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Learning the past tense in a recurrent network:
Acquiring the mapping from meaning to sounds

Garrison W. Cottrell®

Department of Computer Science and Engineering

University of California, San Diego

Abstract

The performance of a recurrent neural network in
mapping a set of plan vectors, representing verb
semantics, to associated sequences of phonemes,
representing the phonological structure of verb
morphology, is investigated. Several semantic rep-
resentations are explored in attempt to evaluate
the role of verb synonymy and homophony in de-
teriming the patterns of error observed in the net’s
output performance. The model’s performance
offers several unexplored predictions for develop-
mental profiles of young children acquiring English
verb morphology.

Introduction

Prior attempts to model the acquisition of English verb
morphology in connectionist nets (Plunkett & March-
man [1991]; Plunkett, Marchman & Knudsen [1990);
Rumelhart & McClelland [1986]) have focused on the
problem of learning the relationships between phono-
logical representations of various forms of the verb.
Phonological information is exploited by children and
adults when prompted for the past tense form of a
novel stem (Bybee & Slobin [1982]; Marchman [1988]).
Nevertheless, the phonological form of the verb does
not uniquely determine its past tense form. Although
all verbs which have identical stem and past tense
forms possess a dental final consonant (e.g. hit — hit),
not all verbs that end in a dental consonant have identi-
cal stem and past tense forms (Pinker & Prince [1988]).
Furthermore, connectionist models that learn purely
intra-level phonological mappings cannot distinguish
verb-stem homophones that take different past tense
forms. For example, to brake and to break take past
tense forms braked and broke respectively. Since the
inputs to the network in these cases are identical, so
will their outputs remain identical.

In this paper, we present a connectionist model of
the acquisition of English verb morphology in which a
network is trained to map a semantic representation

*We thank Steen Ladegaard Knudsen for his assistance
in programming, analysis and running of simulations.
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of verbs to phonological representations of their stems
and/or past tense forms (cf. Gasser & Lee [1990]).
The mapping function to be learnt may be consid-
ered analogous to aspects of the production process
in which meaning is mapped to sound representations.
Phonological regularities between verb classes must be
captured by the hidden unit representations generated
through training. Homophones in this formulation
are unproblematic, as they consitute a many-to-one
mapping. However, two new potential problems arise.
First, as Pinker & Prince [1988] point out, the seman-
tics of a verb is not a good predictor of the type of
inflectional mapping that it must undergo. The three
verbs hit, strike and slap are closely related semanti-
cally but they have different mapping types relating
their stem and past tense forms (hit — hit, sirike —
struck, slap — slapped). The network must learn to ig-
nore this similarity in learning the mapping. Second,
this same problem arises in general for the network, in-
sofar as there is an arbitrary relationship between the
meaning of the verb and its phonological form. Similar
inputs do not lead to similar outputs. In particular,
highly similar inputs, modeling synonyms, provide a
potential source of error in these networks.
Our goals in this work are twofold:

1. To examine the performance of the network in solv-

ing a mapping problem that is analogous to that of
mapping meaning to sound and determine its gener-
alization characteristics.

2. To evaluate the pattern of outputs and errors pro-

duced by the network during the course of training
and use these errors to predict those produced by
children acquiring English verb morphology.

We report on three sets of simulations that differ either
in the nature of the semantic representations used to
encode verb meanings and/or in the number of mean-
ing/form pairs that the network is required to learn. In
each case, we provide an evaluation of the performance
of the network on trained verbs and of the ability of
the network to generalize to verb forms on which it has
not been trained. In one set of simulations, we provide
a detailed error analysis.



