +i w0>/ {1 + exp[(r - R)/d]} +Voour T Veontr
where Vj is the depth of the real part of the optical potential; W,
is the depth of the imaginary part of the optical potential; r is the
distance to the center of the nucleus; R is the radius of the nucleus
(this definition need not necessarily give the same quantity as the
definition in earlier sections); d defines the surface thickness;

Veoul 1s the Coulomb potential; and V 1s the centrifugal potential.

centr

A potential of this form has been very successful in describing
the scattering of protons and a particles, and moderately successful
for the few heavy-ion experiments that have been analyzed.

The independent parameters used in the optical model to fit the
experimental data are V3, Wy, R, and d, respectively a measure for
the strength of the nuclear potential, the strength of the absorption,
the nuclear radius, and the diffuseness of the surface.

It has been shown in Sec. IV that the McIntyre model is capable
of giving the analogous information on the nucleus-projectile system,
by inserting parameters directly in the phase shifts instead of in the
potentiél. It seems therefore of interest to compare the two models
in some detail. For this purpose we analyzed with the McIntyre model
the existing elastic-scattering data of 18-Mev alpha particles from
A, 3 40-Mev alpha particles from Cu,s4 and 48-Mev alpha particles
from Pb,14vwhich have préviously been analyzed with an optical model
595 N14

by Igo, and the elastic scattering of 27-Mev ions from Be and
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cl2 by Halbert and Zucker,35’ 36 which have been analyzed with the
optical model by Drisko and Bassel. 22 Figures 25 through 29 show
the fits to experimental data with the McIntyre model, together with
the optical-model fits. 1In all cases the fits are comparable; in some
cases one model gives a better agreement than the other, depending
to some extent on what feature of the curve is regarded as most sign-
1ficant.

The parameters for the two models are compiled in Table XIII,
together with the analyses of 40-Mev alpha particles on Ag from Cheston
and Glassgold49 and McIntyre et al.15 Tt is not surprising that the
values for the radii and the surface regions are not the same in both
models, since they are differently defined. Since the cross section
in both models 1is calculated from the phase shifts, we plotted in
Fig. 30 the real part of the nuclear phase shift and the absorption
factors°® T} =1 - l exp [ 2i 51] F as a function of £ for the elastic
scattering of alpha particles from Pb according to the McIntyre and
optical models. 97

The absorption coefficients are nearly identical for the two
models. For £ values larger than about 20 the real phase shifts are
also 1dentical, but for smaller £'s they are dramatically different.
Since the absorption curve shows that the partial waves for £ < 13 are
completely absorbed, one may say that the real phase shift fo. these
partial waves 1s rrrelevant to the elastic scattering cross section.

In order to test this contention, angular distributions were
calculated with the McIntyre model for alpha particles scattered from
Cu, arbitrarily setting the real part of 52 equal to zero for £ values
ranging from 1 to 20. Figure 31 shows the results of these calcula-
tions. The cross sections.are not affected at all by cutting off Re 6£
for £ up to 13; cutting it off for 14 £'s brings a small change in the

cross section, but not until £ values are cut off, for which T, <1, 1is

the angular distribution seriously distorted. !

These results provide a support for the semiclassical arguments
that small £ waves are completely absorbed and that the main contri-
bution to the shape of the angular distribution comes from the surface

region, where the curves in Fig. 30 coincide.
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. 25. (A) The solid line is the optical-model fit to the

elastic scattering of a's from A (Ref. 55). Parameters

are V=100, W =-15 R = 1.17A1/3 +1.36, d = 0.6.

The points give the experimental values.

(B) The solid line gives the McIntyre model fit to
the same data with the parameters {p = 7.5, AL p= 0.6,
6=1.2, 15 = 6.5, Alg =0.5.
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Fig. 26. (A) Same as 25(A) for a's scattered from Cu (Ref, 55),
The parameters are Vg = - 49.3, W, = - 11, R = 1.14A1/3 472,24,
d =0.5. .
(B) Same as 25B (Ref. 55). The parameters are.
Ly,=17, A2y =08, 0=0.7, £5=17, ALs=1.0.



