UC Berkeley
SEMM Reports Series

Title
Plate Bending Elements with Discrete Constraints: New Triangular Elements

Permalink
bttgs:ééescholarshiQ.orgéucéitemélchnOwg
Authors

Zienkiewicz, O.
Taylor, Robert
Papadopoulos, Panayiotis

Publication Date
1989-03-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1kc5n0w2
https://escholarship.org/uc/item/1kc5n0w2#author
https://escholarship.org
http://www.cdlib.org/

REPORT NO. STRUCTURAL ENGINEERING,
UCB/SEMM-89/09 MECHANICS AND MATERIALS

PLATE BENDING ELEMENTS
WITH DISCRETE CONSTRAINTS:
NEW TRIANGULAR ELEMENTS

by

0. C. ZIENKIEWICZ, R. L. TAYLOR,
P. PAPADOPOULOS and E. ONATE

MARCH 1989 DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA AT BERKELEY
BERKELEY, CALIFORNIA :




PLATE BENDING ELEMENTS WITH DISCRETE CONSTRAINTS:
NEW TRIANGULAR ELEMENTS

0. C. Zienkiewicz 1, R. L. Taylor 2,
P. Papadopoulos % and E. Onate 3

ABSTRACT

: In recent years a series of elements based on Reissner-Mindlin assumptions and using discrete

(collocation type) constraints have been introduced. These elements have proved to be very effective
- but their relation to straight-forward mixed appraximations was not clear. In this paper this rela-
tionship is discussed and the reasons for their success explained. This allows new and effective tri-
angular elements to be developed.

The presentation shows the close relationships with the DKT (Discrete Kirchhoff Theory) ele-
ment previously available only for thin plates and allows extension of their applications.

1. Introduction

The problem of plate bending was one of the first tackled by the finite element method in the
early sixties and yet today is still subject to much research, designed to improve the performance of
bending elements. The subject is of much importance in structural engineering and satisfactory solu-
tions of plate bending behavior form a necessary prerequisite for the analysis of shells.

The original approaches invariably utilized the thin plate, Kirchhoff, theory used in a direct
(irreducible) manner and immediately encountered the difficulties of imposing the C! continuity of
shape functions necessary for the finite element formulation. Later work approached plates directly
as an approximation to three dimensional analysis [1,2], or, which is equivalent, by the use of the
Reissner [30] - Mindlin [22], rhick plate, theory. This by-passed the difficulties caused by the C?
requirement but introduced its own problems immediately. In particular locking behavior was
observed as the thickness was reduced and various artifices had to be used to eliminate such effects.
The most successful of these was the introduction of reduced or selective integration procedures
[18,21,26,27,42]. However, even this was not generally sufficient and almost all elements of that
type proved non-robust, failing under diverse circumstances. Other approaches have also been pro-
posed, including use of incdnpatible modes in the description of the transverse shear strain [25].
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E.T.S. Ingenieros de Caminos, Canales, y Puertos, Universidad Politécnica de Cataluha, Barcelona, Spain
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The thick plate theory can of course be used as a basis for a mixed finite element approxima-
tion if shear forces and displacements are appraximated independently. Indeed, the realization of
this led Malkus and Hughes [21] to demonstrate the equivalence of selective integration with a penal-
ized version of the mixed form. More recently a fuller analysis [40] of the mixed formulation which
is, of course, valid for both ’thick’ and ’thin’ plates indicated why the failure of *thick’ forms occurs
frequently in practice. Indeed, this analysis showed how successful elements could be developed and
the first fully robust element based on the direct Reissner-Mindlin approach was introduced only very
recently [41].

Since 1981, however, a very successful approach to the formulation of elements based on the
’thick’ theory was developed using smoothed shear strain fields and concentrated, discrete, constraints
[6,14-16,19]. The relationship of this approach to direct, mixed, appraximation was however not
clear (at least to the present authors) and in particular it was not evident why such elements should
be exempt from the various convergence criteria given in reference 40. In this paper we shall
attempt to
(a) present a comprehensive explanation of various mixed and direct approximations, and
(b) show how the procedures can be applied to development of new plate elements generally - and

to a triangle in particular.

While the proponents of the thick plate, Mindlin-Reissner, approach were overcoming the diffi-
culties mentioned above, those approaching the formulation via the Kirchhoff theory successfully
avoided the C! continuity requirements, by imposing the Kirchhoff constraints in a *discrete manner’
(often referred to as a Discrete Kirchhoff Theory). The concepts were first introduced as early as
1968 [36] by Wempner et. al., but the development of successful elements by this procedure has been
continuous up to the present date. References 5, 7-10, 12, 13, 24, 32, 39 list some of the salient
stages of this story. It is evident that this direction of progress, which we shall term DKT for short,
must be related to the full mixed formulation with discrete constraints and we shall discuss this rela-
tionship here. This proves indeed to be correct and hence a more unified view of the plate problems

can now emerge.
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Before proceeding with the main topic of the paper we would like to point out to the reader
that the fields of applicability of thick and thin plate approximations are by no means always obvious.
Very recently Babuska and Scapolla [4] showed how in an apparently very thin plate (thickness/span
equal 0.01), errors of circa 5% in displacements can occur between the true behavior and that
predicted on the basis of Kirchhoff hypotheses. For this reason the approaches based a priori on
thick plate equations, but which are capable of representing thin forms, are optimal. It is with such

methods that we are here concerned.

2. The background theory

The thick, Reissner-Mindlin, theory of plates introduces two assumptions which are physically
plausible when the thickness is small compared to other dimensions.

o The first assumption is that the normals to the mid-surface of the plate before deformation

remain straight after deformation (but do not necessarily remain normal to it).
° The second assumption is that the stresses normal to the mid-plane direction (and indeed their
effects) remain negligible.
With these assumptions it is »possible to describe all displacements in the plate by the
knowledge of the rotations and displacements of the mid-plane of the plate.
We can thus write

u =1z08,(x,y) ; v =2z68(x,y) ; w =w(x,y) (1)
where 6, ,8, and w are dependent only on the two in plane coordinates x ,y, Fig. 1, and z is the

direction normal to it.
The strains in the plate are thus, for planes parallel to x ,y, given by the following

00, _ 98, _ 00, = 00,
ax sy § = 2z ’ ’ny—'z[ 3y+?] (2)

and in the vertical direction

d
Yz = [Gx + a_ v Yy = [Oy i a_;"] (3)
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Constitutive relations allow all stresses and hence stress resultants to be evaluated. For isotro-

pic, hamogeneous, elasticity we have for the bending moments defined below

] 4 1
2 2 2
M, = [o,zdz ; M, = f(ryzdz ; My = fo,yzdz 4
4
7 7 7
and the following relations
3 1v O
M=DL® ; D= —EL _|y1 o0 (5)
12(1-v?) 1—v
2

