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Summary. We present a wavelet-based geometry compression pipeline in the context of hi-
erarchical surface and volume representations. Due to the increasing complexity of geometric
models used in a vast number of different application fields, new methods have to be devised
that enable one to store, transmit and manipulate large amounts of data. Based on a multires-
olution wavelet representation, we have developed a complete compression pipeline suitable
for geometric data on uniform grids in two and three dimensions. Local and global oracles in
wavelet space are employed to control the approximation error in lossy compression settings.
Two geometry simplification schemes, which are able to build hierarchical mesh representa-
tions, are an essential part of the pipeline. In contrast to the two wavelet-based approxima-
tion schemes, we have devised the progressive tetrahedralization method, an extension of the
popular progressive meshes into volumetric settings. We compare the three approximation
schemes with each other using several two- and three-dimensional data sets and provide an
extensive error and performance analysis. These results emphasize the individual strengths
and weaknesses of each of the discussed methods and concepts.

1 Introduction

During the past decade, the complexity of geometric models in various application
fields has increased steadily. With the wide availability of powerful computer sys-
tems, many conventional design and production processes are either simulated or
carried out entirely on computers. Good examples include the wide field of product
design in almost any engineering discipline. The design cycle for many consumer
products including cars, toys, appliances, and so on, typically incorporates highly
detailed geometric models. Moreover, the simulation of natural phenomena requires
the creation of very large and complex geometric models for further computational
processing and scientific visualization.

Even though the performance of state-of-the-art computer systems is still in-
creasing in terms of computational power and memory availability, the complexity
of geometric models, driven by the demand of applications, is at least increasing
at the same rate. Several solutions have been proposed to attack these problems,
which can more or less be classified into the following overlapping areas: Geometry
simplification, geometry compression and hierarchical mesh representations.

Non-hierarchical geometry simplification schemes have successfully been em-
ployed for many years to reduce the number of elements in geometric models. The
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use of simplified models can speed-up visualization and further numerical process-
ing. Those method allow for the generation of high-quality approximations at a sin-
gle level of resolution. If the user requests a mesh at a different resolution, however,
the whole simplification process has to be repeated from the start.

A completely different approach is to optimize the memory requirements for
storing and transmitting large models. Geometry compression methods reduce the
memory footprint of a model without compromising its geometrical or topological
properties. We distinguish between lossy and lossless compression methods. A cer-
tain loss of precision can usually be tolerated for compressing positional information
of individual vertices constituting the model. Connectivity information, which spec-
ifies the relation between these vertices and defines the model’s topology, should be
compressed without loss of information.

Although non-hierarchical simplification methods and geometry compression
schemes often allow for progressive reconstruction and transmission over networks,
they do not inherently define a hierarchical representation of the model. For very
large data sets, however, it might be advantageous to inspect or even edit the data at
different levels, and hierarchical representations provide build-in support for such
applications. Note the difference between “linear” progressive schemes, which also
enable the reconstruction of different levels, and fully hierarchical methods: The
latter contain additional information about dependencies between successive levels,
thus allowing to switch consistently between them. This is especially desirable in
multiresolution editing applications, where changes applied at one approximation
level are automatically propagated throughout the hierarchy.

The main focus of this paper is a survey and comparison of the aforementioned
surface and volume representations, highlighting their advantages and shortcom-
ings.

2 Multiresolution Approximations

In this section we discuss the mathematical fundamentals of the preprocessing we
employ for data preconditioning. B-spline wavelets are used as a precoding trans-
form since they combine various advantageous features, such as vanishing moments,
continuous approximation, bounded interval definition, linear time algorithms, and
localization. For reasons of readability, we first review some basics of cardinal
B-spline wavelets. However, our attention is mostly directed to the definition of
global oracles, that is, schemes to reject unimportant coefficients. Our global ora-
cle consists of a greedy algorithm resulting from an elaborate analysis of L 2-errors
in semiorthogonal settings [10]. Additionally, we will demonstrate how local ora-
cles reject coefficients in unimportant spatial regions and thus enable the construc-
tion of electronic magnifying glasses for interactive data inspection. For reasons of
simplicity, we perform all computations for 1-D functions, but the results extend
straightforwardly to higher dimensions.
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2.1 Cardinal B-Spline Wavelets

B-spline wavelets were initially introduced by Chui [3], and were extended to
bounded intervals by [8] and [22], while nonuniform knot sequences were addressed
for instance by [2]. Due to a rich variety of literature in this area, we restrict our in-
troduction to those topics essential for an understanding of our framework.

