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SUMMARY

Survival analysis endures as an old, yet active research field with applications that spread across many
domains. Continuing improvements in data acquisition techniques pose constant challenges in applying
existing survival analysis methods to these emerging data sets. In this paper, we present tools for fitting
regularized Cox survival analysis models on high-dimensional, massive sample-size (HDMSS) data using
a variant of the cyclic coordinate descent optimization technique tailored for the sparsity that HDMSS data
often present. Experiments on two real data examples demonstrate that efficient analyses of HDMSS data
using these tools result in improved predictive performance and calibration.

Keywords: Big data; Cox proportional hazards; Regularized regression; Survival analysis.

1. INTRODUCTION

Survival analysis characterizes relationships between time-to-event endpoints and multiple explanatory
variables (covariates) (Kalbfleisch and Prentice, 1980; Oakes, 2001). Historically, the event of interest
in survival analysis is patient death, but active research in the field over the past few decades pro-
vides applications spread across many domains including biostatistics, sociology, economics, demog-
raphy, and engineering (Heckman and Singer, 1985; Collett, 2003; Box-Steffensmeier and Jones, 2004;
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Hosmer and others, 2008). Until recently, survival analyses have been limited to applications with only a
handful of predictors and a few hundreds or thousands of observations. However, recent advances in data
acquisition techniques and the ease of access to high computation power have fueled increased interest
in analyzing data with potentially hundreds of thousands of variables and even millions of observations.
For example, new technologies in genomics produce high-dimensional (HD) microarray gene expression
data where the number of predictor variables is of the order of 105 or more. Other large-scale applications
include medical adverse event monitoring, longitudinal clinical trials, and business data mining tasks. In
these applications, the number of observations often far exceeds 106. So, they all require methods for
analyzing HD, massive sample-size (HDMSS) data in a survival analysis framework.

Since its introduction, the Cox proportional hazards model (Cox, 1972) has reigned over algorithmic
and applied research for analyzing time-to-event data. Unlike several fully parametric models (Collett,
2003; Klein and Moeschberger, 2003; Hosmer and others, 2008), the Cox model offers greater flexibility
due to its semi-parametric nature but still yields regression coefficients that are readily interpretable. Typ-
ically, one obtains a Cox model fit by maximizing its partial likelihood. A regularized approach adds a
complexity penalty to this likelihood with one version that favors sparseness in the fitted model leading to
the point estimates for many of the model parameters being shrunk to zero. To this end, Park and Hastie
(2007), Sohn and others (2009), and Goeman (2010) have proposed several different implementations of
regularized Cox models. Although these implementations work well for small-scale problems, they do not
scale well to HDMSS data due to their use of costly Newton–Raphson iterations that require inverting
large matrices. Possible workarounds and approximations often lead to large estimated coefficient vari-
ances, numerical ill-conditioning, and poor predictive accuracy or calibration.

In this paper, we describe a regularized approach to Cox survival modeling that scales for HDMSS data.
To solve the optimization problem, we exploit a variation of the cyclic coordinate descent optimization
technique (Tseng, 2001; Genkin and others, 2007; Koh and others, 2007; Tibshirani and others, 2010;
Suchard and others, 2013). We show that application of this tool to HDMSS data avoids overfitting, can
provide improved predictive performance over corresponding low-dimensional (LD) models, and remains
efficient both during fitting and prediction time.

In Section 2, we review some relevant related work. In Section 3, we describe the regularized Cox sur-
vival model and, in Section 4, we present our optimization technique that is tailored for tractably computing
coefficient estimates through efficient implementation and storage. We describe the data sets that we use
for our experiments in Section 5, and provide experimental results in Sections 6 and 7. Finally, we conclude
in Section 8 with directions for future work.

