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Abstract. Let M be an analytic connected 2-manifold with empty boundary, over the
ground field F= R or C. Let Y and X denote differentiable vector fields on M . We say
that Y tracks X if [Y, X ] = f X for some continuous function f : M→ F. A subset K of
the zero set Z(X) is an essential block for X if it is non-empty, compact and open in Z(X),
and the Poincaré–Hopf index iK (X) is non-zero. Let G be a finite-dimensional Lie algebra
of analytic vector fields that tracks a non-trivial analytic vector field X . Let K ⊂ Z(X)
be an essential block. Assume that if M is complex and iK (X) is a positive even integer,
no quotient of G is isomorphic to sl(2, C). Then G has a zero in K (main result). As a
consequence, if X and Y are analytic, X is non-trivial, and Y tracks X , then every essential
component of Z(X) meets Z(Y ). Fixed-point theorems for certain types of transformation
groups are proved. Several illustrative examples are given.
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1. Introduction
A fundamental issue in dynamical systems is deciding whether a vector field on a manifold
has a zero. When the manifold is compact with empty boundary and non-vanishing Euler
characteristic, a positive answer is given by the celebrated Poincaré–Hopf theorem.

Determining whether a set of vector fields have a common zero is more challenging.
This problem is closely related to the question of which non-compact transformation
groups have fixed points (see [1, 4, 5, 10, 14, 24, 30, 33, 35–37]).

Throughout this paper manifolds are real or complex with the corresponding ground
field denoted by F= R or C. Each manifold N has a distinguished analytic structure,
holomorphic in the complex case, and empty boundary ∂N unless the contrary is indicated.
Objects associated to N are assumed analytic unless the contrary is mentioned.

The dimension of N over F is denoted by dimFN or by dim N when the ground field
is clear from the context. V(N ) is the vector space over F of continuous vector fields on
N , with the compact open topology, while Vk(N ), k ∈ {1, . . . ,∞} (respectively, Vω(N ))
denotes the subalgebra of vector fields that are Ck-differentiable (respectively, analytic
over F). Of course V1(N )= Vω(N ) when N is complex.

Consider a subset A⊂ V(N ). The set of their common zeros is Z(A) :=
⋂

X∈A Z(X),
where Z(X) is the set of zeros of X . A set S ⊂ P is X-invariant if it contains the orbits
under X of its points. When this holds for all X in A, we say that S is A-invariant.

Suppose that X ∈ V(N ), ∂N = (the empty set), U ⊂ N is open with compact closure
U and Z(X) ∩ (U \U )=∅. The index of X on U , denoted by i(X,U ) ∈ Z (the group of
integers), is defined as the Poincaré–Hopf index of any sufficiently close approximation
X ′ ∈ V(U ) to X |U (in the compact open topology) such that Z(X ′) is finite. Equivalently:
i(X,U ) is the intersection number of X |U with the zero section of the tangent bundle
(see Bonatti [3]). This number is independent of the approximation, and is stable under
perturbation of X and replacement of U by smaller open sets containing Z(X) ∩U .

When X is C1 and generates the local flow φ on M , for sufficiently small t > 0 the
index i(X,U ) equals the fixed-point index I (φt |U ) defined by Dold [7].

A compact set K ⊂ Z(X) is a block of zeros for X (or an X-block) provided K is non-
empty and relatively open in Z(X), that is to say, provided K is non-empty and Z(X) \ K
is closed in M . Observe that a non-empty compact K ⊂ Z(X) is an X -block if and only
if it has a precompact open neighborhood U ⊂ N , called isolating for (X, K ), such that
Z(X) ∩U = K (manifolds are normal spaces). This implies that i(X,U ) is determined
by X and K , and does not depend on the choice of U . The index of X at K is iK (X) :=
i(X,U ). The X -block K is essential provided iK (X) 6= 0, which implies that K 6=∅.

The notions of ‘block’ and ‘index’ are well defined for holomorphic vector fields on a
complex manifold, since these are also vector fields (sections of the tangent bundle) on the
underlying real manifold.

If N is compact with empty boundary, it is isolating for every vector field on N and its
set of zeros.

THEOREM. (Poincaré–Hopf [18, 31]) Suppose that N is compact, ∂N =∅ and X∈V(N ).
Then iZ(X)(X)= i(X, N )= χ(N ).
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For calculations of the index in more general settings, see Morse [28], Pugh [32], Gottlieb
[8] and Jubin [21].

This paper was inspired by a remarkable result of Bonatti, which does not require
compactness of N†.

THEOREM. (Bonatti [3]) Assume that N is a real manifold of dimension ≤4 and X, Y
are analytic vector fields on N such that [X, Y ] = 0. Then Z(Y ) meets every essential
X-block‡.

Here is the fundamental new concept in this paper.

Y tracks X provided Y and X are C1 vector fields on a real or complex
manifold N , and [Y, X ] = f X for some continuous function f : N → F,
referred to as the tracking function.

A set A of vector fields tracks X provided each element of A tracks X .

Suppose that X is non-trivial on each connected component of N . In the complex case
it it is easily seen that the tracking function f is holomorphic. But in the real case f need
not even be smooth (see §4).

Example. If X spans a one-dimensional ideal of a Lie algebra G ⊂ V1(N ) (meaning a
Lie subalgebra), then G tracks X . But the converse does not always hold, even for finite-
dimensional G (see Example 3.1).

In the rest of this section we postulate that:
• M is a real or complex two-dimensional connected manifold with empty boundary;
• X ∈ Vω(M) is non-trivial;
• K is an essential X -block;
• G ⊂ Vω(M) is a Lie algebra that is finite dimensional over the ground field;
• G tracks X .

This is our main result.

THEOREM 1.1. (Main) Assume that:
(*) if M is complex and iK (X) is positive and even, no quotient of G is isomorphic to

sl(2, C).
Then Z(G) ∩ K 6=∅.

The proof is given in §6.

† ‘The demonstration of this result involves a beautiful and quite difficult local study of the set of zeros of X , as
an analytic Y -invariant set.’: see Molino [25].
‡ In [3], this is stated for dim(N )= 3 or 4. If dim(N )= 2, the same conclusion is obtained by applying the
three-dimensional case to the vector fields X × t∂/∂t, Y × t∂/∂t on N × R.
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Z(G) ∩ K can be empty when hypothesis (*) is omitted (Example 3.1 and Theorem
2.6). But if M is compact and connected with non-zero Euler characteristic, there are strict
limitations on M and G, as shown in Theorem 2.6 and Remark 6.7. Summarizing these
two results, we have the following theorem.

THEOREM 1.2. Assume that M is compact and complex, χ(M) 6= 0 and Z(G) ∩ Z(X)
= ∅. Then M is a holomorphic CP1-bundle over CP1 and G is isomorphic to sl(2, C),
gl(2, C) or the product of sl(2, C) with the affine algebra of C.

The first step in the proof of Theorem 1.1 is the special case G = F (Lemma 6.1). This
result is interesting in itself.

COROLLARY 1.3. If Y ∈ Vω(M) tracks X, then Z(Y ) ∩ K 6= ∅.

Analyticity is crucial here: there are C∞ counterexamples (see [1, 24, 30, 39]).
Nevertheless, Corollary 1.3 holds if X and Y are C1 and [X, Y ] = 0 (see Bonatti
[2, Proposition 11])†.

COROLLARY 1.4. If G ⊂ Vω(M) is a solvable Lie algebra tracking X, then
Z(G) ∩ K 6=∅.

Proof. This follows from Theorem 1.1 because solvability of G validates hypothesis (*).
�

THEOREM 1.5. Consider a compact complex 2-manifold M with χ(M) 6= 0. If G ⊂
Vω(M) is a solvable Lie algebra, then Z(G) 6=∅.

Proof. G is isomorphic to a Lie algebra of upper triangular matrices by Lie’s theorem
[20]. If G 6= {0}, some X ∈ G spans a one-dimensional ideal and is thus tracked by G.
Since Z(X) is an essential X -block by the Poincaré–Hopf theorem, the conclusion follows
from Theorem 1.1 applied to the essential X -block K := Z(X). �

Remark 1.6. The analog of Theorem 1.5 for real manifolds is not true: the vector fields

∂/∂x, ∂/∂y, −y(∂/∂x)+ x(∂/∂y)

on R2 extend over the real projective plane RP2 to span a three-dimensional solvable
Lie algebra G ⊂ Vω(RP2) with Z(G)=∅. But the real analog holds provided G is
supersolvable: faithfully represented by upper triangular real matrices (see Hirsch and
Weinstein [17]).

1.1. Lie group actions. Let G denote a Lie group over the same ground field F as M .
An action of G on M is an F-analytic map

α : G × M→ M

such that the map
gα : p→ α(g, p)

† This can also be proved using the methods of Molino and Turiel [26, 27].
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is a homomorphism from G to the group of F-analytic diffeomorphisms of M (see Palais
[29]). This action is also denoted by (α, G, M) or simply by (G, M). Its fixed-point set is

Fix(α)= Fix((G, M)) := {p ∈ M : gα(p)= p (g ∈ G)}.

The action is effective if its kernel is trivial, and almost effective if its kernel is discrete.
An analytic action (α, G, M) gives rise to a homomorphism dα from the Lie algebra

G of G onto a subalgebra Gα ⊂ Vω(M); this is the infinitesimal action determined by
α. Note that dα is injective if and only if α is almost effective. When G is connected,
Fix(α)= Z(Gα).
• In the next two results G is connected and the action (α, G, M) is analytic.