B-spline wavelets can be constructed from a multiresolution hierarchy of car-
dinal B—spline scaling functions. Semiorthogonality invokes an additional degree
of freedom, however. Thus, approaches as in [8] or [22] end up in slightly differ-
ent construction schemes. We adapted the methods of Quak et. al [8] to construct
B—spline wavelets of arbitrary order bounded to the interval.

Assuming the reader is familiar with some fundamentals of discrete wavelet
transforms (DWT), the implementation of the forward transform is carried out by
sequences of projection operators A™, B™, where i = 1... M stands for the de-
composition level. An initial function f(z) is mapped from the higher resolution
approximation space V" onto a lower resolution space ¥V ™*! and onto its orthog-
onal complement space W ™*!. Given the coefficient vectors ¢™ and d™ for the
scaling functions ¢ (x), and wavelets ¢! (x) in the 1-D setting, with

' =L & =90, 1

(i:1...N/2™+ order — 1, order: B-spline order,) the decomposition is carried
out by matrix operations

"t =A™ a™t =B ™. 2)

Due to the semiorthogonality, we require the inverse operators P ™ and Q™ to
compute the reconstruction with

c™ = Pmcm+1 + dem-&-l' (3)

It can be easily proven [8] that the operators relate to each other by

Bm

In the case of cardinal B—spline wavelets, sparse operators P and Q™ come
along with dense matrices A™ and B™. In order to construct linear time algorithms
for both decomposition and reconstruction, it is sufficient to know the sequences
P™ and Q™ to perform an additional base transform of the coefficients into their
duals ¢ and d™ using the inner product matrices ® ™ and ¥™.

Note that the decomposition involves solutions of the sparse linear systems of
type ¥ .d™ = d™ for each iteration and ® .c¢M = &M for the last iteration step.
Fortunately, this can be accomplished in linear time as well. For brevity we abandon
all mathematical details associated with the construction of these transforms and
refer the reader to [8].

[—m} = [P™|Q™] . “)
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2.2 Oracles

One of the most important applications of wavelets is data compression. Instead
of using all wavelets v,,, for reconstruction, it is possible to truncate the approx-
imation. An oracle is used to determine the set of wavelets that are omitted in the
truncated approximation.

Global Oracles. A global oracle rejects unimportant wavelet coefficients from the
approximation while minimizing a given error norm.

First, let us recall finite dimensional orthogonal approximations for L2(RR). The
basis {¢;(z)},_, n expands a function f(xz) as

N
fl@) = Z cipi(), 5)

with coefficients ¢; € V. Given an integer 1 < K < N, we try to find the
best approximation of f with the truncated approximation f'. The L? error of f'(x)
is determined by the linear combination of the rejected basis functions

N

Z cipi(x)

i=K+1

1f (@) — f' (@)= =

L2

= > ol 6)

Note that the orthogonality of (p;, p;) = d;; cancels out all intermediate terms
in Eq. (6), which simplifies the relation. In other words, the magnitude of the coeffi-
cient ¢; corresponds exactly to the fraction of energy provided by the corresponding
basis ;. Hence, the L2-energy of a function f(x) is computed by

I @)II72 = (f (@), f(z)) = /Oo |f (@) da. o

— 00

A globally optimal compression can thus be achieved by sorting the coeffi-
cients by their magnitude and by rejecting the /K smallest ones. Obviously, this
strategy yields an L?-optimal oracle for orthogonal bases and can be computed in
O(N log N) using a fast sorting algorithm. Unfortunately, in the semi-orthogonal
case of B—spline wavelets, the intermediate terms in Eq. (6) are not canceled out,
which complicates the construction of an oracle. Maximum distance norm oracles
have been proposed by Stollnitz and others [22] for biorthogonal wavelets. Gross
[10] and Staadt et al. [21] propose a global oracle for the semi-orthogonal setting.
For more details, we refer the reader to these references.
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Local Oracles. A local oracle allows one to control the approximation locally in in-
teresting regions. Here, the spatial localization of the basis functions enables one to
accentuate particular wavelets while suppressing the influence of others. In this un-
derstanding, a straightforward local oracle consists of a weighting function which
operates on the coefficients of the transform. A first approach to this is given in
Gross et. al [12] who employed a Gaussian weighting. The basic idea is to assume
some ellipsoidal weighting area as a local region of interest in the spatial domain.
Localization of the wavelet transform allows for the projection of scaled and trans-
lated versions of it into wavelet space, where individual coefficients are influenced.
The initial version presented in [12], however, did not consider the support regions
of individual basis functions, and can lead to some artifacts by rejecting wavelets
ranging into the region of interest. Therefore, the method has been extended in [21]
by computing the support of the basis functions and by using endpoint-interpolating
B-wavelets.