Methodology

All simulations utilize a simple recurrent network of
the type developed by Elman [1990] (see Figure 1).
In all simulations the output phoneme consists of a
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Figure 1: General Network Architecture

15 bit vector that reflects standard phonological con-
trasts. A noteworthy characteristic of this phonemic
representation lies in its attempt capture the sonor-

ity relationships between vowels and consonants (see
features O1-7 in Table 1).! The task of the network

I
™

I T U T
||
=

S ESIES!
— 11+ F1F1—1-1
— I FIFI=1[+1

=Tl —1F1-1[+1
—1-14 —1[F1-1/+1
A= FIFL == 1| F I+ 1=1|+1
—a|—1—1F1FF1—1|-1]-1-1
— 1= 1= 1F 1+ =1=1-1-1]F1
—1— 31— 1+ 1+ -1 F1|-1]-1+1
= 1 | —1[+1|-1-1+1F1
—1=1-1/ Fil-1-1-1]-1
I I | E S S S | S S
—i—1|—1|—-11 = | B S N
=i 1— 1|1 —1|—1—1]=1]F1
—i—1|-1-1+1]-1|F1|-1]-1]-1
—1—1|-1-11 Fi|l=1=1]-1]+1
- 1|—1—1F1—1=1[F1|=1-1
—1—1—1-1+1—1|=1|+1]—-1]-1|+1
FLFF L L F LT+ +1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
+1

-1
-1
-1
=1
-1
=1
-1
=1
-1
-1
+1

-1
-1
-1
=1
-1
-1
-1
=1
-1
-1
+1

theatre
mother]

-1
-1
=1
-1
-1
-1
-1
+1

v |l o o] eln e |d|w[2 2T ]| =n|=2[«|Cle|=~{Clo|n]a

silence

Table 1: Phonological representation

is to output a sequence of phonemes that correspond
to the stem or past tense of the verb whose seman-
tic representation is presented at the input. The dis-
tinction between stem and past tense forms is encoded

'The phonological representation presented here was
originally designed by Alan Prince and Kim Plunkett.
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by a 2-bit vector at the input level. The inventory
of verbs (both stems and past tense forms) that the
network is required to produce at the output is taken
directly from previous simulations conducted by Plun-
kett, Marchman & Knudsen [1990]. In this work 500
stem/past tense pairings are used. Each stem consists
of a Consonant-Vowel-Consonant (CVC) string, a CCV
string or a VCC string. Each string is phonologically
well-formed, even though it may not correspond to an
actual English word. Verbs are assigned to one of four
classes. Each class corresponds to a different type of
transformation analogous to a distinct past tense form
in English as in (Plunkett & Marchman [1991]). The
first class follows the regular rule in English. The three
irregular classes are: (1) arbitrary verbs have no sys-
tematic relationship between the stem and past tense
form (go — went), (2) identily verbs are unchanged
between forms (hit — hit), and (3) vowel change verbs
undergo a change in vowel in CVC forms (strike —
siruck). Verbs are assigned randomly to each of the
four classes, with the constraint that stems possess the
appropriate characteristics of a given class.

Semantic representations of verbs are of two types.
In the first set of simulations, each verb is represented
in a localist manner in a 500-bit vector. An additional
two units encode whether the network is to produce
a sequence of phonemes corresponding to the stem of
the verb or the past tense of the verb at the output.
In the second and third set of simulations a similar-
ity structure is imposed on the semantic representa-
tions by using distortions of several prototype vectors
(Chauvin [1988]). Distortions may vary in their dis-
tance from the prototype. We use 9 or 50 prototype
vectors (and thus as many categories) depending on
vocabulary size. Two extra inputs specify the stem or
the past tense form. For the large simulations, 10 dis-
tortions each of the 50 prototypes are generated at 3
levels of distortion.

Training proceeds by randomly selecting a plan vec-
tor (the verb’s semantic representation) and a tense
bit (stem or past tense). This composite vector is then
presented at the input units over a number of time
steps that correspond to the number of phonemes in
the output form. At each time step, the discrepancy
between the actual output of the network and the tar-
get phoneme is used as the error signal to a back prop-
agation learning algorithm. We use the TLEARN sim-
ulator developed by Jeff Elman at UCSD. As part of
the teaching signal, the verb plan is trained to pro-
duce an end-of-form signal (corresponding to the si-
lence phoneme in Table 1). The “context units” are
reset between forms.