~73-.

0.

ala

0.01

0.00t1

0.000l1

0.00001 |—

1 1 1 1 1 1 1 ! J
20 40 60 80 100 120 140 160 180

Hc.m. MUB-661

Fig. 27. (A) Same as 25A for a's scattered from Pb (Ref, 55).
The parameters are Vg = - 25, WO = -15, R = 1,,13A1 342.0
d =0.6.
' (B) Same as 25B. The parameters are £, =21,

Ay =1.3, 6=0.2, L5 =23, Mg=1.4.
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Fig. 28. (A) Same as 25A for N14 scattered from Be (Ref. 52).
The parameters are Vi, =-50, Wy =-16, R = 1.23A1/3
b =1.125, d = 0.65.
(B) Same as 25 B. The parameters are ﬁA = 1.5,

AﬂA=o.8, b =0.8, 16=6.5, Als =0.3.
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Fig. 29. (A) Same as 25A for N14 scattered from C. Thle/3
: parameters are VO = - 48, Wo = -5.75, R = 1.275A )
- d =0.575.
(B) Same as 25B. The parameters are { 5 = 8.2,

A, =1.4, §=0.9, I5=73, Mg=0.2.

A



Table XIII

Comparison of the MclIntyre and optical models

Mclntyre Model

Optical Model

L, 'A!A 3 15
A+ Het 75 06 12 6.5
Cu + He? 17 0.8 0.7 17
Pb + Het 21 13 0.2 23
3pg + He 19 1 03 19
Be + N'% 75 0.8 0.8 6.5
c +n'* 82 14 09 73

N s Ry o, () Vo W }}3 41";‘1 f*loa
10_13(:m 10-13 cm 10 cm 10 cm 10 cm O‘R (b) opt
0.5 1.45 1.33 0.83 -100 -15 1.17a173 11 36 2.6 1.44 1.34 1.60
1.0 1.32 1.42 1.55 - 493 -1l 1,14A1/3 +2.24 2.2 1.54 1.72 1.37
1.4 1.80 1.35 1.85 - 25 -15 1.13A1/3 +2.0 2.6 1.45 1.89 2.00
1.6 1.76 1.46 - 50 -20 7.5 2.6 1.18 1.52
b /3.,
0.3 1.89 1.60 0.89 - 50 -16 1.23A7/7;b=1.125 (2.86) 1.23
0.2 2.73 1.58 0.86 - 48 - 5.75 1.275A1/3 2.53 1.275

2From Refs. 15 and 49.

b In this case, the imaginary potential has a

®For explanation, see page 79 .

Gaussian shape, and b is the standard deviation (see Ref. 52 ).

_.9L_
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Fig. 30. (A) The real part of the phase shifts is plotted as a
function of £ for the optical model (8) and the McIntyre model
(o), for a's scattered from Pb. 2i6e (2
(B) The absorption factor Ty = 1- le e is plotted
as a function of £ for the optical model (@ ) and the MclIntyre
model (a), for a's scattered from Pb. '
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Fig. 31. (A) The absorption factor Ty is plotted as a function of
£ for the Mclntyre model, for a's scattered from Cu.
(B) The solid line2 gives the cross section calculated
with the McIntyre model with the parameters £, =17,
oy =08,8=07L5=17, Mg=1.0.

S

Line b gives the same calculation, making 51 =0 for £ < 14;
Line c¢ gives the same calculation, making 51 =0 forf < 15;
Line d gives the same calculation, making 0y = 0 for £ < 16.
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55

The same effect was found by Igo, who noticed that in his
optical-model analyses all the different potentials that give a good
fit to the experimental data coincide at the surface of the nucleus.
In the optical-model computation it is therefore not necessary to start
the integration of the Schrodinger equation at the center of the nu-
cleus. The present results, moreover, show that it 1s not necessary to
integrate for £ waves below £ for which T2 # 1; this 1s a great advan-
tage, especially in heavy-ion scattering analysis.