Here E and v are the elastic modulus and Poisson’s ratio, ¢ the plate thickness and

M = [MJ,,My ,M,y] (6)
GT = [ex 9ey]
The operator L follows from (2) as
g :
F7 0
_lo 2
L=]0 & )
8 9
ay Bx_

Similarly the transverse shear forces are defined by

3 z
S = [rgd: 5 S, = [1,d (8
+ +
and the constitutive relation is
S =a[0+VW] ; a = kGt C)]

Here G is the shear modulus of the material and k a factor which depends on the plate properties (a
commonly used value of k is %)'
To the above relations two equilibrium equations need to be added. The first relates the bend-

ing moments to shear forces and is simply

L"'M+S =0 (10)



The second is a statement of lateral equilibrium

ViIS+q =0 (11)
Various possibilities exist regarding the choice of variables to be retained in the final equation

system when approximation is to be made. We shall here retain w, 8, and S and write the system as

L"DLO+S = 0 (12a)
From (9),
;—s —(8+Vw) = 0 (12b)
and repeating (11)
ViIS+q =0 (12¢)

The equation system forms the basis of a mixed formulation if 8, w and S are approximated
independently. The thin plate, Kirchhoff, approximation is simply a limiting case in which o =
and (12b) is then the well known constraint

6+Vw =0 (13)
This ensures that during deformation the normals remain normal to the middle plane of the plate.

The formulation by (12) is mixed as it is possible to eliminate one of the variables, S by use of
(12b), from the system when an irreducible form is obtained. The latter is indeed the basis from
which most thick plate approximations start but as a finite value of « is needed to perform the elimi-

nation such forms are not available for the thin plate limit.3

It is generally anticipated, however, that the thin plate behavior will be appraximated to as a
becomes progressively larger and goes to infinity. However, this is not true in most finite element
approximations unless the equivalent mixed form of (12) is solvable. If it is not, singularities and/or
locking will oocur.

The equation system (12) is frequently interpreted as a minimization of total potential energy
defined as [37]

3 It is of course possible to eliminate S and 0 even if  is infinite using appropriate differentiation. This leads to
the biharmonic thin plate equations.
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I = %f(L6)YD(L0)dQ+%[STa'SdQ— [wqdQ (14a)
[v) f4) 1)

subject to the constraints given by (12b), i.e.,

i—s = (8+Vw) (14b)
This constraint, if directly eliminated at the above level, leads to a standard penalized form which we
discussed above; if the constraint is incorporated in a new functional by means of a Lagrangian multi-
plier we shall find the well known Hellinger-Reissner variational theorem, etc.

Other passibilities exist in the solution as we show in the next section.

3. The finite element approximation to the mixed form

If we wish to retain a solution capable of covering the full thick and thin range (i.e., not failing

when a = =), it is necessary to approximate all the variables and write

6 = N0 ; w=N,WwW ; S=N;S§ (15)
In the above Ny, N,, and Ny stand for the appropriate shape functions in the x , y domain, and 6, W
and § are the associated (nodal) parameters.
All possible approximations can be obtained using suitable weighting functions [39] on the
equation system (12) and the resulting equation will always be of the type

A B offe £,
B" Ha C|{S} = {5, (16)
o0 C ollw £y

In the particular case of the approximation arising via the variational principle the above equa-
tion will be symmetric but this is not always necessarily so.

In another paper (reference 40) we have shown that it is necessary, if an algebraic solution of
the system of equation (16) in the limiting case when a = o is possible, to satisfy

ng+nw = ng (17)

4 More gencral interpolation may be used. For example we could write w = N, W + N, 0 so that displace-
ments for transverse displacements involve parameters of the rotation. This is the form that the thin plate solution
uses where the transverse displacement interpolation involves nodal parameters of displacement and rotations (e.g.,
Hermite interpolations). This type of interpolation also results from application of constraints [34].
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ng = n,

where ng, n,, and ng stand for the number of variables in each set of parameters 8, W and S, respec-
tively.

The above inequalities have to be satisfied also for various element patches as a condition
which is necessary (although not always sufficient) for convergence [33,43].

In reference 40 we have examined a number of currently used elements and found that all
failed this stringent test. Indeed only the element of reference 10 and an element introduced more
recently by Amold and Falk [3] satisfy the above count requirements and indeed converge in all cir-
cumstances. In Fig. 2 we show both these elements in a single element patch test in which displace-
ments on the boundary are either fully constrained (Test C) or relaxed to a minimum restraining
only the rigid body modes (Test R). In both cases these tests are satisfactorily passed and the reader

can verify that the same occurs in larger element assemblies.

4. The discrete approximation on element boundaries

The elements developed by Bathe and Dvorkin [6,14] and Hinton and Huang [15,16] fall into
the general category we have just discussed, but use a very special shear resultant interpolation. 3

The first element of this series is a bilinear quadrilateral, or its special form the bilinear rectan-
gle illustrated in Fig. 3. Here § is specified by interpolating S, and S, components separately in the
manner shown.

If the substitution of above interpolation is made in a general formulation obtainable from the
Hellinger-Reissner variational principle (or indeed using the standard Galerkin weighting approxima-
tion) we see immediately that the fully restrained patch test on a single element fails (as indeed does
the test on element assemblies).

Now ng = 0, ns = 4 and n,, = 0 as shown in the figure noting that the parameters $ are not

restrained. Indeed the patch test will fail even more dramatically if an assembly of elements is con-

> In fact the interpolation is not for the shear resultants but for the quantity S/ = % = shear strain. Results
however will still be identical if ot is assumed constant.



sidered as shown in Fig. 4.

Difficulties can however be overcome by the use of discrete, collocation type, approximations to
equation (12b). If the equation appropriate to a particular component is satisfied at a single point of
the side (by using Dirac delta weighting) we can write for such a point as A placed in the middle of
side 1-2 of Fig. 3

1

1_
ISy: ;Sy:ey'*'—:

+ (18)
with three similar equation on other sides.

This immediately ensures that S—y is explicitly determined by the two end values of 0 and W and
that their prescription uniquely determines S‘; values. On boundaries these are therefore no longer

free parameters to be taken into account in the patch test. Now for the single element test ng = 0

and the patch count is passed.

Indeed the unique specification of 5; by the end values means at element interfaces such as
shown in Fig. 4 only a single value of .S: (or S,) is a free parameter. In that figure we show that the

patch test, though not yet completely passed, is much more closely appraximated.

The idea can of course be extended to include more variables as shown by Hinton and Huang
[15,16]. In their element, with bi-quadratic 8 and w approximation, each of the shear components is
interpolated by placing two nodes on the appropriate sides as shown in Fig. 5. Though additional
parameters (and collocation points) are placed in the interior of the element, the parameters on inter-
faces are uniquely defined by the 6 and W lying on those faces and thus are constrained fully on the
boundary. This formulation fails the test for a single element but passes the test for multiple assem-
blies and is more robust than the Bathe-Dvorkin version.