2. RELATED WORK

Efforts to achieve HDMSS survival analysis has been two-fold—to develop new statistical methods for
efficient data analysis (Shivaswamy and others, 2007; Evers and Messow, 2008; Ishwaran and others,
2010, 2011; Van Belle and others, 2011) and to extend the existing techniques to handle larger data
sets (Engler and Li, 2009; Friedman and others, 2010; Goeman, 2010). For example, the work of
Evers and Messow (2008) and Van Belle and others (2011) has extended the traditional supports vector
machines used for classification to survival analysis by additionally penalizing discordant pairs of obser-
vations. Other methods like those used by Ishwaran and others (2010, 2011) extend the use of random
forests for variable selection in survival analysis. Similarly, the method of Engler and Li (2009) uses an
elastic net approach for variable selection for survival analysis models while the work of Goeman (2010)
applies an efficient method to compute L1-penalized parameter estimates for Cox model. The recent review
article of Witten and Tibshirani (2010) provides a survey of the existing techniques for variable selection
and model estimation for HD survival analysis with moderate sample sizes.
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Some more recent tools such as coxnet (Simon and others, 2011) and fastcox (Yang and Zou,
2012) adopt optimization approaches that can scale to HDMSS data. Neither coxnet nor fastcox
currently support the requisite sparse matrix formats for the input data (although other models provided by
the R package glmnet do support sparse formats). Both coxnet and fastcox provide L1 and elastic
net regularized estimates under the Cox proportional hazards model.

3. REGULARIZED COX SURVIVAL ANALYSIS

Assuming a typical survival analysis setting, let n be the number of individuals in the training data. We
represent their survival times by yi = min(ti , ci ) for i = 1, . . . , n, where ti and ci are the time-to-event
(failure time) and right-censoring time for each individual. Let δi = I (ti � ci ) be the indicator variable such
that δi equals 1 if the observation is not censored and 0 otherwise. Further, let xi = [xi1, xi2, . . . , xip]� be a
p-vector of covariates for individual i . We assume that ti and ci are conditionally independent given xi and
that the censoring mechanism is non-informative. The observed data comprise triplets D = {(yi , δi , xi ) :
i = 1, . . . , n}.

Let β = (β1, β2, . . . , βp)
� be the p-vector of unknown, underlying model parameters. We assume that

the survival times y1, y2, . . . , yn arise in an independent and identically distributed fashion from density
and survival functions f (y | β) and S(y | β) parameterized by β, respectively. We are interested in the
likelihood L(β | D) of the parametric model, where

L(β | D) =
n∏

i=1

f (yi | β)δi S(yi | β)(1−δi ). (3.1)

The Cox proportional hazard model (Cox, 1972) posits a semi-parametric hazard function h(yi | β) =
f (yi | β)/S(yi | β) of the form

h(yi | β) = h0(yi | β) exp (β�xi ), (3.2)

where h0(yi | β) represents the unspecified baseline hazard function and covariates relate multiplicatively
to the hazard. Similarly, the survival function unfolds as

S(yi | β) = S0(yi | β)exp (β�xi ). (3.3)

Through the parameterizations (3.2) and (3.3), the likelihood function of (3.1) falls out as

L(β | D) =
n∏

i=1

[
h0(y | β) exp (β�xi )

]δi S0(y | β)exp (β�xi ). (3.4)

In the absence of explicit specification of the baseline hazard, it becomes hard to work with L(β | D)

directly. Alternatively, Cox (1972) proposes to maximize the partial likelihood function

L p(β | D) =
n∏

i=1

(
exp (β�xi )∑

t∈R(yi )
exp (β�xt )

)δi

, (3.5)

where R(yi ) represents the risk set of the i th observation; specifically, R(yi ) = {t : yt > yi }. Note the above
expression assumes that there are no tied survival times. In practice, for HDMSS data, it suffices to break
the ties by adding a small random quantity (uniform between [−10−5, 10−5]) to the event times. One
can then estimate β through the joint penalized partial likelihood L(β) ∝ L p(β | D)π(β), by assuming a
penalty π(β) for β that shrinks the components of β toward zero.
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3.1 The L2 penalty and ridge regression

For the L2 penalty, we have

π(β j | τ j ) = N (0, τ j ) = 1√
2πτ j

exp

(
− β2

j

2τ j

)
. (3.6)

The regularization or tuning parameters τ j , j = 1, . . . , p, are positive constants that control the degree of
regularization and we choose them through cross-validation. Smaller values of τ j imply stronger shrinkage
of β j toward zero. Absent further knowledge, we typically assume that τ1 = τ2 = · · · = τp. This formulation
is equivalent to performing ridge regression (Hoerl and Kennard, 1970) and generally it does not result in
a sparse solution.

