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PHYSICAL REVIEW B 88, 195306 (2013)

Coherent control with optical pulses for deterministic spin-photon entanglement

Katherine Truex,1,* L. A. Webster,1 L.-M. Duan,1 L. J. Sham,2 and D. G. Steel1,†
1The H. M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Physics, The University of California, San Diego, La Jolla, California 92093-0319, USA

(Received 28 December 2012; published 18 November 2013)

We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton
system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett. 95, 030504
(2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond
optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field,
creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity,
the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations
using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by
radiative decay and electron spin flips.

DOI: 10.1103/PhysRevB.88.195306 PACS number(s): 03.67.Bg, 78.47.jh, 78.67.Hc

I. INTRODUCTION

The optical manipulation of spins in semiconductor quan-
tum dots is now a mature field, due to the possibility of exploit-
ing long spin coherence times for stable quantum bits (qubits)
for quantum computing. Benjamin, Ramsey, and Warburton
provide reviews of the achievements in the field.1–3 Recent
experiments, since 2010, have demonstrated optical control of
exciton4 and biexciton5 generation, as well as control of the
spin state of electrons,6–8 holes,9,10 and excitons11–14 in single
InAs quantum dots. Efforts continue to better characterize
semiconductor quantum dots, including improved understand-
ing of the effects of electric15,16 and magnetic17 fields, further
studies of the energy levels,18,19 room-temperature studies,20

and many other critical measurements.21–26 Several groups
demonstrated new spin readout methods,27–29 addressing one
of DiVincenzo’s criteria for quantum computing.30 Impres-
sive progress has been made recently in characterizing and
manipulating InAs quantum dot molecules,28,31–36 including
demonstration of two-qubit gates.37

A necessary next step for quantum dot based quantum
computing is to extend such results to many-qubit systems.30 A
quantum computer that is complex enough to solve interesting
problems will require many qubits and would be overly
complex if a large number of qubits were unavoidably and
simultaneously coupled. To address this problem, we adopt
the strategy of the quantum network.38,39 Yao, Liu, and
Sham (YLS) have suggested a network of spin qubits in
quantum dots that can exchange information by means of a
flying photon qubit. Specifically, a flying photon qubit that
is entangled with one stationary spin qubit could be used
to produce entanglement with a second spatially separated
qubit.40 There have been several recent demonstrations of
entanglement of quantum dot spins and photons.41–43 However,
these experiments depend on the stochastic spontaneous
radiation from an optically excited state, whereas the proposal
by YLS to entangle the flying photon qubit with the stationary
spin qubit in a quantum dot is deterministic. Here, we suggest
and analyze a scheme for achieving this controlled photon-spin
entanglement using the spin of an electron confined in an InAs
quantum dot (energy level diagram in Fig. 1).

The YLS proposal places the quantum dot in an appro-
priately designed photonic cavity such that the Purcell effect
modifies the spontaneous emission rates to suppress emission
along the |T+〉 to |x−〉 transition while augmenting emission
along the |T+〉 to |x+〉 transition.44,45 In this system, the
electron spin is the qubit, and its two states are given in
the x basis. Any arbitrary coherent superposition state of the
electron spin in the absence of cavity photons can be written
in the field interaction picture46 as (α|x−〉 + β|x+〉)|0〉c, where
α and β may be complex and |0〉c represents an empty cavity
mode. If this quantum state were coherently transformed into
the state |�E〉 = (αeiφα |x−〉 + βeiφβ |T+〉)|0〉c ≡ |ψE〉|0〉c and
then allowed to radiatively decay, the resulting state of the
dot-cavity system would be (αei�α |x−〉|0〉c + βei�β |x+〉|1〉c),
where |1〉c represents the presence of a photon in the cavity
mode, and φ and � are constant phases accumulated during the
transformations. This scheme forms an entanglement between
the spin state of the electron and the presence or absence
of a cavity photon. The transformation of an arbitrary spin
state into state |�E〉 is thus a preliminary step to photon-spin
entanglement. We describe and analyze a procedure for this
transformation and for the creation of |ψE〉 in a single InAs
quantum dot in commonly studied samples that do not contain
photonic cavities as groundwork for eventual demonstrations
with photonic cavity samples.

The YLS protocol requires being able to create an arbitrary
superposition of the two spin states and then selectively excit-
ing one of the spin states (|x+〉) to the trion state (|T+〉) with
unity probability. In principle, a polarized narrow-bandwidth
optical pulse would excite the |x+〉 to |T+〉 transition, but not
any other transition. However, a short pulse is needed to limit
the decoherence and hence to maximize the fidelity of the spin
photon entanglement. Additionally, the pulse area47 must be
π , placing a power requirement on the system. Since a short
pulse will also excite the |T−〉 state, we propose an alternate
method for selective excitation using the composite properties
of two phase-locked pulses48 that are readily available from
commonly used lasers.

The organization of the remainder of the paper is as follows.
In Sec. II, we detail the selective excitation of an arbitrary state
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FIG. 1. (Color online) Lowest energy levels and allowed optical
transitions for a charged InAs quantum dot in a Voigt geometry
magnetic field (with the magnetic field along x̂ and perpendicular
to the growth direction, ẑ). The two ground states, |x−〉 and |x+〉,
represent the two spin states of an electron energetically confined
in the dot, with the direction defined relative to the magnetic field.
These are the states of the spin qubit. States |T−〉 and |T+〉 are the
optically excited states (trions), which are quasiparticles composed
of two spin-paired electrons and a hole. In this case, the sign indicates
the spin orientations of the hole along the magnetic field direction.
	e and 	h are the electron and hole Zeeman splitting frequencies,
respectively. In typical samples, the optical resonance that couples
the electron ground state and first excited state is around 950 nm, and
in a 5.5 T magnetic field 	e = 30 GHz and 	h = 20 GHz. V and
H indicate that the allowed optical transition between two states is
vertically or horizontally polarized, as labeled, and the i indicates a
phase difference between the transition dipole moments.

of the spin qubit to the state |ψE〉 with two phase-coherent,
picosecond, on-resonance pulses. In Sec. III, we describe a
complete experimental procedure for producing and detecting
|ψE(t)〉. Section III concludes by discussing measurement of
the coherence of |ψE(t)〉 using a fifth pulse and the absorption
of the CW laser. Lastly, in Sec. IV we present the results
of numerical simulations using typical experimental values,
which predict the fidelity and entropy of entanglement that the
proposed experiment should create.