It should be noted that point collocation is of course not the only way to ensure the desired
effect. Any weighting specified only on the element boundaries will suffice to achieve this. For
instance requiring that in the previous example we have

2
1 aw _
{[ =5, =96, E;]dr‘ =0 (19)
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or indeed specifying collocation points not placed at the center of an element boundary will be satis-
factory though not mecessarily equally accurate. Results given in Section 7 are for a triangular ele-

ment which has shear constraints expressed in the form of (19).

5. Element stiffness matrices

The discrete constraint equations approximating to (12b) can be written as

ls = Q{g} = Q8+Q,W (20)
a W
providing the number of constraint relationships is equal to that of the number of variables S. Here
Q is an easily found matrix and this allows the variables S to be eliminated from (12a) and (12c).
These in turn can be discretized by appropriate weighting. However it is difficult a priori to deter-
mine the weighting which will result in symmetric stiffness matrices and for this reason it is con-
venient to return to the variational form given by (14a,b).
Now the variational function of (14a) can be written in a discrete form and (20), together with
the shear approximations, may be used to eliminate S.
We can thus insert into (14a)

0 = N0 ; w=N,w (21a)

and

S = NgS = aNg[Qy0 + Q, W] (21b)
and minimize appropriately with respect to the parameters 6 and W.

On insertion of the above into the functional we have immediately

I = %f[LN;6] D[LN;6]dQ
1]
+ % [ [Ns Q6 + N5 Q, WI' a[N5s Q0 + N5 Q, W]dQ (22)
0

—JIN, W' qdQ
1)

© Note that the interpolation for W may need to be generalized if it involves nodal parameters W and 6—
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and on minimization we obtain
Koo Kow | [0 1
Ko Kw]{W} = {:‘2} (23)

Ko = .‘J;[(LNe)TD(LNo) + (Ns Q)" a(Ns Q)] dQ

with

Kow = .“;(NSQB)T‘I(NSQw)dQ = K,

K., = .!;(Ns Q. )Ta(Ns Q. )dQ

6. Oblique co-ordinates

The derivations of the preceding sections have been limited to simple rectangles and a direct
interpolation of S; and S, shear components. Of course it is easy to generalize to curvilinear shapes
using isoparametric or other mapped coordinates and to interpolate S and S; in a similar way, defin-
ing

lg = w
- Sg = 6 + 5E etc. (24)

Parameters defining S—g on element sides will now be necessary but the general algebra will be
identical.” It will of course be necessary in the final computation to transfer the components to a
Cartesian system - and we omit here the details which are adequately described in references [6,14-

16,36).

7. New triangular elements

The concepts expounded in the previous section allow many new variants of discretely con-
strained elements to be derived. As an example we introduce three new triangles which are subse-
quently tested by applications to several example problems. Results from the tests are given in Sec-

tion 9.

7In development of triangular elements we introduce tangential components along each edge which we shall refer
to as O and 5.
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7.1 Quadratic triangle - 6 node element

We consider first a triangle which is illustrated in Fig. 6. The interpolations for the transverse
displacement, w, and rotation fields, 8, are assumed to vary quadratically over the element. Using

hierarchical forms for the mid-side parameters the interpolations may be written as

3 — 3
0= DL +D4L L A (25)
i=1 i=1
and
3 ) 3 '

where L; are the standard area coordinates, A@* and Aw* are hierarchical displacement and rotation

parameters at the element mid-side,?

Jj =mod(i,3)+1 ; k = mod(j,3)+1
The interpolation for the transverse shear resultants is less obvious. Here six nodal values of shears

parallel to the sides of the triangle and located at Gauss points as shown in Fig 6(a) uniquely define a

linear distribution of shear resultants. Accordingly, we write first

3
S =2LS (27)
=
The coefficients §' can be uniquely determined by writing equations at the 6 constraint points and

finally the full interpolation expression defining the shear resultant shape functions becomes

3 815,71‘*82-5.';2
§=2 1 -, € Si1 + 215 (28)
i=1 Bi & | 1829k T 8192
where S}l and S_jz are the tangential shear resultants at the 2-points on the j-edge,
1 1
g1 = '2-(1—\/5) » 82 = 7(1+\/5)

A =epey —eyen
In the above the components of e; are the direction cosines of the sides on which L; = 0. Fuller

details of the derivation are given in Appendix A. A stiffness matrix for this element is computed

8 The function mod (i ,j )isequal toi —(i/j)*j where integer arithmetic is used evaluate i/} .
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using (23) and in the numerical examples section the results are labeled TRI-6.

What is important to note is that at the mixed stage with variables S not eliminated all the
counts of the mixed patch test are passed both in the single element and when several are assembled
as shown in Fig. 7. Indeed on each edge there are but two shear constraints and there are 3 parame-
ters at each mid-side. An element which still passes the patch test may be deduced by rotating the
A® to normal and tangential directions and then constraining the A9, = 0 (i.e., the normal bending
displacement component varies linearly on an edge while the tangential component varies quadrati-
cally). This element (called TRI-6R in the examples section) performs slightly better than the origi-
nal element; however, it generally gives answers for displacements which are too large. In order to

improve the performance further another modification is considered in the next part.

7.2 Linear/Quadratic triangle - 3 node element

In this formulation the rotation @ varies quadratically (although not all quadratic terms are

present) within the element, according to the following interpolation [14], (Fig. 2)

3 _ 3
i=1 i=1
where A6* is a hierarchical tangential rotation parameter at the element mid-side and j, & are as

defined above. This is similar to the interpolations used in the formulation discussed above for the

element called TRI-6R where the rotation normal to the element sides is assumed to vary linearly.

In addition, w is constrained to vary linearly over the element, according to

3 ;
i=1
The transverse shear resultant field again is assumed to be linear in each element and is
expressed by (27). The §' for this element are to be determined by satisfying discrete edge con-

straints which represent constant tangential shear resultant. This may be accomplished by using (28)

and setting .S-';-l equal to S_jz and thus gives the three parameter interpolation

L[ & —f,-,] Sjo

§= E A, [—ekx & | |Seo G

i=1 =
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where .S?o is the value of the constant tangential shear resultant on the j-edge. Fuller details are
again contained in Appendix A. In the numerical examples section this element is called DRM (for
Discrete Reissner-Mindlin) element as it is a direct generalization of the DKT triangle discussed in

reference 16, 21, and 22.

The application of discrete collocation constants at the Gauss points of the sides, for either for-
mulation above, results in the matrices Qq and Q,, of (20) with details shown in Appendix B. The
final determination of the stiffness matrices follows from expressions (22) and (23). Since both the
bending and the transverse shear resultants vary linearly in each element, a three point Gauss qua-
drature results in an exact evaluation of all integrals (provided loading, ¢, is linearly interpolated
over each element).