3.2 The L1 penalty and lasso regression

For the L1 penalty, we have

π(β j | γ j ) =
√

γ j

2
exp (−√

γ j |β j |), (3.7)

where γ1, . . . , γp represent a vector of regularization or tuning parameters. Absent prior knowledge, we
assume that γ1 = γ2 = · · · = γp and select a value using cross-validation. This formulation is equivalent to
a lasso regression (Tibshirani, 1996). Using this approach, a sparse solution typically ensues, that is, many
components of the estimated β vector will be zero.

4. FINDING THE PARAMETER ESTIMATES

The penalized partial likelihood of β in the L2 case can be written as

LG(β) =
n∏

i=1

(
exp (β�xi )∑

t∈R(yi )
exp (β�xt )

)δi p∏
j=1

1√
2πτ j

exp

(
− β2

j

2τ j

)
. (4.1)

Maximizing L(β) is equivalent to maximizing

lG(β) =
n∑

i=1

δi

⎡
⎣β�xi − log

⎛
⎝ ∑

t∈R(yi )

exp (β�xt )

⎞
⎠
⎤
⎦−

p∑
j=1

(
log

√
τ j + 1

2
log 2π + β2

j

2τ j

)
, (4.2)

where the last negated sum is the penalty term. For the L1 case, we arrive at the penalized partial likeli-
hood lL(β) by replacing the penalty term above with −∑p

j=1(log 2 − log
√

γ j + √
γ j |β j |). For both L1

and L2 regularization, their respective negated log-penalized partial likelihoods are log-convex and a wide
range of optimization algorithms can be utilized. However, due to the high dimensionality of our appli-
cations, usual methods like Newton–Raphson are not feasible owing to their high memory requirements
and numerical instability. Many alternate optimization approaches exist for parameter estimation in HD,
regularized, regression problems (Zhang and Oles, 2000; Kivinen and Warmuth, 2001). We use the col-
umn relaxation with logistic loss (CLG) algorithm of Zhang and Oles (2000), a type of cyclic coordinate
descent algorithm, which provides the favorable property of scaling to HD data with ease of implementation
(Wu and Lange, 2008; Simon and others, 2011; Gorst-Rasmussen and Scheike, 2012). Genkin and others
(2007) adapt this method for performing large-scale logistic regression, implemented in the widely used
BBR/BXR software (http://www.bayesianregression.org). More recently, Mittal and others (2013) use the

http://www.bayesianregression.org
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method for fitting parametric survival analysis models and Suchard and others (2013) discuss how the
approach scales to massive sample size data sets for generalized linear models.

A cyclic coordinate descent algorithm begins by setting all variables to some initial value. While holding
all other variables constant, it then solves a 1D optimization problem to set the first variable to a value that
minimizes or drives downhill the objective function. The algorithm then finds the minimizing value of a
second variable, while holding all others constant (including the new value of the first variable). The third
variable is then optimized, and so on. When all variables have been traversed, the algorithm returns to the
first variable and starts again. Multiple passes are made over the variables until some convergence criterion
is met. Since the CLG method relies on 1D updates, it does not need to compute, store, or invert an HD
Hessian matrix. Below, we describe the details of the algorithm for minimizing the negated log-penalized
partial likelihood for both L1 and L2 penalties. For more details on the CLG method, see Zhang and Oles
(2000) or Genkin and others (2007).

Using the CLG algorithm, the 1D optimization problem involves finding β
(new)
j , the value of the j th

entry of β that minimizes −l(β), assuming that the other β j ’s are held at their current values. Therefore,
using (4.2) in the L2 case (and ignoring the constants log

√
τ j and 1

2 log 2π ), finding β
(new)
j is equivalent

to finding the z that minimizes

gG(z) = −z
n∑

i=1

δi xi j +
n∑

i=1

δi log

⎡
⎢⎣ ∑

t∈R(yi )

exp

⎛
⎜⎝ p∑

k=1
k �= j

βk xtk + zxt j

⎞
⎟⎠
⎤
⎥⎦+ z2

2τ j
. (4.3)