II. SELECTIVE EXCITATION BY A PULSE PAIR

This section details how two picosecond pulses can coher-
ently transform an arbitrary spin state α|x−〉 + β|x+〉 in an
InAs quantum dot to state |ψE〉. The method presented here
avoids unintended dynamics associated with level |T−〉 and
creates a state that can persist for a time limited only by decay
and decoherence. This discussion illustrates the basic physical
behavior, which we label “selective excitation,” made possible
with phase-locked pulses. This physical behavior is essential
for a successful outcome of the complete experimental design
in Sec. III. A recent paper demonstrates the viability of this
pulse shaping method in InAs quantum dots.49

The goal of the following development is to obtain an
analytical expression for the state of a quantum dot after
excitation by two on-resonant optical pulses. Specifically, we
define two identical pulses that arrive at the sample at times ta
and tb, such that the incident electric field associated with the

1

δt

|c
T+

|2 ; |c
T-

|2

P
ro

b
a

b
ili

ty

0

E(t)

t
t

a
+τ

δt
0

(a)

(b)

E

-E

t
a

t
b

t
b
+τ

10π/ω
x+T+

                   20π/ω
x+T+

 

FIG. 2. (Color online) (a) A graph of the electric field for the
two square pulses defined in Eq. (1). (b) The probabilities that a
dot with |cx− (ta)|2 = |cx+ (ta)|2 = 0.5 would be in states |T+〉 and
|T−〉 after two optical pulses as defined in Eq. (1) with pulse area
θ = |�|τ = π/2. The probabilities are calculated using Eq. (8) and
plotted as a function of delay between the pulses. The dotted line
shows the point where δt = π/(ωx−T− − ωx+T+ ) and (δt + τ )ωL =
π/2. At this delay, the transitions |x+〉 to |T+〉 and |x−〉 to |T−〉
are exactly out of phase. Recall the laser frequency, ωL, is set such
that ωL = (ωx−T− + ωx+T+ )/2. For this plot, ωx−T− = 1.1ωx+T+ in
order to illustrate a visible phase difference within a few periods.
Typical experimental values for a 5.5 T magnetic field are ωx−T− =
1.00016ωx+T+ .

optical pulses is

E(t) = Eŷ �
(

t − ta

τ

)
cos[ωL(t − ta) + φ]

+Eŷ �
(

t − tb

τ

)
cos[ωL(t − tb) + φ], (1)

where τ is the pulse width, the relative phase between the pulse
envelope and the optical carrier is φ, and �(t/τ ) is defined as

�
(

t

τ

)
=

{
1 if 0 � t < τ,

0 if t < 0 or t � τ.
(2)

E(t) is plotted in Fig. 2(a). We can approximate the pulses
as square in shape (with constant amplitudes) since we are
interested only in the state of the dot after the excitation and
since the pulse widths are short compared to all relaxation
times in the system. If both pulses are vertically polarized, as
indicated by the unit vector ŷ, then only the |x+〉 to |T+〉 and the
|x−〉 to |T−〉 transitions will be excited, as illustrated in Fig. 1.
These two transitions have different frequencies ωx+T+ and
ωx−T− due to the Zeeman splittings. For selective excitation, the
center frequency of both pulses is tuned to halfway between
the |x+〉 to |T+〉 and the |x−〉 to |T−〉 transition frequencies
[ωL = (ωx+T+ + ωx−T− )/2].

A complete expression for the time dependence of the
state of the dot would include decay and decoherence effects,
which generally require the use of density matrix notation.46

However, since the pulse widths and time between pulses are
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short compared to the decay and decoherence times, these
effects can be neglected when calculating the state of the dot
following the pulses. This enables the use of the amplitude
picture, where the state of the dot (in the Schrödinger picture)
|ψ〉 = ax−|x−〉 + ax+ |x+〉 + aT+|T+〉 + aT−|T−〉 is described
by the time-dependent probability amplitudes, ai(t).

The effect of these optical pulses on a dot is most simply
described in the field interaction picture,46 defined as

c(t) =

⎡
⎢⎢⎢⎣

eiωLt/2 0 0 0
0 eiωLt/2 0 0
0 0 e−iωLt/2 0
0 0 0 e−iωLt/2

⎤
⎥⎥⎥⎦a(t) (3)

for optical excitation at frequency ωL.
The equations of motion for the probability amplitudes

in the field interaction representation and the rotating wave
approximation are

ċx− (t) = i

[
π	ecx− (t) − �∗

2
cT− (t)

]
,

ċx+ (t) = i

[
− π	ecx+ (t) − �∗

2
cT+ (t)

]
,

(4)

ċT+ (t) = i

[
− �

2
cx+ (t) + π	hcT+ (t)

]
,

ċT− (t) = i

[
− �

2
cx− (t) − π	hcT− (t)

]
.