Analysis

The performance of the network is analysed at regu-
lar intervals in training. In this paper we present two
types of analysis. First, we determine the hit rate for
stems and past tense form, both on the entire training



set and on a class-by-class basis. Hit rate is evaluated
by determining which of the phoneme vectors (as de-
fined in Table 1) is closest to the output vector using
a least squares measure at each time step. This yields
a sequence of output phonemes for each verb plan. In
the first two sets of simulations we report on whether
the output sequence is a hit or a miss.

We analyse the generalization characteristics of the
network by first training the network with 25 verb
plans to produce only the stem form of the verb and
with another 25 verb plans to produce only the past
tense form of the verb. Each verb plan is then tested
on the phonological form of the verb to which it has
not been trained i.e. 25 stem forms and 25 past tense
forms. The output of the network on these novel inputs
is used to evaluate the net’s generalization properties.

Finally, in the third set of simulations we provide a
detailed analysis of the output of the network when
trained on just 50 verb plans i.e. 100 phoneme se-
quences. These analyses relate the role of seman-
tic similarity to the similarity of the phoneme se-
quences across different verbs, and the syllabic struc-
ture that the network extracts over the sequence of
output phonemes.

Experiment One

This experiment reports the results of simulations us-
ing a 500 word vocabulary and orthogonal representa-
tions of the verb plan. Figure 2 (a) provides a summary
of the network performance on all past tense forms and
all stem forms while Figure 2 (b) compares the gener-
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Figure 2: Overall Orthogonal Results

alization characteristics of the network in predicting
the past tense forms of the verb when it has only be
trained on the stem and vice versa. Figure 2 (a) shows
that the network is equally fast at learning both stem
and past tense forms and that learning undergoes a
spurt in growth around the 20 epoch mark. In con-
trast, the test verbs differ with respect to their perfor-
mance on stems and past tense forms. Figure 2 (b)
shows that when a verb plan is trained to a past tense
form, the network is quite accurate in predicting the
correct stem (> 90% after 70 epochs of training). On
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the other hand, generalization from stem to past tense
never exceeds 55%. It should be noted that we use a
very strict criteria for generalization: All past tenses
are assumed to be regular. Over several simulations,
we find that performance on past to stem generaliza-
tions is always good, while stem to past varies. This
result is to be expected given that the form which the
past tense takes is a better predictor of the stem than
the stem is of the past tense form (e.g. if the past tense
of a verb is talked then its stem form is unambiguous,
but if the stem is hit then, in principle, its past tense
form is underdetermined). Indeed the discrepancy be-
tween the generalization curves in Figure 2 (b) can be
accounted for in this fashion.
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Figure 3: Stem Forms by Class (Orthogonal)

Figure 3 provides a class-by-class breakdown of net-
work performance on stems. These result indicate that
the regular, identity mapping and vowel change classes
are learned first, while arbitrary mappings are delayed.
Figure 4 reveals a similar rank ordering of classes with
past tense forms.

Experiment Two

This experiment reports the results of simulations us-
ing a 500 word vocabulary and semantically structured
representations of the verb plan. Figure 5 (a) pro-
vides a summary of the network performance on all
past tense forms and all stem forms while Figure 5
(b) compares the generalization characteristics of the
network in predicting the past tense forms of the verb
when it has only be trained on the stem and vice versa.
As with Experiment One, Figure 5 (a) shows that the
network is equally fast at learning both stem and past
tense forms. Learning undergoes a spurt in growth
around the 25 epoch mark. Similarly, there is a con-
trast between the test stems and the test past tense
forms. However, the generalization characteristics for
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Figure 5: Overall Orthogonal Results

this network are more restricted than in the simula-
tions where an orthogonal verb plan is used. An ex-
amination of the output for test stems indicates that
the network has difficulty generating the epenthisized
form of the ed suffix.

A class-by-class analysis of past tense forms and
stem forms reveal results similar to the class-by-class
analysis in Experiment One and so will not be reported
here.