The above elements can be compared directly with another triangle derived in reference 10 and
numerical tests, which we give later, show that they compare well. The derivation of the elements is
simpler than that of [41] and we believe less costly. In some aspects the DRM element is similar to
one proposed by Stolarski and Chiang [32], who however consider only the limiting thin plate situa-

tion.

8. Relation to DKT formulation

We have shown that the discrete constraints of the form of (2) when combined with the varia-
tional principles of (14a) and satisfying of the appropriate patch tests will converge to the thin plate
solution. Indeed at that limit, when a = o, we can drop the shear terms from the variational princi-
ple of (14a) and write the problem as minimization of

Il=%[(LO)D(LO)dQ—-[wqgDQ (32)
o a

subject to discrete constraints (viz. (20))

R |~

_ 0
S = Q{W} =0 (33)

but no longer is any interpolation for S necessary.



-14 -

The reader will observe that in fact, as mentioned in the previous section, our solution was
simply a penalty form of the above problem. However other forms of imposing the constraints can
be pursued.

One is the direct substitution of the constraints into the functional and thus the reduction of
variables. This indeed is the procedure used by all DKT developers and is given in references 5, 7-
10, 12, 13, 24, 32 and discussed in reference 39. We again note that the element described in section
7.2 leads to an expression which, when used in (33), gives immediately the DKT element described
in references 7, 8, and 36 (for details see the Appendix). Another possibility is the use of discrete

Lagrangian parameters to impose the constraints. This does not appear to have been done so far.

Both methods will give obviously identical results to those which represent the limit to which
our discrete formulation will converge as a ~ . The triangular DRM element we have discussed is
therefore in the limit identical to the one in Fig. 8 in which the rotation has been eliminated along

each side.

Indeed we can now determine the ’thick plate’ equivalents of all (or at least most) of the ele-
ments presented in references 12, 20, 28, 29, 39. Of course the numerical results may depend on
the manner in which the discrete constraints are imposed. As we have remarked already it is neces-
sary to impose some of the constraints by point (or subdomain) collocation on the boundaries to
reduce the constraints on element patches. However for parameters defined inside the element point
collocation and/or an integral (area) weighting may be used. Providing this detail is identically
treated in both approaches the limiting answers will be the same.

In Fig. 8 we show how the triangular element of reference 7 evolves. In Fig. 9 we show a
series of rectangular (or quadrilateral) elements with discrete constraints based on the thick plate for-
mulation developed here. The reader can verify that each of these satisfies the patch test count cri-
teria for single and multiple element assemblies (Tests C and R). To each of these corresponds one

of the DKT elements at the thin plate limit as indicated in the same figure.

Of particular interest is the last of the elements in which a very unorthodox formulation is used

for the interpolation of 8 and w variables. Here the interpolation of T is incompatible, i.e., not
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automatically satisfying C? - continuity as apparently required by the functional of (22). (We note in
passing that this continuity is not needed for w, and indeed the element of [3], Fig. 2b, does not
impose this). However, the element still passes the general patch test [33] and is extensively used for
thin plates. We believe it can similarly be used in thick plate situations.

9. Numerical results

A series of numerical tests have been conducted in order to assess the performance of the new
triangles. In the results reported below, the 6-node elements are labeled TRI-6 and TRI-6R as dis-
cussed in Section 7.1. The 3-node element with a mid-side rotation described in Section 7.2 is
labeled DRM (it is a discrete Reissner-Mindlin element equivalent to the DKT triangle presented in
[8]). Each element imposes discrete shear constraints according to the Reissner-Mindlin theory.
The elements have been incorporated into the Finite Element Analysis Program (FEAP) [40] and all
computations have been conducted on a Micro VAX-II using double precision arithmetic and the
F77 compiler in an Ultrix operating environment. The results are compared to exact solutions (or
other approximate series or finite difference solutions) as well as to results obtained from some other

finite elements. Tables are included to facilitate the comparisons.

9.1 Uniform leading on square plate

A quadrant of a square plate is modeled with different meshes and our triangular elements for
simply supported boundary conditions. Both soft (w = 0) and hard (w = 0 and 6, = 0) boundary
conditions are considered for the simply supported case. A typical mesh is shown in Fig. 10, mesh
type A. The loading, consistent with the formulation, is given by equal vertical forces at each node.
The results are reported in Table 1A and compared to an analytical solution (in a series form) for the
thin plate limit [35]. For hard simply supported boundaries a correction to account for the shear
defarmation may be easily computed and added to the thin plate solution. A solution for the soft

boundary is more complicated as the twist moments must be computed at each edge and set to zero.
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Table 1A. Comparison of Elements - Thin Square Plate

Simply Supported - Center Displacement - t/a = 1/100 Energy
(x 109 (x107%)
Hard Soft
Mesh Tri-6 Tri-6R | DRM Tri-6 Tri-6R DRM DRM
22 4.4840 | 4.2179 4.0582 | 4.5943 | 4.2216 4.0903 4.0291
4x4 4.1873 | 4.1042 4.0671 4.2088 | 4.1100 4.0737 4.2030
8x8 4.0976 | 4.0749 4.0659 4.1088 | 4.0838 4.0719 4.2506
16x16 4.0731 4.0672 4.0649 4.0888 | 4.0823 4.0756 | 4.2676
Series (Thin) | 4.0623 | 4.0623 4.0623 4.0623 | 4.0623 4.0623
Series (Thick) | 4.0644 | 4.0644 4.0644

The structural properties of the plate for the results shown in Table 1A are

E=1092 , v=03,
the side length is 10, the thickness is 0.1 and the uniform loading intensity, g, is 1.0.

The results given in Table 1A indicate that each of the element formulations is converging to
the correct result. The DRM and TRI-6R generally provide superior results for all the cases con-
sidered. It should be noted that consideration of the center displacement is not sufficient to judge
the results. While the center displacement may not always converge monotonically the total energy

of the plate does (see Table 1A where results for the energy are included for a DRM problem).

The above problem is considered for the case where the thickness is increased to 1.0. This
corresponds to a situation in which shear deformation is important. The results are presented in
Table 1B for the center displacement. Again the results of the TRI-6R and DRM are superior to
those for the TRI-6; however the results for all cases are converging. It should be noted that signifi-

cant differences result from use of the two types of simply supported boundary conditions.