THEOREM 1.7. Assume that:
(a) M is compact and χ(M) 6= 0;
(b) G contains a one-dimensional normal subgroup;
(c) if M is complex and χ(M) is positive and even, then the Lie algebra of G does not

have sl(2, C) as a quotient;
(d) the action (α, G, M) is almost effective.
Then Fix(α) 6=∅.

Proof. By Hypothesis (b), some X ∈ Gα spans a one-dimensional ideal. Because Gα tracks
X , and the X -block Z(X) is essential by Poincaré–Hopf, the conclusion follows from
Theorem 1.1. �

Applying Theorem 1.5 to the Lie algebra Gα ⊂ Vω(M) yields the following corollary.

COROLLARY 1.8. Assume that:
(i) M is complex and compact, and χ(M) 6= 0;
(ii) G is solvable.
Then Fix(α) 6=∅.

The real analog of Corollary 1.8 is not generally true (see Remark 1.6), but for
supersolvable Lie groups it follows from Theorem 1.7 and was first proved by Hirsch
and Weinstein [17].

Corollary 1.8 is reminiscent of the celebrated fixed-point theorem of Borel [5, 19] for
algebraic actions of solvable algebraic groups on projective varieties over an algebraically
closed field, and its extension to holomorphic actions on Kaehler manifolds by Sommese
[35]. While these theorems have strong algebraic hypotheses, they make no assumptions
on dimensions or Euler characteristics.

1.2. Earlier results. Turiel [38] listed all the Lie groups having fixed-point-free analytic
actions on compact connected real surfaces of non-zero Euler characteristic.

The existence of fixed points for continuous actions on compact real surfaces with non-
zero Euler characteristic was proved by Lima [24] for the group Rn . This was extended
by Plante [30] to connected nilpotent Lie groups and by Hirsch [12] to nilpotent local
actions. Lima [24] and Plante proved that every compact surface supports a continuous
fixed-point-free action by the orientation-preserving affine group A f f+(R). It belongs to
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the folklore that this kind of action can be taken smooth (see Belliart [1]; see Turiel [39]
for an elementary construction).

Related results are in the articles [4, 10–14, 33, 36, 37]. Preliminary versions of this
paper were published as [15, 16].

2. Lie algebras on compact connected complex 2-manifolds without common zeros
Our purpose in this section is to describe all the compact cases in which Theorem 1.1 fails
when hypothesis (*) is deleted. As we will see, essentially there are only two models.

Before constructing them, let us recall some well-known facts.
One starts with the notion of index transverse to a compact submanifold. Consider a

compact one-codimensional submanifold P of a real or complex manifold N and a vector
field X on N (our objects are supposed to be analytic, but in the real case smooth suffices).
Assume the existence of an open set P ⊂ A ⊂ N such that Z(X) ∩ A = P .

Now consider p ∈ P . Suppose that there exists a one-dimensional foliation F defined
on an open set p ∈ B ⊂ A such that:
• X is tangent to F , that is to say, X (x) ∈ TxF for each x ∈ B, where TF denotes the

involutive distribution associated to F ;
• Tq N = TqF ⊕ Tq P for every q ∈ B ∩ P .

Note that if F exists, it is unique because this foliation is defined by X on B − P .
Let L p denote the leaf of p. Since L p is a leaf of F , and so a submanifold that is

transverse to P , X |L p may be seen as an analytic vector field on the manifold L p whose
singularities are isolated.

By definition, the index of X at p transverse to P is that of p as a singularity of X |L p

in L p.
Stability of the Poincaré–Hopf index can be used to prove that:

• the index of X |L p at p is independent of B and locally constant;
• when P is connected and the index is defined at every point, it is also independent of

p and we call it the index of X transverse to P .
Recall that the sphere S2 admits a unique complex structure up diffeomorphism, usually

represented by CP1. Besides, the group of diffeomorphisms (biholomorphic maps) of
CP1 is the projective group PGL(2, C), which is the quotient of SL(2, C) by {I,−I},
where I ∈ SL(2, C) denotes the identity. Thus, Vω(CP1) equals the algebra of projective
vector fields, which is isomorphic to sl(2, C).

Note that the structure group of holomorphic fibre bundles over CP1 with fibre CP1 is
PGL(2, C). Since Z2 is the fundamental group of PGL(2, C), from the real point of view,
there only exist two fibre bundles over CP1 with fibre CP1; more exactly, CP1

× CP1

and CP2]CP
2
, which is the result of blowing up a point of CP2.

Actually in the C∞-category there are only two fibre bundles over S2 with fibre S2

(Diff+(S2) strongly retracts onto SO(3) (see Smale [34])).
From the complex viewpoint things are different because a holomorphic map from an

open set A ⊂ C, which includes S1, into SL(2, C) extends to D2 in the C∞-category but
not always like a holomorphic map.
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Model 2.1. (Z(X) is connected) On CP1 consider the projective vector field X̃ , which
on C⊂ CP1 is written as z2∂/∂z. Set M = CP1

× CP1; let π1, π2 be the canonical
projections. On the other hand, let G ⊂ Vω(M) be the Lie algebra tangent to the first
factor and isomorphic by (π1)∗ to Vω(CP1), and X the vector field on M tangent to the
second factor whose projection by (π2)∗ equals a X̃ , a ∈ C \ {0}. Clearly, [X, G] = 0.

Moreover, Z(G)=∅, so Z(X) ∩ Z(G)=∅, while Z(X) is a 1-submanifold
diffeomorphic to CP1 and transversely to it the index of X equals 2.

Remark 2.2. (A compactification construction) Since Ck
⊂ CPk , any linear

transformation of Ck is the restriction of a projective transformation of CPk and GL(k, C)
can be regarded as a subgroup of PGL(k + 1, C) in a natural way. Now consider a
holomorphic line bundle π : E→ N . Completing each fibre with its own infinity point
gives rise to a new holomorphic fibre bundle π : Q→ N with fibre CP1 (for sake of
simplicity the projection map is still denoted π ).

More exactly, if {Uλ}λ∈L is a trivializing open covering of N with transition functions
gλµ : Uλ ∩Uµ→ GL(1, C) associated to π : E→ N , then at the same time it is associated
to π : Q→ N if GL(1, C) is seen as a subgroup of PGL(2, C) and, therefore, every gλµ
takes its values in PGL(2, C).

Let Q0 be (the image of) the zero section of E and set Q∞ : = Q \ E . Clearly, Q∞
is a complex submanifold, which we will call the infinity section, and π : Q∞→ N is a
diffeomorphism.

The radial vector field R of E extends to a vector field on Q still called R since the
diffeomorphism z ∈ C \ {0} → z−1

∈ C \ {0} transforms z(∂/∂z) into −z(∂/∂z). Besides,
Z(R)= Q0 ∪ Q∞ and transversely to Q0 and Q∞ the index of R equals 1.

Set E ′ : = Q − Q0. As any diffeomorphism ρ : C→ C which preserves −z(∂/∂z) is
a linear automorphism, π : E ′→ N has a natural structure of a holomorphic line bundle
with zero section Q∞ and radial vector field −R. With respect to the open covering of N
given before, its transition functions g′λµ are g′λµ = g−1

λµ . Thus, c1(E ′)=−c1(E), where
c1 denotes the first Chern class. Moreover, if one adds the infinity point to each fibre of
E ′, one obtains π : Q→ N again but this time Q0 is the infinity section.

Of course the constructions above do not depend on the trivializing open covering of N .

Remark 2.3. Let π : E→ N be a holomorphic vector bundle and R its radial vector field.
Consider a diffeomorphism f : E→ E that preserves R. Then f maps fibres into fibres,
which induces a second diffeomorphism f̃ : N → N such that f̃ ◦ π = π ◦ f and every
f : π−1(q)→ π−1( f̃ (q)), q ∈ N , is a linear isomorphism.

Indeed, f has to map Z(R), that is, the zero section of E , into itself. On the other hand,
each fibre π−1(q) is the set of all the points of E that have the zero of π−1(q) as α-limit.

Moreover, if π : E→ N is a holomorphic line bundle and π : Q→ N its
compactification given in Remark 2.2, then f extends to a diffeomorphism of Q (obvious
since each f : π−1(q)→ π−1( f̃ (q)) is linear and so projective). Thus, any complete
vector field Y on E such that [Y, R] = 0 extends to a vector field on Q.

Indeed, let 8t be the flow of Y . Then every 8t preserves R, so maps fibres into fibres,
which implies that Y is foliate with respect to fibres. Moreover, Y has to be tangent to
Z(R), that is, to the zero section. Therefore, if U is a trivializing open set of N and one
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identifies π−1(U ) with U × C endowed with variables (y, z), one has

Y (y, z)= Ỹ (y)+ ϕ(y, z) · z
∂

∂z
,

where Ỹ is a vector field on U .
But [Y, R] = 0 and R = z(∂/∂z), so the function ϕ depends only on y. Since the

compactification of U × C is U × CP1 and clearly Ỹ and ϕ · z(∂/∂z) extend to U × CP1,
so does Y .

Model 2.4. (Z(X) is not connected) These kinds of examples are constructed on the
compactification given in Remark 2.2 of holomorphic line bundles over CP1. As the
Picard group of CP1 is Z, these line bundles are holomorphically classified by their first
Chern class [9]. We will need the following result.

LEMMA 2.5. Let π : E→ CP1 be a holomorphic line bundle and R its radial vector field.
Then there exists one and only one Lie algebra G ⊂ Vω(E) such that:
• [R, G] = 0;
• G is isomorphic by π∗ to Vω(CP1).

Moreover, G comes from an action of SL(2, C) on E. Therefore, its elements are
complete vector fields.