From the absorption factors, computed with the optical model,
one can now calculate the surface region in a manner which 1s more
consistent with the way the surface region was defined in Sec. I as

follows:sopt = AL/k, where AL is the range over which the value of

lexp {éi 61}1 changes from 0.9 to 0.1, and k is the wave number. The

values for the surface region calculated this way are shown in column

15 of Table 13.
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APPENDICES

Appendix A. Derivation of Scattering Cross Section Formulas

The general formula for elastic scattering cross section 1is:

o(8) = |[€HO ] . | (A.1)

In expansion of partial waves:

o0
fe—"‘221 1) P 0 (2]
(0)= F & (2441) (np-1) Py (cos0).
For Coulomb scattering.
n1=e2101; 0£=arg I (1+4£+in) (A.3)
The Coulomb scattering amplitude can also be calculated exactly:
. .20, . .
xn - inln(sin 7)+ in+2i0 (A.4)
£ (6) = e 0.
c
2 si 20
sin >
1. Derivation of Equation (1.11)
In the McIntyre model,
2i (0'1 + 61) . (A.5)

'ql:Aﬁe

> 2i{o ,+68,)
£(0) = % IZO (22+1) (A, e L8 4 P, (cos 6);
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‘ - 2ic '
£(6)= 3 Z (22+1) (¢ '-1) P, (cos )

N had 2i0, 218,
+r Z (22+1) e (AI e -1) Pl (cos 0).

(A.6)

Using (A.2), (A.3), and (A.4):

_inln(sin®d) + 2ic
£(6) = _2_&_ _ n o . 2 0
> A

sin 5
x o« 2ic, 25,
t ;;0 (22+1) e P,(cos 6)(A, e -1);
' 2ig
2 X 0
o(6) = |€6)[" = I |e X
20 o
-inln(sin” 5-) 2i(o ,-0,) 218 2
2
{ nz e + i Z (24+1) e £ -0 (Al e Je—l)Pﬂ(cosG)}I .
sin -2— 1’—'0 ’
Total Coulomb cross section ' RZ nZ
o (6) = — 20
sin” =
2
(A.7)
. 20 .28 o .
-inln sin = sin < 2i(o ,-0,) 216 2
o(8) _ _; 24 2 ) at1)e 4 Y(1-a,e HP (cos0)]

- lie
0016;‘ - n 120
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= I i cos(nln sinzg ) + sin (n In sinzze)

6 )
sin"2
+ — ggo (24+1) cos2(01—00) Pl (cos 8)
0 )
sin~ 2
+ — S (24+1) Al 0052(0'1-00 + 61) Plcos 0)
2 8 =
isin~ 2 )
+ — zgo (2£+1) sin 2 (0O 2—00) P£
_i sinzg_ i 2
+ — <o (24+1) Ag s1n2(0£—0'0+5£) P£ {(cos 6)] .
. 20
0'(6) 6 51n2-

m) = {COS (n In 51n2-2—) +

C

o0

2
Z (24+1) |sin 2(0) -0,) -A, sin2 (0 ,-0 ,+8 )]P(cose)} +
o [ 27%" "y 27707 1

>0

sin“Z2

20
+ {sin(n Insin™2) +

S 2
120 (21+1){c0s2( 01-0'0) —Aﬂcos2(cr£ -0'0+6£)} Pz(cos 6)} .

(A.8)
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In the Blair sharp-cutoff model,

) 21(014-61)
Ny = Al e
where
Al =0, for 1<
Al = 0, for 2>0,; (A.9)
61 = 0, for all £ ;

Substituting (A.9) in (A.8) gives formula (1.9) of the text.
For the Coulomb phase shifts the following relation was used:
= arg I' (1 + £ +in).