A quadrant of a square plate now is modeled with different meshes and the DRM element
using simply supported and clamped boundary conditions. Both soft and hard boundary conditions
are considered for the simply supported case. Two orientations (labeled A and B, see Fig. 10) are
examined to indicate the sensitivity to different meshes. The results are reported in Table 1C and
compared to an analytical solution (in a series form) for the thin plate limit from [35], and for the

hard simply supported condition to the result with the shear correction. The data for the problem is
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Table 1B. Comparison of Elements - Thick Square Plate

Uniform Loading - Center Displacement - t/a = 1/10
Simply Supported (x 1071)
- Hard Soft
Mesh Tri-6 Tri-6 DRM Tri-6 Tri-6 DRM
2x2 4.6950 | 4.4333 4.8665 | 4.9920 | 4.6329 | 4.3992
4x4 4.3961 4.3153 42829 | 4.6705 | 4.5684 | 4.4600
8x8 4.3061 | 4.2840 42739 | 4.6184 | 4.5900 | 4.5393
16x16 4.2818 | 4.2757 42728 | 4.6159 | 4.6082 | 4.5906
Series (Thick) | 4.2728 | 4.2728 4.2728

the same as above except the thickness is now set to 0.01 to represent a very thin case. The shear
correction is now very small and the results are converging to the thin plate limit as expected. For
comparison the solution for the DKT triangle is included for the hard boundary condition case and
results are fully consistent with the DRM element. This further corroborates the statements included

in section 8 concerning the use of discrete shear resultant constraints.

Table 1C. Simply Supported and Clamped Square Plate - DRM Element

Uniform Loading - Center Displacement (x 107) - t/a = 1/1000
Simply Supported CQlamped
Soft Hard
Mesh A B A B DKT A A B
1x1 4.2811 | 2.3386 | 4.1615 2.3386 4.1615 1.8921 | 1.0365
2x2 4.0870 | 3.6839 | 4.0559 3.6756 4.0559 1.5474 | 1.2145
4x4 4.0689 | 3.9748 | 4.0649 3.9726 4.0649 | 1.3474 | 1.2578
8x8 4.0643 | 4.0410 | 4.0637 4.0406 4.0637 1.2866 | 1.2636
16x16 4.0630 | 4.0572 | 4.0628 4.0570 4.0628 1.2707 | 1.2649
Series -Thin[35] | 4.0623 | 4.0623 | 4.0623 4.0623 4.0623 1.26 1.26
Series -Thick 4.0623 4.0623 4.0623

For the hard boundary conditions the energy stored in the plate may also be computed from the
series solutions including shear deformation. The results for the DRM element and mesh type A are
given in Table 1D. These results may also be used to establish the rate of convergence in energy for
the DRM element. The results reported here are computed from

U = {cl(x,y)W(x,y)a!Q

and, thus, are actually twice the strain energy (results in [4] appear to also be computed in this way).



-18 -

Based upon this analysis the slope of the In(U,, —U,) vs. In(h ) is slightly greater than 2.

Table 1D. Uniform Load on Simply Supported Square Plate - Strain Energy

DRM - Hard Simply Supported Plate, Uniform Loading
Thickness
0.1 | 1.0
Strain Energy in a Quadrant
Mesh x 1075 x 1072
1x1 3.469912 3.669961
2x2 3.997377 4.225539
4x4 4.195232 4.438442
8x8 4.243562 4.490909
16x16 4.255115 4.503337
32x32 4.257901 4.506331
Series-Thick 4.258787 4.507305
Series-Thin 4.256276 4.256276

In a recent paper by Babuska and Scapolla [4], a value for the strain energy in plates subjected
to uniform loading has been determined using three dimensional elasticity solutions and a formula-
tion similar to the Reissner-Mindlin plate theory. Their solutions may also be used to assess conver-
gence properties of the triangular elements presented in this paper. The plate properties are given by
modulus of elasticity, E = 30. X 105, Poisson ratio,v = 0.3, side length a = 1, plate thickness t =
0.01 uniform loading q = 1.0 and shear shape factor k = 1. In Table 1E we give the values of the
strain energy for various mesh type A refinements using the three elements described in this paper.
We also include the number of degrees-of-freedom which need to be solved in each formulation.

This gives some insight to cost estimates for the alternative formulations.

The results from Table 1E indicate that our elements are converging to an energy which is slightly
smaller than the one given in reference 4, which is stated to be slightly more accurate than a

Reissner-Mindlin plate result.

9.2 Concentrated load on a square plate

The same tests on the DRM element as considered in Section 9.1 for Table 1C are performed,
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Table 1E. Uniform Load on Simply Supported (Hard) Square Plate - Strain Energy

Strain Energy (% 10?) - t/a = 1/100

Mesh/ D.OF. Tri-6 D.OF. Tri-6R D.OF. Tri-DRM

Quadrant | (active) (active) (active)
22 56 0.705719 44 0.645214 32 0.586560
4x4 208 0.646008 160 0.628663 112 0.611825
8x8 800 0.627962 608 0.623484 416 0.618676
16x16 3136 0.623969 2368 0.622808 1600 0.621027
Plate [4] 0.625413 0.625413 0.625413
3-D[4] 0.625956 0.625956 0.625956

the only difference being that the loading is now concentrated on the mid-point of the plate (P=1.0)
and the plate thickness is set to 0.1. The displacement at the center of the plate for each mesh is

contained in Table 2.

Table 2. Point Loading on Square Plate

Point Loading - Center Displacement (x 10°) - 1/a_= 1/100
Simply supported (lamped
Soft Hard

Mesh A B A B A B

1x1 1.2493 | 1.4039 | 1.2492 1.4039 | 0.5676 | 0.6226

2x2 1.1703 | 1.2852 | 1.1700 1.2850 | 0.5867 | 0.6371

4x4 1.1656 | 1.2019 | 1.1649 1.2014 | 0.5723 | 0.5926

8x8 1.1645 | 1.1750 | 1.1632 1.1738 | 0.5660 | 0.5726

16x16 1.1650 | 1.1678 | 1.1627 1.1656 | 0.5643 | 0.5663
Series solution | 1.1600 | 1.1600 | 1.1600 1.1600 | 0.560 0.560

This is a problem for which the exact solution (according to the Reissner-Mindlin theory)
under the point load is infinite. The solution for the thin plate limit is finite and is the one reported
above. What is demonstrated by the problem is that the elements all tend to the limiting solution for
the meshes used. We have, however, observed divergence from the limit (to larger solutions) for
fine meshes and slightly thicker plates. Thus, it appears that if the mesh is refined about the point
load our results do indeed become larger than the thin plate results and begin to exhibit the nature of
the displacement singularity predicted by the Reissner-Mindlin theory.