These equations apply for a vertically polarized optical excita-
tion at frequency ωL. Notice that these equations describe two
completely decoupled two-level systems. From the definition
of E(t) in Eq. (1), the Rabi frequency � is −μyEe−i(φ−ωLta )/h̄

during the first pulse [ta � t < (ta + τ )], −μyEe−i(φ−ωLtb)/h̄

during the second pulse [tb � t < (tb + τ )], and 0 for all

other times. μT−x− is the dipole moment for the transition
from state |T−〉 to state |x−〉. When the transition dipole
moments are evaluated using the Wigner-Eckart theorem and
known properties of the valence and conduction bands of InAs
dots,50–52 we find that μT−x− = μT+x+ ≡ μy and μ∗

y = −μy

while μT−x+ = μT+x− ≡ μx and μ∗
x = μx . The relation μy =

iμx leads to a phase difference between the horizontal and
vertical transitions.

The probability amplitudes of the dot after the pair of
pulses defined by Eq. (1) can be calculated from the product
of three matrices, one representing each pulse and one for
the time evolution between the pulses. Between the pulses,
� = 0, which reduces Eq. (4) to four uncoupled equations.
The solution for the probability amplitudes of the dot after a
time δt without pulses is c(t + δt) = T(δt)c(t), where

T(δt) =

⎡
⎢⎢⎢⎣

eiπ	eδt 0 0 0
0 e−iπ	eδt 0 0
0 0 eiπ	hδt 0
0 0 0 e−iπ	hδt

⎤
⎥⎥⎥⎦. (5)

The matrix T defines the time evolution of the dot in the
absence of an optical field, which consists of spin precession
due to the magnetic field.

The equations of motion during a pulse can be solved for a
simple transition matrix that describes the action of a pulse
on the dot. In typical InAs dots, 1/τ >> 	e,	h >> �T ,
where �T is the radiative decay rate of the trion states and
determines their natural linewidths. Since the pulse bandwidth
is much greater than the state linewidth and the Zeeman
splittings, we can ignore the small effect of detuning during
the pulse and approximate the optical field as on-resonance
with all four optical transitions. The probability amplitudes
after a single vertically polarized pulse of pulse width τ are
c(t + τ ) = P(�,τ )c(t), where

P(�,τ ) =

⎡
⎢⎢⎢⎢⎣

cos |�|τ
2 0 0 − i�∗

|�| sin |�|τ
2

0 cos |�|τ
2 − i�∗

|�| sin |�|τ
2 0

0 − i�
|�| sin |�|τ

2 cos |�|τ
2 0

− i�
|�| sin |�|τ

2 0 0 cos |�|τ
2

⎤
⎥⎥⎥⎥⎦. (6)

The probability amplitudes immediately after the two pulses defined by Eq. (1) can now be written as

c(tb + τ ) = P
(

− μyE

h̄
e−i(φ−ωLtb),τ

)
T(δt)P

(
− μyE

h̄
e−i(φ−ωLta ),τ

)
c(ta). (7)

As illustrated in Fig. 2(a), δt = tb − ta − τ . If the system is in a coherent superposition of the ground states when the first pulse
arrives such that cT− (ta) = cT+ (ta) = 0, then the probabilities after the second pulse simplify to

|cx− (tb + τ )|2 = |cx− (ta)|2
(

1 − sin2 |�|τ cos2 ωx−T−δt + ωLτ

2

)
,

|cx+ (tb + τ )|2 = |cx+ (ta)|2
(

1 − sin2 |�|τ cos2 ωx+T+δt + ωLτ

2

)
,

(8)

|cT+ (tb + τ )|2 = |cx+ (ta)|2
(

sin2 |�|τ cos2 ωx+T+δt + ωLτ

2

)
,

|cT− (tb + τ )|2 = |cx− (ta)|2
(

sin2 |�|τ cos2 ωx−T−δt + ωLτ

2

)
,
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where

ωx−t− = ωL + π (	e + 	h), ωx+t+ = ωL − π (	e + 	h),

(9)

the pulse area θ is |�|τ = |μyE|τ/h̄, and time t = ta is defined
as immediately before the first of the two selective excitation
pulses.

Equation (8) shows that the delay between the two pulses,
δt , determines whether the physical effects driven by the
two nonoverlapping pulses combine constructively or destruc-
tively. Changes in δt on the order of the optical period of the
laser cause the probability at time tb + τ to oscillate between
states |x−〉 and |T−〉 at a different rate than between states |x+〉
and |T+〉. The |x+〉 to |T+〉 and the |x−〉 to |T−〉 transitions are
precisely out of phase at the delay δt = π/(ωx−T− − ωx+T+ ) =
[2(	e + 	h)]−1. Because ωL � π (	e + 	h), we can add a
small correction, tc, to δt such that (δt + τ )ωL = π/2, while
not significantly changing terms like δtπ (	e + 	h). At this
delay the pulses will add constructively (destructively) along
|x+〉 to |T+〉 (|x−〉 to |T−〉), leaving the system in |ψE〉. This
effect can only be observed if the delay between the pulses is
on the order of the inverse optical frequency.

Figure 2 plots the probabilities for the trion states after the
second pulse, |cT+ (tb + τ )|2 and |cT− (tb + τ )|2, as expressed
by Eq. (8) to illustrate how the relative phase between the two
probabilities depends on the delay between the two pulses.
The phase of each transition oscillates at the optical transition
frequency, but the two transitions move in and out of phase with
each other at the slower rate (	e + 	h). The optimum delay
for selective excitation is indicated by the dotted line. To make
the phase evolution easier to observe, the difference between
the frequencies is enhanced in the figure. For typical Zeeman
splittings and a 5.5 T magnetic field, a delay of δt = 10 ps is
optimal for selective excitation and creating the state |ψE〉.