3 Data Compression

We designed a compression pipeline by employing a wavelet-based sub-band codec.
The forward compression proceeds as follows: The data set is normalized, trans-
formed into wavelet space and both local and global approximation errors are con-
trolled by the oracles introduced in Section 2.2. Sorting of the individual channels
of the wavelet transform (WT) converts the multi-dimensional array into a 1-D data
vector, which is quantized and encoded subsequently. Conversely, the decompres-
sion pipeline inverts the procedure and prepares the data for subsequent geometric
reconstruction. For reasons of brevity, we will only present a short overview of the
compression pipeline. For more in-depth coverage we refer to [21, 19].
The main steps of the compression pipeline comprise the following:

1. Normalization: As opposed to applications such as image compression, the or-
der of magnitude for geometric data is usually not known in advance, but may
vary between data sets and application areas. For that reason, the data are nor-
malized, that is the original values c,,;, are mapped to the interval [0, ..., 1]
using a simple mapping function ¢,,orm = %

2. Wavelet Transform: The subband codec used in this approach employs cardinal
B—spline wavelets as introduced in Section 2.1. These basis functions are very
well suited for the application of geometry compression, since they share some
very important properties: (1) Endpoint-interpolation, (2) a high number of van-
ishing moments, (3) compact support, and (4) and efficient implementation.

3. Oracle: Local and global oracles, which have already been introduced in Sec-
tion 2.2, are used to derive a truncated series of basis functions. In spite of the
fact that semi-orthogonal B—spline wavelets are used for this codec, orthogonal
oracles based on the L?-norm are employed. They can only approximate semi-
orthogonal L2-oracles. Gross [10], however, presents a comparison between
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orthogonal and semi-orthogonal L ?-oracles, which provides for a justification
of this approximation.

4. Linearization: To prepare the data for bandwise progressive transmission, the
multidimensional coefficient array is mapped into an 1-D vector. Here, the array
is traversed from the most significant scaling function coefficients to the high
frequency bands representing fine grained detail. This linearization step is car-
ried out similar to the “zig-zag’-traversal of the DCT coefficients in the JPEG
image compression standard [15].

5. Quantization: The quantization step comprises a multiplication of the initial
floating point coefficients with a factor of 2", where n represents the num-
ber of bits to be assigned for each coefficient. Subsequent rounding operations
transform the floating point value into signed integer formats of size n. Let
Cfloat be a coefficient. Its quantized version ¢gyqnt is Obtained by applying a
scalar midtreat quantizer of the form ¢gyant = round (2"~" - ¢f001)

6. Encoding: An important task in the proposed compression pipeline is to con-
vert the quantized integer vector into a bitstream of data. Therefore, an entropy
coding scheme in the spirit of JPEG [15] is employed. Assuming that many
of the coefficients will be equal to zero, encoding is carried out as follows:
All non-zero coefficients are represented by two-tuples, where the first element
represents the number of bits required to encode the second one. The second
element contains the data value itself. All negative numbers are thus replaced
by their absolute values, where in the case of a positive number the first bit is
cleared. This enables one to encode of the sign elegantly.

4 Quadtree-Based Vertex Removal

The quadtree-based vertex removal scheme is a very fast and efficient method for
further reducing the complexity of the data. This bottom-up strategy starts with a
dense set of vertices and subsequently removes nodes according to a user-specified
error threshold. This process eventually constructs a quadtree data structure which
is triangulated by employing an efficient table look-up. The importance of a vertex
is determined by analyzing detail coefficients at dyadic points reconstructed from
wavelet space. For that reason, a single-step inverse wavelet transform has to be
designed, which enables one to reconstruct the different sub-bands in wavelet space
individually. Forward transform and compression are carried out in the same fashion
as proposed in Section 3. A detailed description of the single-step inverse wavelet
transform can be found in [12].

