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ABSTRACT OF THE DISSERTATION

Exploring Cosmology and Astrophysics With Cosmic Structure and Simulations:
Cosmic Strings, the Lyman-α Forest, and Machine Learning

by

Martin A. Fernandez

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2023

Dr. Simeon Bird, Chairperson

In this dissertation, I present the work I have done using simulations to understand cosmol-

ogy and astrophysics.

I developed a novel method for detecting the presence of cosmic strings, which

are early universe topological defects, via their effect on cosmic filaments. The method was

developed by inserting the effects of cosmic strings into N-body simulations, and determining

what effects are most observable. I applied this method to filamentary structure from

observations of galaxies. While there was no indication of the presence of cosmic strings in

current observations, future prospects are promising.

I then turned my attention to smaller scales and lower redshift phenomena, de-

termining how simulations of the Lyman-α forest are affected by including species specific

transfer functions in the initialization of simulations. The effect on the Lyman-α forest flux

power spectrum is particularly important, as it is widely used, and will be measured to

increasingly high precision by future observations.

Continuing on that topic, I developed a machine learning approach to interpolating

v



Lyman-α forest summary statistics from simulations. This used Gaussian processes to con-

struct an emulator for the Lyman-α forest flux power spectrum. Two suites of simulations

were used to train the emulator: a small sample of high resolution simulations, and a large

sample of low resolution simulations. This combination allowed an emulator that predicts

high resolution simulation outputs, but costs a fraction of previously used methods. This

is the multi-fidelity emulator model.

Finally, I present inference using a multi-fidelity emulator, trained on large volume

(120Mpc h−1)3 and high resolution (15363 and 30722 gas particles) simulations. The volume

and resolution of these simulations allow a more robust modeling of the scales important to

the Lyman-α forest. By combining the Lyman-α forest flux power spectrum with the mean

temperature of the intergalactic medium, I constrain several cosmological and astrophysical

parameters.
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Chapter 1

Introduction

1.1 Cosmic History

In order to discuss cosmic structure, a brief history of the Universe leading to the

modern era is required. However, rather than list the various events in the history of the

Universe chronologically, we start with what we observe now, and look back.

The Universe we observe today contains a plethora of different objects, including

stars in galaxies, which house central supermassive black holes and are themselves housed

in dark matter halos. These galaxies reside in the intergalactic medium (IGM), the low

density region between galaxies that is mostly made up of ionized hydrogen and helium gas.

Zooming out further, we observe galaxies clustering into what is often called the cosmic

web (see Figure 1.1), with large nearly empty voids delineated by filamentary structures

that intertwine to form high density knots. This large scale structure is embedded in a

spacetime which is not only expanding, but accelerating in its expansion. Even with the

briefest of summaries, questions abound.
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It turns out the first event to consider, as we look back, relates to the IGM,

and how the hydrogen and helium became ionized. While high redshift observed quasar

absorption spectra have clear absorption troughs (called Gunn-Peterson troughs [1]), lower

redshift spectra do not. This indicates that at lower redshift, the hydrogen is ionized and

does not absorb the light from the quasar, while at higher redshift the hydrogen is neutral

and does absorb the quasar light. Hence, the IGM was not always ionized, and it must have

passed through a phase transition, where it went from neutral to ionized.

Between redshifts z ≈ 3−4, the second electron of helium is ionized by high energy

sources, such as quasars [2, 3, 4]. Before this, between redshifts z ≈ 5.5 − 20, hydrogen is

ionized, with the most likely sources being stars in galaxies [5]. These events, called helium

and hydrogen reionization, also lead to heating, as energy is injected by the ionizing photons.

This heating, combined with cooling from adiabatic expansion and atomic processes, are

the primary influences on the thermal state of the IGM.

In order to ionize the IGM, sources of ionizing radiation are required. If reioniza-

tion begins around z ≈ 20, then the first stars and galaxies must begin forming at around

the same time. This is preceded by what is often called the dark ages, the time before these

first stars and galaxies formed, which lasts from z ≈ 1100− 20. During this time, the seeds

of large scale structure continue to grow as dark matter continues to cluster via gravity. The

baryonic matter also continues to cluster, enhanced by the existing dark matter structure.

However, before z ≈ 1100, the Universe is so dense and hot that photons and

baryons are in thermal equilibrium. Baryon overdensities do not grow during this time,

though dark matter overdensities do, getting a jump start on structure formation. Within

2



the hot bath of photons and baryons, neutral atoms do not form, as the photons have enough

energy and density to immediately ionize any that do form. When the Universe expands

and cools enough for the photon energy to drop below the ionization threshold, neutral

atoms start to form. This process is called recombination, and is the reason reionization

has the re in front.

This is the point of no return for electromagnetic signals, as before this the universe

is opaque to photons. Thus, we cannot observe an electromagnetic signal from this time,

or earlier. However, a viable observable for this early stage in the history of the universe is

primordial gravitational waves, which would travel unaffected by the thermal state of the

universe.

Shortly after recombination, the photons decouple from the baryons, as they be-

come increasingly neutral. This leads to the formation of the cosmic microwave background

(CMB), or last scattering surface. The CMB has been measured to high precision by several

surveys, the latest of which is Planck [6], and found to be well modeled by a black body

spectrum at T = 2.726 Kelvin at z = 0. Imprinted in the temperature fluctuations of the

CMB is the pattern of overdensities and underdensities from acoustic waves traveling in the

hot dense plasma prior to being frozen in by recombination. These waves set a scale for

later structure formation, producing fluctuations in the density of baryons, which is called

baryon acoustic oscillations (BAO).

Because the signal stops at this point, we also stop here, except to briefly outline

a few more important stages in the history of the Universe. Looking back from recombina-

tion, the Universe becomes hotter and denser, leading to nuclei breaking into protons and

3



neutrons. The process by which nuclei form is called Big Bang Nucleosynthesis (BBN), and

it sets the relative abundances of the main atomic constituents of the Universe.

The other important phase, even earlier, is inflation. This is the phase during

which the Universe expands exponentially. The process of inflation produces a spectrum of

primordial perturbations from quantum fluctuations in the inflation field. These perturba-

tion are carried along with the inflation driven expansion, setting the stage for structure

formation later.

Figure 1.1: Dark matter (left) and gas (right, colors are temperature) from a hydrody-
namic simulations snapshot. The gas follows the structure of the dark matter, with high
density regions hotter than low density regions. In this two-dimensional slice, the cosmic
web filaments and knots are visible, and the voids can be inferred, but walls are not distin-
guishable.
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1.2 Structure Formation

We begin the discussion of structure formation by laying out the mathematical

description of the Universe as it expands in response to its constituent parts. This is the

vaunted Friedmann equation:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− c2

k

a2
+

c2

3
Λ, (1.1)

where a is the scale factor, related to the redshift by a = 1/(1 + z), ρ is the energy density

of the components of the universe (matter, radiation, neutrinos), k is the curvature of the

universe (positive k for a closed universe, zero for flat, and negative for open), and Λ is the

cosmological constant. These tell us about the Hubble parameter, H, which describes the

expansion rate of the universe at a given time.

The density of any component can be described using the fluid equation, which

conserves mass-energy,

ρ̇ = −3H
(
ρ + p/c2

)
(1.2)

Using this, the evolution of the energy density for each component can be determined. For

radiation, the energy density goes as ρr ∝ (1 + z)4, and for matter, the energy density goes

as ρM ∝ (1 + z)3. This means the energy density of the universe is dominated by radiation

early on, but transitions to being dominated by matter as the radiation energy is diluted.

Eventually, the matter energy density is also diluted to the point where the cosmological

constant dominates, as this does not evolve with redshift.

It is common to rewrite the Friedmann equation using the evolution of each com-

ponent, as well as critical density, which describes the density required for the Universe
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to remain perfectly flat, ρcrit = 3H2/(8πG) = 2.775 × 1011h2 M⊙ Mpc−3. The density

parameters can then be written as a fraction of the critical density, Ω = ρ/ρcrit. This leads

to,

H(z) = H0

√
Ωr(1 + z)4 + ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ. (1.3)

Structures form via gravitation within the expanding universe described by the

Hubble parameter. For dark matter, early density perturbations lead to overdensities which

continue to collapse from the end of inflation onward, though only efficiently after matter

domination begins. Perturbations in the density of baryons are washed away prior to

recombination, due to the pressure of the tightly coupled photon-baryon fluid opposing the

collapse due to gravity. However, baryon structures benefit from the early start of dark

matter structure, collapsing more rapidly than they would in the absence of these dark

matter potentials.

During the time when radiation dominates the energy density budget, which ends

before recombination, dark matter perturbations grow logarithmically. When the matter

energy density surpasses radiation, the dark matter perturbations have two modes, a grow-

ing mode that follows a power law, and a decaying mode. This is the onset of efficient dark

matter structure formation, which allows baryons to collapse more rapidly, leading to the

aforementioned cosmic web.

The density perturbations which dictate structure formation are described by a

power spectrum,

P (k, t) =
2π2

k3
T 2(k, t)P (k, t = t0), (1.4)

where k is the wavevector, T (k, t) is the transfer function, and P (k, t = t0) is the primordial
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power spectrum. The transfer function encodes all the information on how the density per-

turbations evolve, thus it depends on the components, e.g. dark matter, baryons, radiation,

neutrinos. The primordial power spectrum is most often parameterized as P (k, t = t0) =

As (k/ks)
ns−1. This form introduces two essential cosmological quantities, the primordial

power amplitude As, and the primordial power index, ns. The pivot scale, ks, is somewhat

arbitrary, but is most commonly ks = 0.05 h/Mpc.

One final useful measure of structure is the mass variance on a specific scale. The

scale most often chosen is 8 comoving Mpc, as this is a typical scale for galaxy clusters.

The variance is defined as

σ2
8(t) =

1

2π2

∫
W 2

8 (k)P (k, t)k2dk, (1.5)

where W8(k) is a window function picking out the appropriate scale, and σ8 is most often

quoted for z = 0. Structure growth is linear at first, with the independent modes (scales)

evolving independently. Structure growth becomes non-linear as overdensities compound,

growing the gravitational potential. For a specific scale, R, σR increases with time, and

structure growth begins to become non-linear when σR is close to one.

1.3 The Lyman-α Forest

The Lyman-α forest is an observed phenomenon in the absorption spectra of dis-

tant quasars, which are supermassive black holes with extremely luminous accretion disks.

The spectrum of quasars is close to uniform for a broad range of wavelengths, which makes

them ideal for absorption line studies. What is observed is a series of narrow absorption dips

in the quasar’s spectrum, blueward of the rest frame Lyman-α wavelength, corresponding to
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absorption by neutral hydrogen in the intergalactic medium. Specifically, in the rest frame

of the neutral hydrogen, photons from the quasar at the Lyman-α wavelength, 1215.67Å,

are absorbed. This is the first excited state of neutral hydrogen. After the neutral hydro-

gen is excited, it returns to its unexcited state and re-emits the photon, but now does so

isotropically.

Because of the expansion of space, and thus the redshifting of the quasar spectrum,

this absorption is repeated as shorter wavelength portions of the spectra become redshifted

to the Lyman-α wavelength. When the photons intersect subsequent neutral hydrogen, a

different part of the initial quasar spectrum is absorbed, dependent on the redshift. The

observed wavelength of absorption is λ = 1215.67(1 + z)Å, where z is the redshift of the

absorbing hydrogen. The observable is the flux of photons reaching us from the initial quasar

spectrum, where the flux is related to the optical depth by F = e−τ . As these features

accumulate, the spectrum takes on the appearance of a forest of absorption features.

Figure 1.2 shows two examples of the Lyman-α forest, one from observations (top)

and one from simulations (bottom). The observed Lyman-α forest contains other absorption

features, from metal lines and Lyman-β absorption. In this example, the spectra has been

shifted into the rest frame wavelength of the quasar, and it can be seen that the forest

begins at wavelengths shorter than the Lyman-α wavelength. The simulated example is

the Lyman-α absorption along a skewer through the simulation, i.e. it is the calculated

absorption of Lyman-αdue to the simulated structure.

Because the Lyman-α forest probes linear and mildly non-linear scales, both as-

trophysical and cosmological effects need to be accounted for. The optimistic view of this
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Figure 1.2: The top panel shows an example of the observed Lyman-α forest spectra
from [7], and is in flux units of 10−17 erg s−1 cm−2 Å−1 versus wavelength. The observed
forest begins at the Lyman-α transition at 1215.67Å and moves blueward. The bottom
panel shows an example of the simulated Lyman-α forest spectra, with normalized flux
versus sight line position (within the simulation). The simulated forest only contains the
calculated Lyman-α absorption.

is that the Lyman-α forest can simultaneously constrain both, as long as both are modeled

reasonably well. The extra cost is that simulations are required to fully exploit observa-

tions of the Lyman-α forest, as analytical models do not fully capture the range of scales

relevant for the forest. Luckily, simulations have been able to make predictions for the

Lyman-α forest for some time [8].

1.4 Cosmological Simulations

Simulations begin by initializing a distribution of particles, either as a grid or what

is called a glass. The glass method evolves randomly placed particles with reversed gravity.

The simulations used in this dissertation use a glass for the baryons, and a grid for the

dark matter (then a second glass procedure for the combined baryons and dark matter,
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to minimize CDM-baryon overlap). The particles are within a periodic boundary volume,

which minimizes boundary effects.

The particles are displaced according to linear perturbation theory to produce an

appropriate distribution at the starting redshift (often around z ∼ 100). The displacement

comes from a Gaussian random field generated from the matter power spectrum at the

starting redshift. The assumption of a Gaussian random field becomes less important as

the initial redshift is increased, thus it is common to start simulations at high redshift. The

particles are then evolved via the simulation code, allowing for non-linear structure growth.

Cosmological simulations can be run with only collisionless dark matter, or with

both dark matter and gas. Modeling the dark matter is significantly simpler and less com-

putationally costly. The main hurdle for simulations of dark matter, called N-body simu-

lations, is to calculate gravitational forces efficiently, such that a large number of particles

can be simulated. The best way to achieve that is to divide the gravitational calculations

into short range and long range interactions.

For long range forces, i.e. for the gravitational effect from distant particles, a

particle-mesh (PM) method is used. In the PM method, particles are interpolated onto a

grid such that a density field can be approximated. The forces can then be calculated using

the Poisson equation,

∇2ϕ = 4πGρ(r) (1.6)

where ρ is the estimated density field, and ϕ is the gravitational potential. This method

is faster than calculating each individual gravitational interaction, but lacks the accuracy

necessary for nearby particles, which will dictate the structure on small scales.
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For short range forces, a tree algorithm is used. This method hierarchically groups

particles based on distance, dividing the simulated space repeatedly until arriving at groups

with a single particle. The number of force calculations can then be significantly reduced

by walking along the tree, from ’root’ to ’leaf.’ Starting with the largest groups, a decision

is made on whether a multipole approximation is sufficiently accurate. If the accuracy

is sufficient, the calculation can be made for that group using a single multipole force.

If the accuracy is not sufficient, the walk continues towards smaller groupings, and this

is repeated, where the worst case (computationally speaking) is that individual particle

interactions must be calculated. Overall, the method for gravity is called Tree-PM, the

combination of the short range tree, and long range PM.

Gas, meaning the baryons, needs to be simulated differently than dark matter,

requiring a hydrodynamical treatment. Gas is modeled using smoothed particle hydro-

dynamics (SPH). In SPH, tracer particles sample the underlying fluid, then a smoothed

interpolation can be used to fully describe the fluid. The dynamics of the tracer particles

come from a description of the gas using a Lagrangian, with kinetic energy and thermal

potential energy. Using the Euler-Lagrange equations and thermodynamics, the equations

of motion for the gas can be obtained, so long as a good estimate for the density is available.

The SPH uses a kernel function to obtain this estimate.

Another requirement for the simulations used in this dissertation is appropriate

heating and cooling of the gas, without which the IGM will not be properly modeled. Most

often these processes are modeled using known cooling rates for the relevant species, with a

uniform ionizing background that dictates the temperature and ionization state of the gas.
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Finally, a few notes on simulation terminology. What is often referred to as the

box size is the length of one side of the volume simulated, rather than the volume itself.

This, as all positions, are in comoving coordinates. The particle load is the number of

particles simulated, and is sometimes quoted as the cube root of the actual number. The

mass resolution is determined from these two quantities and the relevant component density

parameter, e.g. for gas mass resolution Mgas = ΩbρcV/N for V box volume, N particle

number, and critical density ρc. An example of the structure and temperature from a

portion of simulations run at lower and higher resolution is shown in Figure 1.3.

Figure 1.3: Slice of the simulated gas (color coded by temperature) from a snapshot at
z = 4, for two different resolution simulations. The bottom shows the lower resolution
simulation, while the top shows the higher resolution simulation. In the higher resolution
simulation more detailed structure can be seen (i.e. small scale structure).

1.5 Chapter Outline

In Chapter 2, the prospects for detecting cosmic strings (theoretical topological

defects in spacetime) through their effect on filamentary structure is presented. The scales

here are ∼ 1 − 100 Mpc, and the time frame is z ∼ 30 for the presence of the cosmic
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strings, and z = 0 − 10 for the observable effects of the string. This work was previously

published [9], and is presented here with an additional figure (Figure 2.10), which serves

only to illustrate the proposed detection method.

In Chapter 3, we turn our attention to small and intermediate scales, specifically

the intergalactic medium (IGM) and the Lyman-α forest. We are now looking at scales of

∼ 0.3−10 Mpc, and the time frame is z = 2−6. This chapter details work done to quantify

the effect of using separate transfer functions for baryons and dark matter in simulations.

Again, this is a previously published work [10].

In Chapter 4, machine learning makes its first appearance. In this chapter, work

exploring the use of a multi-fidelity Gaussian process emulator for the Lyman-α forest is

presented. Specifically, this is a proof of concept and test of the effectiveness of this method

of emulating the Lyman-α forest. This work was previously published [11], and is pre-

sented here with two additional figures (Figure 4.9 and Figure 4.4) and accompanying text,

which summarizes the emulator accuracy, and provides an example of the Latin hypercube

sampling.

Following on from the previous, Chapter 5, presents work using a multi-fidelity

emulator to conduct cosmology and astrophysics parameter inference. Using large volume

and high resolution simulations, along with observations of the Lyman-α forest flux power

spectrum and IGM mean temperature, and a new likelihood code, constraints on various

parameters are presented. This work is currently in review, with an expected publication

date in 2023.
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Chapter 2

Cosmic Strings and the Cosmic

Web

2.1 Abstract

Cosmic strings are generically predicted in many extensions of the Standard Model

of particle physics. We propose a new avenue for detecting cosmic strings through their

effect on the filamentary structure in the cosmic web. Using cosmological simulations of the

density wake from a cosmic string, we examine a variety of filament structure probes. We

show that the largest effect of the cosmic string is an overdensity in the filament distribution

around the string wake. The signal from the overdensity is stronger at higher redshift, and

more robust with a wider field. We analyze the spatial distribution of filaments from a

publicly available catalog of filaments built from SDSS galaxies. With existing data, we

find no evidence for the presence of a cosmic string wake with string tension parameter Gµ
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above 5 × 10−6. However, we project WFIRST will be able to detect a signal from such a

wake at the 99% confidence level at redshift z = 2, with significantly higher confidence and

the possibility of probing lower tensions (Gµ ∼ 10−6), at z = 10. The sensitivity of this

method is not competitive with constraints derived from the CMB. However, it provides an

independent discovery channel at low redshift, which could be a smoking-gun in scenarios

where the CMB bound can be weakened.

2.2 Introduction

Many well-motivated fundamental physics theories beyond the Standard Model

predict the existence of cosmic strings, which are approximately one-dimensional stable relic

objects. They may arise in super-string theory as fundamental objects [12, 13, 14, 15, 16]

or as vortex-like configurations of quantum fields such as those originated from a U(1)

symmetry breaking [17, 18]. A cosmic string network forms in the very early Universe,

e.g., following a symmetry-breaking phase transition, and is expected to consist of stable

horizon-length long strings together with sub-horizon loops that can decay away through

gravitational radiation or matter emission [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

The phenomenology of cosmic strings are characterized by their energy per unit length

(tension) µ that relates to the symmetry breaking scale η (µ ∼ η2) [32].

Cosmic strings have interested cosmologists and high energy theorists for decades,

and can leave detectable signatures in a variety of observational windows. In the early

days, strings were considered as potential large scale structure seeds [33, 34]. This role

was later ruled out by CMB data. Nevertheless, cosmic strings may still imprint the CMB
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as line discontinuities in the temperature map and the current constraint on the tension

by Planck [35] is Gµ < 1.5 × 10−7 at 95% confidence (G: Newton constant). A cosmic

string background may produce detectable gravitational wave signatures that can reveal

the expansion history of the early Universe as well as other beyond the Standard Model

particle physics, and has thus received increasing attention in light of the recent LIGO

detection [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 31].

Cosmic strings can also be detected through lower redshift astrophysical obser-

vations, in particular through their distinct gravitational lensing effect which constrains

Gµ < 2.3 × 10−6 at 95% confidence [47]. Although these low z lensing observations typ-

ically give weaker constraints than those based on the CMB or stochastic gravitational

wave background (with model dependence), they serve as important complementary probes.

Meanwhile, recent work has brought up the possibility that the CMB and stochastic grav-

itational wave background limits may be alleviated or evaded in certain scenarios, e.g., if

the cosmic strings form before or during early stage of inflation and re-enter back into the

horizon only at late times [48, 46]. In such cases low z astrophysical signatures could be

the smoking-gun for cosmic strings.

Early non-linearities are perhaps the most striking effect from cosmic strings in

terms of structure formation. In particular, once inside the horizon, long strings straighten

out at relativistic speeds [32]. The spacetime metric around these straight segments is conic,

with a deficit angle of the size ∼ 8πGµ (i.e. one revolution around the string is less than 2π

radians) [49]. This causes particles moving relative to the string to be kicked towards the

plane traced out by the string, with a magnitude proportional to the deficit angle. A wake
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composed of in-falling particles is formed behind the string [50, 51] and the wake grows

according to standard linear theory [52]. Such an effect can alter the large scale structure

by introducing non-linearities earlier in the universe than would otherwise be possible.

Ultimately, these string induced non-linearities are overwhelmed by the growth of

Gaussian fluctuations from inflation, erasing signatures of its existence at later times [53].

Because of this erasure of the early structure signal, the CMB and lensing effects have been

the more robust ways in which to constrain the tension of cosmic strings.

In this work, we propose using the effect of the cosmic string on the filaments

of the cosmic web as a new probe of cosmic strings. The large scale structure of the

universe may be split into distinct components; “zero-dimensional” halos at the intersections

of “one-dimensional” filaments, which outline “two-dimensional” walls containing “three-

dimensional” voids. These components, listed in descending order of density, make up the

cosmic web [54]. The large scale cosmic web has been observed through the distribution

of galaxies [55, 56, 57, 58, 59, 60] and intensity maps of emission lines [61, 62, 63]. Future

proposed and planned intensity mapping surveys [64, 65] and galaxy surveys such as those

conducted by the square kilometre array [66], or dark energy spectroscopic instrument [67]

as well as the EUCLID [68] and the Nancy Grace Roman Space Telescope (the Roman

Space Telescope, formerly WFIRST) [69] satellites will extend our three-dimensional map

of the cosmic web. Further boosting our interest in the large scale cosmic web is the recent

development of a multitude of cosmic web identification algorithms [70], some of which have

already identified filaments in existing galaxy surveys [71, 72].
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We look at the effect that the passage of a long, straight cosmic string has on

the filamentary structure in dark matter (DM) simulations. We examine filaments here for

two reasons. First, while the wake is effectively a two dimensional feature, when projected

onto the sky it would appear one dimensional. Second, filament finders are well developed

and may be robustly applied to galaxy catalogues. It may be possible to detect the effects

of a cosmic string in other cosmic web structures, such as walls and voids. We consider

string tensions ranging from those consistent with Planck limits to a value similar to the

gravitational lensing limit. This method is sensitive to higher redshift strings (when the

string has passed through the simulation volume and the wake forms, z ∼ 100) and larger

scales (∼ 10 Mpc) than the lensing signal (z ≲ 1, ∼Mpc).

Refs. [73, 74, 75] showed that tensions of Gµ ∼ 10−7 are detectable in cosmological

simulations using the cosmic string wake. However, these methods require an accurate

map of the three-dimensional dark matter distribution at z > 2, which is currently out of

reach of foreseeable experiments. Another potential, albeit at present futuristic, method

for detecting the wake from cosmic strings is 21 cm intensity mapping [76].

The effect of the physical shift and kick due to the string on the statistics of cosmic

filaments has not been previously explored. While we show that the effects are generally too

small to be competitive with limits from CMB constraints, the novel independent method

we propose provides a valuable complementary probe, and would become competitive in

scenarios when CMB bounds are weakened (for example, regrowing cosmic strings after

inflationary dilution [46]).
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In Section 2.3 we detail the suite of simulations that we will be using throughout,

as well as the method we employ to add the effects of the cosmic string to the simulation.

We also comment on the possibility of detection via the kinematics of the halos, as well the

velocity kick feature of the wake implementation. In Section 2.4 we describe the two filament

identification algorithms we use, comparing the filaments they identify qualitatively. The

result of this section is a catalog of filaments that we analyze in Section 2.5, along with a set

of publicly available filaments constructed from SDSS galaxies. We also demonstrate the

projected sensitivities for the Roman space telescope in Section 2.5. In Section 2.6 we show

that our results are independent of the box size and resolution of our simulations. Finally,

in Section 2.7 we conclude, pointing to future prospects for cosmic string wake detection.

2.3 Simulations

We performed a suite of dark matter only cosmological simulations using MP-

Gadget1 [77]. MP-Gadget is a fork of Gadget-3 [78] modified for scalability. The initial

power spectrum is generated via the Boltzmann code CLASS [79]. Radiation density is

included in the background expansion rate, and the simulation box has periodic boundaries.

The cosmology parameters are the current defaults of MP-Gadget and are consistent with

the nine-year WMAP results [80] (our results are not sensitive to the exact values used).

These, and the simulation settings used, can be seen in Table 2.1.

The main results of this work are from a set of five simulations (each with a different

starting random seed, leading to distinct dark matter structures) with the parameters in

1https://github.com/sbird/MP-Gadget3
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Cosmology Simulation

Ω0 0.2814 N 5123

ΩΛ 0.7186 L [Mpc/h] 64
Ωb 0.0464 ℓ [Mpc/h] 250

H0 [km/s/Mpc] 69.7 z0 99
σ8 0.810 zcs 31
ns 0.971

Table 2.1: Cosmic String Simulation Parameters. Cosmology parameters are: total matter
Ω0, dark energy ΩΛ, and baryon Ωb densities. Hubble constant H0, density fluctuation σ8,
scalar spectral index ns. Simulation parameters are: number of DM particles N , box length
for main simulations L, box length for scaling simulation ℓ (see Section 2.6), initial redshift
z0, wake insertion redshift zcs.

Table 2.1 and a mass resolution of 1.5×108M⊙. The effects of the string wake were inserted

at z = 31. The insertion redshift is chosen to be late enough that a string will have time

to travel the box length since matter-radiation equality and early enough that non-linear

structure has not yet formed in the wake. The insertion time does not affect our results

as long as it is early enough that linear perturbation theory (Equations 2.2 & 2.3) is a

good description. This will be until structure formation dominates the wake signal [53]. An

additional simulation with a larger box size (250 Mpc) was run to ensure that our results

were not strongly affected by box size or resolution (see Section 2.6).