Figure 3 illustrates the selective excitation caused by
an appropriately timed pair of pulses. Due to the vertical
polarization of the pulse pair, the four-level system simplifies
to two decoupled two-level systems, each represented by a
Bloch sphere. Before the pulse pair, the dot is in a superposition
of the ground states α|x−〉 + β|x+〉. The magnitudes of α and
β simply scale the relative size of the two Bloch spheres. To
create the desired state |ψE〉, both pulses should have pulse
area π/2. The initial pulse creates a coherent superposition of
the four states, which is represented by a rotation of both
Bloch vectors by 90◦. Between pulses, the Bloch vectors
precess in the equatorial plane by angles that correspond to the
accumulated phases. These phases have the form ei(ωx−T− −ωL)δt

and ei(ωx+T+−ωL)δt since the Bloch sphere is defined in the
field interaction picture.46 Since ωL = (ωx+T+ + ωx−T−)/2,
the two Bloch vectors precess in opposite directions. If the
pulses are separated by δt = π/(ωx−T− − ωx+T+ ), then the
difference in accumulated phase is π and the two vectors
are pointing in opposite directions when the second pulse
arrives. If (δt + τ )ωL = π/2, then the second pulse rotates
the Bloch vectors about an orthogonal axis compared to the
first pulse. Because the two Bloch vectors are pointing in
opposite directions when the second pulse arrives, the second
90◦ rotation leaves one vector in the ground state and the other

|T-〉 |T+〉

|x+〉|x-〉
|T-〉 |T+〉

|x+〉|x-〉

|T-〉 |T+〉

|x+〉|x-〉

|T-〉 |T+〉

|x+〉|x-〉

t = t
a

t = t
a
+τ

|T-〉 |T+〉

|x+〉|x-〉

|T-〉 |T+〉

|x+〉|x-〉

|T-〉 |T+〉

|x+〉|x-〉

|T-〉 |T+〉

|x+〉|x-〉

t = t
b

+τ

t = t
b

FIG. 3. (Color online) Visual representations of selective excita-
tion of a spin-qubit state by two vertically polarized π/2 pulse area
pulses. The middle column shows the probability of occupation of
the four dot energy levels and the right column contains Bloch sphere
representations of the two optically coupled, two-level systems.
The top row shows a snapshot immediately before the first pulse,
the second row immediately after the first pulse, the third row
immediately before the second pulse, and the last row shows the
dot in a state αeiφα |x−(t)〉 + βeiφβ |T+(t)〉 after the second pulse.

vector in the trion state. Thus, after the second pulse the dot is
in state |ψE〉.

As a test of the validity of the assumptions made in
this derivation, the exact equations of motion were solved
numerically for two hyperbolic secant squared pulses with
pulse area π/2 acting on a spin qubit state where |α| =
|β|. The delay was δt = π/(ωx−T− − ωx+T+ ) + tc, where tc
was determined by graphical methods similar to Fig. 2(b).
The pulses were tuned to ωL = (ωx+T+ + ωx−T− )/2, as in
the discussion above, and the pulse bandwidth was about
2.5 times larger than (ωx−T− − ωx+T+ ). Neglecting decay and
decoherence and assuming perfect polarization selectivity of
the optical transitions, the fidelity (defined in Sec. IV) of the
result of this numerical calculation when compared to the
analytic result above is 0.9997.

III. PROPOSED EXPERIMENT

Here, we describe an experimental protocol that uses the
excitation technique of Sec. II to create |ψE(t)〉, a precursor to
spin-photon entanglement. We use four optical pulses to first
create a coherent superposition of the qubit spin states and then
selectively excite the |x+〉 state to create state |ψE(t)〉. A fifth
pulse measures the coherence of the created state, |ψE(t)〉,
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FIG. 4. (Color online) The proposed five-pulse sequence for
creating |ψE〉 and measuring its coherence. The left column indicates
the stage or function of the pulse(s) in that row, where stage (i) is
initialization by the CW beam. In each panel the top label indicates
the arrival time of the pulse at the dot, the arrows mark the transitions
driven by the pulse, and the bottom label gives its polarization and
pulse area. All pulses are on-resonance.

to demonstrate that the coherence of the spin superposition
state was not destroyed during the selective excitation. The
procedure can be thought of in four stages: (i) initialization
to the spin ground state, |ψinit(t)〉 = eiπ	et |x−(t)〉;
(ii) spin rotation to [−eiπ(	h−	e)t2eiπ	et |x−(t)〉 +
ieiπ(	h+	e)t2e−iπ	et |x+(t)〉]/√2 as an example of the
state of the spin qubit; (iii) selective excitation of
the |x+〉 state such that the final state is of the form
|ψE(t)〉 = α′eiφα eiπ	et |x−(t)〉+β ′eiφβ eiπ	ht |T+(t)〉 including
time dependence; and (iv) measurement of the coherence
ρx−T+ present in this final state. Here the coherence
ρx−T+ (t) = 〈x−|ρ(t)|T+〉 = a∗

x− (t)aT+(t) for a pure state, and
ρ is the density matrix operator: ρ ≡ |ψ〉〈ψ |. A CW laser
resonant with the |x+〉 to |T+〉 transition initializes the dot to
|x−〉 by means of optical pumping. Steps (ii), (iii), and (iv)
are pulse manipulations that are illustrated in Fig. 4. Note that
this protocol (1) first rotates the spin to produce a qubit state
that is a superposition of the states |x−〉 and |x+〉, (2) then
selectively excites the |x+〉 state to a trion state, and finally
(3) measures the coherence associated with that excitation in
three separate manipulations using five separate pulses, as
described below.

A. Stage (i)—Initialization of the dot to a single eigenstate

Prior to optical initialization, the two spin states of the
quantum dot |x−〉 and |x+〉 are in thermal equilibrium. We
begin by initializing the dot to a single eigenstate before
creating a coherent superposition state in stage (ii). It has
been shown that a narrow bandwidth CW laser resonant with

one transition (for instance, the |x+〉 to |T+〉 transition) will
optically pump the spin to the ground state that is not coupled
by the laser (in this case the |x−〉 state).51 (Tuning the CW beam
to the |x−〉 to |T−〉 transition would similarly pump the spin to
state |x+〉. It is preferable to pump the |x+〉 to |T+〉 transition
because its lower energy eliminates the possibility of exciting
any nonradiative processes in the dot that could interact with
the optical transitions.) Including the time-dependent phase as
defined in the field interaction picture,46 the initialized state
is |�init(t)〉 = eiπ	et eiφ0 |x−〉, where t = 0 is defined as the
arrival time of the first pulse [in stage (ii)]. φ0 will be different
each repetition period and will time-average to zero during
detection, so it will be neglected in the following discussion.