Experiment Three

This experiment reports the results of analysis of the
effects of input and target similarity structure on the
forms the network learns. The semantic classes in this
experiment are designed to highlight these effects. In
this experiment, we use a 54-stem subset (with one new
arbitrary) of the larger set, with 31 regular forms, 3 ar-
bitraries, 8 identities and 12 vowel-change verbs. We
use 9 prototype vectors, where each exemplar within a
class has the same amount of distortion from the pro-
totype. Three of the classes use high distortion, three
medium distortion, and three low distortion. Two out
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of three of these classes has one lexical item more fre-
quently represented than the rest, a regular in one, and
an arbitrary in the other.

We perform two kinds of analyses on this network:

1. We measure the changes in the stem output strings

during learning from the point of view of the syllabic
structure of the target language.

2. We measure the changes in similarity of stem and

past output strings during learning with respect to
the semantic clusters.

Syllabic structure changes

In order to assess the vocabulary development of the
network, we divide the stem output strings of the net-
work into three classes:

Words: Strings that belong to the target vocabulary.

Pseudo-words: Strings that are not in the target vo-
cabulary but conform to the syllabic structure of the
language — CVC, VCC, or CCYV.

Non-words: Strings that do not fit the above criteria
— CCC, CVV, VCV, VVC and VVV,

A graph of the numbers of unique forms of each kind
over learning, along with the total number of unique
forms, is shown in Figure 6. Interestingly , long before

60
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Figure 6: Vocabulary Structure

it has acquired any words in the language, the net-
work has captured the syllabic structure, as evidenced
by the high proportion of pseudowords in the set of
unique forms. Over learning, there is an inverse re-
lationship between these forms and the correct forms
as the pseudo-words migrate into the target vocabu-
lary. This set of curves is reminiscent of a similar set
of curves found by Plunkett [1990] in a case study of
language acquisition in two Danish children between
the ages of 12 and 26 months. The total number of
consistently produced and applied non-(adult) Danish
phonological forms was inversely related to the num-
ber of Danish words over the period studied. That is,
the children had their own vocabulary early in devel-
opment that was eventually replaced by target forms.



Note that in the simulation, the number of non-
words actually increases during the acquisition of the
target vocabulary. Further analysis reveals a simple
explanation for this effect. We assign each string of
the network's stem outputs to one of 8 classes given
by the possible combinations of {CVV}, {CVV} and
{CVvV}. Three of these classes characterize the target
language’s syllabic structure which consists of 41 CVC,
7 CCV, and 5 VCC strings (there is one less than 54
due to a homophone). A plot of the number of network
outputs that belong to each of these classes over train-
ing is shown in Figure 7. The network quickly learns
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Figure 7: Syllabic Structures

the dominant CVC form of the language, overgener-
ating strings in this class initially. In order to extend
to the target language syllabic structure these strings
have to mutate from CVC to CCV and VCC during
epochs 30 through 120. Strings changing from CVC
to CCV have to change the mid-vowel to a consonant
and the coda consonant to a vowel. The possible inter-
mediate forms are CCC and CVV. Similarly for CVC
to VCC, the possible intermediate forms are CCC and
VVC. Indeed, a graph of the number of these forms
produced by the network shows that they occur only
during the cross-over from pseudo-words to words. The
(logically possible) forms VVV and VCV never occur.

Similarity Effects

We hypothesized that the synonym groups would pro-
duce outputs that were more similar to one another
than the non-synonym groups and the vocabulary as
a whole. In order to test this hypothesis, we use the
following measure of within-group similarity:

1
—_— Rz
s P
L,jEG
1#£7
where %, j range over the members of G, and G is of size
N. RD;,; is a relative distance measure given by:

Y dist] +1

Similarity(G) = 1 —

RD
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This is the distance between the output phonemes in
a string relative to the distance they should be after
learning. RD; ; should tend to 1 as the network learns,
so Similarity(G) should tend to 0.