2.3.1 Cosmic String Wakes

Cosmic strings create a deficit angle in the spacetime surrounding them. This

means that as a cosmic string passes through matter, the trajectory of that matter is

altered (for more details, see [49] or [32]). Specifically, the matter is “kicked” towards the

worldsheet of the string with an additional velocity given by

δv = 4πGµγu, (2.1)
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where Gµ is the dimensionless parameter defined by the tension of the cosmic

string, u is the comoving speed of the cosmic string, and γ is the usual relativistic Lorentz

factor introduced by transforming to the reference frame of the particle [32]. See Figure 2.1

for a cartoon of the cosmic string wake, deficit angle, and wake. We set the string speed

as u = 0.6c, consistent with e.g., [37] (Eqs. 2.3 & 2.4 therein). The string speed only

affects the magnitude of the velocity kick and displacement of particles on wake insertion.

Therefore, the exact value is sub-dominant compared to the tension parameter, which in

this study varies by a factor of 50, as compared with possible string speeds varying from

the value used here on the order of a factor of ∼ 1− 5 [32].

These in-falling particles create an overdensity along the worldsheet of the cosmic

string. This overdensity, or cosmic string “wake”, is an early non-linear structure which

perturbs the position and velocity of nearby particles. Instead of simulating the cosmic

string directly, the wake is simulated following the method used in [75]. We simulate the

wake once the string has passed by including the linear density perturbation induced by the

string’s passage. For simulation purposes, a snapshot that is sufficiently late that the string

will have passed through the box is chosen, and the particles are displaced and kicked at

that time (by an amount corresponding to the prediction of linear theory between the time

of the string’s passage and the time of wake insertion).

Perturbations due to the string wakes are inserted as

δx =
3

5
δv teq

(zeq + 1)2

(z + 1)
h, (2.2)

δẋ =
2

5
δv

teq
t

(zeq + 1)2

(z + 1)2
, (2.3)

where teq, zeq are the time and redshift of matter-radiation equality (and when the wake is
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first formed), h is the Hubble factor, and t, z are the time and redshift at which the shift

and kick are calculated (i.e. when the wake effect is inserted into the simulation). Note that

our perturbations differ slightly from [75]: the factor of h in the shift is due to positions in

MP-Gadget being in comoving kpc/h, one factor of z−1 in the velocity kick is due to MP-

Gadget using physical peculiar velocities, and we have dropped the (good) approximation

that z ≈ z + 1 = 1/a.

In practice, the snapshot at which the wake’s effects are being inserted is adjusted

by first shifting the particle positions along the coordinate perpendicular to the plane of

the string wake. The particles on either side are shifted towards the plane, then the ve-

locity perturbation is added towards the plane of the wake. The simulation is then run to

completion from the updated snapshot, which now includes the effects of the wake. Given

that we expect ∼ 10 horizon-length strings per horizon [81, 82], we would not expect to see

multiple string wakes in a region the size of our simulation boxes, therefore only one wake

is inserted in each simulation.

The wake insertion is performed in the same way for each of the five distinct

simulated cosmic structures. For each of these distinct structures, four different scenarios

are simulated: one scenario where there is no wake, and the remaining scenarios where a

wake is inserted with tensions Gµ = 10−7, 10−6, and 5× 10−6. An example can be seen in

Figure 2.2, which shows the density of DM particles at two redshifts for the case with no

wake (left) and with a Gµ = 4× 10−6 wake (right).
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Figure 2.1: Setup for cosmic string & wake. The cosmic string (bold, black) creates a deficit
angle, 8πGµ, in the space around it. The string travels with speed u, leaving behind a wedge
shaped overdensity called a wake with opening angle, 8πGµγ, where γ = (1− u2)−1/2.

2.3.2 Velocity

The effect of the cosmic string passage is a velocity kick towards the worldsheet of

the string. This leads to an effect on the velocity distribution of the halos. At early times

there is an excess velocity towards the wake. At some later point, depending on the string

tension, the kicked halos cross the wake and the excess velocity is away from it. While this

is a significant noticeable effect on the redshift space distribution of the halos, it depends

strongly on the orientation between the observer and wake. Our simulations indicate that

while even the lowest tension string wake would have a noticeable signal down to z = 2, the

signal disappears when the angle between observer and the plane perpendicular to the wake

is greater than ∼ 10 degrees at higher redshift (z ≥ 5) and ∼ 3 degrees at lower (z ≤ 2). A

detection via this signal would rely on a highly fortuitous alignment.
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Figure 2.2: Visual wake versus no-wake comparison. Projection of the particle density at
z = 31 (top) and z = 1 (bottom). Left-hand panels are from a simulation with no wake,
right-hand panels are from a simulation with a Gµ = 4× 10−6 wake inserted at z = 31.

These signals depend on the ratio of the average speed of particles towards the

wake prior to wake insertion, and the velocity kick they receive. Figure 2.3 shows the

average speed perpendicular to the wake against redshift. Also shown is the 1σ region of

these speeds (shaded). The velocity kicks from wake insertion are shown as dashed lines.

The middle tension case traces out the particle speed fairly well, while the other two tensions

trace out the edges of the 1σ region. As might be expected, the observability of the effect
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from the passage of a cosmic string seems to depend on how large a kick the particles receive

compared to the intrinsic velocity dispersion from standard DM structure formation (i.e. a

non-trivial number of halos change direction due to the wake).

Figure 2.3: Average particle speed perpendicular to wake. Average speed of DM particles in
the direction perpendicular to the cosmic string wake. Dashed lines show the kick imparted
on the particles (see Section 2.3.1) for the three different tensions used throughout.

2.4 Filament Identification

While the cosmic string wake is inserted via a position and velocity perturbation

on the DM particles, we identify the filamentary structure from the resulting DM halos

(these are constructed using a friends-of-friends algorithm in the simulation code). This

is much more computationally reasonable, and agrees more closely with how filamentary

structure is currently identified observationally (i.e. via galaxy surveys).
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Many algorithms have been devised to identify cosmic web components within

cosmological simulations or from galaxy catalogues (see [70] for a comparison of 12 algo-

rithms). Here, we use two such algorithms; the subspace constrained mean shift (SCMS)

algorithm [83, 84], and DisPerSE (Discrete Persistent Structures Extractor) [85, 86]. In

both cases we identify only linear structures, the filaments of the cosmic web. By using

two methods we mitigate the dependence of our results on the identification algorithm

used, or options/parameters selected within each method. The two selected methods are

at somewhat opposite ends in terms of complexity (with SCMS being fairly intuitive), and

implementation (DisPerSE is a downloadable installation).

Below we briefly describe each algorithm and note our parameter/option choices in

using them, as well as any necessary alterations made to conform to our simulation output

(the most notable being the periodicity of our simulation box).

2.4.1 SCMS+

SCMS is a gradient ascent method, which shifts tracer particles according to the

Hessian (second derivative, or curvature) matrix of the density at each tracer position. The

density is approximated with a Gaussian kernel density estimate (KDE) at each tracer

position according to the population of dark matter halos in the simulation box. We follow

the implementation as described in [84], which thresholds out halos in low density regions,

then runs the SCMS algorithm to identify ridges in the KDE. Here, we use the DM halos

as the starting positions of the tracers and set the smoothing length as 2 Mpc. Some

modifications were implemented to correctly handle the periodicity of the simulation box.
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Figure 2.4: SCMS+ filaments. (top left) converged SCMS tracers (black) outlining the
spine of the filaments, halos-in-filaments (green), and halos too far from the spine (red).
(top right) a split filament. (bottom right) a filament straddling the periodic boundary of
the box. (bottom left) a “wiggly” filament.

A brief outline of the algorithm follows.

• (Thresholding) Tracers in low density regions are removed by calculating the KDE

for all tracers and removing those with values lower than the mean KDE, as these are

unlikely to reside in filaments ([70] figures 4 & 5). Particle separations account for

the box periodicity, connecting particles using the smallest possible great circle arc.
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• (SCMS) Using the subset left over from the thresholding step, the SCMS algorithm

runs until a tracer is shifted by less than 1 kpc. For each iteration the Hessian matrix

is calculated and the smallest two eigenvectors dictate which direction the halo moves

to ascend the local ridge. Once a tracer is converged the next tracer is shifted until

convergence, and so on (the KDE calculated here is from the DM halos, which are not

shifted). To accommodate the periodic boundaries, the box (and the halos within) is

centered on the current tracer position, and the separations are calculated between

this tracer and tracer-centered halos. At the end of each step, if the tracer has

shifted outside the box, it is moved back to the correct, periodic position by adding

or subtracting the box size.

The output of the SCMS algorithm is a set of tracers converged on the ridges of

the density field, and is not a set of filaments. To obtain separated filaments (and filament

properties) we use both the tracers and the DM halos. First, the tracers are connected

into segments if they are separated by less than a maximum distance, with a value that

depends on the redshift. The segments are then connected iteratively using the same,

redshift dependent maximum distance (from 250 kpc/h at z = 0 to 1200 kpc/h at z = 10)

until a set of separated filaments is achieved. We call the entire method, from thresholding

to filament separation, SCMS+. Some examples of filaments identified with this algorithm

can be seen in Figure 2.4, which for a simulation with no wake inserted, shows the entire

box in the top left corner (converged tracers in black, halos belonging to filaments in green,

halos too far from filaments in red), then some zoomed in examples of filaments in the other

panels.
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The length of the filaments are determined by a smoothed stepping procedure,

which sums the distances between neighboring tracers, which have been smoothed by 0.5

Mpc, starting from one end of each filament (a filament end is determined by identifying the

tracer with the fewest directions occupied by another tracer). DM halos are then assigned

to filaments based on proximity and a cutoff of 2 Mpc. Filaments that are shorter than

the smoothing length (2 Mpc) or have fewer than 3 halos assigned to them are discarded.

Finally, the mass of each filament is the sum of the halos assigned to that filament.

2.4.2 DisPerSE

DisPerSE is a widely used cosmic web identification tool which extracts struc-

ture using the Morse-Smale complex of the input. The input is the Delaunay tessellation

of the particle distribution. For details about DisPerSE, see the overview and tutorial

at http://www2.iap.fr/users/sousbie/web/html/indexd41d.html. We implement the

main program of DisPerSE, MSE, on the tessellated DM halo population from our simula-

tions with a 6σ persistence threshold. The output is converted using the skelconv program

in DisPerSE, smoothed over 10 halos, and filaments are assembled if the angle between

them is less than 75◦.

DisPerSE can find filaments directly from DM particles3. To check the robustness

of our results we subsample 5% of the DM particles from the simulations and run DisPerSE

using the same settings, except for increasing the smoothing to 100 particles. We visually

inspected the output and confirmed that approximately three-quarters of the filaments found

3In principle, so can SCMS, but it scales poorly to large tracer numbers.
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from halos had approximately the same positions as the filaments found from particles. For

ease of comparison with SCMS+ filaments, we use DM halos for the remainder of this work.

While the two filament identification algorithms employ fairly different methods,

they both identify similar major filaments. DisPerSE detects substantially more filamentary

structure as can be seen in Figure 2.5, which shows the filaments identified from a simulation

Figure 2.5: SCMS+ filaments. SCMS+ filaments (blue) and DisPerSE (brown) filaments,
both using DM halos as the input. The top panel is at z = 10, while the bottom is at z = 0.
While DisPerSE is clearly more sensitive, finding more filaments, the largest filaments are
similar.
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Figure 2.6: Filament number comparison (SCMS+, DisPerSE). Number of filaments iden-
tified by the two methods as a function of redshift. Included are the filaments from the
simulation without a wake, and a simulation with a Gµ = 5× 10−6 wake.

with no wake. Figure 2.6 compares the number of filaments identified by each method as

the simulation evolves. Both algorithms detect the growth of structure up to the onset of

dark energy domination and a subsequent decline in filament number. However, the two

methods differ in filament number and redshift trend: DisPerSE initially has fewer filaments

but much larger growth with redshift, which peaks at a higher level.

Both the number of filaments and the trend with redshift depend strongly on the

values chosen for key parameters for each method; for DisPerSE the persistence threshold,

and for SCMS+ the smoothing length. For example, reducing the persistence threshold

of DisPerSE from 6σ to 2σ leads to a ∼ 10-fold increase in filaments at all redshifts and

moves the peak redshift to z = 2, preserving the late decline in filament number. Despite

the differences in the filament populations these methods return, neither method shows

a convincing signature of a cosmic string wake on structure formation. We also stress
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that in the analysis presented, we are concerned with relative changes, comparing similar

simulations where the only difference is the inclusion of a cosmic string wake.

For each cosmic string tension we have performed five different simulations using

different initial realisations of cosmic structure. For each string tension, the filament cat-

alogs from these five different structure realisations are combined, boosting the sample of

available filaments. The final results are two catalogs (SCMS+, DisPerSE) with four fila-

ment populations each4. In Section 2.5 we analyze these populations for potential cosmic

string signals, focusing on the SCMS+ catalog.

2.5 Results

Our goal is to determine if there are signals in the filament population indicating

the previous passage of a cosmic string. With a catalog of filaments in hand, we compare the

filament population and spatial distribution of filaments in simulations with and without

cosmic string wakes.

2.5.1 Filament Population

Figure 2.7 shows the number of filaments for each of the four wake scenarios,

plotted against redshift for the results from the SCMS+ filaments. Similar results are

obtained with DisPerSE. The change in the number of filaments between the simulation

without a wake and the three with wakes is small and inconsistent. It appears that the

presence of the wake both separates and connects filament segments, in approximately

equal amounts. This leads to little to no change in the number of filaments.

4(python) code used to produce these catalogs are available at https://github.com/mafern/SCMSplus.
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The properties of the filament populations, for example the distribution of filament

masses, are another potential signal. The procedure for determining the filament length and

mass are outlined at the end of Section 2.4.1. As can be seen in Figure 2.8, which shows the

distribution of filament masses for the SCMS+ filaments, the cosmic string wake has very

little effect on the filament masses. The distribution of filament lengths is similarly devoid of

a distinguishing signal. Visual inspection of the filament distribution reveals, however, that

the cosmic string wake does alter the spatial distribution of filaments, enlarging some and

disrupting others. Once averaged over the whole box, the overall distribution is unchanged.

Filaments are re-ordered in a way which is indistinguishable from the random variance due

to the realization of structure formation. One feature of structure resulting from the wake

which distinguishes it from structure formation seeded from inflationary perturbations is

that it has a preferred direction (i.e. towards the wake). This is the feature that we exploit

in the following section.

2.5.2 Spatial Distribution of Filaments

Now we illustrate more sensitive observables for identifying filaments originated

from string wakes. The effect of a cosmic string is to pull matter towards the worldsheet

of its passage, motivating a look at the spatial distribution of filaments. In principle the

spatial distribution of two-dimensional walls and three-dimensional voids will be affected

similarly, however we remain focused on filaments here. We do this in two ways, the first

being a comparison of the filament number density around the center of the wake to the

overall filament number density. This is shown in Figure 2.9 for the SCMS+ catalog (we
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Figure 2.7: Filament number, increasing tension (SCMS+). Number of filaments identified
by SCMS+ versus redshift. Even at very large tension, the effect on the number of filaments
is small and noise dominated.

Figure 2.8: SCMS+ filament mass distributions. Smoothed, normalized distribution of
filament masses at z = 0 (left) and z = 5 (right), for the three wake and no-wake cases.
There are no significant changes in the masses of the filament population early or late in
the simulation.

34



obtained similar results for the DisPerSE filaments). Any part of a filament within the

central 10 Mpc/h is added to the number of filaments near the wake. The number density

in this central region, surrounding the wake, is divided by the filament number density for

the whole box. As a baseline the same calculation is repeated for simulations with no wake,

comparing the central region to the rest of the box.

The smallest tension wake we include here (Gµ = 10−7) is not distinguishable from

the simulation without a wake. The intermediate tension wake (Gµ = 10−6) shows signs

at higher redshift (z > 5) of a central overdensity in the number of filaments. The largest

tension wake we include (Gµ = 5× 10−6) shows a clear overdensity in the central region at

all redshifts, with the signal generally decreasing with time, with the exception of an uptick

after redshift 2. This is likely due to the filaments coalescing into larger structures, which

already have segments within the central region, see Figure 2.7). We do not see this trend

in the lower tension and no-wake simulations because in these cases the filaments have not

been significantly distorted/pulled towards the central wake.

In an observational setting, we would not know a priori where the wake is, and

therefore the previous comparison would be of limited use. Rather than looking only at

a slice of the box parallel to and around the wake center, we can look at slices centered

from one side of the box to the other (see Figure 2.10). The number of filaments in each 10

Mpc/h slice can then be compared to the mean number of filaments in a slice, i.e. each slice

filament number is divided by the mean slice filament number for the entire box. A value

higher than one is overdense with respect to the mean slice. Comparing the overdensity in

these slices highlights any clustering of filaments around a potential wake.
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Figure 2.9: Central filament overdensity, increasing tension. Overdensity of filaments iden-
tified by SCMS+ versus redshift. The overdensity becomes more pronounced as the tension
of the string is increased.

Figure 2.10: Proposed method for detecting cosmic strings by the overdensity of filaments.
A priori, the location of the cosmic string wake would not be known (left panel), so searching
for a filament overdensity would require scanning across the data set (right panel).
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In Figure 2.11 the slice overdensity is apparent in the center of the box at all

redshifts for the largest tension wake, while the smaller tension wakes show no robust signal

at any redshift. The signal from the DisPerSE filaments is marginally smaller, but still shows

that only the largest tension wake produces a noticeable overdensity. The underdensity at

the edges of each panel is due to the finite size of the box. During wake insertion particles

are kicked towards the center of the wake, away from the edges [75].

Figure 2.11: Filament slice overdensity (SCMS+). Overdensity of filaments identified by
the SCMS+ method in 10 Mpc/h slices versus the center of the slice. The grey shaded
region shows the 1σ area for the no wake case.
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Figure 2.12: Maximum number density excess by viewing angle. The maximum percent
difference between the number of filaments in a slice for the simulation with a Gµ = 5×10−6

tension wake to the 1σ region in the no-wake simulation (see grey shaded region in Figure
2.11). The dotted line marks a 10% excess.

The observability of this signal depends on the orientation of the wake with respect

to the observer, i.e. how much of the wake the observer is looking through. By rotating

our simulated filaments about an axis parallel to the plane of the wake we can simulate

viewing the wake from edge-on (maximally visible) to face-on (minimally visible). After

rotating the filaments, the box is re-formed to account for the periodic boundaries. Using

the rotated filaments we can determine the viewing angles at which the signal persists (has

at least one slice with a 10% density excess over the no wake 1σ region). The average of the

two possible rotations is shown in Figure 2.12, which indicates that for the highest tension

string wake the signal in the SCMS+ filaments persists up to an angle of ∼ 65 degrees at

z = 10, ∼ 30 degrees at z = 5, ∼ 30 degrees at z = 2, and ∼ 15 degrees z = 0. This is
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Figure 2.13: Filament slice overdensity (SDSS). Overdensity of SDSS filaments constructed
using the filament catalog from [87]. Slices span 10 degrees in RA and are plotted over the
RA slice center. Shown are slice overdensities using filaments at all redshifts (black), the 1σ
and 2σ regions (dark and light shaded), and each ∆z = 0.1 bin from z = 0.005 to z = 0.7
(brown).

in contrast to the visibility of the overdensity of halos in the wake, which is robust to ∼ 8

degrees at higher redshift and ∼ 4 degrees at lower redshift.

2.5.3 SDSS Filament Catalog

We use the publicly available filament catalog from [87] to construct observed slice

overdensities to compare to our simulated result (Figure 2.11). The main takeaway of this

section is to show that this can be done in a relatively straight-forward way for any catalog

of filaments.

The catalog from [87] identified filaments in a combined DR7/DR12 SDSS dataset

using SCMS. The filament catalog is a set of points reported in right ascension (RA),
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declination, and redshift in ∆z = 0.005 bins from z = 0.005 to z = 0.7. The smoothing

length used in the SCMS method for each redshift bin is also available. For filaments in each

redshift bin, we convert the coordinates to Cartesian [88, 89], then separate the filaments

using the method outlined in Section 2.4.1, using the reported smoothing lengths as a guide

to the separation length. We then count the filaments in 10 degree slices of RA for each

redshift bin.

Figure 2.13 shows the slice overdensities, grouped into ∆z = 0.1 bins (brown), as

well as the overdensities for the entire set of filaments (black). The average of the whole

filament set we treat as the no-wake case since cosmic string wakes will only affect a fraction

of this volume. Also, shown are the 1σ and 2σ deviations from the full set of filaments. We

compare the whole filament set to each individual slice in ∆z = 0.1 to determine whether

an overdensity similar to what we see in Figure 2.11 appears in the observed filament

population. Figure 2.13 shows that almost all slices fall within the 1σ range around the

total filament density using all SDSS galaxies. This suggests that a cosmic string wake

formed with the largest tension, Gµ = 5 × 10−6, is unlikely except for a small region of

parameter space where the wake is parallel to the line of sight.

2.5.4 Roman Space Telescope Projection

Future surveys, such as the Roman Space Telescope [90] will provide high redshift

(z > 2) galaxy populations, which can be used to identify high redshift filament populations.

For example, at z = 2, the Roman Space Telescope is expected to observe approximately

1000 galaxies per square degree per ∆z over its ∼ 2000 square degree field of view [69],

leading to ∼ 2× 105 galaxies (with ∆z = 0.1). Our simulations indicate a median of ∼ 100
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halos per filament at that redshift, leading to ∼ 2000 filaments around z = 2. From Figure

2.11, it appears that there is a ∼ 20% enhancement (i.e. the maximum ratio between a

simulation with a wake to the case without a wake) in the number of filaments around the

cosmic string wake for the Gµ = 5 × 10−6 case. Taking into account the angles at which

the effect is still visible, and assuming all orientations are equally likely, the Roman Space

Telescope should be able to detect this signal at the level of 0.2/N
−1/2
fil × 60/180 ∼ 3σ, or

99% confidence.

We can repeat the same approximation at z = 10. At this high redshift the

Roman Space Telescope, in the optimistic case, projects finding ∼ 1000 galaxies with the

High-Latitude Survey [69]. Our simulations indicate at z = 10 there are ∼ 10 galaxies per

filament, so we could identify as many as ∼ 100 filaments at this redshift. For a tension

of Gµ = 5 × 10−6, our simulations show an enhancement of a factor of ∼ 3, with a signal

that persists up to an observation angle of ∼ 65 degrees. This would be detectable by the

Roman Space Telescope at z = 10 at ∼ 22σ. By contrast, a tension of Gµ = 10−6 shows an

enhancement of ∼ 0.1 at ∼ 25 degrees. It would thus enhance the filament overdensity by

only 0.3σ and not be detectable.

Figure 2.11 shows that the signal at Gµ = 5×10−6 increases at higher redshift, as

the signal becomes more pronounced with respect to the filament overdensity induced by

normal structure formation. However, for lower tensions with Gµ ≤ 10−6 the increase in

filament overdensity from the cosmic string wake is always less than the intrinsic variance

that structure formation imparts in the spatial filament overdensity. Lower tensions thus

produce a sharply reduced signal and so a floor in the cosmic string tension detectable with
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filament finding methods. This floor is at Gµ ≈ 10−6, approximately where the relative

magnitude of the cosmic string kick at string passage equals the mean particle velocity from

structure formation (see Section 2.3.2).

2.6 Box Size Scaling

In this section we check that our results are not greatly affected by the box size

or resolution. We compare one of the main simulations (64 Mpc) to a larger box size (250

Mpc), lower resolution simulation. Specifically, we look at the SCMS+ filaments from these

two simulations, in the case where we have no wake and case where we have the largest

tension wake used (Gµ = 5 × 10−6). We look only at a single run of the simulation (as

opposed to other figures, which are the combination of five runs with different structure

seeds). The single simulation means greater variance in the signal, however it is clear from

Figure 2.14 that while the increased box size has increased the number of filaments, it has

not changed the lack of a signal between the no-wake and large-wake simulations (this is

true for the DisPerSE filaments as well).

2.7 Conclusion

We have run a suite of simulations to demonstrate the effect of a cosmic string

wake on structure formation, in particular the distribution of cosmic filaments. While

simple measures, like the number of filaments, do not distinguish the presence of a cosmic
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Figure 2.14: Box size & resolution check (SCMS+). Fraction of maximum filaments versus
redshift for simulations with different box sizes (64 & 250 Mpc), but the same structure
seed and number of DM particles.

string wake in simulations, the spatial distribution of these filaments can. These potential

signals are not competitive with constraints derived from the CMB, however they provide

an independent constraint relevant at low redshift. They may thus be a viable channel for

detection in future experiments or for constraining models that have a stronger signal at

relatively low redshift (z ∼ 5). The most promising signals presented here are comparisons

between the filament number density far from and near the cosmic string wake, especially

across the plane perpendicular to the wake. Examples of this type of comparison are shown

in Figures 2.9, 2.11. We found that the overdensity signal persists for angles between the

wake and the observer of up to ∼ 30 degrees from z = 5 down to z = 2.

The spatial distribution of filaments can be used to detect the imprint of a cosmic

string wake at tensions of Gµ ≳ 5× 10−6 and redshifts z ≳ 2. Lower tensions of Gµ ≲ 10−6
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produce a smaller signal and are not detectable at any redshift from galaxy filaments. We

found that filaments constructed from current galaxy catalogs (SDSS) show no sign of the

overdensities we see in simulations in which a large string tension wake has been included.

However, improved sensitivity is expected with new data from galaxy survey experiments in

the coming years, such as the Roman Space Telescope [90] or EUCLID [91]. These surveys

will easily detect filaments at z ∼ 2, and present opportunities to probe cosmic strings with

tensions between Gµ = 10−6 and Gµ = 5 × 10−6. If filament finders can be successfully

used at higher redshifts, up to z ∼ 10, very high significance detection may be achieved.
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Chapter 3

Transfer Functions in Simulations

3.1 Abstract

Using a set of high resolution simulations, we quantify the effect of species specific

initial transfer functions on probes of the IGM via the Lyman-α forest. We focus on

redshifts 2 − 6, after H i reionization. We explore the effect of these initial conditions on

measures of the thermal state of the low density IGM: the curvature, Doppler width cutoff,

and Doppler width distribution. We also examine the matter and flux power spectrum,

and potential consequences for constraints on warm dark matter models. We find that the

curvature statistic is at most affected at the ≈ 2% level at z = 6. The Doppler width

cutoff parameters are affected by ≈ 5% for the intercept, and ≈ 8% for the fit slope, though

this is subdominant to sample variation. The Doppler width distribution shows a ≈ 30%

effect at z = 3, however the distribution is not fully converged with simulation box size and

resolution. The flux power spectrum is at most affected by ≈ 5% at high redshift and small

scales. We discuss numerical convergence with simulation parameters.
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3.2 Introduction

The intergalactic medium (IGM) occupies the space between galaxies and galaxy

clusters, and houses the majority of baryonic matter in the universe. The major phase

changes in the history of the IGM are fairly well understood, with recombination (z ∼ 1100)

leading to the formation of a highly neutral IGM, and H i (z ∼ 5.5− 8) [92, 93, 94, 95, 96]

and He ii (z ∼ 3) [2, 97, 98, 99, 100, 101] reionization events leading to the current, highly

ionized IGM (for a review on the IGM, see [7]). The sources of the ionizing photons are

thought to be stars in galaxies [5], and quasars [2, 3, 4] for H i and He ii reionization,

respectively.