£
_ n
01—0'0+kZ=1 arctanE- =



-84-

PROGRAM FUZZED — BY JeALSTER (4601-50)
Z7= CHARGE OF TARGET
2P= CHARGE OF PROJECTILE
T= CeQOeMe ENERGY
TARGET= MASS OF TARGET
PROJEC= MASS OF PROJECTILE
TETAIN= FIRST ANGLE TO BE CALCULATED
NFIN= NUMBER OF ANGLES
NFIN= NUMBER OF ANGLES
DTETA= ANGLE INCREMENT
EXPER(N)= EXPERIMENTAL CROSS SECTION
CRIT= MAXIMUM OF SuUM OF DEVIATIONS

ELLAI = FIRST L-SUB-A VALUE
DELLA = INCREMENT IN L-SUB-A
KFIN = NUMBER OF L-SUB-A VALUES

DLTLAI= FIRST DELTA-L-SUB-A VALUE
DOLTLA= ANALOGOUS TO DELLA
IFIN = ANALOGOUS TO KFIN
DELTA+= FIRST DELTA VALUE
DDELTA= ANALOGOUS TO DELLA
JFIN = ANALOGOUS TO KFIN
ELDLTI= FIRST L-SUB-DELTA VALUE
DLDELT= ANALOGOUS TO DELLA
MAFIN = ANALOGOUS TO KFIN
DLTDLI= FIRST DELTA-L-SUB-DELTA VALUE
DDLTOL= ANALOGOUS TO DELLA
MBFIN = ANALOGOUS TO KFIN
DIMENSION A(250)sTERMI{250) sSIGMA(250)sDSUB(250) 9SINTER(250) »COSTER
X(250)9POL(250)sT1T(250)sT2T(250)+ELLA(L10) sDELTLA(10)»DELTA(10)9ELD
XELT(10) 9DELTDL(10)sTETAR(180) sRUTHER(180) +CROSEC(180)»DIFSQ(180)s
XEXPER(180) sABSCRS{180) sNTETA(180) sMROS(180) sMEXP{180) »AAA(250)
READ 3009ZTeZPsTsTARGET9sPROJECHTETAINSNFINSDTETA
DO 1025 N=1sNFIN
READ 3064EXPER(N)
READ 3024CRITsMODE
READ3OI1sELLATSDELLASKFIN
READ301sDLTLAT+DDLTLASIFIN
READ301¢DELTAIsDDELTASJFIN
IF(SENSE SWITCH2114+30
"READ301sELDLTIsDLDELT #MAFIN
READ301sDLTDLISDDLTDL sMBFIN
TARMAS=0416598E-23%#TARGET
PROMAS=0e16598E~23%PROJEC
E=0e1602E-05%T
220E=(2T#2ZP/T)#%#2%0.001298
REDMAS= ( TARMAS#PROMAS) / { TARMAS+PROMAS))
VELOC=SQRTF(2+*E/REDMAS)
CLASSP=(2T#2ZP%0+21877E+09)/VELOC
BROG=04105443E-26/(REDMAS*VELOC)
WRITE OUTPUT TAPE 5931092Ts2ZPs T+ TARGET»PROJECSBROGsCLASSP
TERM(1)=0.
DO 43 L=2+200
ELL=L-1
TERM(L)=ATANF(CLASSP/ELL)
SIGMA(1)=TERM(1)
DO 52 L=1s199
SIGMA(L+1)=SIGMA(L)}+TERM{L+1)
ELLA(1)=ELLAI
DELTLA(1)=DLTLAI
DELTA(1)=DELTAL
IF(SENSE SWITCH2)63,70
ELDELT(1)=ELDLTI
DELTDL(1)=DLTDLI
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D0260 K=1sKFIN
ELLA(K+L)=ELLA(K)I+DELLA

D0260 I=1sIFIN
AB=0,
DELTLA(I+1)=DELTLA(I)+DDLTLA
DO 90 L=1+250

ELL=L~1

AlL)=1e/(1e+EXPF({ (ELLA(K)=ELL) /DELTLA(I)))
AAA(L)=(2e*ELL+1e ) ¥ (le-A({L)*¥2)
AB=AB+AAA(L)
IF(A(L)=e9999190990+91
CONTINUE
LFIN=ELL+1.00001
DAB=3,14159#BROG*#2%AB
D0260 J=19JFIN
DELTA(J+1)=DELTA(J)+DDELTA
IF{SENSE SWITCH2110G,1097
MAFIN=1

ELD ELT(1)=0,
DLDELT=0.
MBFIN=1

DELTDL(1)=0e
DDLTDOL=0.