The classic Newton method approximates the objective function g(·) by the first three terms of its Taylor
series at the current β j ,

g(z) ≈ g(β j ) + g′(β j )(z − β j ) + 1
2 g′′(β j )(z − β j )

2, (4.4)

where

g′
G(β j ) = dgG(z)

dz

∣∣∣∣
z=β j

= −
n∑

i=1

xi jδi +
n∑

i=1

δi

∑
t∈R(yi )

xt j exp (β�xt )∑
t∈R(yi )

exp (β�xt )
+ β j

τ j
, (4.5)

g′′
G(β j ) = d2gG(z)

dz2

∣∣∣∣
z=β j

=
n∑

i=1

δi

∑
t∈R(yi )

x2
i t exp (β�xt )∑

t∈R(yi )
exp (β�xt )

−
n∑

i=1

δi

(∑
t∈R(yi )

xit exp (β�xt )∑
t∈R(yi )

exp (β�xt )

)2

+ 1

τ j
. (4.6)

Likewise, in the L1 case and β j �= 0, we replace the last term in (4.5) with
√

γ j × sign(β j ) to arrive at

g′
L(β j ) and drop the last term in (4.6) to generate g′′

L(β j ). The value of β
(new)
j for both types of penalties

can then be computed as

β
(new)
j = β j + �β j = β j − g′(β j )

g′′(β j )
. (4.7)

For steps crossing the origin under the L1 penalty, both directional derivatives take a similar form as
above. We compute the update in both directions and simple convexity arguments enable us to choose in
which direction to travel if at all. That is, if setting sign(β j ) = +1 yields �β j > 0, or setting sign(β j ) = −1
yields �β j < 0, we choose the corresponding update; otherwise, we keep β j at 0 (Genkin and others, 2007;
Wu and Lange, 2008).
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4.1 Efficient computation and storage

When updating β j , we extend the work of Suchard and others (2013) in developing efficient compu-
tation and storage representations tailored for HDMSS data sets. First, like several others previously
(Zhang and Oles, 2000; Genkin and others, 2007; Wu and Lange, 2008), we discover marked efficiency
in computing and storing the inner products ri = β�xi via the low-rank update r (new)

i = ri + xi j × �β j for
all i . More critically, however, large-scale data sets often consist of many indicator variables resulting in
xi that are sparse, such that xi j = 0 for the majority of vector components j . We implement specialized,
column-wise data structures to handle such sparse indicators that result in both significant reduction in
memory requirements and enhanced performance under cyclic coordinate descent when compared with
other traditional implementations. Further, Suchard and others (2013) describe how to translate this spar-
sity all the way through to computing the subject-specific gradient and Hessian contributions for a condi-
tional Poisson regression model. While these contributions take a similar form to the terms indexed by i in
(4.5) and (4.6), they do significantly differ. Under the Cox proportional hazards model, we must track and
update the series of cumulative sums introduced through the growing risk sets R(yi ) for each subject i .
Updating these prefix scans is costly, so we exploit the data sparsity by entering into this operation only if
at least one observation in R(yi ) has a non-zero covariate along dimension j and embarking on the scan
at the first non-zero entry instead of the beginning.

Finally, similar to Genkin and others (2007), our method employs a trust region approach in which
we threshold the allowable update step size for each component so that parameter updates stay within
the region where the quadratic function used in the Newton step remains a reasonable approximation to
the objective function. We also note that, similar to Genkin and others (2007), instead of iteratively updat-
ing each variable until convergence, we take a single step in the direction of the negative gradient before
proceeding on to the next variable. Because the optimal values of the other variables are themselves chang-
ing, tuning a particular variable to very high precision in each pass of the algorithm is not necessary.

5. EXPERIMENTS

We test our algorithm on two different real data sets. Below, we briefly describe the data sets and also
motivate their choice for our work.