During reionization, ionizing photons heat the IGM by tens of thousands of de-

grees. This heating, combined with cooling from adiabatic expansion and atomic processes,

are the primary processes that influence the thermal state of the low density (1− 100 times

the cosmic mean density) IGM [102, 103, 104, 105, 106, 107]. The thermal energy of the

IGM smooths and extends the distribution of the gas, which in turn affects structure for-

mation. After each reionization event, the low density IGM cools asymptotically towards

an equilibrium temperature [103, 108]. During this time the ionization state is well un-

derstood, as the neutral fraction is set by the equilibrium between photoionizations and

recombinations. All of this makes the IGM, and especially the low density IGM, a valuable

probe of the post-reionization universe (z < 6) and the scales probed make it useful for

both astrophysics and cosmology.

Conveniently, there are numerous observations probing intergalactic gas at 2 <

z < 6. Generally, these are observations of the Lyman-α forest, the series of absorption
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features blueward of the rest-wavelength Lyman-α emission observed in quasar spectra [1].

A single forest spectrum is a one-dimensional map of the gaseous structure along that line

of sight, making it a useful probe of structure formation. Knowledge of the large scale

structure, either through the flux power spectrum or the inferred matter power spectrum,

constrains warm dark matter (WDM) models [109, 110]. In addition to probing structure

formation, the Lyman-α forest can be used to measure the thermal state of the IGM, leading

to a set of measurements describing the thermal history of the IGM. Using the thermal and

ionization history of the IGM, one can test models of the makeup and evolution of the

ionizing background, and thus infer properties of the ionizing sources and sinks over time

[96].

There are several ways in which Lyman-α forest spectra are processed to constrain

cosmological models and the thermal state of intergalactic gas. Cosmological contexts

generally make use of the flux power spectrum from a sample of Lyman-α forest spectra

[111, 112, 113, 96]. The flux power is the Fourier transform of the flux over-density, δF =

F/⟨F ⟩− 1. The flux power spectrum is sensitive to cosmological parameters on large scales

(k < 0.02 s/km for velocity wavenumber k), and constrains small scale smoothing at higher

k [114]. For example, smoothing is enhanced in WDM models, leading to a reduction in

power above some critical value of k, (dependent on the mass of the WDM particle). This

makes the flux power spectrum a robust tool for constraining WDM models [110].

The spectral statistics used in determining the thermal state of the IGM are more

varied. Common methods include statistics which encapsulate an entire forest spectrum

[115, 116, 117, 118, 119, 120], as well as analyses which make use of absorption features
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from spectra decomposed via Voigt profile fitting [121, 122, 104, 123, 124, 125]. The small

scale flux power spectrum and the distribution of flux are also used to constrain the IGM

thermal state [111, 126].

The Lyman-α forest probes scales on which non-linear structure growth is im-

portant, and so cosmological hydrodynamic simulations of the IGM are necessary to build

a map between model parameters and observations. These simulations require two com-

ponents: collisionless cold dark matter modelled using N-body techniques, and collisional

baryons which include pressure forces. One common simplification is that, although baryons

are evolved hydrodynamically, the initial conditions for both species are identical, using the

transfer function for the total matter fluid [127].

Before recombination, baryons couple to radiation, suppressing their clustering on

sub-horizon scales and reducing clustering relative to the dark matter. After recombination,

baryons fall into the potential well of the cold dark matter and so the linear transfer functions

differ by < 1% at z = 0. The effect is larger at higher redshifts, z = 2−5, where the Lyman-

α forest is a sensitive probe of the gas [128]. [129] showed that separate transfer functions

can affect the one-dimensional Lyman-α forest flux power spectrum by 5 − 10% on scales

0.001− 0.01 s/km in the redshift range z = 2− 4.

The aim here is to determine whether species specific initial transfer functions have

an appreciable effect on probes of the Lyman-α forest. We use the simulation technique

developed in [129], which reproduces the theoretical offset between the dark matter and

baryon power [130], to model separate initial transfer functions. Recently, [131] (see also

[132, 133]) resolved this discrepancy by perturbing the particle masses, in agreement with
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the results from [129]. We will examine the effect of these initial conditions on measures of

the thermal state of the IGM; the curvature [119], Doppler width cutoff [121], and Doppler

width distribution [126]. We also examine the effect on the matter and flux power spectrum,

which could have consequences for warm dark matter models [134]. The simulations we use

are higher resolution than in [129], allowing us to better probe smaller scales.

In Section 3.3 we outline the simulations and artificial spectra used throughout.

In Section 3.4 we discuss the methods used to calculate each measure of the IGM, as well as

the results of those calculations. Measures of the thermal history of the IGM, including the

curvature, and the Doppler width cutoff and distribution, are covered in sections 3.4.1 &

3.4.2, respectively. The WDM relevant measures are examined in Sections 3.4.3 (flux power

spectrum) and Section 3.4.4 (matter power spectrum). Section 3.5 discusses numerical

convergence with box size, resolution, and number of artificial spectra used. In Section 3.6

we summarize and conclude.

We assume throughout a flat ΛCDM cosmology with Ω0 = Ωb+ΩCDM = 0.288,Ωb =

0.0472, h = 0.7, ns = 0.971, and σ8 = 0.84 (consistent with 9-year WMAP results [80]).

3.3 Simulations

Our set of hydrodynamical simulations were performed using the N-body and

smoothed particle hydrodynamics (SPH) code MP-Gadget1, described in [135, 77]. MP-

Gadget is a fork of Gadget-3, itself the descendent of Gadget-2 [78]. Initial conditions

are generated with MP-GenIC, the initial conditions generator packaged with MP-Gadget.

1https://github.com/sbird/MP-Gadget3
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The initial power spectrum, and transfer functions are generated with the Boltzmann code

CLASS [79].

Simulations using offset grids for both particle species (which is common in the

literature) often introduce a spurious growing mode to the CDM-baryon difference. This

can be avoided by using a glass to initialize the baryons [136, 129], or by an appropriate

perturbation of the particle masses [132]. Two sets of simulations are used throughout this

work, with initial conditions set using the baryon-glass method. Both sets of simulations use

a glass to initialize the baryons and a grid to initialize the CDM. A glass procedure, with 14

time-steps, is then applied to the combined distribution to minimize CDM-baryon overlap,

avoiding chance overdensities set by the initialization. The two sets of simulations then

differ, with the first set using a single transfer function for both species, and the second

set using separate, species specific transfer functions. Scale-dependent perturbations are

included via first-order Lagrangian perturbation theory (during final preparation of this

manuscript, [132, 131] proposed an alternative method based on second-order perturbation

theory, which gives similar results). The phases of the Fourier modes are identical, leading

to the same realization of cosmic structure on scales larger than the particle grid.

Gas is assumed to be in ionization equilibrium with a uniform ultraviolet back-

ground using the model of [137]2. [138] recently updated their UV background model

and showed that simulations using uniform UV backgrounds do not accurately model the

timing and photoheating associated with reionization. In our simulations reionization has

completed by z = 6 (the average neutral hydrogen fraction in low density regions of our

simulations is less than 1%). Our results are generated in the redshift range 2 < z < 6,

2Specifically the 2011 update, https://galaxies.northwestern.edu/uvb-fg09/
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Table 3.1: Transfer Function Simulations

Simulation Box Volume N Mgas (M⊙)

Main (20 Mpc h−1)3 2× 10243 9.8× 104

Low Res (20 Mpc h−1)3 2× 7683 2.3× 105

Small Box (10 Mpc h−1)3 2× 5123 9.8× 104

after hydrogen reionization. We do not implement He ii reionization because the scale of

our simulation box size is smaller than a typical He ii bubble [139], leading to an effectively

instantaneous reionization.

Star formation is implemented using the standard approach for Lyman-α forest

analyses. Gas particles in the simulations are turned into stars using a simple density-

based method; when they reach an overdensity ρ/⟨ρ⟩ > 1000, but remain at a temperature

T < 105, they are turned into stars [140]. Our simulations do not include black hole or

supernovae feedback.

The set of high-resolution simulations include our Main simulations, a simulation

with lower gas mass resolution, and a simulation with a smaller box length of 10 Mpc h−1.

The latter two are used to check box size and gas mass resolution convergence. We discuss

convergence for each result in the relevant results section, as well as in Section 3.5. All

simulations start at z = 99 and have periodic boundaries. Box volume, particle number,

and gas particle mass resolution are reported in Table 3.1. The gas particle mass resolution

is set so that the higher redshift Lyman-α forest is resolved [141].

Lyman-α absorption spectra are generated by sending random skewers through the

simulation box using Fake Spectra Flux Extractor [142]3, described in [143]. Our analysis

uses 5, 000 randomly placed skewers, which are generated for each snapshot, leading to a

3https://github.com/sbird/fake_spectra
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large set of 1 km s−1 pixel width neutral hydrogen absorption spectra for redshifts in the

range 2 < z < 6. We discuss convergence of our results with number of sight lines in

Section 3.5.

3.4 Methods & Results

In this section we examine the effect using species-specific initial conditions has on

two commonly studied properties of the IGM, both of which use Lyman-α forest spectra.

The first is the temperature-density relation of the low density IGM, which is generally

parameterized as

T (∆) = T0∆
γ−1, (3.1)

where ∆ is the matter overdensity, T0 is the temperature at mean density (∆ = 1), and γ−1

is the power-law index [103, 108]. Throughout we focus on redshifts after H i reionization

(≤ 6), where adiabatic cooling and photoheating dominate the thermal state. This is

the regime where the temperature-density relation parameterized above is generally valid

(though it is not best described with a single temperature-density relation during He ii

reionization) [144, 145, 139]. We focus on three measures which probe the temperature-

density relation of the IGM: the curvature (3.4.1), the Doppler width cutoff (3.4.2), and the

Doppler width distribution (3.4.2).

The second property is the matter power spectrum of the IGM, which can constrain

dark matter models, especially warm dark matter through its effect on structure formation.

The matter power spectrum of the dim and diffuse IGM is not directly accessible. However,

the flux power spectrum is a good proxy and allows constraints to be placed on the thermal
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free-streaming of dark matter and thus a potential WDM particle mass. We examine the

effect species specific initial conditions have on both the Lyman-α flux power spectrum

(Section 3.4.3) and matter power spectrum (Section 3.4.4).

3.4.1 Curvature

The curvature statistic introduced in [119] has an approximately one-to-one rela-

tionship with the temperature of the IGM at an optimal overdensity. The temperature at

the mean density can then be inferred using a temperature-density relationship slope cal-

ibrated from simulations. The curvature is essentially the second derivative, or curvature,

of the flux. Specifically, it is given by κ ≡ F ′′/(1 + F ′2)3/2 and traces the ionized fraction

of hydrogen. Higher temperature gas will show more thermal broadening in the absorption

features of the spectra, while lower temperature gas will retain more small-scale spectral

features. Because the curvature summarizes the entire spectrum it does not require decom-

posing spectra into individual absorbers, making it useful up to higher redshifts than the

Doppler width methods (Section 3.4.2).

The simulated spectra are processed, and the curvature calculated following the

general procedure in [119]:

1. Gaussian noise is added to the spectra such that the S/N ∼ 20, then a cubic b-spline

is fit to the flux iteratively. The initial break point spacing between the piecewise

b-spline is set at 50 km s−1 and additional points are added to improve the fit until

either a minimum resolution is reached (10 km s−1) or the fit converges (the χ2 value

between spline and spectra changes by less than 3 between break point additions).
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Figure 3.1: Example of the curvature measurement. Top: spectrum with noise (black) and
the smoothed cubic spline fit to it (green). Middle: The region enclosed in the dotted box
in the top panel, renormalized into 10 Mpc h−1 sections and rescaled such that the set of
all these sections have the same mean flux across simulations. Bottom: the curvature of the
middle panel. The single value reported for such a section is the mean absolute curvature
value in regions where the renormalized and rescaled flux lies between 0.1 < F < 0.9.

The resulting spline, an example of which can be seen in the top panel of Figure 3.1,

is used in place of the spectrum for the rest of the analysis.

2. The spline is then renormalized by breaking it into 10 Mpc/h sections and dividing

by the maximum value in that section. This normalizes the measure and avoids

uncertainties due to continuum finding.

3. Each of these sections is then rescaled such that the mean flux of the entire set of

sections is consistent with the model from [146], given by an effective optical depth,

τ eff = 0.0023(z + 1)3.65.
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The result of steps (ii) and (iii) are shown in the middle panel of Figure 3.1. Note

that the values used in the processing outlined above (e.g. the S/N, χ2 convergence value,

etc.) are chosen either to agree with [119], to be reasonable in regards to observation, or

simply to fit the artificial spectra well.

The curvature is then calculated, using only flux in the range 0.1 < F < 0.9. The

bottom panel of Figure 3.1 shows an example of the curvature, before restricting the flux

range. For each section the mean absolute curvature is returned, η = ⟨|κ|⟩, and the average

of η for each redshift is shown in Figure 3.2 (top), along with the fractional difference

between the two (e.g. |x1/x2 − 1|) in percentage (bottom). The squares (blue) show the

results for the simulation which uses separate initial transfer functions, and the triangles

(brown) show the simulation which uses the same transfer function. The difference between

the two is remarkably small, peaking at < 2% at z = 6.

For convergence testing, noise is not added to the spectra, though the spectra are

still renormalized and rescaled. Convergence of the curvature is discussed in Section 3.5,

and shown in Figure 3.9 for simulation parameters, and in Figure 3.13 (top panel) for

convergence with number of sight lines used.

3.4.2 Doppler Width Methods

Doppler Width Cutoff

Another method used to determine the thermal state of the IGM, first introduced

in [121], is fitting the lower cutoff in the Doppler width (b) of spectral features as a function

of their neutral hydrogen column density (NHI). The Doppler width characterizes the width
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Figure 3.2: Results for the average curvature versus redshift. The curvature is robust up
to higher redshift, hence the inclusion of redshifts up to z = 6. The agreement is extremely
good, with a maximum difference of < 2% at redshift z = 6.

of an absorption profile due to broadening from the motion of the particles constituting the

absorber. Theoretically, an absorber has a minimum Doppler width, i.e. due entirely to

thermal broadening with no additional effects such as broadening from a velocity gradient.

The minimum will depend on the temperature of the absorber, btherm =
√

2kbT/m, where

kb is the Boltzmann constant, T the temperature, and m the proton mass. The temperature

depends on the density, with higher density clouds having a higher temperature and thus a

broader spectral profile. As the true density of an absorber is not observable, the column

density of the absorber and its Doppler width are used as proxies. We then have a relation

between the minimum Doppler width and the column density, where a higher column density
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absorber has a higher temperature, and thus a larger minimum Doppler width. A lower

cutoff, in the form of a power law, can then be fit to a set of Doppler width, column density

measurements. Using simulations and observations of the NHI − b cutoff parameters, the

temperature-density relation is calibrated and the physical density inferred from the column

densities [147].

This method requires decomposing spectra into features, with widths and ampli-

tudes corresponding to the Doppler width and column density of the associated absorbers.

We use Fake Spectra Flux Extractor [142] to decompose our artificial spectra, which are the

optical depths (τ) along lines of sight through the simulations, into individual features by

fitting the flux (F = e−τ ) using Voigt profiles. The Voigt profile width is the Doppler width,

b, and the Voigt profile normalized amplitude is the neutral hydrogen column density, NHI.

Perfect spectra and flawless profile fitting are not possible – Figure 3.3 shows a

clear trend in the minimum Doppler width with column density, but there are points that

lie below the visual cutoff. To best fit this minimum Doppler width cutoff, [121] developed

an algorithm which fits the relation

log10(b) = log10(b0) + (Γ− 1) log10(NHI/NHI,0). (3.2)

We follow most closely the algorithm choices used in [148], which includes an

initial (σ) rejection step to remove low points which in an observational setting are most

likely metal-contaminated. Note that in that algorithm the σ−rejection step uses the RMS

deviation while the cutoff fitting step uses the mean absolute deviation and a column density

normalization of NHI,0 = 1013.6, in agreement with [121] and [148]. An example of the cutoff

fit can be seen in Figure 3.3.
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Figure 3.3: Examples of the distribution of column densities and Doppler widths at z = 2.4
from the Main simulation with separate transfer functions. The green line is the best fit
cutoff given by Equation 3.2 with b0 = 17.4,Γ− 1 = 0.153.

Figure 3.4 shows the effect separate transfer functions have on the cutoff param-

eters as a percent difference in the results between the Main simulations. Difficulties with

fitting Voigt profiles at higher redshift due to fewer unsaturated features (a lower ionized

fraction) lead to a more ambiguous cutoff in the distribution, so we only attempt to fit a

cutoff up to z = 4. The difference in the two fit parameters brought about by the separate

transfer functions is 2 − 5% for b0 and 2 − 8% for Γ − 1. This is similar to the level of

convergence with resolution and spectral sample seen in Figure 3.10, indicating that the

primary driver of any differences is most likely due to changes in the sample of spectral

features used in the fit. Note that the effect is also not uniform with redshift, leading to an

increase in some redshift bins, and a decrease in others.
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Our results are consistent with [148] to within 5%, and [125] to within 10%, at

a redshift of z = 2.4 (where we overlap with both works). However, the sample used in

fitting the lower cutoff has a large effect on the result. Specifically, the inclusion or omission

of a few data points near the cutoff shifts the fit, while points away from the cutoff have

little effect. This is further indicated by the continued variance in the fit parameters as

the sample size is increased (see Figure 3.13, bottom two panels). The variance due to the

sample size is on the same order (< 10%) as the difference we see between the two Main

simulations in Figure 3.4. The effect of the sample used is likely the primary driver of the

relatively weak convergence with simulation box size and resolution seen in Figure 3.10.
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Figure 3.4: Results for the Doppler width fitted cutoff parameters. Shown is the percent
absolute difference between the simulations with and without separate transfer functions.
Top: the difference for the minimum width, i.e. the intercept for the fitted cutoff. At most
the unscaled results differ by ≈ 5% at z = 4 and the scaled results differ by ≈ 2%. Bottom:
same as the top panel, but for the slope of the fitted cutoff. The agreement is good, peaking
at ≈ 8% difference for both the scaled (at z = 3.2) and unscaled results (at z = 2).
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Convergence of these results between the Main simulations and the Low Res and

Small Box simulations are discussed in Section 3.5 and can be seen in Figure 3.10. Conver-

gence with number of sight lines used is also discussed in the Section 3.5 and can be seen

in Figure 3.13 (bottom two panels).

Doppler Width Distribution

Recently, [149] and [126] have attempted to address the problems associated with

fitting the lower cutoff of the NHI − b distribution. Specifically, these works avoid fitting

the lower cutoff entirely, which removes the strong dependence on just a few points near

the cutoff (making poor use of most of the data), and potential systematics in the cutoff

fitting algorithm.

Instead, these methods directly measure the traditional temperature-density pa-

rameters (mean temperature T0, and power law index γ) by comparing the observed NHI−

b distribution to simulations or simulation-derived emulators. [149] uses the full two-

dimensional NHI − b distribution and an emulator built on a grid of thermal parameters to

estimate the observed T0 and γ. [126] bins the Doppler widths by column density, then uses

the resulting set of one-dimensional distributions to infer the temperature-density param-

eters. Their simulations indicate that the lower column density bins are more sensitive to

T0, while the higher column density bins are sensitive to γ. The idea is to simultaneously

fit the set of observed distributions with simulated distributions (with varying thermal pa-

rameters). An example of the Doppler width distributions is shown in the top panels of

Figure 3.5, separated into the three column density bins highlighted in [126].
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Figure 3.5: Top: Doppler width distributions at z = 3 for the three column density bins
highlighted in [126]. Shown are the distributions for the single transfer function simulation
(blue) and species-specific transfer functions (brown) simulation. The distributions are from
Voigt fitting 5, 000 skewers for each simulation snapshot. Bottom: Residuals (as a percent)
for the Doppler width distributions between our Main simulations. Our simulations differ
by less than 1% in mean temperature (T0) and density index (γ), measured from the z = 3
snapshot.

To quantify the effect of using separate transfer functions, we find the maximum

in the Doppler widths distribution residuals between our Main simulations across the bins

shown in Figure 3.5. From the lower panels in that Figure, we see the (absolute) difference

is at most ≈ 30%. The difference at other redshifts can be as much as ≈ 70% at z = 3.6−4

(≈ 50% for z = 2 − 2.4), down to the ≈ 30% seen at and around z = 3. The transfer

function affects the distribution at a similar level to the residuals [126] found in their fit to

observations around z = 3 (their figure 7). However, we may not be fully converged with

simulation box size or resolution.

The ≈ 30% difference brought about by the transfer functions is similar to the

difference we find between our Main simulations and the Small Box (≈ 50%) and Low Res
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(≈ 35%) simulations (see Figure 3.11). It is also similar to the level of convergence [126]

found (their figure F1). Furthermore, the z = 3 distribution is better converged than the

distribution at other redshifts. The distribution from the Low Res simulations differ from

the Main simulations by as much as 80% at lower redshifts (z = 2 − 2.4) and as much as

100% at higher redshifts (z = 3.6 − 4). The Box Size simulation distribution also differs

by as much as 75% at lower redshifts, and as much as 150% at higher redshifts. It is

not surprising that the higher redshift result is less well converged, since the lower ionized

fraction at these redshifts leads to more highly saturated spectra, and thus Voigt fitting is

more difficult. Regardless of these difficulties at higher redshift, the effect of the separate

transfer functions on the distribution is on the same order as the effect from simulation

box size and resolution at all redshifts explored here. This indicates that, in terms of the

Doppler width distribution, our simulations are not fully converged (see also Section 3.5).

3.4.3 Flux Power Spectrum

Lyman−α forest spectra from the IGM can also be used to constrain cosmologies

alternative to ΛCDM. For example, a warm dark matter particle suppresses structure rela-

tive to CDM on scales smaller than the WDM particle free-streaming scale [134]. Lyman-α

forest spectra probe the scales relevant to the WDM model and can be used to estimate

the clumping of matter (the matter power spectrum) through the observed flux distribution

(the flux power spectrum) [140]. The flux power spectrum is PF (k) = |L−1δ̃2F (k)|, where

δ̃2F (k) is the Fourier transform of the flux excess, δF (k) = F (k)/⟨F (k)⟩ − 1, and L is the

length of the sight lines in velocity space.
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Figure 3.6: Ratio of flux power spectrum from the simulation with separate transfer func-
tions to the simulation with a single transfer function. The red curve shows the result before
rescaling the flux, while the black curve is the result after rescaling. The grey shaded region
in each panel indicates where the flux power spectrum is converged with simulation box
size and resolution to at least 10% (see Figure 3.12). On the scales probed here, the effect
at z > 2 tops out at ≈ 5%, while at z = 2 the effect is < 1%.
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The effect of WDM on the flux power spectrum is to suppress high k (> 0.01

s/km) power and marginally enhance low k (< 0.01 s/km) power [150, 151]. The shape

of the Lyman-α forest flux power spectrum can be used to measure the suppression scale,

which directly constrains the WDM particle mass. The ever increasing number of observed

quasar sight lines has meant that a statistically significant sample can be assembled to look

at this effect [152, 153].

These constraints rely on accurate modeling of the flux power spectrum in sim-

ulations using a CDM or WDM model, coupled with observed Lyman-α forest spectra.

Figure 3.6 shows the effect of using separate transfer functions for baryons and CDM on

the Lyman-α forest flux power spectrum. Shown is the percent change in the power spec-

trum when using separate transfer functions instead of a single transfer function. The effect

is generally strongest at the high end of the k range, with a decrease in power across all red-

shifts at k < 0.02 for the rescaled result. The effect increases with redshift, however both

the rescaled and unscaled results remain at ≲ 5% across the range of k our simulations

reliably probe.

While observations extending to the largest wave numbers used here are not

presently available, we can compare the flux power spectrum we obtain from our simu-

lations to currently available data where they overlap. Figure 3.7 shows our flux power

spectrum at z = 3 and z = 4 compared to data taken from [152]. Their estimate of the

Lyman-α contribution to their total flux power, as well as their total flux power, are shown

with the reported errors. Our results show a small underestimate of the power in com-

parison with them, but are roughly consistent. To estimate the level of agreement, we
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Figure 3.7: Comparison of the flux power spectra from the simulations presented here, to
the data presented in [152]. In [152] they present the full flux, as well as an estimate on the
contribution from only Lyman-α, which is comparable to our simulated results. For low k,
the simulations appear to underpredict the power with the largest discrepancies at ≈ 2.5σ,
but most lie within 1σ.

interpolate our flux power spectrum onto the wave numbers of the [152] data. We find that

at most, our power spectrum differs by ∼ 2.5σ from their data (where the deviation is their

reported statistical and systematic errors, added in quadrature). For most data points, the

difference is within 1σ. In terms of this deviation, the difference between the single and

separate transfer function cases is < 1σ.
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3.4.4 Matter Power Spectrum

The total matter power spectrum is affected only at the 1− 2% level at all scales

probed with the simulations presented in this work (k = 0.6 − 100 h Mpc−1). This is

unsurprising, as the effect of the separate initial conditions is to reproduce the offset of the

power between the baryons and dark matter, and not to change the total matter power

spectrum.

Figure 3.8 shows the difference in the species specific matter power spectrum ratio

(baryon power over CDM power). From this we see that the effect of the separate initial

conditions is to decrease the power in the baryons, while retaining the behaviour at both

higher redshift (for linear structure to dominate on a large range of scales) and at lower

redshift (for baryons to collapse into non-linear structures at small scales). The offset is

independent of k, and is consistent both with linear theory [154] and with [129].

We ran two additional simulations, both with the same volume and particle number

as the Small Box simulation. The first used species-specific transfer functions, but initialized

both the baryons and CDM using (offset) grids. Previous work [129] has shown that without

additional adjustments [132, 131], this setup can lead to artificial growth in the CDM-

baryon power difference. On the scales probed in this work, we find that the simulation

using offset grids does a fairly good job in reproducing the power difference, agreeing with

our separate transfer function Main simulation to within 2% on all the but the smallest

scales (k > 7 h Mpc−1, where it stays within 5%). This indicates that the artificial growth

in the power difference is sourced from larger scale velocity perturbations, and that the

half-glass approach is unnecessary on the scales probed here.
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Figure 3.8: Percent difference in the ratio of the species specific matter power spectrum for
baryons over CDM. At z = 2 and z = 6 the simulations using a single transfer function
predict more power in the baryons than the case with separate transfer functions. At z = 6,
in the separate transfer function simulation we see higher power in the CDM, as expected
(meanwhile the single transfer function simulation is consistent with Pb ≈ PCDM ). At z = 2
we see the expected enhancement in baryon power on small scales.

The second additional simulation included WDM (a 5.3 keV WDM particle, con-

sistent with [151, 155]). The change in the total matter power spectrum remained at the

sub-percent level for all scales. The baryon-DM power difference agreed with the CDM

simulations up to k ≈ 3 − 4 h Mpc−1, with a relative drop in power (∼ 3%) at higher

k, consistent with expectations (WDM suppressing small scale structure). This drop-off
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was consistent between the simulations with and without species specific transfer functions,

indicating that the effect of using separate transfer function is independent of the DM

temperature.

3.5 Convergence

We check the convergence of our simulations with box size and mass resolution by

running an additional four simulations. For both the separate and same transfer function

cases we run a lower mass resolution simulation (Low Res) and a smaller box size simulation

(Small Box). The simulation volume, particle number, and mass resolution can be seen in

Table 3.1. The mass resolution used in the Main simulations agrees with [119], which pre-

viously showed convergence for the curvature at that resolution. [124] showed convergence

for the NHI − b cutoff parameters using the same set of simulations.

Figure 3.9 shows the fractional difference as a percentage between each of the Main

simulations, and the two associated convergence simulations (called δ) for the curvature.