The CW laser remains incident on the dot throughout the
experiment. When the magnetic field is in the Voigt geometry,
optical pumping occurs in a few trion radiative lifetimes, which
is on the order of a few nanoseconds in this system.50,51,53

Since the other manipulations are performed with a pulsed
laser with a 13 ns repetition period, the dot is reinitialized
after each five-pulse set. As such, each repetition period of the
laser can be treated as an independent experiment (except for
some memory remaining in the nuclear spins).

B. Stage (ii)—Spin rotation to create
a coherent spin superposition

Once the dot is initialized to the state |ψinit(t)〉, we rotate
the spin to

|ψ2(t)〉 = −1√
2
eiπ(	h−	e)t2eiπ	et |x−(t)〉

+ i√
2
eiπ(	h+	e)t2e−iπ	et |x+(t)〉.

|ψ2(t)〉 is a nontrivial case of the arbitrary spin state α|x−〉 +
β|x+〉 [or |ψspin(t)〉 = α′eiπ	et |x−(t)〉 + β ′e−iπ	et |x+(t)〉 in-
cluding time dependence], and is used as the initial state for
selective excitation without loss of generality.

Although the spin rotation from the eigenstate |x−〉 to
an equal superposition of the electron spin (ground) states
could be achieved using a single off-resonant Raman pulse,6,7

combining this off-resonant pulse with the on-resonance pulses
necessary for selective excitation in stage (iii) would require
two pulsed lasers. Instead, we suggest a simple two-pulse
sequence that achieves the effective spin rotation by way of
a trion state intermediate, as shown in the first two frames of
Fig. 4. This modification allows the entire sequence of five
pulses required in this experiment to be produced by a single
laser, because all pulses can have identical pulse widths and
center frequencies.

Starting from the initialized state |ψinit(t)〉 =
eiπ	et eiφ0 |x−〉, first a horizontally polarized (H ) pulse
excites the system at t = 0. The pulse is short enough that its
Fourier transform bandwidth covers all four optical transitions
shown in Fig. 1. As in the previous section, due to the broad
bandwidth, the pulses centered at ωL can be approximated as
on-resonance. Since only state |x−〉 is occupied and the pulse
is horizontally polarized, the pulse only couples states |x−〉
and |T+〉. The effect of resonant excitation of this two-level
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system by the horizontally polarized electric field

E1(t) = E1x̂ � (t/τ ) cos ωt (10)

is given in the field interaction picture by[
cx− (τ )
cT+ (τ )

]
=

[
cos

( |�1|τ
2

)
i sin

( |�1|τ
2

)
i sin

( |�1|τ
2

)
cos

( |�1|τ
2

)
][

cx− (0)
cT+ (0)

]
, (11)

where �1 = −μT+x−E1/h̄. If the pulse area �1 = |�1|τ is
π , then the first pulse drives the system to |T+〉 with unity
probability, resulting in the state

|ψ1(t)〉 = ieiπ	ht |T+(t)〉 for τ < t < t2. (12)

Since 1/τ � 	e,	h for typical InAs dots, the pulses can
be approximated as instantaneous when writing the phase
accumulated between the pulses.

Next, a 45◦ polarized pulse, with equal horizontal and
vertical components Ex = Ey , couples the |T+〉 state to
both ground states equally. For InAs dots, μT−x− = iμT+x− =
−μx−T− . Solving the equations of motion for the initial
condition |cT+ (t2)|2 = 1 gives

cx− (t2 + τ ) = cT+ (t2)
i√
2

sin
|�2|τ

2
,

cx+ (t2 + τ ) = cT+ (t2)
1√
2

sin
|�2|τ

2
, (13)

cT+ (t2 + τ ) = cT+ (t2) cos
|�2|τ

2
,

where �2 = −μT+x−Ex/h̄. Therefore, if the second pulse has
a pulse area �2 = |�2|τ of π , it will leave the dot in

|ψ2(t)〉 = [−eiπ(	h−	e)t2eiπ	et |x−(t)〉
+ ieiπ(	h+	e)t2e−iπ	et |x+(t)〉]/

√
2

for t2 + τ < t < t3, (14)

which is of the form of |ψspin(t)〉 with α′ = −eiπ(	h−	e)t2/
√

2
and β ′ = ieiπ(	h+	e)t2/

√
2.

After the second pulse, the dot state is a coherent super-
position of the electron spin states, which will precess due to
the magnetic field until the next pulse arrives. This precession
time contributes to the phases in Eq. (15), but the value of
these phases is not critical for the use of state |ψ4(t)〉 in the
YLS proposal. The time delays between the first three pulses
need not be precise, however they should be short to minimize
decoherence and decay.

C. Stage (iii)—Selective excitation to |ψ E〉
As derived in Sec. II, if the third and fourth pulses are verti-

cally polarized with pulse area π/2, then the third pulse creates
a coherent superposition of all four eigenstates. Between the
third and fourth pulses, different phases accumulate for the
two vertical transitions. If the delay between pulses is ap-
proximated as δt = t4 − t3 (neglecting the pulse width τ ) and
satisfies δt = [2(	e + 	h)]−1 and (δt + τ )ωL = π/2, then
pulses 3 and 4 will selectively excite the dot from |ψ2(t3)〉 to

|ψ4(t)〉 = α′ieiπ	et3e
− iπ	h

2(	e+	h) eiπ	et |x−(t)〉
−β ′ie−iπ	et3e

− iπ	e
2(	e+	h) e−i(φ−ωLt3)e−iπ	ht |T+(t)〉,

t4 < t < t5, (15)

which has the form of |ψE(t)〉 with φα = π(	e)
2(	e+	h) + π	et3

and φβ = −π	h

2(	e+	h) − π	et3. Here we applied Eq. (7) with
ta = t3, tb = t4, and |ψ2(t3)〉 providing the probability
amplitudes c(t3). Notice the phases of state |ψ4(t)〉 continue
to evolve in time after the fourth pulse. These phases are used
in stage (iv) to measure the induced coherence ρx−T+ , and they
would not impair an entanglement procedure.