Proof. Uniqueness: let G,H be as in the lemma. Since the elements of G and H are
tangent to the zero section and π∗ : G→ Vω(CP1), π∗ : H→ Vω(CP1) isomorphisms,
every element of H may be written as Y + aY R, where Y ∈ G and aY : E→ C is
holomorphic. Now [R, Y + aY R] = 0 implies that aY is constant along fibres. Therefore,
aY = bY ◦ π , where bY : CP1

→ C is a holomorphic function and so constant. In other
words, H= {Y + aY R : Y ∈ G, aY ∈ C}. But I = {Y ∈ G : aY = 0} is a non-zero ideal, so
aY = 0 for whichever Y ∈ G and H= G.

Existence: given a holomorphic line bundle π : E→ CP1, it suffices to show
the existence of an action α : SL(2, C)× E→ E which is almost effective and fibre
preserving. Recall that fibre preserving means the existence of a second action (the
projected one on the basis CP1) β : SL(2, C)× CP1

→ CP1 such that π(α(g, e))=
β(g, π(e)) and α(g, ) : π−1(p) 7→ π−1(β(g, p)) is a linear isomorphism for any g ∈
SL(2, C), e ∈ E and p ∈ CP1. For that, one will show the existence of such an action
of SL(2, C) for any value of the first Chern class.

First observe that given two almost effective actions (α, SL(2, C), E) and
(α′, SL(2, C), E ′) related by π to actions (β, SL(2, C), CP1) and (β ′, SL(2, C), CP1),
respectively, if β = β ′, then there exists a natural almost effective action of SL(2, C) on
E ⊗ E ′ related by π to β = β ′. Moreover, c1(E ⊗ E ′)= c1(E)+ c1(E ′).

On the other hand, an action of SL(2, C) on E induces an action on its dual vector
bundle E∗, both over the same action on CP1 (recall that c1(E∗)=−c1(E)).

Thus, it suffices to construct it on the canonical line bundle E1 over CP1. But it is
well known that the natural action of SL(2, C) on C2 induces such an action on E1 first
by setting g · (v, w)= (g · v, g · w) on F̃ : = {(v, w) ∈ (C2

\ {0})× C2
: v ∧ w = 0} and

then by considering the induced action on the quotient E1 of F̃ under the equivalence
relation (v, w)R(v′, w′)⇔ v ∧ v′ = 0 and w = w′. �
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Consider a holomorphic line bundle π : E→ CP1 and its compactification given in
Remark 2.2. Depending on the context, denote by G the Lie algebra of Lemma 2.5 or its
extension to M , which exists because G on E consists of complete vector fields (Remark
2.3). Analogously, R will be the radial vector field on E or its extension to M .

Always on M note that [G, R] = 0 and G is isomorphic by π∗ to Vω(CP1), so Z(G)= ∅
since Z(Vω(CP1))= ∅. Therefore, (M, X, G), where X = a R, a ∈ C \ {0}, is an example
in which Theorem 1.1 fails, and Z(X)= M0 ∪ M∞, where M0 is the zero section and M∞
the infinity one (Q0 and Q∞ in the notation of Remark 2.2). Obviously, Z(X) possesses
two connected components.

Clearly, π : E→ CP1 and π : E ′→ CP1, where E ′ : = M − M0, give rise to the same
example (up to a non-zero coefficient multiplying X ), so these examples depend only on
the absolute value of the first Chern class.

When |c1(E)| 6= 0, this number equals the order of the fundamental group of
M − Z(X)= M − (M0 ∪ M∞). If |c1(E)| = 0, then the fundamental group of M − Z(X)
is Z. Thus, |c1(E)| is an invariant which classifies this kind of example up to a non-zero
coefficient multiplying X .

In compact complex 2-manifolds with non-vanishing Euler characteristic, Models 2.1
and 2.4 are the only ways for constructing Lie algebras tracking non-trivial vector fields
with no common zero. More exactly, we have the following theorem.

THEOREM 2.6. Let M be a compact connected complex 2-manifold with χ(M) 6= 0.
Assume that G ⊂ Vω(M) is a finite-dimensional Lie algebra that tracks a non-trivial vector
field X ∈ Vω(M). If Z(X) ∩ Z(G)=∅, then the following conditions hold.
(a) M is a holomorphic fibre bundle over CP1 with fibre CP1 and hence M is simply

connected and χ(M)= 4.
(b) G contains a subalgebra A isomorphic to sl(2, C) with Z(A)=∅.
(c) (M, X,A) is holomorphically equivalent to the example of Model 2.1 or to any of

the examples of Model 2.4.

This result will be proved in §6 (see Remark 6.7 for more details on the algebra G).

Example 2.7. Let M be a compact connected complex 2-manifold, Assume that:
• G ⊂ Vω(M) is a subalgebra isomorphic to gl(2, C);
• A⊂ G is the unique subalgebra of G isomorphic to sl(2, C) [20] and X ∈ G spans the

center of G;
• Z(G) 6=∅. (The case Z(G)=∅ is described by Theorem 2.6 when χ(M) 6= 0.)

Lemma 5.4, applied to X and A, shows that Z(G) is a finite set, {p1, . . . , pr },
r ≥ 1 and Z(G)= Z(A). Blowing up all these points gives rise to another compact
connected complex 2-manifold M ′, a vector field X ′ ∈ Vω(M ′) coming from X and a Lie
algebra A′ ⊂ Vω(M ′) isomorphic to A (and hence to sl(2, C)). Moreover, Z(A′)=∅;
indeed, as A is simple, A0(pk)/A1(pk) equals the special linear algebra sl(Tpk M) for
each k = 1, . . . , r (see §5 for definitions) and this zero of A is deleted by the blowup
process. Indeed, after blowing up pk , the action of A at this point, more exactly that
of A0(pk)/A1(pk) on Tpk M , becomes the natural action of sl(Tpk M) on the complex
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projective space CP(Tpk M) of vectorial lines of Tpk M and this one has no zero on
CP(Tpk M) (see [6, pp. 19–20] and [9]).

LEMMA 2.8. The linear part of X at pk equals akId, ak ∈ C \ {0} and χ(M ′) > 0.

Proof. As Z(A′)=∅, dim A′(p)≥ 1 for whichever p ∈ Z(X ′). If, for some p in this last
set, dim A′(p)= 2, then X ′ vanishes near p and, by analyticity, X ′ = 0 on M ′, which
is not the case. Hence, dim A′(p)= 1 for every p ∈ Z(X ′). By (b) of Lemma 5.6,
this implies that Z(X ′) is a compact one-dimensional submanifold of M ′ consisting of a
finite number N1, . . . , N` of compact 1-orbits of A′ each of them diffeomorphic to CP1.
Moreover, the index r j of X ′ transverse to N j is positive. An elementary computation
shows that χ(M ′)= 2(r1 + · · · + r`), which is a positive integer provided Z(X ′) is not
empty. But Z(X ′) 6= ∅ because at least it contains the 1-submanifolds added by the blowup
of {p1, . . . , pr }. Indeed, the linear part of X at pk has to be akId, ak ∈ C, otherwise
A0(pk)/A1(pk)= sl(Tpk M) does not commute with it and [X,A] 6= 0.

On the other hand, if ak = 0, as [X,A] = 0 and A0(pk)/A1(pk)= sl(Tpk M), all `-jets
of X at pk vanish and X = 0. (Recall that any homogeneous polynomial vector field on
C2 of degree ≥ 2 that commutes with all the linear vector fields whose trace equals zero
vanishes, and apply this property to the first non-zero term of the Taylor’s expansion of X
when pk ≡ 0.) �

It follows from the blowup construction that M and M ′ have the same fundamental
group and χ(M ′)= χ(M)+ r . Theorem 2.6 shows that M ′ is simply connected and
χ(M ′)= 4. Therefore, M is also simply connected and χ(M)≤ 3. Since S4 has no
complex structure, topologically M is CP2 and r = 1.

As the linear part of X at p1 equals a1Id, a1 ∈ C \ {0}, transversely to CP1
≡

M ′ \ (M \ {p1}) the index of X ′ equals 1 and (M ′, X ′,A′) follows Model 2.4 for the
canonical line bundle E1 since the normal vector bundle of M ′ \ (M \ {p1}) is isomorphic
to E1.

As the examples of Model 2.4 are determined by the absolute value of their first Chern
class, if one considers a second manifold N , H⊂ Vω(N ), B ⊂H and Y ∈H under the
same conditions as M , G, A and X , and one blows up the only singular point q1, then
there is a (holomorphic) diffeomorphism ϕ : M ′→ N ′ which transforms A′ into B′ and
X ′ into aY ′ for some a ∈ C \ {0}. Besides, ϕ(M ′ \ (M \ {p1}))= N ′ \ (N \ {q1}) because
the first Chern classes of their respective normal vector bundles are the same, that of E1

(notice that the first Chern class of the other component of Z(X ′), or of Z(Y ′), is the
opposite one).

Now, crushing M ′ \ (M \ {p1}) and N ′ \ (N \ {q1}) respectively into a point gives rise
to a homeomorphism ψ : M→ N with ψ(p1)= q1. Clearly, ψ : M \ {p1} → N \ {q1} is
biholomorphic, so ψ : M→ N is biholomorphic too and transforms G into H.