4.1 Vertex Removal in Regular Meshes

So far, some mathematical criteria have been elaborated for approximating a sur-
face data set, sampled on a regular grid, using a multiresolution hierarchy. In order
to build an adaptive surface triangulation, however, it is necessary to remove unim-
portant mesh vertices and to find a triangulation of the remaining ones. The basic
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Fig. 1. Bottom-up construction of a quadtree from a regular mesh by analyzing the detail
signals of the wavelet transform at each dyadic vertex.

criterion by which a mesh vertex is labeled as unimportant is given by the math-
ematical framework of the wavelet transform. In contrast to existing methods [14]
which base on linear spline wavelets, this scheme can be generalized to any type
of wavelet. Therefore, the criteria require more elaboration. Keeping in mind that
any triangulation of the surface provides a planar approximation, the error between
the original surface function f(z,y) and the linear interpolant provided by a tri-
angle has to be bound. Supposing furthermore that the initial data is expanded by
wavelet bases, the detail signal in iteration m is used to decide on whether or not
each 2™ + 1th mesh vertex is necessary for the triangle approximation. First, every
second vertex is visited and the value of the detail signal Af! of iteration . = 1 is
analyzed. If the detail signal in some neighborhood of vertex n is sufficiently small,
then the vertex is considered not to be important and the approximation can be ac-
complished by a linear interpolation between vertex n—1 and n+1. This scheme can
now be applied recursively by subsequent computation of the detail signals Af ™,
m = 1,..., M and by visiting all dyadic vertices at positions n = 2™k + 1. Once
the detail signal is sufficiently small and the adjacent vertices in step m — 1 are
already removed, the current vertex is labeled as well.

As a consequence, this procedure results in recursively building a quadtree rep-
resentation of the initial mesh by removing dyadic vertices. Figure 1 illustrates the
thinning method which finally figures out a quadtree representation of the mesh ver-
tices. The nodes of the quadtree contain either pointers to some child-nodes, or in
case of leaves, point to the entries of a vertex list.

4.2 Vertex Removal Criteria

To finally decide on whether a mesh vertex can be removed or not, we propose the
following three criteria, which additionally help to preserve the topology of the tree.
A vertex will only be removed from the mesh if all criteria are met:

1. Wavelet—criterion: A vertex at iteration level m can be removed if the sum of the
squares of its difference signal and those within a 4-neighborhood at resolution
m are less than an upper bound e.

2. Resolution—criterion: A vertex at iteration level m can be removed if the four
surrounding vertices at level m — 1 have been removed in a previous step.
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3. m to m — 2 criterion: A vertex can be removed if the resulting cell is not
adjacent to any cell of a level higher than m — 2. Thus, growth is restricted to
cell transitions from m to m — 2, which simplifies the triangulation algorithm.

Once the tree is built from the above procedure, the quadtree cells have to be
triangulated. A generic problem arising from meshing hierarchies of rectangular
surface patches is the occurrence of cracks. A crack occurs if adjacency of quadtree
cells at different depth and, hence, different resolution has not been considered. The
surface may break up, holes may appear and any consistency required for normal
interpolation gets lost. Non-manifold surfaces will be the result. We use a scheme
based on a two-level look-up table to triangulate the quadtree cells, which has been
introduced in [11, 12].

The quadtree-based vertex removal method introduced in this section has some
limitations regarding progressivity, adaptivity, and easy extension into higher di-
mensions. The bottom-up approach requires successful transmission of all first-level
detail coefficients before any vertices can be analyzed and eventually be removed.
For a 2-D data set, the amount of data to be transmitted is equal to three quarters of
the whole data. Furthermore, since only transitions between two consecutive levels
are permitted, the adaptivity of the approximated mesh is limited. Extension into
three dimensions is possible, but topological complexity and size of the look-up-
tables would be increased substantially. In addition, the simplicity and elegance of
the algorithm for two-dimensional data would not be maintained.