D. Readout

The CW beam, which also performs initialization, is used
for readout. The readout signal is the detection of absorption
of a photon by the final spin state due to the optical pumping
back to the original spin state. The signal is measured by a
square law detector that will detect a combination of the CW
laser field (ECW) and the optical field radiated by the dot (ES).
The destructive interference of these two fields appears as
absorption.

The experimental techniques used to detect this small
absorption affect the form of the detected signal, and thus
require discussion here. Detection is nontrivial because the
absorption signal is collinear with the incident lasers. Pulses
are blocked by a polarizer such that they do not reach the
detector. Modulation of the bias voltage across the sample
translates to a modulated Stark shift in the dot. This voltage
modulation can be used as the reference frequency for phase-
sensitive detection with a lock-in amplifier, which greatly
improves the signal-to-noise ratio of the readout.54 The CW
beam is on-resonance with the |x+〉 to |T+〉 transition, such that
ECW = ŷECW cos ωT+x+ t . Due to the phase-sensitive detection,

only terms proportional to 1
T

∫ 0+T

0 (ECW · ES)dt , where T is
the repetition period of the pulsed laser, will be detected by the
lock-in since only ES is modulated. Because the CW field also
optically pumps the system back to a single eigenstate within
a few trion lifetimes, we assume the laser repetition period is
sufficiently long such that the system is reinitialized between
pulse sequences.

Since the signal is measured by homodyning with the
classical probe field, the signal depends only on the average
dipole moment of the dot. We use a semiclassical, density
matrix approach to calculate this quantity.46 Therefore,

ES(t) = K[μx+T+ρT+x+ (t) − μT+x+ρx+T+ (t)], (16)

where K is a (complex) constant, μx+T+ is the dipole
moment between states |x+〉 and |T+〉, and ρx+T+ is the of-
diagonal density matrix element representing the optical dipole
induced coherence in the Schrödinger picture, ρx+T+ (t) =
ax+ (t)a∗

T+(t) = cx+ (t)c∗
T+(t)eiωLt . The field interaction picture

is convenient for derivations, but it is necessary to translate
back to the Schrödinger picture to calculate expectation values
of observable quantities.

Given that the decay of state |T+〉 strongly affects the
coherence between states |T+〉 and |x+〉, this coherence is
best calculated in the density matrix picture.46 It is a good
approximation that the CW laser only couples states |x+〉 and
|T+〉, due to the very narrow bandwidth of frequency-stabilized
CW lasers. The density matrix equations for the four-level
system with excitation by the CW beam and decay can be
solved analytically for the coherence ρT+x+ under the condition
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that the optical pumping rate is much faster than the repetition
rate of the laser. The result is that the detected readout signal is
proportional to ρT+T+ (tf )/2 + ρT−T− (tf )/2 + ρx+x+ (tf ), where
ρii(tf ) is the occupation probability of state |i〉 immediately
after the final pulse. (For the full five-pulse experiment
illustrated in Fig. 4, tf = t5.) This result can be understood
intuitively since a dot in state |x+〉 absorbs the CW beam,
while a dot in state |x−〉 does not. Furthermore, a dot excited
to either state |T+〉 or state |T−〉 has a 50% chance of decaying
into state |x+〉 where it is measured by the CW beam.

Because this readout method involves leaving the CW beam
on during the pulse manipulations, the effect of the CW beam
on the dot during this manipulation time, t5 − t1 = t5, must
be considered. However, as long as the CW Rabi frequency is
much smaller than 1/t5, its effect on the dot during the pulse
sequence will be small. The effect of the CW beam on the
fidelity of the proposed pulse manipulations is addressed with
numerical simulations in Sec. IV.

E. Stage (iv)—Coherence measurement

Measuring the induced coherence ρx−T+ following
the creation of |ψE(t)〉 = [α′eiφα eiπ	et |x−(t)〉 + β ′eiφβ eiπ	ht

|T+(t)〉] is essential for a demonstration of entanglement.
As derived in the preceding section, the experimentally
measured signal detects populations. However, a horizontally
polarized pulse with pulse area π/2 can rotate the coherence
associated with |ψE(t)〉, ρx−T+ (t), into a population that can be
measured by the CW laser.55 The addition of a phase-stable,
fifth on-resonance pulse enables the observation of optical
Ramsey fringes due to the relative phase accumulated after
pulse 4 by state |x−〉 relative to state |T+〉.