In other words, up to isomorphism there is only one example of a manifold M and a
subalgebra G as above. For instance: M = CP2 and G the subalgebra of those projective
vector fields that on C2

⊂ CP2 are linear.
Let G be a connected Lie group and let N , P be two compact connected manifolds

(both real or both complex). Given two actions α : G × N → N and β : G × P→ P ,
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we will say that they are equivalent if there exist a diffeomorphism ψ : N → P and an
automorphism λ : G→ G such that

α(g, p)= ψ−1(β(λ(g), ψ(p)))

for any (g, p) ∈ G × N . Assume that α and β are effective. From [29], it follows that if
there is a diffeomorphism ψ : N → P which transforms Im dα into Im dβ , then α and β
are equivalent. Therefore, we have the following theorem.

THEOREM 2.9. Any effective holomorphic action of GL(2, C) on a connected compact
complex 2-manifold M which possesses a fixed point is holomorphically equivalent to the
natural action of GL(2, C) on CP2.

3. Other examples
In this section we give several examples of finite-dimensional Lie algebras on surfaces
tracking non-trivial vector fields, focusing on complex 2-manifolds, the most difficult case.
Let us start with a short description of these examples.

Example 3.1 studies the trace on F2
⊂ FP2, F= R, C, of the Lie algebra G of projective

vector fields that vanish at the origin. The radial vector field X is tracked by G and the
tracking functions are linear. The origin is an essential block of X of index one.

In the complex case, by blowing up the origin, one constructs an example with no
common zero in which hypothesis (*) fails.

In Example 3.2 a similar Lie algebra is considered but this time the homogeneous vector
fields of degree two are replaced by homogeneous vector fields of degree n + 1. That
allows us to take the dimension of the Lie algebra arbitrarily large.

Example 3.3 is constructed on the ‘sphere’ S2
F given by the equation x2

1 + x2
2 + x2

3
= 1. In the real case X is the orthogonal projection of ∂/∂x3 on the sphere. Since the
expressions of X and the Lie algebra G are polynomial, they can be formally extended to
the complex sphere. In this example X possesses two essential blocks in S2

F of index one,
the two poles.

Until here there is no difference between real and complex, but the blowup process of
the poles splits up real and complex cases.

In Example 3.4 a 3-solvable Lie subalgebra of dimension five of the Lie algebra
of projective vector fields on CP2 is exhibited and then by means of the blowup
process transferred to a complex 2-manifold, compact and simply connected, of Euler
characteristic arbitrarily large.

Finally in Example 3.5 a compact connected one-dimensional complex manifold N and
its cotangent bundle π : T ∗N → N are considered. By means of the Liouville symplectic
form on T ∗N to any holomorphic 1-form α on N , one associates a vertical vector field
Xα , which is constant on each fibre.

If π : Q→ N is the compactification given by Remark 2.2, then Xα extends to a vector
field X̂α on Q. In the same way the radial vector field R on T ∗N extends to a vector field
R̂ on Q. Moreover, [X̂α, R̂] = X̂α .

By this reason, taking into account R, any vector space V of dimension k consisting of
holomorphic 1-forms on N gives rise to an algebra G of vector fields on Q of dimension
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k + 1, which is not abelian but possesses an abelian ideal of codimension one. Recall that
there always exists a vector space V whose dimension equals the genus of N .

Example 3.1. Recall that in dimension two a projective vector field Y means a fundamental
vector field of the natural action of SL(3, F) on FP2, which is effective if F= R and
almost effective when F= C (its kernel equals {aI : (a ∈ C, a3

= 1)}, where I ∈ SL(3, C)
denotes the identity). The restriction of Y to F2

⊂ FP2 can be written as

a1
∂

∂x1
+ a2

∂

∂x2
+

∑
k,r=1,2

bkr xk
∂

∂xr
+ (c1x1 + c2x2)

(
x1

∂

∂x1
+ x2

∂

∂x2

)
(1)

with a1, a2, bkr , ck ∈ F.
Now on F2 consider the Lie algebra G corresponding to the projective vector fields

on FP2 that vanish at the origin. This algebra tracks X = x1(∂/∂x1)+ x2(∂/∂x2), itself
belonging to G since [Y, X ] = −(c1x1 + c2x2)X . Note that G has no ideal of dimension
one, but the notion of tracking will allow us to bridge this gap. Note also that X and G
extend to FP2, but the tracking functions do not.

Observe that Z(X)= Z(G)= {(0, 0)}, and this is an essential X -block.
From FP2 we construct a new 2-manifold M ′ over F by blowing up the origin in F2,

and on it a vector field X ′ and a Lie algebra G′ ⊂ Vω(M ′), isomorphic to G, which tracks
X ′ (see [9]). Note that the blowup of the origin is Z(X ′), an X ′-block diffeomorphic to
FP1. As the linear part of X at the origin is the identity, the index of X ′ transverse to Z(X ′)
equals one and hence iZ(X ′)(X ′)= χ(Z(X ′))= χ(FP1). Thus, in the real case, this block
is inessential (for X ′) while it is essential with index two in the complex one. Moreover,
sl(2, F) is a quotient of G′ because clearly it is a quotient of G.

From the blowup construction it follows that G′ acts transitively on Z(X ′) since any
linear vector field on F2 belongs to G, so Z(G′)=∅. Therefore:
• for the complex case of Theorem 1.1, the supplementary hypothesis (*) cannot be

deleted even in the non-compact case.
If we consider the solvable subalgebra G′0 of G′, corresponding to G0 ⊂ G defined by

setting b21 = 0 in Equation (1), then Z(X ′) ∩ Z(G′0) 6=∅ since G′0 vanishes at the point of
FP1 associated to the second axis. In turn, blowing up this common zero gives rise to a
new manifold endowed with a Lie algebra G′′0 , isomorphic to G0 and G′0, and a vector field
X ′′ tracked by G′′0 . Now Z(X ′′) is again essential; more exactly, iZ(X ′′)(X ′′) equals −1 in
the real case and 3 in the complex one. Therefore, Z(G′′0 ) ∩ Z(X ′′) 6=∅.

For easily computing the index of X , X ′ and X ′′, notice that as a real vector field X
is outwardly transverse to the spheres S1

⊂ R2 or S3
⊂ C2. Therefore, in each case this

index equals the Euler characteristic of the ambient manifold.

Example 3.2. In a more general setting, let Pn be the vector space of homogeneous
polynomials in x1, x2 of degree n ≥ 1 over F and let G be the (n + 5)-dimensional Lie
algebra of vector fields on F2 of the form∑

k,r=1,2

bkr xk
∂

∂xr
+ ϕ ·

(
x1

∂

∂x1
+ x2

∂

∂x2

)
,

where bkr ∈ F and ϕ ∈ Pn .
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As in Example 3.1, set X = x1(∂/∂x1)+ x2(∂/∂x2). Then G tracks X .
Blowing up the origin in F2 provides a new 2-manifold M over F endowed with a Lie

algebra G′ ⊂ Vω(M) and a vector field X ′ which is tracked by G′. As before, Z(X ′)= FP1

and Z(G′)=∅, so Z(G′) ∩ Z(X ′)=∅, while iZ(X ′)(X ′) equals zero if F= R and 2 when
F= C.

Notice that the dimension of G′ can be taken as large as desired. Thus:
• in the non-compact complex case, when Theorem 1.1 fails the respective Lie algebra

has sl(2, C) as a quotient, but its dimension can be arbitrarily large
(see Remark 6.7 for the compact case).

Of course one may consider the subalgebra G0 ⊂ G given by the condition b21 = 0 and
do as in Example 3.1.

Example 3.3. In F3 with coordinates x = (x1, x2, x3), let S2
F be the ‘sphere’ given by the

equation x2
1 + x2

2 + x2
3 = 1. This is the real sphere S2 if F= R. When F= C, it is a non-

compact complex 2-manifold whose underlying real manifold is the tangent vector bundle
T S2; but S2

C is not biholomorphic to TCP1 because CP1 is never a complex submanifold
of C3. On S2

F ⊂ F3, consider the tangent vector fields

X =
∂

∂x3
− x3

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
, Y =−x2

∂

∂x1
+ x1

∂

∂x2
.

Denote by Pk the space of homogeneous polynomials in x1, x2 of degree k. Set

Gk = {aY + ϕX : a ∈ F, ϕ ∈ Pk},

which is a (k + 2)-dimensional solvable Lie algebra that tracks X .
On S2

F, our X has just two singular points (0, 0,±1), each of them an essential block of
index one. Indeed, first observe that the functions x1, x2 can be regarded as coordinates of
S2
F around (0, 0,±1), which we name (u1, u1). As X · xk =−x3xk , k = 1, 2, up to sign

the linear part of X at (0, 0,±1) equals u1(∂/∂u1)+ u2(∂/∂u2). Note that Gk vanishes at
these points. Blowing up (0, 0, 1) and (0, 0,−1) gives rise to a 2-manifold M , a vector
field X ′ with two isolated blocks K1, K2 associated to these points and a Lie algebra G′
that is isomorphic to G and tracks X ′.
• But the behavior of the real and complex cases is quite different.

Indeed, in the complex one K1 and K2 are diffeomorphic to CP1 and are thus essential
blocks and G′ vanishes somewhere in K1 and in K2. In the real case M is the Klein bottle,
K1, K2 are S1, and so non-essential blocks, and G′ does not vanish at any point of M .