The curvature calculated here uses spectra without added noise, obviating the need for a

spline fit. Otherwise, the calculation is the same as that outlined in Section 3.4.1 (spectra

are renormalized into 10 Mpc/h sections and the mean flux is rescaled). The curvature is

well converged, with a difference of ≲ 1% for the Small Box simulations, and ∼ 2% for the

Low Res simulations.

Figure 3.10 shows the convergence for the two fit parameters of the NHI− b cutoff.

As this method uses a population of features taken from each set of spectra, renormalizing

between different volume simulations is not necessary. The logarithmic intercept, b0, has
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Figure 3.9: Convergence for the curvature. The convergence is quite good, staying within
∼ 1% for the smaller box simulations, and within ∼ 2% for the lower resolution simulations.
This emphasizes the importance of the mass resolution in simulations aimed at probing the
Lyman-α forest.

converged to an absolute difference of < 10% at all redshifts. The logarithmic slope, Γ− 1,

is less well converged, remaining within an absolute difference of < 20% at all redshifts.

However, the amount of data used to make the fit strongly affects the result. This can be

seen in the bottom two panels of Figure 3.13, where the convergence with the number of

sight lines used is shown. In contrast with the flux power spectrum and curvature, these fit

parameters do not completely converge, instead exhibiting some variance all the way up to

the inclusion of all 5, 000 sight lines.

Figure 3.11 shows the convergence at z = 3 for the Doppler width distribution.

Specifically, Figure 3.11 shows the percent difference between the Doppler width distri-
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Low Res and Small Box simulations. The convergence stays within 10%. Bottom: same as
the top panel, but for the slope of the cutoff. The convergence is less good, staying within
20%.

butions for the Main and Small Box simulations, and between the Main and Low Res

simulations. The top panels show this difference for simulations using species specific trans-

fer functions, while the lower panels show this for the simulations using a single transfer

function. The maximum difference across all three bins associated with the Small Box sim-

ulation is ≈ 50%, while the maximum difference associated with the Low Res simulations is

≈ 35%. This is a similar level of convergence to [126] (their Figure F1). However, as stated

in Section 3.4.2, the level of convergence shown here is on the same order as the effect seen

from using separate transfer functions (∼ 25%). We also note that redshifts around z = 3
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are better converged, with the Low Res and Small Box simulations differing by as much as

≈ 80% for redshifts between z = 2 and z = 2.4, and at higher redshifts (z = 3.6 − 4) they

differ by as much as ≈ 150%. This indicates that for the Doppler width distribution, we

are not fully converged with resolution or box size.
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Figure 3.11: Convergence of the Doppler width distribution at a redshift of z = 3. Top: the
percent difference between our Main simulation and the Small Box and Low Res simulations,
for the simulations using species specific transfer function. Bottom: same as the top panel,
but for the simulations using a single transfer function.

Figure 3.12 shows the convergence for the flux power spectrum at the two redshifts

which span our analysis. We are well converged at low k (< 0.03 km−1s) for all simulations

and redshifts. At z = 6 we are well converged (< 10%) for three cases, while the lower

resolution simulation with separate transfer functions is not well converged beyond k ≈ 0.05

km−1s. The shaded regions in Figure 3.6 which indicate the trusted k range for each redshift

are based on this. At z = 2 we are well converged across the range (k < 0.1 km−1s) explored

here.
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Figure 3.12: Convergence of the flux power spectrum with simulation box volume and gas
mass resolution. At early times (z = 6) we are converged within 10% up to k ≈ 0.05 km−1s.
For larger k, the Low Res, separate transfer function simulation is less well converged. At
late times (z = 2) we are fully converged with resolution, however the convergence with box
size is less good (≲ 10%).

The matter power spectrum is converged with gas mass resolution at all redshifts

(2 < z < 6) and scales (k = 0.6− 100 h Mpc−1) such that the difference between the higher

and lower resolution simulations is ≲ 5%. Convergence with box volume is ≲ 20% in the

range k = 10− 100 h Mpc−1, and ≈ 30% from k = 0.6− 10 h Mpc−1.

Finally, we check the convergence of the curvature, flux power spectrum, and

NHI−b cutoff fit parameters with the number of sight lines used in each of their calculation.
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Figure 3.13 shows this convergence for the Main simulation using separate transfer functions.

The convergence trends for all quantities are also seen in the simulations using a single

transfer function. Each statistic is calculated using only the corresponding fraction of the

5, 000 sight lines available (e.g. the 0.2 value for the NHI − b cutoff fit parameters use only

features from the first 1000 random sight lines). While the curvature is insensitive to the

number of sight lines used (beyond ∼ 50 sight lines), the flux power spectrum depends

strongly on the number. The convergence of the flux power spectrum shows the maximum

difference between consecutive power spectra (the difference between the spectrum with

x sight lines and the spectrum with x + 5 sight lines). The NHI − b cutoff fit parameters

continue to fluctuate even with a large number of sight lines. The variance, even when using

all of the sight lines in the NHI− b cutoff fit parameters may explain the worse convergence

with simulation size and resolution seen in Figure 3.10.
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3.6 Summary & Conclusions

In this work we explored how switching from a single initial transfer function (for

both baryons and CDM) to species specific transfer functions affects properties of the IGM.

Using a set of high resolution simulations, we have quantified the effect this change has on

probes of the IGM via the Lyman-α forest. The Main simulations presented here differ only

in the transfer functions used; one uses a single transfer function, the other follows [129],

adopting species specific transfer functions. Our work is motivated by simulations sometimes

failing to match the theoretical offset between baryon and cold dark matter power, though

we found that on the scales probed in this work (k = 0.6−10 h Mpc−1), standard simulation

methods did fairly well. Artificial spectra were extracted from snapshots in the 2 < z < 6

range and statistics relevant to the thermal history of the IGM and WDM models were

calculated. Below we summarize the results of this work.

• The curvature is relatively unaffected by the species specific transfer functions, with

a peak difference of < 2% at z = 6. The effect of the transfer functions (on average,

shifting log10η by ≈ 0.01) is about the 1σ (2σ) uncertainty observed in [120] ([119])

• The Doppler width cutoff fit parameters continue to vary with number of sight lines

used, even when using a large number of sight lines (see Figure 3.13). This is likely

due to the fitting method, which depends strongly on the few data points near the

cutoff. The effect on these parameters is at most ≈ 5% for the fit intercept and ≈ 8%

for the fit slope, however the variance due to sample size has a similar level of effect.

The effect of the transfer functions seen here is at a similar level to the error [148],

and generally less than the error [125] found from fitting to observations.

75



• The Doppler width distribution is affected by ≈ 30% around z = 3, which is similar

to the difference between observation and best fit in [126]. However our simulations

at z = 3 are only converged to ≈ 50% with box size and ≈ 35% with resolution, the

same order as the effect from the transfer functions.

• The flux power spectrum is affected more at high k (k > 0.05 s/km) and redshift

(z > 2). However, the enhancement to the power is at most ≈ 5% for z > 2 and

≲ 1% at z = 2. This level of effect is small compared to observational uncertainties,

amounting to ≈ 10% of the uncertainty presented in [152] (and see Figure 3.7).

For measures of the thermal state of the IGM, the effect of separate transfer func-

tions is either small (∼ 1% for the curvature), or subdominant to either variance inherent

to the method of calculation (Doppler width cutoff) or convergence (Doppler width distri-

bution).

The flux power spectrum is relatively unaffected on the scales and times which

are currently well observed, however our results indicate that it may become important

on smaller scales or higher redshift. This may indicate that using separate transfer func-

tions may be important for future observations and surveys. However, the effect is most

pronounced at early times and on small scales, which constrain WDM most effectively.

The importance of this effect will only increase as future measurements lead to a higher

resolution flux power spectrum, constraining WDM models more stringently.

The future study of the IGM will be predicated on measuring absorption spectra

at higher redshifts and at higher resolution using large optical and infrared telescopes in

conjunction with broader surveys such as the James Webb Space Telescope [156]. Given
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the ever increasing sample size and quality of IGM observations, it is paramount that simu-

lations keep pace by improving their precision and modeling. The adjustment to the initial

conditions in simulations explored here is one such improvement, but there are others which

should be implemented as well, for example the modeling of He ii reionization [139]. Im-

proved simulations, in concert with future observations, will push the study of the IGM

into the reionization epoch as it occurs, leading to a greater understanding of this rela-

tively recent major phase transition, as well as the formation of the first galaxies and their

subsequent evolution.
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Chapter 4

Emulating the Lyman-α Forest

4.1 Abstract

In this work we extend our recently developed multi-fidelity emulation technique

to the simulated Lyman-α forest flux power spectrum. Multi-fidelity emulation allows

interpolation of simulation outputs between cosmological parameters using many cheap low-

fidelity simulations and a few expensive high-fidelity simulations. Using a test suite of small

box (30 Mpc/h) simulations, we show that multi-fidelity emulation is able to reproduce the

Lyman-α forest flux power spectrum well, achieving an average accuracy when compared

to a test suite of 0.8%. We further show that it has a substantially increased accuracy over

single-fidelity emulators, constructed using either the high or low-fidelity simulations only.

In particular, it allows the extension of an existing simulation suite to smaller scales and

higher redshifts.
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4.2 Introduction

The modern and future testbed for cosmology lies in small scales and non-linear

structures. Cosmological analyses exploit observations of these scales to explore questions

such as the nature of dark matter, the total neutrino mass, and the thermal history of the

intergalactic medium (IGM). One of the most powerful probes of small scale structure is

the Lyman-α forest, a series of absorption features in the spectrum of quasars [1, 157, 158,

159, 160, 92, 161, 162]. Numerical simulations are required to analyze these observations

as they probe the non-linear regime. As these simulations are expensive, cosmologists

build emulators [163, 164, 165], which interpolate a summary statistic (in this case the 1D

Lyman-α forest flux power spectrum) between simulation outputs at different cosmological

parameters.

A recent development in cosmology is the application of multi-fidelity emulators,

which allow simulations with different particle loads, and thus costs, to be combined together

[166]. Here we adapt the multi-fidelity emulation technique to the Lyman-α forest 1D flux

power spectrum. Multi-fidelity emulation is especially useful in this context because the

Lyman-α forest probes a range of redshifts, and is sensitive to smaller scales, which require

higher resolution simulations, at higher redshifts [141]. The models developed here will

allow a single emulator to target the wide range of scales probed by the Lyman-α forest,

which would otherwise require a computationally infeasible number of very large simulations

[167].

The Lyman-α forest is the result of overlapping neutral hydrogen absorption pro-

files in the spectra from distant luminous quasars, processed through the expansion of the
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universe [1]. As light travels from the quasar, it passes through neutral hydrogen gas of

varying densities. In the rest frame of those neutral hydrogen islands, light that has been

redshifted close to the Lyman-α transition at 1215.67Å will be absorbed and the rest trans-

mitted. This is repeated as the light continues to intersect more neutral hydrogen islands on

its path towards us, the observers. The result is a quasar transmission spectra containing

an overlapping field of absorption features that provides a proxy to the dark matter density

along that sightline [168].

The densities probed by the Lyman-α forest, from redshift 2− 5, are ∼ 1− 100 ×

the cosmological mean density. At these densities stellar winds and star formation effects

are negligible, although black hole feedback is important [169, 170]. The densities along

with the range of scales accessed has made the Lyman-α forest popular in cosmological

studies, including: constraining the thermal history of the IGM and thus reionization [171,

124, 113, 96, 172, 173, 174], constraining cosmological parameters including the neutrino

mass [140, 175, 176, 177, 178, 155, 179], and testing alternatives to cold dark matter [109,

150, 151, 155, 180, 181].

The Lyman-α forest 1D flux power spectrum is the most commonly used summary

statistic for Lyman-α forest spectra. It probes small scale structure by measuring the two-

point Fourier-space correlation between neutral hydrogen absorption within a sightline [168].

Current observational measurements of the Lyman-α forest flux power spectrum

come from either a lower resolution, larger sample survey (SDSS, [182]), or various higher

resolution, smaller sample surveys [152, 183, 184]. In [182], the flux power spectrum con-

structed from BOSS and eBOSS spectra accesses redshifts from z = 2.2 − 4.6 (6% & 18%
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average uncertainty, respectively) and scales from k ≈ 0.001 − 0.02 km−1 s (6% & 14%

average uncertainty, respectively). The small sample, higher resolution surveys generally

access a similar redshift range, but shift both the largest and smallest scales to higher k. For

example, in [183] (their conservative results), using spectra from multiple surveys (XQ-100,

KODIAQ, and SQUAD) they access redshifts from z = 2− 4.6 (7% & 27% average uncer-

tainty, respectively) and scales from k ≈ 0.005−0.1 km−1 s (12% & 9% average uncertainty,

respectively).

The Dark Energy Spectroscopic Instrument (DESI) will soon report its first year

results. Ultimately it will increase the number of Lyman-α quasar spectra by a factor of

four over SDSS. This corresponds to ∼ 50 quasars per square degree and a total of 7× 105

quasars over the 14, 000 square degree survey footprint [67]. In addition, DESI is expected

to measure the 1D flux power spectrum at smaller scales (k < 0.035 km−1 s) and higher

redshifts (z > 4.6) than SDSS, achieving order of a few percent accuracy [185].

Extracting cosmological information from these observations will require simu-

lations which follow the distribution of gas at relevant densities and on relevant scales.

For the Lyman-α forest, box sizes of at least 100 Mpc h−1 and mean particle spacing of

100/3072 ≈ 0.03 Mpc h−1 are necessary [167]. Earlier work has focused on methods which

can reduce the cost of such simulations. [167] used a splicing technique to produce high

resolution, large volume outputs from three sets of less computationally intensive simula-

tions: low resolution, large volume; high resolution, small volume; and low resolution, small

volume. [186] explored the use of Richardson extrapolation to enhance output resolution,

in addition to testing the splicing technique.
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Parameter inference tasks, such as a direct Markov Chain Monte Carlo analyses,

require ∼ 105 − 106 model evaluations, indicating the number of simulations required by a

naive approach. Even using techniques such as splicing, this is computationally infeasible.

However, using a significantly reduced number of simulations (∼ 30), an emulator can be

constructed that effectively interpolates between this smaller set of simulations. In addition

to the Lyman-α forest, emulators have been used extensively in cosmology for studying:

the matter power spectrum [165, 187, 188, 189, 190, 191, 192], weak lensing [193, 194], the

halo mass function [195, 196, 197], and the 21-cm signal [198, 199, 200, 201]. Still, the

computational resources required to run ∼ 30 simulations with the requisite volume and

resolution is highly restrictive, especially for the Lyman-α forest.

Here, we use modern machine learning techniques to alleviate the computational

resource cost associated with constructing an emulator. Specifically, we are concerned with

using machine learning to predict high resolution simulation outputs to a high degree of

accuracy, while running a minimal number of high resolution simulations. One machine

learning method that is suited to this task is a Gaussian Process (GP) emulator. Gaus-

sian processes [202] are a means of interpolating between the simulation outputs, providing

function prediction in a Bayesian framework. Essentially, a distribution of functions is

learned through training on simulations, and the mean (best estimate) and variance (inter-

polation error) of the output can be returned for arbitrary simulation inputs. While other

interpolation methods are possible, Gaussian processes have many benefits: the inherent

quantification of prediction uncertainty, the option to incorporate prior knowledge, and the

ability to interpolate within high-dimensional parameter space.
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Previous uses of GP emulators for the Lyman-α forest have been shown to be

effective at predicting summary statistics [77, 203, 204, 205, 206, 181]. [77] self-consistently

showed that the predicted flux power from their GP emulator (trained with 21 simulations)

agreed to within 1 − 2% of the corresponding simulation flux power spectrum. These GP

emulators still require a substantial computational cost, as the full simulation suite must

be run with sufficient volumes and resolutions for the Lyman-α forest.

Recently, [166] implemented a multi-fidelity GP emulator [207] for the matter

power spectrum. Here, we combine and expand on the methods outlined in [77] and [166],

to produce a multi-fidelity GP emulator for the Lyman-α forest flux power spectrum. In our

multi-fidelity model, the training simulations are split into two fidelities; a large sample of

low resolution simulations (low fidelity, LF), and a small subset of these simulations run at

higher resolution (high fidelity, HF). Note that we use fidelity and resolution interchangeably

throughout this work. Using these two training sets, the multi-fidelity emulator is trained

to predict the 1D flux power spectrum that would be output by a high resolution simulation

for arbitrary cosmological and astrophysical parameters.

A multi-fidelity emulator allows us to replace some of the HF simulations that

would be needed in a single-fidelity emulator with LF simulations. This can dramatically

reduce the computational cost of constructing an emulator, while retaining predictive power

across parameter space. Using this method, emulators can be constructed that make use of

the full range of scales and redshifts probed by Lyman-α forest observations. This enables

analyses which can jointly constrain thermal, astrophysical, and cosmological parameters.
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In our high resolution simulations, the Lyman-α forest flux power spectrum is

converged to ≈ 5%. While the scales we probe in this work are resolved, the box size we

use is smaller than required to analyze the full range of scales available in Lyman-α forest

data, i.e. we cannot compute a likelihood function using all the real data without larger

boxes. We therefore defer a full cosmological likelihood analysis to future work. Our goal

is to quantitatively test the accuracy of the emulator output, as compared with the output

from a set of testing simulations run at the same resolution as the HF training set, and

demonstrate the validity and utility of the multi-fidelity technique. Specifically, we quantify

the accuracy of the single- and multi-fidelity emulators with respect to true values from the

testing simulations, thus determining how effective the multi-fidelity model is at producing

high resolution outputs at minimal computational cost.

4.3 Simulations

Simulations were performed using MP-Gadget1, an N-body and smoothed particle

hydrodynamics (SPH) code built on the solid base of Gadget-3 (last described in [78]).

MP-Gadget has been substantially modified to include shared-memory parallelism using

OpenMP, together with many other algorithmic improvements and new subgrid models, as

described in [208, 209, 210]. The initial power spectrum and transfer functions are generated

with the Boltzmann code CLASS [79]. Species-specific initial conditions are generated for

baryons and dark matter [210, 10]. We include radiation in the cosmological background

model and assume massless neutrinos.

1https://github.com/MP-Gadget/MP-Gadget
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Figure 4.1: Example Lyman-α forest spectra and corresponding gas density from simulations
at redshift 4. The top and bottom panel show the simulated gas surrounding the skewer
which produced the spectra shown in the middle panel. Examples are shown for simulations
run at high (top panel, yellow line) and low resolution (bottom panel, red line).

The physics models largely follow those used for the ASTRID simulation, which

are described in [208]. Primary sources for these models, as well as changes from [208] are

described below.

We use a cubic kernel for our density estimator (rather than a quintic kernel). For

these simulations, the cubic kernel produced a neutral hydrogen column density distribution

that was more consistent with observations for column densities between 1020 and 1022 cm−2

[211]. We continue to use the pressure-entropy formulation of SPH. The smaller SPH kernel

increases the noise within galaxies, but has minimal effect on the Lyman-α forest [212].

Star formation follows the model of [213], with our specific implementation as

described in [214]. We lower the number of stars produced per gas particle from 4 (used in

ASTRID) to 1 (as in Illutris-TNG), which speeds up the simulation without having an effect

on the Lyman-α forest.
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Black holes follow the model of [209]. We found that for the resolutions used here,

the dynamic friction from gas led to a few black holes escaping from their dark matter

halo, so we only use dynamic friction from dark matter and stars. The black hole feedback

factor, which controls the fraction of luminosity that is converted to thermal energy, is

an emulator parameter (BHF), with the associated parameter limits in Figure 4.3. The

black hole feedback radius is fixed to 3 kpc h−1, selected to be the average black hole

feedback radius at the highest tested resolution when using a nearest neighbour distance.

To accommodate a lower mass resolution than ASTRID, the minimum stellar mass needed

in a halo to seed a black hole was increased to 2 × 108M⊙, and all black hole seeds start

with a mass of 5× 104M⊙.

Stellar winds are modeled following [215]. The decoupling distance for the winds is

increased from 20 kpc h−1 to 1 Mpc h−1, which allows the winds to recouple due to density

changes rather than travel distance. The density threshold for wind recoupling is set to

10% of the star formation density threshold (which is 57.7 times the critical density). The

minimum wind velocity is set to 100 km/s. Finally, metal return (gas enrichment) is disabled

as it is not important for the Lyman-α forest and can be computationally expensive.

Gas is assumed to be in ionization equilibrium with a uniform ultraviolet back-

ground using the model of [138]. We boost the temperature of the gas to 15000 K the

timestep after the gas is reionized, to model impulsive heating during hydrogen reionization

from ionization fronts [107].

We implement He ii reionization using the model of [139]. The input parameters for

this model are: quasar mean bubble size and variance, redshifts for the start and completion
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Table 4.1: Multi-Fidelity Emulator Simulations

Simulation Box Volume Npart Mgas (M⊙ h−1)

LF (30 Mpc h−1)3 2× 2563 [1.78, 2.37]× 107

HF (30 Mpc h−1)3 2× 5123 [2.22, 2.96]× 106

Test (30 Mpc h−1)3 2× 5123 [2.22, 2.96]× 106

of He ii reionization zHe ii
i , zHe ii

f , and the quasar spectral index αq (which effectively scales

the peak temperature during He ii reionization). The quasar bubble size is reduced from

the default of ∼ 30 Mpc, motivated by radiative transfer simulations [3], to 5 Mpc, due to

our small box size.

Simulations are initialised at z = 99 and finish at z = 2, and use periodic bound-

aries. Box volume, particle number, and gas particle mass resolution are reported in Ta-

ble 4.1. The range given for the gas resolution is due to the varying value of h in our

simulation suite. The gas particle mass resolution for our HF simulations does not meet the

resolution that [141] recommend to resolve the forest at all redshifts of interest. However,

the Lyman-α forest flux power spectrum from our HF simulations is converged to within

≈ 5% of a simulation that does meet the required resolution of [141]. We are interested

in the performance of the multi-fidelity GP emulator in learning the mapping from low to

high resolution, thus this slight lack of numerical convergence does not affect our results.

Examples of the gas density (at z = 3.6) for the two resolutions are shown in the top and

bottom panels of Figure 4.1.

Lyman-α forest absorption spectra are generated using Fake Spectra Flux Extrac-

tor [142]2, described in [143]. We generate 32, 000 (seeded) randomly placed skewers for

2https://github.com/sbird/fake_spectra
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Figure 4.2: Lyman-α forest flux power spectrum from LF and HF simulations. The top
panel shows the flux power spectrum at redshift 3 from an LF simulation (blue), and its
HF counterpart (yellow). The lower panels show the ratio of the flux power for these two
resolutions, for all LF-HF simulation pairs, at z = 3.8, 4.6,& 5.4. Dashed lines shown the
highest k probed by BOSS/eBOSS [182], and the estimated reach for DESI [185].

each snapshot, from z = 5.4 to z = 2.0 in increments of ∆z = 0.2. The pixel resolution is set

to 10 km s−1. An optical depth threshold of τ < 106 is set to eliminate damped Lyman-α

systems. Example spectra from one LF and one HF simulation (at z = 4) are shown in the
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middle panel of Figure 4.1. Note that the LF simulation is not simply a smoothed version

of the HF simulation, as the fine velocity structure of the gas moves the location of the

absorption peaks.

These sets of neutral hydrogen absorption spectra are used to construct the Lyman-

α forest flux power spectrum for each simulation, at each redshift. The flux power spectrum

is defined as PF (k) = |L−1δ̃2F (k)|, where δ̃2F (k) is the Fourier transform of the flux excess,

δF (k) = F (k)/⟨F (k)⟩ − 1, and L is the length of the sightline. The reported flux power

spectrum is averaged over all 32, 000 spectra.

Figure 4.2 shows flux power spectra from a single LF simulation and its HF coun-

terpart, and the ratio of these at several redshifts. While the exact difference between the

LF and HF flux power spectra depends on simulation input parameters and redshift, in

general the LF differs most from the HF at small scales. The enhanced power on large

scales for the LF flux power spectra is consistent with [167], and is likely due to differences

in heating and cooling during H i and He ii reionization.

Figure 4.3 lists the input parameters that are varied across our suite of simulations,

as well as their limits. Two parameters control the primordial power spectrum: ns is the

scalar spectral index (slope) and Ap is the amplitude (see [77] for more details). Three of

the parameters relate to the He ii reionization model: zHe ii
i and zHe ii

f are the redshifts for

the start and end of He ii reionization, and αq is the quasar spectral index. We vary the

Hubble constant through h, and the total matter density through ΩMh2. One parameter

is varied for H i reionization: zH i is the midpoint redshift of H i reionization. Finally,

we vary one parameter for the black hole model: BHF is the black hole feedback factor,
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Figure 4.3: Simulation parameter limits and samples. Parameters for the low resolution
simulations (crosses) were determined by filling a Latin hypercube. See Figure 4.4 for
good and bad examples of a Latin hypercube design. Initially, 30 low resolution samples
were generated, then an additional 10 were added while maintaining the Latin hypercube
method, hence the non-uniform spacing for the low resolution samples. The optimal subset
of low resolution simulations is determined (see Section 4.4.2) and this subset is run at
higher resolution (shown as red circles).

which controls the fraction of luminosity that is converted to thermal energy. Note that

our simulations do not contain a kinetic feedback model. However, at z > 2 it is expected

that the thermal mode dominates. Also shown in Figure 4.3 are the LF and HF training

samples. Note that the HF samples are a subset of the LF samples. The selection of the

HF samples is described in Section 4.4.2.
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Figure 4.4: Two examples of a Latin hypercube sample, where the example on the left
poorly spans the parameter space, and the example on the right samples the parameter
space well. The d-dimensional (in this case d = 2) parameter space is divided into n
sections (in this case n = 12) so that only one sample is selected from each section. This
can be done in n! different configurations (for n = 12 this is ∼ 4.8 × 108 configurations).
To select the best configuration, random configurations can be generated and the one that
maximizes the minimum distance between points is retained (often called maximin).

4.4 Emulators

In Section 4.4.1, we will briefly review emulation using a Gaussian process. In

Section 4.4.2, we will review how the Gaussian process emulator can be extended to model

simulations with different qualities using a multi-fidelity emulator, MFEmulator. The multi-

fidelity emulation technique of [207] will be reviewed in Section 4.4.2. Section 4.4.2 will

discuss the differences in multi-fidelity emulator design between this work and [166]. Finally,

Section 4.4.2 will outline how we select our training simulations in the parameter space.
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4.4.1 Gaussian process emulator

Gaussian process (gp) regression models [202] have been widely used to build

cosmological emulators [163, 164, 165]. A gp provides closed-form expressions for predic-

tions. In addition, a gp naturally comes with uncertainty quantification, which is useful

when building an inference framework. In the context of emulation, a gp can be seen as

a Bayesian prior for the simulation response. It is a prior because the emulator model is

chosen to ensure smoothness and monotonicity features of the simulation response before

data are collected [216].

Let θ ∈ Θ ⊆ Rd be the input cosmologies for the simulator, where d is the

dimension of the parameters (d = 9 for our emulator). f(θ) is the corresponding output

summary statistic. In this work, the summary statistic, f(θ), is the Lyman-α forest flux

power spectrum. A gp regression model can be viewed as a prior on the response surface

of our simulated Lyman-α forest flux power spectrum:

f(θ) ∼ GP(µ(θ), k(θ,θ′)), (4.1)

where µ(θ) = E[f(θ)] is the mean function, and k(θ,θ′) = Cov[f(θ), f(θ′)] is the covariance

kernel function. In this work, we assume a zero mean function, and we used the same

covariance function as [77], which will be defined later in this section.