5.1 Pediatric trauma

Injuries contribute to more deaths among children and adolescents that all other causes combined
(National Center for Injury Prevention and Control, 2006). Accurate prediction of the outcome of pedi-
atric trauma patients based on features present at the time of injury is essential for appropriate allocation
of resources upon patient arrival to the hospital as well as predicting their final outcome. The goal of this
portion of our work is to develop a model for predicting mortality after pediatric injury. Previous work
in this area has mainly used LD analysis, with the number of predictors typically <20 (Mackersie, 2006;
Resources for Optimal Care of the Injured Patient, 2006). While models utilizing a small number of pre-
dictors can be implemented in most standard statistical packages, the increase of dimensionality may lead
to a decline in predictive and computational performance.

We obtain our data set from the National Trauma Data Bank, a trauma database maintained by the
American College of Surgeons. The data set includes 210 555 patient records of injured children <15 years
old collected over 5 years (2006–2010). We divide these data into a training data set (153 402 patients for
2006–2009) and a testing data set (57 153 patients for 2010). The mortality rate of the training set is 1.68%,

while that of the test set is 1.44%. There are a total of 125 952 binary predictors indicating the presence
or absence of a particular attribute (or interaction among various attributes). We train our HD model using
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Table 1. Description of the predictors used for LD and HD models for pediatric trauma data

Predictor type # Predictors Description LD HD

Main effects
ICD-9 codes 1890 International classification of disease,

Ninth revision
✗ �

AIS codes (predots) 349 Abbreviated injury scale codes that
includes body region, anatomic structure
associated with the injury, and the level
of injury

✗ �

Interactions/combinations
ICD-9, ICD-9 102 284 Co-occurrences of two ICD-9 codes ✗ �
AIS code, AIS code 20 809 Co-occurrences of two AIS codes ✗ �
Body region, AIS score 41 Combinations of any of the nine body

regions with the injury severity score
(between 1 and 6) determined according
to the AIS coding scheme

� �

[Body region, AIS score],
[Body region, AIS score]

579 Co-occurrences of two [body region,
AIS score] combinations

✗ �

all the 125 952 predictors, while the LD model examines only 41 predictors. Table 1 summarizes various
predictors used within both the HD and LD models.

5.2 Breast cancer gene expression

In this experiment, we analyze a well-known breast cancer gene expression data set (van ’t Veer and others,
2002). This data set is publicly available and consists of cDNA expression profiles of 295 tumor samples
from patients diagnosed with breast cancer between 1984 and 1995 at the Netherlands Cancer Institute.
Overall, 79 (26.78%) patients died during the follow-up time and the remaining 216 are censored. The total
number of predictors (number of genes) is 24 885 each of which represents the log-ratio of the intensities
of the two color dyes used for a specific gene. We train the HD model using all of the 24 885 predictors.
For the LD model, we use the R glmpath (coxpath) package of Park and Hastie (2007) to generate the
entire regularized paths and rank predictors in the order of their relative importance. We pick the top five
predictors from the rank list and train an LD model on these for comparison. We randomly split the data
into training (67%) and testing (33%) sets such that the mortality rate in both sets is approximately equal
to the combined rate. We note that although this is not an HDMSS data set, analyzing gene expression
data sets under a survival analysis framework is an important application area with considerable research
interest.

5.3 Regularization parameter selection

To place the regularization parameters from the L1 and L2 penalities on the same scale, we reparameterize
via τ = τ j = σ 2 and γ = γ j = 2/σ 2, respectively, for all j . We then select their regularization parameters τ

and γ using a 4-fold cross validation on the training data. To accomplish this, we vary σ 2 between 10−3 and
106 by multiples of 10 and select the value that returns the highest penalized partial likelihood averaged
over the held-out validation sets.
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5.4 Performance evaluation

The performance of fitted time-to-event models can be evaluated by assessing the quality of discrimina-
tion and calibration they provide. Similar to other regression models, the log-partial likelihood of the test
data is a standard choice for comparing the discriminative power of various survival models. Among the
approaches that also take censoring into account, Harrell’s c-statistic (Harrell and others, 1982, 1996),
which is an extension of the usual area under the receiver–operator characteristics curve (AUC), has
become a popular choice among researchers (Chambless and others, 2011). To evaluate calibration of a
model for survival data, we use an overall goodness-of-fit test proposed in Grønnesby and Borgan (1996).
This test is an extension of the goodness-of-fit test for logistic regression models originally proposed by
Hosmer and Lemeshow (1980). We briefly describe these two metrics below.