Example 3.4. Let G be the Lie algebra on CP2 of those projective vector fields Y that on
C2
⊂ CP2 are written as

Y = a1
∂

∂z1
+ a2

∂

∂z2
+

∑
k,r=1,2

bkr zk
∂

∂zr
,

where ak, bkr ∈ C and b21 = 0. Then G is a 3-solvable Lie algebra of dimension five
and the vector field represented by ∂/∂z2 spans an ideal of dimension one. Moreover, G
vanishes at the infinity point of the second axis (belonging to CP2

− C2).
Now by blowing up this point one constructs a second complex 2-manifold M1, of Euler

characteristic 4 and simply connected, endowed with a Lie algebra G1 isomorphic to G.
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Again there are some zero of G1, which can be blown up to construct a simply connected
manifold M2 of Euler characteristic 5, and a Lie algebra G2 ⊂ Vω(M2) isomorphic to G
and so on. Therefore:
• for any m ≥ 3 there exists a simply connected compact complex 2-manifold of

characteristic m that supports a 3-solvable Lie algebra of vector fields.
Let A be a two-dimensional non-commutative Lie algebra on CP1. A similar process

can be started from the product manifold CP1
× CP1 endowed with the four-dimensional

Lie algebra G of those vector fields X such that (π1)∗(X) and (π2)∗(X) belong to A.

Example 3.5. Here we show that for every integer m and every positive integer d , there
are a compact complex 2-manifold M and a solvable Lie algebra A⊂ Vω(M) such that

χ(M)= m, dimC A= d, dimC Z(A)= 1.

First consider a real or complex n-manifold, N , with cotangent bundle π : T ∗N → N .
On the manifold T ∗N , define the Liouville 1-form ρ by

ρ(v)= α(π∗v) (α ∈ T ∗N , v ∈ Tα(T ∗N )).

The Liouville symplectic form on T ∗N is the exterior 2-form ω = dρ. Given a 1-form
β on the manifold T ∗N , assumed analytic over the ground field, define the vector field

Xβ ∈ Vω(T ∗N ), ιXβω = β, (2)

where ιXβω is the interior product of ω by Xβ .
Now let N be a one-dimensional complex manifold defined by a orientable compact

connected surface of genus g ≥ 1 endowed with a Kähler structure. The Dolbeault
cohomology group of N in dimension one, which is isomorphic to the singular
cohomology group H1(N , R), has a basis represented by g holomorphic 1-forms

α j := λ j + iµ j .

Using equation (2), set

X j := Xπ∗α j ∈ V
ω(T ∗N ) ( j = 1, . . . , g)

and let Xg+1 denote the radial vector field on T ∗N . By means of coordinates, it is easily
checked that X1, . . . , Xg and Xg+1 are tangent to the fibres T ∗p N (p ∈ N ) with each X j ,
j = 1, . . . , g, constant and Xg+1 linear. Moreover, [X j , Xg+1] = X j , j = 1, . . . , g.

Let π : Q→ N be the compactification of π : T ∗N → N given by Remark 2.2. The
vector fields Xk , k = 1, . . . , g + 1, extend to holomorphic vector fields X̂k ∈ Vω(Q) such
that Q∞ ⊂ Z(X̂k), where Q∞ denotes the infinity section of Q. It is easy to see that
X̂1, . . . , X̂g+1 form a basis of a solvable complex Lie algebra G ⊂ Vω(Q) of dimension
g + 1. Evidently Z(G) is the union of the one-dimensional complex submanifold Q∞ and
the image by the zero section of the set of common zeros of α1, . . . , αg . Holomorphy
shows that this last set is always finite, so we can reasonably write dimC Z(G)= 1.

Note that χ(Q)= 4(1− g). By blowing up r zeros of G, we obtain a compact
complex 2-manifold M with χ(M)= 4(1− g)+ r and a solvable Lie algebra G′ ⊂
Vω(M) isomorphic to G. Finally, take g and r such that 4(1− g)+ r = m and g ≥ d
and a Lie subalgebra A⊂ G′ of dimension d.
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4. Consequences of tracking
Throughout this section we assume that:
• P is a real or complex n-manifold with empty boundary;
• X, Y are differentiable vector fields on P and Y tracks X with tracking function f .

When P is complex and X non-trivial on each connected component of P , our function
f is holomorphic. Indeed, locally in coordinates f is meromorphic because [Y, X ]
‘divided’ by X equals f and so holomorphic since it is continuous. Thus, if P is compact,
connected and complex, the tracking function f is constant.

We point out that the result above on the tracking function does not extend to the real
case. The function f can be just continuous at some point. For instance, on R set Y =
x4(∂/∂x) and X = g(∂/∂x), where g(x)= e−1/x if x > 0, g(x)= e−1/x2

if x < 0 and
g(0)= 0. A computation shows that f (0)= 0, f (x)= x2

− 4x3 if x > 0 and f (x)=
2x − 4x3 if x < 0; hence, f is not differentiable at the origin.

If Y1 is another differentiable vector field tracking X with function f1, and f, f1 are
at least C1, which automatically holds if F= C, the Jacobi identity implies that [Y, Y1]

tracks X .
By definition, the dependency set of X and Y (over the ground field F) is

D(X, Y ) : = {p ∈ M : (X ∧F Y )(p)= 0}.

PROPOSITION 4.1. If Y tracks X, then Z(X) and D(X, Y ) are X- and Y -invariant.

Proof. Evidently Z(X) is X -invariant. Let us see its Y -invariance. Consider an integral
curve γ : A→ P of Y , where A is a connected open set F. Suppose that γ (t0) ∈ Z(X); then
γ (t) ∈ Z(X) for any t ∈ A sufficiently close to t0. Indeed, if Y (γ (t0))= 0 it is obvious;
otherwise as the statement is local by means of suitable coordinates we may assume that
P is a product of intervals (F= R) or a polydisk (F= C) always centered at γ (t0)=
(0, . . . , 0), Y = ∂/∂x1 and X =

∑n
k=1 gk(∂/∂xk). Now [Y, X ] = f X and hence

∂gk

∂x1
= f gk, k = 1, . . . , n. (3)

Since f is continuous (F= R) or holomorphic (F= C), the general solution to equation
(3) is

gk(x)= hk(x2, . . . , xn)eϕ, k = 1, . . . , n,

where ∂ϕ/∂x1 = f and ϕ(x)= 0 whenever x1 = 0. But γ (t0)= 0, so each hk(0, . . . , 0)
= 0 and X vanishes along the first axis.

Therefore, the set A′ = {t ∈ A : γ (t) ∈ Z(X)} is open and closed, so A′ = A or A′ =∅,
which proves the Y -invariance of Z(X).

The X - and Y -invariance of D(X, Y ) is proved in the same way by taking into account
that L X (X ∧F Y )= 0 and letting LY (X ∧F Y )= f X ∧F Y . �

5. Vanishing of the index and other results
In the first lemma of this section we assume that:
• P is a real n-manifold;
• X ∈ V∞(P);
• K is an X-block and U ⊂ P is isolating for (X, K ).
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LEMMA 5.1. Assume that:
(a) K is a compact submanifold;
(b) X1, . . . , Xr ∈ V∞(U ) are tangent to K , and their values are linearly independent

at each point of K ;
(c) X =

∑r
j=1 f j X j on U.

Let D ⊂ V(M) be a neighborhood of X in the compact open topology. Then there exists
X ′ ∈D such that

X ′ = X on M \U, Z(X ′) ∩U =∅.

As a consequence, iK (X)= 0.

Proof. Take a tubular neighborhood W of K such that W ⊂U and identify it with an
orthogonal vector bundle π : E→ K , with the norm in each fibre denoted by ‖ · ‖. Set
Ea := {e ∈ E : ‖e‖< a} for each a > 0, so that Ea ⊂U . Let ϕa : M→ R+ be a non-
negative function with support in Ea such that ϕ−1

a (0) ∩ K =∅. If a is small enough, for
each e ∈ Ea the vector subspace spanned by X1(e), . . . , Xr (e) is almost transverse to the
fibre of e, so its intersection with Te(π

1((e))) equals {0}. Let R denote the radial vector
field on E .

For sufficiently small ε > 0, the vector field X ′ ∈ V(M) defined as

X ′|U := X + εϕa(X1 + R), X ′| M\W : X | M\W

has the required properties. �

Remark 5.2. The reader not familiar with the Poincaré–Hopf index is referred to [3, §0].
The lemma above is a kind of extension of Bonatti [3, Lemma 1.c.1]. Observe that here

analyticity is not needed. Nevertheless, in Hypothesis (b) the requirement of being tangent
to K cannot be deleted, as is shown by the following example.

On the product R× S2, consider the vector fields X , X1 that are tangent to the first
factor and whose projections on R respectively are written as x(∂/∂x) and ∂/∂x . Then
i({0}×S2)(X)= 2 but X = x X1. Of course a similar example may be constructed on
Rn
× S2 with vector fields X, X1, . . . , Xn .

5.1. Jets of vector fields.. Let us recall some well-known facts on jets of vector fields,
useful later on. Consider a set B of vector fields on a manifold Q. Given p ∈ Q
and k ≥ 0, set Bk(p) : = {Y ∈ B : jk

pY = 0}, while B−1(p) : = B and B(p) : = {Y (p) :
Y ∈ B} ⊂ Tp Q. Every Bk−1(p)/Bk(p), k ≥ 0, can be regarded as a subset of Tp Q ⊗
Sk(T ∗p Q) and B−1(p)/Bk(p) as a subset of the set of all polynomial vector fields on
Tp Q of degree ≤k. When B is a Lie algebra, [Bk(p), Br (p)] ⊂ Bk+r (p) for k + r ≥−1.
Therefore, each Bk(p) for k ≥ 0 is a Lie algebra, and every Bk+s(p) for k, s ≥ 0 is an ideal
in Bk(p). If Q is connected and B a finite-dimensional analytic Lie algebra, then Bk(p)
for k ≥ 1 is nilpotent and Br (p)= 0 for some r .