S Delaunay-Based Vertex Insertion

5.1 Vertex Insertion in 1-D

In order to construct a vertex insertion strategy, we first consider the 1-D setting.
Here, the problem reduces to finding a strategy for the reduction of line segments in
piecewise linear approximations. Inspired by the algorithm of [7] we extended these
ideas in [21] and modified the method to a recursive and progressive algorithm, il-
lustrated in Figure 2. It starts by connecting the first point of a curve, P ¢, with the
last point Py,. All intermediate points representing the curve are compared against
the line segment PP}, and the point with the largest distance, for instance P o, is
identified. If its distance exceeds a predefined threshold €, the vertex is considered
important and labeled. We split the initial line segment in two halves, on each of
which the algorithm can be applied recursively. Obviously, the quality of the re-
moval can be controlled by the distance threshold. The advantage of this extension
to the original method lies in the tree type refinement of the vertex analysis coming
along with the recurrence relations.

The distance can be computed in different ways, where, however, the computa-
tion of the vertical distance, such as depicted in Figure 2c, is computationally much
more expensive for general multidimensional settings. Therefore, we recommend
computing the y—distance (see Figure 2a) to approximate nonparametric data.
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Fig. 2. Recursive algorithm assuming a smooth representation of the underlying curve: (a)
P, has largest vertical distance; (b) new approximation after insertion of P»; (c) example
for vertical distance metric; (d) final result; (e) extension towards multiple dimensions ex-
emplified for non-parametric data: 2-D version. The underlying B—spline patch is outlined in
bold. A new vertex is inserted at position P and the distance is computed with respect to the
bilinear interpolant of P;;, Pijt1, Pit1j, Pit1j+1.

5.2 Generalization to Higher Dimensions

Generalizations of the method towards multidimensional nonparametric data is
straightforward. Starting from an initial grid, as in Figure 2e, the algorithm seeks
the vertex P with the maximum distance and subdivides the field into four (in 2-
D) or eight (in 3-D) subcells on which the method is applied recursively. In these
cases the distances to the bilinear and trilinear interpolants of the cell vertices are
computed, respectively.

Recalling the multiresolution B—spline approximation of the data motivates
the extension of the algorithm towards a channelwise progressive vertex insertion.
Therefore, the algorithm analyzes mesh vertices progressively and labels unimpor-
tant points as new data comes in. In 2-D, for instance, the basic idea is to start from
an initial vertex field of resolution 2™~ in each direction, where M represents
the maximum iteration. The vertices are provided by the scaling function approxi-
mation f (z,y) and are processed further by our algorithm. To define a distance
metric, we assume a bilinear interpolant between the vertices which approximates
the B—spline scaling function representation. If the difference signal Af ™ (x,y) is
received, the resolution is refined by two and all newly inserted vertices are checked
conforming to our distance metric. If required, they will be inserted. In order to
compute the intermediate vertices for each iteration, an inverse wavelet transform
has to be applied to all coefficients at iteration level m as soon as they are received
and decompressed.

For subsequent triangulation in 2-D and 3-D we employ Delaunay triangulation
libraries such as [1, 18].
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6 Progressive Tetrahedralizations

The wavelet-based vertex removal and insertion schemes introduced in Sections 4
and 5 are very well suited for efficient representations of various kinds of uniform
data in multiple dimensions. An increasing demand for purely irregular and unstruc-
tured mesh representations, however, shows the requirement for the development of
new methods providing even greater flexibility.

Progressive meshes [13] and its generalizations to higher dimensions [16]
proofed to be an extremely powerful notion for the efficient representation of tri-
angulated geometric objects at different levels-of-detail. Although a general formu-
lation for arbitrary triangulations has already been given in [16], the special case
of progressive tetrahedralizations (PT) is of enormous practical importance, since
it can be used as a sophisticated representation for a large variety of computations
[4, 23, 20].

This section presents a method for the hierarchical and progressive representa-
tion of tetrahedral meshes with arbitrary connectivity and we elaborate on some pit-
falls and fallacies people might get caught in when trying to implement the method
of edge collapsing for tetrahedral meshes. Specifically, we address the issue of defin-
ing appropriate cost functions. Unlike the elegant geometric approach presented in
[13], we must account for volume and application specific properties, such as vol-
ume preservation, gradient estimation of the underlying data or aspect ratio of the
simplex. In addition, we devised a sequence of tests to ensure a robust and consis-
tent progressive tetrahedralization, which have first been introduced in [20]. Dey
and colleagues [6] have independently presented an in-depth analysis of topology
preserving edge collapses. For reasons of brevity, we refer the reader to [13, 16] for
a general introduction to progressive meshes and its higher-dimensional variants.