D0260 MA=1sMAFIN
ELDELT(MA+1)=ELDELT(MA)+DLDELT
D0260 MB=1sMBFIN
DELTDL(MB+1)=DELTDL(MB)+DDLTDL
DO 1149 L=1sLFIN

ELL=L-1

IF(SENSE SWITCH2)144451145

DSUB{L)=DELTA(J)/(1e+EXPF((ELL-ELDELT(MA))/DELWDL(MB) )

GO TO 1149

DSUB(L)=DELTA(J)/(1e+EXPF{(ELL=ELLA(K)}/DELTLA(L)))

CONTINUE
DO156 L=1sLFIN
AA=2%L~]

SINTER(L)I=AAX* (SINF(24%*SIGMA{L) )~A{L)I*SINF(2+*SIGMA (L )+24*DSUB(L)))
COSTER(L)=AA¥* (COSF(2e*SIGMA(L) ) =A(L)*COSF(2e*SIGMA{L)+24%DSUB(L)))

IF(SENSE SWITCH 3)1157,160

WRITE OUTPUT TAPE 4+3109ZT+ZPsTeTARGETsPROJECHBROGCLASSP

IF(SENSE SWITCH 2)1159,1160

WRITE. OUTPUT TAPE 4+315sELLA(K) sDELTLA(I) »DELTA(J) sELDELT(MA)»
XDELTDL(MB)sLFIN

GO TO 1161

WRITE OUTPUT TAPE 4s315sELLA(K)»DELTLA{I) 9DELTA{J) sELLAIK)
XDELTLA(I)}sLFIN

WRITE OUTPUT TAPE 44328
DO 159 L=1sLFIN
ELL=L-1

WRITE OUTPUT TAPE 4s329sELLsA(L) sAAA(L)sSIGMA(L)DSUBIL)

TETAR(1)=0,01745%TETAIN

DEVSQ=04

00230 N=1sNFIN
TETAR(N+1)=TETAR(N)+0401745 *DTETA
NTETA(N)=57431#TETAR(N)
X=COSF(TETAR(N))

POL(1)=PLGNF (X)

DO 178 L=2sLFIN

POL (L) =PLGMF (X)
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C=(SINF(TETAR(N}/24¢}) ) %%2
CC=CLASSP*LOGF(C)
C0SCC=COSF(CO)

SINCC=SINF{CC)

CSQ=C*%2

RUTHER(N)=ZZ0OE/CSQ

SINSUM=0,

COSSUM=04

D0205 L=1sLFIN
TIT(L}=SINTER(L}*POL(L)
T2T(L)=COSTER(L)#POL(L)
SINSUM=SINSUM+T1T (L}
COSSUM=COSSUM+T2T(L)
CROSS1=COSCC+C#SINSUM/CLASSP
CROSS2=SINCC+C#COSSUM/CLASSP
CROSEC(N)=CROSS1¥%#2+CROSS2#%#2
ABSCRS(N)=RUTHER(N)*CROSEC(N)
DIFSQ(N)=SQRTF(( (CROSEC(N)~EXPER{N}}/EXPER(N))*%2)%100.
DEVSQ=DEVSQ+DIFSQ(N)

IF{DEVSQ-CRIT)244+24491231

IF{SENSE SWITCH2)240,1241

WRITE OUTPUT TAPE 59315sELLA(K) sDELTLA(I) oDELTA(J) sELDELT(MA)»

XDELTDL(MB)sLFIN

GO TO 242
WRITE QUTPUT TAPE 59315+ELLA(K) sDELTLA(I) #DELTA(J) sELLA(K)

XDELTLA(I)sLFIN

WRITE OUTPUT TAPE 593169DEVSQsCRITDAR

GO TO 26C

IF(SENSE SWITCH1)245+6000

WRITE OUTPUT TAPE 593109ZT»ZPy Ty TARGET»PROJECs BROGCLASSP
IF(SENSE SWITCH2)1246+1247

WRITE OUTPUT TAPE 5+3159ELLA(K)sDELTLA(I) #+DELTA(J) »ELDELT(MA)