A (piecewise-differentiable) curve tangent to B is a finite family C of integral curves
γ j : A j → Q, j = 1, . . . , k, of elements of B defined on connected open subsets of F
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such that Ar ∩ Ar+1 6=∅, r = 1, . . . , k − 1. We say that C joins p to q if p ∈ A1 and
q ∈ Ak . The B-orbit of p is the set of all points q ∈ Q joined to p by some curve tangent
to B.

When B(p)= Tp Q, it is easily seen that p belongs to the interior of its B-orbit. If
B is a finite-dimensional Lie algebra, then the B-orbit of p is a submanifold of P , not
always regular, whose dimension equals that of the vector subspace B(p)⊂ Tp Q [29] (a
submanifold of Q is called embedded or regular when its topology as a submanifold and
that as a topological subspace of Q coincide).

From Lie’s work [23], we have the following result.

LEMMA 5.3. Let Q be a one-dimensional connected manifold and let B ⊂ Vω(Q) be a
non-zero finite-dimensional Lie algebra. Then B is isomorphic to F, or the affine algebra
of F or sl(2, F).

In the next three results assume that:
• N is a connected complex 2-manifold;
• A⊂ Vω(N ) is a Lie algebra isomorphic to sl(2, C) and X ∈ Vω(N ) is non-trivial.

LEMMA 5.4. The points of Z(A) are isolated and Z(A)⊂ Z(X) when [X,A] = 0.

Proof. Fix p ∈ Z(A). The discussion of jets, above, shows that A0(p)=A, and A1(p) is a
nilpotent ideal of A and so zero because A is simple. Therefore, A0(p)/A1(p)⊂ gl(2, C)
is simple, which implies that A0(p)/A1(p)= sl(2, C) and, consequently, the existence of
Y ∈A whose linear part at p is invertible. Hence, p is isolated in Z(Y ), and a fortiori in
Z(A).

Suppose that [X,A] = 0. Then the isolated set Z(A) is invariant under the local flow of
X , implying that X vanishes at every point of Z(A). �

LEMMA 5.5. Assume that [X,A] = 0. Consider a point p ∈ N such that X (p) 6= 0. Then
around p there exist coordinates z = (z1, z2), with p ≡ 0, such that the vector fields

Y1 =
∂

∂z1
, Y2 = z1

∂

∂z1
+ a

∂

∂z2
, Y3 = z2

1
∂

∂z1
+ 2az1

∂

∂z2
, a ∈ C,

are a basis of the restriction of A to the domain of coordinates, and X = ∂/∂z2.

Proof. As A is simple, its projection on the local quotient N ′ of N by the foliation
associated to X is either zero or a Lie algebra A′ isomorphic to A. If zero, each Y ∈A
is proportional to X , which is incompatible with the hypothesis [X,A] = 0. Therefore, as
dim N ′ = 1, there exists a coordinate z1, around the projection p′ of p in N ′, such that
z1(p′)= 0 and

∂

∂z1
, z1

∂

∂z1
, z2

1
∂

∂z1

span A′.
This coordinate z1 may be regarded as a function around p. Adding a new function z2,

such that z2(p)= 0 and X · z2 = 1, leads to a system of coordinates z = (z1, z2), defined
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on a domain identified through z to a polydisk centered at the origin (shrink it if necessary),
in which p ≡ 0, X = ∂/∂z2 and

Y1 =
∂

∂z1
+ f1

∂

∂z2
, Y2 = z1

∂

∂z1
+ f2

∂

∂z2
, Y3 = z2

1
∂

∂z1
+ f3

∂

∂z2
,

for suitable functions f1, f2, f3, span A (more exactly, its restriction to the domain of
coordinates). Observe that each fk depends only on z1 because [X, Yk] = 0.

Taking z2 + g(z1) instead of z2 for a suitable function g(z1) allows us to suppose that
Y1 = ∂/∂z1. Then, as [Y1, Y2] = Y1, [Y1, Y3] = 2Y2 and [Y2, Y3] = Y3 (project into A′ to
see this), a straightforward computation shows that f2, f3 are as stated. �

LEMMA 5.6. Consider a point p ∈ N such that X (p)= 0 and dimA(p)= 1.
(a) If A tracks X, then either all orbits of A near p have dimension one and X is tangent

to them, or in a neighborhood W of p there exist coordinates z = (z1, z2), with
p ≡ 0, an integer n ≥ 1 and functions h(z1, z2), f (z2), g(z2) with h(0, 0) 6= 0 and
f (0)= g(0)= 0 such that

X = h(z1, z2)zn
2
∂

∂z2

and the vector fields

Y1 =
∂

∂z1
, Y2 = z1

∂

∂z1
+ f (z2)

∂

∂z2
, Y3 = z2

1
∂

∂z1
+
(
2z1 f (z2)+ g(z2)

) ∂
∂z2

span A|W .
(b) If [X,A] = 0, then about p there exist coordinates z = (z1, z2), with p ≡ 0, an

integer n ≥ 1 and scalars a ∈ C \ {0}, b ∈ C such that

X = azn
2
∂

∂z2

and the vector fields

Y1 =
∂

∂z1
, Y2 = z1

∂

∂z1
+ bzn

2
∂

∂z2
, Y3 = z2

1
∂

∂z1
+ 2bz1zn

2
∂

∂z2

are a basis of A (under restriction).

Proof. The A-orbit of p is a submanifold N ′ of dimension one and A is tangent to it.
Therefore, there exist a coordinate u, defined on a small open set p ∈ N ′′ ⊂ N ′ with
u(p)= 0, and three vector fields Y1, Y2, Y3 which span A such that under restriction to
N ′′ respectively are written as

Y1 =
∂

∂u
, Y2 = u

∂

∂u
, Y3 = u2 ∂

∂u
.

Thus, [Y1, Y2] = Y1, [Y1, Y3] = 2Y2 and [Y2, Y3] = Y3.
Around p in N our u can be extended to a function z1 such that Y1 · z1 = 1. Take

a second function z2 vanishing at p such that Y1 · z2 = 0 and (dz1 ∧ dz2)(p) 6= 0; then
z = (z1, z2) near p ≡ 0 is a system of coordinates with domain of polydisk type (shrink
it if necessary) such that Y1 = ∂/∂z1. Note that z2 = 0 defines an open set of N ′, which
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includes p. Besides, as [∂/∂z1, Y2] = [Y1, Y2] = Y1 = ∂/∂z1, [∂/∂z1, Y3] = [Y1, Y3] =

2Y2 and Y2(p)= Y3(p)= 0, one has

Y2 = (z1 + f1(z2))
∂

∂z1
+ f2(z2)

∂

∂z2
,

Y3 = (z2
1 + 2z1 f1(z2)+ g1(z2))

∂

∂z1
+ (2z1 f2(z2)+ g2(z2))

∂

∂z2
,

where f1(0)= f2(0)= g1(0)= g2(0)= 0.
In case (b), [Y1, X ] = 0. In case (a), since Y1 tracks X and Y1(p) 6= 0, there always

exists a function λ, defined around p, with no zero such that [Y1, λX ] = 0. Therefore,
as A tracks λX too and it suffices to prove the result for λX , we may assume that
[Y1, X ] = 0 without loss of generality. Thus, X = h1(z2)(∂/∂z1)+ h2(z2)(∂/∂z2) with
h1(0)= h2(0)= 0. Since X is non-trivial, there exists an integer n ≥ 1 such that X =
zn

2(ϕ1(z2)(∂/∂z1)+ ϕ2(z2)(∂/∂z2)), where at least ϕ1(0) 6= 0 or ϕ2(0) 6= 0.
Assume that ϕ1(0) 6= 0 and ϕ2(0)= 0. Set X̃ = ϕ1(z2)(∂/∂z1)+ ϕ2(z2)(∂/∂z2); then

X̃ ∧ [X̃ ,A] = 0 because A tracks X . Let Q be the quotient 1-manifold, around p, of N
by X̃ and let q be the projection of p. Then A projects onto a Lie algebra B of vector fields
on Q, which is either zero or simple. But B(q)= 0 since (X̃ ∧ Y1)(p)= 0 and Y2(p)=
Y3(p)= 0, so B = 0. In other words, A is tangent to X̃ and Y1 ∧ X̃ = 0 everywhere, which
proves the first possibility in the case (a). In the case (b), one has X = h1(z2)(∂/∂z1) and
Y2 = (z1 + f1(z2))(∂/∂z1), so [X, Y2] 6= 0, which is a contradiction.

In short we may suppose that ϕ2(0) 6= 0. Now taking z1 + g(z2) instead of z1

for a suitable function g(z2) allows us to suppose that X̃ = ϕ2(z2)(∂/∂z2) and X =
zn

2ϕ2(z2)(∂/∂z2). On the other hand, it is well known that z2 can be modified in such
a way that X = azn

2(∂/∂z2), a ∈ C \ {0}.
The remainder of the proof easily follows from the fact that A tracks X (case (a)) or

[X,A] = 0 (case (b)) and [Y2, Y3] = Y3, and it is left to the reader. �

6. Proofs of the main theorems
Proof of Theorem 1.1. Let us sketch this proof. First one shows that we may assume
that M is connected and K is a connected analytic 1-manifold. Then one proves that
Z(Y ) ∩ K 6= ∅ for all Y ∈ G (Lemma 6.1), by analyzing the structure of the dependence
set D(X, Y ) near K . It follows that K is either S1 or CP1.

Finally, one studies the image H of G in Vω(K ), which is a Lie algebra of dimension
≤ 3. The case that dim H ≤ 2 is routine, and so is the case that H is real and three
dimensional. When H is complex and three dimensional, a more sophisticated argument
is needed.