We apply this similarity measure to the strings pro-
duced by the network for each of the 9 prototype
classes. For comparison purposes, we subtract the
within-group similarity of the total output of the net-
work from each score. Figure 8 (a) shows the average
of this measure across the low-distortion (synonym)
classes and the average across the high- and medium-
distortion classes. The curves show that, in general,
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Figure 8: Synonym Analyses

semantic classes produce surface forms that are more
cohesive than the forms of the network are as a whole.
However, this effect disappears over training. This
is the result of the network overcoming the false cue
of input similarity. As expected, the synonym classes
have higher within-group similarity throughout train-
ing than non-synonym classes. It is noteworthy that
during the period that the network is actually acquir-
ing the target vocabulary, i.e. from 70-120 epochs (cf.
Figure 6), the within-group similarity of the synonyms
increases compared to the rest of the classes. That is,
synonyms are forced to be near-homonyms.

This “squeezing” effect is greatly magnified when
there is only one synonym (Low distortion) cluster out
of the nine classes (Figure 8 (b)). The explanation
in terms of the network’s organization is that patterns
that are more easily learned (because they have less in-
put similarity) are dominating the error gradient. The
patterns may be characterized as competing for repre-
sentational resources at the first hidden layer.

Examination of the network outputs over the train-
ing period reveals that the output strings for synonym
classes during the steepest rate of target acquisition
are within 2 or 3 features of one another. An interest-
ing question here is: What is the string the outputs
of a synonym class are pushed towards? Is it a blend
of all of the strings of the class, or does one string in
the class “capture” the output for that class? We ten-
tatively find that when there is one lexical item that



is more frequent than the others, it captures the class.
Interestingly, this is not the case if the more frequent
item in a synonym class is an arbitrary verb, probably
due to the fact that they map similar inputs to very
different outputs (see Bartell, Cottrell & Elman, this
volume for a thorough discussion of this issue). In the
case that all are equally frequent, a blend of all of the
outputs for the class is produced.

Taken in combination, these results suggest an un-
orthodox account of the source of the non-word forms
found in Plunkett’s subjects. These consistently-used
pseudo-words are the result of two constraints or pres-
sures on the child’s language production: (1) A pres-
sure to produce forms that are in keeping with the
syllabic structure of the language at the output level,
and (2) a pressure to produce similar forms based on
input similarity. The child is thus producing the best
approximation to a word in the language that is a blend
of all of the words for that semantic class, with a ten-
dency for this blend to be similar to the most frequent
element of that class. A second counter-intuitive pre-
diction of this work is that, during acquisition of the
correct forms, the child will produce strings that may
be inappropriate for the target language because they
are between a common (over-acquired) form and a less
common form.

Conclusions

We have described a connectionist model of morphol-
ogy acquisition in which input forms representing the
semantics of words are mapped to sequences of out-
puts representing their phonological forms. The net-
work is successful in producing appropriate forms, even
in the case where the input forms have a similarity
stucture that is independent of the output similarity
structure. Furthermore, the learning curves indicate a
spurt-like acquisition profile. There is ample evidence
for the spurt-like nature of vocabulary growth (Mc-
Shane [1979]). It is unclear whether the acquisition
of inflectional morphology in children shows a similar
non-linear growth to that observed in the network.

The network experiences difficulty in generalizing
from the stems to past tense forms. The model pre-
dicts that children are better at generalising from past
tense forms to stems than wice versa. Further analy-
sis is needed to investigate what modifications must be
made to the model in order to achieve good general-
ization in the structured input case.

The analysis of the influence of input and target sim-
ilarity on the acquisition of phonological form suggests
some radical predictions. Children’s non-adult forms
may be a result of blending words for the same cat-
egory. Looked at another way, words are distorted
by their neighbors in a semantic class. The effects of
similarity at the phonological level suggest that chil-
dren will produce forms that do not belong to the
syllabic structure of their language if these forms are
between the most common form in the language and
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other forms. Finally, the model suggests that during
the vocabulary burst, synonyms will be forced to be
homonyms.

One problem that we have avoided addressing in this
work, and suggested by other research (McClelland,
personal communication) is that such models have dif-
ficulty learning uneven length strings. We plan to in-
vestigate ways to overcome this limitation in future
research.
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