XDELTDL(MBI)LFIN

GO TO 3246
WRITE OUTPUT TAPE 59315sELLA(IK)sDELTLA(I) oDELTA(J)ISELLA(K]

XDELTLA(I)sLFIN

WRITE OUTPUT TAPE 5+316sDEVSQsCRITsDAS

WRITE OUTPUT TAPE 55319

DO250 N=1sNFIN _

WRITE OUTPUT TAPE 59320sNTETA{N) sCROSEC(N) sRUTHER(N) »ABSCRS(N)
WRITE OUTPUT TARE 5,321

IF(SENSE SWITCH 6150009260

WRITE OUTPUT TAPE 3»3109ZTs2P, s TARGETsPROJECBROG»CLASSP
IF(SENSE SWITCH 23500155002

WRITE OUTPUT TAPE 35315sELLA{K)sDELTLA(T) oDELTA{J) sELDELT(MA)»

XDELTDL(MB)»LFIN

WRITE OUTPUT TAPE 3+316+DEVSQsCRITsDAR
GO TO 5004
WRITE OUTPUT TAPE 3+3159ELLAIK) sDELTLA(I) sDELTA(J) »ELLA(K)

XDELTLA(TI}HLFIN

WRITE OUTPUT TAPE 3+9316+sDEVSQsCRIT»DAR

WRITE OUTPUT TAPE 345025

DO 5010 N=1sNFIN

MROS{N)=2B8¢9504#LOGF (100e%* CROSECI(NI} +30s
MEXP(N)=28+49504*%LOGF (100s% EXPER(N)) +30,
WRITE OUTPUT TAPE 395030sCROSECIN)INTETAIN)
CALLGRAPH(MROS(N) 939 1H3*)
CALLGRAPH(MEXP(N) 939 1H+}

WRITE OUTPUT TAPE 35025
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5020 FORMAT(17Xe2H [918Xe2H Is18Xe2H 1918Xs2H 1+18Xe2H I918Xe2H' 1 )
5025 FORMAT(120H CROSEC ANGLE I N N R

x....‘....;............'...'.........'.......‘..................0.,
5030 FORMAT(F11lse791593H +399X92H & )

260 CONTINUE

270 'IF(MODE-1)275+1016+10

275 ENDFILES

276 REWIND 5

IF(SENSE SWITCH 612774278

277 END FILE 3

REWIND 3
278 IF{SENSE SWITCH 3)279+350
279 END FILE 4

REWIND 4

300 FORMAT(2F54193F9e49sF6e19149F5,1)

301 FORMAT(F7e29F642913)

302 FORMAT(F9e0912)

3C6 FORMAT(F1047)

310 FORMAT({6H1 ZT=F6els7H ZP=F6e145H E=F13e5911H TARMAS=F13,45
X910H PROMAS=F1345/17H DEBROGLIE/2PI=E13e594H CMe95X9e9H CLASSP
X=Flle& /7)

315 FORMAT( 8H ELLA=F6el410H DELTLA=FT743y 9H DELTA=FT743
X10H ELDELT=F6els10H DELTDL=FT743s 9H LFIN=14)

316 FORMAT(28H SUM SQUARE OF CROSEC~EXPER=F10e0+7H CRIT=F10e0932H
XTOTAL REACTION CROSSSECTION=EL1245,6H CM*%2 /7)

319 FORMAT(118H THETA IN DEGREES CROSS~SECTION
X RUTHERFORD IN BARNS ABSOLUTE CROSS—-SECTION IN BARNS

320 FORMAT(I10+3E35.7)

321 FORMAT({1HL)

325 FORMAT(I4)

328 FORMAT(7Xs3H L 911Xs9H A(L) s18H (2L+1)(1-A(L)I%¥%2)411Xs9H SIGMA
X{L)s1l1Xs8H DSUBIL) /7)

329 FORMAT(F1040+4E2046)

350 STOP

400 END(Os1909091)
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