5.4.1 Harrell’s c-statistic. Using this approach, we perform model discrimination by comparing the esti-
mated and observed ordering of risk scores between pairs of comparable subjects. Two subjects (i, j) are
comparable if at least one of the subjects in the pair develops the event (e.g. death) and the follow-up time
duration for that subject is less than that of the other, i.e. yi < y j and δi = 1. Further, a pair of compara-
ble subjects (i, j) is also concordant if the estimated risk of the subject who develops the event first is
more than that of the other subject, i.e. yi < y j , δi = 1 and ri > r j , where ri = β�xi and r j = β�x j are the
relative risk scores of the i th and j th subjects. Given a test set of n subjects, the c-statistic is written as

c-statistic = nξ

nζ

, (5.1)

where nζ and nξ are the total number of comparable and concordant pairs, respectively.

5.4.2 Hosmer–Lemeshow statistic. To estimate the overall goodness of fit using this test, we sort the
subjects in the order of their increasing relative risk scores (ri = β�xi , i = 1, . . . , n) and then divide them
into G equal-sized groups. For the gth group, the number of non-censored observations gives the observed
number of events og , while the number of expected events eg is equal to the sum of cumulative hazards
(3.2) of all the subjects in that group. Note that, we use Breslow’s estimator (Breslow, 1972) for computing
the baseline hazard. The χ2 statistic for the overall goodness of fit is given by

χ2 =
G∑

g=1

(og − eg)
2

eg
. (5.2)

6. RESULTS

We now compare the performance of the LD and HD Cox models on both data sets. The goal of these
experiments is to examine whether the HD Cox models made possible by our software deliver predictive
advantages over their lower-dimensional counterparts.

6.1 Pediatric trauma data

Table 2 summarizes the results of our LD and HD models under both the L1 and L2 penalties for the
pediatric trauma example. Note that under the L2 penalty, the estimate for any β j is never exactly zero and
thus all variables contribute to the final model. For this case, the number of predictors “selected” refers to
the number of significant predictors (|β j | > 10−4). Although this threshold is arbitrary, it still provides a
crude idea about the model complexity. Also, in the table, we compute the Hosmer–Lameshow χ2 statistic
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Table 2. Comparison of LD and HD models for pediatric trauma data with L2 (top)

and L1 (bottom) penalties

Predictors

Model type Overall Selected Log-likelihood c-Statistic χ2

Cox
LD 41 41 −6952.07 0.90 148.32
HD 125 952 90 373 −6709.96 0.94 190.82

Exponential
LD 41 41 −4270.01 0.88 124.39
HD 125 952 101 733 −4372.41 0.94 543.28

Weibull
LD 41 41 −4242.38 0.88 131.60
HD 125 952 101 794 −4557.10 0.94 749.22

Log-logistic
LD 41 41 −4120.66 0.89 95.37
HD 125 952 100 889 −3765.45 0.94 95.02

Log-normal
LD 41 41 −3234.00 0.89 76.95
HD 125 952 88 244 −3129.02 0.93 165.68

Cox
LD 41 38 −6952.02 0.90 143.73
HD 125 952 678 −6673.58 0.94 163.74

Exponential
LD 41 41 −4271.23 0.88 122.58
HD 125 952 153 −4034.67 0.92 94.34

Weibull
LD 41 41 −4243.57 0.88 126.84
HD 125 952 151 −3997.28 0.92 107.99

Log-logistic
LD 41 41 −4122.07 0.89 94.73
HD 125 952 432 −3777.83 0.94 83.00

Log-normal
LD 41 41 −3236.79 0.89 80.71
HD 125 952 168 −2974.49 0.93 89.36

For L2 penalization, the number of selected predictors refers to the number of significant predictors
(|β j | > 10−4). In both cases, bold emphases represent superior performance of one type of Cox model
over the other. For a more comprehensive comparison, the results obtained using four parametric models
(Mittal and others, 2013) are also presented in the lower parts of the table.

using G = 50. While the HD models for both the penalties have noticeably better discriminative power
(log-likelihood, c-statistic) than the corresponding LD models, the LD models are better calibrated.