And now the full proof.
Some component K0 of the compact analytic variety K is an essential block for X , with

negative or odd index if that of K was negative or odd, because the index is additive over
components. Shrinking U if necessary, some connected component U0 of U is isolating for
(X, K ), and K is an essential block for X |U0. As it suffices to prove that Z(G|U0) ∩ K 6=
∅, we assume henceforth that

M and K are connected.
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Proceeding by contradiction, we assume that

Z(G) ∩ K =∅. (4)

This implies that:
(A) dim K = 1. For the analytic manifold M is connected and two dimensional (over F),

and the analytic subvariety K is proper because X is not the trivial vector field;
(B) if p ∈ K , its orbit G p under G has dimension ≤1. This follows from (A) because the

G-invariance of K (Proposition 4.1) implies that dim G p ≤ dim K ;
(C) K is an analytic regular submanifold. The variety K is G-invariant (Proposition 4.1).

Its singular variety Ksing is also G-invariant because the vector fields in G are analytic.
Since dim Ksing < dim K , from (A) we infer that Ksing is discrete and contained in
Z(G). Therefore, Ksing =∅ by equation (4).

See Remark 6.2 at the end of this proof as well.

LEMMA 6.1. Z(Y ) ∩ K 6=∅ for every Y ∈ G.

Proof. Assume that per contra: Y ∈ G, Z(Y ) ∩ K =∅.

Case (i): The dependency set D(X, Y )= M . If F= R, we reach the contradiction
iK (X)= 0 from Lemma 5.1, setting r = 1, X1 = Y . If F= C, the same contradiction is
reached by setting r = 2, X1 = Y, X2 = iY .

Case (ii): D(X, Y ) 6= M . Since D(X, Y )\ Z(Y ) is Y -invariant (Proposition 4.1),
reasoning as in (C) shows that D(X, Y )\ Z(Y ) is a one-dimensional analytic regular
submanifold, evidently containing K . Fix an open set U ⊂ M such that Z(X) ∩U = K
and U ∩ D(X, Y )= K . Let φ : M→ R be a continuous function with compact support
included in U such that φ(K )= 1. The vector fields X ε := X + εφY , ε > 0, have no
zeros in U . Since they approximate X and iK (X) is stable under perturbation, we have the
contradiction iK (X)= 0. �

It follows that we can assume that K = S1 in the real case.
In the complex case we can assume that K = CP1. For there always exists Y ∈ G whose

restriction to K does not vanish identically; but this restriction has zeros, all of them of
positive index because of holomorphy, so χ(K ) > 0.

Define
I := {Y ∈ G : Y |K = 0},

which is an ideal in G. The image of G in Vω(K ) maps G/I isomorphically onto a
subalgebra H⊂ Vω(K ).

Each element of H vanishes somewhere and H is transitive, that is, dim H(p)= 1 for
any p ∈ K , because Z(G) ∩ K =∅.

As dim K = 1, from Lemma 5.3 it follows that up to isomorphism H has to be the
trivial algebra {0}, a one-dimensional algebra, the affine algebra of F or sl(2, F).

First assume that per contra: F= C, H= sl(2, C) and iK (X) is negative or odd. Since
sl(2, C) is simple, there exists a subalgebra A⊂ G isomorphic to H (see Jacobson [20]).

Consider a point p ∈ K . If near p all orbits of A have dimension one and X is tangent
to them, by analyticity since K is an A-orbit of dimension one and X is tangent to it there
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is an open neighborhood D of K such that any A-orbit on D has dimension one and X is
tangent to it. Thus, on D the Lie algebra A defines a 1-foliation F to which X is tangent.
But K is a compact simply connected leaf of F , so near it the foliation F is a product.

Let L 6= K be a compact leaf sufficiently close to K . Then X , which is tangent to L ,
does not vanish on it, so χ(L)= 0. But topologically L is CP1, which is a contradiction.

Therefore, from (a) of Lemma 5.6 applied to X and A (we have just seen that the first
alternative of (a) is forbidden) it follows that iK (X) equals 2n > 0 since transversely to K
the index of X is n. But by hypothesis (*) iK (X) is negative or odd, a contradiction again.
In short: H 6= sl(2, C).

Now assume that F= R and H= sl(2, R). Then there is T ∈H which does not belong
to any 2-subalgebra; for instance if adT has some non-real eigenvalue [20]. This means
that T never vanishes on K , otherwise if T (q)= 0 for some q ∈ K , then T belongs to the
two-dimensional subalgebra H0(q). Therefore, sl(2, R) is excluded as well.

Finally, if H is the affine algebra of F, there exists a basis {T1, T2} of H such that
[T1, T2] = T2. But T2(q)= 0 for some q ∈ K , so T1(q)= 0 too, otherwise [T1, T2] 6= T2.
In other words, the affine algebra is not transitive.

Summing up: there is no way for choosing the subalgebra H, so assuming that Z(G) ∩
K =∅ leads to a contradiction. �

Remark 6.2. Readers not familiarized with varieties can reason as follows. Start by
assuming that Z(G) ∩ K =∅; obviously dim G(p)≥ 1, p ∈ K . If dim G(q)= 2 for some
q ∈ K , then its G-orbit is an open set included in K (see Proposition 4.1), and X = 0,
which is a contradiction. Given p ∈ K , take Y ∈ G with Y (p) 6= 0 and consider coordinates
(A, x1, x2) around p ≡ (0, 0) as in the proof of Proposition 4.1; let T be the transversal
to Y defined by x1 = 0. Then K ∩ T is the set of simultaneous zeros of two analytic
functions of one variable, one of them at least non-trivial; so it is isolated in T and consists
of a single point if A is sufficiently small. In this last case A ∩ K is given by the equation
x2 = 0, which shows that K is a regular 1-submanifold.

Some component K0 of K is an essential block for X , with negative or odd index if that
of K was negative or odd, etc.

Proof of Theorem 2.6. First recall some elementary facts about sl(2, C).

Remark 6.3. Given ϕ ∈ sl(2, C) \ {0}, one can find a basis {e1, e2} of C2 such that:
• ϕ = a(e1 ⊗ e∗1 − e2 ⊗ e∗2), a ∈ C \ {0}, if ϕ is invertible. In this case the connected

subgroup of SL(2, C) whose subalgebra is spanned by ϕ is closed and isomorphic to
the multiplicative group C \ {0};

• ϕ = e2 ⊗ e∗1 if ϕ is not invertible. Now the connected subgroup determined by ϕ is
closed and isomorphic to C.

Therefore, the projective vector field Yϕ associated to ϕ can be identified, under
conjugation by PGL(2, C), to that whose restriction to C⊂ CP1 is written as:
• 2az(∂/∂z), a ∈ C \ {0}, if ϕ is invertible. Then the vector field Yϕ possesses two

singularities on CP1 both of them of index one and eigenvalues of its linear part
±2(−detϕ)1/2;
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• ∂/∂z if ϕ is not invertible. Observe that ∂/∂z and z2(∂/∂z) are PGL(2, C) conjugated,
so Yϕ can be represented by z2(∂/∂z) too.

And now the proof of Theorem 2.6.
Let us give a sketch of the proof. One starts by proving the existence of a subalgebra A

of G which is isomorphic to sl(2, C) such that [X,A] = 0. Then one shows that Z(A)= ∅
and each connected component of Z(X) is an orbit of A diffeomorphic to CP1 (Lemma
6.4).

On the other hand, on M\Z(X) the vector field X defines a complex 1-foliation F
whose leaves are planes, tori or cylinders. Moreover, each leaf of F is closed in M\Z(X)
(Lemma 6.5) and the action of SL(2, C) associated to A is transitive on the set of leaves
of F .

After observing that the leaves of F are never compact, one completes each of them
with one or two points of Z(X) for giving rise to a second foliation F ′ on M with all of
its leaves diffeomorphic to CP1. Even more, F ′ is given by a fibration π : M→ CP1.
Besides, one has two possibilities.
• Any leaf of F is a cylinder and is completed with two points of Z(X).
• Every leaf of F is a plane and is completed with one point of Z(X).

In the first case Z(X) possesses two connected components P1, P2 and π : M\P2→

CP1 is a line fibre bundle, which implies that X and A follow Model 2.4.
In the second one the orbits of the action of SL(2, C) on M have dimension one

(Lemmas 6.4 and 6.6), so this action defines a second complex 1-foliation F ′′, which
is transverse to F ′. Moreover, F ′′ is defined by a fibration π ′ : M→ CP1. Thus,
π × π ′ : M→ CP1

× CP1 is a diffeomorphism and X and A follow Model 2.1.
Now we are ready to go into details.
First recall that if Q is a connected complex manifold of dimension one and B ⊂ V ω(Q)

a finite-dimensional Lie algebra such that Z(B) 6=∅, then B is solvable (see Lemma 5.3).
Now assume that Z(X) ∩ Z(G)=∅. Reasoning as in the proof of Theorem 1.1 shows

that Z(X) is a compact 1-submanifold of M , obviously non-empty since χ(M) 6= 0.
Moreover, there has to exist a component K of Z(X) diffeomorphic to CP1 such that
the image H of G in Vω(K ) under the restriction is isomorphic to sl(2, C); otherwise
K ∩ Z(G) 6=∅.

As H is simple, there is a subalgebra A of G isomorphic under restriction to H. This
algebra A tracks X , so [Y, X ] = aY X , aY ∈ C, for any Y ∈A. But {Y ∈A : aY = 0} is a
non-zero ideal of A; therefore, every aY = 0 and [X,A] = 0.