Suppose we run the simulations at n carefully chosen input cosmologies, D =

{θ1, · · · ,θn}, and we generate the corresponding Lyman-α forest flux power spectrum for

each simulation, y = {f(θ1), · · · , f(θn)}. Conditioning on this training data, we can get the

predictive distribution of f at a new input cosmology θ through the closed-form expression:

f(θ) | y,D ∼ N (µn(θ), σ2
n(θ)), (4.2)
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where the mean and variance are:

µn(θ) = k(θ,D)⊺K(D)−1y;

σ2
n(θ) = k(θ,θ)− k(θ,D)⊺K(D)−1k(θ,D).

(4.3)

The vector k(θ,D) = [k(θ,θ1), · · · , k(θ,θn)] represents the covariance between

the new input cosmology, θ, and the training data. The matrix K(D) is the covariance for

the training data.

For the covariance kernel function, we choose the same kernel as in [77], which is

a combination of a linear kernel and a radial basis kernel (RBF):

k(θ,θ′;σ0, l,σ) = kRBF(θ,θ′;σ0, l) + kLIN(θ,θ′;σ)

= σ2
0 exp

(
d∑

i=1

−(θi − θi
′)2

2l2i

)
+

d∑
i=1

σ2
i θiθi

′,

(4.4)

where σ2
0 and σ2 are the variance hyperparameters for the RBF kernel and the linear kernel,

respectively. l is the lengthscale parameter that controls the smoothness of the Gaussian

process function. We applied Automatic Relevance Determination (ARD) for both linear

and RBF kernels. That is, we assign one lengthscale li (variance σi) hyperparameter for

each input dimension i for the RBF and linear kernels. This allows the GP to dynamically

learn the scale over which each input dimension varies, which corresponds to the degree of

sensitivity of the flux power spectrum to the input parameter.

Although we do not explicitly write in the notation, f(θ) is a single-valued output.

Since our target summary statistic is a vector, we model each k-bin of the flux power

spectrum with a separate gp. The primary reason is that the correlation between the low-

fidelity and high-fidelity flux power spectrum changes depending on the scale. The multi-

fidelity method can only capture this scale dependence if we model each scale separately.

93



4.4.2 Multi-Fidelity Emulation

We first introduce the Kennedy-O’Hagan model (KO model) [207] in Section 4.4.2.

Section 4.4.2 describes the changes we have made to adapt the model from [166] to the

Lyman-α forest. Finally, the strategy we employ for choosing parameters at which to

generate high-fidelity training simulations is described in Section 4.4.2.

Kennedy O’Hagan Method

The KO model [207] was first introduced to model a sequence of computer codes

with increasing fidelity. For simplicity, we assume there are only two fidelities: low-fidelity

(LF) simulations with low resolution, and high-fidelity (HF) simulations with high resolu-

tion.

We define {yLF,yHF} as the Lyman-α forest flux power spectra in the training

set. yLF = {fLF(θLF
i )}nLF

i=1 and yHF = {fHF(θHF
i )}nHF

i=1 , where nLF and nHF are the number

of simulations in the low- and high-fidelity training sets. We use the KO method to model

Lyman-α forest flux power spectra from different fidelities:

fHF(θ) = ρ · fLF(θ) + δ(θ), (4.5)

where ρ is a trainable parameter describing a multiplicative correction between the low-

and high-fidelity Lyman-α forest flux power spectra. δ(θ) is a GP independent of fLF(θ),

describing an additive correction between fidelities. In other words, Equation 4.5 assumes

the high-fidelity Lyman-α forest flux power can be decomposed as the low-fidelity flux power

multiplied by a correction parameter, ρ, and an additive bias function δ(θ).
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As mentioned in [166], the ρ parameter has to be scale-dependent (a function of k)

to model the well-known fact that small scales are less well resolved in smaller simulations.

Here we use the same method as [166] and assume Equation 4.5 is a single-output GP

model. We assign a KO model to each k bin of the data.3 In this way, we can model ρ as

a function of k, as shown in Figure 4.5.
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Figure 4.5: The scale parameter, ρ, of the KO model (Equation 4.5) as a function of
k. Different colors represent different redshifts. We separate the redshifts into four bins,
2 ≤ z < 3, 3 ≤ z < 4, 4 ≤ z < 5, and 5 ≤ z ≤ 5.4. Within each redshift bin, we average
over fixed k modes, which are linearly spaced between the maximum k and minimum k at
the given redshift range. This emulator used 40 LF and 6 HF for training.

We also assign KO models for each redshift. As shown in Figure 4.5, ρ is a non-

trivial function of both k and z, so we cannot simply use an emulator trained on one redshift

to apply on another redshift.4 We note that it is possible to assume a smooth function to

3We can easily get the same set of k bins for low- and high-fidelity by using the same spectral resolution
for both simulations.

4See [204] for a Lyman-α forest emulator that uses a single GP for all redshifts, and achieves sub-percent
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model ρ(k, z). In practice, observational data are conditioned on a specific redshift, so

training emulators on separate redshifts is sufficient for cosmology inference.

Figure 4.5 shows that ρ stays close to unity at large scales for most of the redshifts.

At small scales, however, different redshifts require different values of ρ. At the middle

redshifts (3 ≤ z < 5), ρ has a large positive deviation from unity. At the low redshifts

(2 ≤ z < 3), ρ has a moderate deviation toward ρ > 1. The only exception is at the high

redshifts (5 ≤ z ≤ 5.4), which stays close to ρ = 1 for all scales. This indicates that the

correction to the Lyman-α forest flux power due to the resolution of the simulation varies

with redshift, depending on the over-density probed by the forest.

Model differences from Ho et al. (2022)

Here we highlight the ways in which we have adapted the model from [166], which

emulated the non-linear matter power spectrum at z = 0 − 2, to the Lyman-α forest at

z = 2− 5.4. Since the redshift range is larger in this work, we employed a new strategy to

select the optimal HF training set by averaging over the interpolation loss for all redshift

bins. We will describe the strategy in detail in Section 4.4.2.

In [166], we outlined two multi-fidelity methods: a linear multi-fidelity emulator

(the KO model, or the autoregression model (AR1)), and a non-linear multi-fidelity emulator

(non-linear autoregressive GP, or NARGP, [217]). However, we found that NARGP requires

more HF training simulations for the Lyman-α forest flux power than AR1, perhaps due to

the wide range of redshifts used. We use the KO model for our main results, and describe

the NARGP results in Section 4.6.

accuracy, albeit with some ambiguity between model parameters and redshift.
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In this work, instead of emulating logarithm scaled powers, we adopted the mean-

flux normalization strategy proposed in [77]. We normalize all flux power spectra in the

training set by the median spectrum:

yLF ←
yLF

mediani(yLF)
− 1;

yHF ←
yHF

mediani(yLF)
− 1.

(4.6)

The index i refers to one of the spectra in the training set, yLF = {fLF(θLF
i )}nLF

i=1 . Equa-

tion 4.6 ensures the training sample distribution is close to having a zero mean, matching

the prior of the GP emulator. We found that in practice this normalisation makes training

the emulator substantially easier. Note that we normalize the HF training set using the

same LF median spectrum. As the HF training set is small, the median spectrum estimate

for HF is noisy, and so using it for normalization may introduce some unwanted training

bias.

Sampling strategy for high-fidelity simulations

The KO model approach can be seen as a Bayesian way to correct an emulator

from low-fidelity to high-fidelity. Thus, if y is the high-fidelity Lyman-α forest flux power

spectrum used for training, and θ is the corresponding input parameters:

y = fLF(θ) + (fHF(θ)− fLF(θ))

= fLF(θ) + error(θ).

(4.7)

The emulation accuracy will be directly affected by how well an autoregressive construction

can model error(θ). Usually, a large set of low-fidelity simulations are used as training

data for fLF(θ) because they can be obtained cheaply. The quality of training data for

error(θ) = fHF(θ)− fLF(θ) thus relies on the choice of high-fidelity simulations.

97



In [166], we proposed an optimization strategy to select high-fidelity training sim-

ulations. A low-fidelity only emulator (LFEmu)5 is trained on a subset of low-fidelity

training simulations. The posterior means of the trained LFEmu are used to calculate the

emulation errors from the remaining LF samples in the Latin Hypercube Sampling (LHS).

By minimizing the emulation errors of LFEmu, we can grid search for the optimal set of

cosmologies that best interpolates the parameter space using a small number of training

simulations. Assuming LFEmu is correlated with HFEmu, we can use the selected optimal

cosmologies as inputs for the HF training set. By ensuring the HF training set achieves a

good interpolation, we mitigate emulation errors for the multi-fidelity emulator.

In practice, we employ a three-stage procedure for building a multi-fidelity emu-

lator:

1. Prepare LF simulation suite.

2. Prepare HF simulation suite. This is done by using LFEmu to find the set of cos-

mologies that minimizes the interpolation loss.

3. Build MFEmulator. If the accuracy is not enough, go back to stage 1 or 2 to run more

training simulations.

For stage (ii), to avoid wasting computational resources running more LF simulations, we

directly use the LF simulation suite in stage (i) to build and validate the LFEmu. Thus,

the cosmologies chosen for the HF set are a subset of the LF simulation LHS, which fulfills

the nested training dataset design suggested in [207]. The benefit of using a nested data

5In a similar way, we call a high-fidelity only emulator, HFEmu.
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structure, θHF ⊆ θLF, is that we can directly compute posterior means from the LF training

set for cosmologies θHF, without any interpolation in LF.

We note that it is possible to train a MFEmulator without using the LF simulations

to optimize the HF points. However, if the selection of HF points are suboptimal (i.e., can

barely interpolate in the prior volume), then the MFEmulator accuracy will be suboptimal.

This is because the error(θ) cannot be decomposed into an autoregressive structure easily.

To find the optimal HF training set across the full redshift range, z = 2 − 5.4,

we train a LFEmu for each redshift and get the validation loss (we used mean squared

errors). We sum up the validation loss for all redshifts and find a subset of cosmologies that

minimizes the summed validation loss.

In Figure 4.6, we summarize the above described procedure in a flowchart. For a

formal description, we refer to [166]. The only difference between the proposed procedure

in Figure 4.6 and the procedure in [166] is that we optimize θHF across redshifts z = 2−5.4

in this work. Thus, we have an additional step to sum the LFEmu validation loss across

redshifts.

Training an LFemu on all possible low-fidelity subsets is computationally intensive.

To reduce costs, we employed the greedy optimization strategy from [166]. We first explored

all possible subsets for 3 design points within the LF LHS. For the optimal 4 design points,

instead of exploring all possible subsets, we grew the subset one point at a time, fixing the

previously chosen optimal 3 HF points. In the same line of thought, we grew the subset to

6 optimal design points for HF training cosmologies. Our final simulation suite of 40 LF

and 6 HF samples, along with parameter limits, is shown in Figure 4.3.
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Figure 4.6: A flowchart for training a multi-fidelity emulator. We start with a low-fidelity
(LF) set of simulations. We then select a subset of low-fidelity points to train an emulator,
LFEmu, at each redshift. The validation loss for each LFEmu is computed using the rest
of the LF simulations as a validation set. Finally, we sum up the validation losses at each
redshift, and use the summed loss to propose a set of cosmologies θHF which can best
minimize the summed loss.

4.5 Results & Discussion

Using the flux power spectra from our LF and HF simulations, we train single-

fidelity (one LF only, and one HF only) and multi-fidelity emulators. These trained emu-

lators are used to predict the flux power spectrum output for a set of 10 simulation input

parameters. We then compare these predictions to the corresponding testing simulations

which were run at the same resolution as the HF simulations (see Table 4.1).
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4.5.1 Emulator Accuracy

In the following, we only show results for the emulators that use the full available

set of training simulations (40 LF and 6 HF). We have verified that using all available

training simulations leads to the most accurate emulator. Section 4.5.2 shows how emulator

accuracy degrades when a smaller subset of the available simulations is used.

Using the full set of available simulations, the mean prediction error for the multi-

fidelity emulator is ⟨|P pred
F /P true

F − 1|⟩ ≈ 0.8% (averaging across all scales, redshifts, and

testing simulation outputs). For the LF single-fidelity emulator, the mean prediction error

is ≈ 4%. This is not unexpected; there are real differences between the flux power spec-

tra output by the low and high resolution simulations that are not being captured with

this method. The 4% error may seem quantitatively quite good, considering the simpler

methodology and reduced resource cost. However, there is no indication that the error could

be reduced further with additional simulations (see Section 4.5.2).

For the HF single-fidelity emulator, the mean prediction error is ≈ 3%. This is

likely limited by the sample size of the training set (6 simulations), leading to increased

errors when making predictions for inputs that are far away from the training samples. It is

important to note that the HF samples are selected to optimize the multi-fidelity emulator,

rather than as an independent emulator (i.e. as a Latin hypercube sample). There is some

indication that prior information from the LF training samples provides useful information

about the best areas of parameter space to sample. To test this, we split our testing set (10

simulations, same resolution as the HF samples) into training and testing sets, then train all

210 combinations of 6 samples, and predict the outputs for the remaining 4 samples. The
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error range from this exercise is 2.5 − 11.5% (5.5% mean error, 1.5% standard deviation).

Though not a direct comparison, the 3% error we obtain from the HF single-fidelity emulator

compares favorably with this, indicating that the HF samples selected are an improvement

over using a Latin hypercube sampling scheme.
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Figure 4.7: Comparing the prediction error as a function of (linearly binned) wavevector
for multi- and single-fidelity emulators. This is the mean error across all redshifts and 10
test simulations. The shaded regions are the variance in the prediction error. Dashed lines
show the highest k probed by BOSS/eBOSS [182], and the estimated reach for DESI [185].

Figure 4.7 shows the mean prediction error, averaged over all redshifts and 10 test

simulation outputs, as a function of wavevector k. In this, and the following figures, the

shaded region around the curves is the variance in prediction error (|P pred
F /P true

F − 1|), to

give a sense of how much the error varies beyond the mean. The multi-fidelity emulator

outperforms the single-fidelity emulators at all scales, with an error between 0.5 − 1.5%.

The LF (HF) single-fidelity emulator has error between 2− 7% (2− 6%).
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Both single-fidelity emulators and the multi-fidelity emulator trend towards higher

error for small scales. The LF emulator dips 1 − 2% around k ≈ 0.02 s/km. The dip

occurs on scales at which the low resolution flux power spectra goes from overestimating

to underestimating the high resolution power (see Figure 4.2, for z ≤ 4.6). The uptick in

the multi-fidelity emulator error for the largest k-bins is also present in the HF emulator,

indicating that there is a scarcity of large scale modes available in the emulator training.
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Figure 4.8: Comparing the prediction error as a function of redshift and scale for multi- and
single-fidelity emulators. This is mean error across all 10 test simulations. The blue shaded
region shows the extent of helium reionization in our simulations (see parameter limits in
Figure 4.3).

Figure 4.8 shows how the emulators perform as a function of redshift and scale.

In the following, we define small scales as k > 0.02 s/km and large scales as k ≤ 0.02

s/km (divided at the smallest scale accessible by BOSS/eBOSS data [182]). On large scales

(Figure 4.8, left panel), the LF emulator error decreases with time until z ≈ 4, then slowly

increases. This trend is because, as can be seen in Figure 4.2 (left of the BOSS/eBOSS

dashed line), the low resolution flux power comes into better agreement with the high

resolution flux power as it nears z ≈ 4. We also found that the LF simulations do not cool
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as efficiently as the HF simulations after He ii reionization, likely leading to the rise in error

for z ≤ 3.2.

On small scales (Figure 4.8, right panel), the LF emulator error is more variable.

The dip in error seen around z ≈ 4.6 occurs as the low resolution flux power crosses

from overestimating to underestimating the high resolution flux power (Figure 4.2 right of

the BOSS/eBOSS dashed line). The subsequent rise in error is due to the loss of small-

scale power and consequent under-estimation of the flux power spectrum in the low-fidelity

simulations.

The trends in redshift and scale seen in the LF emulator performance are due

not to interpolation error, but to the different numerical resolution of the two simulation

fidelities, since this emulator is not predicting the flux power at the higher resolution. Some

differences are connected to temperature differences between the LF and HF simulations.

For low densities (∼ 1 times the mean density), the LF simulations are colder than the HF

simulations at high redshift, but come into better agreement leading up to He ii reionization,

after which they diverge from the HF simulations again. For higher densities (1−100 times

the mean density), the LF simulations are once again colder than the HF simulations at

high redshift, but at lower redshift they are too hot (with a crossover at z ≈ 4.6). As higher

redshifts probe lower densities, the error initially decreases with redshift, before rising again

towards the lowest redshifts.

On both large and small scales the HF emulator errors are around 3.5%, dominated

by sampling variance. During He ii reionization the HF emulator has more variation in error,

which is probably exacerbated by our small box sizes. The increased variation during He ii
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reionization further indicates that the primary source of error for the HF emulator is the

sample size of the training set.
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Figure 4.9: Errors for the multi-fidelity emulator, averaged over all test suite simulation
predictions, as a function of redshift and scale. The error is largest at large scales and lower
redshifts. This is likely a result of the volume of the simulations, and thus a lack of large
scale modes for training. Errors also increase for small scales and intermediate redshifts,
which is during He ii reionization.

On small scales, the multi-fidelity emulator error is insensitive to redshift and

small (0.9%). On large scales, the multi-fidelity emulator error slightly decreases until

z = 4.2, then increases with the onset of He ii reionization, before flattening again. The

trend is also more variable during He ii reionization, indicating that emulator finds it more

difficult to learn the mapping during this process. However, the multi-fidelity emulator
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still outperforms the single-fidelity emulators, with an error between ≈ 0.4− 1%. The full

picture of the multi-fidelity error can be seen in Figure 4.9, which shows the average (over

test suite simulations) error (colors) as a function of the redshift and scale.

4.5.2 Emulator Runtime

While we have shown that the multi-fidelity emulator outperforms the single-

fidelity emulators presented here, it still remains to show that it is more computationally

cost efficient. We could, for example, add more training simulations to our single-fidelity

HF emulator and get a similarly accurate high resolution emulator. However, the com-

putational cost would increase significantly. By comparing the total emulator runtime to

prediction error, we can determine the choice that balances computational cost and accu-

racy. In practice, the important question is to determine the computational cost at which a

given emulation technique can achieve a desired accuracy. The computational cost of train-

ing the emulators is subdominant (O(1) cpu-hours) to running the training simulations, so

in the following we only consider the runtime for the simulation suites.

Figure 4.10 shows the mean prediction error (averaged over all redshifts and test

outputs) as a function of the number of simulations used in the training set, for small and

large scales (as defined in Section 4.5 and Figure 4.8). The solid lines show prediction errors

for multi-fidelity emulators trained using 6 HF and a varying number of LF simulations.

The small and large scale errors flatten out after ≈ 30 LF simulations are used in the

training set. The LF simulations allow the emulator to determine how the flux power

spectrum depends on the cosmological input parameters, and so this indicates that 30 LF
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Figure 4.10: Emulator prediction error as a function of the number of simulations used
in training the emulator. This is the mean error across all redshifts and 10 test simulation
outputs. The prediction error is broken down into large (k < 0.02 s/km) and small (k > 0.02
s/km) scales, as in Figure 4.8. The solid lines show how the average error depends on the
number of LF simulations, while the dashed lines show how the average error depends on
the number of HF simulations once all LF simulations are included.

simulations are needed to explore our 9 parameter space. Other emulators range from using

≈ 6 simulations per parameter (e.g. [195, 166]) to 30 per parameter (e.g. [190]). The

3− 4 simulations per parameter required here is unusually low, perhaps because the input

parameters affect the flux power spectrum close to linearly in much of parameter space.

Dashed lines show prediction errors for multi-fidelity emulators trained using 40

LF and a varying number of HF simulations. Adding extra HF simulations to the training

set has a larger impact than adding LF simulations. The addition of each HF simulation

generally improves the emulator accuracy for small scales more than for large scales. This
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is as expected, since the main purpose of the HF simulations is to learn the mapping from

low to high resolution output, with small scales being more resolved in the HF simulations.

Figure 4.11 shows the emulator prediction errors as a function of the total runtime

(cost of running the training simulations). All simulations were run on the Frontera super-

computer at the Texas Advanced Computing Center. The cost is divided between the LF

training simulations, which cost ≈ 10 node hours each, and the HF training simulations,

which cost ≈ 150 node hours each.
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Figure 4.11: Prediction error as a function of total training simulation computational cost.
This is the mean error for 10 test simulations over all redshifts and scales. The solid line
shows the prediction error when changing the number of HF simulations used in training
the multi-fidelity emulator. Also shown are the single-fidelity emulators (red squares), and
the multi-fidelity emulator trend with a varying number of LF training simulations (yellow,
dashed).
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The dashed trend shows the same emulators as Figure 4.10, but no longer divided

by scale. Qualitatively it looks the same as both the large scale and small scale results from

the previous figure. The error is flat after ≈ 30 LF training simulations, indicating that a

similar accuracy can be achieved using the multi-fidelity emulator with ≈ 30 rather than

40 LF simulations. The most efficient 1% error emulator in this study is a multi-fidelity

emulator using 30 LF and 5 HF training simulations (the cost for this was ≈ 1050 node

hours). The most accurate emulator is the 40 LF, 6 HF multi-fidelity emulator, with error

0.8%, and cost ≈ 1300 node hours.

The dotted line (squares) shows the error and runtime for the single-fidelity emu-

lators. Following from the 6 HF single-fidelity emulator result to the dashed (yellow) line,

it can be seen that the addition of just a few LF training simulations quickly improves the

accuracy. It can also be seen that in terms of computational cost, the multi-fidelity emu-

lator is more efficient6. Note that the HF training simulations are not selected to optimize

a single-fidelity emulator, but instead are selected to optimize the multi-fidelity emulator.

They thus use prior information provided by the LF training simulations and so perform

better than a naive Latin hypercube construction of a HF emulator using 6 training samples.

Our multi-fidelity scheme is thus an even larger improvement on a single-fidelity model than

Figure 4.11 suggests.

The solid line shows the error and runtime for the multi-fidelity emulator trained

using 40 LF simulations, and 2−6 HF simulations. The point on the solid line corresponding

to 40 LF, 2 HF has a similar cost, but slightly worse performance than the 5 HF single-

6At least for errors less than 4%, the approximate amount by which the LF simulations fail to be
converged.
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fidelity result. Adding a third HF training sample decreases the error more for the multi-

fidelity emulator (error for 40 LF, 3 HF emulator) than it does for the single-fidelity emulator

(error marked 6 HF). Adding a 6th HF simulation to the 40 LF, 5 HF multi-fidelity emulator

produces a relatively small improvement in error, perhaps indicating that stochasticity in the

simulations due to our relatively small box size, is beginning to dominate over interpolation

error.

4.6 Non-linear Multi-Fidelity Emulator
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Figure 4.12: Comparing the prediction error as a function of redshift and scale for linear
and non-linear multi-fidelity emulators. This is mean error across all 10 test simulations.
The shaded region shows the extent of helium reionization in our simulations (see parameter
limits in Figure 4.3).

In the main text we have explored the effectiveness of a linear multi-fidelity em-

ulator (the KO model, or AR1). In the linear model, the mapping from LF to HF is

fHF(θ) = ρfLF(θ) + δ(θ), where fHF and fLF are the emulator predictions at those resolu-

tions, and ρ is independent of the input parameters θ.
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Here, we compare those results with the results using a non-linear multi-fidelity

emulator (non-linear autoregressive GP, or NARGP). In the non-linear multi-fidelity model,

proposed by [217], the mapping is a function of both the LF output and the input param-

eters. We model this as:

fHF(θ) = ρ(θ, f̃LF(θ)) + δ(θ),

such that ρ depends on both the input parameters and LF posterior output. The LF outputs,

as is the case with the linear model, are median normalized such that the assumption on

the Gaussian process of zero mean is more reasonable, f̃LF(θ) = fLF(θ)/µLF − 1.

Following [217], ρ is modelled as a Gaussian process with input from both input

cosmologies for HF, θHF, and the output from LF, f̃LF(θ). The NARGP construction results

in a deep Gaussian process model [218]. We follow the approximation in [217] and replace

f̃LF(θ) with its posterior distribution. Thus, the training reduces to training two regular

GPs recursively.

In Figure 4.12 we show the prediction errors separated into small and large scales,

as a function of redshift for both the linear and non-linear multi-fidelity emulators. They

perform similarly, with the linear emulator being more accurate at low redshifts on all

scales, and high redshifts for small scales. The difference between the average error for the

linear and non-linear models (over all scales and redshifts) is 0.08%. This is in contrast to

emulation of the matter power spectrum in [166], where the non-linear model outperformed

the linear model.

It is worth noting that the non-linear model agrees closely with the linear model

when using the full suite of training simulations, but lags behind the linear model when using
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fewer HF training simulations. For example, the difference in the average error between

linear and non-linear models using 40 LF and 3 HF is ≈ 2% (1.9% error for linear, 3.7%

error for non-linear). When using 4 HF the difference is ≈ 1% (1.5%, 2.5%), and when

using 5 HF the difference is ≈ 0.4% (0.9%, 1.3%). While differences in the effectiveness of

the non-linear model may be due to the quantity being emulated (matter power versus flux

power), one likely reason for the difference is the number of input parameters. In [166], five

input parameters are used, while in this work we use nine. The non-linear model uses the

posterior of the LF output, which requires Monte-Carlo sampling. It is possible that the

additional dimensions degrade the performance of the Monte-Carlo integration, and thus

the performance of the non-linear model. One other reason may be the larger number of

hyperparameters that need to be optimized in the training.

4.7 Conclusions

We developed and tested a multi-fidelity emulator for the simulated Lyman-α

forest flux power spectrum. Emulators address the growing computational demands of

simulations, which must be run at increasingly high resolutions to allow analysis of the

increasing quality and quantity of observational data. Here, we use a Gaussian process based

emulator that addresses this demand by, in a Bayesian framework, training an interpolating

function to predict the output (Lyman-α forest flux power spectrum) for a given input

(simulation input parameters). Relatively few simulations are required to accurately predict

across the span of input parameter space, making emulators especially useful for parameter

inference problems.
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The multi-fidelity framework allows a further reduction in computational cost by

dividing the emulator training samples into multiple (in our case two) fidelities. The low-

fidelity (low-resolution) training samples allow the emulator to learn how the the outputs

depend on input parameters. The high-fidelity (high-resolution) training samples correct

numerical errors in the low-fidelity emulator with a (parameter-dependent) mapping from

low- to high-fidelity. Thus, the emulator can be trained with a large sample of low-fidelity

training simulations and a small subset of high-fidelity training simulations.

Our training suite included 40 low resolution hydrodynamical simulations (30

Mpc/h simulation box length, 2563 particles) and 6 high resolution hydrodynamical simu-

lations (30 Mpc/h simulation box length, 5123 particles). Using the Lyman-α forest flux

power spectrum extracted from these simulations, we trained single- and multi-fidelity em-

ulators to predict the high resolution flux power spectrum. Ten independent simulations

were run to test the prediction accuracy of the trained emulators.

In summary, the multi-fidelity emulator:

• Modelled a redshift range 5.4−2 (in 18 redshift bins with ∆z = 0.2), on scales ranging

from k = 1.4× 10−3 to k = 5.7× 10−2 s/km (in 25 bins).

• Achieved sub-1% error on most scales and redshifts when averaged over 10 test sim-

ulations.

• Reached an average error of 0.8%.