To gain more understanding about the performance of Cox models, Table 2 also compares their respec-
tive predictive performance with that of four parametric survival models. These results are taken from our
recent work on large-scale regularized parametric survival models (Mittal and others, 2013). Note that, in
the interest of the context of this paper, bold emphasis is only used to highlight the superior performance of
one kind of Cox model over the other. Also note that since the log-likelihood for Cox and parametric models
are formulated differently, they are not directly comparable. The c-statistics and χ2 statistics demonstrate
that some parametric models provide similar discriminative performance when compared with the Cox
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models while being better calibrated. Moreover, in the case of L1 penalization, all parametric models use a
fewer number of predictors when compared with the Cox models. Both these observations indicate slight
overfitting of Cox models to the data when compared with their parametric counterparts. Readers are also
encouraged to refer to supplementary material available at Biostatistics online for an additional experiment
on the predictive performance of Cox models.

6.2 Breast cancer gene expression data

Table 3 shows the results of the gene expression example for LD and HD models using L1 and L2 penalties.
In this case, we compute the Hosmer–Lameshow χ2 statistic using just G = 10 due to the smaller size of

Table 3. Comparison of LD and HD models for gene expression data with L2 (top)

and L1 (bottom) penalties

Predictors

Model type Overall Selected Log-likelihood c-Statistic χ2

Cox
LD 5 5 −71.13 0.71 26.35
HD 24 496 24 026 −72.10 0.76 12.75

Exponential
LD 5 5 −86.26 0.71 16.83
HD 24 496 24 344 −98.72 0.75 112.69

Weibull
LD 5 5 −85.64 0.71 12.79
HD 24 496 22 299 −85.56 0.70 9.34

Log-logistic
LD 5 5 −85.65 0.70 14.74
HD 24 496 22 090 −86.14 0.70 5.37

Log-normal
LD 5 5 −52.10 0.70 16.02
HD 24 496 24 154 −65.14 0.66 23.61

Cox
LD 5 4 −71.10 0.71 30.19
HD 24 496 20 −72.64 0.71 7.49

Exponential
LD 5 5 −86.27 0.71 17.14
HD 24 496 13 −87.51 0.67 2.74

Weibull
LD 5 5 −85.63 0.71 12.79
HD 24 496 13 −86.80 0.66 3.75

Log-logistic
LD 5 5 −85.65 0.70 14.71
HD 24 496 9 −86.20 0.68 3.66

Log-normal
LD 5 5 −52.10 0.70 15.98
HD 24 496 9 −53.46 0.66 8.57

For L2 penalization, the number of selected predictors refers to the number of significant predictors
(|β j | > 10−4). In both cases, bold emphases represent superior performance of one type of Cox model
over the other. For a more comprehensive comparison, the results obtained using four parametric models
(Mittal and others, 2013) are also presented in the lower parts of the table.
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Table 4. Computation time (in seconds) taken for training LD and HD models using
L2 and L1 penalties for pediatric trauma (top) and gene expression (bottom) data

sets

L2 L1

Model type LD HD LD HD

Cox 0.28 525.12 0.27 498.37
Exponential 1.00 4453.00 1.00 2588.00
Weibull 3.00 3406.00 2.00 2600.00
Log-logistic 2.00 2794.00 2.00 3278.00
Log-normal 6.00 3250.00 6.00 3101.00

Cox 0.01 0.80 0.01 0.59
Exponential 1.00 4.00 1.00 8.00
Weibull 1.00 12.00 1.00 30.00
Log-logistic 1.00 13.00 1.00 38.00
Log-normal 1.00 51.00 1.00 52.00

For a more comprehensive comparison, the run-times of four parametric models (Mittal and others,
2013) are also presented.

the test data set. While the discriminative performance of both the methods is similar for both types of
penalization, the HD model is better calibrated. The case of L1 penalization is particularly interesting since,
in this case, the HD model is four times better calibrated than the LD model using only 20 predictors. Also,
significantly better calibration of this model compared with the HD L2 penalized one (that uses almost
all predictors) suggests model overfitting in the latter case. Like the previous example, the corresponding
results of four types of regularized parametric models are also presented for comparison.