In the tetrahedral setting, degeneration of tetrahedra into lower dimensional sim-
plices is prohibited. The set of cells sharing an edge e; will be called {icells;}.
Thus, an edge split adds the tetrahedra in {icells;} to the list of active elements.
Conversely, the set of non-vanishing cells affected by the associated edge collapse
is called {ncells;}. In order to compute a sequence of robust, non-degenerate and
consistent meshes, the following aspects have to be considered: (1) Cost functions
which determine the order of edge collapse (ecol) operations depending on desired
mesh optimization criteria. (2) Feature edges which should be preserved can be
tested during preprocessing. (3) Intersections and inversions of tetrahedra inside
and outside of {icells;} U {ncells;} have to be processed at run time.

6.1 Cost Functions

Various elegant algorithms [9, 13] based on the edge-collapse/vertex-split paradigm
use cost functions optimized for triangular surfaces, often accounting for distance
measures, triangle shape, and others. In tetrahedral meshes, however, we have to
redefine the terms of the cost function considering other features, like volume
preservation or gradients. Trotts et al., e.g., describe a nice approach in [23]. Al-
though many different measures are conceivable to control the simplification pro-
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cess, the following ones yield a good balance between required degrees of freedom
and the difficulty of parameter optimization. Thus, in our setting, for each edge
e; = (Va, V), the associated edge collapse operation ecol ;(a,b) : M* < M1 is
assigned the following cost:

AE(ez) = AEgrad (ez) + AEvol(ei) + AEequi (ez) + AEnormal(ei)- ®)

The first term AEg,qq(e;) = |sq — sp| forms a simplified measure for the dif-
ference of underlying scalar volume function along the edge e ;. Hence, edges with
considerably differing scalar attributes are assigned high costs. This term of the cost
function applies only to volumetric data sets with scalar attributes. The second term

AE,q(e;) = > wol(Ty) —vol(Ty) | + > wol(T))

Tje{ncells;} Tje{icells; }

penalizes volume changes and thus avoids that the mesh is shrinking. Tj denotes
a tetrahedron after the collapse and vol(T';) its volume.

In many applications it is required that tetrahedra sustain equilateral shape.
AE,4yi(e;) can be employed to balance the edge length of individual tetrahedra:

AEequi (ez) = Z Z (la,b - mj)2 - Z (la7b - mj)2

Tje{ncells;} \{a,b}€T} {a,b}eT;

withl, , = |Va - Vb| and mj = 1/|T]| E{mb}ET]— lop.

Note that the initial mesh M ™ will usually be generated from some triangulation
scheme. Depending on the application context and the desired mesh features it can
be advantageous to include AEggeien (€i) = Vo —Vp| into the cost function thereby
enforcing short edges to be collapsed earlier.

For triangular surface meshes, the difference between the vertex normals of v,
and vy are a good estimate of the local curvature of the mesh. If e; lies within a
region of high curvature, an edge collapse would flatten that region. Hence, this edge
should be associated with an appropriate cost value defined as AE ,,rmai(€i) =
(ng - mp)|la,5|%, where n; denotes the normal vector in vertex v ;.

6.2 Consistency Tests

Unfortunately, brute force selection of edges according to the cost function from
above can introduce mesh inconsistencies like degeneration, folding, intersection,
or loss of individual features. It is possible, however, to avoid such inconsistencies
by carrying out a combination of tests that can either be carried out during prepro-
cessing or dynamically at run-time.

In a preprocessing step, all vertices and edges on the mesh boundary are marked.
Table 1 lists the five possible combinations of boundary edge and vertices. Only
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Table 1. The five possible combinations of boundary edges and vertices.

case e Vo v valid

1 yes

2 boundary optional
3 boundary  optional
4 boundary  boundary  no

5 boundary  boundary  boundary  yes

cases one and five pass the consistency test for legal edge collapses. Allowing for
edge collapses in cases two and three may result in “dents” on the mesh boundary,
thus, they are optional. Interior edges (case one) have to be further checked dynam-
ically for possible intersections and cell orientation changes.