• Achieved 1% average error most cost efficiently using a training set with 30 low reso-

lution and 5 high resolution simulations.
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The low resolution single-fidelity emulator (4% average error) predicts the low

resolution flux power, so it is limited by real differences between the output of the two

resolutions. The high resolution single-fidelity emulator (3% average error) is limited by the

small number of training samples. It is likely that the average error for the high resolution

single-fidelity emulator could be improved to match the multi-fidelity emulator performance

with the addition of more training simulations. However, the high resolution single-fidelity

emulator quickly increases in computational cost with additional samples, and we expect it

would thus be more expensive than our multi-fidelity emulator.

Some important caveats to our results are that the Lyman-α forest is converged at

the ≈ 5% level in our high resolution simulations, and the box size is small. In a forthcoming

work, a model that uses two different box sizes (rather than two different resolutions) to

construct a multi-fidelity emulator will be developed and tested. While there is no direct

evidence to suggest that changing the resolution or box size would significantly enhance

or diminish the accuracy of the emulators presented here, it still remains to be tested on

simulations with higher resolution and larger box sizes.
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Chapter 5

Inference via the Lyman-α Forest

5.1 Abstract

In this work we expand on, and make use of, our recently developed Lyman-

αforest multi-fidelity emulator for cosmological and astrophysical inference. The emula-

tor is expanded to include the mean temperature of the intergalactic medium, in addi-

tion to the Lyman-αforest flux power spectrum. Our emulator is trained on large volume

((120h/Mpc)3) and high particle load (48 simulations using 15363 & 3 simulations using

30723) simulations, and makes predictions with ≈ 1% error. The emulator is used within a

Markov Chain Monte Carlo framework, with a new likelihood function, to constrain a set

of nine parameters that are varied across the simulation suites. We find that the posteriors

from our analysis depend strongly on the inclusion or omission of the lowest two redshift

bins. When these redshifts are included, we find a preference for a low primordial power

index, nP = 0.879 ± 0.012, and a primordial power amplitude, As =
(
1.90± 0.13× 10−9

)
,

consistent with Planck. When these redshifts are omitted, we find nP = 0.927± 0.017, con-
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sistent with Planck, and a primordial power amplitude, As =
(
1.76± 0.13× 10−9

)
, within

2σ of Planck. The affect of the redshift range is also seen in the midpoint of reionization,

which is zH i = 6.85± 0.28 using the full redshift range, and zH i = 7.87± 0.25 when using

the reduced redshift range. The timing and duration of helium reionization is consistent

between these two, running from zHe ii
i ≈ 4.0− 2.8.

5.2 Introduction

Modern cosmological inference requires a constantly evolving set of tools, from

improved modeling of cosmology and astrophysics, to new computational tools to keep pace

with modern observations. In particular, the march of modern observations towards smaller

scales and larger samples require more computationally intensive modeling, i.e. running

larger volume and higher resolution simulations. The need for these costly simulations

introduces its own problem; fewer of them can be run, reducing their usefulness in inference

frameworks. Various methods have been developed to answer this last problem, many of

which use machine learning methods.

The Lyman-αforest [1, 157, 158, 159, 160, 92, 161, 162] is an example of a cosmo-

logical observable that requires modern techniques to fully exploit. The Lyman-αforest is a

series of spectral features, produced by overlapping neutral hydrogen absorption profiles in

the spectra of distant luminous quasars as their light is processed through neutral hydrogen

in the intergalactic medium (IGM) [1]. In the rest frame of this neutral hydrogen, light that

has been redshifted close to the Lyman-α transition at 1215.67Å is absorbed. As the light

traverses the IGM, it continues to intersect additional neutral hydrogen at lower redshift.
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The result is a quasar transmission spectra containing an overlapping field of absorption

features, which measures the neutral gas density along that sightline [168].

Specifically, the densities probed by the Lyman-αforest from redshift z = 2 − 5,

are ∼ 1 − 100 × the cosmological mean density. For these redshifts and densities stellar

winds and star formation effects are negligible, though feedback from black holes can be

important [169, 170]. As such, many questions can be explored using the Lyman-αforest:

the thermal and ionization history of the IGM, the nature of dark matter, the neutrino

mass, and alternative cosmologies, to name a few. Some examples of works using the

Lyman-αforest include: studies constraining the thermal history of the IGM and reionization

[171, 124, 113, 96, 172, 173, 219], and constraining cosmological parameters including the

neutrino mass [140, 175, 176, 177, 178, 155, 179], as well as studies testing alternatives to

cold dark matter [109, 150, 151, 155, 180, 181].

There are an abundance of quasar spectra from both past and future large surveys,

such as the Sloan Digital Sky Survey (SDSS) [182], and the Dark Energy Spectroscopic

Instrument (DESI) [220]. DESI will increase the number of Lyman-αforest quasar spectra

by a factor of four over SDSS [67]. DESI is also expected to measure the flux power spectrum

at smaller scales (k ≳ 0.035 km−1 s) and higher redshifts (z > 4.6) than SDSS, achieving

order of a few percent accuracy [185]. In addition to this, there are smaller sample size,

higher resolution quasar surveys [152, 183, 184].

These observations bring with them interpretation challenges, requiring increas-

ingly more sophisticated modeling, especially for observations like the Lyman-αforest, which

probes scales requiring expensive numerical simulations. Simulations of the Lyman-αforest
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must follow the distribution of gas on small scales, hence they must be well resolved hydro-

dynamics simulations. Specifically, simulations need to have a box side length of at least

100 Mpc h−1 and mean particle spacing of 100/3072 ≈ 0.03 Mpc h−1 [167]. Because only a

limited number of these expensive simulations are achievable, often researchers use methods

to enhance the volume and resolution of their simulation outputs (splicing [167], Richardson

extrapolation [186]), or use machine learning methods, such as emulators [163, 164, 165]. We

will use an emulator, which provides a means of interpolating a summary statistic between

simulation outputs for arbitrary cosmological and astrophysical input parameters. Specif-

ically, we use a multi-fidelity emulator, which combines two different resolution training

samples in a framework that allows predictions at high resolution.

Parameter inference tasks, such as Markov Chain Monte Carlo analysis, can re-

quire up to ∼ 106 model evaluations. This is prohibitive if each evaluation requires an

expensive cosmological simulation, but easily achievable by drawing from the emulator

based surrogate. An emulator is trained on a suite (∼ 30 − 50) simulation outputs, and

uses interpolation produce predictions for arbitrary input with negligible computational cost

(once the emulator is constructed). Emulators have been used to study various cosmological

probes: the matter power spectrum [165, 187, 188, 189, 190, 191, 192], weak lensing shear

[193, 194], the halo mass function [195, 196, 197], and the 21-cm signal [198, 199, 200, 201].

Here, we use a Gaussian process (GP) based emulator following [77, 11]. Gaussian

processes are flexible, fast and easy to train, producing good results even for our relatively

small training data set. Gaussian processes [202] are a means of interpolating between

the simulation outputs via a distribution of functions that is learned through training on
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simulations. Draws from the (n-dimensional) learned distribution are potential predictions,

with the mean serving as the actual prediction (best estimate). The prediction uncertainty

comes from the variance of the learned distribution. The predictions can be made for

arbitrary simulation inputs, within the parameter limits of the training set.

GP emulators have been used for Lyman-αforest summary statistics previously

[77, 203, 204, 205, 206, 181]. In particular, [77] constructed a GP based emulator for the

simulated Lyman-αforest flux power spectrum using 21 training simulations. This emulator

used a single resolution for all of its training simulations. Thus, the emulator from [77] was

restricted to volumes and resolutions for which ∼ 20 simulations could be generated.

One way to circumvent this problem is to use a multi-fidelity GP emulator model

[207]. A multi-fidelity emulator replaces some of the more expensive simulations (high

fidelity, HF) that would be needed in a single-fidelity emulator with cheaper simulations

(low fidelity, LF). This model was used to emulate the matter power spectrum in [166],

and more recently we used this model for the Lyman-αforest flux power spectrum [11]. In

[11], the training simulations were split into two fidelities; a sample of 40 low resolution

simulations (LF), and a subset of 6 of the LF simulations run at higher resolution (HF).

The multi-fidelity emulator used in this work follows the same division, a small sample of

HF simulations, supported by a large sample of much cheaper LF simulations.

The multi-fidelity model dramatically reduces the computational cost of construct-

ing an emulator, while retaining predictive power across parameter space. The multi-fidelity

model allows the construction of an emulator with eight times the mass resolution (and dou-

ble the spatial resolution) of our lower fidelity simulations. In [11], the computation cost
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was reduced by approximately two-thirds. In this work, the high resolution simulations

cost ≈ 16 times more computational time than an equivalent simulation run at the low

resolution. This means an emulator can be constructed that accesses the full range of scales

and redshifts probed by Lyman-αforest observations. Using this emulator in an inference

framework allows an analysis that jointly constrain thermal, astrophysical, and cosmological

parameters.

Our aim in this work is to perform inference using the high resolution GP emulator

constructed in [221] this and current observations of the Lyman-αforest. The emulator used

here is similar to that described in [11]. The work here differs from the results of Ref. [11]

in the volume and resolution of the simulations used. The volume has been increased by a

factor of 43 = 64, while the resolution for both the LF and HF sets have been improved by a

factor of 1.53 ≈ 3.4. These puts the simulations in line with recommendations for simulating

the Lyman-αforest, with a box side length of 120 Mpc/h, and 15363 and 30723 particles for

the LF and HF set, respectively [167]. In a companion paper [221], the simulations used in

this work are fully described, and the convergence of the Lyman-αforest statistics is tested.

Another major difference from [11] is that we build multi-fidelity GP emulators

for two summary statistics of the Lyman-αforest: the Lyman-αforest flux power spectrum

and the IGM mean temperature. The observations used in this work are from [182] for

the flux power spectrum, and from [173] for the IGM mean temperature. Other works

have used the Lyman-αforest to constrain cosmological and/or astrophysical parameters.

This has included: constraining the thermal history of the IGM [113, 96, 110, 173, 219],

probing warm dark matter models [109, 150, 155, 151, 222] and bounding the neutrino
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mass [223, 155]. Using the larger scales measured by correlating absorption from different

quasar sightlines has allowed detection of the baryon acoustic oscillations and constraints

on the expansion of the universe [224, 225, 226, 227]. Our work has several novel features,

including the use of full hydrodynamic simulations, the implementation of a physical model

for hydrogen and helium reionization, and the use of a multi-fidelity emulator for sampling.

In summary, our method is: (1) construct a sample that spans the parameter

space of interest, then run low fidelity simulations for each of these samples; (2) extract the

summary statistics from these simulations, then train a single-fidelity emulator to determine

the optimal simulations to run again for the high fidelity set; (3) using the summary statistics

from the LF and HF sets, build a multi-fidelity emulator that accurately predicts these

outputs for arbitrary inputs; (4) construct a likelihood that makes use of the emulator and

observational data to determine the likelihood of the input parameters; (5) use this emulator

and likelihood within an MCMC inference framework to constrain the input parameters.

We begin, in Section 5.3, by describing Gaussian processes, and the emulator meth-

ods used for both a single- and multi-fidelity emulator model. We then provide details on

the simulation suite used for training the emulator in Section 3.3, including the parameters

that are varied, the method of sampling those parameters to construct the final suite, as

well as the method of calculating the summary statistics used (flux power and mean tem-

perature). In Section 5.5 we outline and discuss the inference scheme, the observational

data that is used and the construction of the likelihood. Section 4.5 details the results of

running the likelihood in an MCMC framework, and we conclude in Section 4.7.

There are also appendices for extended and alternative results: the full set of
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parameter posteriors in Appendix 5.8; a test where we use simulation input as the obser-

vation to see how well our likelihood recovers the truth in Appendix 5.9; results from an

analysis that includes priors on some of the parameters in Appendix 5.10.1; results using

an older observed flux power spectrum (DR9) in Appendix 5.10.2; results where we have

inflated the observational errors in Appendix 5.10.3; results using only the mean temper-

ature for inference in Appendix 5.10.4; and results using a reduced range for the scales in

Appendices 5.10.5.

MCMC chains for all the results presented in this work along with files containing

the training outputs used to construct the emulators1, as well as the code2, which includes

the emulator, likelihood, and integration with the Cobaya MCMC package, are available

publicly.

5.3 Emulator Methods

In this work, we perform parameter inference using a Markov Chain Monte Carlo

(MCMC) method. Specifically we employ the Cobaya package [228, 229]. In order to

perform parameter inference in this way, we require a much cheaper sampling scheme than

running simulations for each step in the MCMC chain. This is the role of the emulator in

the inference scheme.

We use a Gaussian process (GP) based emulator, which is discussed in Sec-

tion 5.3.1. This allows accurate predictions of the simulated output, along with a measure

of prediction uncertainty, without running the 105 − 106 samples required for an MCMC

1https://github.com/mafern/InferenceLyaData
2https://github.com/sbird/lya_emulator_full
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analysis to converge. The methodology of the emulator is largely the same as in [11]. In

addition to a brief discussion of both single- and multi-fidelity emulator models, any differ-

ences from [11] are discussed in Section 5.3.2 and Section 5.3.3. The two emulator models

make use of our low fidelity (LF) and high fidelity (HF) training samples, which come from

the low and high resolution simulation suites discussed in Section 3.3.

5.3.1 Gaussian Processes

Gaussian processes [202] are a trainable method for providing function prediction

in a Bayesian framework. In this case, the GP is used to interpolate simulation outputs as

a function of the simulation input parameters that are varied in the training samples (see

Figure 5.4). In a Gaussian process, a distribution of functions is learned through the training

samples (simulation input/output pairs), and the mean of the learned distribution serves as

the prediction, while the variance of the distribution quantifies the prediction uncertainty.

This allows a prediction to be cheaply produced for arbitrary simulation inputs (within the

parameter space of the training samples – GPs work poorly for extrapolation). We use the

GPy [230] package to implement Gaussian processes within our emulator model.

If PF (θ) is the simulated Lyman-αforest flux power spectrum (the following also

applies to the IGM mean temperature, T (θ)) as a function of θ, the input parameters to

the simulation, then we are modeling this output as draws from a learned distribution,

PF (θ) ∼ GP (µ(θ), k(θ,θ′)), (5.1)

where µ(θ) and k(θ,θ′) are the mean and covariance function for the distribution, respec-

tively. As in [11], we rescale the training samples by their median (the LF median for both
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single- and multi-fidelity emulators) so that we may assume a zero mean function during the

GP training. The predictions are then multiplied by this rescaling factor to produce sensible

predictions. With a zero mean function, it only remains for the covariance function to be

trained, which amounts to selecting a covariance kernel and training the free parameters of

that kernel. Here, as in [11], we use the sum of a radial basis function (RBF) kernel and a

linear kernel to model our outputs.

The total kernel (RBF + linear kernels) is given by:

kRBF(θ,θ′;σ0, l) + kLIN(θ,θ′;σ) = σ2
0 exp

(
d∑

i=1

−(θi − θi
′)2

2l2i

)
+

d∑
i=1

σ2
i θiθi

′, (5.2)

where d is the dimensionality of the input parameters. The hyperparameters that are learned

from the training samples are: variances for the RBF (σ2
0) and linear (σ2) kernels, and the

lengthscale controlling the smoothness of the RBF kernel, l. The RBF lengthscale and

linear variance hyperparameters are shown as vectors here, indicating that an independent

value is assigned for each dimension d of the input for each of these hyperparameters. This

is called Automatic Relevance Determination (ARD), and we use this in all cases for the

LF Lyman-αforest flux power spectrum. Including ARD allows the GP to train a separate

hyperparameter for each dimension of the input, such that dimensions that have a more

sensitive effect on the prediction can be given a smaller scale, e.g. the effect of Ap on the

mean temperature is negligible, while αq has a large effect. For the IGM mean temperature

GP, we only use ARD for the RBF kernel. Unlike for the flux power predictions, including

ARD for the linear variance hyperparameter had no effect on the accuracy of the mean

temperature predictions.

The prediction and predicted uncertainty for a Gaussian process come from the

124



mean and variance of the learned distribution, and can be written as the following closed-

form expressions (for a full derivation, see [202]):

µ(θ) = K(θ,D)⊺K(D)−1PF (D);

σ2(θ) = k(θ,θ)−K(θ,D)⊺K(D)−1K(θ,D).

(5.3)

where θ are the new inputs for which a prediction is desired, D is the vector of training

inputs, PF (D) (T (D) for the mean temperature) is the vector of training outputs, K(D) is

the training data covariance matrix, and K(θ,D) is the vector of covariances between the

training data and new inputs.

In the following, we discuss the single- and multi-fidelity emulator models we use

for our inference framework. The code used to generate training samples, train and test

single- and multi-fidelity emulators, and perform inference via MCMC is publicly available

at: https://github.com/sbird/lya_emulator_full.

5.3.2 Single-Fidelity Emulator

The single-fidelity emulator used in this work follows the prescription outlined in

Section 5.3.1. Training samples extracted from the suite of LF simulations (see Section 3.3)

are used to train the GP (both for the flux power spectrum and the mean temperature).

For the mean temperature, a single GP is sufficient, as there is a single value per redshift.

For the flux power, a GP is trained for each redshift, but across the full k range. This

differs from [11], which trained a GP for every k bin for every redshift. In the case of a

single-fidelity emulator, the accuracy was not substantially improved by training GPs for

each k bin. All results using the single-fidelity emulator use only the LF simulations for

training, thus the predictions are for the lower resolution flux power spectrum and mean
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temperature. With only three HF samples, a single-fidelity emulator for the HF outputs is

dominated by prediction errors.

To measure the accuracy of the single-fidelity emulator predictions, we employ

a method called leave-one-out. In turn, each training sample is left out of the training

set, the emulator is then trained with this reduced set, and a prediction is made for the

omitted sample. The relative error between the prediction and true output from the omitted

sample is then retained and this is repeated for each training sample. Due to the mean flux

rescaling, which produces ten samples for each simulation, the samples that are omitted and

then predicted are all those associated with each simulation, rather than each sample. The

distribution of relative errors from this calculation are shown for the flux power spectrum

in Figure 5.1, and for the mean temperature in Figure 5.2. These figures show the errors

for a single-fidelity emulator that is predicting LF outputs (grey), and the errors for a

multi-fidelity emulator that is predicting HF outputs (yellow, discussed in Section 5.3.3).

In the left panels of Figures 5.1 and 5.2, the absolute error normalized by the

prediction uncertainty is shown. For the distributions with large enough sample sizes,

these appear to be normally distributed, as expected. The right panels show the absolute

relative error, a good indicator of the accuracy of the emulator predictions. The flux power

single-fidelity emulator has an average error of 0.7%, with a maximum of 8%. The mean

temperature single-fidelity emulator has an average of approximately 1%, with a small

number of errors at, or slightly above 10%.

This is consistent with [77], which constructed an emulator for the Lyman-αforest

flux power spectrum from 21 simulations and found and error of 1 − 2%. In [77], the
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Figure 5.1: Leave-one-out errors for the Lyman-αforest flux power spectrum emulator.
The left panel shows the absolute error in units of prediction uncertainty. The right panel
shows the relative errors, an estimate of how well the emulator predicts the flux power
spectrum. The distributions show the prediction error for each redshift of each flux power
sample included in the final training sample. The grey distribution shows the emulator
error for a single-fidelity emulator, predicting the flux power for the LF simulations. The
yellow distribution shows the errors for a multi-fidelity emulator, predicting the flux power
for the HF simulations.

simulations are smaller volume and lower resolution, cover a smaller redshift range than that

used here, and use different physics models (simplified star formation, no helium reionization

model). Thus, the rough agreement for emulator accuracy is encouraging, as the emulator

framework works well for fairly different sets of training samples.

5.3.3 Multi-Fidelity Emulator

For the single-fidelity emulator, the training samples are all from the LF suite,

thus the predictions correspond to the lower resolution simulations which produced the

LF training samples. Rather than run a similar number of significantly more expensive

simulations at a higher resolution, we employ the multi-fidelity model which requires only
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Figure 5.2: Same as Figure 5.1, but for the IGM mean temperature emulator. The
distributions show the prediction error for each redshift of each simulation included in the
final training sample.

a few HF training samples to make predictions of the higher resolution outputs.

Previously, we developed and tested multi-fidelity emulators for the Lyman-αforest

flux power spectrum [11]. Essentially, the multi-fidelity model allows simulations with

different particle loads, and thus costs, to be combined together. Thus, some of the HF

simulations that would be needed in an HF single-fidelity emulator are replaced with LF

simulations. This allows construction of an emulator that makes full use of the range

of scales and redshifts probed by Lyman-αforest observations, at a significantly reduced

computational cost (e.g. each HF simulation requires approximately sixteen times more

node-hours to run than an LF simulation).

The multi-fidelity model on which our implementation is based is from [207]. Our

two fidelities correspond to simulations run at two different resolutions (see Table 4.1): lower

resolution simulations for the low fidelity (LF) samples, and higher resolution simulations for

the high fidelity (HF) samples. The multi-fidelity prediction for the HF outputs (shown here
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for the Lyman-αforest flux power spectrum, but equally valid for the mean temperature) is

given by:

P
HF

F (θ) = ρ · P LF

F (θ) + δ(θ), (5.4)

where ρ is a parameter, and δ(θ) is a GP (independent of the LF output), both of which

are optimized using the training samples. Since ρ is a multiplicative correction, and δ(θ) is

an additive correction, this is often called a linear multi-fidelity model. We implement our

multi-fidelity models using the package Emukit [231].

As in the single-fidelity emulator, the LF and HF inputs are normalized by the

LF median (the HF sample is too small to obtain a reliable median). In our multi-fidelity

model, ARD is used for the LF kernels, but not the HF kernels, due to the smaller number of

HF samples. Once again a single GP per redshift is used for the Lyman-αforest flux power

spectrum, while a single GP for the full redshift range is used for the mean temperature.

In the multi-fidelity emulator constructed in [11], the Lyman-αforest flux power

spectrum was modeled with a separate GP for each k bin, and achieved sub-1% accuracy

using 30 LF and 5 HF simulations. In that work, the emulator accuracy was worst for

k > 0.02 s/km and k < 0.002 s/km. The simulations used in this work have eight times the

volume, with an improvement in the mass resolution of more than three times, as compared

to the simulations from [11]. The improved volume and resolution applies to both the LF

and HF suites used for training in this work. In particular, the LF simulations are much

more nearly converged on their own. Due to these improvements, we expect our Lyman-

αforest flux power emulator to be only marginally affected by the difference in HF training

sample size (we use 3 HF in this work) and the choice to use a single GP per redshift bin.
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Additionally, though the emulator presented here supports scales smaller than k = 0.02,

the observations we use only extend to k = 0.02. The reason we opt for a single GP per

redshift bin is purely economical. Using a GP for each k bin leads to very large memory

usage for the emulator, and substantially slows down the training and prediction steps in

the inference framework.

Figures 5.1 and 5.2 show the leave-one-out errors for the multi-fidelity emulator

(yellow). The error is approximately 1% for the multi-fidelity emulator predictions, similar

to the single-fidelity emulator. Note that because there are only three HF simulations, the

multi-fidelity emulator error distributions have much smaller sample sizes, and have been

scaled for clarity. These errors are consistent with [11], though in that work the errors were

calculated using a suite of test samples, separate from the training samples, rather than the

leave-one-out method used here.

We quantify this by returning to the emulator from [11], and calculating the leave-

one-out errors for that suite of training simulations. The errors using a test suite of sim-

ulations were on average ≈ 0.8%. The leave-one-out errors are on average ≈ 0.8%. The

very marginal difference here indicates that the errors for the emulator used here, were they

calculated using a test suite of simulations, would still be ≈ 1%. Regardless, the emulator

accuracy indicates that the emulators are performing well, with potential errors significantly

smaller than the uncertainty associated with the observational data used in our inference

scheme (for the data set we use [182], the uncertainty is on average ≈ 7%).
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Simulation Box Volume Ngas Mgas (M⊙ h−1)

LF (120 Mpc h−1)3 15363 [5.29, 6.98]× 106

HF (120 Mpc h−1)3 30723 [6.73, 7.97]× 105

Table 5.1: Low-Fidelity (LF) and High-Fidelity (HF) simulation suite details. Ngas is the
number of gas particles simulated, Mgas is the resulting mass resolution of those particles.

5.4 Simulation Suite

Simulations were performed using MP-Gadget3, an N-body and smoothed particle

hydrodynamics (SPH) code. MP-Gadget is based on Gadget-3 (last described in [78]), but

has been modified to include shared-memory parallelism using OpenMP, and various algo-

rithmic improvements and new subgrid models [208, 209, 210]. The initial power spectrum

and transfer functions are generated with the Boltzmann code CLASS [79]. Species-specific

initial conditions are generated separately for baryons and dark matter [210, 10].

Simulations are initialised at z = 99 and finish at z = 2.2. Box volume (simulations

use periodic boundaries), number of gas particles, and gas particle mass resolution are

reported in Table 5.1. The range given for the gas mass resolution is due to the varying value

of h in our simulation suite (Ωbh
2 is fixed, at a value of 0.0224). In [141], the recommended

gas mass resolution for the Lyman-αforest is 2×105 M⊙ h−1 at z = 5 and 1.61×106 M⊙ h−1

at z = 2. Our HF simulations have better gas mass resolution than the recommendation

for lower redshifts, and slightly worse resolution than recommended at higher redshifts.

However, we include a temperature boost [107] due to impulsive heating during hydrogen

reionization from ionization fronts. This increase the thermal free-streaming length at high

redshift, which reduces the resolution requirements. Also, we currently restrict our analysis

to z = 2.2 to z = 4.6, so the recommendation at z = 5 is more strict than required in this

3https://github.com/MP-Gadget/MP-Gadget

131

https://github.com/MP-Gadget/MP-Gadget


work.

In [167], simulations with box side length of at least 100 Mpc h−1, and a corre-

sponding gas mass resolution of 4.3× 105M⊙/h were recommended for the Lyman-αforest.

Our HF simulations are larger volume than the above recommendation, with slightly lower

gas mass resolution. In [167], they found that simulations run with a similar resolution to

our HF samples were no worse than 5% converged. When the reduced resolution require-

ment due to the aforementioned temperature boost is considered, the simulations used in

this work simultaneously achieve the volume and resolution recommended in [167], without

the need for splicing.

Simulation physics models are described in the companion paper to this work

[221]. The models are the same as in [11], which largely follow those used for the ASTRID

simulation, which are described in more detail in [208].

One note on the black holes, which follow the model of [209]. The black hole

feedback factor, ϵAGN , which controls the fraction of luminosity that is converted to ther-

mal energy, is varied across the simulation suite. However, since the constraints on this

parameter are relatively weak, we add a Gaussian prior on the parameter, which dominates

the posterior for ϵAGN . Instead, we apply a Gaussian prior centered on the middle of the

parameter limits for ϵAGN , and do not attempt to constrain the black hole feedback.

An example of the gas density and temperature (colors) at z = 4 are shown in the

top (high resolution) and bottom (low resolution) panels of Figure 5.3. The middle panel

of Figure 5.3 shows the Lyman-αforest spectra for the skewers passing through the middle

of the top and bottom panels.
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Figure 5.3: Example Lyman-α forest spectra and corresponding gas density and tempera-
ture (colors) from an LF and HF simulation at redshift z = 4. The top and bottom panel
show the simulated gas surrounding the skewer which produced the spectra shown in the
middle panel. Examples are shown for simulations run at high (top panel, yellow line) and
low resolution (bottom panel, red line).

5.4.1 Cosmological & Astrophysical Parameters

Figure 5.4 shows the parameters that are varied across our suite of simulations,

as well as their limits. The cosmology parameters include the scalar spectral index (slope),

nP , and amplitude, Ap [77]. Also varied are the Hubble constant through h, and the total

matter density through ΩMh2, though, h is poorly constrained by the Lyman-α forest. The

upper limit for h is slightly lower than the most recent value measured by the local distance

ladder (see Figure 2 in [232]), which has increased since we planned our emulator.