LEMMA 6.4. Z(A)=∅, each connected component of Z(X) is diffeomorphic to CP1 and
A acts transitively on it.

Proof. Let P be a component of Z(X). If P ∩ Z(A) 6=∅, then the restriction of A to
P has to be solvable and so zero. That is, Z(A)⊃ P , which contradicts Lemma 5.4. In
short Z(A) ∩ Z(X)=∅, so Z(A)=∅ since again by Lemma 5.4 Z(A)⊂ Z(X), and A
acts transitively on every component of Z(X). All these components are spheres, that is,
CP1, because on each of them some Y ∈A \ {0} has a zero. �
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On the connected open set M\Z(X) the vector field X defines a complex one-
dimensional foliation F , which is the real 2-foliation associated to the commuting vector
fields X, i X . Thus, its leaves are planes, cylinders or tori because X is complete on
M\Z(X).

LEMMA 6.5. Each leaf L of F is closed in M\Z(X).

Proof. Given p ∈ L , Lemma 5.5 shows the existence of Y ∈A \ {0} and an open set p ∈
D ⊂ M\Z(X) such that the connected component of L ∩ D relative to p is included in
Z(Y ) ∩ D. Therefore, L ⊂ Z(Y ) ∩ (M\Z(X)) since [X, Y ] = 0 implies that Z(Y ) is X -
invariant; even more, Z(Y ) ∩ (M\Z(X)) is a union of leaves of F .

But the same lemma shows that Z(Y ) ∩ (M\Z(X)) is a closed regular 1-submanifold
of M\Z(X). Since different leaves of F are disjoint, it follows that L is a component of
Z(Y ) ∩ (M\Z(X)); in other words, L is an open and closed subset of Z(Y ) ∩ (M\Z(X))
and so closed in M\Z(X). �

On the other hand, since M is compact, the group SL(2, C) acts on M , with infinitesimal
action A, and on M\Z(X) as well. Observe that this action is F-foliate and transversely
transitive. Therefore, given L1, L2 ∈ F , there always exists g ∈ SL(2, C) such that g · L1

= L2.
Now take p ∈ Z(X) and consider coordinates z = (z1, z2) like in (b) of Lemma 5.6 with

domain A of polydisk type. Then the trace of F on A is given by the slices z1 = constant ,
and Z(X) ∩ A by z2 = 0. Thus, the set defined by the conditions z1 = 0 and z 6= (0, 0) is
included in a leaf L of F . Therefore, L and any leaf of F are non-compact, that is, they
are (real) planes or cylinders. Moreover, L ∪ {p} as a real surface has one end fewer than
L . In this way adding the points of Z(X) to the leaves of F gives rise to a new complex
1-foliation F ′ on M , whose trace on M\Z(X) is F , and the action of SL(2, C) on the set
of its leaves is still transitive.

Notice that any leaf L̃ of F at most intersects two slices of A; indeed, if S is a slice of
A and S ∩ L̃ 6=∅, then this non-empty intersection defines an end of L̃ . Therefore, since
the leaves of F are closed in M\Z(X), those of F ′ are closed, and so compact, in M .

The procedure above kills the ends of every leaf of F , so each leaf of F ′ is topologically
the sphere S2, so CP1. Since the action of SL(2, C) is transversely transitive, the foliation
F ′ is given by a (complex) fibre bundle π : M→ Q, where Q is a compact connected
complex 1-manifold.

Finally, from [X,A] = 0 it follows that A projects onto a Lie algebra A′ ⊂ Vω(Q)
which is isomorphic to sl(2, C). Therefore, Q is the projective line, so from now on we
will write π : M→ CP1. Observe that χ(M)= 4.

Let P be a component of Z(X). By construction of the foliation, P is transverse to F ′
and hence π : P→ CP1 is a local diffeomorphism. But P is compact, so π : P→ CP1

is a covering space. Since CP1 is simply connected and P is connected, π : P→ CP1

has to be a diffeomorphism. Finally, as F ′ is given by π : M→ CP1, one concludes that
every leaf of F ′ intersects P once.

From Lemma 5.6, it follows that transversely to P the index of X equals n. Since
χ(M)= 4, we have just two possibilities.
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• Z(X) has two components and n = 1, that is, the leaves of F are cylinders.
• Z(X) is connected and n = 2, that is, the leaves of F are (real) planes.

First assume that the leaves of F are cylinders.
Set Z(X)= P1 ∪ P2 as the union of its components. The eigenvalue of the linear part of

X transversely to P1 is a holomorphic function on P1 and so constant. Thus, considering
aX instead of X for a suitable a ∈ C \ {0} allows assuming that this eigenvalue equals one.
Therefore, for each π−1(q), q ∈ CP1, the projective vector field X has two singularities
of index one and the eigenvalue of its linear part at π−1(q) ∩ P1 equals one. By Remark
6.3, (π−1(q) ∩ (M − P2), X) is diffeomorphic to (C, z∂/∂z).

Since any diffeomorphism ρ : C→ C which preserves z∂/∂z is a linear automorphism
and the action of SL(2, C) associated to A preserves X , it follows that π : M − P2→ CP1

is a line fibre bundle endowed with a fibre action of SL(2, C). Now it is obvious that X
and A follow the construction of Model 2.4.

Now assume that the leaves of F are planes.
Then π : M\Z(X)→ CP1 is a homotopy equivalence. As [X,A] = 0 and X is

transverse to the orbits of the action of SL(2, C) on M\Z(X), they are diffeomorphic
and so with the same dimension.

LEMMA 6.6. The orbits of the action of SL(2, C) on M\Z(X) have dimension one.

Proof. If this dimension equals two, then M\Z(X) is an orbit of the action of SL(2, C);
indeed, orbits in M\Z(X) are open and M\Z(X) is connected. Take p ∈ M\Z(X); by
Lemma 5.5, any Y ∈A \ {0} such that Y (p)= 0 is the fundamental vector field associated
to some ϕ ∈ sl(2, C) \ {0} with detϕ = 0 (consider the first variable). Therefore, M\Z(X)
is, as homogeneous space, the quotient of SL(2, C) by a closed subgroup H (the isotropy
group of p) whose identity component is isomorphic to C. Now the homotopy sequence
of the fibre bundle

H → SL(2, C)→ M\Z(X)

shows that π2(M\Z(X))= 0 (topologically SL(2, C) is S3
× R3). But π2(M\Z(X))=

π2(CP1)= Z, which is a contradiction. �

Thus, the action of SL(2, C) on M defines a second foliation of dimension one, F ′′,
transverse to F ′. Observe that Z(X) is a compact leaf of F ′′ diffeomorphic to CP1 and so
simply connected. Therefore, near Z(X) the foliation F ′′ is a product.

As X is transverse to F ′′ on M\Z(X), then all the leaves of F ′′ are CP1 and F ′′ is
defined by a fibre bundle π ′ : M→ Q′, where Q′ is a compact connected complex 1-
manifold. But X projects onto Q′ in a non-trivial vector field, so Q′ is CP1 and the
fibration becomes π ′ : M→ CP1.

In short π × π ′ : M→ CP1
× CP1 is a local diffeomorphism and so a covering

and, finally, a diffeomorphism because CP1
× CP1 is simply connected. Thus, π × π ′

identifies M and CP1
× CP1 in such a way that F ′ is the foliation associated to the second

factor and F ′′ that given by the first factor. Now it is obvious that X and A are constructed
like in Model 2.1. This finishes the proof of Theorem 2.6. �
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Remark 6.7. (On the algebra G of Theorem 2.6) Consider G as in Theorem 2.6 and the
fibre bundle π : M→ CP1 given in this result. Let Am ⊂ Vω(M) be the maximal Lie
algebra which includes A and tracks X (actually it normalizes X because M is compact).
Clearly, G is a subalgebra of Am , and Am projects onto the Lie algebra of projective vector
fields of CP1. Set

Im : = {Y ∈Am : π∗(Y )= 0},

which is an ideal of Am .
For every q ∈ CP1, Im |π

−1(q) is included in the normalizer of X |π−1(q) and, as
π−1(q)= CP1, it follows that Im |π

−1(q) is a subalgebra of the Lie algebra of projective
vector fields, with dimension one if Z(X) consists of two connected components and two
if Z(X) is connected (see the proof of Theorem 2.6).

In the first case every Y ∈ Im is written as Y = f X , where f is a holomorphic function
and so constant. That is to say, Im equals C{X} : = {aX : a ∈ C}, which implies that Am

is the direct product of Im and A. Therefore, G is A or Am .
Now assume that Z(X) is connected. Then M = CP1

× CP1, π is the first projection,
A can be seen as the Lie algebra of projective vector fields on the first factor and X as a
vector field on the second factor (see the proof of Theorem 2.6 again). Hence, one may
choose a vector field X̂ tangent to the second factor such that [X̂ , X ] = X , [X̂ ,A] = 0 and
{X |π−1(q), X̂ |π−1(q)} is a basis of the normalizer of X |π−1(q), q ∈ CP1.

Therefore, if Y ∈ Im , then Y = aX + â X̂ , a, â ∈ C (coefficients have to be
holomorphic functions and so constant). Thus, Am is the direct product of A and the two-
dimensional Lie algebra spanned by X, X̂ , while G equals Am , A or the direct product of
C{X} and A.

Summing up, in compact connected complex 2-manifolds, Theorem 1.1 only fails with
three Lie algebras: sl(2, C), gl(2, C) and the product of sl(2, C) with the affine algebra of
C (compare this fact to Example 3.2).
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[5] A. Borel. Groupes linéaires algebriques. Ann. of Math. (2) 64 (1956), 20–80.
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