A normal flipping heuristic [17] can be generalized to circumvent folding or self-
intersection of cells. This can easily be implemented by testing for sign changes of
surface normal vectors and by analyzing the volume of all tetrahedraT'; € {ncells;}
before and after the collapse. For more details see [19].

Starting from the observation that edge collapses can cause global intersections,
we employ the method first introduced in [20] for dynamically testing for cell in-
tersections. We assume that the input mesh is intersection-free and connected. We
make no assumption about the genus of the mesh, though. The problem can then be
divided into checking interior edge and mesh boundary edges.

After passing the static tests described above, we can ensure that any non-
boundary edge e; cannot have a boundary vertex as endpoint. If the set {icells;} U
{ncells;} contains no boundary edge, its boundary forms a polytope entirely wrap-
ping the edge. A collapse of the edge, however, does not affect the boundary of the
polytope, whose disjoint triangulation is given by the tetrahedra T} € {ncells;}.
Thus, intersections can only occur with boundary cells and intersection tests can be
restricted to the mesh boundary.

In the general case of boundary edges, we have to perform triangle—triangle in-
tersection tests, which can be carried out as follows: First, we define the set of trian-
gles { fi } containing all boundary faces of tetrahedra T'; € {ncells;}. These are the
faces which can change after ecol ; since they all share the new vertex v,. Thus, they
are our prime candidates for intersection with other boundary faces. To avoid test-
ing these faces against all other boundary tetrahedra, we introduced a more efficient
iterative method in [20], which will be used for the experiments in Section 7.

7 Experimental Results and Comparison

This section comprises two comparative experiments for the surface and volume ap-
proximation methods in the previous sections. We will analyze potential strengths
and weaknesses of each of the methods. This comparison will focus on the geomet-
ric approximation performance of the three methods. Although the PT method can
process a wide range of unstructured surface and volume data sets, we will restrict
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these experiments to uniform input data, due to the constraints of the tensor product
wavelet transform used by the other two methods.

7.1 Surface Approximation

In this section, we will investigate the approximation behavior of the quadtree-based
vertex removal, the Delaunay-based vertex insertion and progressive meshes. We
have selected a digital terrain data set of the Matterhorn, which has been cropped to
256 by 256 vertices. The original resolution of the data set is 701 by 481 vertices
with 25 meter spacing. For the transformation into the progressive mesh representa-
tion, the following cost function terms have been used: Normal energy, edge length
energy and equilateral energy, weighted with 50, 1 and 5, respectively. The total
transformation took 2’58 on an SGI Octane R10000. The reconstruction param-
eters for all three methods have been adjusted in order to yield the same number
of triangles for each of the five reconstruction levels. The geometric approximation
errors have been calculated with Metro [5] and the error visualization is depicted in
Figure 5.

We can see from the statistics and the error visualization that both, the pro-
gressive mesh and the Delaunay-based vertex insertion methods outperform the
quadtree-based vertex removal. Due to the greater adaptivity of the first two meth-
ods, they achieve better approximation results than the latter method, which is con-
straint by the two-level look-up-table triangulation. A closer look at the quadtree-
based method, however, reveals that its performance is still satisfactory. The relative
error at the coarsest approximation level is below 0.15 percent.

7.2 Volume Approximation

For the final experiment, a medical CT volume data set of a child’s skull has been
employed. We have cropped the original data to a representative fragment with 32
by 32 by 32 voxels or 178,746 tetrahedra. Figure 4 depicts a semi-transparent view
of this model.

This data set has been processed with both, the Delaunay-based vertex insertion
and the progressive tetrahedralization methods. Performance statistics for this ex-
periment are shown in Figure 3. The timing figures for the PT do not include the
initial transformation into the PT representation, which took 10’40 without and
41°3” with full intersection testing. Three tetrahedral intersections were detected
during the process and the corresponding collapse operations have been evaded. The
original mesh and its approximation have both been sampled at 1,000,000 randomly
distributed positions to determine the approximation error.