7. COMPUTATION TIME

Table 4 reports the time taken for fitting Cox models for the optimum value of the regularization parameter
(found using 4-fold cross-validation as described in Section 5.3) to the two sets of LD and HD data sets. We
perform all of these experiments on a system with an Intel 2.4 GHz processor and 8 GB of memory. Even
though the time taken to fit HD models to the pediatric trauma data set is much greater than that taken to
fit LD models, given the scale of the problem (153 402 patients with 125 952 predictors), the performance
of the method may be acceptable in many applications. For the sake of completion, we also present the
corresponding computation times of the four parametric models (Mittal and others, 2013).

We also provide detailed comparisons between the performance of our method with that of the coxnet
method (Simon and others, 2011). For the first set of comparisons, like our method, coxnet was also
subjected to a 4-fold cross-validation over the training sets using a fixed set of regularization values (i.e.
σ 2 varied between 10−3 and 109 by multiples of 10). For a fair comparison, we adjusted the convergence
threshold of our method such that both the methods always returned similar log-partial likelihood values at
convergence. Table 5 shows the run-times in seconds for both methods on an LD pediatric trauma data set
(large n and small p) and HD gene expression data set (small n and large p). The corresponding log-partial
likelihood values obtained at convergence are in parentheses.

It is known that coxnet’s performance is most optimized for fitting the entire regularization path
automatically chosen by the algorithm. To this end, we also subjected our method to cross-validation
over the regularization path chosen by coxnet. For an LD pediatric trauma data set with L1 penalty,
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Table 5. Comparison of computation times (in seconds) taken for training coxnet
and our method

LD pediatric trauma HD gene expression

Model type L2 L1 L2 L1

coxnet 27.0 (−24692.2) 8.1 (−25756.1) 628.6 (−240.8) 213.5 (−279.6)

Our method 9.7 (−24690.9) 5.8 (−25714.9) 22.2 (−208.1) 19.4 (−266.1)

coxnet 112.0 (−24739.8) 59.5 (−24695.6) 38.5 (−255.2) 29.3 (−255.3)

Our method 53.0 (−24730.8) 43.0 (−24690.6) 98.5 (−210.3) 45.4 (−45.7)

Top: the cross-validation for both the methods was performed by varying the hyperparameter value between
10−3 and 109 by multiples of 10. Bottom: the cross-validation for both the methods was performed over
the regularization path chosen by coxnet. The corresponding penalized log-likelihood achieved at con-
vergence are in parentheses. Bold emphases represent superior performance of one method over the other.

the regularization path selected by coxnet consisted of 65 different values. For all other settings, the
path length was 100. Table 5 shows the corresponding results.

Similar run-time comparisons for an LD gene expression data set were intentionally skipped due to the
very small size of the training data (n = 197, p = 5). More importantly, we were not able to load the HD
pediatric trauma data set (n = 153 402, p = 125 952) into coxnet since it does not support sparse matrix
formats for the input data.

8. CONCLUSIONS

We present a tool to perform regularized Cox survival analysis on HDMSS data. Through our experiments,
we demonstrate that, with the advantage of fitting directly on HDMSS data, we can obtain models that
have better predictive accuracy and calibration. We provide a freely available software tool that imple-
ments our proposed algorithm. This tool is a part of our HD, regularized, generalized linear models
library that can also utilize inexpensive, massively parallel devices known as graphics processing units
(Suchard and others, 2013). These devices can provide more than an order-of-magnitude speed-up and in
principle could be easily applied for the work presented in this paper. Bayesian extensions to our current
work could explore the hierarchical framework to simultaneously model multiple time-to-event endpoints
and also model multi-level structure such as patients nested within hospitals. Owing to their competitive
performance, we also plan to extend our current work to more efficient implementation of parametric
models than the one that currently exists (Mittal and others, 2013).

9. SOFTWARE

We have publicly released the C++ implementation of our algorithm. This code is a part of our software
for HD, regularized, generalized linear models (Suchard and others, 2013). The code can be downloaded
from http://bsccs.googlecode.com. Computation of various evaluation measures discussed in Section 5 is
also integrated into the code.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

http://bsccs.googlecode.com
http://biostatistics.oxfordjournals.org
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