The state of the system after the fourth pulse [given by
Eq. (15)] can be written as c(t4 + τ ) with cx+ (t4 + τ ) =
cT− (t4 + τ ) = 0, and therefore

[
cx− (t5 + τ )
cT+ (t5 + τ )

]
=

[
cos

(
θ5
2

)
ieiφ5 sin

(
θ5
2

)
ie−iφ5 sin

(
θ5
2

)
cos

(
θ5
2

)
]

×
[

eπi	e(t5−t4) 0
0 eπi	h(t5−t4)

][
cx− (t4+τ )
cT+ (t4+τ )

]
,

(17)

where θ5 = |�5|τ and �5 = |�5|e−iφ5 . Again, terms of order
	eτ are neglected. Using the result from the preceding section,
the measured signal after the proposed fifth pulse with �5 real
and �5τ = π/2 is proportional to

1
2ρT+T+ (t5 + τ ) + 1

2ρT−T− (t5 + τ ) + ρx+x+ (t5 + τ )

= 1
4ρx−x− (t4 + τ ) + 1

4ρT+T+ (t4 + τ )

+ 1
2 Im[ρx−T+ (t4 + τ )eiωx−T+ (t5−t4)/2]. (18)

This is calculated by combining Eq. (3), Eq. (17), and the
definition ρij = aia

∗
j (where ai is a probability amplitude in

the Schrödinger, rather than field interaction, representation).
Therefore, the coherence ρx−T+ (t4 + τ ) of |�E〉 after pulse 4
can be measured by varying the delay between pulses 4 and
5 (provided this delay is phase-stable on the scale of ωx−T+ ).
The coherence ρx−T+ (t4 + τ ) is proportional to the amplitude
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FIG. 5. A plot of the CW absorption readout signal after the
fifth pulse, given by Eq. (18), for several values of ρx−T+ . The plot
assumes ρx−x− (t4 + τ ) = ρT+T+ (t4 + τ ) = 0.5 after the fourth pulse.
The amplitude of the oscillation is proportional to the coherence
ρx−T+ .

of the oscillation of the CW absorption as a function of this
delay (Fig. 5).

IV. FIDELITY FROM NUMERICAL SIMULATIONS

In this section, numerical solutions to the density matrix
equations using realistic experimental parameters (including
more realistic pulse shapes) are compared to the analytic
results obtained in the previous sections. A finite pulse
bandwidth, which does not couple all four transitions equally,
minor temporal overlap of the pulses, trion state decay,
decoherence, spin flips and the effect of the CW beam during
and between the pulses are all possible causes of differences
between analytical and numerical results. We quantify the
effect of these deviations by calculating the fidelity between
the analytically calculated and simulated final state of the dot.

A quantum transformation can be characterized by its
fidelity F defined as

F = |〈ψ |U †
AUI |ψ〉|, (19)

where UI is the ideal unitary operator for the transformation,
UA is the operator of the actual (calculated, simulated,
or measured) transformation, and the overbar indicates an
average over all possible initial states.56 Fidelity can be
alternately defined as

F (ρI ,ρA) = Tr
√

ρIρA (20)

to include decay and decoherence.57

This section calculates the fidelity F (ρtheory,ρsim) to com-
pare the simulated result of the suggested experiment to the
ideal, theoretical result. As presented in the previous sections,
the theoretical calculation consists of 4 × 4 transfer matrices in
the probability amplitude picture; each matrix corresponds to
either the action of a pulse or the time dependence of the states
between pulses. The simulations are numerical solutions to
the coupled equations of motion for the states of the dot in the
density matrix picture, which allows decay and decoherence
to be included.46

A numerical simulation with hyperbolic secant squared
pulse shapes, 1.9 ps pulse widths [full width at half-maximum
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(FWHM) power], a dipole moment for all four optical
transitions of 6.75 D, 	e = 30 GHz, 	h = 20 GHz, and
no decay or decoherence agrees with the transfer matrix
calculation for the effect of pulses 1 through 4 with a fidelity
of 0.999. Including in the simulation a trion decay rate of
1.17 × 109 s−1, no pure dephasing of the optical transitions,
equal electron and hole spin-flip rates of 6.28 × 106 s−1, and
2.51 × 108 s−1 pure electron spin dephasing only degrades
the fidelity to 0.991. This is a small change because decay and
decoherence only reduce the fidelity during the pulse sequence,
and the total time required for the entire four-pulse sequence is
only 25 ps. It is because the effects of decay and decoherence
are so small that we could present the pulse manipulations in
the amplitude picture and neglect decay. Including a CW beam
with an incident intensity of 2.5 × 106 W/m2, such as would
be used for initialization and readout, has only a small effect
on the fidelity, lowering it by only 0.002 to 0.989. The values
used above and plotted as the highlighted point in Fig. 6(c)
are estimates of realistic values for InAs quantum dots,53,58–60

but values can vary from dot to dot and certainly could be
quite different in other qubit systems, for example trapped
ions. The hole spin-flip rate is likely exaggerated here, but
even with these values it has a negligible (�0.002) effect on
both the fidelity and the entropy of entanglement discussed
below. Figure 6 shows the effect that different trion decay, trion
decoherence, and spin-flip times would have on the fidelity
(shown by the blue diamonds).

The selective excitation pulse pair, pulses 3 and 4, could
be replaced by a single narrow bandwidth pulse that only
excites the |x+〉 to |T+〉 transition. This seems like a simpler
approach, but a pulse that is narrow enough to only excite
a single transition is also long enough to suffer fidelity
degradation from decay and decoherence. A pulse with a
power FWHM of 12 ps achieves the highest fidelity possible
for single pulse selective excitation, which is 0.995 for the
decay and decoherence values from the preceding paragraph.
This single pulse operation is 30 ps long, if we define the
length of the operation as the time interval between the 5%
power point on the leading edge of the first pulse and the
5% power point on the falling edge of the final pulse. For
comparison, the two selective excitation pulses, pulses 3 and
4 from the experiment proposed in Sec. III, have an operation
time of only 14 ps, and a fidelity of 0.998. Therefore, two
phase-locked pulses selectively excite the dot in a shorter
time compared to a single narrow bandwidth pulse, while
achieving a similar fidelity. The method of selective excitation
with two phase-locked pulses (explained in detail in Sec. II)
is essential if the available lasers cannot directly generate
pulses with sufficiently narrow bandwidths to use the single
pulse method and do not have enough power to narrow
the bandwidth through simple spectral filtering. As an example
of the limitation of long, narrow bandwidth pulses, a 200 ps
pulse such as could be created by a high-speed electro-optic
modulator is simulated to have a best-case fidelity of 0.897,
largely due to decay and decoherence.