The astrophysics parameters include three to control the He ii reionization model

[139]: zHe ii
i and zHe ii

f are the redshifts for the start and end of He ii reionization, and αq

is the quasar spectral index (which scales the peak temperature during He ii reionization).

zH i is the midpoint redshift of H i reionization. Finally, ϵAGN is the black hole feedback
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factor.

The He ii reionization model also takes in the mean and variance of the He iii

bubble size, which we set to 20 and 0 Mpc, respectively. This differs from that found in [3]

(approximately 35 Mpc mean, 10 Mpc variance). However, the effect from changes to the

mean bubble size or variance (these are partially degenerate with each other) is degenerate

with the other He ii reionization parameters (namely αq). We checked the effect of setting

the variance to zero by running simulations (30 Mpc/h box side length, 2563 particles) with

a mean quasar bubble size of 10 Mpc with variances of 5 Mpc and zero. Setting the bubble

size variance to zero decreased the temperature of the IGM by ≈ 1000 K at redshifts z < 3,

which has the same affect as raising αq.

We have expanded the range covered by the αq parameter after calculating poste-

rior constraints, to ensure that our emulator covers the full range of the posterior.

There are two further parameters that are varied during the post-processing of the

spectra extracted from the simulations. When calculating the Lyman-αforest flux power

spectrum from the set of simulated spectra, the mean flux is rescaled based on [146], which

found that the effective optical depth scales with redshift as τ effH i = (0.0023± 0.0007)× (1 +

z)3.65±0.21. The mean flux rescaling implemented here generalizes this to τ effH i = 0.0023 ×

τ0 × (1 + z)3.65+dτ0 . Each simulated flux power spectrum is post-processed into ten flux

power spectra corresponding to unique values for the slope (dτ0, values between −0.4 and

0.25) and amplitude (τ0, values between 0.75 and 1.25) in the above expression. Therefore,

the final set of flux power spectra is ten times the number of simulations, or 480 LF, and

30 HF simulated flux power spectra.
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Figure 5.4: Parameter limits for each of the nine parameters varied in the simulation suites.
Samples for both the LF (grey crosses) and HF (red circles) are also shown. The blue boxes
indicate two LF simulations which are included in the flux power spectrum emulator, but
not in the mean temperature emulator (due to the loss of the simulation outputs before the
mean temperatures were extracted).
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5.4.2 Sample Design

The LF simulation parameters were selected using either a Latin hypercube sam-

pling scheme, or using Bayesian optimization. The 48 LF simulation parameters were

selected in the following manner: an initial Latin hypercube sample of 30 simulations was

generated and run, then Bayesian optimization (see the description below of how we imple-

mented this) was used to select 2 further simulations, after which a second Latin hypercube

sample of 8 was run, followed by 2 more Bayesian optimization samples, and finally 6 sam-

ples from a Latin hypercube to extend the range for the αq parameter. The final set of LF

samples is shown in Figure 5.4, indicated by the grey crosses.

Figure 5.4 also shows two LF simulations, indicated by blue boxes, which are used

in the flux power emulator, but not in the IGM mean temperature emulator. The particle

data for these simulations was lost before the mean temperature was extracted from them.

We found that the Bayesian optimization samples were no more effective at im-

proving the emulator accuracy than the Latin hypercube samples, thus we generated only

four samples using the Bayesian optimization method. The four Bayesian optimization sam-

ples were selected using a method similar to [203]. An emulator trained using the current

sample of LF simulations is used to calculate an acquisition function for arbitrary input

parameters. This acquisition function balances an exploitation term (preferring regions of

high likelihood) with an exploration term (preferring regions with high uncertainty). The

likelihood used to compute the exploitation is the same used for our inference, which is de-

scribed in Section 5.5.3. The uncertainty for the exploration term is the emulator prediction

uncertainty.
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The parameters that maximize the acquisition function are selected for the next

sample, and the process can then be iterated, either by running the sample and adding

it to the LF set, or by using the emulator prediction for the new sample (this is called

the batch mode for Bayesian optimization). In addition to the lack of improvement over

Latin hypercube samples, we found that unless the exploration term was significantly down-

weighted, our implementation of Bayesian optimization always preferred certain parameters

to be at the edge of their range, where the uncertainty was highest. Effectively this means

that the Bayesian optimization samples we use here were run in pure-exploitation mode,

primarily selected as the parameters with the highest likelihood.

The red circles shown in Figure 5.4 are the HF samples. These are specially chosen

LF samples that we ran at higher resolution (30723 particles) to construct the multi-fidelity

emulator. The HF samples were chosen by training a single-fidelity emulator using all

combinations of two LF samples (excluding the aforementioned simulations without mean

temperature data) to predict the remaining LF samples for both the flux power and mean

temperature [166]. The two LF simulations which produced the most accurate predictions

(defined as minimizing the loss, (pred− true)2/true2) for the combination of the flux power

and mean temperature were then run at the higher resolution. These first two HF samples

were selected prior to the LF simulations that were run to expand the αq parameter. The

final HF sample was chosen using the same method, but conditioned on the previously

selected two samples. Each remaining LF sample was added to the set of two previously

selected samples, an emulator was trained using each of these three sample combinations,

then the loss for each combination was calculated. Using both the loss from this method,
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and the value of Ap for each sample (among the varied parameters, Ap has by far the

strongest effect on the amount of computational time the simulation requires to complete),

we selected a third sample to run at HF that had low loss and low Ap. This final HF sample

was chosen from the full set of LF samples (after the αq expansion simulations were added).

5.4.3 Flux Power Spectrum

The Lyman-αforest flux power spectrum is calculated using Lyman-αforest ab-

sorption spectra generated using Fake Spectra Flux Extractor [142]4, described in [143].

For each snapshot (from z = 4.6 to z = 2.2 in increments of ∆z = 0.2) of each simulation,

32, 000 randomly placed skewers are generated, along which the Lyman-αabsorption spectra

is calculated. The random placement is seeded, such that the same skewers (orientation

and location) are used for every simulation. The pixel resolution for these spectra is set to

10 km s−1. Example spectra from one LF and one HF simulation (at z = 4) are shown in

the middle panel of Figure 5.3.

Before using these spectra to calculate the flux power, we set an optical depth

threshold of τ < 106, to eliminate damped Lyman-αsystems (DLAs). This removes spectra

that contain any optical depth value greater than the threshold. In order to determine

the appropriate optical depth threshold for these simulations, we fit a sample of Lyman-

αspectra with Voigt profiles and returned the maximum optical depth and column density

for each. A column density of ≈ 1020 cm−2 corresponded to the aforementioned value,

τ ≈ 106.

This filter removes approximately 2% of the spectra at z = 2.2, and 4% at z = 4

4https://github.com/sbird/fake_spectra
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(obviating the need for a resampling scheme to keep a sufficient number of spectra). This

is roughly consistent with [233] (see their Table 1, small and large DLAs), which ranged

between ≈ 3% and ≈ 13% for 2 < z < 4.43. For a lower threshold associated with Lyman

limit systems (τmax < 103), the filter removes 10% at z = 2.2 and 40% at z = 4. This is also

consistent with [233]. We use the DLA level threshold and apply an LLS/DLA correction

in the likelihood (described in Section 5.5.3) to handle LLS and any over/under-subtraction

of DLAs.

The filtered Lyman-αabsorption spectra are used to construct the Lyman-αforest

flux power spectrum, defined as PF (k) = |L−1δ̃2F (k)|, where δ̃2F (k) is the Fourier transform

of the flux excess, δF (k) = F (k)/⟨F (k)⟩ − 1, and L is the length of the sightline. The flux

power spectra used here are averaged over all spectra that remain from the initial set of

32, 000, for each redshift of each simulation.

Figure 5.5 shows flux power spectra from all the LF (blue, solid) and HF (gold,

dashed) simulations at several redshifts. Shown below each redshift panel in red are the

ratios of the flux power spectra for simulations that were run at both resolutions. Note

that there are ten times more flux power spectra shown here than simulations, due the

previously discussed post-processing method of mean flux rescaling.

5.4.4 IGM Mean Temperature

The IGM mean temperatures are extracted directly from the simulation snapshots.

First, the temperature and density for all the gas particles in the simulation are retrieved,

then all particles that are within 5% of the critical density are retained. The median
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Figure 5.5: Flux power spectra from all LF (blue, solid) and HF (gold, dashed) simulations
at z = 2.2, z = 3.0, z = 3.8, and z = 4.6. In each panel below the flux power, the ratio of
the flux power spectra for simulations run at both resolutions is shown, LF/HF .
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Figure 5.6: IGM mean temperatures from all LF (blud, solid) and HF (gold, dashed)
simulations for the full redshift range. The bottom panel shows the ratio of the mean
temperatures from simulations that were run at both resolutions, LF/HF .

temperature of these retained particles is used as the IGM mean temperature.

Figure 5.6 shows the mean temperatures for all the LF (blue, solid) and HF (gold,

dashed) simulations for the full redshift range used in this work. The bottom panel shows

the ratio of mean temperatures from the simulations that were run at both resolutions.

All of the Lyman-αforest flux power spectra, IGM mean temperatures, trained

emulators, as well as select MCMC chains are available at: https://github.com/mafern/

InferenceLyaData. The Lyman-αforest spectra, extracted from the simulation and used

to calculate the flux power, are available upon reasonable request.
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5.5 Inference Scheme

Now that we have a≈ 1% accurate emulator for prediction of the simulated Lyman-

αforest flux power and IGM mean temperature, we can conduct inference by comparing

these to their corresponding observations. To accomplish that, we use the code Cobaya

[229, 228] to conduct inference via Markov Chain Monte Carlo (MCMC) methods. The

overall inference scheme is:

1. Train a single- or multi-fidelity GP emulator on our LF and HF simulation training

samples for the Lyman-αforest flux power spectrum, and IGM mean temperature.

2. Use the emulator to predict the two observables for arbitrary input parameters (see

Section 5.4.1 for the set of parameters that are varied).

3. Calculate a likelihood comparing these predictions to their observational counterparts.

4. Use the calculated likelihoods for an MCMC analysis.

In Section 5.5.1, the observational Lyman-αforest flux power spectrum data [182] is

discussed, then the IGM mean temperature data [173] is discussed in Section 5.5.2. Details

of the likelihood calculation used in the MCMC sampling is discussed in Section 5.5.3.

5.5.1 Flux Power Spectrum Data

We use the observed Lyman-αforest flux power spectrum from [182], which is

based on the Baryon Oscillation Spectroscopic Survey (BOSS) and extended-Boss (eBOSS)

quasar samples [234, 235]. In [182], the BOSS/eBOSS quasar samples are refined to remove

spectra that have not been visually inspected, and to remove spectra with broad absorption
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lines. Sky lines and damped Lyman-αabsorbers (DLAs) are masked. The sample of Lyman-

αforests from the set of remaining quasar spectra is then further refined based on cuts to the

spectral resolution, signal-to-noise ratio, number of masked pixels, and forest length. Along

with a windowing function to correct for the instrument response, an estimate for the noise

and metal power (estimated using longer wavelength segments of the quasar spectra) are

then subtracted to obtain the final Lyman-αforest flux power spectrum. Note that while

DLAs are masked in the pipeline of [182], we employ a correction for damped systems in

our likelihood (see Section 5.5.3).

The redshifts and scales covered by these observations set the redshift range and

scales we use in our emulator, namely z = 2.2 − 4.6 (redshift bin size of ∆z = 0.2), and

k ≈ 0.001 − 0.02 km−1 s (over 35 bins, spacing of 5.42 × 10−4 km−1 s). The average

uncertainty in the Lyman-αforest flux power from [182] ranges from ≈ 6% at low redshifts

or large scales, to ≈ 16% for high redshifts or small scales.

There are higher resolution, smaller sample survey based Lyman-αforest flux power

measurements [152, 183, 184]. These Lyman-αforest flux power measurements generally

access a similar redshift range to [182], but shift both the largest and smallest scales to

higher k. For example, [183] used spectra from multiple surveys (XQ-100, KODIAQ, and

SQUAD) to measure the Lyman-αforest flux power at redshifts z = 2 − 4.6 and scales

k ≈ 0.005 − 0.1 km−1 s (with mostly higher uncertainties than [182]). Combining these

higher resolution observations with the larger sample size observations will allow inference

based on a broader range of scales than either data set allows separately. For now, we focus

on the data set from [182], and leave the higher resolution data sets for future work.
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5.5.2 IGM Mean Temperature Data

We use the mean IGM temperatures from [173], which are derived from simulation

modelling of high resolution quasar spectra from the KODIAQ survey [236]. In [173], their

co-added quasar spectra are manually checked, and the sample is refined to remove spectra

that do not contain Lyman-αforest, do contain DLAs or sub-DLAs, have large gaps in the

spectra, or do not meet a signal-to-noise ratio cut. A cut is also made to remove regions

of the spectra that may lie near to a quasar proximity zone. Metal lines are removed by

fitting Voigt profiles to the spectra and removing features with Doppler widths b ≤ 8 km

s−1, which are assumed to be metal lines.

To derive temperatures from the observed quasar spectra, [173] calculated several

summary statistics and compared them to those derived from spectra drawn from simu-

lations. The simulations they used were similar in resolution to our HF suite (gas mass

resolution of ∼ 105 M⊙), though much smaller in volume (10 Mpc/h box side length).

The redshifts covered by these observed IGM mean temperatures is z = 2.0− 3.8

(in ∆z = 0.2 bins), though we do not use the mean temperature from the z = 2.0 bin,

for consistency with the available Lyman-αforest flux power data. The average uncertainty

for this data set is ≈ 10%, once again larger than the prediction uncertainties from our

emulator. Note that [173] provide mean temperatures derived from four different statistics:

the Lyman-αforest flux power spectrum, curvature, wavelet decomposition, and Doppler

width distribution. We use the Lyman-αforest flux power spectrum derived temperatures in

the main body of this work, but show results using these other data sets in Appendix 5.10.4.

Because these observed mean temperatures are themselves derived using a suite
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Figure 5.7: Emulator error and leave-one-out errors across parameter space. For eight of
the input parameters, the training samples (grey crosses for LF, red circles for HF), GP
emulator errors (yellow dots), leave-one-out errors (red dashed) are shown. The flux power
only chains shown were run using the GP emulator error in the likelihood (thick, yellow) and
using the leave-one-out errors in the likelihood (thin, red). Maximum posterior parameters
are labeled for each chain.

of simulations, it would be ideal to remove the middle step in future work, i.e. calculate

mean temperatures using observed spectra and our own set of simulations. We leave this

for future work.
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5.5.3 Likelihood

The likelihood we use for inference (i.e. within the MCMC method), is a log

normal summed over all redshifts, e.g. for the flux power:

logL = −1

2

z=4.6∑
z=2.2

(
P diff

F ·K−1 · P diff
F + det(K)

)
(5.5)

where P diff
F = P sim

F − P obs
F is the vector difference between the simulation prediction and

the observation. The covariance matrix, K, includes emulator errors and uncertainty from

the observations. The calculation for the IGM mean temperature likelihoods are similar,

though simpler due to being single valued per redshift.

There are two potential emulator errors that can be used in Equation5.5. The first

is the error prediction from the GP, which is the estimated uncertainty on the prediction.

The second is the absolute leave-one-out errors from Section 5.3, which are the actual errors

in predictions. Figure 5.7 compares these two options, showing the training samples (grey

crosses for LF, red circles for HF), GP emulator errors (yellow dots), leave-one-out errors

(red dashed) Figure 5.7 also shows flux power only chains run using the GP emulator error

(calculated by fixing all but one parameter to their median value, and varying the unfixed

parameter) in the likelihood (thick, yellow) and using the leave-one-out errors (averaged

over samples) in the likelihood (thin, red).

Both errors are redshift and scale dependent, but the GP error is parameter de-

pendent as well. In Figure 5.7, the GP error (yellow dots) is lowest where the HF samples

(red circles) are located, and high at the edges of parameter space. The chain using the GP

errors (thick, yellow) prefers the edges for many of the parameters, where the error is largest

(except in the case of ΩMh2, which is partially degenerate with h). Because the GP errors
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are parameter dependent, they unphysically drive the chain towards the edges, without im-

proving the fit to observations. The GP appears to overestimate the magnitude of the error

(see left panel of Figure 5.1) in certain regions, which is not supported by the results of the

leave-one-out errors. This overestimation means the GP error is non-negligible as compared

to the observational errors for those same regions, possibly due to the high dimensionality

of the parameter space. We opt to use the leave-one-out errors in our analysis, to avoid this

effect.

For the Lyman-αforest flux power spectrum, a data correction for potential DLA

contamination and Si iii correlated absorption is applied within the likelihood. The Si iii

correction follows [162], and adds one additional free parameter (fSiIII) to the inference. The

DLA correction is from [233]. We simplify that correction by adding only two additional free

parameters to the inference, one parameter covering sub-DLAs and Lyman limit systems

(LLS) called αlls, and one parameter covering DLAs, called αdla. In [233], there are four

parameters, with sub-DLAs separate from LLSs, and DLAs divided into two categories.

For each of the parameters, a redshift and scale dependent correction is applied, where a

positive (negative) value for the parameter implies that our simulation has underestimated

(overestimated) the number of absorbers in that category. We set the two DLA parameters

equal to each other, as well as the sub-DLA and LLS parameters. This eliminates a strong

negative correlation between these two sets of parameters, wherein one parameter can be

made large and positive if the other is made large and negative. Neighbouring column

density bins have similar shapes to their DLA correction, and the flux power spectrum data

set is unable to distinguish between them. A linear combination of the two can be chosen
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which is close to zero, causing the degeneracy. Thus, the free parameters used here cover

column densities between 1.6× 1017 − 1020 cm−2) for αlls, and 1021 −∞ cm−2 for αdla.

These data corrections are applied directly to the emulator predictions for the

Lyman-αforest flux power, before calculating the difference between the predictions and

observations. See Appendix 5.8 for posteriors for these parameters. There are no data

corrections or priors specific to the IGM mean temperature.

For MCMC chains run using both the Lyman-αforest flux power and IGM mean

temperature likelihoods, the two likelihoods are calculated separately and added. Because

the flux power spectrum has larger magnitude likelihoods (due to the extra dimension of in-

formation, k and additional redshift bins), the mean temperature likelihood is scaled before

being added. The scaling is determined from chains run with each likelihood separately,

such that the mean likelihood is approximately the same between the two sources (the factor

is ∼ 10).

In Appendix 5.9, we test the likelihood by performing inference with one of the

high resolution simulation outputs as data (replacing the observed flux power and mean

temperature). The likelihood recovers the correct parameters well, indicating that the

likelihood is behaving as expected.

5.6 Results

Using the inference scheme outlined in Section 5.5, which makes use of the emula-

tors detailed in Section 5.3 (themselves trained on the simulations from Section 3.3), we can

now constrain the cosmological and astrophysical parameters listed in Section 5.4.1. To do
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this, we make use of the Cobaya package [229, 228, 237, 238] to run MCMC chains using the

observational data discussed in Sections 5.5.1 & 5.5.2, and our simulation based emulator.

The MCMC sampler uses the Metropolis method discussed in [237], and uses a Gaussian +

exponential proposal distribution that dynamically learns the proposal covariance.

Priors in the form of parameter limits, as well as initial proposal scales for each

parameter are passed to Cobaya. The former constrains the region explored by the sam-

pler, while the latter is an initial guess for the width of the proposal distribution for each

parameter, which is dynamically updated as the chain runs. Convergence is determined

using the Gelman-Rubin statistic, R, also detailed in [237]. The chains presented here were

all run until a convergence of R−1 < 0.01, with results plotted for those chains for samples

at R− 1 < 1.

First, we discuss the constraints we obtain on the cosmological parameters: the two

primordial power spectrum parameters, nP and Ap; the Hubble constant h; and the matter

density ΩMh2. We then separately discuss the constraints on the astrophysical parameters:

the three parameters defining the He ii reionization model, zHe ii
i , zHe ii

f , and αq; and the

midpoint of H i reionization, zH i. Discussion of the full posteriors, which include cosmology,

astrophysics, mean flux, and data correction parameters, is in Appendix 5.8. We defer this

to the appendix as the correlations between each of these sets of parameters is weak.

5.6.1 Cosmology Results

We begin with the results for the cosmology parameters (but note that all parame-

ters are from the same MCMC analyses): the primordial matter power spectrum amplitude
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Figure 5.8: Posteriors for the cosmology parameters, nP , Ap, h, and ΩMh2. Results are
from four MCMC chains, all using the multi-fidelity emulator. There are two pairs of chains,
one set (black, red) uses a limited redshift range (z = 2.6 − 4.6), while the other (yellow,
blue) uses the full redshift range (z = 2.2−4.6). Within each pair there is a chain that only
uses the flux power spectrum (red, blue) and a chain that uses both the flux power and
mean temperature (black, yellow). Our main result is the chain using the limited redshift
range, and both the flux power and mean temperature (black).
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Ap and index nP , the Hubble constant through h, and the matter density through ΩMh2.

Figure 5.8 shows the results for these parameters from four different chains. All chains use

the multi-fidelity emulator and have no priors. Two pairs of chains are shown with different

redshift ranges (z = 2.2− 4.6, z = 2.6− 4.6), each with and without the mean temperature

included in the likelihood.

First, the primordial power spectrum index, nP . The preferred value for nP is

consistent between chains using both flux power and mean temperature, and the chains

using only the flux power. However, the chains differ significantly when the redshift range

is changed. For the chain run using the full redshift range and mean temperature (yellow),

the preferred value is nP = 0.879± 0.012. This is lower than other results, including from

Planck [239], which found a value of nP = 0.965 ± 0.004. The full redshift range result

is ≈ 7σ different from Planck. When the lowest two redshift bins are removed from the

analysis (black), nP = 0.927 ± 0.017. This is ≈ 2σ different from Planck. This result is

also more consistent with previous constraints using the same Lyman-αforest flux power

spectrum observations. In [155] and [182], nP was constrained to nP = 0.953 ± 0.007 and

nP = 0.955±0.005, respectively. Our results are 5−6σ different when using the full redshift

range, and ≈ 1.5σ different when using the reduced redshift range.

There are several possibilities for the difference in nP between analyses that do

and do not include the z = 2.2 and z = 2.4 redshift bins. This difference could point to

unknown issues within simulations at these low redshifts, or could be a sign that more work

needs to be done to mimic the observational flux power. The observations themselves could

be the culprit, for example, misestimation of the continuum at lower redshifts, where the
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resolution becomes important, i.e. where the systematics dominate the statistics. There is

some indication (Figure 5.10 and Appendix 5.10.3) that the observational errors may be

underestimated. If errors in the simulations or observations cannot explain this difference,

it may be a sign of running of the spectral index.

The primordial power spectrum amplitude, Ap is consistent between three of the

four chains, with the flux power only, reduced redshift result (red) shifted to higher values.

Ap corresponds to the more traditional parameter, As, via As = (0.4/2π)nP−1Ap, and

derived values for As are included in Table 5.3. The amplitude varies between Ap = (1.36−

1.44)×10−9, with the outlier at Ap = 1.62×10−9, with corresponding values of As between

As = (1.76 − 1.94) × 10−9. Planck [239] found a value of As =
(
2.101+0.031

−0.034

)
× 10−9. Our

results are all within ≈ 2σ of Planck.

The results for h are consistent with previous studies using the Lyman-αforest,

which found that the Lyman-αforest is only weakly dependent on h [240, 155], thus we do

not constrain h. For these chains, h moves towards the high edge of our limits. This is

likely a result of the emulator errors being largest at the edges of parameter space, driving

the likelihood when there is not a clear preference from the data. Chains were run with

priors from both Planck [239] and SH0ES [241], but these only constrained h, and had only

marginal effects on other parameters. A more in depth discussion of the effect of using

parameter priors on the posterior is in Appendix 5.10.1.

ΩMh2 is weakly constrained when the reduced redshift range is used (black, red),

and shifts to the lower edge when the full redshift range is used (yellow, blue). For the

reduced redshift range, we find ΩMh2 = 0.141 ± 0.001 for the combined analysis, and
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Parameter z : 2.6− 4.6 z : 2.2− 4.6 z : 2.6− 4.6 (Flux Power Only)

nP 0.927± 0.017 0.879± 0.012 0.934± 0.03

Ap/10−9 1.44± 0.1 1.36± 0.08 1.62± 0.22

h† 0.740± 0.01 0.750± 0.03 0.740± 0.06

ΩMh2 0.141± 0.001 0.14± 0.001 0.142± 0.002

zHe ii
i 4.00± 0.04 3.95± 0.05 4.10± 0.44

zHe ii
f 2.78± 0.04 2.82± 0.03 2.6± 0.26

αq 1.46± 0.06 1.58± 0.06 2.50± 0.27

zH i 7.87± 0.25 6.85± 0.28 8.00± 0.39

ϵAGN 0.035± 0.01 0.03± 0.009 0.039± 0.013

Table 5.2: Maximum posterior values and 1σ uncertainties for the parameters sampled in
this analysis. †We do not constrain h well in this analysis, so the uncertainty is significantly
underestimated.

Parameter z : 2.6− 4.6 z : 2.2− 4.6 z : 2.6− 4.6 (Flux Power Only)

As/10−9 1.76± 0.15 1.90± 0.13 1.94± 0.31

σ8 0.825± 0.072 0.838± 0.067 0.873± 0.159

Table 5.3: Constraints on derived parameters, with estimates on their 1σ uncertainties.

ΩMh2 = 0.142 ± 0.002 when only the flux power is used. The corresponding value from

Planck is ΩMh2 = 0.1424 ± 0.001, which places both of these results within one sigma of

Planck.

The highest likelihood cosmological parameters for each chain are compiled, along

with the astrophysical parameters, in Table 5.2. In Table 5.3 derived parameters are listed

for As and σ8.

The values for As have already been discussed. Values for σ8 are calculated using

the package Code for Anisotropies in the Microwave Background (CAMB) [242]. Errors

are the root squared sum of the fractional errors for the parameters used to calculate σ8,
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Figure 5.9: Posteriors for the astrophysics parameters, zHe ii
i , zHe ii

f , αq, zH i, and ϵAGN .

Results are from the same chains described in Section 5.6.1.

times the best value (thus they are likely exaggerated). For the chains run using both data

sets, σ8 = 0.825− 0.838 with uncertainties of ≈ 0.07, well within 0.5σ of the Planck result,

σ8 = 0.811± 0.006. When only the flux power is used, σ8 = 0.873± 0.159, which is within

one sigma of Planck, mostly due to the large uncertainty.

5.6.2 Astrophysics Results

We now move on to the astrophysical parameters: the starting and ending redshift

of He ii reionization, zHe ii
i and zHe ii

f , the quasar spectral index, αq, the midpoint of H i
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reionization, zH i, and the black hole feedback factor, ϵAGN . Figure 5.9 shows the results

for these parameters from the same set of chains as the cosmology results.

First, the redshifts for He ii reionization. The initial redshift is consistent between

three of the four chains, with the chain using only the flux power and the reduced redshift

range being only mildly constrained. For the three consistent chains, the start of helium

reionization is zHe ii
i = 3.95−4.00, with one sigma uncertainty of ≈ 0.05. The final redshift is

consistent between the chains using both the mean temperature and flux power, but varies

significantly when the mean temperature is not included. For the chains using both data

sets, the end of helium reionization is zHe ii
f = 2.78 − 2.82, with one sigma uncertainty of

≈ 0.04. Once again, the chain without the mean temperature and with the reduced redshift

range is not well constrained. Other than this, the other three chains are consistent with

previous studies that have found that He ii reionization ends at ∼ z = 3 [243, 244, 245].