It is interesting to see that the lines of the distortion graph for both methods take
an almost identical course. The performance of the PT methods, however, drops off
for the last sample at 10,000 tetrahedra. This behavior can be explained by the fact
that the order of priority of the edge collapses is determined by a greedy algorithm.
After large number of successful edge collapse operations, it becomes more an more
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Fig. 3. Performance statistics for the volume comparison experiment; (a) PSNR of both meth-
ods for decreasing number of tetrahedra; (b) reconstruction times (note the logarithmic scale
of the time axis).

difficult to select edges with low cost without compromising the correct topology
of the mesh. This fact can usually be neglected for two-manifold meshes where
the topology is much simpler, but it has a considerable influence on the volumetric
setting. A global optimization scheme would certainly improve the mesh quality at
low approximation levels, but this is probably not feasible for large applications.

Without taking preprocessing into account, the PT method clearly outperforms
the Delaunay-based vertex insertion scheme in terms of reconstruction time by al-
most two orders of magnitude. The bottleneck of the latter scheme, however, is the
Delaunay tetrahedralization which only performs in O(N log N), where N is the
number of voxels. A faster tetrahedralization scheme could significantly improve
the overall performance.

8 Conclusions

In this paper we have presented a comparison of different geometry compression
and reconstruction methods for uniform data in two- and three-dimensional setting.
Results from these methods have been compared to the popular progressive mesh
algorithm and our extension to unstructured tetrahedral meshes.

Bottom-up Vertex Removal. The main advantage of the approach described in Sec-
tion 4 is its fast and elegant implementation, which does not require any geometric
calculations upon triangulation. Due to the constraints of the look-up-table, how-
ever, the semi-structured approximation limits the adaptivity of the resulting mesh.
This is reflected in the numerical results presented in Section 7.1, which show that
we cannot achieve the same performance as with the other two methods presented
in this paper. Furthermore, the bottom-up nature of the algorithm prevents us from
allowing for progressive transmission and reconstruction without precomputing the
hierarchy. Before we can start with the construction of the quadtree, we have to
receive all detail information at the finest level, which comprises two thirds of the
original data (uncompressed).
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Top-down Vertex Insertion. Using the top-down method from Section 5 instead of
a bottom-up approach opens the possibility for channelwise progressive reconstruc-
tion. By transmitting coarse wavelet channels first, which only comprise a small
subset of the total number of coefficients, we can refine the geometric representation
adaptively. Since we are not constrained by a look-up-table, but employ Delaunay
triangulation to determine the mesh connectivity, we can generate approximations
which adapt better to the original data. In terms of the geometric approximation er-
ror, this method clearly outperforms the quadtree-based scheme. On the other hand,
the algorithmic complexity of the vertex insertion method, which is largely deter-
mined by the cost of the Delaunay triangulation, is considerably higher. Hence, for
very large data sets and applications where fast triangulation on the fly is more
important than very low approximation error, the quadtree-based method is still at-
tractive.

Progressive Tetrahedralizations. The accuracy of the progressive mesh and the pro-
gressive tetrahedralization methods is comparable to that of our Delaunay-based
vertex insertion scheme. Direct comparison for surface triangulations has shown that
we could even achieve better results with progressive meshes. This does not come as
surprise, because we were able to employ data-specific cost functions which govern
the transformation from the input mesh into the progressive mesh representation.
Similar results could be obtained for tetrahedral meshes. For very coarse approx-
imations, however, we have realized that the greedy method that determines the
ordering of the edge collapse operations, is additionally constrained by the topolog-
ical considerations described earlier. For that reason, we could not obtain the same
accuracy as with our vertex insertion scheme under those circumstances. Another
advantage of progressive tetrahedralizations, besides its fine grain progressivity, is
its very short reconstruction time — even for larger models. This clearly compensates
for the time consuming transformation comprising cost function evaluations, consis-
tency checks and edge collapses, which can be carried out offline as a preprocessing
step, though.
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Fig. 4. Fragment of the child’s skull data set which is employed for the comparison of the
Delaunay-based vertex insertion and the progressive tetrahedralization methods. (Data set
courtesy of Advanced Visual Systems Inc.)
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Fig. 5. Error visualization of the Matterhorn model for the three different mesh approxima-
tion methods at various reconstruction levels. The magnitude of the absolute mean-square
geometric error corresponds to the color bar on the right.