9.3 Circular plate under uniform loading

Due to symmetry, one quadrant of a circular plate has been discretized with five different
meshes. The mesh shown in Fig. 11 is for the 96 element model. Results for clamped and simply
supported boundary conditions are computed for a thick (R/t = 5/1) and a relatively thin (R/t =
5/0.1) plate. Two types of simply supported boundary conditions are considered. The first is the soft
condition used for the square plate problems and is imposed by setting only the displacements w zero
at each boundary node. The second form transforms the rotation parameters to tangential and nor-
mal components and restrains only the tangential component together with the transverse displace-
ment at each node. Each A6* is also restrained on a boundary segment. This defines a hard simply
supported condition and is consistent with results for the thin plate limit. It should be noted in Table
3a that the results for the two different boundary conditions give the same limit solution for the thick
plate problem. This is consistent with the one dimensional character of the solution in which 6, and
M,, vanish simultaneously when w is set to zero. The results are compared in Table 3a with the

analytical solution which gives a center displacement for the clamped boundary of

2
wi(B) = 243.;[1-*- 3K(18—v) [-:;] ]

and for the simply supported case

1.5+ 8 e )
w(0) = Gplir+ 3k(1-v) [3] ]

Exact energy expressions may be computed for this problem and are given by

~ 2
Fa = SE i+ (4]

for the clamped case (where ¢ defines the size of the sector analyzed - % for our analyses) and

55 34D "1+v  x(1-v) |a
for the simply supported case. It should be noted that the energy expressions represent the total
work done by the external loads and thus are twice the internal strain energy in the plate. Results

for our analyses are given in Table 3b.
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Table 3a. Center Displacement for Simply Supported and Clamped Circular Plate under Uniform
Loading (R = 5)

Plate Thickness
t=0.1 t=1.0
Mesh Qamp Soft Hard Qlamp Soft Hard

6-clement 10315.6 37857.7 | 37857.7 | 11.9924 | 39.6043 | 39.6043
24-element 9999.91 39401.5 | 39373.8 | 11.7775 | 41.2023 | 41.1514
96-element 9850.93 39732.1 | 39727.5 | 11.6305 | 41.5172 | 41.5069
384-element 9802.40 39808.2 | 39807.4 | 11.5745 | 41.5810 | 41.5795
1536-element 9788.74 39826.2 | 39826.0 | 11.5577 | 41.5952 | 41.5950

Exact solution 9783.48 39831.5 | 39831.5 | 11.55 41.60 41.60

The material properties of the plate are

E=1092 , v=03,
which gives a plate stiffness, D, of ¢3, and the uniform loading q is 1.0

Table 3b. Energy for Simply Supported and Clamped Circular Plate under Uniform Loading (R
=J)

Plate Thickness
t=0.1 t=1.0
Mesh Qlamp SS Clamp SS

6-element 67761.576 | 290946.555 80.998467 304.775672
24-clement 66320.253 341303.887 82.781478 358.088806
96-element 64804.242 | 354622.658 82.023468 371.930150
384-clement 64295.393 | 357984.088 81.624299 375.325303
1536-element 64150.286 | 358818.561 81.495286 376.164563

Exact solution 64091.178 359087.484 81.447075 376.443338

9.4 Skew plate with two opposite edges simply supported others free [41]

This is a 60° skew plate, simply supported on two opposite sides and free on the other two (see
Fig. 12). It is subjected to uniform loading and the transverse displacement of the middle point is
reported. Figure 12 also compares the accuracy of the solution to the one obtained in [41], as a func-
tion of the number of degrees of freedom involved in each case.
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Table 4. Skew plate as in [41]

Mesh b.c. w(x 103gL4D) | M, (x 10'gL?)
2x2 Soft 0.6338 0.6297
Hard 0.6392 0.6262
4x4 Soft 0.7558 0.8886
Hard 0.7527 0.8870
6x6 Soft 0.7766 0.9287
Hard 0.7742 0.9272
8x8 Soft 0.7822 0.9424
Hard 0.7838 0.9418
12x12 Soft 0.7881 0.9523
Hard 0.7891 0.9519
16x16 Soft 0.7909 0.9557
Hard 0.7903 0.9554
32x32 Soft 0.7927 0.9589
Hard 0.7925 0.9588
Series 0.7945 0.9589

All the properties and geometric data for this problem are given in [41].

9.5 Skew cantilever plate [8]

A rhombic cantilever plate with a skew of 45° and subjected to uniform loading is tested in [8]
for the thin limit and the results obtained using a DKT and an HSM element [11] are reported and
compared with experimental values. The same analysis is repeated using the new DRM triangle and

all the results are compared in Table 5.

Table 5. Skew cantilever plate [8]

Deflection at location

1 2 3 4 5 6
DRM 0.304 0.199 0.113 0.121 0.056 0.023
DKT 0.304 0.198 0.113 0.121 0.056 0.023
HSM 0.264 0.173 0.100 | 0.095 0.043 0.021
Experimental value | 0.297 0.204 0.121 0.129 | 0.056 0.022

Again, all the plate parameters are specified in [8].



9.6 Simply supported skew plate

A skew plate which is simply supported on all edges is analyzed for the case of uniform load-
ing. A typical mesh is illustrated in Fig. 13. The skew angle results in interior vertex angles of 30°
and 150°. For this angle a moment singularity results at each 150° vertex. The simply supported
edges are treated as soft and results are tabulated in Table 6A for the center displacement of a plate
with thickness 1.0; and in Table 6B we consider the more difficult problem of a plate with a thick-
ness of 0.1. The results obtained for a set of meshes are compared with those of other elements and

with a solution given in [24] for the "thin" plate.

Table 6A. Uniform Load on 30° Simply Supported (Soft) Rhombic Plate

Center Displacement - 1/a = 1/100

Side Tri-6 | Trn-6R | Tr-DRM T1 Simo er. al.
Nodes® [19] [31]
3 0.09920 | 0.04859 | 0.06844 | 0.00279 -
5 0.07075 | 0.05739 | 0.04955 | 0.03918 | 0.04282
9 0.05655 | 0.04161 | 0.04646 | 0.03899 | 0.04264

17 0.04875 | 0.04299 0.04601 0.04187 0.04387
33 0.04675 | 0.04491 0.04590 0.04410 0.04496

Ref [23] | 0.04455 | 0.04455 0.04455 0.04455 0.04455

The plate properties are given by
E=10.x10° ; v=03 ;
Side length a = 100, plate thickness t = 1.0 (for Table 6A) and 0.1 (for Table 6B) and uniform

loading q = 1.0

The comparison solution recently computed by Babuska and Scapolla [4] provides a value for
the strain energy which may also be used to assess convergence properties of the element. As before,
their plate properties are given by

E=30.%x10° ; v=03 ;
Side length a = 1, plate thickness t = 0.01 uniform loading q = 1.0 and shear shape factor k = 1.

9 The Tri-6 elements arc treated as quadratic with the mid-side unknowns counted as a node. The DRM element
counts only vertex nodes.




Table 6B. Uniform Load on 30° Thin Simply Supported (Soft) Rhombic Plate

Center Displacement - t/a = 1/1000
Side Tri-6 | Tn-6R | Trn-DRM

Nodes
3 99.11 48.47 68.34
5 70.51 57.19 49.44
9 55.39 39.78 46.32

17 4560 | 37.83 45.79
33 43.25 | 39.28 45.49

Ref [23] | 44.55 | 44.55 44.55
In Table 6C we give the values of the strain energy for various mesh refinements using the elements

described in this paper.