The flux power only chains struggle to constrain αq, with values shifting towards

the high edge, signifying that the error dominates for that parameter. Both chains using the

mean temperature and flux power prefer lower αq than were initially included in the training

samples, which led us to add more simulations at low αq, as described in Section 5.4.2. Lower

αq corresponds to more heating from quasars during He ii reionization, so this parameter is

correlated with both the initial and final redshift of He ii reionization. If He ii reionization

starts earlier or ends later, the IGM requires more heating from quasars to match the

observations, while the opposite is true for late starting, or early ending He ii reionization.

The preferred value we find here is αq = 1.46− 1.58, with one sigma uncertainty of ≈ 0.06.

The midpoint of hydrogen reionization varies the most across this set of chains.
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Note, the redshift range explored here (z = 2.2− 4.6) is well after the completion of hydro-

gen reionization, even in models where it ends late. The bit of information we do have is

the effect of hydrogen reionization as the IGM comes back into equilibrium, i.e. the trend

in the flux power and temperature at z = 4.6. This seems to be enough to place reason-

ably constraints on the midpoint of reionization, however the constraints are not robust to

changes in the analysis.

The chains that include the mean temperature, but have different redshift ranges

(omitting or including z = 2.2 and z = 2.4), sit at opposite ends of the parameter range.

The chain using the full redshift range prefers zH i ≈ 6.85 ± 0.28. This is consistent with

some astrophysical probes, which indicate that the midpoint should be closer to z = 7 [246].

The chain using the reduced redshift range prefers zH i = 7.87 ± 0.25. This is consistent

with Planck [239], which found a midpoint of zH i = 7.68± 0.79.

These chains make it clear that the inclusion of the mean temperature in our like-

lihood framework has significantly improved the astrophysics constraints, indicating that

the mean temperature of the IGM carries valuable information. The highest likelihood

astrophysical parameters for each chain are compiled, along with the cosmological param-

eters, in Table 5.2. Full posteriors (including correlations between the astrophysical and

cosmological parameters) are in Appendix 5.8.

5.6.3 Maximum Posterior Predictions

We can now compare the maximum posterior emulator predictions for the Lyman-

αforest flux power spectrum and IGM mean temperatures to the observations. We begin

156



102

z: 4.6Chabanier 2019

FPS+T0, z = 2.6 4.6
FPS+T0, z = 2.2 4.6

FPS, z = 2.6 4.6

102

z: 4.4

102

z: 4.2 102z: 4.0

0.005 0.010 0.015 0.020
101

102

In HeII, z: 3.8-3.0

0.005 0.010 0.015 0.020

101

Post HeII, z: 2.8-2.2

0.0 0.2 0.4 0.6 0.8 1.0
k [s/km]

0.0

0.2

0.4

0.6

0.8

1.0

P F
(k

)

Figure 5.10: Observed Lyman-αforest flux power spectrum [182], from z = 4.6 down to
z = 2.2 (black lines and circles, with shading corresponding to one sigma uncertainty). Also
shown are three predictions for the Lyman-αforest flux power spectrum from our multi-
fidelity emulator corresponding to the maximum posterior input parameters compiled in
Table5.2. The negative of the log-likelihood for these fits is compiled in Table 5.4.
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Redshift 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2

z : 2.6− 4.6 24 19 25 30 16 8 15 17 25 26 25 47 75

FPS Only 24 19 23 28 17 8 17 20 28 27 27 48 76

z : 2.2− 4.6 22 23 30 37 23 9 14 19 34 29 18 19 27

Table 5.4: Negative of the log-likelihood (χ2) fit values for the flux power spectrum (smaller
values correspond with a better fit). The third row is for the best fit parameters from a
flux power only chain, using z = 2.6− 4.6.

with the flux power.

Figure 5.10 shows the Lyman-αforest flux power spectrum from [182], along with

their estimated one sigma uncertainty (black). Also shown in Figure 5.10 are predictions

from our multi-fidelity emulator based on the maximum posterior input parameters from

MCMC analysis with only the Lyman-αforest flux power emulator (reduced redshift range,

red), and MCMC analysis using both the mean temperature and flux power emulators

(reduced redshift range, yellow, and full redshift range, blue). The correlation between

Lyman-αand Si iii absorption can be seen at lower redshifts in the form of regular oscillations

in the power spectrum (in Section 5.5.3 we describe the correction we make for Si iii).

The fits are generally good, though from z = 4.2 to z = 3.8, the prediction is

consistently lower than the observations. For the chains run without the two lowest redshift

bins, the associated fits for those redshifts are poor, as expected. For the chain using the

full redshift range, the fit also degrades for z = 2.2 on small scales, indicating that the

Si iii correction could use improvement (one possibility is a scale dependent correction).

The negative of the log-likelihood for each of these fits, divided into redshifts, is compiled

in Table 5.4. The best-fit flux power spectrum is not significantly affected by the inclusion

of the T0 data in the likelihood, as is expected if the T0 data mainly breaks degeneracies.
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Figure 5.11: IGM mean temperatures from [173] (black lines and circles, with shading
corresponding to one sigma uncertainty). Specifically their temperatures derived from the
flux power spectrum calculated using high resolution Lyman-αforest spectra. Also shown
are predictions for the mean temperature from our multi-fidelity emulator corresponding to
the the same three maximum posterior input parameters used in Figure 5.10.

We note that even when chains are run for each redshift separately (and predictions

made for these independently), the emulator framework is unable to fit all of the redshifts

to the same level.

Figure 5.11 shows the IGM mean temperature from [173]. Specifically, the mean

temperature derived from their calculated Lyman-αforest flux power spectrum is shown

(black). Also shown in Figure 5.11 are predictions from our multi-fidelity emulator based

on the maximum posterior input parameters from the same chains used in Figure 5.10. Due

to the larger uncertainty in the observed mean temperature, both predictions are consistent

with the observations. In Figure 5.11 we include the predictions for z > 3.8, outside the
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range of the observations, only to highlight the higher redshift trends indicated by the

different emulator predictions. Both the flux power and mean temperature emulators affect

the highest likelihood mean temperature prediction.

5.7 Conclusions

Using a simulation based machine learning emulator for two Lyman-αforest sum-

mary statistics, along with their observed counterparts, we performed inference on a set of

cosmological and astrophysical parameters. The summary statistics we use are the Lyman-

αforest flux power spectrum and the mean temperature of the intergalactic medium. The

parameters we constrain describe hydrogen and helium reionization and the primordial

power spectrum.

The emulator uses a multi-fidelity method to produce predictions at high resolu-

tion from Gaussian processes trained on two suites of hydrodynamical simulations. These

training simulations are split into low fidelity (lower resolution) and high fidelity (higher

resolution) suites, run with volumes of (120h/Mpc)3 and gas particle loads of 15363 and

30723, respectively. The emulator allows us to produce cheap, ≈ 1% accurate predictions for

the simulated summary statistics for arbitrary parameter inputs, using the 48 low fidelity

and 3 high fidelity training simulations.

The inference scheme includes a likelihood function within an MCMC framework

(using the package Cobaya [229, 228]). Our likelihood includes corrections to the Lyman-

αforest flux power spectrum from correlated Si iii absorption and from the presence of

damped Lyman-αsystems. A redshift dependent mean flux rescaling is also applied. All
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together, there are an additional 5 post processing parameters associated with the Lyman-

αforest flux power spectrum, all of which are included in the MCMC sampling.

In summary, the analysis performed here supports:

• helium reionization beginning at zHe ii
i = 4.00±0.04 and running to zHe ii

i = 2.78±0.04,

with a low quasar spectral index, which corresponds to more heating during this

process;

• an early midpoint of reionization, at zH i = 7.87±0.25, consistent Planck [239], though

the Planck measurement has large uncertainty, zH i
Planck = 7.68± 0.79;

• a value for the primordial power index, nP = 0.927± 0.017, within 2σ of Planck;

• and a primordial power amplitude Ap =
(
1.44× 10−9

)
, which along with the value of

nP , translates to As =
(
1.76± 0.13× 10−9

)
, within 2σ of Planck;

• Our analysis does not constrain ϵAGN (the black hole feedback factor) or h, and only

weakly constrains ΩMh2.

The above results are from an analysis that used the redshift range z = 2.6− 4.6.

When including the full redshift range, z = 2.2 − 4.6, several parameters have significant

shifts. The midpoint of hydrogen reionization shifts later, zH i = 6.85±0.28, which is consis-

tent with some measures [246], and, due to the large uncertainty of the Planck measurement,

is also consistent with Planck. The value for the primordial power index becomes very low,

nP = 0.879 ± 0.012, as much as 7σ different from past measurements [239, 155, 182]. The

resulting primordial power amplitude is As =
(
1.90± 0.13× 10−9

)
, within 1σ of Planck.
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The low value for nP , when using the full redshift range, could be due to the

improved volume and resolution of the simulations used in our analysis. These avoid under-

sampling of large scales and smoothing of small scales, which may give a better estimate of

the true Lyman-αforest flux power at lower redshifts. Other potential explanations include

errors in the continuum fitting for the observations, or underestimation of the uncertainty

in the observed flux power (Appendix 5.10.3). The instrumental resolution for the lowest

redshifts means systematics dominate the error budget, which may bias our results. Should

none of these potential causes be the true culprit, then the result using the full redshift

range may be evidence for running of the primordial power index.

The Lyman-αforest probes scales (∼ 1 − 100 × the cosmological mean density)

and redshifts (z = 2 − 5) that make it a powerful tool for cosmological and astrophysical

enquiry. The abundance of observations of the Lyman-αforest add to this strength, and

future surveys will only make analyses, like the one presented here, more robust. For

example, the Dark Energy Spectroscopic Instrument (DESI) [220] is expected to accurately

measure the Lyman-αflux power spectrum at small scales, k ≈ 0.035 km−1 s, and high

redshifts, z > 4.6 [185].

In this work we combined the Lyman-αforest flux power spectrum with the mean

temperature of the intergalactic medium. The inclusion of this second stream of information

improved many of the constraints on the sampled parameters, especially the parameters

related to helium and hydrogen reionization. One of the strengths of our framework is

that it can be expanded and improved in several ways: adding other summary statistics

(drawn from the training simulations, and from observations), expanding the parameter
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space, including more training simulations to improve emulator accuracy, and incorporating

future observations.

This may include emulating both the matter power spectrum and flux power spec-

trum, which would allow a measurement of the bias between these two statistics. Also, small

sample size, but high resolution Lyman-αforest spectra could be incorporated to extend the

analysis to smaller scales, which the current simulations would support. In a forthcoming

work, we use the same framework and constraints presented here, along with the degeneracy

between the primordial power amplitude and sum of neutrino masses [247], to constrain the

neutrino mass via the Lyman-αforest.

5.8 Full Posteriors

Here, we present the full posteriors, including the correlations between the cosmol-

ogy and astrophysics parameter sets, and the results for the post-processing parameters,

which include parameters for data corrections (Si iii and DLA), and for mean flux rescal-

ing. The correlations between parameters in each of these sets is weak, as can be seen

in Figure 5.12. For the chains run using both the mean temperature and flux power, the

main correlations are: a slightly negative correlation between nP and Ap; a negative corre-

lation between zHe ii
i and both αq and zHe ii

f ; a positive correlation between zHe ii
i and zH i; a

negative correlation between αq and zH i; and a positive correlation between αq and zHe ii
f .

The only correlation between astrophysics and cosmology is a positive correlation

between Ap and αq. Since the Lyman-αforest flux power spectrum is not strongly affected

by αq, this correlation is most likely from the IGM mean temperature likelihood. This
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may indicate that a larger αq (which corresponds to less heating) is appropriate when the

primordial power spectrum amplitude is larger, which leads to more structure.

The zHe ii
i -zHe ii

f -αq correlations indicate that the model prefers either: a late start

to helium reionization with less heating and an abbreviated reionization duration; or an early

start to reionization with more heating, where the helium is mostly all ionized and the IGM

temperature curves starts turning over before zHe ii
f (flattens and begins cooling because the

model has nothing left to ionize/heat). [173] also found that models for the thermal history

support both pictures; a late and rapid reionization, or an extended reionization with the

peak temperature occurring earlier.

The correlations between zH i and both αq and zHe ii
i are natural within the model.

An earlier midpoint of reionization means that He ii reionization should also start earlier,

such that the temperature boost from H i reionization does dissipate too far to match

observations. Likewise, a later midpoint allows for a later start to He ii reionization. This

is also indicated by the correlation with αq, which indicates that a later midpoint requires

less heating to match observations, thus a larger αq.

The correlation between nP and Ap is unsurprising, as they are both inputs to the

primordial power spectrum, and to fit some modes, a raise works as well as a tilt.

Results for the data correction and mean flux scaling parameters are shown in

Figure 5.13. The flux power only results are included here to highlight the difference made

by the inclusion of the mean temperature likelihood. The post-processing parameters are

well constrained and mostly consistent across the chains using the mean temperature and

flux power, but vary when the redshift range is changed.

164



0.85 0.95
nP

0.04

0.06

AG
N

7.0

7.5

zH
I

0.141

0.144

M
h2

0.68

0.72

h

1.8

2.2

q

2.8

3.0

zH
eI

I
f

3.7

3.9

zH
eI

I
i

1.6

2.2

A P
/1

0
9

1.6 2.2
AP/10 9

3.7 3.9
zHeII

i

2.8 3.0
zHeII

f

1.8 2.2
q

0.68 0.72
h

0.141 0.144

Mh2
7.0 7.5

zHI
0.04 0.06

AGN

z: 2.6-4.6
Flux Power Only, z: 2.6-4.6
z: 2.2-4.6
Flux Power Only, z: 2.2-4.6

Figure 5.12: Posteriors for the full set of simulation parameters, both cosmological and
astrophysical. Shown are the same chains from the figures in Section 4.5, thus the corre-
lations between the cosmology and astrophysics parameters are the only new information
here.
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Parameter z : 2.6− 4.6 z : 2.2− 4.6 z : 2.6− 4.6 (Flux Power Only)

dτ0 0.0± 0.04 −0.28± 0.03 −0.01± 0.06

τ0 1.09± 0.02 1.17± 0.01 1.08± 0.03

αlls 0.13± 0.03 0.02± 0.02 0.107± 0.036

αdla −0.009± 0.005 −0.006± 0.003 −0.001± 0.009

fSiIII 0.0098± 0.0005 0.0087± 0.0004 0.0096± 0.0005

Table 5.5: Maximum posterior values and 1σ uncertainties for the post processing pa-
rameters sampled in this analysis. The parameter limits for these are: dτ0 : [−0.4, 0.25],
τ0 : [0.75, 1.25], αlls : [−1, 1], αdla : [−0.3, 0.3], and fSiIII: [−0.03, 0.03].

The Si iii correlated absorption parameter, fSiIII, is well constrained, and small.

The effect of this correction can be clearly seen in the oscillations of the flux power spectrum

in Figure 5.10. The inclusion of the full redshift range shifts the preferred value to slightly

smaller values.

The DLA correction parameters, αlls and αdla, are well constrained. There are

small differences between the four chains for αdla, all of which prefer a value near zero.

For the DLA correction αdla, this is not surprising, as DLAs were removed from both the

observed and simulated Lyman-αforest spectra used to construct the flux power spectrum.

There are larger differences between the chains for αlls. When the full redshift range is used,

αlls is consistent with zero, and when the reduced redshift range is used, αlls is positive. A

positive value for αlls indicates that some subtraction due to LLS and sub-DLAs is required.

A positive value therefore makes sense, as we did not attempt to remove LLS and sub-DLAs

from the simulated flux power.

The mean flux rescaling parameters, τ0 and dτ0, are well constrained and consistent

when the redshift range is held fixed. For chains run with the full redshift range, the
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amplitude, τ0 ≈ 1.2 with an index, dτ0 ≈ −0.3. When the reduced redshift range is used,

the amplitude, τ0 ≈ 1.1, with an index consistent with zero. As a reminder, these parameters

modify the mean flux relation from [146], so a value of τ0 = 1 and dτ0 = 0 would correspond

to agreement with that model.

Given the maximum posterior values from the chains using both data sets, the

mean flux relation would be τ effH i = 0.0025 × (1 + z)3.65. This is consistent with the model

from which we started [146], as well as the mean fluxes from [248].

We tested whether a second mean flux rescaling slope would improve the fit to the

observed Lyman-αforest flux power (Figure 5.10), especially at lower redshifts and smaller

scales. To do this, we added a second mean flux slope to the MCMC sampled parameters,

and assigned each on to a specific redshift range (we tested this using a redshift pivot of

z = 3 and z = 3.6). Posterior constraints on the other parameters from a chain run using

the second mean flux slope were unaffected and the fit was not improved.

5.9 Inference Using Simulation Data

In this section we test our inference framework by using high resolution simulation

outputs in place of the observational data, to see how well we recover the correct parame-

ters. Figure 5.14 shows the results of this, with the dashed red lines indicating the correct

parameters. We successfully recover all of the parameters within one sigma. From this

result, the importance of some of the parameters can be seen. For example, the broad

posterior of ΩMh2 and ϵAGN indicate that these parameters do not strongly affect the flux

power or mean temperature.
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Figure 5.14: Posteriors when using one of the high resolution simulation outputs as data,
i.e. replacing observations with a known truth. The true parameter values for the simulation
that is used for the flux power and mean temperature are indicated by the red dashed lines.
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5.10 Alternative Likelihood Results

5.10.1 Parameter Priors

In this section we compare posteriors that use priors for black hole feedback, ϵAGN ,

and the matter density, ΩMh2, to our main results, which did not include parameter priors.

From Planck [239], we have a prior for ΩMh2 = 0.1424±0.001. The prior for the black hole

feedback factor, ϵAGN , is included to effectively remove this parameter from the inference,

as it is not well constrained and does not have a strong effect on the flux power or mean

temperature (the prior is ϵAGN = 0.05± 0.01). All priors are Gaussian and implemented in

the likelihood.

The chains are once again divided into redshift ranges, with one pair using z =

2.2 − 4.6 and the other using z = 2.6 − 4.6. Figure 5.15 shows the results when using

priors, as well as our main results without priors, for comparison. When we include the

Planck prior on ΩMh2 and the prior on ϵAGN , all the other parameters are changed only

marginally. This is encouraging, as our results are robust to the inclusion of priors, and

the correlations between most sets of parameters are weak. The only parameter that does

change is h, which for the full redshift range chain begins to develop a second mode in the

posterior near h = 0.69. This is likely due to the degeneracy between h and ΩMh2.

5.10.2 BOSS DR9 Data

In this section we compare posteriors obtained using a previous observational data

set, specifically the flux power spectrum from [112], which is based on BOSS DR9 quasar

spectra. Figure 5.16 shows the posteriors for chains run with the newer data set (DR14,
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Figure 5.15: Posteriors for chains run using priors on ϵAGN and ΩMh2 (red, blue), as
compared with their counterparts run without priors (black, yellow).

171



black and red), as well as chains run with the previous data set (DR9, yellow and blue).

We only show parameters that shifted due to the change in the observational data set.

For both redshift ranges, the primordial power spectrum index, nP , shifts to lower

values when DR9 is used. Conversely, the amplitude, Ap, is raised when switching to

DR9. Through a degeneracy between the primordial power and mean flux parameters,

dτ0 shifts in the opposite direction to nP , as does τ0 with respect to Ap. The reason for

these changes, as well as the changes in the other parameters, likely comes from both the

improved uncertainty in the newer data set (due to larger samples and updated processing),

and from the inclusion of the z = 4.6 bin, which was not available in the DR9 data set.

The shift from the omission of the lowest redshift bins is mostly consistent between

the two observational data sets. This may indicate that the root of the discrepancy between

the different redshift range results is either in the instrumentation, or in the simulations.

5.10.3 Inflated BOSS Errors

In this section we compare posteriors obtained when the observational uncertainty

is increased. Specifically, we increase the uncertainty by a factor of
√

2 and 2. These results,

along with a chain run using the default uncertainty, are shown in Figure 5.17. As the

uncertainty is increased from the default (black), to
√

2 times the default (red), and finally

2 times the default (yellow), the value for nP shifts to higher values. Many of the other

parameters are only marginally affected (note that we include the most affected parameters

in the figure), or simply the width of the posterior increases. The other exception to this is

dτ0, which is degenerate with nP .
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This may indicate that the uncertainties on the observed flux power are underes-

timated. We ran a similar set of chains wherein we increased the emulator errors (up to 10

times the default), but this only marginally affect the parameters.

5.10.4 Mean Temperature Only Emulator

In this section, we present results from chains run using only the mean temperature

likelihood. Shown in Figure 5.18 are four chains, each using one of the observational mean

temperatures, which are derived from different Lyman-αforest summary statistics: the flux

power spectrum (blue), using the Doppler width distribution (BPDF, yellow), using the

curvature statistic (red), and using a wavelet decomposition (black).

Most of the cosmology parameters are unconstrained by the mean temperature.

The one exception is a slight preference for high Ap, though this is most likely due to the

emulator error dominating the information. The three He ii reionization parameters are

well constrained by the mean temperature, as is expected. Because the mean temperature

traces the history of He ii reionization, the duration and magnitude of heating are natu-

rally constrained. There is very little difference between the different mean temperature

observations, with the BPDF derived temperature differing the most, specifically indicating

a later start to He ii reionization, with less heating.

The midpoint of H i reionization is also somewhat constrained, preferring the

lowest values, thus a late midpoint. This may be due to errors, as was the likeliest case

with nP . However, there is some information in the mean temperature, as the IGM cools

from the completion of H i reionization down towards our highest redshift at z = 4.6. The

174



0.85 0.95
nP

1.0

1.2

0

-0.2

0.1

d
0

7.0

7.5

zH
I

0.141

0.144

M
h2

2.8

3.0

zH
eI

I
f

3.7

3.9

zH
eI

I
i

1.6

2.2

A P
/1

0
9

1.6 2.2
AP/10 9

3.7 3.9
zHeII

i

2.8 3.0
zHeII

f

0.141 0.144

Mh2
7.0 7.5

zHI
-0.2 0.1

d 0
1.0 1.2

0

1 × BOSS Error
2 × BOSS Error

2 × BOSS Error
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mean temperature also has a strong effect on the midpoint when combined with the flux

power, another indication that the mean temperature provides information on the midpoint

redshift.

5.10.5 Reduced Scale Range

In this section, we present results from chains run using a reduced range of scales.

Both chains are run using the multi-fidelity emulator, the full redshift range, with both

the mean temperature and flux power likelihoods. One chain is run with the three largest

scales (three smallest k) omitted. Note that this is roughly the scales where systematics

in the continuum dominate over statistical error. Another chain is run leaving out the five

smallest scales (five largest k). The results of these chains are shown in Figure 5.19 (red

and yellow), along with a chain using the full range of scales (black).

Several parameters are relatively stable between these two chains: Ap, the three

He ii reionization parameters, and ϵAGN . The value for nP is slightly higher when the largest

scales are omitted, highlighting the importance of the large scales, and thus the volume used

in our simulations. The midpoint of reionization redshift, zH i, is not well constrained when

the large scales are omitted, likely as a result of the higher value of nP . When the large scales

are omitted ΩMh2 shifts off of the edge slightly, and this is accompanied by a secondary

mode strengthening in h. This may indicate that the value for h and ΩMh2 are partially

driven by overfitting of small scales, at the expense of large scales. These results indicate

that the increased volume of the simulations used in this work have helped the analysis, by

better resolving the largest scales.
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Chapter 6

Conclusions

“in all of our education, whether it’s in institutions or not, in homes or streets or wherever,

whether it’s scholarly or whether it’s experiential, there is a kind of progression. We move

from data to information to knowledge to wisdom. . . . And how quickly we can forget that

wisdom without any data, is just a hunch.”

– The Source of Self-Regard, by Toni Morrison

In the work presented in this dissertation, small and large scales have been explored

in an attempt to understand both cosmology and astrophysics. A common theme has been

the use of simulations, which are especially important for small scales, as these follow non-

linear structure formation, which is not well modeled analytically (though semi-analytic

models exist). In the final two works presented, machine learning became a key tool, and

it will continue to be, not just in cosmology and astrophysics, but in all areas of science.

In Chapter 2, a method for detecting theoretical cosmic strings was presented.

While the method required cosmic strings with tensions larger than some current bounds
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indicate, there are reasonable models which circumvent those bounds, and the novel detec-

tion method would serve as a independent signal. Future work in this area could include

developing methods to add cosmic string loops to simulations, to determine how much they

affect structure formation, and in particular early massive galaxy formation.

In Chapter 3, an updated method of initializing simulations was tested, specifically

the use of distinct transfer functions for baryons and dark matter. The effect of this change

on the simulated Lyman-α forest was quantified. Though the changes to the summary

statistics measured was modest, they were sufficient to be important in future work, where

observations will increase in size and quality.

In Chapter 4, a method for emulating the simulated Lyman-α forest flux power

spectrum was presented. This method used a machine learning method called Gaussian

processes to construct a multi-fidelity emulator from a suite of training simulations at two

resolutions. The multi-fidelity emulator worked well, achieving sub−1% error predictions

for the higher resolution output, at approximately one-third the computational cost.

In Chapter 5, cosmological and astrophysical parameter inference was presented,

making use of the aforementioned multi-fidelity emulator model. In this case, the training

simulations were much larger volume, and higher resolution. This allowed the inference

framework to make use of all the available observed scales. Using a new likelihood, which

incorporates observations and simulation based emulator predictions for the Lyman-α forest

flux power spectrum and mean temperature of the intergalactic medium, constraints are

found for several parameters.

There are several areas of possible future work related to machine learning and the
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Lyman-α forest. The most immediate is using the multi-fidelity emulator inference frame-

work, along with a known degeneracy between the mass of neutrinos and the primordial

power amplitude, to place constraints on the neutrino mass. The current inference frame-

work would also support small sample, higher resolution observations of the Lyman-α forest,

which could be combined with the currently used observations to cover a wider range of

scales. Another use for the current inference framework is to constrain the bias between

matter power and flux power by emulating the matter power spectrum in addition to the

flux power spectrum.

There are several potential improvements to the machine learning methods. De-

velopment of a model that more economically trains Gaussian processes for each scale in the

flux power spectrum would allow even more accurate predictions. Current and future work

will expand the multi-fidelity model to more than two fidelities, e.g. improving volume in

addition to resolution.

An interesting avenue of current and future work is the use of new summary

statistics. One such statistic is the scattering transform, which may be a more information

rich summary of the Lyman-α forest than current commonly used statistics.

I end with a quote, which summarizes many academic journeys, including my own:

“We have to continually be jumping off cliffs and developing our wings on the way down.”

– If This Isn’t Nice What Is?, by Kurt Vonnegut
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[183] Naim Göksel Karaçaylı, Nikhil Padmanabhan, Andreu Font-Ribera, Vid Iršič, Michael
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sky, L. Jiang, J. Jimenez, Y. P. Jing, R. Joyce, E. Jullo, S. Juneau, N. G. Karaçaylı,
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labrouille, Peter B. Denton, Suhail Dhawan, Keith R. Dienes, Eleonora Di Valentino,
Pu Du, Dominique Eckert, Celia Escamilla-Rivera, Agnès Ferté, Fabio Finelli, Pablo
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jan A. Sen, Neelima Sehgal, Arman Shafieloo, M. M. Sheikh-Jabbari, Joseph Silk,
Alessandra Silvestri, Foteini Skara, Martin S. Sloth, Marcelle Soares-Santos, Joan
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