Recall that the eventual goal is to create state |�E(t)〉
in a cavity, such that upon radiative decay, entanglement
is created between the electron spin and the presence of a
photon in the cavity mode. Assuming the cavity completely
suppresses all radiative decay that would create horizontally
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FIG. 6. (Color online) Fidelity (blue diamonds) and entropy of
entanglement (red squares) for several rates of trion decay (a), pure
dephasing of the ground to trion state (optical) transitions (b), and spin
flips (c), all in the presence of a CW beam with an incident intensity
of 2.5 × 106 W/m2. All rates are normalized to the pulse bandwidth
(bw) of 1.6 × 1011 s−1. Plot (a) includes decoherence, but zero pure
dephasing of the optical transitions. Electron and hole spin flips and
spin pure dephasing are set to zero for plots (a) and (b). In plots (b) and
(c), the trion decay rate is a constant 1.17 × 109 s−1. Plot (c) requires
that the electron and hole spin-flip rates are equal and that both
electron and hole spin pure dephasing is zero. Plot (c) again assumes
zero trion pure dephasing. The highlighted points in plot (c) mark
an electron and hole spin-flip rate of 6.28 × 106 s−1 and represent a
realistic estimate of the fidelity and entropy of entanglement for InAs
quantum dots based on previously measured decay and decoherence
rates.53,58–60

polarized photons and assuming all excited states decay and
emit photons before decoherence can alter the state of the dot,
the state of the system after radiative decay would be given
by the following mapping:

|x+〉|0〉c → |x+〉|0〉c,
|x−〉|0〉c → |x−〉|0〉c,

(21)|t+〉|0〉c → |x+〉|1〉c,
|t−〉|0〉c → |x−〉|1〉c.
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With these assumptions, |�E〉 would decay to [ei�αeiπ	et

|x−(t)〉|0〉c + ei�β e−iπ	et |x+(t)〉|1〉c]/
√

2. For simplicity, the
calculations below assume �α = φα and �β = φβ .

Entropy of entanglement is a method of quantify-
ing the entanglement of a state that exists in a com-
posite Hilbert space.61 The state [ei�αeiπ	et |x−(t)〉|0〉c +
ei�β e−iπ	et |x+(t)〉|1〉c]/

√
2 has maximum entanglement be-

tween the electron spin and the presence or absence of a photon
in the cavity mode, and thus has an entropy of entanglement
of 1. The numerical simulations described above produce a
density matrix that describes how well the proposed scheme
of optical pulses creates |ψE〉. This has been quantified as a
fidelity, but it would be more relevant to quantify how much
entanglement would be created if the simulated state were to
decay in a cavity. After applying the mapping above to the sim-
ulated density matrix, a procedure presented by Wootters gives
the entropy of entanglement of the spin-photon system, even if
the simulation results in a mixed case for the density matrix.62

Figure 6 plots the entropy of entanglement (red squares) in
addition to the fidelity (blue diamonds) for various parameters.
It is important to consider the entropy of entanglement and
not simply the fidelity of the process, as shown in Fig. 6(a),
where the fidelity is barely affected by the increased decay yet
the entropy of entanglement drops nearly to 0.5. Figure 6(b)
shows the degradation of the entropy of entanglement by pure
dephasing of the optical transition, a type of decoherence.
Figure 6(b) illustrates the importance of coherence between
the trion states and the ground states for the creation of entan-
glement, demonstrating why the measurement of coherence in
stage (iv) is essential.

The expected entropy of entanglement using the typical
parameters for InAs dots stated above and including the effect
of the CW beam is 0.915 [plotted as the highlighted point
in Fig. 6(c)]. This is the amount of entanglement, out of a
maximum of 1, that the proposed pulse scheme is expected
to create between the electron spin in a typical InAs quantum
dot and the existence of a photon, if the dot were allowed
to decay in a cavity. The CW laser could be gated off after
initialization to achieve a fidelity of 0.991 and an entropy of

0.929. As illustrated by Fig. 6, the entropy of entanglement
is primarily limited by the trion decay rate and to a lesser
extent by the electron spin-flip rate. (We are assuming a dot
with zero optical pure dephasing.) Shorter pulses and a higher
magnetic field would reduce the delay between pulses and
thus the effects of decay, decoherence, and spin flips, however
the pulse bandwidth must be kept small enough that higher-
energy dot states are not excited. Using a detuned pulse that
adiabatically eliminates the trion state to accomplish the spin
rotation [stage (iv) in Fig. 4] would likely provide further
improvement of the fidelity and entropy of entanglement by
reducing the impact of trion decay during stage (ii).

V. CONCLUSIONS

We presented an experimental design involving a sequence
of four pulses which demonstrates the coherent optical
excitation of a spin qubit to a state of the form |ψE(t)〉 =
α′eiφα eiπ	et |x−(t)〉 + β ′eiφβ eiπ	ht |T+(t)〉, where α′ and β ′ are
complex numbers of magnitude 1/

√
2. A proposed fifth pulse

demonstrates the ability to perform measurements on the
created state by measuring its coherence. Numerical simu-
lations with experimentally relevant parameters predict high
fidelities for the proposed experiment. If the ideal coherent
superposition state |ψE〉 were created in a dot in an appropriate
optical cavity, the state of the dot-cavity system would be
|�E〉 = |ψE〉|0〉c, and it would decay deterministically to
the state α′ei�αeiπ	et |x−(t)〉|0〉c + β ′ei�β e−iπ	et |x+(t)〉|1〉c,
which possesses maximal entanglement between the electron
spin and the occupation of the cavity mode. Realistic values for
InAs dots predict an actual entropy of entanglement of 0.929.
Thus, this experimental proposal represents a preliminary step
toward the deterministic entanglement of a photon and a spin
in a quantum dot.
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