Table 6C. Uniform Load on a 30° Simply Supported (Soft) Rhombic Plate - Strain Energy

Strain Energy (X 10%) - t/a = 1/100
Mesh D.OF. Tri-6 D.O.F. Tr-6R D.O.F. Tri-DRM
Elements (active) (active) (active)

1x1 19 0.551028 14 0.269828 - -
2x2 59 0.408832 43 0.284542 35 0.285103
4x4 211 0.336567 155 0.246947 115 0.256943
8x8 803 0.286247 595 0.250380 419 0.261289
16x16 3139 0.269838 2339 0.258260 1603 0.262455
32x32 - - - - 6275 0.262708
Plate Ref [4] 0.265509 0.265509 0.265509
3-D Ref [4] 0.265868 0.265868 0.265868

Again, our results generally are converging to a result slightly smaller than those given in reference 4.
The results of the skew plate analyses tend to favor the overall superiarity of the DRM element to
solve a wide class of problems. The other problems considered do not give significantly different
answers for the DRM and the TRI-6R elements. The TRI-6 element is quite flexible in most of the
analyses conducted. The DRM element has significantly fewer degrees-of-freedom in each problem
(approximately two-thirds the number in the TRI-6R formulation and half the number in TRI-6)

thus the element provides excellent results at the least cost of all the elements considered in this

paper.



9.7 Sensitivity test

A test on the influence of element distortion in modeling a clamped plate has been performed
using the DRM element on a relatively crude mesh of 8 triangles. The plate has a side length of 12
(6 units for one quadrant) and the center node is moved as far as the quarter points of the quadrant,
Fig. 14. The results reported in Table 7 show that the element displays insignificant sensitivity when
the geometry is altered within these limits. This is, obviously, a highly desired feature for any ele-

ment.

Table 7. Sensitivity test on a clamped, uniformly loaded plate

Center Displacement (x 1073)

(x,y) - Coordinates % error
of Interior Node w (relative)
(3.00,3.00) 3.35729 0.00
(3.25,3.25) 3.35462 0.08
(3.50,3.50) 3.34660 0.31
(3.75,3.75) 3.33313 0.72
(4.00,4.00) 3.31356 1.30
(4.25,4.25) 3.28403 2.18
(3.00,3.25) 3.35548 0.05
(3.00,3.50) 3.35318 0.12
(3.00,3.75) 3.35025 0.21
(3.00,4.00) 3.34640 0.32
(3.00,4.25) 3.34123 0.48
(3.00,4.50) 3.33431 0.68
(2.75,3.25) 3.35606 0.04
(2.50,3.50) 3.35991 0.08
(2.25,3.75) 3.37107 0.41
(2.00,4.00) 3.39206 1.04
(1.75,4.25) 3.42524 2.02
(1.50,4.50) 3.47146 3.40

10. Concluding remarks

This paper has presented a method for constructing mixed finite element approximations based
upon the Reissner-Mindlin plate bending theory. The mixed approximation involves specification of
the transverse displacement, w, the rotations, 8, and the shearing resultants, S, (or alternatively,
shearing strains vy). Discrete constraints are used to express the parameters in the shearing resultants

in terms of displacement parameters; hence, the formulation presented may be directly used in
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standard finite element packages. By suitable choice of constraints the elements generated pass the
mixed patch test and, thus, do not lock and are not singular in the thin plate limit. The methodol-
ogy presented also provides a unification with previous developments which used discrete Kirchhoff
constraints.

New triangular elements are presented and shown to give good results on a series of standard
test problems. For the limiting case of thin plate behavior, the DRM element (for discrete Reissner-
Mindlin element) is shown to be identical to the popular DKT triangle introduced by Dhatt [13].
Unlike the DKT element, however, the DRM element also may be used for analysis of "thick" plate
problems.

Since interpolation is provided for all the variables in the formulation the extension to tran-
sient, as well as non-linear applications is straight forward. Furthermore, we believe that the DRM

element presented is suitable for use with adaptive mesh refinement schemes.
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APPENDIX A - Transverse Shear Resultant Interpolation

The interpolation described in section 7 for the transverse shear resultant is given by

I
S=>LS' (A1)
=
The §' are to be determined by satisfying discrete edge constraints for the tangential shear resultant
[33]. The tangential shear resultant on side k of the triangle (i.e., the side where L, = 0) is
Sk = € -S (A2)
where
&G = [eb:’eky] = [cosay ,sinoy ] (A3)
and w; is the angle that the tangent makes with the x —axis (see Appendix B).
Equation (A2) is used at two points on each side of the triangle to define 6 independent values
of tangential shear resultant. The two points on each edge are picked to correspond to the two-point

Gauss values, which on the interval 0 to 1 (range of each area coordinate) are given by

1 1 1 1
= Aflete] , pz = ofl==te A4
p1 = 5 \/5) p2 = 5( \/5) (A4)
Accordingly
Sp1 = Si(Lit,Lj1 5Lgy) = €S(Liy,Lj1,Lg1) (ASa)
where
Ly=p1 , Ly =p2 , Lyy = 0
Similarly for the second point
Stz = Si(Liz Lz, Liz) = S(Liz,Ljz,Liz) e (A5b)
with

Lp =ps » Lp =p1 , Lip =0
In the above the i,j,k sequence is given by (see Fig. 6) j=mod (i,3)+1 ,
k =mod(j,3)+1.

Evaluation of (A5a,b) on each edge using (A1) gives

Si1 = e (p1S' + pa§Y) (A6a)



Similarly for the second point

Siz = &(p2S +p1§) (A6b)
Adding and subtracting (A6a) and (A6b) and simplifying the results we obtain

&S = g5 + 825 (A7a)
and
&S’ = g8 + 8152 (A7b)
where
1
g= 2(1+V3) , 5 = 2(1-V3) (A8)

The parameters S’ now may be expressed in terms of the S;; and S;, using (A7a) directly, permuting
the subscripts on (A7b) to correspond to the i value, and writing the pair of equations

&S’ 18 1Sk + 8252 (A9)
¢S’ 8251 + 8152
Upon noting that
€ ‘S_i € € .S-';i
fat= 0 e (A10)
ej-S €ix €jy Sy
the solution is given by
S; ey —€i ] |15k + 825k
b= L b i et (A1)
S, A |—ex e | |85 T 8152
where

A,' = O €y — Epy€py

Substitution of (A11) into (A1) gives the result presented as equation (31) of Section 7.
For the case in which the tangential shear is to be constant on each edge we may note that set-
ting

St = St = Sz (A12)
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results immediately in the results given in equation (32).

APPENDIX B - Constraint equations for S,

The parameters S, etc., may be expressed in terms of the nodal values of the transverse dis-

placement, W, and the rotations, 8, using results in (24) specialized for the tangential direction.

Accordingly,
1¢e = |
'&'Skl = [at + 6, ]|1 (Bla)
g N | =k R -
= oW oW +h4(3"‘)Aw + ;—ek-[()’ +0/ +37%(0 —0/)] + %Aek
k

Similarly, for the second point

le o [
oSk = [at + 6, ]|2 (B1b)
=J gl =) Ao —_ - Y
= B —F h4(3 ) AW, ;—ek-[0'+61 —3%(87 —87)] + %—AG"
k

where h; is the length of the k-side of the element.

The parameter S, for the DRM element may be deduced using (24) in (19). After integra-
tion along each boundary the result is

l¢ _ (v _ W oW 1 ey 2
~Sko rf‘(at+e,)arz == +2ek(0+6)+3A9" (B2)

The + ambiguity in (B1) and (B2) is due to the fact that the direction of the tangential shear
must be defined by a unique direction on each edge of contiguous elements. Failure to achieve this,
results in an inconsistent definition of the edge incremental rotation degree-of-freedom, A6*. One
way to overcome this difficulty is to define the direction for e, in the direction of increasing (global)
node numbers for the end points of each element edge, thus establishing a unique value for w;. The
sign in (B1) and (B2) is chosen to be positive if the direction of e; corresponds to that for construct-
ing the boundary integrals, otherwise a negative sign is inserted.

The construction of Q,, and Q, in (21b) is obtained by a systematic use of (B1) or (B2) and
noting that the shape functions for shear are given by the area coordinates, L;, as shown in equation
(Al).
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The result for a DKT element can be obtained by setting (B2) to zero and expressing each A8*
in terms of the nodal parameters at each vertex of the triangle. The resulting element has 9
degrees-of-freedom (3 at each node) and is identical to the results given in references 7, 8, and 13.
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FIGURE 1 DEFINITIONS OF VARIABLES FOR PLATE EQUATIONS
(a) Displacements & rotations
(b) Stress resultants
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(a) v

\% v
TEST C Ng = 6 ng = 6 n,=0 (pass)
TESTR ng = 18-2 = 16 ng = 6 n, = 6-1=5 (pass.
(b)
O v

TEST R Nng = 8-2=6 g = 2 n, = 3-1=2 (pass)

FIGURE 2 SINGLE ELEMENT PATCH TEST COUNT

(a) Element of Ref 9 (Zienkiewicz-Lefebvre)
(b) Element Ref 28 (Arnold)

O Node with 8 variables (2 DOF)

V  Node with S variables (2 DOF)

O Node with w variables (1 DOF)
(Constrained) TEST C

All 8 - w prescribed on boundary
(Relaxed) TESTR

28 and 1w variables on boundary
prescribed

Necessary condition : ng+n_>ng

n$>n\l



? <
(a)

o 0
TESTC  ng=0
TESTR  ng = B-2=6
(b)

FIGURE 3

S
2
T T B
A X h X
J I b4
ng = & standard Galerkin) (fail)
ng = 0 with collocation n, = 0 (pass)
Ng = & n,=4-1=3 (pass)
A

THE DVORKIN-BATHE ELEMENT

(a) The element parameters
O 6 nodes (2 DOF)
+ S, nodes (1 DOF
X S :gdzz :1 DOF; }eliminafed at element level

O w nodes (1 DOF)
(b) Shape function for S, at node A

Note : With collocation type of constraint along 1-2
S, at Ais determined value by 68/w at
(1) and (2) and hence not a full parameter
This ensures that test is satisfied.



Identified in collocation

o -O- ') - T —Tr
X @9 X
£\ ) m H‘\ 1 1
()‘ \/ ‘\) w W C_l T
x &R x
A.) 3} -0 + + ﬂ} —
I STANDARD WEIGHTING
TESTC  ng=2 ng = 16 n, =1
TESTR  ng=18-2=16 ng = 16 n,=9-1=8
II BOUNDARY COLLOCATION
TEST C ng = 2 ng = & n, = 1
TESTR  ng =16 ng = 12 n, = 8

FIGURE & FOUR ELEMENT PATCH COUNT TEST ON
QUADRIATERAL WITH S, ,S, INTERPOLATION

xr 7y
(DVORKIN-BATHE ELEMENT)
I STANDARD WEIGHTING
IT COLLOCATION ON BOUNDARY

(D Note : The Dvorkin-Bathe element fails
this test , end is suspect in
some circumstances (not robust)

(@ Note : With collocation S boundary
values are prescribed by
displacements on same line
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(a) ? o Q + + ) + 4
O & & ﬂ) X+ X N b 4 " X X X
b b4 x X X
o3 + |+ +
Test C ng = 18 ng = 24
Test R ng = 50-2 = 48 ng = 40
<+ +
b) et
+ 4+
Test C Ng = 2 Ng = &
Test R ng = 18-2 = 16 ng = 12
FIGURE 5 FOUR ELEMENT (a) AND SINGLE ELEMENT

(b) PATCH COUNT TEST ON THE HINTON-
HUANG ELEMENT

(Two point boundary collocation only
shown)

Note : This is a robust element as all
multiple element patch tests passed



8, w nodes

S, _— S nodes

2
Ta—: e3; | tangent
ey, [ vectors

(b)

FIGURE 6 THE NEW QUADRATIC TRIANGULAR
: PLATE ELEMENT
(a) The parameters/ 8 - 12 DOF
w - 6 DOF
S - 6 DOF
(b) Area co-ordinates and notation



(a) //\\
O = ——

Test C ng = 0 ng =0 n =0 (pass)
Test R Ng = 12-2 = 10 Ng = 6 n,= 6-1=5 (pass)
O — —F =}

Test C Ng = 8 ng = 6 n,==4 (pass)
Test R ng= 20-2 =18 Ng = 12 n, = 10-1= 9 (pass)

FIGURE 7  THE NEW QUADRATIC TRIANGULAR
PLATE ELEMENT.
Patch count tests for single (a) and

three element assemblies (b)

Note : This is a robust element
as all patch tests passed



Two constraints eliminate w, and one
rotation on centre node

FIGURE 8

DEGENERATION OF THE NEW QUADRATIC
TRIANGLE TO A DKT TYPE ELEMENT .

(1) with normal slopes prescribed at

midsides . With an imposition of a
further constraint requires the

midside slopes to be the mean of
those at corners.

The element (2) is obtained by transformation
constraining 8, to an average of nodal rofations
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FIGURE 9  SOME POSSIBLE DISCRETE CONSTRAINT
THICK PLATE ELEMENTS AND THEIR
DKT EQUIVALENTS.

All elements pass the patch test count conditions

O 8 variables (2)
O w variables (1)
+ 6, variables (1)

X <4

Sy

Sy ] eliminated by
discrete constraint
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Figure 12. Convergence of Skew Plate Problem from Reference [40].



Figure 13. Typical Mesh for Morley Skew Plate Example.





